Sample records for temporal firing patterns

  1. Twentieth-century fire patterns in the Selway-Bitterroot Wilderness Area, Idaho/Montana, and the Gila/Aldo Leopold Wilderness Complex, New Mexico

    Treesearch

    Matthew Rollins; Tom Swetnam; Penelope Morgan

    2000-01-01

    Twentieth century fire patterns were analyzed for two large, disparate wilderness areas in the Rocky Mountains. Spatial and temporal patterns of fires were represented as GIS-based digital fire atlases compiled from archival Forest Service data. We find that spatial and temporal fire patterns are related to landscape features and changes in land use. The rate and...

  2. Spatially and temporally variable fire regime on Rincon Peak, Arizona, USA

    Treesearch

    Jose M. Iniguez; Thomas W. Swetnam; Christopher H. Baisa

    2009-01-01

    Spatial and temporal patterns of fire history are affected by factors such as topography, vegetation, and climate. It is unclear, however, how these factors influenced fire history patterns in small isolated forests, such as that found on Rincon Peak, a "sky island" mountain range in southern Arizona, USA. We reconstructed the fire history of Rincon Peak to...

  3. Characterization of the Fire Regime and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2016-12-01

    The Upper Guinean forest (UGF), encompassing the tropical regions of West Africa, is a globally significant biodiversity hotspot and a critically important socio-economic and ecological resource for the region. However, the UGF is one of the most human-disturbed tropical forest ecosystems with the only remaining large patches of original forests distributed in protected areas, which are embedded in a hotspot of climate stress & land use pressures, increasing their vulnerability to fire. We hypothesized that human impacts and climate interact to drive spatial and temporal variability in fire, with fire exhibiting distinctive seasonality and sensitivity to drought in areas characterized by different population densities, agricultural practices, vegetation types, and levels of forest degradation. We used the MODIS active fire product to identify and characterize fire activity in the major ecoregions of the UGF. We used TRMM rainfall data to measure climatic variability and derived indicators of human land use from a variety of geospatial datasets. We employed time series modeling to identify the influences of drought indices and other antecedent climatic indicators on temporal patterns of active fire occurrence. We used a variety of modeling approaches to assess the influences of human activities and land cover variables on the spatial pattern of fire activity. Our results showed that temporal patterns of fire activity in the UGF were related to precipitation, but these relationships were spatially heterogeneous. The pattern of fire seasonality varied geographically, reflecting both climatological patterns and agricultural practices. The spatial pattern of fire activity was strongly associated with vegetation gradients and anthropogenic activities occurring at fine spatial scales. The Guinean forest-savanna mosaic ecoregion had the most fires. This study contributes to our understanding of UGF fire regime and the spatio-temporal dynamics of tropical forest fires in response to intense human and climatic drivers.

  4. Tracking MODIS NDVI time series to estimate fuel accumulation

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Philip J. Riggan

    2015-01-01

    Patterns of post-fire recovery in southern California chaparral shrublands are important for understanding fuel available for future fires. Satellite remote sensing provides an opportunity to examine these patterns over large spatial extents and at high temporal resolution. The relatively limited temporal range of satellite remote sensing products has previously...

  5. Spatial patterns and controls on historical fire regimes and forest structure in the Klamath Mountains

    Treesearch

    Alan H. Taylor; Carl N. Skinner

    2003-01-01

    Fire exclusion in mixed conifer forests has increased the risk of fire due to decades of fuel accumulation. Restoration of fire into altered forests is a challenge because of a poor understanding of the spatial and temporal dynamics of fire regimes. In this study the spatial and temporal characteristics of fire regimes and forest age structure are reconstructed in a...

  6. High-resolution infrared thermography for capturing wildland fire behaviour - RxCADRE 2012

    Treesearch

    Joseph J. O’Brien; E. Louise Loudermilk; Benjamin Hornsby; Andrew T. Hudak; Benjamin C. Bright; Matthew B. Dickinson; J. Kevin Hiers; Casey Teske; Roger D. Ottmar

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at wide spatial extents and high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about fire effects and useful for examining patterns of fire spread. In this study we describe our...

  7. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests

    Treesearch

    Danny L. Fry; Scott L. Stephens; Brandon M. Collins; Malcolm North; Ernesto Franco-Vizcaino; Samantha J. Gill

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference...

  8. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    PubMed

    Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-11-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.

  9. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    PubMed Central

    Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-01-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363

  10. Temporal trends in mammal responses to fire reveals the complex effects of fire regime attributes.

    PubMed

    Lindenmayer, David B; Blanchard, Wade; MacGregor, Christopher; Barton, Philip; Banks, Sam C; Crane, Mason; Michael, Damian; Okada, Sachiko; Berry, Laurence; Florance, Daniel; Gill, Malcolm

    2016-03-01

    Fire is a major ecological process in many ecosystems worldwide. We sought to identify which attributes of fire regimes affect temporal change in the presence and abundance of Australian native mammals. Our detailed study was underpinned by time series data on 11 mammal species at 97 long-term sites in southeastern Australia between 2003 and 2013. We explored how temporal aspects of fire regimes influenced the presence and conditional abundance of species. The key fire regime components examined were: (1) severity of a major fire in 2003, (2) interval between the last major fire (2003) and the fire prior to that, and (3) number of past fires. Our long-term data set enabled quantification of the interactions between survey year and each fire regime variable: an ecological relationship missing from temporally restricted studies. We found no evidence of any appreciable departures from the assumption of independence of the sites. Multiple aspects of fire regimes influenced temporal variation in the presence and abundance of mammals. The best models indicated that six of the 11 species responded to two or more fire regime variables, with two species influenced by all three fire regime attributes. Almost all species responded to time since fire, either as an interaction with survey year or as a main effect. Fire severity or its interaction with survey year was important for most terrestrial rodents. The number of fires at a site was significant for terrestrial rodents and several other species. Our findings contain evidence of the effects on native mammals of heterogeneity in fire regimes. Temporal response patterns of mammal species were influenced by multiple fire regime attributes, often in conjunction with survey year. This underscores the critical importance of long-term studies of biota that are coupled with data sets characterized by carefully documented fire history, severity, and frequency. Long-term studies are essential to predict animal responses to fires and guide management of when and where (prescribed) fire or, conversely, long-unburned vegetation is needed. The complexity of observed responses highlights the need for large reserves in which patterns of heterogeneity in fire regimes can be sustained in space and over time.

  11. Techniques for spatio-temporal analysis of vegetation fires in the topical belt of Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brivio, P.A.; Ober, G.; Koffi, B.

    1995-12-31

    Biomass burning of forests and savannas is a phenomenon of continental or even global proportions, capable of causing large scale environmental changes. Satellite space observations, in particular from NOAA-AVHRR GAC data, are the only source of information allowing one to document burning patterns at regional and continental scale and over long periods of time. This paper presents some techniques, such as clustering and rose-diagram, useful in the spatial-temporal analysis of satellite derived fires maps to characterize the evolution of spatial patterns of vegetation fires at regional scale. An automatic clustering approach is presented which enables one to describe and parameterizemore » spatial distribution of fire patterns at different scales. The problem of geographical distribution of vegetation fires with respect to some location of interest, point or line, is also considered and presented. In particular rose-diagrams are used to relate fires patterns to some reference point, as experimental sites of tropospheric chemistry measurements. Different temporal data-sets in the tropical belt of Africa, covering both Northern and Southern Hemisphere dry seasons, using these techniques were analyzed and showed very promising results when compared with data from rain chemistry studies at different sampling sites in the equatorial forest.« less

  12. Spatial and temporal selectivity patterns of fires in Attika, Greece from 1984 to 2015 delineated from Landsat time series satellite images

    NASA Astrophysics Data System (ADS)

    Stamos, Zoi; Koutsias, Nikos

    2017-04-01

    The aim of this study is to assess spatial and temporalfire selectivity patterns in the region of Attica - Greece from 1984 to 2015. Our work is implemented in two distinct phases: the first consists of the accurate delineation of the fire perimeter using satellite remote sensing technology, and the second consists of the application of suitable GIS supported analyses to develop thematic layers that optimally summarised the spatial and temporal information of fire occurrence. Fire perimeters of wildland fires occurred within the time window 1984-2015 were delineated from freely available Landsat images from USGS and ESA sources.More than three thousands satellite images were processed in order to extract fire perimeters and create maps of fire frequency and fire return interval. In total one thousand and one hundred twenty fire perimeters were recorded during this thirty years' period. Fire perimeters within each year of fire occurrence were compared against the available to burn under complete random processes to identify selectivity patterns over (i) CORINE land use/land cover, (ii) fire frequency and (iii) time since last firemaps. For example, non- irrigated arable lands, complex cultivation patterns and discontinuous urban fabrics are negative related with fires, while coniferous forests, sclerophyllous vegetation and transitional woodlands seem to be preferable by the fires. Additionally, it seems that fires prefer their old burnings (two and three times burned) and also places with different patterns of time since last fire depending on the time needed by the type of vegetation to recover and thus to re-burn.

  13. Canopy-derived fuels drive patterns of in-fire energy release and understory plant mortality in a longleaf pine ( Pinus palustris ) sandhill in northwest Florida, USA

    Treesearch

    Joseph J. O' Brien; E. Louise Loudermilk; J. Kevin Hiers; Scott Pokswinski; Benjamin Hornsby; Andrew Hudak; Dexter Strother; Eric Rowell; Benjamin C. Bright

    2016-01-01

    Wildland fire radiant energy emission is one of the only measurements of combustion that can be made at high temporal and spatial resolutions. Furthermore, spatially and temporally explicit measurements are critical for making inferences about ecological fire effects. Although the correlation between fire frequency and plant biological diversity in frequently burned ...

  14. Understanding the Spatio-Temporal Pattern of Fire Disturbance in the Eastern Mongolia Using Modis Product

    NASA Astrophysics Data System (ADS)

    Wurihan; Zhang, H.; Zhang, Z.; Guo, X.; Zhao, J.; Duwala; Shan, Y.; Hongying

    2018-04-01

    Fire disturbance plays an important role in maintaining ecological balance, biodiversity and self-renewal. In this paper, the spatio-temporal pattern of fire disturbances in eastern Mongolia are studied by using the ArcGIS spatial analysis method, using the MCD45A1 data of MODIS fire products with long time series. It provides scientific basis and reference for the regional ecological environment security construction and international ecological security. Research indicates: (1) The fire disturbance in eastern Mongolia has obvious high and low peak interleaving phenomenon in the year, and the seasonal change is obvious. (2) The distribution pattern of fire disturbance in eastern Mongolia is aggregated, which indicates that the fire disturbance is not random and it is caused by certain influence. (3) Fire disturbance is mainly distributed in the eastern province of Mongolia, the border between China and Mongolia and the northern forest area of Sukhbaatar province. (4) The fire disturbance in the eastern part of the study area is strong and the southwest is weaker. The spreading regularity of fire disturbances in eastern Mongolia is closer to the natural level of ecosystem.

  15. Climatic and Landscape Influences on Fire Regimes from 1984 to 2010 in the Western United States

    PubMed Central

    Liu, Zhihua; Wimberly, Michael C.

    2015-01-01

    An improved understanding of the relative influences of climatic and landscape controls on multiple fire regime components is needed to enhance our understanding of modern fire regimes and how they will respond to future environmental change. To address this need, we analyzed the spatio-temporal patterns of fire occurrence, size, and severity of large fires (> 405 ha) in the western United States from 1984–2010. We assessed the associations of these fire regime components with environmental variables, including short-term climate anomalies, vegetation type, topography, and human influences, using boosted regression tree analysis. Results showed that large fire occurrence, size, and severity each exhibited distinctive spatial and spatio-temporal patterns, which were controlled by different sets of climate and landscape factors. Antecedent climate anomalies had the strongest influences on fire occurrence, resulting in the highest spatial synchrony. In contrast, climatic variability had weaker influences on fire size and severity and vegetation types were the most important environmental determinants of these fire regime components. Topography had moderately strong effects on both fire occurrence and severity, and human influence variables were most strongly associated with fire size. These results suggest a potential for the emergence of novel fire regimes due to the responses of fire regime components to multiple drivers at different spatial and temporal scales. Next-generation approaches for projecting future fire regimes should incorporate indirect climate effects on vegetation type changes as well as other landscape effects on multiple components of fire regimes. PMID:26465959

  16. A hierarchical fire frequency model to simulate temporal patterns of fire regimes in LANDIS

    Treesearch

    Jian Yang; Hong S. He; Eric J. Gustafson

    2004-01-01

    Fire disturbance has important ecological effects in many forest landscapes. Existing statistically based approaches can be used to examine the effects of a fire regime on forest landscape dynamics. Most examples of statistically based fire models divide a fire occurrence into two stages--fire ignition and fire initiation. However, the exponential and Weibull fire-...

  17. Cross-scale analysis of fire regimes

    Treesearch

    Donald A. Falk; Carol Miller; Donald McKenzie; Anne E. Black

    2007-01-01

    Cross-scale spatial and temporal perspectives are important for studying contagious landscape disturbances such as fire, which are controlled by myriad processes operating at different scales. We examine fire regimes in forests of western North America, focusing on how observed patterns of fire frequency change across spatial scales. To quantify changes in fire...

  18. Temporally diverse firing patterns in olfactory receptor neurons underlie spatiotemporal neural codes for odors

    PubMed Central

    Raman, Baranidharan; Joseph, Joby; Tang, Jeff; Stopfer, Mark

    2010-01-01

    Odorants are represented as spatiotemporal patterns of spikes in neurons of the antennal lobe (AL, insects) and olfactory bulb (OB, vertebrates). These response patterns have been thought to arise primarily from interactions within the AL/OB, an idea supported, in part, by the assumption that olfactory receptor neurons (ORNs) respond to odorants with simple firing patterns. However, activating the AL directly with simple pulses of current evoked responses in AL neurons that were much less diverse, complex, and enduring than responses elicited by odorants. Similarly, models of the AL driven by simplistic inputs generated relatively simple output. How then are dynamic neural codes for odors generated? Consistent with recent results from several other species, our recordings from locust ORNs showed a great diversity of temporal structure. Further, we found that, viewed as a population, many response features of ORNs were remarkably similar to those observed within the AL. Using a set of computational models constrained by our electrophysiological recordings, we found that the temporal heterogeneity of responses of ORNs critically underlies the generation of spatiotemporal odor codes in the AL. A test then performed in vivo confirmed that, given temporally homogeneous input, the AL cannot create diverse spatiotemporal patterns on its own; however, given temporally heterogeneous input, the AL generated realistic firing patterns. Finally, given the temporally structured input provided by ORNs, we clarified several separate, additional contributions of the AL to olfactory information processing. Thus, our results demonstrate the origin and subsequent reformatting of spatiotemporal neural codes for odors. PMID:20147528

  19. A neutral model of low-severity fire regimes

    Treesearch

    Don McKenzie; Amy E. Hessl

    2008-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire occurrence is a stochastic process, an understanding of baseline variability is necessary in order to identify constraints on surface fire regimes. With a suitable null, or neutral, model, characteristics of natural fire regimes estimated...

  20. Using neutral models to identify constraints on low-severity fire regimes.

    Treesearch

    Donald McKenzie; Amy E. Hessl; Lara-Karena B. Kellogg

    2006-01-01

    Climate, topography, fuel loadings, and human activities all affect spatial and temporal patterns of fire occurrence. Because fire is modeled as a stochastic process, for which each fire history is only one realization, a simulation approach is necessary to understand baseline variability, thereby identifying constraints, or forcing functions, that affect fire regimes...

  1. Fire in southern forest landscapes

    Treesearch

    John A. Stanturf; Dale D. Wade; Thomas A. Waldrop; Deborah K. Kennard; Gary L. Achtemeier

    2002-01-01

    Other than land clearing for urban development (Wear and others 1998), no disturbance is more common in southern forests than fire. The pervasive role of fire predates human activity in the South (Komarek 1964, 1974), and humans magnified that role. Repeating patterns of fire behavior lead to recognizable fire regimes, with temporal and spatial dimensions....

  2. Identification of a rhythmic firing pattern in the enteric nervous system that generates rhythmic electrical activity in smooth muscle.

    PubMed

    Spencer, Nick J; Hibberd, Timothy J; Travis, Lee; Wiklendt, Lukasz; Costa, Marcello; Hu, Hongzhen; Brookes, Simon J; Wattchow, David A; Dinning, Phil G; Keating, Damien J; Sorensen, Julian

    2018-05-28

    The enteric nervous system (ENS) contains millions of neurons essential for organization of motor behaviour of the intestine. It is well established the large intestine requires ENS activity to drive propulsive motor behaviours. However, the firing pattern of the ENS underlying propagating neurogenic contractions of the large intestine remains unknown. To identify this, we used high resolution neuronal imaging with electrophysiology from neighbouring smooth muscle. Myoelectric activity underlying propagating neurogenic contractions along murine large intestine (referred to as colonic migrating motor complexes, CMMCs) consisted of prolonged bursts of rhythmic depolarizations at a frequency of ∼2 Hz. Temporal coordination of this activity in the smooth muscle over large spatial fields (∼7mm, longitudinally) was dependent on the ENS. During quiescent periods between neurogenic contractions, recordings from large populations of enteric neurons, in mice of either sex, revealed ongoing activity. The onset of neurogenic contractions was characterized by the emergence of temporally synchronized activity across large populations of excitatory and inhibitory neurons. This neuronal firing pattern was rhythmic and temporally synchronized across large numbers of ganglia at ∼2 Hz. ENS activation preceded smooth muscle depolarization, indicating rhythmic depolarizations in smooth muscle were controlled by firing of enteric neurons. The cyclical emergence of temporally coordinated firing of large populations of enteric neurons represents a unique neural motor pattern outside the central nervous system. This is the first direct observation of rhythmic firing in the ENS underlying rhythmic electrical depolarizations in smooth muscle. The pattern of neuronal activity we identified underlies the generation of CMMCs. SIGNIFICANCE STATEMENT How the enteric nervous system (ENS) generates neurogenic contractions of smooth muscle in the gastrointestinal (GI) tract has been a long-standing mystery in vertebrates. It is well known that myogenic pacemaker cells exist in the GI-tract (called Interstitial cells of Cajal, ICC) that generate rhythmic myogenic contractions. However, the mechanisms underlying the generation of rhythmic neurogenic contractions of smooth muscle in the GI-tract remains unknown. We developed a high resolution neuronal imaging method with electrophysiology to address this issue. This technique revealed a novel pattern of rhythmic coordinated neuronal firing in the ENS that has never been identified. Rhythmic neuronal firing in the ENS was found to generate rhythmic neurogenic depolarizations in smooth muscle that underlie contraction of the GI-tract. Copyright © 2018 the authors.

  3. Land-use and fire drive temporal patterns of soil solution chemistry and nutrient fluxes.

    PubMed

    Potthast, Karin; Meyer, Stefanie; Crecelius, Anna C; Schubert, Ulrich S; Tischer, Alexander; Michalzik, Beate

    2017-12-15

    Land-use type and ecosystem disturbances are important drivers for element cycling and bear the potential to modulate soil processes and hence ecosystem functions. To better understand the effect of such drivers on the magnitude and temporal patterns of organic matter (OM) and associated nutrient fluxes in soils, continuous flux monitoring is indispensable but insufficiently studied yet. We conducted a field study to elucidate the impact of land-use and surface fires on OM and nutrient fluxes with soil solution regarding seasonal and temporal patterns analyzing short (<3months) and medium-term (3-12months) effects. Control and prescribed fire-treated topsoil horizons in beech forests and pastures were monitored biweekly for dissolved and particulate OM (DOM, POM) and solution chemistry (pH value, elements: Ca, Mg, Na, K, Al, Fe, Mn, P, S, Si) over one post-fire year. Linear mixed model analyses exhibited that mean annual DOM and POM fluxes did not differ between the two land-use types, but were subjected to strong seasonal patterns. Fire disturbance significantly lowered the annual soil solution pH in both land-uses and increased water fluxes, while DOC fluxes remained unaffected. A positive response of POC and S to fire was limited to short-term effects, while amplified particulate and dissolved nitrogen fluxes were observed in the longer run and co-ocurred with accelerated Ca and Mg fluxes. In summary, surface fires generated stronger effects on element fluxes than the land-use. Fire-induced increases in POM fluxes suggest that the particulate fraction represent a major pathway of OM translocation into the subsoil and beyond. With regard to ecosystem functions, pasture ecosystems were less prone to the risk of nutrient losses following fire events than the forest. In pastures, fire-induced base cation export may accelerate soil acidification, consequently exhausting soil buffer systems and thus may reduce the resilience to acidic depositions and disturbances. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Wildfire seasonality and land use: when do wildfires prefer to burn?

    PubMed

    Bajocco, Sofia; Pezzatti, Gianni Boris; Mazzoleni, Stefano; Ricotta, Carlo

    2010-05-01

    Because of the increasing anthropogenic fire activity, understanding the role of land-use in shaping wildfire regimes has become a major concern. In the last decade, an increasing number of studies have been carried out on the relationship between land-use and wildfire patterns, in order to identify land-use types where fire behaves selectively, showing a marked preference (or avoidance) in terms of fire incidence. By contrast, the temporal aspects of the relationship between landuse types and wildfire occurrence have received far less attention. The aim of this paper is, thus, to analyze the temporal patterns of fire occurrence in Sardinia (Italy) during the period 2000-2006 to identify land-use types where wildfires occur earlier or later than expected from a random null model. The study highlighted a close relationship between the timing of fire occurrence and land-cover that is primarily governed by two complementary processes: climatic factors that act indirectly on the timing of wildfires determining the spatial distribution of land-use types, and human population and human pressure that directly influence fire ignition. From a practical viewpoint, understanding the temporal trends of wildfires within the different land-use classes can be an effective decision-support tool for fire agencies in managing fire risk and for producing provisional models of fire behavior under changing climatic scenarios and evolving landscapes.

  5. Fire patterns in piñon and juniper land cover types in the Semiarid Western United States from 1984 through 2013

    Treesearch

    David I. Board; Jeanne C. Chambers; Richard F. Miller; Peter J. Weisberg

    2018-01-01

    Increases in area burned and fire size have been reported across a wide range of forest and shrubland types in the Western United States in recent decades, but little is known about potential changes in fire regimes of piñon and juniper land cover types. We evaluated spatio-temporal patterns of fire in piñon and juniper land cover types from the National Gap Analysis...

  6. Fire Patterns and Drivers of Fires in the West African Tropical Forest

    NASA Astrophysics Data System (ADS)

    Dwomoh, F. K.; Wimberly, M. C.

    2015-12-01

    The West African tropical forest (referred to as the Upper Guinean forest, UGF), is a global biodiversity hotspot providing vital ecosystem services for the region's socio-economic and environmental wellbeing. It is also one of the most fragmented and human-modified tropical forest ecosystems, with the only remaining large patches of original forests contained in protected areas. However, these remnant forests are susceptible to continued fire-mediated degradation and forest loss due to intense climatic, demographic and land use pressures. We analyzed human and climatic drivers of fire activity in the sub-region to better understand the spatial and temporal patterns of these risks. We utilized MODIS active fire and burned area products to identify fire activity within the sub-region. We measured climatic variability using TRMM rainfall data and derived indicators of human land use from a variety of geospatial datasets. We used a boosted regression trees model to determine the influences of predictor variables on fire activity. Our analyses indicated that the spatial and temporal variability of precipitation is a key driving factor of fire activity in the UGF. Anthropogenic effects on fire activity in the area were evident through the influences of agriculture and low-density populations. These human footprints in the landscape make forests more susceptible to fires through forest fragmentation, degradation, and fire spread from agricultural areas. Forested protected areas within the forest savanna mosaic experienced frequent fires, whereas the more humid forest areas located in the south and south-western portions of the study area had fewer fires as these rainforests tend to offer some buffering against fire encroachment. These results improve characterization of UGF fire regime and expand our understanding of the spatio-temporal dynamics of tropical forest fires in response to human and climatic pressures.

  7. Time fluctuation analysis of forest fire sequences

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.

  8. Using a stochastic model and cross-scale analysis to evaluate controls on historical low-severity fire regimes

    Treesearch

    Maureen C. Kennedy; Donald McKenzie

    2010-01-01

    Fire-scarred trees provide a deep temporal record of historical fire activity, but identifying the mechanisms therein that controlled landscape fire patterns is not straightforward. We use a spatially correlated metric for fire co-occurrence between pairs of trees (the Sørensen distance variogram), with output from a neutral model for fire history, to infer the...

  9. Humans, Topograpghy, and Wildland Fire: The Ingredients for Long-term Patterns in Ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography, and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These factors can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  10. Humans, topography, and wildland fire: The ingredients for long-term patterns in ecosystems

    Treesearch

    Richard P. Guyette; Daniel C. Dey

    2000-01-01

    Three factors, human population density, topography,and culture interact to create temporal and spatial differences in the frequency of fire at the landscape level. These facters can be quantitatively related to fire frequency. The fire model can be used to reconstruct historic and to predict future frequency of fire in ecosystems, as well as to identify long-term...

  11. The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns

    PubMed Central

    Florian, Răzvan V.

    2012-01-01

    In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876

  12. Fire, native species, and soil resource interactions influence the spatio-temporal invasion pattern of Bromus tectorum

    Treesearch

    Michael J. Gundale; Steve Sutherland; Thomas H. DeLuca; others

    2008-01-01

    Bromus tectorum (cheatgrass) is an invasive annual that occupies perennial grass and shrub communities throughout the western United States. Bromus tectorum exhibits an intriguing spatio-temporal pattern of invasion in low elevation ponderosa pine Pinus ponderosa/bunchgrass communities in western Montana where it...

  13. Wildland arson: a research assessment

    Treesearch

    Jeffrey P. Prestemon; David T. Butry

    2010-01-01

    Wildland arson makes up the majority of fire starts in some parts of the United States and is the second leading cause of fires on Eastern United States Federal forests. Individual arson fires can cause damages to resources and communities totaling over a hundred million dollars. Recent research has uncovered the temporal and spatial patterns of arson fires and their...

  14. Endogenous Sequential Cortical Activity Evoked by Visual Stimuli

    PubMed Central

    Miller, Jae-eun Kang; Hamm, Jordan P.; Jackson, Jesse; Yuste, Rafael

    2015-01-01

    Although the functional properties of individual neurons in primary visual cortex have been studied intensely, little is known about how neuronal groups could encode changing visual stimuli using temporal activity patterns. To explore this, we used in vivo two-photon calcium imaging to record the activity of neuronal populations in primary visual cortex of awake mice in the presence and absence of visual stimulation. Multidimensional analysis of the network activity allowed us to identify neuronal ensembles defined as groups of cells firing in synchrony. These synchronous groups of neurons were themselves activated in sequential temporal patterns, which repeated at much higher proportions than chance and were triggered by specific visual stimuli such as natural visual scenes. Interestingly, sequential patterns were also present in recordings of spontaneous activity without any sensory stimulation and were accompanied by precise firing sequences at the single-cell level. Moreover, intrinsic dynamics could be used to predict the occurrence of future neuronal ensembles. Our data demonstrate that visual stimuli recruit similar sequential patterns to the ones observed spontaneously, consistent with the hypothesis that already existing Hebbian cell assemblies firing in predefined temporal sequences could be the microcircuit substrate that encodes visual percepts changing in time. PMID:26063915

  15. Spatial and temporal variability in fire occurrence within the Las Bayas Forestry Reserve, Durango, Mexico

    Treesearch

    S. A. Drury; T. T. Veblen

    2008-01-01

    Patterns of fire occurrence within the Las Bayas Forestry Reserve, Mexico are analyzed in relation to variability in climate, topography, and human land-use. Significantly more fires with shorter fire return intervals occurred from 1900 to 1950 than from 1950 to 2001. However, the frequency of widespread fire years (25% filter) was unchanged over time, as widespread...

  16. Spatiotemporal distribution patterns of forest fires in northern Mexico

    Treesearch

    Gustavo Pérez-Verdin; M. A. Márquez-Linares; A. Cortes-Ortiz; M. Salmerón-Macias

    2013-01-01

    Using the 2000-2011 CONAFOR databases, a spatiotemporal analysis of the occurrence of forest fires in Durango, one of the most affected States in Mexico, was conducted. The Moran's index was used to determine a spatial distribution pattern; also, an analysis of seasonal and temporal autocorrelation of the data collected was completed. The geographically weighted...

  17. Chapter 3 - Large-scale patterns of forest fire occurrence in the conterminous United States, Alaska and Hawaii, 2016

    Treesearch

    Kevin M. Potter

    2018-01-01

    As a pervasive disturbance agent operating at many spatial and temporal scales, wildland fire is a key abiotic factor affecting forest health both positively and negatively. In some ecosystems, for example, wildland fires have been essential for regulating processes that maintain forest health (Lundquist and others 2011). Wildland fire is an important ecological...

  18. Improving fire season definition by optimized temporal modelling of daily human-caused ignitions.

    PubMed

    Costafreda-Aumedes, S; Vega-Garcia, C; Comas, C

    2018-07-01

    Wildfire suppression management is usually based on fast control of all ignitions, especially in highly populated countries with pervasive values-at-risk. To minimize values-at-risk loss by improving response time of suppression resources it is necessary to anticipate ignitions, which are mainly caused by people. Previous studies have found that human-ignition patterns change spatially and temporally depending on socio-economic activities, hence, the deployment of suppression resources along the year should consider these patterns. However, full suppression capacity is operational only within legally established fire seasons, driven by past events and budgets, which limits response capacity and increases damages out of them. The aim of this study was to assess the temporal definition of fire seasons from the perspective of human-ignition patterns for the case study of Spain, where people cause over 95% of fires. Humans engage in activities that use fire as a tool in certain periods within a year, and in locations linked to specific spatial factors. Geographic variables (population, infrastructures, physiography and land uses) were used as explanatory variables for human-ignition patterns. The changing influence of these geographic variables on occurrence along the year was analysed with day-by-day logistic regression models. Daily models were built for all the municipal units in the two climatic regions in Spain (Atlantic and Mediterranean Spain) from 2002 to 2014, and similar models were grouped within continuous periods, designated as ignition-based seasons. We found three ignition-based seasons in the Mediterranean region and five in the Atlantic zones, not coincidental with calendar seasons, but with a high degree of agreement with current legally designated operational fire seasons. Our results suggest that an additional late-winter-early-spring fire season in the Mediterranean area and the extension of this same season in the Atlantic zone should be re-considered for operational purposes in the future. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Ponderosa pine in the Colorado Front Range: long historical fire and tree recruitment intervals and a case for landscape heterogeneity

    Treesearch

    M. R. Kaufmann; L. S. Huckaby; P. Gleason

    2000-01-01

    An unlogged forest landscape in the Colorado Front Range provides insight into historical characteristics of ponderosa pine/Douglas-fir landscapes where the past fire regime was mixed severity with mean fire intervals of 50 years or more. Natural fire and tree recruitment patterns resulted in considerable spatial and temporal heterogeneity, whereas nearby forest...

  20. Multiple remote sensing data sources to assess spatio-temporal patterns of fire incidence over Campos Amazônicos Savanna Vegetation Enclave (Brazilian Amazon).

    PubMed

    Alves, Daniel Borini; Pérez-Cabello, Fernando

    2017-12-01

    Fire activity plays an important role in the past, present and future of Earth system behavior. Monitoring and assessing spatial and temporal fire dynamics have a fundamental relevance in the understanding of ecological processes and the human impacts on different landscapes and multiple spatial scales. This work analyzes the spatio-temporal distribution of burned areas in one of the biggest savanna vegetation enclaves in the southern Brazilian Amazon, from 2000 to 2016, deriving information from multiple remote sensing data sources (Landsat and MODIS surface reflectance, TRMM pluviometry and Vegetation Continuous Field tree cover layers). A fire scars database with 30 m spatial resolution was generated using a Landsat time series. MODIS daily surface reflectance was used for accurate dating of the fire scars. TRMM pluviometry data were analyzed to dynamically establish time limits of the yearly dry season and burning periods. Burned area extent, frequency and recurrence were quantified comparing the results annually/seasonally. Additionally, Vegetation Continuous Field tree cover layers were used to analyze fire incidence over different types of tree cover domains. In the last seventeen years, 1.03millionha were burned within the study area, distributed across 1432 fire occurrences, highlighting 2005, 2010 and 2014 as the most affected years. Middle dry season fires represent 86.21% of the total burned areas and 32.05% of fire occurrences, affecting larger amount of higher density tree surfaces than other burning periods. The results provide new insights into the analysis of burned areas of the neotropical savannas, spatially and statistically reinforcing important aspects linked to the seasonality patterns of fire incidence in this landscape. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Noise Trauma Induced Plastic Changes in Brain Regions outside the Classical Auditory Pathway

    PubMed Central

    Chen, Guang-Di; Sheppard, Adam; Salvi, Richard

    2017-01-01

    The effects of intense noise exposure on the classical auditory pathway have been extensively investigated; however, little is known about the effects of noise-induced hearing loss on non-classical auditory areas in the brain such as the lateral amygdala (LA) and striatum (Str). To address this issue, we compared the noise-induced changes in spontaneous and tone-evoked responses from multiunit clusters (MUC) in the LA and Str with those seen in auditory cortex (AC). High-frequency octave band noise (10–20 kHz) and narrow band noise (16–20 kHz) induced permanent thresho ld shifts (PTS) at high-frequencies within and above the noise band but not at low frequencies. While the noise trauma significantly elevated spontaneous discharge rate (SR) in the AC, SRs in the LA and Str were only slightly increased across all frequencies. The high-frequency noise trauma affected tone-evoked firing rates in frequency and time dependent manner and the changes appeared to be related to severity of noise trauma. In the LA, tone-evoked firing rates were reduced at the high-frequencies (trauma area) whereas firing rates were enhanced at the low-frequencies or at the edge-frequency dependent on severity of hearing loss at the high frequencies. The firing rate temporal profile changed from a broad plateau to one sharp, delayed peak. In the AC, tone-evoked firing rates were depressed at high frequencies and enhanced at the low frequencies while the firing rate temporal profiles became substantially broader. In contrast, firing rates in the Str were generally decreased and firing rate temporal profiles become more phasic and less prolonged. The altered firing rate and pattern at low frequencies induced by high frequency hearing loss could have perceptual consequences. The tone-evoked hyperactivity in low-frequency MUC could manifest as hyperacusis whereas the discharge pattern changes could affect temporal resolution and integration. PMID:26701290

  2. Failure to suppress low-frequency neuronal oscillatory activity underlies the reduced effectiveness of random patterns of deep brain stimulation.

    PubMed

    McConnell, George C; So, Rosa Q; Grill, Warren M

    2016-06-01

    Subthalamic nucleus (STN) deep brain stimulation (DBS) is an established treatment for the motor symptoms of Parkinson's disease (PD). However, the mechanisms of action of DBS are unknown. Random temporal patterns of DBS are less effective than regular DBS, but the neuronal basis for this dependence on temporal pattern of stimulation is unclear. Using a rat model of PD, we quantified the changes in behavior and single-unit activity in globus pallidus externa and substantia nigra pars reticulata during high-frequency STN DBS with different degrees of irregularity. Although all stimulus trains had the same average rate, 130-Hz regular DBS more effectively reversed motor symptoms, including circling and akinesia, than 130-Hz irregular DBS. A mixture of excitatory and inhibitory neuronal responses was present during all stimulation patterns, and mean firing rate did not change during DBS. Low-frequency (7-10 Hz) oscillations of single-unit firing times present in hemiparkinsonian rats were suppressed by regular DBS, and neuronal firing patterns were entrained to 130 Hz. Irregular patterns of DBS less effectively suppressed 7- to 10-Hz oscillations and did not regularize firing patterns. Random DBS resulted in a larger proportion of neuron pairs with increased coherence at 7-10 Hz compared with regular 130-Hz DBS, which suggested that long pauses (interpulse interval >50 ms) during random DBS facilitated abnormal low-frequency oscillations in the basal ganglia. These results suggest that the efficacy of high-frequency DBS stems from its ability to regularize patterns of neuronal firing and thereby suppress abnormal oscillatory neural activity within the basal ganglia. Copyright © 2016 the American Physiological Society.

  3. Temporal and spatial patterns in fire occurrence during the establishment of mixed-oak forests in eastern North America

    Treesearch

    Ryan W. McEwan; Todd F. Hutchinson; Robert P. Long; Robert D. Ford; Brian C. McCarthy

    2007-01-01

    What was the role of fire during the establishment of the current overstory (ca. 1870-1940) in mixed-oak forests of eastern North America? Nine sites representing a 240-km latitudinal gradient on the Allegheny and Cumberland Plateaus of eastern North America. Basal cross-sections were collected from 225 trees. Samples were surfaced, and fire scars were dated. Fire...

  4. Spatiotemporal patterns of fire-induced forest mortality in boreal regions and its potential drivers

    NASA Astrophysics Data System (ADS)

    Yang, J.; Tian, H.; Pan, S.; Hansen, M.; Wang, Y.

    2017-12-01

    Wildfire is the major natural disturbance in boreal forests, which have substantially affected various biological and biophysical processes. Although a few previous studies examined fire severity in boreal regions and reported a higher fire-induced forest mortality in boreal North America than in boreal Eurasia, it remains unclear how this mortality changes over time and how environmental factors affect the temporal dynamics of mortality at a large scale. By using a combination of multiple sources of satellite observations, we investigate the spatiotemporal patterns of fire-induced forest mortality in boreal regions, and examine the contributions of potential drivers. Our results show that forest composition is the key factor influencing the spatial variations of fire mortality across ecoregions. For the temporal variations, we find that the late-season burning was associated with higher fire intensity, which lead to greater forest mortality than the early-season burning. Forests burned in the warm and dry years had greater mortality than those burned in the cool and wet years. Our findings suggest that climate warming and drying not only stimulated boreal fire frequency, but also enhanced fire severity and forest mortality. Due to the significant effects of forest mortality on vegetation structure and ecosystem carbon dynamics, the spatiotemporal changes of fire-induced forest mortality should be explicitly considered to better understand fire impacts on regional and global climate change.

  5. Effect of inhibitory firing pattern on coherence resonance in random neural networks

    NASA Astrophysics Data System (ADS)

    Yu, Haitao; Zhang, Lianghao; Guo, Xinmeng; Wang, Jiang; Cao, Yibin; Liu, Jing

    2018-01-01

    The effect of inhibitory firing patterns on coherence resonance (CR) in random neuronal network is systematically studied. Spiking and bursting are two main types of firing pattern considered in this work. Numerical results show that, irrespective of the inhibitory firing patterns, the regularity of network is maximized by an optimal intensity of external noise, indicating the occurrence of coherence resonance. Moreover, the firing pattern of inhibitory neuron indeed has a significant influence on coherence resonance, but the efficacy is determined by network property. In the network with strong coupling strength but weak inhibition, bursting neurons largely increase the amplitude of resonance, while they can decrease the noise intensity that induced coherence resonance within the neural system of strong inhibition. Different temporal windows of inhibition induced by different inhibitory neurons may account for the above observations. The network structure also plays a constructive role in the coherence resonance. There exists an optimal network topology to maximize the regularity of the neural systems.

  6. Regional synchroneity in fire regimes of western Oregon and Washington, USA.

    Treesearch

    P.J. Weisberg; F.J. Swanson

    2003-01-01

    For much of the world's forested area, the history of fire has significant implications for understanding forest dynamics over stand to regional scales. We analyzed temporal patterns of area burned at 25-year intervals over a 600-year period, using 10 treering-based fire history studies located west of the crest of the Cascade Range in the Pacific Northwest (PNW...

  7. Wetland fire remote sensing research--The Greater Everglades example

    USGS Publications Warehouse

    Jones, John W.

    2012-01-01

    Fire is a major factor in the Everglades ecosystem. For thousands of years, lightning-strike fires from summer thunderstorms have helped create and maintain a dynamic landscape suited both to withstand fire and recover quickly in the wake of frequent fires. Today, managers in the Everglades National Park are implementing controlled burns to promote healthy, sustainable vegetation patterns and ecosystem functions. The U.S. Geological Survey (USGS) is using remote sensing to improve fire-management databases in the Everglades, gain insights into post-fire land-cover dynamics, and develop spatially and temporally explicit fire-scar data for habitat and hydrologic modeling.

  8. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas‐fir landscape in the southern Rocky Mountains after a century of fire suppression

    USGS Publications Warehouse

    Kaufmann, M.R.; Huckaby, L.S.; Fornwalt, P.J.; Stoker, J.M.; Romme, W.H.

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas‐fir ( Pinus ponderosa/Pseudotsuga menziesii ) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post‐fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an ecologically sustainable landscape. Comparisons of two independent tree age data sets indicated that sampling what subjectively appear to be the five oldest trees in a forest polygon could identify the oldest tree. Comparisons of the ages of the oldest trees in each data set with maps of fire history suggested that delays in establishment of trees, after stand‐replacing fire, ranged from a few years to more than a century. These data indicate that variable fire severity, including patches of stand replacement, and variable temporal patterns of tree recruitment into openings after fire were major causes of spatial heterogeneity of patch structure in the landscape. These effects suggest that restoring current dense and homogeneous ponderosa pine forests to an ecologically sustainable and dynamic condition should reflect the roles of fires and variable patterns of tree recruitment in regulating landscape structure.

  9. Spike Train Auto-Structure Impacts Post-Synaptic Firing and Timing-Based Plasticity

    PubMed Central

    Scheller, Bertram; Castellano, Marta; Vicente, Raul; Pipa, Gordon

    2011-01-01

    Cortical neurons are typically driven by several thousand synapses. The precise spatiotemporal pattern formed by these inputs can modulate the response of a post-synaptic cell. In this work, we explore how the temporal structure of pre-synaptic inhibitory and excitatory inputs impact the post-synaptic firing of a conductance-based integrate and fire neuron. Both the excitatory and inhibitory input was modeled by renewal gamma processes with varying shape factors for modeling regular and temporally random Poisson activity. We demonstrate that the temporal structure of mutually independent inputs affects the post-synaptic firing, while the strength of the effect depends on the firing rates of both the excitatory and inhibitory inputs. In a second step, we explore the effect of temporal structure of mutually independent inputs on a simple version of Hebbian learning, i.e., hard bound spike-timing-dependent plasticity. We explore both the equilibrium weight distribution and the speed of the transient weight dynamics for different mutually independent gamma processes. We find that both the equilibrium distribution of the synaptic weights and the speed of synaptic changes are modulated by the temporal structure of the input. Finally, we highlight that the sensitivity of both the post-synaptic firing as well as the spike-timing-dependent plasticity on the auto-structure of the input of a neuron could be used to modulate the learning rate of synaptic modification. PMID:22203800

  10. The temporal program of chromosome replication: genomewide replication in clb5{Delta} Saccharomyces cerevisiae.

    PubMed

    McCune, Heather J; Danielson, Laura S; Alvino, Gina M; Collingwood, David; Delrow, Jeffrey J; Fangman, Walton L; Brewer, Bonita J; Raghuraman, M K

    2008-12-01

    Temporal regulation of origin activation is widely thought to explain the pattern of early- and late-replicating domains in the Saccharomyces cerevisiae genome. Recently, single-molecule analysis of replication suggested that stochastic processes acting on origins with different probabilities of activation could generate the observed kinetics of replication without requiring an underlying temporal order. To distinguish between these possibilities, we examined a clb5Delta strain, where origin firing is largely limited to the first half of S phase, to ask whether all origins nonspecifically show decreased firing (as expected for disordered firing) or if only some origins ("late" origins) are affected. Approximately half the origins in the mutant genome show delayed replication while the remainder replicate largely on time. The delayed regions can encompass hundreds of kilobases and generally correspond to regions that replicate late in wild-type cells. Kinetic analysis of replication in wild-type cells reveals broad windows of origin firing for both early and late origins. Our results are consistent with a temporal model in which origins can show some heterogeneity in both time and probability of origin firing, but clustering of temporally like origins nevertheless yields a genome that is organized into blocks showing different replication times.

  11. Levels and patterns of polycyclic aromatic hydrocarbons (PAHs) in soils after forest fires in South Korea.

    PubMed

    Kim, Eun Jung; Choi, Sung-Deuk; Chang, Yoon-Seok

    2011-11-01

    To investigate the influence of biomass burning on the levels of polycyclic aromatic hydrocarbons (PAHs) in soils, temporal trends and profiles of 16 US Environmental Protection Agency priority PAHs were studied in soil and ash samples collected 1, 5, and 9 months after forest fires in South Korea. The levels of PAHs in the burnt soils 1 month after the forest fires (mean, 1,200 ng/g dry weight) were comparable with those of contaminated urban soils. However, 5 and 9 months after the forest fires, these levels decreased considerably to those of general forest soils (206 and 302 ng/g, respectively). The burnt soils and ash were characterized by higher levels of light PAHs with two to four rings, reflecting direct emissions from biomass burning. Five and 9 months after the forest fires, the presence of naphthalene decreased considerably, which indicates that light PAHs were rapidly volatilized or degraded from the burnt soils. The temporal trend and pattern of PAHs clearly suggests that soils in the forest-fire region can be contaminated by PAHs directly emitted from biomass burning. However, the fire-affected soils can return to the pre-fire conditions over time through the washout and wind dissipation of the ash with high content of PAHs as well as vaporization or degradation of light PAHs.

  12. Hippocampal Spike-Timing Correlations Lead to Hexagonal Grid Fields

    NASA Astrophysics Data System (ADS)

    Monsalve-Mercado, Mauro M.; Leibold, Christian

    2017-07-01

    Space is represented in the mammalian brain by the activity of hippocampal place cells, as well as in their spike-timing correlations. Here, we propose a theory for how this temporal code is transformed to spatial firing rate patterns via spike-timing-dependent synaptic plasticity. The resulting dynamics of synaptic weights resembles well-known pattern formation models in which a lateral inhibition mechanism gives rise to a Turing instability. We identify parameter regimes in which hexagonal firing patterns develop as they have been found in medial entorhinal cortex.

  13. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    NASA Astrophysics Data System (ADS)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires covering an area of at least 1,000 ha were identified. The land-cover / land-use of these large fires sites were then evaluated using the CORINE land-cover data set, and the sites dominated primarily by natural vegetation were identified. Once these candidate sites were identified, a subset was selected across a range of locations and site characteristics for post-fire recovery analysis. To evaluate the post-fire recovery sequence in these locations, time-series of NDVI, EVI, and LAI were derived using 250 meter resolution MODIS data (MOD13Q). The vegetation index values were then compared to pre-fire values to determine recovery relative to the pre-fire vegetative state. The variability in rates of recovery are then considered with respect to moisture availability, vegetation type, and local site conditions to evaluate if any patterns of recovery can be determined.

  14. Spatial and temporal patterns of burned area over Brazilian Cerrado from 2005 to 2015 using remote sensing data

    NASA Astrophysics Data System (ADS)

    Libonati, Renata; DaCamara, Carlos; Setzer, Alberto

    2016-04-01

    Although Cerrado is a fire-dependent biome, current agriculture practices have significantly modified the native fire regime. Moreover, over the last decades, climate conditions, such as intensive droughts, have contributed to enhance the effects of anthropogenic activities, and consequently fire, over the region. For instance, during the 2010 extreme drought there was an increase of 100% in the number of fire pixels detected by just one polar orbiting satellite (information online at http://www.cptec.inpe.br/queimadas). A better characterization of spatial and temporal fire patterns over Cerrado is therefore crucial to uncover both climate and anthropogenic influences in this ecosystem. Additionally, information about the extent, location and time of burned areas (BA) over Cerrado is especially useful to a wide range of users, from government agencies, research groups and ecologists, to fire managers and NGOs. Instruments on-board satellites are the only available operational means to collect BA data at appropriated spatial and temporal scales and in a cost-effective way. Several global BA products derived from remote sensed information have been developed over the last years using a variety of techniques based on different spatial, spectral and temporal resolutions. Although presenting similar inter-annual variability, there are marked differences among the products both in magnitude and location of the area burnt. The development of regional algorithms which take into account local characteristics such as vegetation type, soil and climate is therefore an added value to the existing information. We present a monthly BA product (AQM) for Brazil based on information from MODIS 1km. The algorithm was specifically designed for ecosystems in Brazil and the procedure represents the first initiative of an automated method for BA monitoring using remote sensing information in the country. The product relies on an algorithm that takes advantage of the ability of MIR reflectances to discriminate BA. Validation over Cerrado biome indicates that the product is in accordance with BA maps from reference data, making the product suitable for applications in fire emission studies and ecosystem management. The AQM regional database covers the 11-year period 2005-2015 over Cerrado and allows analyzing the overall temporal and spatial distribution patterns of BA for the last decade. The highest monthly mean amount is observed in September, followed by October, and March presents the lowest amount. The most severe year is 2007, followed by 2005 and 2010; 2006 and 2009 are the years with less area burned, followed by 2008. The spatial pattern of BA shows that the north region of Cerrado presents the highest frequency of occurrence. The intra and inter-annual variability of BA over Cerrado are closely related to variability of precipitation but it is worth emphasizing that, despite the major role played by climate conditions, the human factor has also a prominent role on fire dynamics in this region and cannot be disregarded.

  15. Temporal Changes Rather than Long-Term Repeated Burning Predominately Control the Shift in the Abundance of Soil Denitrifying Community in an Australian Sclerophyll Forest.

    PubMed

    Liu, Xian; Chen, C R; Hughes, J M; Wang, W J; Lewis, Tom

    2017-01-01

    To understand the temporal dynamics of soil bacterial denitrifying community in response to long-term prescribed burning and its resilience and recovery following a fire, a wet sclerophyll forest study site under two treatments (2 yearly burning (2YB) and no burning (NB)) and with 40-year-old burning history was used. Similar temporal patterns in the abundance of total (16S rRNA) and denitrifying (narG, nirK, nirS, nosZ) bacteria between two burning treatments revealed strong temporal influences. The magnitude of burning impacts on the abundance of 16S rRNA and denitrification genes was smaller compared with the impact of sampling time, but significant burning and temporal impacts were recorded for all (P < 0.001)-except for the nirS gene. Impacts of prescribed fire on the abundance of soil denitrifying community could be observed immediately after fire, and this impact diminished over a 24-month period prior to the next prescribed burning event. In conclusion, temporal changes govern the fluctuations of the abundance of soil denitrifying genes over the sampling period and the denitrifying community can recover after fire, suggesting that this community is resilient to the effects of prescribed burning. A combination of biotic and abiotic factors may account for the different temporal dynamics of denitrification gene abundance.

  16. Temporal changes in native-exotic richness correlations during early post-fire succession

    Treesearch

    Qinfeng Guo

    2017-01-01

    The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be...

  17. Defined types of cortical interneurone structure space and spike timing in the hippocampus

    PubMed Central

    Somogyi, Peter; Klausberger, Thomas

    2005-01-01

    The cerebral cortex encodes, stores and combines information about the internal and external environment in rhythmic activity of multiple frequency ranges. Neurones of the cortex can be defined, recognized and compared on the comprehensive application of the following measures: (i) brain area- and cell domain-specific distribution of input and output synapses, (ii) expression of molecules involved in cell signalling, (iii) membrane and synaptic properties reflecting the expression of membrane proteins, (iv) temporal structure of firing in vivo, resulting from (i)–(iii). Spatial and temporal measures of neurones in the network reflect an indivisible unity of evolutionary design, i.e. neurones do not have separate structure or function. The blueprint of this design is most easily accessible in the CA1 area of the hippocampus, where a relatively uniform population of pyramidal cells and their inputs follow an instantly recognizable laminated pattern and act within stereotyped network activity patterns. Reviewing the cell types and their spatio-temporal interactions, we suggest that CA1 pyramidal cells are supported by at least 16 distinct types of GABAergic neurone. During a given behaviour-contingent network oscillation, interneurones of a given type exhibit similar firing patterns. During different network oscillations representing two distinct brain states, interneurones of the same class show different firing patterns modulating their postsynaptic target-domain in a brain-state-dependent manner. These results suggest roles for specific interneurone types in structuring the activity of pyramidal cells via their respective target domains, and accurately timing and synchronizing pyramidal cell discharge, rather than providing generalized inhibition. Finally, interneurones belonging to different classes may fire preferentially at distinct time points during a given oscillation. As different interneurones innervate distinct domains of the pyramidal cells, the different compartments will receive GABAergic input differentiated in time. Such a dynamic, spatio-temporal, GABAergic control, which evolves distinct patterns during different brain states, is ideally suited to regulating the input integration of individual pyramidal cells contributing to the formation of cell assemblies and representations in the hippocampus and, probably, throughout the cerebral cortex. PMID:15539390

  18. Recent changes in the fire regime across the North American boreal region-Spatial and temporal patterns of burning across Canada and Alaska

    NASA Astrophysics Data System (ADS)

    Kasischke, Eric S.; Turetsky, Merritt R.

    2006-05-01

    We used historic records from 1959-99 to explore fire regime characteristics at ecozone scales across the entire North American boreal region (NABR). Shifts in the NABR fire regime between the 1960s/70s and the 1980s/90s were characterized by a doubling of annual burned area and more than a doubling of the frequency of larger fire years because of more large fire events (>1,000 km2). The proportion of total burned area from human-ignited fires decreased over this same time period, while the proportion of burning during the early and late- growing-seasons increased. Trends in increased burned area were consistent across the NABR ecozones, though the western ecozones experienced greater increases in larger fire years compared to the eastern ecozones. Seasonal patterns of burning differed among ecozones. Along with the climate warming, changes in the fire regime characteristics may be an important driver of future ecosystem processes in the NABR.

  19. Spatial patterning of fuels and fire hazard across a central U.S. deciduous forest region

    Treesearch

    Michael C. Stambaugh; Daniel C. Dey; Richard P. Guyette; Hong S. He; Joseph M. Marschall

    2011-01-01

    Information describing spatial and temporal variability of forest fuel conditions is essential to assessing overall fire hazard and risk. Limited information exists describing spatial characteristics of fuels in the eastern deciduous forest region, particularly in dry oak-dominated regions that historically burned relatively frequently. From an extensive fuels survey...

  20. Variability, trends, and drivers of regional fluctuations in Australian fire activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2017-07-01

    Throughout the world fire regimes are determined by climate, vegetation, and anthropogenic factors, and they have great spatial and temporal variability. The availability of high-quality satellite data has revolutionized fire monitoring, allowing for a more consistent and comprehensive evaluation of temporal and spatial patterns. Here we utilize a satellite based "active fire" (AF) product to statistically analyze 2001-2015 variability and trends in Australian fire activity and link this to precipitation and large-scale atmospheric structures (namely, the El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole (IOD)) known to have potential for predicting fire activity in different regions. It is found that Australian fire activity is decreasing (during summer (December-February)) or stable, with high temporal and spatial variability. Eastern New South Wales (NSW) has the strongest decreasing trend (to the 1% confidence level), especially during the winter (JJA) season. Other significantly decreasing areas are Victoria/NSW, Tasmania, and South-east Queensland. These decreasing fire regions are relatively highly populated, so we suggest that the declining trends are due to improved fire management, reducing the size and duration of bush fires. Almost half of all Australian AFs occur during spring (September-November). We show that there is considerable potential throughout Australia for a skillful forecast for future season fire activity based on current and previous precipitation activity, ENSO phase, and to a lesser degree, the IOD phase. This is highly variable, depending on location, e.g., the IOD phase is for more indicative of fire activity in southwest Western Australia than for Queensland.

  1. Differences in spike train variability in rat vasopressin and oxytocin neurons and their relationship to synaptic activity

    PubMed Central

    Li, Chunyan; Tripathi, Pradeep K; Armstrong, William E

    2007-01-01

    The firing pattern of magnocellular neurosecretory neurons is intimately related to hormone release, but the relative contribution of synaptic versus intrinsic factors to the temporal dispersion of spikes is unknown. In the present study, we examined the firing patterns of vasopressin (VP) and oxytocin (OT) supraoptic neurons in coronal slices from virgin female rats, with and without blockade of inhibitory and excitatory synaptic currents. Inhibitory postsynaptic currents (IPSCs) were twice as prevalent as their excitatory counterparts (EPSCs), and both were more prevalent in OT compared with VP neurons. Oxytocin neurons fired more slowly and irregularly than VP neurons near threshold. Blockade of Cl− currents (including tonic and synaptic currents) with picrotoxin reduced interspike interval (ISI) variability of continuously firing OT and VP neurons without altering input resistance or firing rate. Blockade of EPSCs did not affect firing pattern. Phasic bursting neurons (putative VP neurons) were inconsistently affected by broad synaptic blockade, suggesting that intrinsic factors may dominate the ISI distribution during this mode in the slice. Specific blockade of synaptic IPSCs with gabazine also reduced ISI variability, but only in OT neurons. In all cases, the effect of inhibitory blockade on firing pattern was independent of any consistent change in input resistance or firing rate. Since the great majority of IPSCs are randomly distributed, miniature events (mIPSCs) in the coronal slice, these findings imply that even mIPSCs can impart irregularity to the firing pattern of OT neurons in particular, and could be important in regulating spike patterning in vivo. For example, the increased firing variability that precedes bursting in OT neurons during lactation could be related to significant changes in synaptic activity. PMID:17332000

  2. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    NASA Technical Reports Server (NTRS)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  3. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  4. Investigating the association between weather conditions, calendar events and socio-economic patterns with trends in fire incidence: an Australian case study

    NASA Astrophysics Data System (ADS)

    Corcoran, Jonathan; Higgs, Gary; Rohde, David; Chhetri, Prem

    2011-06-01

    Fires in urban areas can cause significant economic, physical and psychological damage. Despite this, there has been a comparative lack of research into the spatial and temporal analysis of fire incidence in urban contexts. In this paper, we redress this gap through an exploration of the association of fire incidence to weather, calendar events and socio-economic characteristics in South-East Queensland, Australia using innovative technique termed the quad plot. Analysing trends in five fire incident types, including malicious false alarms (hoax calls), residential buildings, secondary (outdoor), vehicle and suspicious fires, results suggest that risk associated with all is greatly increased during school holidays and during long weekends. For all fire types the lowest risk of incidence was found to occur between one and six a.m. It was also found that there was a higher fire incidence in socially disadvantaged neighbourhoods and there was some evidence to suggest that there may be a compounding impact of high temperatures in such areas. We suggest that these findings may be used to guide the operations of fire services through spatial and temporal targeting to better utilise finite resources, help mitigate risk and reduce casualties.

  5. Spatial and Temporal Patterns of Unburned Areas within Fire Perimeters in the Northwestern United States from 1984 to 2014

    NASA Astrophysics Data System (ADS)

    Meddens, A. J.; Kolden, C.; Lutz, J. A.; Abatzoglou, J. T.; Hudak, A. T.

    2016-12-01

    Recently, there has been concern about increasing extent and severity of wildfires across the globe given rapid climate change. Areas that do not burn within fire perimeters can act as fire refugia, providing (1) protection from the detrimental effects of the fire, (2) seed sources, and (3) post-fire habitat on the landscape. However, recent studies have mainly focused on the higher end of the burn severity spectrum whereas the lower end of the burn severity spectrum has been largely ignored. We developed a spatially explicit database for 2,200 fires across the inland northwestern USA, delineating unburned areas within fire perimeters from 1984 to 2014. We used 1,600 Landsat scenes with one or two scenes before and one or two scenes after the fires to capture the unburned proportion of the fire. Subsequently, we characterized the spatial and temporal patterns of unburned areas and related the unburned proportion to interannual climate variability. The overall classification accuracy detecting unburned locations was 89.2% using a 10-fold cross-validation classification tree approach in combination with 719 randomly located field plots. The unburned proportion ranged from 2% to 58% with an average of 19% for a select number of fires. We find that using both an immediate post-fire image and a one-year post fire image improves classification accuracy of unburned islands over using just a single post-fire image. The spatial characteristics of the unburned islands differ between forested and non-forested regions with a larger amount of unburned area within non-forest. In addition, we show trends of unburned proportion related primarily to concurrent climatic drought conditions across the entire region. This database is important for subsequent analyses of fire refugia prioritization, vegetation recovery studies, ecosystem resilience, and forest management to facilitate unburned islands through fuels breaks, prescribed burning, and fire suppression strategies.

  6. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei.

    PubMed

    Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal

    2017-11-22

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. Copyright © 2017 the authors 0270-6474/17/3711441-14$15.00/0.

  7. Seizures and Sleep in the Thalamus: Focal Limbic Seizures Show Divergent Activity Patterns in Different Thalamic Nuclei

    PubMed Central

    Feng, Li; Motelow, Joshua E.; Ma, Chanthia; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro

    2017-01-01

    The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. PMID:29066556

  8. Assessing Potential Future Carbon Dynamics with Climate Change and Fire Management in a Mountainous Landscape on the Olympic Peninsula, Washington, USA

    NASA Astrophysics Data System (ADS)

    Kennedy, R. S.

    2010-12-01

    Forests of the mountainous landscapes of the maritime Pacific Northwestern USA may have high carbon sequestration potential via their high productivity and moderate to infrequent fire regimes. With climate change, there may be shifts in incidence and severity of fire, especially in the drier areas of the region, via changes to forest productivity and hydrology, and consequent effects to C sequestration and forest structure. To explore this issue, I assessed potential effects of fire management (little fire suppression/wildland fire management/highly effective fire suppression) under two climate change scenarios on future C sequestration dynamics (amounts and spatial pattern) in Olympic National Park, WA, over a 500-year simulation period. I used the simulation platform FireBGCv2, which contains a mechanistic, individual tree succession model, a spatially explicit climate-based biophysical model that uses daily weather data, and a spatially explicit fire model incorporating ignition, spread, and effects on ecosystem components. C sequestration patterns varied over time and spatial and temporal patterns differed somewhat depending on the climate change scenario applied and the fire management methods employed. Under the more extreme climate change scenario with little fire suppression, fires were most frequent and severe and C sequestration decreased. General trends were similar under the more moderate climate change scenario, as compared to current climate, but spatial patterns differed. Both climate change scenarios under highly effective fire suppression showed about 50% of starting total C after the initial transition phase, whereas with 10% fire suppression both scenarios exhibited about 10% of starting amounts. Areas of the landscape that served as refugia for older forest under increasing frequency of high severity fire were also hotspots for C sequestration in a landscape experiencing increasing frequency of disturbance with climate change.

  9. Location, timing and extent of wildfire vary by cause of ignition

    USGS Publications Warehouse

    Syphard, Alexandra D.; Keeley, Jon E.

    2015-01-01

    The increasing extent of wildfires has prompted investigation into alternative fire management approaches to complement the traditional strategies of fire suppression and fuels manipulation. Wildfire prevention through ignition reduction is an approach with potential for success, but ignitions result from a variety of causes. If some ignition sources result in higher levels of area burned, then ignition prevention programmes could be optimised to target these distributions in space and time. We investigated the most common ignition causes in two southern California sub-regions, where humans are responsible for more than 95% of all fires, and asked whether these causes exhibited distinct spatial or intra-annual temporal patterns, or resulted in different extents of fire in 10-29-year periods, depending on sub-region. Different ignition causes had distinct spatial patterns and those that burned the most area tended to occur in autumn months. Both the number of fires and area burned varied according to cause of ignition, but the cause of the most numerous fires was not always the cause of the greatest area burned. In both sub-regions, power line ignitions were one of the top two causes of area burned: the other major causes were arson in one sub-region and power equipment in the other. Equipment use also caused the largest number of fires in both sub-regions. These results have important implications for understanding why, where and how ignitions are caused, and in turn, how to develop strategies to prioritise and focus fire prevention efforts. Fire extent has increased tremendously in southern California, and because most fires are caused by humans, ignition reduction offers a potentially powerful management strategy, especially if optimised to reflect the distinct spatial and temporal distributions in different ignition causes.

  10. Circumpolar spatio-temporal patterns and contributing climatic factors of wildfire activity in the Arctic tundra from 2001-2015

    NASA Astrophysics Data System (ADS)

    Masrur, Arif; Petrov, Andrey N.; DeGroote, John

    2018-01-01

    Recent years have seen an increased frequency of wildfire events in different parts of Arctic tundra ecosystems. Contemporary studies have largely attributed these wildfire events to the Arctic’s rapidly changing climate and increased atmospheric disturbances (i.e. thunderstorms). However, existing research has primarily examined the wildfire-climate dynamics of individual large wildfire events. No studies have investigated wildfire activity, including climatic drivers, for the entire tundra biome across multiple years, i.e. at the planetary scale. To address this limitation, this paper provides a planetary/circumpolar scale analyses of space-time patterns of tundra wildfire occurrence and climatic association in the Arctic over a 15 year period (2001-2015). In doing so, we have leveraged and analyzed NASA Terra’s MODIS active fire and MERRA climate reanalysis products at multiple temporal scales (decadal, seasonal and monthly). Our exploratory spatial data analysis found that tundra wildfire occurrence was spatially clustered and fire intensity was spatially autocorrelated across the Arctic regions. Most of the wildfire events occurred in the peak summer months (June-August). Our multi-temporal (decadal, seasonal and monthly) scale analyses provide further support to the link between climate variability and wildfire activity. Specifically, we found that warm and dry conditions in the late spring to mid-summer influenced tundra wildfire occurrence, spatio-temporal distribution, and fire intensity. Additionally, reduced average surface precipitation and soil moisture levels in the winter-spring period were associated with increased fire intensity in the following summer. These findings enrich contemporary knowledge on tundra wildfire’s spatial and seasonal patterns, and shed new light on tundra wildfire-climate relationships in the circumpolar context. Furthermore, this first pan-Arctic analysis provides a strong incentive and direction for future studies which integrate multiple datasets (i.e. climate, fuels, topography, and ignition sources) to accurately estimate carbon emission from tundra burning and its global climate feedbacks in coming decades.

  11. Temporal sequence learning in winner-take-all networks of spiking neurons demonstrated in a brain-based device.

    PubMed

    McKinstry, Jeffrey L; Edelman, Gerald M

    2013-01-01

    Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.

  12. Spatio-temporal clustering of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, R.; Pereira, M. G.; Caramelo, L.; Vega Orozco, C.; Kanevski, M.

    2012-04-01

    Several studies have shown that wildfires in Portugal presenthigh temporal as well as high spatial variability (Pereira et al., 2005, 2011). The identification and characterization of spatio-temporal clusters contributes to a comprehensivecharacterization of the fire regime and to improve the efficiency of fire prevention and combat activities. The main goalsin this studyare: (i) to detect the spatio-temporal clusters of burned area; and, (ii) to characterize these clusters along with the role of human and environmental factors. The data were supplied by the National Forest Authority(AFN, 2011) and comprises: (a)the Portuguese Rural Fire Database, PRFD, (Pereira et al., 2011) for the 1980-2007period; and, (b) the national mapping burned areas between 1990 and 2009. In this work, in order to complement the more common cluster analysis algorithms, an alternative approach based onscan statistics and on the permutation modelwas used. This statistical methodallows the detection of local excess events and to test if such an excess can reasonably have occurred by chance.Results obtained for different simulations performed for different spatial and temporal windows are presented, compared and interpreted.The influence of several fire factors such as (climate, vegetation type, etc.) is also assessed. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005:"Synoptic patterns associated with large summer forest fires in Portugal".Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 AFN, 2011: AutoridadeFlorestalNacional (National Forest Authority). Available at http://www.afn.min-agricultura.pt/portal.

  13. Development and modulation of intrinsic membrane properties control the temporal precision of auditory brain stem neurons.

    PubMed

    Franzen, Delwen L; Gleiss, Sarah A; Berger, Christina; Kümpfbeck, Franziska S; Ammer, Julian J; Felmy, Felix

    2015-01-15

    Passive and active membrane properties determine the voltage responses of neurons. Within the auditory brain stem, refinements in these intrinsic properties during late postnatal development usually generate short integration times and precise action-potential generation. This developmentally acquired temporal precision is crucial for auditory signal processing. How the interactions of these intrinsic properties develop in concert to enable auditory neurons to transfer information with high temporal precision has not yet been elucidated in detail. Here, we show how the developmental interaction of intrinsic membrane parameters generates high firing precision. We performed in vitro recordings from neurons of postnatal days 9-28 in the ventral nucleus of the lateral lemniscus of Mongolian gerbils, an auditory brain stem structure that converts excitatory to inhibitory information with high temporal precision. During this developmental period, the input resistance and capacitance decrease, and action potentials acquire faster kinetics and enhanced precision. Depending on the stimulation time course, the input resistance and capacitance contribute differentially to action-potential thresholds. The decrease in input resistance, however, is sufficient to explain the enhanced action-potential precision. Alterations in passive membrane properties also interact with a developmental change in potassium currents to generate the emergence of the mature firing pattern, characteristic of coincidence-detector neurons. Cholinergic receptor-mediated depolarizations further modulate this intrinsic excitability profile by eliciting changes in the threshold and firing pattern, irrespective of the developmental stage. Thus our findings reveal how intrinsic membrane properties interact developmentally to promote temporally precise information processing. Copyright © 2015 the American Physiological Society.

  14. Reserch on Spatial and Temporal Distribution of Color Steel Building Based on Multi-Source High-Resolution Satellite Imagery

    NASA Astrophysics Data System (ADS)

    Yang, S. W.; Ma, J. J.; Wang, J. M.

    2018-04-01

    As representative vulnerable regions of the city, dense distribution areas of temporary color steel building are a major target for control of fire risks, illegal buildings, environmental supervision, urbanization quality and enhancement for city's image. In the domestic and foreign literature, the related research mainly focuses on fire risks and violation monitoring. However, due to temporary color steel building's special characteristics, the corresponding research about temporal and spatial distribution, and influence on urban spatial form etc. has not been reported. Therefore, firstly, the paper research aim plans to extract information of large-scale color steel building from high-resolution images. Secondly, the color steel plate buildings were classified, and the spatial and temporal distribution and aggregation characteristics of small (temporary buildings) and large (factory building, warehouse, etc.) buildings were studied respectively. Thirdly, the coupling relationship between the spatial distribution of color steel plate and the spatial pattern of urban space was analysed. The results show that there is a good coupling relationship between the color steel plate building and the urban spatial form. Different types of color steel plate building represent the pattern of regional differentiation of urban space and the phased pattern of urban development.

  15. Oak decline in the Boston Mountains, Arkansas, USA: Spatial and temporal patterns under two fire regimes

    Treesearch

    Martin A. Spetich; Hong S. He

    2008-01-01

    A spatially explicit forest succession and disturbance model is used to delineate the extent and dispersion of oak decline under two fire regimes over a 150-year period. The objectives of this study are to delineate potential current and future oak decline areas using species composition and age structure data in combination with ecological land types, and to...

  16. Satellite observations for describing fire patterns and climate-related fire drivers in the Brazilian savannas

    NASA Astrophysics Data System (ADS)

    Verola Mataveli, Guilherme Augusto; Siqueira Silva, Maria Elisa; Pereira, Gabriel; da Silva Cardozo, Francielle; Shinji Kawakubo, Fernando; Bertani, Gabriel; Cezar Costa, Julio; de Cássia Ramos, Raquel; Valéria da Silva, Viviane

    2018-01-01

    In the Brazilian savannas (Cerrado biome) fires are natural and a tool for shifting land use; therefore, temporal and spatial patterns result from the interaction of climate, vegetation condition and human activities. Moreover, orbital sensors are the most effective approach to establish patterns in the biome. We aimed to characterize fire, precipitation and vegetation condition regimes and to establish spatial patterns of fire occurrence and their correlation with precipitation and vegetation condition in the Cerrado. The Cerrado was first and second biome for the occurrence of burned areas (BA) and hotspots, respectively. Occurrences are higher during the dry season and in the savanna land use. Hotspots and BA tend to decrease, and concentrate in the north, but more intense hotspots are not necessarily located where concentration is higher. Spatial analysis showed that averaged and summed values can hide patterns, such as for precipitation, which has the lowest average in August, but minimum precipitation in August was found in 7 % of the Cerrado. Usually, there is a 2-3-month lag between minimum precipitation and maximum hotspots and BA, while minimum VCI and maximum hotspots and BA occur in the same month. Hotspots and BA are better correlated with VCI than precipitation, qualifying VCI as an indicator of the susceptibility of vegetation to ignition.

  17. Spatio-temporal analysis of wildfire ignitions in the St. Johns River Water Management District, Florida

    Treesearch

    Marc G. Genton; David T. Butry; Marcia L. Gumpertz; Jeffrey P. Prestemon

    2006-01-01

    We analyse the spatio-temporal structure of wildfire ignitions in the St. Johns River Water Management District in north-eastern Florida. We show, using tools to analyse point patterns (e.g. the L-function), that wildfire events occur in clusters. Clustering of these events correlates with irregular distribution of fire ignitions, including lightning...

  18. Temporal species richness-biomass relationships along successional gradients

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other over time (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  19. Temporal species richness-biomass relationships along successional gradients

    USGS Publications Warehouse

    Guo, Q.

    2003-01-01

    Diversity-biomass relationships are frequently reported to be hump-shaped over space at a given time. However, it is not yet clear how diversity and biomass change simultaneously and how they are related to each other overtime (e.g. in succession) at one locality. This study develops a temporal model based on the projected changes of various community variables in a generalized terrestrial environment after fire and uses post-fire succession data on Santa Monica Mountains of southern California and other published succession data to examine the temporal diversity-biomass relationships. The results indicate that in the early stages of succession, both diversity and biomass increase and a positive relationship appears, while in the late stages of succession, biomass continued to increase but diversity usually declines; thus a negative relationship may be observed. When the scales of measurement become sufficiently large so that the measured diversity and biomass cross various stages of succession, a 'hump-shaped' relationship can emerge. The diversity-biomass relationship appears to be concordant in space and time when appropriate scales are used. Formerly proposed explanations for spatial patterns may well apply to the temporal patterns (particularly colonization, facilitation and competitive exclusion).

  20. Contrasting spatial patterns in active-fire and fire-suppressed Mediterranean climate old-growth mixed conifer forests.

    PubMed

    Fry, Danny L; Stephens, Scott L; Collins, Brandon M; North, Malcolm P; Franco-Vizcaíno, Ernesto; Gill, Samantha J

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha(-1), and occupied 27-46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11-20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥ 56%) in large patches (≥ 10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types.

  1. Vegetation changes caused by fire in the Florida flatwoods as observed by remote sensing

    NASA Technical Reports Server (NTRS)

    Mealor, W. T., Jr.; Prunty, M. C., Jr.

    1969-01-01

    The nature of the flatwoods and the role that ground fires have played in maintaining them are discussed. Emphasis is placed on the areal and temporal extent of burns as recorded uniformly by remote sensors. Thermal infrared, color infrared, and Ektachrome imagery were obtained from sensors flown by a NASA aircraft at 15,000 feet over a test site in Osceola County, Florida, in March 1968. The overall pattern of burning can be sequenced and mapped uniformly from the imagery. By comparing the various imagery, areal and temporal extent of burned areas can be determined. It was concluded that remote sensed imagery provides more accurate and areally comprehensive media for assessing the impact of ground fires on the landscape of the flatwoods region than are available from any other data source.

  2. Factors affecting plant diversity during post-fire recovery and succession of mediterranean-climate shrublands in California, USA

    USGS Publications Warehouse

    Keeley, J.E.; Fotheringham, C.J.; Baer-Keeley, M.

    2005-01-01

    Plant community diversity, measured as species richness, is typically highest in the early post-fire years in California shrublands. However, this generalization is overly simplistic and the present study demonstrates that diversity is determined by a complex of temporal and spatial effects. Ninety sites distributed across southern California were studied for 5 years after a series of fires. Characteristics of the disturbance event, in this case fire severity, can alter post-fire diversity, both decreasing and increasing diversity, depending on life form. Spatial variability in resource availability is an important factor explaining patterns of diversity, and there is a complex interaction between landscape features and life form. Temporal variability in resource availability affects diversity, and the diversity peak in the immediate post-fire year (or two) appears to be driven by factors different from subsequent diversity peaks. Early post-fire diversity is influenced by life-history specialization, illustrated by species that spend the bulk of their life cycle as a dormant seed bank, which is then triggered to germinate by fire. Resource fluctuations, precipitation in particular, may be associated with subsequent post-fire diversity peaks. These later peaks in diversity comprise a flora that is compositionally different from the immediate post-fire flora, and their presence may be due to mass effects from population expansion of local populations in adjacent burned areas. ?? 2005 Blackwell Publishing Ltd.

  3. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance

    PubMed Central

    Hong, Ha; Solomon, Ethan A.; DiCarlo, James J.

    2015-01-01

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT (“face patches”) did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. SIGNIFICANCE STATEMENT We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. PMID:26424887

  4. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA.

    PubMed

    Johnson, Lane B; Kipfmueller, Kurt F

    2016-06-01

    We reconstructed fire occurrence near a fur-trade era canoe travel corridor (used ca. 1780-1802) in the Quetico-Superior region west of Lake Superior to explore the possibility of human influence on pre-fire suppression rates of fire occurrence. Our research objectives were to (1) examine the spatial and temporal patterns of fire in the study area, (2) test fires' strength of association with regional drought, and (3) assess whether reconstructed fire frequencies could be explained by observed rates of lightning fire ignition over the modern period of record. We developed a 420-year fire history for the eastern portion of Lac La Croix in the Boundary Waters Canoe Area Wilderness (BWCAW). Seventy-one fire-scarred samples were collected from remnant Pinus resinosa Ait. (red pine) stumps and logs from thirteen distinct island and three mainland forest stands. Collectively these samples contained records of 255 individual fire scars representing 79 fire events from 1636 to 1933 (study area mean fire intervals [MFI] 3.8 yr). Reconstructed fires were spatially and temporally asynchronous and not strongly associated with regional drought (P > 0.05). When compared to the conservative, tree-ring reconstructed estimate of historical fire occurrence and modern lightning-caused fires (1929-2012), a noticeable change in the distribution and frequency of fires within the study area was evident with only two lightning-ignited island fires since 1934 in the study area. Our results suggest a high likelihood that indigenous land use contributed to surface fire ignitions within our study area and highlights the importance of examining the potential effects of past indigenous land use when determining modern approaches to fire and wilderness management in fire-adapted ecosystems.

  5. Optogenetic Modulation and Multi-Electrode Analysis of Cerebellar Networks In Vivo

    PubMed Central

    Kruse, Wolfgang; Krause, Martin; Aarse, Janna; Mark, Melanie D.; Manahan-Vaughan, Denise; Herlitze, Stefan

    2014-01-01

    The firing patterns of cerebellar Purkinje cells (PCs), as the sole output of the cerebellar cortex, determine and tune motor behavior. PC firing is modulated by various inputs from different brain regions and by cell-types including granule cells (GCs), climbing fibers and inhibitory interneurons. To understand how signal integration in PCs occurs and how subtle changes in the modulation of PC firing lead to adjustment of motor behaviors, it is important to precisely record PC firing in vivo and to control modulatory pathways in a spatio-temporal manner. Combining optogenetic and multi-electrode approaches, we established a new method to integrate light-guides into a multi-electrode system. With this method we are able to variably position the light-guide in defined regions relative to the recording electrode with micrometer precision. We show that PC firing can be precisely monitored and modulated by light-activation of channelrhodopsin-2 (ChR2) expressed in PCs, GCs and interneurons. Thus, this method is ideally suited to investigate the spatio/temporal modulation of PCs in anesthetized and in behaving mice. PMID:25144735

  6. Temporal and spatial structure in a daily wildfire-start data set from the western United States (198696)

    USGS Publications Warehouse

    Bartlein, P.J.; Hostetler, S.W.; Shafer, S.L.; Holman, J.O.; Solomon, A.M.

    2008-01-01

    The temporal and spatial structure of 332 404 daily fire-start records from the western United States for the period 1986 through 1996 is illustrated using several complimentary visualisation techniques. We supplement maps and time series plots with Hovmo??ller diagrams that reduce the spatial dimensionality of the daily data in order to reveal the underlying space?time structure. The mapped distributions of all lightning- and human-started fires during the 11-year interval show similar first-order patterns that reflect the broad-scale distribution of vegetation across the West and the annual cycle of climate. Lightning-started fires are concentrated in the summer half-year and occur in widespread outbreaks that last a few days and reflect coherent weather-related controls. In contrast, fires started by humans occur throughout the year and tend to be concentrated in regions surrounding large-population centres or intensive-agricultural areas. Although the primary controls of human-started fires are their location relative to burnable fuel and the level of human activity, spatially coherent, weather-related variations in their incidence can also be noted. ?? IAWF 2008.

  7. Burned areas for the conterminous U.S. from 1984 through 2015, an automated approach using dense time-series of Landsat data

    NASA Astrophysics Data System (ADS)

    Hawbaker, T. J.; Vanderhoof, M.; Beal, Y. J. G.; Takacs, J. D.; Schmidt, G.; Falgout, J.; Brunner, N. M.; Caldwell, M. K.; Picotte, J. J.; Howard, S. M.; Stitt, S.; Dwyer, J. L.

    2016-12-01

    Complete and accurate burned area data are needed to document patterns of fires, to quantify relationships between the patterns and drivers of fire occurrence, and to assess the impacts of fires on human and natural systems. Unfortunately, many existing fire datasets in the United States are known to be incomplete and that complicates efforts to understand burned area patterns and introduces a large amount of uncertainty in efforts to identify their driving processes and impacts. Because of this, the need to systematically collect burned area information has been recognized by the United Nations Framework Convention on Climate Change and the Intergovernmental Panel on Climate Change, which have both called for the production of essential climate variables. To help meet this need, we developed a novel algorithm that automatically identifies burned areas in temporally-dense time series of Landsat image stacks to produce Landsat Burned Area Essential Climate Variable (BAECV) products. The algorithm makes use of predictors derived from individual Landsat scenes, lagged reference conditions, and change metrics between the scene and reference predictors. Outputs of the BAECV algorithm, generated for the conterminous United States for 1984 through 2015, consist of burn probabilities for each Landsat scene, in addition to, annual composites including: the maximum burn probability, burn classification, and the Julian date of the first Landsat scene a burn was observed. The BAECV products document patterns of fire occurrence that are not well characterized by existing fire datasets in the United States. We anticipate that these data could help to better understand past patterns of fire occurrence, the drivers that created them, and the impacts fires had on natural and human systems.

  8. Monitoring vegetation recovery in fire-affected areas using temporal profiles of spectral signal from time series MODIS and LANDSAT satellite images

    NASA Astrophysics Data System (ADS)

    Georgopoulou, Danai; Koutsias, Nikos

    2015-04-01

    Vegetation phenology is an important element of vegetation characteristics that can be useful in vegetation monitoring especially when satellite remote sensing observations are used. In that sense temporal profiles extracted from spectral signal of time series MODIS and LANDSAT satellite images can be used to characterize vegetation phenology and thus to be helpful for monitoring vegetation recovery in fire-affected areas. The aim of this study is to explore the vegetation recovery pattern of the catastrophic wildfires that occurred in Peloponnisos, southern Greece, in 2007. These fires caused the loss of 67 lives and were recognized as the most extreme natural disaster in the country's recent history. Satellite remote sensing data from MODIS and LANDSAT satellites in the period from 2000 to 2014 were acquired and processed to extract the temporal profiles of the spectral signal for selected areas within the fire-affected areas. This dataset and time period analyzed together with the time that these fires occurred gave the opportunity to create temporal profiles seven years before and seven years after the fire. The different scale of the data used gave us the chance to understand how vegetation phenology and therefore the recovery patterns are influenced by the spatial resolution of the satellite data used. Different metrics linked to key phenological events have been created and used to assess vegetation recovery in the fire-affected areas. Our analysis was focused in the main land cover types that were mostly affected by the 2007 wildland fires. Based on CORINE land-cover maps these were agricultural lands highly interspersed with large areas of natural vegetation followed by sclerophyllous vegetation, transitional woodland shrubs, complex cultivation patterns and olive groves. Apart of the use of the original spectral data we estimated and used vegetation indices commonly found in vegetation studies as well as in burned area mapping studies. In this study we explore the strength and the use of these time series satellite data to characterize vegetation phenology as an a aid to monitor vegetation recovery in fire affected-areas. In a recent study we found that the original spectral channels, based on which these indices are estimated, are sensitive to external vegetation parameters such as the spectral reflectance of the background soil. In such cases, the influence of the soil in the reflectance values is different in the various spectral regions depending on its type. The use of such indices is also justified according to a recent study on the sensitivity of spectral reflectance values to different burn and vegetation ratios, who concluded that the Near Infrared (NIR) and Short-Wave Infrared (SWIR) are the most important channels to estimate the percentage of burned area, whereas the NIR and red channels are the most important to estimate the percentage of vegetation in fire-affected areas. Additionally, it has been found that semi-burned classes are spectrally more consistent to their different fractions of scorched and non-scorched vegetation, than the original spectral channels based on which these indices are estimated.

  9. Toward heterogeneity in feedforward network with synaptic delays based on FitzHugh-Nagumo model

    NASA Astrophysics Data System (ADS)

    Qin, Ying-Mei; Men, Cong; Zhao, Jia; Han, Chun-Xiao; Che, Yan-Qiu

    2018-01-01

    We focus on the role of heterogeneity on the propagation of firing patterns in feedforward network (FFN). Effects of heterogeneities both in parameters of neuronal excitability and synaptic delays are investigated systematically. Neuronal heterogeneity is found to modulate firing rates and spiking regularity by changing the excitability of the network. Synaptic delays are strongly related with desynchronized and synchronized firing patterns of the FFN, which indicate that synaptic delays may play a significant role in bridging rate coding and temporal coding. Furthermore, quasi-coherence resonance (quasi-CR) phenomenon is observed in the parameter domain of connection probability and delay-heterogeneity. All these phenomena above enable a detailed characterization of neuronal heterogeneity in FFN, which may play an indispensable role in reproducing the important properties of in vivo experiments.

  10. Frequency and distribution of forest, savanna, and crop fires over tropical regions during PEM-Tropics A

    NASA Astrophysics Data System (ADS)

    Olson, Jennifer R.; Baum, Bryan A.; Cahoon, Donald R.; Crawford, James H.

    1999-03-01

    Advanced very high resolution radiometer 1.1 km resolution satellite radiance data were used to locate active fires throughout much of the tropical region during NASA's Global Tropospheric Experiment (GTE) Pacific Exploratory Mission-Tropics (PEM-Tropics A) aircraft campaign, held in September and October 1996. The spatial and temporal distributions of the fires in Australia, southern Africa, and South America are presented here. The number of fires over northern Australia, central Africa, and South America appeared to decrease toward the end of the mission period. Fire over eastern Australia was widespread, and temporal patterns showed a somewhat consistent amount of burning with periodic episodes of enhanced fire counts observed. At least one episode of enhanced fire counts corresponded to the passage of a frontal system which brought conditions conducive to fire to the region, with strong westerlies originating over the hot, dry interior continent. Regions that were affected by lower than normal rainfall during the previous wet season (e.g., northern Australia and southwestern Africa) showed relatively few fires during this period. This is consistent with a drought-induced decrease in vegetation and therefore a decreased availability of fuel for burning. Alternatively, a heavier than normal previous wet season along the southeastern coast of South Africa may have contributed to high fuel loading and an associated relatively heavy amount of burning compared to data from previous years.

  11. Characterization of fire regime in Sardinia (Italy)

    NASA Astrophysics Data System (ADS)

    Bacciu, V. M.; Salis, M.; Mastinu, S.; Masala, F.; Sirca, C.; Spano, D.

    2012-12-01

    In the last decades, a number of Authors highlighted the crucial role of forest fires within Mediterranean ecosystems, with impacts both negative and positive on all biosphere components and with reverberations on different scales. Fire determines the landscape structure and plant composition, but it is also the cause of enormous economic and ecological damages, beside the loss of human life. In Sardinia (Italy), the second largest island of the Mediterranean Basin, forest fires are perceived as one of the main environmental and social problems, and data are showing that the situation is worsening especially within the rural-urban peripheries and the increasing number of very large forest fires. The need for information concerning forest fire regime has been pointed out by several Authors (e.g. Rollins et al., 2002), who also emphasized the importance of understanding the factors (such as weather/climate, socio-economic, and land use) that determine spatial and temporal fire patterns. These would be used not only as a baseline to predict the climate change effect on forest fires, but also as a fire management and mitigation strategy. The main aim of this paper is, thus, to analyze the temporal and spatial patterns of fire occurrence in Sardinia (Italy) during the last three decades (1980-2010). For the analyzed period, fire statistics were provided by the Sardinian Forest Service (CFVA - Corpo Forestale e di Vigilanza Ambientale), while weather data for eight weather stations were obtained from the web site www.tutiempo.it. For each station, daily series of precipitation, mean, maximum and minimum temperature, relative humidity and wind speed were available. The present study firstly analyzed fire statistics (burned area and number of fires) according to the main fire regime characteristics (seasonality, fire return interval, fire incidence, fire size distribution). Then, fire and weather daily values were averaged to obtain monthly, seasonal and annual values, and a set of parametric and not parametric statistical tests were used to analyze the fire-weather relationships. Results showed a high inter- and intra-annual variability, also considering the different type of affected vegetation. As for other Mediterranean areas, a smaller number of large fires caused a high proportion of burned area. Land cover greatly influenced fire occurrence and fire size distribution across the landscape. Furthermore, fire activity (number of fires and area burned) showed significant correlations with weather variables, especially summer precipitation and wind, which seemed to drive the fire seasons and the fire propagation, respectively.

  12. Biomass Combustions and Burning Emissions Inferred from GOES Fire Radiative Power

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Kondragunta, S.; Schmidt, C.

    2007-12-01

    Biomass burning significantly affects air quality and climate changes. Current estimates of burning emissions are rather imprecise and vary markedly with different methodologies. This paper investigates biomass burning consumption and emissions using GOES (Geostationary Operational Environmental Satellites) WF_ABBA (Wildfire Automated Biomass Burning Algorithm) fire product. In doing this, we establish a set of representatives in diurnal patterns of half-hourly GOES Fire Radiative Power (FRP) for various ecosystems. The representative patterns are used to fill the missed and poor observations of half hourly FRP in GOES fire data for individual fire pixels. The simulated FRP is directly applied to the calculation of the biomass combusted during fire activities. The FRP-based biomass combustion is evaluated using the estimates using a traditional model which integrates burned area, fuel loading, and combustion factor. In the traditional model calculation, we derive burned areas from GOES WF_ABBA fire size. Fuel loading includes three different types (1) MODIS Vegetation Property-based Fuel System (MVPFS), (2) National Dangerous Rating Systems (NFDRS), and (3) the Fuel Characteristic Classification System (FCCS). By comparing the biomass combustions across the Contiguous United States (CONUS) from 2003-2005, we conclude that FRP is an effective tool to estimate the biomass burning emissions. Finally, we examine the temporal and spatial patterns in biomass combustions and emissions (PM2.5, CO, NH3) across the CONUS.

  13. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression.

    PubMed

    Löb, D; Lengert, N; Chagin, V O; Reinhart, M; Casas-Delucchi, C S; Cardoso, M C; Drossel, B

    2016-04-07

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase.

  14. Exact event-driven implementation for recurrent networks of stochastic perfect integrate-and-fire neurons.

    PubMed

    Taillefumier, Thibaud; Touboul, Jonathan; Magnasco, Marcelo

    2012-12-01

    In vivo cortical recording reveals that indirectly driven neural assemblies can produce reliable and temporally precise spiking patterns in response to stereotyped stimulation. This suggests that despite being fundamentally noisy, the collective activity of neurons conveys information through temporal coding. Stochastic integrate-and-fire models delineate a natural theoretical framework to study the interplay of intrinsic neural noise and spike timing precision. However, there are inherent difficulties in simulating their networks' dynamics in silico with standard numerical discretization schemes. Indeed, the well-posedness of the evolution of such networks requires temporally ordering every neuronal interaction, whereas the order of interactions is highly sensitive to the random variability of spiking times. Here, we answer these issues for perfect stochastic integrate-and-fire neurons by designing an exact event-driven algorithm for the simulation of recurrent networks, with delayed Dirac-like interactions. In addition to being exact from the mathematical standpoint, our proposed method is highly efficient numerically. We envision that our algorithm is especially indicated for studying the emergence of polychronized motifs in networks evolving under spike-timing-dependent plasticity with intrinsic noise.

  15. A spiking neural network model of the midbrain superior colliculus that generates saccadic motor commands.

    PubMed

    Kasap, Bahadir; van Opstal, A John

    2017-08-01

    Single-unit recordings suggest that the midbrain superior colliculus (SC) acts as an optimal controller for saccadic gaze shifts. The SC is proposed to be the site within the visuomotor system where the nonlinear spatial-to-temporal transformation is carried out: the population encodes the intended saccade vector by its location in the motor map (spatial), and its trajectory and velocity by the distribution of firing rates (temporal). The neurons' burst profiles vary systematically with their anatomical positions and intended saccade vectors, to account for the nonlinear main-sequence kinematics of saccades. Yet, the underlying collicular mechanisms that could result in these firing patterns are inaccessible to current neurobiological techniques. Here, we propose a simple spiking neural network model that reproduces the spike trains of saccade-related cells in the intermediate and deep SC layers during saccades. The model assumes that SC neurons have distinct biophysical properties for spike generation that depend on their anatomical position in combination with a center-surround lateral connectivity. Both factors are needed to account for the observed firing patterns. Our model offers a basis for neuronal algorithms for spatiotemporal transformations and bio-inspired optimal controllers.

  16. Contrasting Spatial Patterns in Active-Fire and Fire-Suppressed Mediterranean Climate Old-Growth Mixed Conifer Forests

    PubMed Central

    Fry, Danny L.; Stephens, Scott L.; Collins, Brandon M.; North, Malcolm P.; Franco-Vizcaíno, Ernesto; Gill, Samantha J.

    2014-01-01

    In Mediterranean environments in western North America, historic fire regimes in frequent-fire conifer forests are highly variable both temporally and spatially. This complexity influenced forest structure and spatial patterns, but some of this diversity has been lost due to anthropogenic disruption of ecosystem processes, including fire. Information from reference forest sites can help management efforts to restore forests conditions that may be more resilient to future changes in disturbance regimes and climate. In this study, we characterize tree spatial patterns using four-ha stem maps from four old-growth, Jeffrey pine-mixed conifer forests, two with active-fire regimes in northwestern Mexico and two that experienced fire exclusion in the southern Sierra Nevada. Most of the trees were in patches, averaging six to 11 trees per patch at 0.007 to 0.014 ha−1, and occupied 27–46% of the study areas. Average canopy gap sizes (0.04 ha) covering 11–20% of the area were not significantly different among sites. The putative main effects of fire exclusion were higher densities of single trees in smaller size classes, larger proportion of trees (≥56%) in large patches (≥10 trees), and decreases in spatial complexity. While a homogenization of forest structure has been a typical result from fire exclusion, some similarities in patch, single tree, and gap attributes were maintained at these sites. These within-stand descriptions provide spatially relevant benchmarks from which to manage for structural heterogeneity in frequent-fire forest types. PMID:24586472

  17. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  18. Examining fire-induced forest changes using novel remote sensing technique: a case study in a mixed pine-oak forest

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2017-12-01

    Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.

  19. Recurrent Coupling Improves Discrimination of Temporal Spike Patterns

    PubMed Central

    Yuan, Chun-Wei; Leibold, Christian

    2012-01-01

    Despite the ubiquitous presence of recurrent synaptic connections in sensory neuronal systems, their general functional purpose is not well understood. A recent conceptual advance has been achieved by theories of reservoir computing in which recurrent networks have been proposed to generate short-term memory as well as to improve neuronal representation of the sensory input for subsequent computations. Here, we present a numerical study on the distinct effects of inhibitory and excitatory recurrence in a canonical linear classification task. It is found that both types of coupling improve the ability to discriminate temporal spike patterns as compared to a purely feed-forward system, although in different ways. For a large class of inhibitory networks, the network’s performance is optimal as long as a fraction of roughly 50% of neurons per stimulus is active in the resulting population code. Thereby the contribution of inactive neurons to the neural code is found to be even more informative than that of the active neurons, generating an inherent robustness of classification performance against temporal jitter of the input spikes. Excitatory couplings are found to not only produce a short-term memory buffer but also to improve linear separability of the population patterns by evoking more irregular firing as compared to the purely inhibitory case. As the excitatory connectivity becomes more sparse, firing becomes more variable, and pattern separability improves. We argue that the proposed paradigm is particularly well-suited as a conceptual framework for processing of sensory information in the auditory pathway. PMID:22586392

  20. Detailed temporal structure of communication networks in groups of songbirds.

    PubMed

    Stowell, Dan; Gill, Lisa; Clayton, David

    2016-06-01

    Animals in groups often exchange calls, in patterns whose temporal structure may be influenced by contextual factors such as physical location and the social network structure of the group. We introduce a model-based analysis for temporal patterns of animal call timing, originally developed for networks of firing neurons. This has advantages over cross-correlation analysis in that it can correctly handle common-cause confounds and provides a generative model of call patterns with explicit parameters for the influences between individuals. It also has advantages over standard Markovian analysis in that it incorporates detailed temporal interactions which affect timing as well as sequencing of calls. Further, a fitted model can be used to generate novel synthetic call sequences. We apply the method to calls recorded from groups of domesticated zebra finch (Taeniopygia guttata) individuals. We find that the communication network in these groups has stable structure that persists from one day to the next, and that 'kernels' reflecting the temporal range of influence have a characteristic structure for a calling individual's effect on itself, its partner and on others in the group. We further find characteristic patterns of influences by call type as well as by individual. © 2016 The Authors.

  1. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    NASA Technical Reports Server (NTRS)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  2. Spatial-Temporal Dynamics of Urban Fire Incidents: a Case Study of Nanjing, China

    NASA Astrophysics Data System (ADS)

    Yao, J.; Zhang, X.

    2016-06-01

    Fire and rescue service is one of the fundamental public services provided by government in order to protect people, properties and environment from fires and other disasters, and thus promote a safer living environment. Well understanding spatial-temporal dynamics of fire incidents can offer insights for potential determinants of various fire events and enable better fire risk estimation, assisting future allocation of prevention resources and strategic planning of mitigation programs. Using a 12-year (2002-2013) dataset containing the urban fire events in Nanjing, China, this research explores the spatial-temporal dynamics of urban fire incidents. A range of exploratory spatial data analysis (ESDA) approaches and tools, such as spatial kernel density and co-maps, are employed to examine the spatial, temporal and spatial-temporal variations of the fire events. Particular attention has been paid to two types of fire incidents: residential properties and local facilities, due to their relatively higher occurrence frequencies. The results demonstrated that the amount of urban fire has greatly increased in the last decade and spatial-temporal distribution of fire events vary among different incident types, which implies varying impact of potential influencing factors for further investigation.

  3. Simple Learned Weighted Sums of Inferior Temporal Neuronal Firing Rates Accurately Predict Human Core Object Recognition Performance.

    PubMed

    Majaj, Najib J; Hong, Ha; Solomon, Ethan A; DiCarlo, James J

    2015-09-30

    To go beyond qualitative models of the biological substrate of object recognition, we ask: can a single ventral stream neuronal linking hypothesis quantitatively account for core object recognition performance over a broad range of tasks? We measured human performance in 64 object recognition tests using thousands of challenging images that explore shape similarity and identity preserving object variation. We then used multielectrode arrays to measure neuronal population responses to those same images in visual areas V4 and inferior temporal (IT) cortex of monkeys and simulated V1 population responses. We tested leading candidate linking hypotheses and control hypotheses, each postulating how ventral stream neuronal responses underlie object recognition behavior. Specifically, for each hypothesis, we computed the predicted performance on the 64 tests and compared it with the measured pattern of human performance. All tested hypotheses based on low- and mid-level visually evoked activity (pixels, V1, and V4) were very poor predictors of the human behavioral pattern. However, simple learned weighted sums of distributed average IT firing rates exactly predicted the behavioral pattern. More elaborate linking hypotheses relying on IT trial-by-trial correlational structure, finer IT temporal codes, or ones that strictly respect the known spatial substructures of IT ("face patches") did not improve predictive power. Although these results do not reject those more elaborate hypotheses, they suggest a simple, sufficient quantitative model: each object recognition task is learned from the spatially distributed mean firing rates (100 ms) of ∼60,000 IT neurons and is executed as a simple weighted sum of those firing rates. Significance statement: We sought to go beyond qualitative models of visual object recognition and determine whether a single neuronal linking hypothesis can quantitatively account for core object recognition behavior. To achieve this, we designed a database of images for evaluating object recognition performance. We used multielectrode arrays to characterize hundreds of neurons in the visual ventral stream of nonhuman primates and measured the object recognition performance of >100 human observers. Remarkably, we found that simple learned weighted sums of firing rates of neurons in monkey inferior temporal (IT) cortex accurately predicted human performance. Although previous work led us to expect that IT would outperform V4, we were surprised by the quantitative precision with which simple IT-based linking hypotheses accounted for human behavior. Copyright © 2015 the authors 0270-6474/15/3513402-17$15.00/0.

  4. Avian response to fire in pine–oak forests of Great Smoky Mountains National Park following decades of fire suppression

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.

    2016-01-01

    Fire suppression in southern Appalachian pine–oak forests during the past century dramatically altered the bird community. Fire return intervals decreased, resulting in local extirpation or population declines of many bird species adapted to post-fire plant communities. Within Great Smoky Mountains National Park, declines have been strongest for birds inhabiting xeric pine–oak forests that depend on frequent fire. The buildup of fuels after decades of fire suppression led to changes in the 1996 Great Smoky Mountains Fire Management Plan. Although fire return intervals remain well below historic levels, management changes have helped increase the amount of fire within the park over the past 20 years, providing an opportunity to study patterns of fire severity, time since burn, and bird occurrence. We combined avian point counts in burned and unburned areas with remote sensing indices of fire severity to infer temporal changes in bird occurrence for up to 28 years following fire. Using hierarchical linear models that account for the possibility of a species presence at a site when no individuals are detected, we developed occurrence models for 24 species: 13 occurred more frequently in burned areas, 2 occurred less frequently, and 9 showed no significant difference between burned and unburned areas. Within burned areas, the top models for each species included fire severity, time since burn, or both, suggesting that fire influenced patterns of species occurrence for all 24 species. Our findings suggest that no single fire management strategy will suit all species. To capture peak occupancy for the entire bird community within xeric pine–oak forests, at least 3 fire regimes may be necessary; one applying frequent low severity fire, another using infrequent low severity fire, and a third using infrequently applied high severity fire.

  5. Distinct Mechanisms for Synchronization and Temporal Patterning of Odor-Encoding Neural Assemblies

    NASA Astrophysics Data System (ADS)

    MacLeod, Katrina; Laurent, Gilles

    1996-11-01

    Stimulus-evoked oscillatory synchronization of neural assemblies and temporal patterns of neuronal activity have been observed in many sensory systems, such as the visual and auditory cortices of mammals or the olfactory system of insects. In the locust olfactory system, single odor puffs cause the immediate formation of odor-specific neural assemblies, defined both by their transient synchronized firing and their progressive transformation over the course of a response. The application of an antagonist of ionotropic γ-aminobutyric acid (GABA) receptors to the first olfactory relay neuropil selectively blocked the fast inhibitory synapse between local and projection neurons. This manipulation abolished the synchronization of the odor-coding neural ensembles but did not affect each neuron's temporal response patterns to odors, even when these patterns contained periods of inhibition. Fast GABA-mediated inhibition, therefore, appears to underlie neuronal synchronization but not response tuning in this olfactory system. The selective desynchronization of stimulus-evoked oscillating neural assemblies in vivo is now possible, enabling direct functional tests of their significance for sensation and perception.

  6. Patterns of fire activity over Indonesia and Malaysia from polar and geostationary satellite observations

    NASA Astrophysics Data System (ADS)

    Hyer, Edward J.; Reid, Jeffrey S.; Prins, Elaine M.; Hoffman, Jay P.; Schmidt, Christopher C.; Miettinen, Jukka I.; Giglio, Louis

    2013-03-01

    Biomass burning patterns over the Maritime Continent of Southeast Asia are examined using a new active fire detection product based on application of the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) to data from the imagers on the MTSAT geostationary satellites operated by the Japanese space agency JAXA. Data from MTSAT-1R and MTSAT-2 covering 34 months from September 2008 to July 2011 are examined for a study region consisting of Indonesia, Malaysia, and nearby environs. The spatial and temporal distributions of fires detected in the MTSAT WF_ABBA product are described and compared with active fire observations from MODIS MOD14 data. Land cover distributions for the two instruments are examined using a new 250 m land cover product from the National University of Singapore. The two products show broadly similar patterns of fire activity, land cover distribution of fires, and pixel fire radiative power (FRP). However, the MTSAT WF_ABBA data differ from MOD14 in important ways. Relative to MODIS, the MTSAT WF_ABBA product has lower overall detection efficiency, but more fires detected due to more frequent looks, a greater relative fraction of fires in forest and a lower relative fraction of fires in open areas, and significantly higher single-pixel retrieved FRP. The differences in land cover distribution and FRP between the MTSAT and MODIS products are shown to be qualitatively consistent with expectations based on pixel size and diurnal sampling. The MTSAT WF_ABBA data are used to calculate coverage-corrected diurnal cycles of fire for different regions within the study area. These diurnal cycles are preliminary but demonstrate that the fraction of diurnal fire activity sampled by the two MODIS sensors varies significantly by region and vegetation type. Based on the results from comparison of the two fire products, a series of steps is outlined to account for some of the systematic biases in each of these satellite products in order to produce a successful merged fire detection product.

  7. Co-variability of smoke and fire in the Amazon basin

    NASA Astrophysics Data System (ADS)

    Mishra, Amit Kumar; Lehahn, Yoav; Rudich, Yinon; Koren, Ilan

    2015-05-01

    The Amazon basin is a hot spot of anthropogenically-driven biomass burning, accounting for approximately 15% of total global fire emissions. It is essential to accurately measure these fires for robust regional and global modeling of key environmental processes. Here we have explored the link between spatio-temporal variability patterns in the Amazon basin's fires and the resulting smoke loading using 11 years (2002-2012) of data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Aerosol Robotic Network (AERONET) observations. Focusing on the peak burning season (July-October), our analysis shows strong inter-annual correlation between aerosol optical depth (AOD) and two MODIS fire products: fire radiative power (FRP) and fire pixel counts (FC). Among these two fire products, the FC better indicates the amount of smoke in the basin, as represented in remotely sensed AOD data. This fire product is significantly correlated both with regional AOD retrievals from MODIS and with point AOD measurements from the AERONET stations, pointing to spatial homogenization of the smoke over the basin on a seasonal time scale. However, MODIS AODs are found better than AERONET AODs observation for linking between smoke and fire. Furthermore, MODIS AOD measurements are strongly correlated with number of fires ∼10-20 to the east, most likely due to westward advection of smoke by the wind. These results can be rationalized by the regional topography and the wind regimes. Our analysis can improve data assimilation of satellite and ground-based observations into regional and global model studies, thus improving the assessment of the environmental and climatic impacts of frequency and distribution variability of the Amazon basin's fires. We also provide the optimal spatial and temporal scales for ground-based observations, which could be used for such applications.

  8. 3D replicon distributions arise from stochastic initiation and domino-like DNA replication progression

    PubMed Central

    Löb, D.; Lengert, N.; Chagin, V. O.; Reinhart, M.; Casas-Delucchi, C. S.; Cardoso, M. C.; Drossel, B.

    2016-01-01

    DNA replication dynamics in cells from higher eukaryotes follows very complex but highly efficient mechanisms. However, the principles behind initiation of potential replication origins and emergence of typical patterns of nuclear replication sites remain unclear. Here, we propose a comprehensive model of DNA replication in human cells that is based on stochastic, proximity-induced replication initiation. Critical model features are: spontaneous stochastic firing of individual origins in euchromatin and facultative heterochromatin, inhibition of firing at distances below the size of chromatin loops and a domino-like effect by which replication forks induce firing of nearby origins. The model reproduces the empirical temporal and chromatin-related properties of DNA replication in human cells. We advance the one-dimensional DNA replication model to a spatial model by taking into account chromatin folding in the nucleus, and we are able to reproduce the spatial and temporal characteristics of the replication foci distribution throughout S-phase. PMID:27052359

  9. A Topological Paradigm for Hippocampal Spatial Map Formation Using Persistent Homology

    PubMed Central

    Dabaghian, Y.; Mémoli, F.; Frank, L.; Carlsson, G.

    2012-01-01

    An animal's ability to navigate through space rests on its ability to create a mental map of its environment. The hippocampus is the brain region centrally responsible for such maps, and it has been assumed to encode geometric information (distances, angles). Given, however, that hippocampal output consists of patterns of spiking across many neurons, and downstream regions must be able to translate those patterns into accurate information about an animal's spatial environment, we hypothesized that 1) the temporal pattern of neuronal firing, particularly co-firing, is key to decoding spatial information, and 2) since co-firing implies spatial overlap of place fields, a map encoded by co-firing will be based on connectivity and adjacency, i.e., it will be a topological map. Here we test this topological hypothesis with a simple model of hippocampal activity, varying three parameters (firing rate, place field size, and number of neurons) in computer simulations of rat trajectories in three topologically and geometrically distinct test environments. Using a computational algorithm based on recently developed tools from Persistent Homology theory in the field of algebraic topology, we find that the patterns of neuronal co-firing can, in fact, convey topological information about the environment in a biologically realistic length of time. Furthermore, our simulations reveal a “learning region” that highlights the interplay between the parameters in combining to produce hippocampal states that are more or less adept at map formation. For example, within the learning region a lower number of neurons firing can be compensated by adjustments in firing rate or place field size, but beyond a certain point map formation begins to fail. We propose that this learning region provides a coherent theoretical lens through which to view conditions that impair spatial learning by altering place cell firing rates or spatial specificity. PMID:22912564

  10. Impact of Partial Time Delay on Temporal Dynamics of Watts-Strogatz Small-World Neuronal Networks

    NASA Astrophysics Data System (ADS)

    Yan, Hao; Sun, Xiaojuan

    2017-06-01

    In this paper, we mainly discuss effects of partial time delay on temporal dynamics of Watts-Strogatz (WS) small-world neuronal networks by controlling two parameters. One is the time delay τ and the other is the probability of partial time delay pdelay. Temporal dynamics of WS small-world neuronal networks are discussed with the aid of temporal coherence and mean firing rate. With the obtained simulation results, it is revealed that for small time delay τ, the probability pdelay could weaken temporal coherence and increase mean firing rate of neuronal networks, which indicates that it could improve neuronal firings of the neuronal networks while destroying firing regularity. For large time delay τ, temporal coherence and mean firing rate do not have great changes with respect to pdelay. Time delay τ always has great influence on both temporal coherence and mean firing rate no matter what is the value of pdelay. Moreover, with the analysis of spike trains and histograms of interspike intervals of neurons inside neuronal networks, it is found that the effects of partial time delays on temporal coherence and mean firing rate could be the result of locking between the period of neuronal firing activities and the value of time delay τ. In brief, partial time delay could have great influence on temporal dynamics of the neuronal networks.

  11. Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region.

    PubMed

    Amraoui, Malik; Pereira, Mário G; DaCamara, Carlos C; Calado, Teresa J

    2015-08-15

    Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. The use of satellite data for monitoring temporal and spatial patterns of fire: a comprehensive review

    NASA Astrophysics Data System (ADS)

    Lasaponara, R.

    2009-04-01

    Remotely sensed (RS) data can fruitfully support both research activities and operative monitoring of fire at different temporal and spatial scales with a synoptic view and cost effective technologies. "The contribution of remote sensing (RS) to forest fires may be grouped in three categories, according to the three phases of fire management: (i) risk estimation (before fire), (ii) detection (during fire) and (iii) assessment (after fire)" Chuvieco (2006). Relating each phase, wide research activities have been conducted over the years. (i) Risk estimation (before fire) has been mainly based on the use of RS data for (i) monitoring vegetation stress and assessing variations in vegetation moisture content, (ii) fuel type mapping, at different temporal and spatial scales from global, regional down to a local scale (using AVHRR, MODIS, TM, ASTER, Quickbird images and airborne hyperspectral and LIDAR data). Danger estimation has been mainly based on the use of AVHRR (onborad NOAA), MODIS (onboard TERRA and AQUA), VEGETATION (onboard SPOT) due to the technical characteristics (i.e. spectral, spatial and temporal resolution). Nevertheless microwave data have been also used for vegetation monitoring. (ii) Detection: identification of active fires, estimation of fire radiative energy and fire emission. AVHRR was one of the first satellite sensors used for setting up fire detection algorithms. The availbility of MODIS allowed us to obtain global fire products free downloaded from NASA web site. Sensors onboard geostationary satellite platforms, such as GOES, SEVIRI, have been used for fire detection, to obtain a high temporal resolution (at around 15 minutes) monitoring of active fires. (iii) Post fire damage assessment includes: burnt area mapping, fire emission, fire severity, vegetation recovery, fire resilience estimation, and, more recently, fire regime characterization. Chuvieco E. L. Giglio, C. Justice, 2008 Global charactrerization of fire activity: toward defining fire regimes from Earth observation data Global Change Biology vo. 14. doi: 10.1111/j.1365-2486.2008.01585.x 1-15, Chuvieco E., P. Englefield, Alexander P. Trishchenko, Yi Luo Generation of long time series of burn area maps of the boreal forest from NOAA-AVHRR composite data. Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2381-2396 Chuvieco Emilio 2006, Remote Sensing of Forest Fires: Current limitations and future prospects in Observing Land from Space: Science, Customers and Technology, Advances in Global Change Research Vol. 4 pp 47-51 De Santis A., E. Chuvieco Burn severity estimation from remotely sensed data: Performance of simulation versus empirical models, Remote Sensing of Environment, Volume 108, Issue 4, 29 June 2007, Pages 422-435. De Santis A., E. Chuvieco, Patrick J. Vaughan, Short-term assessment of burn severity using the inversion of PROSPECT and GeoSail models, Remote Sensing of Environment, Volume 113, Issue 1, 15 January 2009, Pages 126-136 García M., E. Chuvieco, H. Nieto, I. Aguado Combining AVHRR and meteorological data for estimating live fuel moisture content Remote Sensing of Environment, Volume 112, Issue 9, 15 September 2008, Pages 3618-3627 Ichoku C., L. Giglio, M. J. Wooster, L. A. Remer Global characterization of biomass-burning patterns using satellite measurements of fire radiative energy. Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2950-2962. Lasaponara R. and Lanorte, On the capability of satellite VHR QuickBird data for fuel type characterization in fragmented landscape Ecological Modelling Volume 204, Issues 1-2, 24 May 2007, Pages 79-84 Lasaponara R., A. Lanorte, S. Pignatti,2006 Multiscale fuel type mapping in fragmented ecosystems: preliminary results from Hyperspectral MIVIS and Multispectral Landsat TM data, Int. J. Remote Sens., vol. 27 (3) pp. 587-593. Lasaponara R., V. Cuomo, M. F. Macchiato, and T. Simoniello, 2003 .A self-adaptive algorithm based on AVHRR multitemporal data analysis for small active fire detection.n International Journal of Remote Sensing, vol. 24, No 8, 1723-1749. Minchella A., F. Del Frate, F. Capogna, S. Anselmi, F. Manes Use of multitemporal SAR data for monitoring vegetation recovery of Mediterranean burned areas Remote Sensing of Environment, In Press Næsset E., T. Gobakken Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 3079-3090 Peterson S. H, Dar A. Roberts, Philip E. Dennison Mapping live fuel moisture with MODIS data: A multiple regression approach, Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4272-4284. Schroeder Wilfrid, Elaine Prins, Louis Giglio, Ivan Csiszar, Christopher Schmidt, Jeffrey Morisette, Douglas Morton Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data Remote Sensing of Environment, Volume 112, Issue 5, 15 May 2008, Pages 2711-2726 Shi J., T. Jackson, J. Tao, J. Du, R. Bindlish, L. Lu, K.S. Chen Microwave vegetation indices for short vegetation covers from satellite passive microwave sensor AMSR-E Remote Sensing of Environment, Volume 112, Issue 12, 15 December 2008, Pages 4285-4300 Tansey, K., Grégoire, J-M., Defourny, P., Leigh, R., Pekel, J-F., van Bogaert, E. and Bartholomé, E., 2008 A New, Global, Multi-Annual (2000-2007) Burnt Area Product at 1 km Resolution and Daily Intervals Geophysical Research Letters, VOL. 35, L01401, doi:10.1029/2007GL031567, 2008. Telesca L. and Lasaponara R., 2006; "Pre-and Post- fire Behaviural trends revealed in satellite NDVI time series" Geophysical Research Letters,., 33, L14401, doi:10.1029/2006GL026630 Telesca L. and Lasaponara R 2005 Discriminating Dynamical Patterns in Burned and Unburned Vegetational Covers by Using SPOT-VGT NDVI Data. Geophysical Research Letters,, 32, L21401, doi:10.1029/2005GL024391. Telesca L. and Lasaponara R. Investigating fire-induced behavioural trends in vegetation covers , Communications in Nonlinear Science and Numerical Simulation, 13, 2018-2023, 2008 Telesca L., A. Lanorte and R. Lasaponara, 2007. Investigating dynamical trends in burned and unburned vegetation covers by using SPOT-VGT NDVI data. Journal of Geophysics and Engineering, Vol. 4, pp. 128-138, 2007 Telesca L., R. Lasaponara, and A. Lanorte, Intra-annual dynamical persistent mechanisms in Mediterranean ecosystems revealed SPOT-VEGETATION Time Series, Ecological Complexity, 5, 151-156, 2008 Verbesselt, J., Somers, B., Lhermitte, S., Jonckheere, I., van Aardt, J., and Coppin, P. (2007) Monitoring herbaceous fuel moisture content with SPOT VEGETATION time-series for fire risk prediction in savanna ecosystems. Remote Sensing of Environment 108: 357-368. Zhang X., S. Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897 Zhang X., Shobha Kondragunta Temporal and spatial variability in biomass burned areas across the USA derived from the GOES fire product Remote Sensing of Environment, Volume 112, Issue 6, 16 June 2008, Pages 2886-2897

  13. Spatial temporal clustering for hotspot using kulldorff scan statistic method (KSS): A case in Riau Province

    NASA Astrophysics Data System (ADS)

    Hudjimartsu, S. A.; Djatna, T.; Ambarwari, A.; Apriliantono

    2017-01-01

    The forest fires in Indonesia occurs frequently in the dry season. Almost all the causes of forest fires are caused by the human activity itself. The impact of forest fires is the loss of biodiversity, pollution hazard and harm the economy of surrounding communities. To prevent fires required the method, one of them with spatial temporal clustering. Spatial temporal clustering formed grouping data so that the results of these groupings can be used as initial information on fire prevention. To analyze the fires, used hotspot data as early indicator of fire spot. Hotspot data consists of spatial and temporal dimensions can be processed using the Spatial Temporal Clustering with Kulldorff Scan Statistic (KSS). The result of this research is to the effectiveness of KSS method to cluster spatial hotspot in a case within Riau Province and produces two types of clusters, most cluster and secondary cluster. This cluster can be used as an early fire warning information.

  14. Post-fire Vegetation Regeneration Dynamics to Topography and Burn Severity in two contrasting ecosystems: the Case of the Montane Cordillera Ecozones of Western Canada & that of a Typical Mediterranean site in Greece

    NASA Astrophysics Data System (ADS)

    Ireland, Gareth; Petropoulos, George P.; Kalivas, Dionissios; Griffirths, Hywel M.; Louka, Panagiota

    2015-04-01

    Altering land cover dynamics is currently regarded as the single most important variable of global change affecting ecological systems. Wildfires are an integral part of many terrestrial ecosystems and are considered to dramatically affect land cover dynamics at a variety of spatial and temporal scales. In this context, knowledge of the spatio-temporal distribution of post-fire vegetation recovery dynamics is of key importance. In this study, we explore the relationships between vegetation recovery dynamics to topography and burn severity for two different ecosystems using a chronosequence of Landsat TM data images analysis. One of our experimental sites is the Okanagan Mountain Park, located in the Montane Cordillera Ecozones of western Canada at which a fire occurred in 2003. The other is Mt. Parnitha, located in Greece, representing a typical Mediterranean setting. The spatio-temporal patterns of regrowth for 8 years following the fire events were quantified based on the analysis of 2 widely used indices, the Normalized Difference Vegetation Index (NDVI) and the Regeneration Index (RI). Burn severity was derived from the differenced Normalized Burn Ratio (dNBR) index computed from the Landsat TM images. Topographical information for the studied area was obtained from the ASTER global operational product. Relationships of vegetation regrowth to both topography and burn severity was quantified using a series of additional statistical metrics. In overall, results indicated noticeable differences in the recovery rates of both ecosystems to the pre-fire patterns. Re-growth rates appeared to be somewhat higher in north-facing slopes in comparison to south facing ones for both experimental sites, in common with other similar studies in different ecosystems. Lastly, areas of lower burn severity exhibited a higher recovery rate compared to areas of high severity burns. Results are presented in detail and an explanation of the main observation trends is also attempted to be provided. To our knowledge, this study is one of the few attempting to explore the relationships between post-fire vegetation regrowth and topography or burn severity, particularly so in such a comparative and systematic manner between two contrasting ecosystem types. It corroborates the significance of EO technology as a successful and cost-effective solution in providing information related to post-fire regeneration assessment. Keywords: post-fire vegetation regeneration, topography, burn severity, Landsat, remote sensing, Cordillera Ecozones, Canada, Mt. Parnitha, Greece

  15. Competing consumers: contrasting the patterns and impacts of fire and mammalian herbivory in Africa

    PubMed Central

    Archibald, Sally

    2016-01-01

    Fire and herbivory are the two consumers of above-ground biomass globally. They have contrasting impacts as they differ in terms of selectivity and temporal occurrence. Here, we integrate continental-scale data on fire and herbivory in Africa to explore (i) how environmental drivers constrain these two consumers and (ii) the degree to which each consumer affects the other. Environments conducive to mammalian herbivory are not necessarily the same as those conducive to fire, although their spheres of influence do overlap—especially in grassy ecosystems which are known for their frequent fires and abundance of large mammalian herbivores. Interactions between fire and herbivory can be competitive, facultative or antagonistic, and we explore this with reference to the potential for alternative ecosystem states. Although fire removes orders of magnitude more biomass than herbivory their methane emissions are very similar, and in the past, herbivores probably emitted more methane than fire. We contrast the type of herbivory and fire in different ecosystems to define ‘consumer-realms’. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502374

  16. Pyrodiversity is the coupling of biodiversity and fire regimes in food webs

    PubMed Central

    Higgins, Steve I.; Johnson, Chris N.; Fuhlendorf, Samuel D.

    2016-01-01

    Fire positively and negatively affects food webs across all trophic levels and guilds and influences a range of ecological processes that reinforce fire regimes, such as nutrient cycling and soil development, plant regeneration and growth, plant community assembly and dynamics, herbivory and predation. Thus we argue that rather than merely describing spatio-temporal patterns of fire regimes, pyrodiversity must be understood in terms of feedbacks between fire regimes, biodiversity and ecological processes. Humans shape pyrodiversity both directly, by manipulating the intensity, severity, frequency and extent of fires, and indirectly, by influencing the abundance and distribution of various trophic guilds through hunting and husbandry of animals, and introduction and cultivation of plant species. Conceptualizing landscape fire as deeply embedded in food webs suggests that the restoration of degraded ecosystems requires the simultaneous careful management of fire regimes and native and invasive plants and animals, and may include introducing new vertebrates to compensate for extinctions that occurred in the recent and more distant past. This article is part of the themed issue ‘The interaction of fire and mankind’. PMID:27216526

  17. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos

    PubMed Central

    Ronzitti, Emiliano; Conti, Rossella; Zampini, Valeria; Tanese, Dimitrii; Klapoetke, Nathan; Boyden, Edward S.; Papagiakoumou, Eirini

    2017-01-01

    Optogenetic neuronal network manipulation promises to unravel a long-standing mystery in neuroscience: how does microcircuit activity relate causally to behavioral and pathological states? The challenge to evoke spikes with high spatial and temporal complexity necessitates further joint development of light-delivery approaches and custom opsins. Two-photon (2P) light-targeting strategies demonstrated in-depth generation of action potentials in photosensitive neurons both in vitro and in vivo, but thus far lack the temporal precision necessary to induce precisely timed spiking events. Here, we show that efficient current integration enabled by 2P holographic amplified laser illumination of Chronos, a highly light-sensitive and fast opsin, can evoke spikes with submillisecond precision and repeated firing up to 100 Hz in brain slices from Swiss male mice. These results pave the way for optogenetic manipulation with the spatial and temporal sophistication necessary to mimic natural microcircuit activity. SIGNIFICANCE STATEMENT To reveal causal links between neuronal activity and behavior, it is necessary to develop experimental strategies to induce spatially and temporally sophisticated perturbation of network microcircuits. Two-photon computer generated holography (2P-CGH) recently demonstrated 3D optogenetic control of selected pools of neurons with single-cell accuracy in depth in the brain. Here, we show that exciting the fast opsin Chronos with amplified laser 2P-CGH enables cellular-resolution targeting with unprecedented temporal control, driving spiking up to 100 Hz with submillisecond onset precision using low laser power densities. This system achieves a unique combination of spatial flexibility and temporal precision needed to pattern optogenetically inputs that mimic natural neuronal network activity patterns. PMID:28972125

  18. Impact of a drier Early-Mid-Holocene climate upon Amazonian forests.

    PubMed

    Mayle, Francis E; Power, Mitchell J

    2008-05-27

    This paper uses a palaeoecological approach to examine the impact of drier climatic conditions of the Early-Mid-Holocene (ca 8000-4000 years ago) upon Amazonia's forests and their fire regimes. Palaeovegetation (pollen data) and palaeofire (charcoal) records are synthesized from 20 sites within the present tropical forest biome, and the underlying causes of any emergent patterns or changes are explored by reference to independent palaeoclimate data and present-day patterns of precipitation, forest cover and fire activity across Amazonia. During the Early-Mid-Holocene, Andean cloud forest taxa were replaced by lowland tree taxa as the cloud base rose while lowland ecotonal areas, which are presently covered by evergreen rainforest, were instead dominated by savannahs and/or semi-deciduous dry forests. Elsewhere in the Amazon Basin there is considerable spatial and temporal variation in patterns of vegetation disturbance and fire, which probably reflects the complex heterogeneous patterns in precipitation and seasonality across the basin, and the interactions between climate change, drought- and fire susceptibility of the forests, and Palaeo-Indian land use. Our analysis shows that the forest biome in most parts of Amazonia appears to have been remarkably resilient to climatic conditions significantly drier than those of today, despite widespread evidence of forest burning. Only in ecotonal areas is there evidence of biome replacement in the Holocene. From this palaeoecological perspective, we argue against the Amazon forest 'dieback' scenario simulated for the future.

  19. Effects of wildfire on sea otter (Enhydra lutris) gene transcript profiles

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Kolden, Crystal A.; Saarinen, Justin A.; Bodkin, James L.; Murray, Michael J.; Tinker, M. Tim

    2015-01-01

    Wildfires have been shown to impact terrestrial species over a range of temporal scales. Little is known, however, about the more subtle toxicological effects of wildfires, particularly in downstream marine or downwind locations from the wildfire perimeter. These down-current effects may be just as substantial as those effects within the perimeter. We used gene transcription technology, a sensitive indicator of immunological perturbation, to study the effects of the 2008 Basin Complex Fire on the California coast on a sentinel marine species, the sea otter (Enhydra lutris). We captured sea otters in 2008 (3 mo after the Basin Complex Fire was controlled) and 2009 (15 mo after the Basin Complex Fire was controlled) in the adjacent nearshore environment near Big Sur, California. Gene responses were distinctly different between Big Sur temporal groups, signifying detoxification of PAHs, possible associated response to potential malignant transformation, and suppression of immune function as the primary responses of sea otters to fire in 2008 compared to those captured in 2009. In general, gene transcription patterns in the 2008 sea otters were indicative of molecular reactions to organic exposure, malignant transformation, and decreased ability to respond to pathogens that seemed to consistent with short-term hydrocarbon exposure.

  20. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: the Australian case

    NASA Astrophysics Data System (ADS)

    Williamson, Grant J.; Prior, Lynda D.; Jolly, W. Matt; Cochrane, Mark A.; Murphy, Brett P.; Bowman, David M. J. S.

    2016-03-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-derived active fire detections to determine day and night time fire activity, fire season start and end dates, and inter-annual variability, across 61 objectively defined climate regions in three climate zones (monsoon tropics, arid and temperate). We show that geographic patterns of landscape burning (onset and duration) are related to fire weather, resulting in a latitudinal gradient from the monsoon tropics in winter, through the arid zone in all seasons except winter, and then to the temperate zone in summer and autumn. Peak fire activity precedes maximum lightning activity by several months in all regions, signalling the importance of human ignitions in shaping fire seasons. We determined median daily McArthur forest fire danger index (FFDI50) for days and nights when fires were detected: FFDI50 varied substantially between climate zones, reflecting effects of fire management in the temperate zone, fuel limitation in the arid zone and abundance of flammable grasses in the monsoon tropical zone. We found correlations between the proportion of days when FFDI exceeds FFDI50 and the Southern Oscillation index across the arid zone during spring and summer, and Indian Ocean dipole mode index across south-eastern Australia during summer. Our study demonstrates that Australia has a long fire weather season with high inter-annual variability relative to all other continents, making it difficult to detect long term trends. It also provides a way of establishing robust baselines to track changes to fire seasons, and supports a previous conceptual model highlighting multi-temporal scale effects of climate in shaping continental-scale pyrogeography.

  1. Analysis of noise-induced temporal correlations in neuronal spike sequences

    NASA Astrophysics Data System (ADS)

    Reinoso, José A.; Torrent, M. C.; Masoller, Cristina

    2016-11-01

    We investigate temporal correlations in sequences of noise-induced neuronal spikes, using a symbolic method of time-series analysis. We focus on the sequence of time-intervals between consecutive spikes (inter-spike-intervals, ISIs). The analysis method, known as ordinal analysis, transforms the ISI sequence into a sequence of ordinal patterns (OPs), which are defined in terms of the relative ordering of consecutive ISIs. The ISI sequences are obtained from extensive simulations of two neuron models (FitzHugh-Nagumo, FHN, and integrate-and-fire, IF), with correlated noise. We find that, as the noise strength increases, temporal order gradually emerges, revealed by the existence of more frequent ordinal patterns in the ISI sequence. While in the FHN model the most frequent OP depends on the noise strength, in the IF model it is independent of the noise strength. In both models, the correlation time of the noise affects the OP probabilities but does not modify the most probable pattern.

  2. Fire intensity drives post-fire temporal pattern of soil carbon accumulation in Australian fire-prone forests.

    PubMed

    Sawyer, Robert; Bradstock, Ross; Bedward, Michael; Morrison, R John

    2018-01-01

    The impact of fire on global C cycles is considerable but complex. Nevertheless, studies on patterns of soil C accumulation following fires of differing intensity over time are lacking. Our study utilised 15 locations last burnt by prescribed fire (inferred low intensity) and 18 locations last burnt by wildfire (inferred high intensity), with time since fire (TSF) up to 43years, in a homogenous forest type in south eastern Australia. Following a stratified approach to mineral soil sampling, the soil % total C (% C Tot ) and % recalcitrant pyrogenic C (% RPC), were estimated. Generalised additive models indicated increases in % C Tot at TSF >30years in sites last burnt by wildfire. Estimates in sites last subjected to prescribed fire however, remained constant across the TSF chronosequence. There was no significant difference in % C Tot between the different fire types for the first 20years after fire. In the first 10years after wildfires, % RPC was elevated, declining to a minimum at ca. TSF 25years. After prescribed fires, % RPC was unaffected by TSF. Differences in response of % C Tot and % RPC to fire type may reflect the strength of stimulation of early successional processes and extent of charring. The divergent response to fire type in % C Tot was apparent at TSF longer than the landscape average fire return interval (i.e., 15 to 20years). Thus, any attempt to increase C sequestration in soils would require long-term exclusion of fire. Conversely, increased fire frequency is likely to have negligible impact on soil C stocks in these forests. Further investigation of the effects of fire frequency, fire intensity combinations and interaction of fire with other disturbances will enhance prediction of the likely impact of imposed or climatically induced changes to fire regimes on soil C. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. TEMPORAL NEUROTRANSMITTER CONDITIONING RESTORES THE FUNCTIONAL ACTIVITY OF ADULT SPINAL-CORD NEURONS IN LONG-TERM CULTURE

    PubMed Central

    Das, Mainak; Bhargava, Neelima; Bhalkikar, Abhijeet; Kang, Jung Fong; Hickman, James J

    2008-01-01

    The ability to culture functional adult mammalian spinal-cord neurons represents an important step in the understanding and treatment of a spectrum of neurological disorders including spinal cord injury. Previously, the limited functional recovery of these cells, as characterized by a diminished ability to initiate action potentials and to exhibit repetitive firing patterns, has arisen as a major impediment to their physiological relevance. In this report we demonstrate that single temporal doses of the neurotransmitters serotonin, glutamate (N-acetyl-DL-glutamic acid) and acetylcholine-chloride leads to the full electrophysiological functional recovery of adult mammalian spinal-cord neurons, when they are cultured under defined serum-free conditions. Approximately 60% of the neurons treated regained their electrophysiological signature, often firing single, double and, most importantly, multiple action potentials. PMID:18005959

  4. The pyrogeography of eastern boreal Canada from 1901 to 2012 simulated with the LPJ-LMfire model

    NASA Astrophysics Data System (ADS)

    Chaste, Emeline; Girardin, Martin P.; Kaplan, Jed O.; Portier, Jeanne; Bergeron, Yves; Hély, Christelle

    2018-03-01

    Wildland fires are the main natural disturbance shaping forest structure and composition in eastern boreal Canada. On average, more than 700 000 ha of forest burns annually and causes as much as CAD 2.9 million worth of damage. Although we know that occurrence of fires depends upon the coincidence of favourable conditions for fire ignition, propagation, and fuel availability, the interplay between these three drivers in shaping spatiotemporal patterns of fires in eastern Canada remains to be evaluated. The goal of this study was to reconstruct the spatiotemporal patterns of fire activity during the last century in eastern Canada's boreal forest as a function of changes in lightning ignition, climate, and vegetation. We addressed this objective using the dynamic global vegetation model LPJ-LMfire, which we parametrized for four plant functional types (PFTs) that correspond to the prevalent tree genera in eastern boreal Canada (Picea, Abies, Pinus, Populus). LPJ-LMfire was run with a monthly time step from 1901 to 2012 on a 10 km2 resolution grid covering the boreal forest from Manitoba to Newfoundland. Outputs of LPJ-LMfire were analyzed in terms of fire frequency, net primary productivity (NPP), and aboveground biomass. The predictive skills of LPJ-LMfire were examined by comparing our simulations of annual burn rates and biomass with independent data sets. The simulation adequately reproduced the latitudinal gradient in fire frequency in Manitoba and the longitudinal gradient from Manitoba towards southern Ontario, as well as the temporal patterns present in independent fire histories. However, the simulation led to the underestimation and overestimation of fire frequency at both the northern and southern limits of the boreal forest in Québec. The general pattern of simulated total tree biomass also agreed well with observations, with the notable exception of overestimated biomass at the northern treeline, mainly for PFT Picea. In these northern areas, the predictive ability of LPJ-LMfire is likely being affected by the low density of weather stations, which leads to underestimation of the strength of fire-weather interactions and, therefore, vegetation consumption during extreme fire years. Agreement between the spatiotemporal patterns of fire frequency and the observed data across a vast portion of the study area confirmed that fire therein is strongly ignition limited. A drier climate coupled with an increase in lightning frequency during the second half of the 20th century notably led to an increase in fire activity. Finally, our simulations highlighted the importance of both climate and fire in vegetation: despite an overarching CO2-induced enhancement of NPP in LPJ-LMfire, forest biomass was relatively stable because of the compensatory effects of increasing fire activity.

  5. ESA fire_cci product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Ramo Sanchez, Ruben; Kaiser, Johannes W.

    2017-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project has computed a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the ENVISAT-MERIS archive. The algorithm relies on MODIS active fire information as "seed". It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.25 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64 Collection 6, MCD45, GFED4, GFED4s and GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2005-2011 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  6. The potential of satellite data to study individual wildfire events

    NASA Astrophysics Data System (ADS)

    Benali, Akli; López-Saldana, Gerardo; Russo, Ana; Sá, Ana C. L.; Pinto, Renata M. S.; Nikos, Koutsias; Owen, Price; Pereira, Jose M. C.

    2014-05-01

    Large wildfires have important social, economic and environmental impacts. In order to minimize their impacts, understand their main drivers and study their dynamics, different approaches have been used. The reconstruction of individual wildfire events is usually done by collection of field data, interviews and by implementing fire spread simulations. All these methods have clear limitations in terms of spatial and temporal coverage, accuracy, subjectivity of the collected information and lack of objective independent validation information. In this sense, remote sensing is a promising tool with the potential to provide relevant information for stakeholders and the research community, by complementing or filling gaps in existing information and providing independent accurate quantitative information. In this work we show the potential of satellite data to provide relevant information regarding the dynamics of individual large wildfire events, filling an important gap in wildfire research. We show how MODIS active-fire data, acquired up to four times per day, and satellite-derived burnt perimeters can be combined to extract relevant information wildfire events by describing the methods involved and presenting results for four regions of the world: Portugal, Greece, SE Australia and California. The information that can be retrieved encompasses the start and end date of a wildfire event and its ignition area. We perform an evaluation of the information retrieved by comparing the satellite-derived parameters with national databases, highlighting the strengths and weaknesses of both and showing how the former can complement the latter leading to more complete and accurate datasets. We also show how the spatio-temporal distribution of wildfire spread dynamics can be reconstructed using satellite-derived active-fires and how relevant descriptors can be extracted. Applying graph theory to satellite active-fire data, we define the major fire spread paths that yield information about the major spatial corridors through which fires spread, and their relative importance in the full fire event. These major fire paths are then used to extract relevant descriptors, such as the distribution of fire spread direction, rate of spread and fire intensity (i.e. energy emitted). The reconstruction of the fire spread is shown for some case studies for Portugal and is also compared with fire progressions obtained by air-borne sensors for SE Australia. The approach shows solid results, providing a valuable tool for the reconstruction of individual fire events, understand their complex spread patterns and their main drivers of fire propagation. The major fire pathsand the spatio-temporal distribution of active fires are being currently combined with fire spread simulations within the scope oftheFIRE-MODSATproject, to provideuseful information to support and improve fire suppression strategies.

  7. Negligent and intentional fires in Portugal: the role of human and biophysical drivers on the temporal distribution

    NASA Astrophysics Data System (ADS)

    Parente, Joana; Pereira, Mário; Amraoui, Malik; Tedim, Fantina

    2017-04-01

    Portugal is the European country with higher number of fires (NF) and burnt area (BA) per unit of land area. The annual number of fires for which the cause of fire is known is not constant and relatively small (typically less than 50% of annual number of records). Nevertheless, the analysis of the fire causes reveals that the vast majority (99%) of the fires in Portugal are of human origin and only a small fraction are of natural origin (1% caused by lightning). The study period will be the recent years of 2012 - 2014, when fire recording procedures are more reliable and the cause of ignition was assessed for more than 50% (19376) of the fires. The fires with approximately seventy different causes of fire defined/recognized by the Portuguese Forest Service (ICNF) were grouped into negligent, intentional and natural fires. For this study the authors proposes the use of the Nomenclature of Territorial Units for Statistics level II, which divides Portugal in 5 basic economic regions, namely Norte, Centro, Área Metropolitana de Lisboa, Alentejo, and Algarve. Most of the fires (54%) occur in the so-called critical period defined between July and September, but high wildfire activity may also occur in few periods of the remaining months (especially in February and March). The intentional fires represent 40% of total NF but accounts for 53% of total BA during the study period. The temporal distribution are described and interpreted in terms of the climate, fire weather, land use land cover (LULC), distance to communication routes (roads and railways) and topographic variables (altitude, slope) using statistical analysis and GIS techniques. Results points to: a) higher number of negligent than intentional fires; b) higher BA on critical period in years 2012 and 2013; c) decrease in time and decrease from critical period to non-critical period of the number of fires, in all regions; and d) the dominant role of fire weather in the observed temporal patterns. We strongly believe that the findings of this study contribute to a better fire prevention, firefighting and crisis management. Acknowledgements: This work was supported by: (i) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; (ii) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire data.

  8. Spatio-Temporal Analysis of Forest Fire Risk and Danger Using LANDSAT Imagery.

    PubMed

    Saglam, Bülent; Bilgili, Ertugrul; Dincdurmaz, Bahar; Kadiogulari, Ali Ihsan; Kücük, Ömer

    2008-06-20

    Computing fire danger and fire risk on a spatio-temporal scale is of crucial importance in fire management planning, and in the simulation of fire growth and development across a landscape. However, due to the complex nature of forests, fire risk and danger potential maps are considered one of the most difficult thematic layers to build up. Remote sensing and digital terrain data have been introduced for efficient discrete classification of fire risk and fire danger potential. In this study, two time-series data of Landsat imagery were used for determining spatio-temporal change of fire risk and danger potential in Korudag forest planning unit in northwestern Turkey. The method comprised the following two steps: (1) creation of indices of the factors influencing fire risk and danger; (2) evaluation of spatio-temporal changes in fire risk and danger of given areas using remote sensing as a quick and inexpensive means and determining the pace of forest cover change. Fire risk and danger potential indices were based on species composition, stand crown closure, stand development stage, insolation, slope and, proximity of agricultural lands to forest and distance from settlement areas. Using the indices generated, fire risk and danger maps were produced for the years 1987 and 2000. Spatio-temporal analyses were then realized based on the maps produced. Results obtained from the study showed that the use of Landsat imagery provided a valuable characterization and mapping of vegetation structure and type with overall classification accuracy higher than 83%.

  9. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain.

    PubMed

    Higgins, Irina; Stringer, Simon; Schnupp, Jan

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable.

  10. Unsupervised learning of temporal features for word categorization in a spiking neural network model of the auditory brain

    PubMed Central

    Stringer, Simon

    2017-01-01

    The nature of the code used in the auditory cortex to represent complex auditory stimuli, such as naturally spoken words, remains a matter of debate. Here we argue that such representations are encoded by stable spatio-temporal patterns of firing within cell assemblies known as polychronous groups, or PGs. We develop a physiologically grounded, unsupervised spiking neural network model of the auditory brain with local, biologically realistic, spike-time dependent plasticity (STDP) learning, and show that the plastic cortical layers of the network develop PGs which convey substantially more information about the speaker independent identity of two naturally spoken word stimuli than does rate encoding that ignores the precise spike timings. We furthermore demonstrate that such informative PGs can only develop if the input spatio-temporal spike patterns to the plastic cortical areas of the model are relatively stable. PMID:28797034

  11. Reduced frequency and severity of residential fires following delivery of fire prevention education by on-duty fire fighters: cluster randomized controlled study.

    PubMed

    Clare, Joseph; Garis, Len; Plecas, Darryl; Jennings, Charles

    2012-04-01

    In 2008, Surrey Fire Services, British Columbia, commenced a firefighter-delivered, door-to-door fire-prevention education and smoke alarm examination/installation initiative with the intention of reducing the frequency and severity of residential structure fires in the City of Surrey. High-risk zones within the city were identified and 18,473 home visits were undertaken across seven temporal delivery cohorts (13.8% of non-apartment dwellings in the city). The frequency and severity of fires pre- and post- the home visit intervention was examined in comparison to randomized high-risk cluster controls. Overall, the frequency of fires was found to have reduced in the city overall, however, the reduction in the intervention cohorts was significantly larger than for controls. Furthermore, when fires did occur within the intervention cohorts, smoke detectors were activated more frequently and the fires were confined to the object of origin more often post-home visits. No equivalent pattern was observed for the cluster control. On-duty fire fighters can reduce the frequency and severity of residential fires through targeted, door-to-door distribution of fire prevention education in high-risk areas. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. COMMUNICATION: Electrophysiological response dynamics during focal cortical infarction

    NASA Astrophysics Data System (ADS)

    Chiganos, Terry C., Jr.; Jensen, Winnie; Rousche, Patrick J.

    2006-12-01

    While the intracellular processes of hypoxia-induced necrosis and the intercellular mechanisms of post-ischemic neurotoxicity associated with stroke are well documented, the dynamic electrophysiological (EP) response of neurons within the core or periinfarct zone remains unclear. The present study validates a method for continuous measurement of the local EP responses during focal cortical infarction induced via photothrombosis. Single microwire electrodes were acutely implanted into the primary auditory cortex of eight rats. Multi-unit neural activity, evoked via a continuous 2 Hz click stimulus, was recorded before, during and after infarction to assess neuronal function in response to local, permanent ischemia. During sham infarction, the average stimulus-evoked peak firing rate over 20 min remained stable at 495.5 ± 14.5 spikes s-1, indicating temporal stability of neural function under normal conditions. Stimulus-evoked peak firing was reliably reduced to background levels (firing frequency in the absence of stimulus) following initiation of photothrombosis over a period of 439 ± 92 s. The post-infarction firing patterns exhibited unique temporal degradation of the peak firing rate, suggesting a variable response to ischemic challenge. Despite the inherent complexity of cerebral ischemia secondary to microvascular occlusion, complete loss of EP function consistently occurred 300-600 s after photothrombosis. The results suggest that microwire recording during photothrombosis provides a simple and highly efficacious strategy for assessing the electrophysiological dynamics of cortical infarction.

  13. Exploring spatial-temporal dynamics of fire regime features in mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-10-01

    This paper explores spatial-temporal dynamics in fire regime features, such as fire frequency, burnt area, large fires and natural- and human-caused fires, as an essential part of fire regime characterization. Changes in fire features are analysed at different spatial - regional and provincial/NUTS3 - levels, together with summer and winter temporal scales, using historical fire data from Spain for the period 1974-2013. Temporal shifts in fire features are investigated by means of change point detection procedures - Pettitt test, AMOC (at most one change), PELT (pruned exact linear time) and BinSeg (binary segmentation) - at a regional level to identify changes in the time series of the features. A trend analysis was conducted using the Mann-Kendall and Sen's slope tests at both the regional and NUTS3 level. Finally, we applied a principal component analysis (PCA) and varimax rotation to trend outputs - mainly Sen's slope values - to summarize overall temporal behaviour and to explore potential links in the evolution of fire features. Our results suggest that most fire features show remarkable shifts between the late 1980s and the first half of the 1990s. Mann-Kendall outputs revealed negative trends in the Mediterranean region. Results from Sen's slope suggest high spatial and intra-annual variability across the study area. Fire activity related to human sources seems to be experiencing an overall decrease in the northwestern provinces, particularly pronounced during summer. Similarly, the Hinterland and the Mediterranean coast are gradually becoming less fire affected. Finally, PCA enabled trends to be synthesized into four main components: winter fire frequency (PC1), summer burnt area (PC2), large fires (PC3) and natural fires (PC4).

  14. Advances in memory research: single-neuron recordings from the human medial temporal lobe aid our understanding of declarative memory.

    PubMed

    Viskontas, Indre V

    2008-12-01

    To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.

  15. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    PubMed Central

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-01-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone. PMID:26940995

  16. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia

    NASA Astrophysics Data System (ADS)

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne De; Moberg, Anders; Ali, Adam A.; Niklasson, Mats

    2016-03-01

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  17. Atlantic SSTs control regime shifts in forest fire activity of Northern Scandinavia.

    PubMed

    Drobyshev, Igor; Bergeron, Yves; Vernal, Anne de; Moberg, Anders; Ali, Adam A; Niklasson, Mats

    2016-03-04

    Understanding the drivers of the boreal forest fire activity is challenging due to the complexity of the interactions driving fire regimes. We analyzed drivers of forest fire activity in Northern Scandinavia (above 60 N) by combining modern and proxy data over the Holocene. The results suggest that the cold climate in northern Scandinavia was generally characterized by dry conditions favourable to periods of regionally increased fire activity. We propose that the cold conditions over the northern North Atlantic, associated with low SSTs, expansion of sea ice cover, and the southward shift in the position of the subpolar gyre, redirect southward the precipitation over Scandinavia, associated with the westerlies. This dynamics strengthens high pressure systems over Scandinavia and results in increased regional fire activity. Our study reveals a previously undocumented teleconnection between large scale climate and ocean dynamics over the North Atlantic and regional boreal forest fire activity in Northern Scandinavia. Consistency of the pattern observed annually through millennium scales suggests that a strong link between Atlantic SST and fire activity on multiple temporal scales over the entire Holocene is relevant for understanding future fire activity across the European boreal zone.

  18. Non ictal onset zone: A window to ictal dynamics.

    PubMed

    Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul

    2017-01-01

    The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.

  19. Combining ground-based measurements and MODIS-based spectral vegetation indices to track biomass accumulation in post-fire chaparral

    Treesearch

    Kellie A. Uyeda; Douglas A. Stow; Dar A. Roberts; Philip J. Riggan

    2017-01-01

    Multi-temporal satellite imagery can provide valuable information on the patterns of vegetation growth over large spatial extents and long time periods, but corresponding ground-referenced biomass information is often difficult to acquire, especially at an annual scale. In this study, we test the relationship between annual biomass estimated using shrub growth rings...

  20. Input dependent cell assembly dynamics in a model of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior.

  1. Input Dependent Cell Assembly Dynamics in a Model of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeff

    2012-01-01

    The striatal medium spiny neuron (MSN) network is sparsely connected with fairly weak GABAergic collaterals receiving an excitatory glutamatergic cortical projection. Peri-stimulus time histograms (PSTH) of MSN population response investigated in various experimental studies display strong firing rate modulations distributed throughout behavioral task epochs. In previous work we have shown by numerical simulation that sparse random networks of inhibitory spiking neurons with characteristics appropriate for UP state MSNs form cell assemblies which fire together coherently in sequences on long behaviorally relevant timescales when the network receives a fixed pattern of constant input excitation. Here we first extend that model to the case where cortical excitation is composed of many independent noisy Poisson processes and demonstrate that cell assembly dynamics is still observed when the input is sufficiently weak. However if cortical excitation strength is increased more regularly firing and completely quiescent cells are found, which depend on the cortical stimulation. Subsequently we further extend previous work to consider what happens when the excitatory input varies as it would when the animal is engaged in behavior. We investigate how sudden switches in excitation interact with network generated patterned activity. We show that sequences of cell assembly activations can be locked to the excitatory input sequence and outline the range of parameters where this behavior is shown. Model cell population PSTH display both stimulus and temporal specificity, with large population firing rate modulations locked to elapsed time from task events. Thus the random network can generate a large diversity of temporally evolving stimulus dependent responses even though the input is fixed between switches. We suggest the MSN network is well suited to the generation of such slow coherent task dependent response which could be utilized by the animal in behavior. PMID:22438838

  2. Impacts of fire on sources of soil CO2 efflux in a dry Amazon rain forest.

    PubMed

    Metcalfe, Daniel B; Rocha, Wanderley; Balch, Jennifer K; Brando, Paulo M; Doughty, Christopher E; Malhi, Yadvinder

    2018-05-10

    Fire at the dry southern margin of the Amazon rainforest could have major consequences for regional soil carbon (C) storage and ecosystem carbon dioxide (CO 2 ) emissions, but relatively little information exists about impacts of fire on soil C cycling within this sensitive ecotone. We measured CO 2 effluxes from different soil components (ground surface litter, roots, mycorrhizae, soil organic matter) at a large-scale burn experiment designed to simulate a severe but realistic potential future scenario for the region (Fire plot) in Mato Grosso, Brazil, over one year, and compared these measurements to replicated data from a nearby, unmodified Control plot. After four burns over five years, soil CO 2 efflux (R s ) was ~ 5.5 t C ha -1 yr -1 lower on the Fire plot compared to the Control. Most of the Fire plot R s reduction was specifically due to lower ground surface litter and root respiration. Mycorrhizal respiration on both plots was around ~ 20% of R s . Soil surface temperature appeared to be more important than moisture as a driver of seasonal patterns in R s at the site. Regular fire events decreased the seasonality of R s at the study site, due to apparent differences in environmental sensitivities among biotic and abiotic soil components. These findings may contribute towards improved predictions of the amount and temporal pattern of C emissions across the large areas of tropical forest facing increasing fire disturbances associated with climate change and human activities. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  3. Spatio-temporal evolution of forest fires in Portugal

    NASA Astrophysics Data System (ADS)

    Tonini, Marj; Pereira, Mário G.; Parente, Joana

    2017-04-01

    A key issue in fire management is the ability to explore and try to predict where and when fires are more likely to occur. This information can be useful to understand the triggering factors of ignitions and for planning strategies to reduce forest fires, to manage the sources of ignition and to identify areas and frame period at risk. Therefore, producing maps displaying forest fires location and their occurrence in time can be of great help for accurately forecasting these hazardous events. In a fire prone country as Portugal, where thousands of events occurs each year, it is involved to drive information about fires over densities and recurrences just by looking at the original arrangement of the mapped ignition points or burnt areas. In this respect, statistical methods originally developed for spatio-temporal stochastic point processes can be employed to find a structure within these large datasets. In the present study, the authors propose an approach to analyze and visualize the evolution in space and in time of forest fires occurred in Portugal during a long frame period (1990 - 2013). Data came from the Portuguese mapped burnt areas official geodatabase (by the Institute for the Conservation of Nature and Forests), which is the result of interpreted satellite measurements. The following statistical analyses were performed: the geographically-weighted summary statistics, to analyze the local variability of the average burned area; the space-time Kernel density, to elaborate smoothed density surfaces representing over densities of fires classed by size and on North vs South region. Finally, we emploied the volume rendering thecnique to visualize the spatio-temporal evolution of these events into a unique map: this representation allows visually inspecting areas and time-step more affected from a high aggregation of forest fires. It results that during the whole investigated period over densities are mainly located in the northern regions, while in the southern areas spread hot-spot are spatially randomly distributed and temporally more concentrated in the frame 2000 - 2004. To conclude, this study let us to identify a multitude of clustering space-time features of forest fires in Portugal, which can be useful for a better planning of educational activities and prevention campaigns as well as for a better allocation of monitoring systems and firefighting. References: Tonini M., Pereira M. G., Parente J. (2016) - Evolution of forest fires in Portugal: from spatio-temporal point events to smoothed density maps. Natural Hazard, doi:10.1007/s11069-016-2637-x Lu B., Harris P., Charlton M., Brunsdon C. (2014) - The GWmodel R package: further topics for exploring spatial heterogeneity using geographically weighted models. Geo-spatial Information Science, Vol. 17: 85-101 Rowlingson B., Diggle P., Bivand M.R. (2012) - Splancs: spatial point pattern analysis code in S-Plus. Computers and Geosciences, Vol. 19: 627-655 Acknowledgements: This work was supported by: (i) the FIREXTR project, PTDC/ATP¬GEO/0462/2014; (ii) the project Interact - Integrative Research in Environment,Agro-Chain and Technology, NORTE-01-0145-FEDER-000017, research line BEST, cofinanced by FEDER/NORTE 2020; and, (iii) European Investment Funds by FEDER/COMPETE/POCI-Operacional Competitiveness and Internacionalization Programme, under Project POCI-01-0145-FEDER-006958 and National Funds by FCT - Portuguese Foundation for Science and Technology, under the project UID/AGR/04033. We are especially grateful to ICNF for providing the fire.

  4. Anthropogenic and Climatic Influence on Vegetation Fires in Peatland of Insular Southeast Asia

    NASA Astrophysics Data System (ADS)

    Liew, S.; Miettinen, J.; Salinas Cortijo, S. V.

    2011-12-01

    Fire is traditionally used as a tool in land clearing by farmers and shifting cultivators in Southeast Asia. However, the small scale clearing of land is increasingly being replaced by modern large-scale conversion of forests into plantations/agricultural land, usually also by fires. Fires get out of control in periods of extreme drought, especially during the El Nino periods, resulting in severe episodes of transboundary air pollution in the form of smoke haze. We use the MODIS active fires product (hotspots) to establish correlations between the temporal and spatial patterns of vegetation fires with climatic variables, land cover change and soil type (peat or non-peat) in the western part of Insular Southeast Asia for a decade from 2001 to 2010. Fire occurrence exhibits a negative correlation with rainfall, and is more severe overall during the El-Nino periods. However, not all regions are equally affected by El-Nino. In Southern Sumatra and Southern Borneo the correlation with El-Nino is high. However, fires in some regions such as the peatland in Riau, Jambi and Sarawak do not appear to be influenced by El-Nino. These regions are also experiencing rapid conversion of forest to large scale plantations.

  5. Resistance to invasion and resilience to fire in desert shrublands of North America

    USGS Publications Warehouse

    Brooks, Matthew L.; Chambers, Jeanne C.

    2011-01-01

    Settlement by Anglo-Americans in the desert shrublands of North America resulted in the introduction and subsequent invasion of multiple nonnative grass species. These invasions have altered presettlement fire regimes, resulted in conversion of native perennial shrublands to nonnative annual grasslands, and placed many native desert species at risk. Effective management of these ecosystems requires an understanding of their ecological resistance to invasion and resilience to fire. Resistance and resilience differ among the cold and hot desert shrublands of the Great Basin, Mojave, Sonoran, and Chihuahuan deserts in North America. These differences are largely determined by spatial and temporal patterns of productivity but also are affected by ecological memory, severity and frequency of disturbance, and feedbacks among invasive species and disturbance regimes. Strategies for preventing or managing invasive plant/fire regimes cycles in desert shrublands include: 1) conducting periodic resource assessments to evaluate the probability of establishment of an altered fire regime; 2) developing an understanding of ecological thresholds associate within invasion resistance and fire resilience that characterize transitions from desirable to undesirable fire regimes; and 3) prioritizing management activities based on resistance of areas to invasion and resilience to fire.

  6. Simulating effects of fire disturbance and climate change on boreal forest productivity and evapotranspiration.

    PubMed

    Kang, Sinkyu; Kimball, John S; Running, Steven W

    2006-06-01

    We used a terrestrial ecosystem process model, BIOME-BGC, to investigate historical climate change and fire disturbance effects on regional carbon and water budgets within a 357,500 km(2) portion of the Canadian boreal forest. Historical patterns of increasing atmospheric CO2, climate change, and regional fire activity were used as model drivers to evaluate the relative effects of these impacts to spatial patterns and temporal trends in forest net primary production (NPP) and evapotranspiration (ET). Historical trends of increasing atmospheric CO2 resulted in overall 13% and 5% increases in annual NPP and ET from 1994 to 1996, respectively. NPP was found to be relatively sensitive to changes in air temperature (T(a)), while ET was more sensitive to precipitation (P) change within the ranges of observed climate variability (e.g., +/-2 degrees C for T(a) and +/-20% for P). In addition, the potential effect of climate change related warming on NPP is exacerbated or offset depending on whether these changes are accompanied by respective decreases or increases in precipitation. Historical fire activity generally resulted in reductions of both NPP and ET, which consumed an average of approximately 6% of annual NPP from 1959 to 1996. Areas currently occupied by dry conifer forests were found to be subject to more frequent fire activity, which consumed approximately 8% of annual NPP. The results of this study show that the North American boreal ecosystem is sensitive to historical patterns of increasing atmospheric CO2, climate change and regional fire activity. The relative impacts of these disturbances on NPP and ET interact in complex ways and are spatially variable depending on regional land cover and climate gradients.

  7. Irregular synchronous activity in stochastically-coupled networks of integrate-and-fire neurons.

    PubMed

    Lin, J K; Pawelzik, K; Ernst, U; Sejnowski, T J

    1998-08-01

    We investigate the spatial and temporal aspects of firing patterns in a network of integrate-and-fire neurons arranged in a one-dimensional ring topology. The coupling is stochastic and shaped like a Mexican hat with local excitation and lateral inhibition. With perfect precision in the couplings, the attractors of activity in the network occur at every position in the ring. Inhomogeneities in the coupling break the translational invariance of localized attractors and lead to synchronization within highly active as well as weakly active clusters. The interspike interval variability is high, consistent with recent observations of spike time distributions in visual cortex. The robustness of our results is demonstrated with more realistic simulations on a network of McGregor neurons which model conductance changes and after-hyperpolarization potassium currents.

  8. Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750-2015)

    NASA Astrophysics Data System (ADS)

    van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.; Marlon, Jennifer R.; Daniau, Anne-Laure; Field, Robert D.; Arneth, Almut; Forrest, Matthew; Hantson, Stijn; Kehrwald, Natalie M.; Knorr, Wolfgang; Lasslop, Gitta; Li, Fang; Mangeon, Stéphane; Yue, Chao; Kaiser, Johannes W.; van der Werf, Guido R.

    2017-09-01

    Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP) protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr-1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and will be used in the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations.

  9. Supporting FIRE-suppression strategies combining fire spread MODelling and SATellite data in an operational context in Portugal: the FIRE-MODSAT project

    NASA Astrophysics Data System (ADS)

    Sá, Ana C. L.; Benali, Akli; Pinto, Renata M. S.; Pereira, José M. C.; Trigo, Ricardo M.; DaCamara, Carlos C.

    2014-05-01

    Large wildfires are infrequent but account for the most severe environmental, ecological and socio-economic impacts. In recent years Portugal has suffered the impact of major heat waves that fuelled records of burnt area exceeding 400.000ha and 300.000ha in 2003 and 2005, respectively. According to the latest IPCC reports, the frequency and amplitude of summer heat waves over Iberia will very likely increase in the future. Therefore, most climate change studies point to an increase in the number and extent of wildfires. Thus, an increase in both wildfire impacts and fire suppression difficulties is expected. The spread of large wildfires results from a complex interaction between topography, meteorology and fuel properties. Wildfire spread models (e.g. FARSITE) are commonly used to simulate fire growth and behaviour and are an essential tool to understand their main drivers. Additionally, satellite active-fire data have been used to monitor the occurrence, extent, and spread of wildfires. Both satellite data and fire spread models provide different types of information about the spatial and temporal distribution of large wildfires and can potentially be used to support strategic decisions regarding fire suppression resource allocation. However, they have not been combined in a manner that fully exploits their potential and minimizes their limitations. A knowledge gap still exists in understanding how to minimize the impacts of large wildfires, leading to the following research question: What can we learn from past large wildfires in order to mitigate future fire impacts? FIRE-MODSAT is a one-year funded project by the Portuguese Foundation for the Science and Technology (FCT) that is founded on this research question, with the main goal of improving our understanding on the interactions between fire spread and its environmental drivers, to support fire management decisions in an operational context and generate valuable information to improve the efficiency of the fire suppression system. This project proposes to explore an innovative combination of remote sensing and fire spread models in order to 1) better understand the interactions of fire spread drivers that lead to large wildfires; 2) identify the spatio-temporal frames in which large wildfires can be suppressed more efficiently, and 3) explore the essential steps towards an operational use of both tools to assist fire suppression decisions. Preliminary results combine MODIS active-fire data and burn scar perimeters, to derive the main fire spread paths for the 10 largest wildfires that occurred in Portugal between 2001 and 2012. Fire growth and behavior simulations of some of those wildfires are assessed using the active fires data. Results are also compared with the major fire paths to understand the main drivers of fire propagation, through their interactions with topography, vegetation and meteorology. These combined results are also used for spatial and temporal identification of opportunity windows for a more efficient suppression intervention for each fire event. The approach shows promising results, providing a valuable reconstruction of the fire events and retrieval of important parameters related to the complex spread patterns of individual fire events.

  10. A structural equation model analysis of postfire plant diversity in California shrublands

    USGS Publications Warehouse

    Grace, J.B.; Keeley, J.E.

    2006-01-01

    This study investigates patterns of plant diversity following wildfires in fire-prone shrublands of California, seeks to understand those patterns in terms of both local and landscape factors, and considers the implications for fire management. Ninety study sites were established following extensive wildfires in 1993, and 1000-m2 plots were used to sample a variety of parameters. Data on community responses were collected for five years following fire. Structural equation modeling (SEM) was used to relate plant species richness to plant abundance, fire severity, abiotic conditions, within-plot heterogeneity, stand age, and position in the landscape. Temporal dynamics of average richness response was also modeled. Richness was highest in the first year following fire, indicating postfire enhancement of diversity. A general decline in richness over time was detected, with year-to-year variation attributable to annual variations in precipitation. Peak richness in the landscape was found where (1) plant abundance was moderately high, (2) within-plot heterogeneity was high, (3) soils were moderately low in nitrogen, high in sand content, and with high rock cover, (4) fire severity was low, and (5) stands were young prior to fire. Many of these characteristics were correlated with position in the landscape and associated conditions. We infer from the SEM results that postfire richness in this system is strongly influenced by local conditions and that these conditions are, in turn, predictably related to landscape-level conditions. For example, we observed that older stands of shrubs were characterized by more severe fires, which were associated with a low recovery of plant cover and low richness. These results may have implications for the use of prescribed fire in this system if these findings extrapolate to prescribed burns as we would expect. ?? 2006 by the Ecological Society of America.

  11. Early forest fire detection using principal component analysis of infrared video

    NASA Astrophysics Data System (ADS)

    Saghri, John A.; Radjabi, Ryan; Jacobs, John T.

    2011-09-01

    A land-based early forest fire detection scheme which exploits the infrared (IR) temporal signature of fire plume is described. Unlike common land-based and/or satellite-based techniques which rely on measurement and discrimination of fire plume directly from its infrared and/or visible reflectance imagery, this scheme is based on exploitation of fire plume temporal signature, i.e., temperature fluctuations over the observation period. The method is simple and relatively inexpensive to implement. The false alarm rate is expected to be lower that of the existing methods. Land-based infrared (IR) cameras are installed in a step-stare-mode configuration in potential fire-prone areas. The sequence of IR video frames from each camera is digitally processed to determine if there is a fire within camera's field of view (FOV). The process involves applying a principal component transformation (PCT) to each nonoverlapping sequence of video frames from the camera to produce a corresponding sequence of temporally-uncorrelated principal component (PC) images. Since pixels that form a fire plume exhibit statistically similar temporal variation (i.e., have a unique temporal signature), PCT conveniently renders the footprint/trace of the fire plume in low-order PC images. The PC image which best reveals the trace of the fire plume is then selected and spatially filtered via simple threshold and median filter operations to remove the background clutter, such as traces of moving tree branches due to wind.

  12. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance.

    PubMed

    Turner, David P; Ritts, William D; Kennedy, Robert E; Gray, Andrew N; Yang, Zhiqiang

    2015-12-01

    Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at the ecoregion scale in western Oregon. Thirteen percent of total forest area in the West Cascades ecoregion was disturbed during the reference interval (1991-2010). The disturbance regime was dominated by harvesting (59 % of all area disturbed), with lower levels of fire (23 %), and pest/pathogen mortality (18 %). Ecoregion total Net Ecosystem Production was positive (a carbon sink) in all years, with greater carbon uptake in relatively cool years. Localized carbon source areas were associated with recent harvests and fire. Net Ecosystem Exchange (including direct fire emissions) showed greater interannual variation and became negative (a source) in the highest fire years. Net Ecosystem Carbon Balance (i.e. change in carbon stocks) was more positive on public that private forestland, because of a lower disturbance rate, and more positive in the decade of the 1990s than in the warmer and drier 2000s because of lower net ecosystem production and higher direct fire emissions in the 2000s. Despite recurrent disturbances, the West Cascades ecoregion has maintained a positive carbon balance in recent decades. The high degree of spatial and temporal resolution in these simulations permits improved attribution of regional carbon sources and sinks.

  13. Quantifying Biomass and Bare Earth Changes from the Hayman Fire Using Multi-temporal Lidar

    NASA Astrophysics Data System (ADS)

    Stoker, J. M.; Kaufmann, M. R.; Greenlee, S. K.

    2007-12-01

    Small-footprint multiple-return lidar data collected in the Cheesman Lake property prior to the 2002 Hayman fire in Colorado provided an excellent opportunity to evaluate Lidar as a tool to predict and analyze fire effects on both soil erosion and overstory structure. Re-measuring this area and applying change detection techniques allowed for analyses at a high level of detail. Our primary objectives focused on the use of change detection techniques using multi-temporal lidar data to: (1) evaluate the effectiveness of change detection to identify and quantify areas of erosion or deposition caused by post-fire rain events and rehab activities; (2) identify and quantify areas of biomass loss or forest structure change due to the Hayman fire; and (3) examine effects of pre-fire fuels and vegetation structure derived from lidar data on patterns of burn severity. While we were successful in identifying areas where changes occurred, the original error bounds on the variation in actual elevations made it difficult, if not misleading to quantify volumes of material changed on a per pixel basis. In order to minimize these variations in the two datasets, we investigated several correction and co-registration methodologies. The lessons learned from this project highlight the need for a high level of flight planning and understanding of errors in a lidar dataset in order to correctly estimate and report quantities of vertical change. Directly measuring vertical change using only lidar without ancillary information can provide errors that could make quantifications confusing, especially in areas with steep slopes.

  14. How Does the Sparse Memory “Engram” Neurons Encode the Memory of a Spatial–Temporal Event?

    PubMed Central

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns. PMID:27601979

  15. How Does the Sparse Memory "Engram" Neurons Encode the Memory of a Spatial-Temporal Event?

    PubMed

    Guan, Ji-Song; Jiang, Jun; Xie, Hong; Liu, Kai-Yuan

    2016-01-01

    Episodic memory in human brain is not a fixed 2-D picture but a highly dynamic movie serial, integrating information at both the temporal and the spatial domains. Recent studies in neuroscience reveal that memory storage and recall are closely related to the activities in discrete memory engram (trace) neurons within the dentate gyrus region of hippocampus and the layer 2/3 of neocortex. More strikingly, optogenetic reactivation of those memory trace neurons is able to trigger the recall of naturally encoded memory. It is still unknown how the discrete memory traces encode and reactivate the memory. Considering a particular memory normally represents a natural event, which consists of information at both the temporal and spatial domains, it is unknown how the discrete trace neurons could reconstitute such enriched information in the brain. Furthermore, as the optogenetic-stimuli induced recall of memory did not depend on firing pattern of the memory traces, it is most likely that the spatial activation pattern, but not the temporal activation pattern of the discrete memory trace neurons encodes the memory in the brain. How does the neural circuit convert the activities in the spatial domain into the temporal domain to reconstitute memory of a natural event? By reviewing the literature, here we present how the memory engram (trace) neurons are selected and consolidated in the brain. Then, we will discuss the main challenges in the memory trace theory. In the end, we will provide a plausible model of memory trace cell network, underlying the conversion of neural activities between the spatial domain and the temporal domain. We will also discuss on how the activation of sparse memory trace neurons might trigger the replay of neural activities in specific temporal patterns.

  16. ESA Fire CCI product assessment

    NASA Astrophysics Data System (ADS)

    Heil, Angelika; Yue, Chao; Mouillot, Florent; Storm, Thomas; Chuvieco, Emilio; Kaiser, Johannes

    2016-04-01

    Vegetation fires are a major disturbance in the Earth System. Fires change the biophysical properties and dynamics of ecosystems and alter terrestrial carbon pools. By altering the atmosphere's composition, fire emissions exert a significant climate forcing. To realistically model past and future changes of the Earth System, fire disturbances must be taken into account. Related modelling efforts require consistent global burned area observations covering at least 10 to 20 years. Guided by the specific requirements of a wide range of end users, the ESA fire_cci project is currently computing a new global burned area dataset. It applies a newly developed spectral change detection algorithm upon the full ENVISAT-MERIS archive (2002 to 2012). The algorithm relies on MODIS active fire information as "seed". A first, formally validated version has been released for the period 2006 to 2008. It comprises a pixel burned area product (spatial resolution of 333 m) with date detection information and a biweekly grid product at 0.5 degree spatial resolution. We compare fire_cci burned area with other global burned area products (MCD64, GFED4(s), GEOLAND) and a set of active fires data (hotspots from MODIS, TRMM, AATSR and fire radiative power from GFAS). Output from the ongoing processing of the full MERIS timeseries will be incorporated into the study, as far as available. The analysis of patterns of agreement and disagreement between fire_cci and other products provides a better understanding of product characteristics and uncertainties. The intercomparison of the 2006-2008 fire_cci time series shows a close agreement with GFED4 data in terms of global burned area and the general spatial and temporal patterns. Pronounced differences, however, emerge for specific regions or fire events. Burned area mapped by fire_cci tends to be notably higher in regions where small agricultural fires predominate. The improved detection of small agricultural fires by fire_cci can be related to the increased spatial resolution of the MERIS sensor (333 m compared to 500 in MODIS). This is illustrated in detail using the example of the extreme 2006 spring fires in Eastern Europe.

  17. Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding

    PubMed Central

    Vinck, Martin; Batista-Brito, Renata; Knoblich, Ulf; Cardin, Jessica A.

    2015-01-01

    Spontaneous and sensory-evoked cortical activity is highly state-dependent, yet relatively little is known about transitions between distinct waking states. Patterns of activity in mouse V1 differ dramatically between quiescence and locomotion, but this difference could be explained by either motor feedback or a change in arousal levels. We recorded single cells and local field potentials from area V1 in mice head-fixed on a running wheel and monitored pupil diameter to assay arousal. Using naturally occurring and induced state transitions, we dissociated arousal and locomotion effects in V1. Arousal suppressed spontaneous firing and strongly altered the temporal patterning of population activity. Moreover, heightened arousal increased the signal-to-noise ratio of visual responses and reduced noise correlations. In contrast, increased firing in anticipation of and during movement was attributable to locomotion effects. Our findings suggest complementary roles of arousal and locomotion in promoting functional flexibility in cortical circuits. PMID:25892300

  18. Multiplexing using synchrony in the zebrafish olfactory bulb.

    PubMed

    Friedrich, Rainer W; Habermann, Christopher J; Laurent, Gilles

    2004-08-01

    In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.

  19. Synchronization in Random Pulse Oscillator Networks

    NASA Astrophysics Data System (ADS)

    Brown, Kevin; Hermundstad, Ann

    Motivated by synchronization phenomena in neural systems, we study synchronization of random networks of coupled pulse oscillators. We begin by considering binomial random networks whose nodes have intrinsic linear dynamics. We quantify order in the network spiking dynamics using a new measure: the normalized Lev-Zimpel complexity (LZC) of the nodes' spike trains. Starting from a globally-synchronized state, we see two broad classes of behaviors. In one (''temporally random''), the LZC is high and nodes spike independently with no coherent pattern. In another (''temporally regular''), the network does not globally synchronize but instead forms coherent, repeating population firing patterns with low LZC. No topological feature of the network reliably predicts whether an individual network will show temporally random or regular behavior; however, we find evidence that degree heterogeneity in binomial networks has a strong effect on the resulting state. To confirm these findings, we generate random networks with independently-adjustable degree mean and variance. We find that the likelihood of temporally-random behavior increases as degree variance increases. Our results indicate the subtle and complex relationship between network structure and dynamics.

  20. The role of fire in structuring sagebrush habitats and bird communities

    USGS Publications Warehouse

    Knick, S.T.; Holmes, A.L.; Miller, R.F.; Saab, Victoria A.; Powell, Hugo D.W.

    2005-01-01

    Fire is a dominant and highly visible disturbance in sagebrush (Artemisia spp.) ecosystems. In lower elevation, xeric sagebrush communities, the role of fire has changed in recent decades from an infrequent disturbance maintaining a landscape mosaic and facilitating community processes to frequent events that alter sagebrush communities to exotic vegetation, from which restoration is unlikely. Because of cheatgrass invasion, fire-return intervals in these sagebrush ecosystems have decreased from an historical pattern (pre-European settlement) of 30 to >100 yr to 5-15 yr. In other sagebrush communities, primarily higher elevation ecosystems, the lack of fire has allowed transitions to greater dominance by sagebrush, loss of herbaceous understory, and expansion of juniper-pinyon woodlands. Response by birds living in sagebrush habitats to fire was related to the frequency, size, complexity (or patchiness), and severity of the burns. Small-scale fires that left patchy distributions of sagebrush did not influence bird populations. However, large-scale fires that resulted in large grassland expanses and isolated existing sagebrush patches reduced the probability of occupancy by sagebrush-obligate species. Populations of birds also declined in sagebrush ecosystems with increasing dominance by juniper (Juniperus spp.) and pinyon (Pinus spp.) woodlands. Our understanding of the effects of fire on sagebrush habitats and birds in these systems is limited. Almost all studies of fire effects on birds have been opportunistic, correlative, and lacking controls. We recommend using the large number of prescribed burns to develop strong inferences about cause-and-effect relationships. Prescribed burning is complicated and highly contentious, particularly in low-elevation, xeric sagebrush communities. Therefore, we need to use the unique opportunities provided by planned burns to understand the spatial and temporal influence of fire on sagebrush landscapes and birds. In particular, we need to develop larger-scale and longer-term research to identify the underlying mechanisms that produce the patterns of bird responses to fire in sagebrush ecosystems.

  1. Effects of harvest, fire, and pest/pathogen disturbances on the West Cascades ecoregion carbon balance

    Treesearch

    David P Turner; William D Ritts; Robert E Kennedy; Andrew N Gray; Zhiqiang Yang

    2015-01-01

    Background: Disturbance is a key influence on forest carbon dynamics, but the complexity of spatial and temporal patterns in forest disturbance makes it difficult to quantify their impacts on carbon flux over broad spatial domains. Here we used a time series of Landsat remote sensing images and a climate-driven carbon cycle process model to evaluate carbon fluxes at...

  2. Nutrient cycling in the Sierra Nevada: the roles of fire and water at Little Valley, Nevada

    Treesearch

    Dale W. Johnson

    2004-01-01

    Spatial and temporal patterns of water flux, ion flux, and ion concentration were examined in a semiarid, snowmelt-dominated forest on the eastern slope of the Carson Range in Little Valley, Nevada (Johnson and others 2001). Variations in data collected from 1995 to 1999 were used to examine the potential effects of snowpack amount and duration on ion concentrations...

  3. Simulating historical variability in the amount of old forests in the Oregon Coast Range.

    Treesearch

    M.C. Wimberly; T.M. Spies; C.J. Long; C. Whitlock

    2000-01-01

    We developed the landscape age-class demographics simulator (LADS) to model historical variability in the amount of old-growth and late-successional forest in the Oregon Coast Range over the past 3,000 years. The model simulated temporal and spatial patterns of forest fires along with the resulting fluctuations in the distribution of forest age classes across the...

  4. Spatial information outflow from the hippocampal circuit: distributed spatial coding and phase precession in the subiculum.

    PubMed

    Kim, Steve M; Ganguli, Surya; Frank, Loren M

    2012-08-22

    Hippocampal place cells convey spatial information through a combination of spatially selective firing and theta phase precession. The way in which this information influences regions like the subiculum that receive input from the hippocampus remains unclear. The subiculum receives direct inputs from area CA1 of the hippocampus and sends divergent output projections to many other parts of the brain, so we examined the firing patterns of rat subicular neurons. We found a substantial transformation in the subicular code for space from sparse to dense firing rate representations along a proximal-distal anatomical gradient: neurons in the proximal subiculum are more similar to canonical, sparsely firing hippocampal place cells, whereas neurons in the distal subiculum have higher firing rates and more distributed spatial firing patterns. Using information theory, we found that the more distributed spatial representation in the subiculum carries, on average, more information about spatial location and context than the sparse spatial representation in CA1. Remarkably, despite the disparate firing rate properties of subicular neurons, we found that neurons at all proximal-distal locations exhibit robust theta phase precession, with similar spiking oscillation frequencies as neurons in area CA1. Our findings suggest that the subiculum is specialized to compress sparse hippocampal spatial codes into highly informative distributed codes suitable for efficient communication to other brain regions. Moreover, despite this substantial compression, the subiculum maintains finer scale temporal properties that may allow it to participate in oscillatory phase coding and spike timing-dependent plasticity in coordination with other regions of the hippocampal circuit.

  5. Should heterogeneity be the basis for conservation? Grassland bird response to fire and grazing

    USGS Publications Warehouse

    Fuhlendorf, S.D.; Harrell, W.C.; Engle, David M.; Hamilton, R.G.; Davis, C.A.; Leslie, David M.

    2006-01-01

    In tallgrass prairie, disturbances such as grazing and fire can generate patchiness across the landscape, contributing to a shifting mosaic that presumably enhances biodiversity. Grassland birds evolved within the context of this shifting mosaic, with some species restricted to one or two patch types created under spatially and temporally distinct disturbance regimes. Thus, management-driven reductions in heterogeneity may be partly responsible for declines in numbers of grassland birds. We experimentally altered spatial heterogeneity of vegetation structure within a tallgrass prairie by varying the spatial and temporal extent of fire and by allowing grazing animals to move freely among burned and unburned patches (patch treatment). We contrasted this disturbance regime with traditional agricultural management of the region that promotes homogeneity (traditional treatment). We monitored grassland bird abundance during the breeding seasons of 2001-2003 to determine the influence of altered spatial heterogeneity on the grassland bird community. Focal disturbances of patch burning and grazing that shifted through the landscape over several years resulted in a more heterogeneous pattern of vegetation than uniform application of fire and grazing. Greater spatial heterogeneity in vegetation provided greater variability in the grassland bird community. Some bird species occurred in greatest abundance within focally disturbed patches, while others occurred in relatively undisturbed patches in our patch treatment. Henslow's Sparrow, a declining species, occurred only within the patch treatment. Upland Sandpiper and some other species were more abundant on recently disturbed patches within the same treatment. The patch burn treatment created the entire gradient of vegetation structure required to maintain a suite of grassland bird species that differ in habitat preferences. Our study demonstrated that increasing spatial and temporal heterogeneity of disturbance in grasslands increases variability in vegetation structure that results in greater variability at higher trophic levels. Thus, management that creates a shifting mosaic using spatially and temporally discrete disturbances in grasslands can be a useful tool in conservation. In the case of North American tallgrass prairie, discrete fires that capitalize on preferential grazing behavior of large ungulates promote a shifting mosaic of habitat types that maintain biodiversity and agricultural productivity. ?? 2006 by the Ecological Society of America.

  6. A fast BK-type KCa current acts as a postsynaptic modulator of temporal selectivity for communication signals.

    PubMed

    Kohashi, Tsunehiko; Carlson, Bruce A

    2014-01-01

    Temporal patterns of spiking often convey behaviorally relevant information. Various synaptic mechanisms and intrinsic membrane properties can influence neuronal selectivity to temporal patterns of input. However, little is known about how synaptic mechanisms and intrinsic properties together determine the temporal selectivity of neuronal output. We tackled this question by recording from midbrain electrosensory neurons in mormyrid fish, in which the processing of temporal intervals between communication signals can be studied in a reduced in vitro preparation. Mormyrids communicate by varying interpulse intervals (IPIs) between electric pulses. Within the midbrain posterior exterolateral nucleus (ELp), the temporal patterns of afferent spike trains are filtered to establish single-neuron IPI tuning. We performed whole-cell recording from ELp neurons in a whole-brain preparation and examined the relationship between intrinsic excitability and IPI tuning. We found that spike frequency adaptation of ELp neurons was highly variable. Postsynaptic potentials (PSPs) of strongly adapting (phasic) neurons were more sharply tuned to IPIs than weakly adapting (tonic) neurons. Further, the synaptic filtering of IPIs by tonic neurons was more faithfully converted into variation in spiking output, particularly at short IPIs. Pharmacological manipulation under current- and voltage-clamp revealed that tonic firing is mediated by a fast, large-conductance Ca(2+)-activated K(+) (KCa) current (BK) that speeds up action potential repolarization. These results suggest that BK currents can shape the temporal filtering of sensory inputs by modifying both synaptic responses and PSP-to-spike conversion. Slow SK-type KCa currents have previously been implicated in temporal processing. Thus, both fast and slow KCa currents can fine-tune temporal selectivity.

  7. The effects of fire on avian communities: Spatio-temporal attributes of the literature 19122003

    USGS Publications Warehouse

    Leidolf, A.; Bissonette, J.A.

    2009-01-01

    We reviewed the temporal, geographic, and biogeographic distribution, as well as relevant research and publication attributes, of 512 documents addressing the effects of fire on avian communities, to provide an assessment of the scope of this literature and recommendations for future research. We summarized relevant attributes of all documents to identify patterns that were then tested against appropriate null models. Most documents reported on original research, with the literature evenly divided between studies investigating controlled fire and those reporting on uncontrolled wildfires. Conceptual reviews made up the second largest category; methodological reviews, bibliographies, and meta-analyses were rare. Although the literature examined spans nearly a century, most documents were published within the last 15 years, with new literature being added at an increasing rate. However, increases seem to be skewed towards original research at the expense of synthesis. An overwhelming majority of documents were published in peer-reviewed scientific journals and in English. Other important publication outlets included MS and PhD theses and conference proceedings. The spatial distribution of documents by continent and biogeographic domain and division differed significantly from expectations based on land area. Future research on avian community response to fire should focus on (1) continued synthesis, emphasizing methodological reviews, bibliographies, and North America; (2) increasing research efforts in areas currently underrepresented in the literature, including Africa, Asia, and South and Central America; and (3) meta-analyses. ?? 2009 IAWF.

  8. Spike Pattern Structure Influences Synaptic Efficacy Variability under STDP and Synaptic Homeostasis. II: Spike Shuffling Methods on LIF Networks

    PubMed Central

    Bi, Zedong; Zhou, Changsong

    2016-01-01

    Synapses may undergo variable changes during plasticity because of the variability of spike patterns such as temporal stochasticity and spatial randomness. Here, we call the variability of synaptic weight changes during plasticity to be efficacy variability. In this paper, we investigate how four aspects of spike pattern statistics (i.e., synchronous firing, burstiness/regularity, heterogeneity of rates and heterogeneity of cross-correlations) influence the efficacy variability under pair-wise additive spike-timing dependent plasticity (STDP) and synaptic homeostasis (the mean strength of plastic synapses into a neuron is bounded), by implementing spike shuffling methods onto spike patterns self-organized by a network of excitatory and inhibitory leaky integrate-and-fire (LIF) neurons. With the increase of the decay time scale of the inhibitory synaptic currents, the LIF network undergoes a transition from asynchronous state to weak synchronous state and then to synchronous bursting state. We first shuffle these spike patterns using a variety of methods, each designed to evidently change a specific pattern statistics; and then investigate the change of efficacy variability of the synapses under STDP and synaptic homeostasis, when the neurons in the network fire according to the spike patterns before and after being treated by a shuffling method. In this way, we can understand how the change of pattern statistics may cause the change of efficacy variability. Our results are consistent with those of our previous study which implements spike-generating models on converging motifs. We also find that burstiness/regularity is important to determine the efficacy variability under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause efficacy variability when the network moves into synchronous bursting states (the states observed in epilepsy). PMID:27555816

  9. Biogeochemical patterns of intermittent streams over space and time as surface flows decrease

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2016-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry in southwest Idaho and hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production. Furthermore, we expected that biogeochemical patterns of streams would become increasingly spatially heterogeneous with drying. Finally, we expected that these patterns would vary in response to fire. To test these hypotheses, we collected water samples every 50 meters from two intermittent streams, one burned and one unburned, in April, May and June, 2016 to determine surface water biogeochemistry. Results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site where concentrations remained relatively constant. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. We also assessed changes in spatial correlation between the burned and unburned site: carbon concentrations were less spatially correlated at the unburned site than at the burned site. Scatterplot matrices of DIC values indicated that at a lag distance of 300 m in April and June, the unburned site had r-values of 0.7416 and 0.5975, respectively, while the burned site had r-values of 0.9468 and 0.8783, respectively. These initial findings support our hypotheses that carbon concentrations and spatial heterogeneity increased over time.

  10. Predicting Geomorphic and Hydrologic Risks after Wildfire Using Harmonic and Stochastic Analyses

    NASA Astrophysics Data System (ADS)

    Mikesell, J.; Kinoshita, A. M.; Florsheim, J. L.; Chin, A.; Nourbakhshbeidokhti, S.

    2017-12-01

    Wildfire is a landscape-scale disturbance that often alters hydrological processes and sediment flux during subsequent storms. Vegetation loss from wildfires induce changes to sediment supply such as channel erosion and sedimentation and streamflow magnitude or flooding. These changes enhance downstream hazards, threatening human populations and physical aquatic habitat over various time scales. Using Williams Canyon, a basin burned by the Waldo Canyon Fire (2012) as a case study, we utilize deterministic and statistical modeling methods (Fourier series and first order Markov chain) to assess pre- and post-fire geomorphic and hydrologic characteristics, including of precipitation, enhanced vegetation index (EVI, a satellite-based proxy of vegetation biomass), streamflow, and sediment flux. Local precipitation, terrestrial Light Detection and Ranging (LiDAR) scanning, and satellite-based products are used for these time series analyses. We present a framework to assess variability of periodic and nonperiodic climatic and multivariate trends to inform development of a post-wildfire risk assessment methodology. To establish the extent to which a wildfire affects hydrologic and geomorphic patterns, a Fourier series was used to fit pre- and post-fire geomorphic and hydrologic characteristics to yearly temporal cycles and subcycles of 6, 4, 3, and 2.4 months. These cycles were analyzed using least-squares estimates of the harmonic coefficients or amplitudes of each sub-cycle's contribution to fit the overall behavior of a Fourier series. The stochastic variances of these characteristics were analyzed by composing first-order Markov models and probabilistic analysis through direct likelihood estimates. Preliminary results highlight an increased dependence of monthly post-fire hydrologic characteristics on 12 and 6-month temporal cycles. This statistical and probabilistic analysis provides a basis to determine the impact of wildfires on the temporal dependence of geomorphic and hydrologic characteristics, which can be incorporated into post-fire mitigation, management, and recovery-based measures to protect and rehabilitate areas subject to influence from wildfires.

  11. A model for the neural control of pineal periodicity

    NASA Astrophysics Data System (ADS)

    de Oliveira Cruz, Frederico Alan; Soares, Marilia Amavel Gomes; Cortez, Celia Martins

    2016-12-01

    The aim of this work was verify if a computational model associating the synchronization dynamics of coupling oscillators to a set of synaptic transmission equations would be able to simulate the control of pineal by a complex neural pathway that connects the retina to this gland. Results from the simulations showed that the frequency and temporal firing patterns were in the range of values found in literature.

  12. Burst Firing in Bee Gustatory Neurons Prevents Adaptation.

    PubMed

    Miriyala, Ashwin; Kessler, Sébastien; Rind, F Claire; Wright, Geraldine A

    2018-05-01

    Animals detect changes in the environment using modality-specific, peripheral sensory neurons. The insect gustatory system encodes tastant identity and concentration through the independent firing of gustatory receptor neurons (GRNs) that spike rapidly at stimulus onset and quickly adapt. Here, we show the first evidence that concentrated sugar evokes a temporally structured burst pattern of spiking involving two GRNs within the gustatory sensilla of bumblebees. Bursts of spikes resulted when a sucrose-activated GRN was inhibited by another GRN at a frequency of ∼22 Hz during the first 1 s of stimulation. Pharmacological blockade of gap junctions abolished bursting, indicating that bee GRNs have electrical synapses that produce a temporal pattern of spikes when one GRN is activated by a sugar ligand. Bursting permitted bee GRNs to maintain a high rate of spiking and to exhibit the slowest rate of adaptation of any insect species. Feeding bout duration correlated with coherent bursting; only sugar concentrations that produced bursting evoked the bumblebee's feeding reflex. Volume of solution imbibed was a direct function of time in contact with food. We propose that gap junctions among GRNs enable a sustained rate of GRN spiking that is necessary to drive continuous feeding by the bee proboscis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  13. Cortical Inhibition Reduces Information Redundancy at Presentation of Communication Sounds in the Primary Auditory Cortex

    PubMed Central

    Gaucher, Quentin; Huetz, Chloé; Gourévitch, Boris

    2013-01-01

    In all sensory modalities, intracortical inhibition shapes the functional properties of cortical neurons but also influences the responses to natural stimuli. Studies performed in various species have revealed that auditory cortex neurons respond to conspecific vocalizations by temporal spike patterns displaying a high trial-to-trial reliability, which might result from precise timing between excitation and inhibition. Studying the guinea pig auditory cortex, we show that partial blockage of GABAA receptors by gabazine (GBZ) application (10 μm, a concentration that promotes expansion of cortical receptive fields) increased the evoked firing rate and the spike-timing reliability during presentation of communication sounds (conspecific and heterospecific vocalizations), whereas GABAB receptor antagonists [10 μm saclofen; 10–50 μm CGP55845 (p-3-aminopropyl-p-diethoxymethyl phosphoric acid)] had nonsignificant effects. Computing mutual information (MI) from the responses to vocalizations using either the evoked firing rate or the temporal spike patterns revealed that GBZ application increased the MI derived from the activity of single cortical site but did not change the MI derived from population activity. In addition, quantification of information redundancy showed that GBZ significantly increased redundancy at the population level. This result suggests that a potential role of intracortical inhibition is to reduce information redundancy during the processing of natural stimuli. PMID:23804094

  14. Changes in the NDVI of Boreal Forests over the period 1984 to 2003 measured using time series of Landsat TM/ETM+ surface reflectance and the GIMMS AVHRR NDVI record.

    NASA Astrophysics Data System (ADS)

    McMillan, A. M.; Rocha, A. V.; Goulden, M. L.

    2006-12-01

    There is a prevailing opinion that the boreal landscape is undergoing change as a result of warming temperatures leading to earlier springs, greater forest fire frequency and possibly CO2 fertilization. One widely- used line of evidence is the GIMMS AVHRR NDVI record. Several studies suggest increasing rates of photosynthesis in boreal forests from 1982 to 1991 (based on NDVI increases) while others suggest declining photosynthesis from 1996 to 2003. We suspect that a portion of these changes are due to the successional stage of the forests. We compiled a time-series of atmospherically-corrected Landsat TM/ETM+ images spanning the period 1984 to 2003 over the BOREAS Northern Study Area and compared spatial and temporal patterns of NDVI between the two records. The Landsat time series is higher resolution and, together with the Canadian Fire Service Large Fire Database, provides stand-age information. We then (1) analyzed the agreement between the Landsat and GIMMS AVHRR time series; (2) determined how the stage of forest succession affected NDVI; (3) assessed how the calculation method of annual averages of NDVI affects decadal-scale trends. The agreement between the Landsat and the AVHRR was reasonable although the depression of NDVI associated with the aerosols from the Pinatubo volcano was greater in the GIMMS time series. Pixels containing high proportions of stands burned within a decade of the observation period showed very high gains in NDVI while the more mature stands were constant. While NDVI appears to exhibit a large sensitivity to the presence of snow, the choice of a May to September averaging period for NDVI over a June to August averaging period did not affect the interannual patterns in NDVI at this location because the snow pack was seldom present in either of these periods. Knowledge of the spatial and temporal patterns of wild fire will prove useful in interpreting trends of remotely-sensed proxies of photosynthesis.

  15. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    NASA Astrophysics Data System (ADS)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  16. Controls on variations in MODIS fire radiative power in Alaskan boreal forests: implications for fire severity conditions

    USGS Publications Warehouse

    Barrett, Kirsten; Kasischke, Eric S.

    2013-01-01

    Fire activity in the Alaskan boreal forest, though episodic at annual and intra-annual time scales, has experienced an increase over the last several decades. Increases in burned area and fire severity are not only releasing more carbon to the atmosphere, but likely shifting vegetation composition in the region towards greater deciduous dominance and a reduction in coniferous stands. While some recent studies have addressed qualitative differences between large and small fire years in the Alaskan boreal forest, the ecological effects of a greater proportion of burning occurring during large fire years and during late season fires have not yet been examined. Some characteristics of wildfires that can be detected remotely are related to fire severity and can provide new information on spatial and temporal patterns of burning. This analysis focused on boreal wildfire intensity (fire radiative power, or FRP) contained in the Moderate Resolution Imaging Spectroradiometer (MODIS) daily active fire product from 2003 to 2010. We found that differences in FRP resulted from seasonality and intra-annual variability in fire activity levels, vegetation composition, latitudinal variation, and fire spread behavior. Our studies determined two general categories of active fire detections: new detections associated with the spread of the fire front and residual pixels in areas that had already experienced front burning. Residual pixels had a lower average FRP than front pixels, but represented a high percentage of all pixels during periods of high fire activity (large fire years, late season burning, and seasonal periods of high fire activity). As a result, the FRP from periods of high fire activity was less intense than those from periods of low fire activity. Differences related to latitude were greater than expected, with higher latitudes burning later in the season and at a higher intensity than lower latitudes. Differences in vegetation type indicate that coniferous vegetation is the most fire prone, but deciduous vegetation is not particularly fire resistant, as the proportion of active fire detections in deciduous stands is roughly the same as the fraction of deciduous vegetation in the region. Qualitative differences between periods of high and low fire activity are likely to reflect important differences in fire severity. Large fire years are likely to be more severe, characterized by more late season fires and a greater proportion of residual burning. Given the potential for severe fires to effect changes in vegetation cover, the shift toward a greater proportion of area burning during large fire years may influence vegetation patterns in the region over the medium to long term.

  17. Short pauses in thalamic deep brain stimulation promote tremor and neuronal bursting.

    PubMed

    Swan, Brandon D; Brocker, David T; Hilliard, Justin D; Tatter, Stephen B; Gross, Robert E; Turner, Dennis A; Grill, Warren M

    2016-02-01

    We conducted intraoperative measurements of tremor during DBS containing short pauses (⩽50 ms) to determine if there is a minimum pause duration that preserves tremor suppression. Nine subjects with ET and thalamic DBS participated during IPG replacement surgery. Patterns of DBS included regular 130 Hz stimulation interrupted by 0, 15, 25 or 50 ms pauses. The same patterns were applied to a model of the thalamic network to quantify effects of pauses on activity of model neurons. All patterns of DBS decreased tremor relative to 'off'. Patterns with pauses generated less tremor reduction than regular high frequency DBS. The model revealed that rhythmic burst-driver inputs to thalamus were masked during DBS, but pauses in stimulation allowed propagation of bursting activity. The mean firing rate of bursting-type model neurons as well as the firing pattern entropy of model neurons were both strongly correlated with tremor power across stimulation conditions. The temporal pattern of stimulation influences the efficacy of thalamic DBS. Pauses in stimulation resulted in decreased tremor suppression indicating that masking of pathological bursting is a mechanism of thalamic DBS for tremor. Pauses in stimulation decreased the efficacy of open-loop DBS for suppression of tremor. Copyright © 2015 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.

  18. Automated mapping of burned areas in semi-arid ecosystems using modis time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, L. A.; Blanco, P. D.; del Valle, H. F.; Metternicht, G. I.; Sione, W. F.

    2015-04-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Standard satellite burned area and active fire products derived from the 500-m MODIS and SPOT are avail - able to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applica - tions. Consequently, we propose a novel algorithm for automated identification and mapping of burned areas at regional scale in semi-arid shrublands. The algorithm uses a set of the Normalized Burned Ratio Index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. The correlation between the size of burnt areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01 - 0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  19. A Comparative Analysis on the Temporal and Spatial Distribution of Fire Characteristics in the Amazon and Equatorial Southern Africa Using Observations from Space

    NASA Astrophysics Data System (ADS)

    Tang, Wenfu; Arellano, Avelino. F.; Raman, Aishwarya

    2015-04-01

    Tropical forest fires significantly impact atmospheric composition and regional and global climate. In particular, fires in Equatorial Southern Africa (ESA) and Amazon comprise the two largest contributors to fire emissions of chemically and radiatively-active atmospheric constituents (such as CO, BC, CO2) across the globe. Here, we investigate the spatiotemporal trends in fire characteristics between these regions using combustion signatures observed from space. Our main goals are: 1) To identify key relationships between the trends in co-emitted constituents across these regions, and, 2) To explore linkages of the observed trends in fire characteristics with the main drivers of change such as meteorology, fire practice, development patterns, and ecosystem feedbacks. We take advantage of the similarity in latitude and land area between these regions in understanding some of these drivers. Our approach begins with a multi-species analysis of trends in the observed abundance of CO, NO2, and aerosols over these regions and across the time period 2004 to 2014. We use multi-spectral retrievals of CO from Measurements Of Pollution In The Troposphere (MOPITT), tropospheric column retrievals of NO2 from Ozone Monitoring Instrument (OMI), and aerosol optical depth retrievals from Moderate Resolution Imaging Spectroradiometer (MODIS) instrument. The long records from these retrievals provide a unique opportunity to study atmospheric composition across the most recent decade. While several studies in the past have reported trends over these regions, most of these studies have focused on a particular constituent. A unique aspect of this work involves understanding covariations in co-emitted constituents to provide a more comprehensive look at fire characteristics and behavior, which are yet to be fully understood. Our initial results show that the annual average of CO for ESA (~115 ppbv) is greater than that of Amazon (110 ppbv). This pattern is also seen in NO2 (ESA : ~215 pptv ; Amazon : ~155 pptv). The standard deviation of CO is higher in Amazon (50 ppbv) when compared to ESA (35 ppbv) whereas NO2 shows similar standard deviation in Amazon and ESA (70-90 pptv). We also find changes in the timing patterns of the large fire events across these regions. Since this has important implications to changes in fire behavior (smoldering and flaming phase), we also investigated retrievals of fire radiative power (FRP) from MODIS and information on land cover change and deforestation. We find FRP patterns consistent with our results. Finally, we will explore other measurements available during this period (aircraft field campaigns and in-situ observations) and compare with current fire emission models, such as the Global Fire Emission Database (GFED) to test the robustness of our findings. We note that this exploratory work provides a unique perspective of fire characteristics that will be useful to improve predictive capability of fire emission and atmospheric models for the Amazon and ESA.

  20. Main dynamics and drivers of boreal forests fire regimes during the Holocene

    NASA Astrophysics Data System (ADS)

    Molinari, Chiara; Lehsten, Veiko; Blarquez, Olivier; Clear, Jennifer; Carcaillet, Christopher; Bradshaw, Richard HW

    2015-04-01

    Forest fire is one of the most critical ecosystem processes in the boreal megabiome, and it is likely that its frequency, size and severity have had a primary role in vegetation dynamics since the Last Ice Age (Kasischke & Stocks 2000). Fire not only organizes the physical and biological attributes of boreal forests, but also affects biogeochemical cycling, particularly the carbon balance (Balshi et al. 2007). Due to their location at climatically sensitive northern latitudes, boreal forests are likely to be significantly affected by global warming with a consequent increase in biomass burning (Soja et al. 2007), a variation in vegetation structure and composition (Johnstone et al. 2004) and a rise in atmospheric carbon dioxide concentration (Bond-Lamberty et al. 2007). Even if the ecological role of wildfire in boreal forest is widely recognized, a clearer understanding of the environmental factors controlling fire dynamics and how variations in fire regimes impact forest ecosystems is essential in order to place modern fire processes in a meaningful context for projecting ecosystem behaviour in a changing environment (Kelly et al. 2013). Because fire return intervals and successional cycles in boreal forests occur over decadal to centennial timescales (Hu et al. 2006), palaeoecological research seems to be one of the most promising tool for elucidating ecosystem changes over a broad range of environmental conditions and temporal scales. Within this context, our first aim is to reconstruct spatial and temporal patterns of boreal forests fire dynamics during the Holocene based on sedimentary charcoal records. As a second step, trends in biomass burning will be statistically analysed in order to disentangle between regional and local drivers. The use of European and north-American sites will give us the unique possibility to perform a large scale analysis on one of the broadest biome in the world and to underline the different patterns of fire in these two continents. Balshi MS, McGuire AD, Zhuang Q et al. (2007) The role of historical fire disturbance in the carbon dynamics of the pan-boreal region: A process-based analysis. J. Geophys. Res. 112:G2. Bond-Lamberty B, Peckham SD, Ahl DE et al. (2007) Fire as the dominant driver of central Canadian boreal forest carbon balance. Nature 450: 89-92. Hu FS, Brubaker LB, Gavin DG et al. (2006) How climate and vegetation influence the fire regime of the Alaskan boreal biome: the Holocene perspective. Mitigation Adapt. Strateg. Glob. Chang. 11: 829-846. Johnstone JF, Chapin III FS, Foote J et al. (2004) Decadal observations of tree regeneration following fire in boreal forests. Can. J. For. Res. 34: 267-273. Kasischke ES & Stocks BJ (2000) Fire, Climate Change and Carbon Cycling in the Boreal Forest. Ecological Studies 138, Springer-Verlag, New York. Kelly RF, Chipman ML, Higuera PE et al. (2013) Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years. Proc. Natl. Acad. Sci. U.S.A. 110: 13055-13060. Soja AJ, Tchebakova NM, French NHF et al. (2007) Climate-induced boreal forest change: predictions versus current observations. Glob. Planet. Chang. 56: 274-296.

  1. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE PAGES

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois; ...

    2017-06-18

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  2. Numerical investigation of aggregated fuel spatial pattern impacts on fire behavior

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Parsons, Russell A.; Linn, Rodman Ray; Pimont, Francois

    Here, landscape heterogeneity shapes species distributions, interactions, and fluctuations. Historically, in dry forest ecosystems, low canopy cover and heterogeneous fuel patterns often moderated disturbances like fire. Over the last century, however, increases in canopy cover and more homogeneous patterns have contributed to altered fire regimes with higher fire severity. Fire management strategies emphasize increasing within-stand heterogeneity with aggregated fuel patterns to alter potential fire behavior. Yet, little is known about how such patterns may affect fire behavior, or how sensitive fire behavior changes from fuel patterns are to winds and canopy cover. Here, we used a physics-based fire behavior model,more » FIRETEC, to explore the impacts of spatially aggregated fuel patterns on the mean and variability of stand-level fire behavior, and to test sensitivity of these effects to wind and canopy cover. Qualitative and quantitative approaches suggest that spatial fuel patterns can significantly affect fire behavior. Based on our results we propose three hypotheses: (1) aggregated spatial fuel patterns primarily affect fire behavior by increasing variability; (2) this variability should increase with spatial scale of aggregation; and (3) fire behavior sensitivity to spatial pattern effects should be more pronounced under moderate wind and fuel conditions.« less

  3. Recent changes in annual area burned in interior Alaska: The impact of fire management

    USGS Publications Warehouse

    Calef, M.P.; Varvak, Anna; McGuire, A. David; Chapin, F. S.; Reinhold, K. B.

    2015-01-01

    The Alaskan boreal forest is characterized by frequent extensive wildfires whose spatial extent has been mapped for the past 70 years. Simple predictions based on this record indicate that area burned will increase as a response to climate warming in Alaska. However, two additional factors have affected the area burned in this time record: the Pacific decadal oscillation (PDO) switched from cool and moist to warm and dry in the late 1970s and the Alaska Fire Service instituted a fire suppression policy in the late 1980s. In this paper a geographic information system (GIS) is used in combination with statistical analyses to reevaluate the changes in area burned through time in Alaska considering both the influence of the PDO and fire management. The authors found that the area burned has increased since the PDO switch and that fire management drastically decreased the area burned in highly suppressed zones. However, the temporal analysis of this study shows that the area burned is increasing more rapidly in suppressed zones than in the unsuppressed zone since the late 1980s. These results indicate that fire policies as well as regional climate patterns are important as large-scale controls on fires over time and across the Alaskan boreal forest.

  4. Spatio-temporal distribution of white-tailed deer (Odocioleus virginianus) relative to prescribed burns on rangeland in south Texas

    Treesearch

    Michael Glenn Meek

    2007-01-01

    Overgrazing and fire suppression has left much rangeland in poor condition for various wildlife species. Prescribed fire is one range improvement practice used to restore degraded wildlife habitat. I determined the effect of prescribed fire on whitetailed deer (Odocoileus virginianus) spatial and temporal distribution, in the presence of cattle...

  5. Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data

    Treesearch

    K. Barrett; E.S. Kasischke; A.D. McGuire; M.R. Turetsky; E.S. Kane

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to...

  6. Topographic Patterns of Mortality and Succession in the Alpine Treeline Ecotone Suggest Hydrologic Controls on Post-Fire Tree Establishment

    NASA Astrophysics Data System (ADS)

    McCaffrey, D. R.; Hopkinson, C.

    2017-12-01

    Alpine Treeline Ecotone (ATE), the transition zone between closed canopy forest and alpine tundra, is a prominent vegetation pattern in mountain regions. At continental scales, the elevation of ATE is negatively correlated with latitude and is generally explained by thermal limitations. However, at landscape scales, precipitation and moisture regimes can suppress ATE elevation below thermal limits, causing variability and patterning in ATE position. Recent studies have investigated the relative effects of hydroclimatic variables on ATE position at multiple scales, but less attention has been given to interactions between hydroclimatic variables and disturbance agents, such as fire. Observing change in the ATE at sufficient spatial resolution and temporal extent to identify correlations between topographic variables and disturbance agents has proved challenging. Recent advances in monoplotting have enabled the extraction of canopy cover information from oblique photography, at a resolution of 20 m. Using airborne lidar and repeat photography from the Mountain Legacy Project, we observed canopy cover change in West Castle Watershed (Alberta, Canada; 103 km2; 49.3° N, 114.4° W) over a 92-year period (i.e. 1914-2006). Two wildfires, occurring 1934 and 1936, affected 63% of the watershed area, providing an opportunity to contrast topographic patterns of mortality and succession in the ATE, while factoring by exposure to fire. Slope aspect was a strong predictor of mortality and succession: the frequency of mortality was four times higher in fire-exposed areas, with 72% of all mortality occurring on south- and east-facing slope aspects; the frequency of succession was balanced between fire-exposed and unexposed areas, with 66% of all succession occurred on north- and east-facing slope aspects. Given previous experiments have demonstrated that moisture limitation inhibits tree establishment, suppressing elevation of ATE below thermal growth boundaries, we hypothesize that moisture limitation is selectively acting on warm slope aspects to inhibit tree establishment, post-fire. Support for this hypothesis is provided by comparing hydrometeorological variable importance in a random forest model of land cover change in the watershed.

  7. Empirical evidence of climate's role in Rocky Mountain landscape evolution

    NASA Astrophysics Data System (ADS)

    Riihimaki, Catherine A.; Reiners, Peter W.

    2012-06-01

    Climate may be the dominant factor affecting landscape evolution during the late Cenozoic, but models that connect climate and landscape evolution cannot be tested without precise ages of landforms. Zircon (U-Th)/He ages of clinker, metamorphosed rock formed by burning of underlying coal seams, provide constraints on the spatial and temporal patterns of Quaternary erosion in the Powder River basin of Wyoming and Montana. The age distribution of 86 sites shows two temporal patterns: (1) a bias toward younger ages because of erosion of older clinker and (2) periodic occurrence of coal fires likely corresponding with particular climatic regimes. Statistical t tests of the ages and spectral analyses of the age probability density function indicate that these episodes of frequent coal fires most likely correspond with times of high eccentricity in Earth's orbit, possibly driven by increased seasonality in the region causing increased erosion rates and coal exhumation. Correlation of ages with interglacial time periods is weaker. The correlations between climate and coal fires improve when only samples greater than 50 km from the front of the Bighorn Range, the site of the nearest alpine glaciation, are compared. Together, these results indicate that the interaction between upstream glaciation and downstream erosion is likely not the dominant control on Quaternary landscape evolution in the Powder River basin, particularly since 0.5 Ma. Instead, incision rates are likely controlled by the response of streams to climate shifts within the basin itself, possibly changes in local precipitation rates or frequency-magnitude distributions, with no discernable lag time between climate changes and landscape responses. Clinker ages are consistent with numerical models in which stream erosion is driven by fluctuations in stream power on thousand year timescales within the basins, possibly as a result of changing precipitation patterns, and is driven by regional rock uplift on million year timescales.

  8. Multi-temporal analysis of forest fire risk driven by environmental and socio-economic change in the Republic of Korea

    NASA Astrophysics Data System (ADS)

    Kim, S. J.; Lim, C. H.; Kim, G. S.; Lee, W. K.

    2017-12-01

    Analysis of forest fire risk is important in disaster risk reduction (DRR) since it provides a way to manage forest fires. Climate and socio-economic factors are important in the cause of forest fires, and the role of the socio-economic factors in prevention and preparedness of forest fires is increasing. As most of the forest fires in the Republic of Korea are highly related to human activities, both environmental factors and socio-economic factors were considered into the analysis of forest fire risk. In this study, the Maximum Entropy (MaxEnt) model was used to predict the potential geographical distribution and probability of forest fire occurrence spatially and temporally from 1980s to the 2010s in the Republic of Korea by multi-temporal analysis and analyze the relationship between forest fires and the factors. As a result of the risk analysis, there was an overall increasing trend in forest fire risk from the 1980s to the 2000s, and socio-economic factors were highly correlated with the occurrence of forest fires. The study demonstrates that the socio-economic factors considered as human activities can increase the occurrence of forest fires. The result implies that managing human activities are significant to prevent forest fire occurrence. In addition, timely forest fire prevention and control is necessary as drought index such as Standardized Precipitation Index (SPI) also affected forest fires.

  9. Histone acetylation regulates the time of replication origin firing.

    PubMed

    Vogelauer, Maria; Rubbi, Liudmilla; Lucas, Isabelle; Brewer, Bonita J; Grunstein, Michael

    2002-11-01

    The temporal firing of replication origins throughout S phase in yeast depends on unknown determinants within the adjacent chromosomal environment. We demonstrate here that the state of histone acetylation of surrounding chromatin is an important regulator of temporal firing. Deletion of RPD3 histone deacetylase causes earlier origin firing and concurrent binding of the replication factor Cdc45p to origins. In addition, increased acetylation of histones in the vicinity of the late origin ARS1412 by recruitment of the histone acetyltransferase Gcn5p causes ARS1412 alone to fire earlier. These data indicate that histone acetylation is a direct determinant of the timing of origin firing.

  10. Fire-induced changes in boreal forest canopy volume and soil organic matter from multi-temporal airborne lidar

    NASA Astrophysics Data System (ADS)

    Alonzo, M.; Cook, B.; Andersen, H. E.; Babcock, C. R.; Morton, D. C.

    2016-12-01

    Fire in boreal forests initiates a cascade of biogeochemical and biophysical processes. Over typical fire return intervals, net radiative forcing from boreal forest fires depends on the offsetting impacts of greenhouse gas emissions and post-fire changes in land surface albedo. Whether boreal forest fires warm or cool the climate over these multi-decadal intervals depends on the magnitude of fire emissions and the time scales of decomposition, albedo changes, and forest regrowth. Our understanding of vegetation and surface organic matter (SOM) changes from boreal forest fires is shaped by field measurements and moderate resolution remote sensing data. Intensive field plot measurements offer detailed data on overstory, understory, and SOM changes from fire, but sparse plot data can be difficult to extend across the heterogeneous boreal forest landscape. Conversely, satellite measurements of burn severity are spatially extensive but only provide proxy measures of fire effects. In this research, we seek to bridge the scale gap between existing intensive and extensive methods using a combination of airborne lidar data and time series of Landsat data to evaluate pre- and post-fire conditions across Alaska's Kenai Peninsula. Lidar-based estimates of pre-fire stand structure and composition were essential to characterize the loss of canopy volume from fires between 2001 and 2014, quantify transitions from live to dead standing carbon pools, and isolate vegetation recovery following fire over 1 to 13 year time scales. Results from this study demonstrate the utility of lidar for estimating pre-fire structure and species composition at the scale of individual tree crowns. Multi-temporal airborne lidar data also provide essential insights regarding the heterogeneity of canopy and SOM losses at a sub-Landsat pixel scale. Fire effects are forest-structure and species dependent with variable temporal lags in carbon release due to delayed mortality (>5 years post fire) and standing dead trees. Establishing the spatial and temporal scales of canopy structural change will aid in constraining estimates of net radiative forcing from both carbon release and albedo in the years following fire.

  11. Facilitation of memory encoding in primate hippocampus by a neuroprosthesis that promotes task-specific neural firing

    NASA Astrophysics Data System (ADS)

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2013-12-01

    Objective. Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s, ageing and dementia resulting from impaired hippocampal function in the medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach. NHPs trained to perform a short-term delayed match-to-sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main results. The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for the successful encoding of sample phase information on more difficult DMS trials. This was validated by the delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the sample phase which facilitated task performance in the subsequent, delayed match phase, on difficult trials that required more precise encoding of sample information. Significance. These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain.

  12. Facilitation of Memory Encoding in Primate Hippocampus by a Neuroprosthesis that Promotes Task Specific Neural Firing

    PubMed Central

    Hampson, Robert E.; Song, Dong; Opris, Ioan; Santos, Lucas M.; Shin, Dae C.; Gerhardt, Greg A.; Marmarelis, Vasilis Z.; Berger, Theodore W.; Deadwyler, Sam A.

    2014-01-01

    Objective Memory accuracy is a major problem in human disease and is the primary factor that defines Alzheimer’s’, aging and dementia resulting from impaired hippocampal function in medial temporal lobe. Development of a hippocampal memory neuroprosthesis that facilitates normal memory encoding in nonhuman primates (NHPs) could provide the basis for improving memory in human disease states. Approach NHPs trained to perform a short-term delayed match to sample (DMS) memory task were examined with multi-neuron recordings from synaptically connected hippocampal cell fields, CA1 and CA3. Recordings were analyzed utilizing a previously developed nonlinear multi-input multi-output (MIMO) neuroprosthetic model, capable of extracting CA3-to-CA1 spatiotemporal firing patterns during DMS performance. Main Results The MIMO model verified that specific CA3-to-CA1 firing patterns were critical for successful encoding of Sample phase information on more difficult DMS trials. This was validated by delivery of successful MIMO-derived encoding patterns via electrical stimulation to the same CA1 recording locations during the Sample phase which facilitated task performance in the subsequent delayed Match phase on difficult trials that required more precise encoding of Sample information. Significance These findings provide the first successful application of a neuroprosthesis designed to enhance and/or repair memory encoding in primate brain. PMID:24216292

  13. A New Approach for Determining Phase Response Curves Reveals that Purkinje Cells Can Act as Perfect Integrators

    PubMed Central

    Roth, Arnd; Häusser, Michael

    2010-01-01

    Cerebellar Purkinje cells display complex intrinsic dynamics. They fire spontaneously, exhibit bistability, and via mutual network interactions are involved in the generation of high frequency oscillations and travelling waves of activity. To probe the dynamical properties of Purkinje cells we measured their phase response curves (PRCs). PRCs quantify the change in spike phase caused by a stimulus as a function of its temporal position within the interspike interval, and are widely used to predict neuronal responses to more complex stimulus patterns. Significant variability in the interspike interval during spontaneous firing can lead to PRCs with a low signal-to-noise ratio, requiring averaging over thousands of trials. We show using electrophysiological experiments and simulations that the PRC calculated in the traditional way by sampling the interspike interval with brief current pulses is biased. We introduce a corrected approach for calculating PRCs which eliminates this bias. Using our new approach, we show that Purkinje cell PRCs change qualitatively depending on the firing frequency of the cell. At high firing rates, Purkinje cells exhibit single-peaked, or monophasic PRCs. Surprisingly, at low firing rates, Purkinje cell PRCs are largely independent of phase, resembling PRCs of ideal non-leaky integrate-and-fire neurons. These results indicate that Purkinje cells can act as perfect integrators at low firing rates, and that the integration mode of Purkinje cells depends on their firing rate. PMID:20442875

  14. Neural correlates of high-gamma oscillations (60–200 Hz) in macaque local field potentials and their potential implications in electrocorticography

    PubMed Central

    Crone, Nathan E.; Niebur, Ernst; Franaszczuk, Piotr J.; Hsiao, Steven S.

    2009-01-01

    Recent studies using electrocorticographic (ECoG) recordings in humans have shown that functional activation of cortex is associated with an increase in power in the high-gamma frequency range (∼60–200 Hz). Here we investigate the neural correlates of this high-gamma activity in local field potential (LFP). Single units and LFP were recorded with microelectrodes from the hand region of macaque SII cortex while vibrotactile stimuli of varying intensities were presented to the hand. We found that high-gamma power in the LFP was strongly correlated with the average firing rate recorded by the microelectrodes, both temporally and on a trial-by-trial basis. In comparison, the correlation between firing rate and low-gamma power (40–80 Hz) was much smaller. In order to explore the potential effects of neuronal firing on ECoG, we developed a model to estimate ECoG power generated by different firing patterns of the underlying cortical population and studied how ECoG power varies with changes in firing rate versus the degree of synchronous firing between neurons in the population. Both an increase in firing rate and neuronal synchrony increased high-gamma power in the simulated ECoG data. However, ECoG high-gamma activity was much more sensitive to increases in neuronal synchrony than firing rate. PMID:18987189

  15. Ecological effects of the Hayman Fire - Part 8: Effects on species of concern

    Treesearch

    Natasha B. Kotliar; Sara Simonson; Geneva Chong; Dave Theobald

    2003-01-01

    Conclusions about the effects of fire on species of concern will depend on the temporal and spatial scales of analysis. Populations of some species may decline in abundance immediately postfire due to alteration or destruction of habitat, but over larger spatial and temporal scales, fire contributes to a shifting mosaic of habitat conditions across the landscape....

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hollingsworth, LaWen T.; Kurth, Laurie,; Parresol, Bernard, R.

    Landscape-scale fire behavior analyses are important to inform decisions on resource management projects that meet land management objectives and protect values from adverse consequences of fire. Deterministic and probabilistic geospatial fire behavior analyses are conducted with various modeling systems including FARSITE, FlamMap, FSPro, and Large Fire Simulation System. The fundamental fire intensity algorithms in these systems require surface fire behavior fuel models and canopy cover to model surface fire behavior. Canopy base height, stand height, and canopy bulk density are required in addition to surface fire behavior fuel models and canopy cover to model crown fire activity. Several surface fuelmore » and canopy classification efforts have used various remote sensing and ecological relationships as core methods to develop the spatial layers. All of these methods depend upon consistent and temporally constant interpretations of crown attributes and their ecological conditions to estimate surface fuel conditions. This study evaluates modeled fire behavior for an 80,000 ha tract of land in the Atlantic Coastal Plain of the southeastern US using three different data sources. The Fuel Characteristic Classification System (FCCS) was used to build fuelbeds from intensive field sampling of 629 plots. Custom fire behavior fuel models were derived from these fuelbeds. LANDFIRE developed surface fire behavior fuel models and canopy attributes for the US using satellite imagery informed by field data. The Southern Wildfire Risk Assessment (SWRA) developed surface fire behavior fuel models and canopy cover for the southeastern US using satellite imagery. Differences in modeled fire behavior, data development, and data utility are summarized to assist in determining which data source may be most applicable for various land management activities and required analyses. Characterizing fire behavior under different fuel relationships provides insights for natural ecological processes, management strategies for fire mitigation, and positive and negative features of different modeling systems. A comparison of flame length, rate of spread, crown fire activity, and burn probabilities modeled with FlamMap shows some similar patterns across the landscape from all three data sources, but there are potentially important differences. All data sources showed an expected range of fire behavior. Average flame lengths ranged between 1 and 1.4 m. Rate of spread varied the greatest with a range of 2.4-5.7 m min{sup -1}. Passive crown fire was predicted for 5% of the study area using FCCS and LANDFIRE while passive crown fire was not predicted using SWRA data. No active crown fire was predicted regardless of the data source. Burn probability patterns across the landscape were similar but probability was highest using SWRA and lowest using FCCS.« less

  17. Motoneuron firing in amyotrophic lateral sclerosis (ALS)

    PubMed Central

    de Carvalho, Mamede; Eisen, Andrew; Krieger, Charles; Swash, Michael

    2014-01-01

    Amyotrophic lateral sclerosis is an inexorably progressive neurodegenerative disorder involving the classical motor system and the frontal effector brain, causing muscular weakness and atrophy, with variable upper motor neuron signs and often an associated fronto-temporal dementia. The physiological disturbance consequent on the motor system degeneration is beginning to be well understood. In this review we describe aspects of the motor cortical, neuronal, and lower motor neuron dysfunction. We show how studies of the changes in the pattern of motor unit firing help delineate the underlying pathophysiological disturbance as the disease progresses. Such studies are beginning to illuminate the underlying disordered pathophysiological processes in the disease, and are important in designing new approaches to therapy and especially for clinical trials. PMID:25294995

  18. Effects of fire on major forest ecosystem processes: an overview.

    PubMed

    Chen, Zhong

    2006-09-01

    Fire and fire ecology are among the best-studied topics in contemporary ecosystem ecology. The large body of existing literature on fire and fire ecology indicates an urgent need to synthesize the information on the pattern of fire effects on ecosystem composition, structure, and functions for application in fire and ecosystem management. Understanding fire effects and underlying principles are critical to reduce the risk of uncharacteristic wildfires and for proper use of fire as an effective management tool toward management goals. This overview is a synthesis of current knowledge on major effects of fire on fire-prone ecosystems, particularly those in the boreal and temperate regions of the North America. Four closely related ecosystem processes in vegetation dynamics, nutrient cycling, soil and belowground process and water relations were discussed with emphases on fire as the driving force. Clearly, fire can shape ecosystem composition, structure and functions by selecting fire adapted species and removing other susceptible species, releasing nutrients from the biomass and improving nutrient cycling, affecting soil properties through changing soil microbial activities and water relations, and creating heterogeneous mosaics, which in turn, can further influence fire behavior and ecological processes. Fire as a destructive force can rapidly consume large amount of biomass and cause negative impacts such as post-fire soil erosion and water runoff, and air pollution; however, as a constructive force fire is also responsible for maintaining the health and perpetuity of certain fire-dependent ecosystems. Considering the unique ecological roles of fire in mediating and regulating ecosystems, fire should be incorporated as an integral component of ecosystems and management. However, the effects of fire on an ecosystem depend on the fire regime, vegetation type, climate, physical environments, and the scale of time and space of assessment. More ecosystem-specific studies are needed in future, especially those focusing on temporal and spatial variations of fire effects through long-term experimental monitoring and modeling.

  19. The application of prototype point processes for the summary and description of California wildfires

    USGS Publications Warehouse

    Nichols, K.; Schoenberg, F.P.; Keeley, J.E.; Bray, A.; Diez, D.

    2011-01-01

    A method for summarizing repeated realizations of a space-time marked point process, known as prototyping, is discussed and applied to catalogues of wildfires in California. Prototype summaries are constructed for varying time intervals using California wildfire data from 1990 to 2006. Previous work on prototypes for temporal and space-time point processes is extended here to include methods for computing prototypes with marks and the incorporation of prototype summaries into hierarchical clustering algorithms, the latter of which is used to delineate fire seasons in California. Other results include summaries of patterns in the spatial-temporal distribution of wildfires within each wildfire season. ?? 2011 Blackwell Publishing Ltd.

  20. Application of a MODIS Soil Moisture-Evapotranspiration (MOD-SMET) Model to Evaluate Landscape and Hydrologic Recovery after the High Park Fire in Colorado, USA

    NASA Astrophysics Data System (ADS)

    Blount, W. K.; Hogue, T. S.; Franz, K.; Knipper, K. R.

    2017-12-01

    Accurate estimation of evapotranspiration (ET) is critical for the management of water resources, especially in water-stressed regions. ET accounts for approximately 60% of terrestrial precipitation globally and approaches 100% of annual rainfall in arid ecosystems, where transpiration becomes the dominant term. ET is difficult to measure due to its spatiotemporal variation, which requires adequate data coverage. While new remote sensing-based ET products are available at a 1 km spatial resolution, including the Operational Simplified Surface Energy Balance model (SSEBop) and the MODIS Global Evapotranspiration Project (MOD16), these products are available at monthly and 8-day temporal resolutions, respectively. To better understand the changing dynamics of hydrologic fluxes and the partitioning of water after land cover disturbances and to identify statically significant trends, more frequent observations are necessary. Utilizing the recently developed MODIS Soil Moisture-Evapotranspiration (MOD-SMET) model, daily temporal resolution is achieved. This presentation outlines the methodology of the MOD-SMET model and compares SSEBop, MOD16, and MOD-SMET ET estimates over the High Park Fire burn scar in Colorado, USA. MOD-SMET estimates are used to identify changes in fluxes and partitioning of the water cycle after a wildfire and during recovery in the High Park Fire near Fort Collins, Colorado. Initial results indicate greenness and ET from all three models decrease post-fire, with higher statistical confidence in high burn areas and spatial patterns that closely align with burn severity. MOD-SMET improves the ability to resolve statistically significant changes in ET following wildfires and better understand changes in the post-fire water budget. Utilizing this knowledge, water resource managers can better plan for, and mitigate, the short- and long-term impacts of wildfire on regional water supplies.

  1. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2

    PubMed Central

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-01-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO2) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO2 anomalies. Here we examined how the temporal evolution of CO2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO2 variability. We developed atmospheric CO2 patterns from each of these mechanisms during 1997–2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr−1 K−1. These results underscore the need for accurate attribution of the drivers of CO2 variability prior to using contemporary observations to constrain long-term ESM responses. PMID:26074665

  2. Separating the influence of temperature, drought, and fire on interannual variability in atmospheric CO2.

    PubMed

    Keppel-Aleks, Gretchen; Wolf, Aaron S; Mu, Mingquan; Doney, Scott C; Morton, Douglas C; Kasibhatla, Prasad S; Miller, John B; Dlugokencky, Edward J; Randerson, James T

    2014-11-01

    The response of the carbon cycle in prognostic Earth system models (ESMs) contributes significant uncertainty to projections of global climate change. Quantifying contributions of known drivers of interannual variability in the growth rate of atmospheric carbon dioxide (CO 2 ) is important for improving the representation of terrestrial ecosystem processes in these ESMs. Several recent studies have identified the temperature dependence of tropical net ecosystem exchange (NEE) as a primary driver of this variability by analyzing a single, globally averaged time series of CO 2 anomalies. Here we examined how the temporal evolution of CO 2 in different latitude bands may be used to separate contributions from temperature stress, drought stress, and fire emissions to CO 2 variability. We developed atmospheric CO 2 patterns from each of these mechanisms during 1997-2011 using an atmospheric transport model. NEE responses to temperature, NEE responses to drought, and fire emissions all contributed significantly to CO 2 variability in each latitude band, suggesting that no single mechanism was the dominant driver. We found that the sum of drought and fire contributions to CO 2 variability exceeded direct NEE responses to temperature in both the Northern and Southern Hemispheres. Additional sensitivity tests revealed that these contributions are masked by temporal and spatial smoothing of CO 2 observations. Accounting for fires, the sensitivity of tropical NEE to temperature stress decreased by 25% to 2.9 ± 0.4 Pg C yr -1  K -1 . These results underscore the need for accurate attribution of the drivers of CO 2 variability prior to using contemporary observations to constrain long-term ESM responses.

  3. One pediatric burn unit's experience with sleepwear related injuries

    PubMed Central

    McLoughlin, E.; Clarke, N.; Stahl, K.; Crawford, J.

    1998-01-01

    Review of the records of 678 children with acute injuries referred during an eight year period to this burn unit indicated that flame burns from a single ignition source (50%) outranked scalds (27%) or house fires (12%) as causes of injury. There was no temporal trend in the rank pattern. The majority of these single-source flame injuries were severe and involved ignition of the child's clothing. From 1969 through 1973, sleepwear was the clothing involved in 32% of the instances. Since that time and coincident with promulgation of strict federal and state standards for flammability of children's night clothing, a dramatic decline in the number of children referred with injuries of this type has taken place. It is probable that the single factor most important to the decline, in our experience with these injuries, is lower fabric flammability but, because our data may not be representative, corroboration is needed before one can exclude factors such as altered garment design, fire safety related practices at home, or changing patterns of hospital referral. PMID:9887427

  4. Ozone distribution in remote ecologically vulnerable terrain of the southern Sierra Nevada, CA.

    PubMed

    Panek, Jeanne; Saah, David; Esperanza, Annie; Bytnerowicz, Andrzej; Fraczek, Witold; Cisneros, Ricardo

    2013-11-01

    Ozone concentration spatial patterns remain largely uncharacterized across the extensive wilderness areas of the Sierra Nevada, CA, despite being downwind of major pollution sources. These natural areas, including four national parks and four national forests, contain forest species that are susceptible to ozone injury. Forests stressed by ozone are also more vulnerable to other agents of mortality, including insects, pathogens, climate change, and ultimately fire. Here we analyze three years of passive ozone monitor data from the southern Sierra Nevada and interpolate landscape-scale spatial and temporal patterns during the summer-through-fall high ozone concentration period. Segmentation analysis revealed three types of ozone exposure sub-regions: high, low, and variable. Consistently high ozone exposure regions are expected to be most vulnerable to forest mortality. One high exposure sub-region has been documented elsewhere as being further vulnerable to increased drought and fire potential. Identifying such hot-spots of forest vulnerability has utility for prioritizing management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. STDP allows fast rate-modulated coding with Poisson-like spike trains.

    PubMed

    Gilson, Matthieu; Masquelier, Timothée; Hugues, Etienne

    2011-10-01

    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (~10-20 ms) for sufficiently many inputs (~100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks.

  6. STDP Allows Fast Rate-Modulated Coding with Poisson-Like Spike Trains

    PubMed Central

    Hugues, Etienne

    2011-01-01

    Spike timing-dependent plasticity (STDP) has been shown to enable single neurons to detect repeatedly presented spatiotemporal spike patterns. This holds even when such patterns are embedded in equally dense random spiking activity, that is, in the absence of external reference times such as a stimulus onset. Here we demonstrate, both analytically and numerically, that STDP can also learn repeating rate-modulated patterns, which have received more experimental evidence, for example, through post-stimulus time histograms (PSTHs). Each input spike train is generated from a rate function using a stochastic sampling mechanism, chosen to be an inhomogeneous Poisson process here. Learning is feasible provided significant covarying rate modulations occur within the typical timescale of STDP (∼10–20 ms) for sufficiently many inputs (∼100 among 1000 in our simulations), a condition that is met by many experimental PSTHs. Repeated pattern presentations induce spike-time correlations that are captured by STDP. Despite imprecise input spike times and even variable spike counts, a single trained neuron robustly detects the pattern just a few milliseconds after its presentation. Therefore, temporal imprecision and Poisson-like firing variability are not an obstacle to fast temporal coding. STDP provides an appealing mechanism to learn such rate patterns, which, beyond sensory processing, may also be involved in many cognitive tasks. PMID:22046113

  7. Computation by symmetry operations in a structured model of the brain: Recognition of rotational invariance and time reversal

    NASA Astrophysics Data System (ADS)

    McGrann, John V.; Shaw, Gordon L.; Shenoy, Krishna V.; Leng, Xiaodan; Mathews, Robert B.

    1994-06-01

    Symmetries have long been recognized as a vital component of physical and biological systems. What we propose here is that symmetry operations are an important feature of higher brain function and result from the spatial and temporal modularity of the cortex. These symmetry operations arise naturally in the trion model of the cortex. The trion model is a highly structured mathematical realization of the Mountcastle organizational principle [Mountcastle, in The Mindful Brain (MIT, Cambridge, 1978)] in which the cortical column is the basic neural network of the cortex and is comprised of subunit minicolumns, which are idealized as trions with three levels of firing. A columnar network of a small number of trions has a large repertoire of quasistable, periodic spatial-temporal firing magic patterns (MP's), which can be excited. The MP's are related by specific symmetries: Spatial rotation, parity, ``spin'' reversal, and time reversal as well as other ``global'' symmetry operations in this abstract internal language of the brain. These MP's can be readily enhanced (as well as inherent categories of MP's) by only a small change in connection strengths via a Hebb learning rule. Learning introduces small breaking of the symmetries in the connectivities which enables a symmetry in the patterns to be recognized in the Monte Carlo evolution of the MP's. Examples of the recognition of rotational invariance and of a time-reversed pattern are presented. We propose the possibility of building a logic device from the hardware implementation of a higher level architecture of trion cortical columns.

  8. Influence of the input database in detecting fire space-time clusters

    NASA Astrophysics Data System (ADS)

    Pereira, Mário; Costa, Ricardo; Tonini, Marj; Vega Orozco, Carmen; Parente, Joana

    2015-04-01

    Fire incidence variability is influenced by local environmental variables such as topography, land use, vegetation and weather conditions. These induce a cluster pattern of the fire events distribution. The space-time permutation scan statistics (STPSS) method developed by Kulldorff et al. (2005) and implemented in the SaTScanTM software (http://www.satscan.org/) proves to be able to detect space-time clusters in many different fields, even when using incomplete and/or inaccurate input data. Nevertheless, the dependence of the STPSS method on the different characteristics of different datasets describing the same environmental phenomenon has not been studied yet. In this sense, the objective of this study is to assess the robustness of the STPSS for detecting real clusters using different input datasets and to justify the obtained results. This study takes advantage of the existence of two very different official fire datasets currently available for Portugal, both provided by the Institute for the Conservation of Nature and Forests. The first one is the aggregated Portuguese Rural Fire Database PRFD (Pereira et al., 2011), which is based on ground measurements and provides detailed information about the ignition and extinction date/time and the area burnt by each fire in forest, scrubs and agricultural areas. However, in the PRFD, the fire location of each fire is indicated by the name of smallest administrative unit (the parish) where the ignition occurred. Consequently, since the application of the STPSS requires the geographic coordinates of the events, the centroid of the parishes was considered. The second fire dataset is the national mapping burnt areas (NMBA), which is based on satellite measurements and delivered in shape file format. The NMBA provides a detailed spatial information (shape and size of each fire) but the temporal information is restricted to the year of occurrence. Besides these differences, the two datasets cover different periods, they comprises a quite different number of fire records and lower fire size threshold. Therefore, it was necessary to restrict both databases to a common period and fire size range. In addition, the weather conditions during the temporal dimension of the most important detected clusters were investigated since they are often very well correlated with the fire incidence. Composite analysis was used to identify and characterize the synoptic patterns of large scale climatic and dynamical meteorological fields at different levels of the atmosphere. Kulldorff, M., Heffernan, R., Hartman, J., Assunção, R., Mostashari, F., 2005. A Space-Time Permutation Scan Statistic for Disease Outbreak Detection. PLoS medicine. 2(3), 216-224. http://dx.doi.org/10.1371/journal.pmed.0020059. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I., 2011. The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, http://dx.doi.org/10.5194/nhess-11-3343-2011. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by the project SUSTAINSYS: Environmental Sustainable Agro-Forestry Systems (NORTE-07-0124-FEDER-000044), financed by the North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER), as well as by National Funds (PIDDAC) through the Portuguese Foundation for Science and Technology (FCT/MEC).

  9. A critique of the historical-fire-regime concept in conservation.

    PubMed

    Freeman, Johanna; Kobziar, Leda; Rose, Elizabeth White; Cropper, Wendell

    2017-10-01

    Prescribed fire is widely accepted as a conservation tool because fire is essential to the maintenance of native biodiversity in many terrestrial communities. Approaches to this land-management technique vary greatly among continents, and sharing knowledge internationally can inform application of prescribed fire worldwide. In North America, decisions about how and when to apply prescribed fire are typically based on the historical-fire-regime concept (HFRC), which holds that replicating the pattern of fires ignited by lightning or preindustrial humans best promotes native species in fire-prone regions. The HFRC rests on 3 assumptions: it is possible to infer historical fire regimes accurately; fire-suppressed communities are ecologically degraded; and reinstating historical fire regimes is the best course of action despite the global shift toward novel abiotic and biotic conditions. We examined the underpinnings of these assumptions by conducting a literature review on the use of historical fire regimes to inform the application of prescribed fire. We found that the practice of inferring historical fire regimes for entire regions or ecosystems often entails substantial uncertainty and can yield equivocal results; ecological outcomes of fire suppression are complex and may not equate to degradation, depending on the ecosystem and context; and habitat fragmentation, invasive species, and other modern factors can interact with fire to produce novel and in some cases negative ecological outcomes. It is therefore unlikely that all 3 assumptions will be fully upheld for any landscape in which prescribed fire is being applied. Although the HFRC is a valuable starting point, it should not be viewed as the sole basis for developing prescribed fire programs. Rather, fire prescriptions should also account for other specific, measurable ecological parameters on a case-by-case basis. To best achieve conservation goals, researchers should seek to understand contemporary fire-biota interactions across trophic levels, functional groups, spatial and temporal scales, and management contexts. © 2017 Society for Conservation Biology.

  10. The Application of LANDSAT Multi-Temporal Thermal Infrared Data to Identify Coal Fire in the Khanh Hoa Coal Mine, Thai Nguyen province, Vietnam

    NASA Astrophysics Data System (ADS)

    Trinh, Le Hung; Zablotskii, V. R.

    2017-12-01

    The Khanh Hoa coal mine is a surface coal mine in the Thai Nguyen province, which is one of the largest deposits of coal in the Vietnam. Numerous reasons such as improper mining techniques and policy, as well as unauthorized mining caused surface and subsurface coal fire in this area. Coal fire is a dangerous phenomenon which affects the environment seriously by releasing toxic fumes which causes forest fires, and subsidence of infrastructure surface. This article presents study on the application of LANDSAT multi-temporal thermal infrared images, which help to detect coal fire. The results obtained in this study can be used to monitor fire zones so as to give warnings and solutions to prevent coal fire.

  11. Climate and wildfires in the North American boreal forest.

    PubMed

    Macias Fauria, Marc; Johnson, E A

    2008-07-12

    The area burned in the North American boreal forest is controlled by the frequency of mid-tropospheric blocking highs that cause rapid fuel drying. Climate controls the area burned through changing the dynamics of large-scale teleconnection patterns (Pacific Decadal Oscillation/El Niño Southern Oscillation and Arctic Oscillation, PDO/ENSO and AO) that control the frequency of blocking highs over the continent at different time scales. Changes in these teleconnections may be caused by the current global warming. Thus, an increase in temperature alone need not be associated with an increase in area burned in the North American boreal forest. Since the end of the Little Ice Age, the climate has been unusually moist and variable: large fire years have occurred in unusual years, fire frequency has decreased and fire-climate relationships have occurred at interannual to decadal time scales. Prolonged and severe droughts were common in the past and were partly associated with changes in the PDO/ENSO system. Under these conditions, large fire years become common, fire frequency increases and fire-climate relationships occur at decadal to centennial time scales. A suggested return to the drier climate regimes of the past would imply major changes in the temporal dynamics of fire-climate relationships and in area burned, a reduction in the mean age of the forest, and changes in species composition of the North American boreal forest.

  12. Linking dynamics of the inhibitory network to the input structure

    PubMed Central

    Komarov, Maxim

    2017-01-01

    Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865

  13. Reverberation impairs brainstem temporal representations of voiced vowel sounds: challenging “periodicity-tagged” segregation of competing speech in rooms

    PubMed Central

    Sayles, Mark; Stasiak, Arkadiusz; Winter, Ian M.

    2015-01-01

    The auditory system typically processes information from concurrently active sound sources (e.g., two voices speaking at once), in the presence of multiple delayed, attenuated and distorted sound-wave reflections (reverberation). Brainstem circuits help segregate these complex acoustic mixtures into “auditory objects.” Psychophysical studies demonstrate a strong interaction between reverberation and fundamental-frequency (F0) modulation, leading to impaired segregation of competing vowels when segregation is on the basis of F0 differences. Neurophysiological studies of complex-sound segregation have concentrated on sounds with steady F0s, in anechoic environments. However, F0 modulation and reverberation are quasi-ubiquitous. We examine the ability of 129 single units in the ventral cochlear nucleus (VCN) of the anesthetized guinea pig to segregate the concurrent synthetic vowel sounds /a/ and /i/, based on temporal discharge patterns under closed-field conditions. We address the effects of added real-room reverberation, F0 modulation, and the interaction of these two factors, on brainstem neural segregation of voiced speech sounds. A firing-rate representation of single-vowels' spectral envelopes is robust to the combination of F0 modulation and reverberation: local firing-rate maxima and minima across the tonotopic array code vowel-formant structure. However, single-vowel F0-related periodicity information in shuffled inter-spike interval distributions is significantly degraded in the combined presence of reverberation and F0 modulation. Hence, segregation of double-vowels' spectral energy into two streams (corresponding to the two vowels), on the basis of temporal discharge patterns, is impaired by reverberation; specifically when F0 is modulated. All unit types (primary-like, chopper, onset) are similarly affected. These results offer neurophysiological insights to perceptual organization of complex acoustic scenes under realistically challenging listening conditions. PMID:25628545

  14. Effects of spectral and temporal disruption on cortical encoding of gerbil vocalizations

    PubMed Central

    Ter-Mikaelian, Maria; Semple, Malcolm N.

    2013-01-01

    Animal communication sounds contain spectrotemporal fluctuations that provide powerful cues for detection and discrimination. Human perception of speech is influenced both by spectral and temporal acoustic features but is most critically dependent on envelope information. To investigate the neural coding principles underlying the perception of communication sounds, we explored the effect of disrupting the spectral or temporal content of five different gerbil call types on neural responses in the awake gerbil's primary auditory cortex (AI). The vocalizations were impoverished spectrally by reduction to 4 or 16 channels of band-passed noise. For this acoustic manipulation, an average firing rate of the neuron did not carry sufficient information to distinguish between call types. In contrast, the discharge patterns of individual AI neurons reliably categorized vocalizations composed of only four spectral bands with the appropriate natural token. The pooled responses of small populations of AI cells classified spectrally disrupted and natural calls with an accuracy that paralleled human performance on an analogous speech task. To assess whether discharge pattern was robust to temporal perturbations of an individual call, vocalizations were disrupted by time-reversing segments of variable duration. For this acoustic manipulation, cortical neurons were relatively insensitive to short reversal lengths. Consistent with human perception of speech, these results indicate that the stable representation of communication sounds in AI is more dependent on sensitivity to slow temporal envelopes than on spectral detail. PMID:23761696

  15. Normalized burn ratios link fire severity with patterns of avian occurrence

    USGS Publications Warehouse

    Rose, Eli T.; Simons, Theodore R.; Klein, Rob; McKerrow, Alexa

    2016-01-01

    ContextRemotely sensed differenced normalized burn ratios (DNBR) provide an index of fire severity across the footprint of a fire. We asked whether this index was useful for explaining patterns of bird occurrence within fire adapted xeric pine-oak forests of the southern Appalachian Mountains.ObjectivesWe evaluated the use of DNBR indices for linking ecosystem process with patterns of bird occurrence. We compared field-based and remotely sensed fire severity indices and used each to develop occupancy models for six bird species to identify patterns of bird occurrence following fire.MethodsWe identified and sampled 228 points within fires that recently burned within Great Smoky Mountains National Park. We performed avian point counts and field-assessed fire severity at each bird census point. We also used Landsat™ imagery acquired before and after each fire to quantify fire severity using DNBR. We used non-parametric methods to quantify agreement between fire severity indices, and evaluated single season occupancy models incorporating fire severity summarized at different spatial scales.ResultsAgreement between field-derived and remotely sensed measures of fire severity was influenced by vegetation type. Although occurrence models using field-derived indices of fire severity outperformed those using DNBR, summarizing DNBR at multiple spatial scales provided additional insights into patterns of occurrence associated with different sized patches of high severity fire.ConclusionsDNBR is useful for linking the effects of fire severity to patterns of bird occurrence, and informing how high severity fire shapes patterns of bird species occurrence on the landscape.

  16. Effects of fire frequency and season on resprouting of woody plants in southeastern US pine-grassland communities.

    PubMed

    Robertson, Kevin M; Hmielowski, Tracy L

    2014-03-01

    Past studies suggest that rates of woody plant resprouting following a "topkilling" disturbance relate to timing of disturbance because of temporal patterns of below-ground carbohydrate storage. Accordingly, we hypothesized that fire-return interval (1 or 2 years) and season of burn (late dormant or early growing season) would influence the change in resprout growth rate from one fire-free interval to the next (Δ growth rate) for broadleaf woody plants in a pine-grassland in Georgia, USA. Resprout growth rate during one fire-free interval strongly predicted growth rate during the following fire-free interval, presumably reflecting root biomass. Length of fire-free interval did not have a significant effect on mean Δ growth rate. Plants burned in the late dormant season (February-March) had a greater positive Δ growth rate than those burned in the early growing season (April-June), consistent with the presumption that root carbohydrates are depleted and thus limiting during spring growth. Plants with resprout growth rates above a certain level had zero or negative Δ growth rates, indicating an equilibrium of maximum resprout size under a given fire-return interval. This equilibrium, as well as relatively reduced resprout growth rate following growing season fires, provide insight into how historic lightning-initiated fires in the early growing season limited woody plant dominance and maintained the herb-dominated structure of pine-grassland communities. Results also indicate tradeoffs between applying prescribed fire at 1- versus 2-year intervals and in the dormant versus growing seasons with the goal of limiting woody vegetation.

  17. Seasonality of semi-arid and savanna-type ecosystems in an Earth system model

    NASA Astrophysics Data System (ADS)

    Dahlin, K.; Swenson, S. C.; Lombardozzi, D.; Kamoske, A.

    2016-12-01

    Recent work has identified semi-arid and savanna-type (SAST) ecosystems as a critical component of interannual variability in the Earth system (Poulter et al. 2014, Ahlström et al. 2015), yet our understanding of the spatial and temporal patterns present in these systems remains limited. There are three major factors that contribute to the complex behavior of SAST ecosystems, globally. First is leaf phenology, the timing of the appearance, presence, and senescence of plant leaves. Plants grow and drop their leaves in response to a variety of cues, including soil moisture, rainfall, day length, and relative humidity, and alternative phenological strategies might often co-exist in the same location. The second major factor in savannas is soil moisture. The complex nature of soil behavior under extremely dry, then extremely wet conditions is critical to our understanding of how savannas function. The third factor is fire. Globally, virtually all savanna-type ecosystems operate with some non-zero fire return interval. Here we compare model output from the Community Land Model (CLM5-BGC) in SAST regions to remotely sensed data on these three variables - phenology (MODIS LAI), soil moisture (SMAP), and fire (GFED4) - assessing both annual spatial patterns and intra-annual variability, which is critical in these highly variable systems. We present new SAST-specific first- and second-order benchmarks, including numbers of annual LAI peaks (often >1 in SAST systems) and correlations between soil moisture, LAI, and fire. Developing a better understanding of how plants respond to seasonal patterns is a critical first step in understanding how SAST ecosystems will respond to and influence climate under future scenarios.

  18. Long-term, landscape patterns of past fire events in a montane ponderosa pine forest of central Colorado

    Treesearch

    Peter M. Brown; Merrill R. Kaufmann; Wayne D. Shepperd

    1999-01-01

    Parameters of fire regimes, including fire frequency, spatial extent of burned areas, fire severity, and season of fire occurrence, influence vegetation patterns over multiple scales. In this study, centuries-long patterns of fire events in a montane ponderosa pine - Douglas-fir forest landscape surrounding Cheesman Lake in central Colorado were reconstructed from fire...

  19. Spatio-temporal pattern of eco-environmental parameters in Jharia coalfield, India

    NASA Astrophysics Data System (ADS)

    Saini, V.; Gupta, R. P.; Arora, M. K.

    2015-10-01

    Jharia coal-field holds unequivocal importance in the Indian context as it is the only source of prime coking coal in the country. The coalfield is also known for its infamous coal mine fires which have been burning since last more than a century. Haphazard mining over a century has led to eco-environmental changes to a large extent such as changes in vegetation distribution and widespread development of surface and subsurface fires. This article includes the spatiotemporal study of remote sensing derived eco-environmental parameters like vegetation index (NDVI), tasseled cap transformation (TCT) and temperature distribution in fire areas. In order to have an estimate of the temporal variations of NDVI over the years, a study has been carried out on two subsets of the Jharia coalfield using Landsat images of 1972 (MSS), 1992 (TM), 1999 (ETM+) and 2013 (OLI). To assess the changes in brightness and greenness over the year s, difference images have been calculated using the 1992 (TM) and 2013 (OLI) images. Radiance images derived from thermal bands have been used to calculate at-sensor brightness temperature over a 23 year period from 1991 to 2013. It has been observed that during the years 1972 to 2013, moderate to dense vegetation has decreased drastically due to the intense mining going on in the area. TCT images show the areas that have undergone changes in both brightness and greenness from 1992 to 2013. Surface temperature data obtained shows a constant increase from 1991 to 2013 apparently due to coal fires. The utility of remote sensing data in such EIA studies has been emphasized.

  20. Back-Propagation of Physiological Action Potential Output in Dendrites of Slender-Tufted L5A Pyramidal Neurons

    PubMed Central

    Grewe, Benjamin F.; Bonnan, Audrey; Frick, Andreas

    2009-01-01

    Pyramidal neurons of layer 5A are a major neocortical output type and clearly distinguished from layer 5B pyramidal neurons with respect to morphology, in vivo firing patterns, and connectivity; yet knowledge of their dendritic properties is scant. We used a combination of whole-cell recordings and Ca2+ imaging techniques in vitro to explore the specific dendritic signaling role of physiological action potential patterns recorded in vivo in layer 5A pyramidal neurons of the whisker-related ‘barrel cortex’. Our data provide evidence that the temporal structure of physiological action potential patterns is crucial for an effective invasion of the main apical dendrites up to the major branch point. Both the critical frequency enabling action potential trains to invade efficiently and the dendritic calcium profile changed during postnatal development. In contrast to the main apical dendrite, the more passive properties of the short basal and apical tuft dendrites prevented an efficient back-propagation. Various Ca2+ channel types contributed to the enhanced calcium signals during high-frequency firing activity, whereas A-type K+ and BKCa channels strongly suppressed it. Our data support models in which the interaction of synaptic input with action potential output is a function of the timing, rate and pattern of action potentials, and dendritic location. PMID:20508744

  1. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity.

    PubMed

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-05-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance.

  2. Local and global pyrogeographic evidence that indigenous fire management creates pyrodiversity

    PubMed Central

    Trauernicht, Clay; Brook, Barry W; Murphy, Brett P; Williamson, Grant J; Bowman, David M J S

    2015-01-01

    Despite the challenges wildland fire poses to contemporary resource management, many fire-prone ecosystems have adapted over centuries to millennia to intentional landscape burning by people to maintain resources. We combine fieldwork, modeling, and a literature survey to examine the extent and mechanism by which anthropogenic burning alters the spatial grain of habitat mosaics in fire-prone ecosystems. We survey the distribution of Callitris intratropica, a conifer requiring long fire-free intervals for establishment, as an indicator of long-unburned habitat availability under Aboriginal burning in the savannas of Arnhem Land. We then use cellular automata to simulate the effects of burning identical proportions of the landscape under different fire sizes on the emergent patterns of habitat heterogeneity. Finally, we examine the global extent of intentional burning and diversity of objectives using the scientific literature. The current distribution of Callitris across multiple field sites suggested long-unburnt patches are common and occur at fine scales (<0.5 ha), while modeling revealed smaller, patchy disturbances maximize patch age diversity, creating a favorable habitat matrix for Callitris. The literature search provided evidence for intentional landscape burning across multiple ecosystems on six continents, with the number of identified objectives ranging from two to thirteen per study. The fieldwork and modeling results imply that the occurrence of long-unburnt habitat in fire-prone ecosystems may be an emergent property of patch scaling under fire regimes dominated by smaller fires. These findings provide a model for understanding how anthropogenic burning alters spatial and temporal aspects of habitat heterogeneity, which, as the literature survey strongly suggests, warrant consideration across a diversity of geographies and cultures. Our results clarify how traditional fire management shapes fire-prone ecosystems, which despite diverse objectives, has allowed human societies to cope with fire as a recurrent disturbance. PMID:26140206

  3. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest

    Treesearch

    Calvin A. Farris; Christopher H. Baisan; Donald A. Falk; Stephen R. Yool; Thomas W. Swetnam

    2010-01-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire...

  4. A multi-scale conceptual model of fire and disease interactions in North American forests

    NASA Astrophysics Data System (ADS)

    Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.

    2013-12-01

    One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.

  5. Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemite National Park, USA.

    PubMed

    Scholl, Andrew E; Taylor, Alan H

    2010-03-01

    Fire is recognized as a keystone process in dry mixed-conifer forests that have been altered by decades of fire suppression, Restoration of fire disturbance to these forests is a guiding principle of resource management in the U.S. National Park Service. Policy implementation is often hindered by a poor understanding of forest conditions before fire exclusion, the characteristics of forest changes since excluding fire, and the influence of topographic or self-organizing controls on forest structure. In this study the spatial and temporal characteristics of fire regimes and forest structure are reconstructed in a 2125-ha mixed-conifer forest. Forests were multi-aged, burned frequently at low severity and fire-return interval, and forest structure did not vary with slope aspect, elevation, or slope position. Fire exclusion has caused an increase in forest density and basal area and a compositional shift to shade-tolerant and fire-intolerant species. The median point fire-return interval and extent of a fire was 10 yr and 115 ha, respectively. The pre-Euro-American settlement fire rotation of 13 yr increased to 378 yr after 1905. The position of fire scars within tree rings indicates that 79% of fires burned in the midsummer to fall period. The spatial pattern of burns exhibited self-organizing behavior. Area burned was 10-fold greater when an area had not been burned by the previous fire. Fires were frequent and widespread, but patches of similar aged trees were < 0.2 ha, suggesting small fire-caused canopy openings. Managers need to apply multiple burns at short intervals for a sustained period to reduce surface fuels and create small canopy openings characteristic of the reference forest. By coupling explicit reference conditions with consideration of current conditions and projected climate change, management activities can balance restoration and risk management.

  6. Firing-rate resonances in the peripheral auditory system of the cricket, Gryllus bimaculatus.

    PubMed

    Rau, Florian; Clemens, Jan; Naumov, Victor; Hennig, R Matthias; Schreiber, Susanne

    2015-11-01

    In many communication systems, information is encoded in the temporal pattern of signals. For rhythmic signals that carry information in specific frequency bands, a neuronal system may profit from tuning its inherent filtering properties towards a peak sensitivity in the respective frequency range. The cricket Gryllus bimaculatus evaluates acoustic communication signals of both conspecifics and predators. The song signals of conspecifics exhibit a characteristic pulse pattern that contains only a narrow range of modulation frequencies. We examined individual neurons (AN1, AN2, ON1) in the peripheral auditory system of the cricket for tuning towards specific modulation frequencies by assessing their firing-rate resonance. Acoustic stimuli with a swept-frequency envelope allowed an efficient characterization of the cells' modulation transfer functions. Some of the examined cells exhibited tuned band-pass properties. Using simple computational models, we demonstrate how different, cell-intrinsic or network-based mechanisms such as subthreshold resonances, spike-triggered adaptation, as well as an interplay of excitation and inhibition can account for the experimentally observed firing-rate resonances. Therefore, basic neuronal mechanisms that share negative feedback as a common theme may contribute to selectivity in the peripheral auditory pathway of crickets that is designed towards mate recognition and predator avoidance.

  7. Trace gas emissions to the atmosphere by biomass burning in the west African savannas

    NASA Technical Reports Server (NTRS)

    Frouin, Robert J.; Iacobellis, Samuel F.; Razafimpanilo, Herisoa; Somerville, Richard C. J.

    1994-01-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer_(AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of north African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linear method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.

  8. Forest Fires and Post - Fire Regeneration in Algeria Analysis with Satellite Data

    NASA Astrophysics Data System (ADS)

    Zegrar, Ahmed

    2016-07-01

    The Algerian forests are characterized by a particularly flammable material and fuel. The wind, the relief and the slope facilitates the propagation of fire. The use of remote sensing data multi-­dates, combined with other types of data of various kinds on the environment and forest burned, opens up interesting perspectives for the management of post-­fire regeneration. In this study the use of multi-­temporal remote sensing image Alsat-­1 and Landsat combined with other types of data concerning both background and burned down forest appears to be promising in evaluating and spatial and temporal effects of post fire regeneration. A spatial analysis taking into consideration the characteristics of the burned down site in the North West of Algeria, allowed to better account new factors to explain the regeneration and its temporal and spatial variation. We intended to show the potential use of remote sensing data from satellite ALSAT-­1, of spatial resolution of 32 m. . This approach allows showing the contribution of the data of Algerian satellite ALSAT in the detection and the well attended some forest fires in Algeria.

  9. Scale Dependence of Oak Woodland Historical Fire Intervals: Contrasting the Barrens of Tennessee and Cross Timbers of Oklahoma, USA

    Treesearch

    Michael C. Stambaugh; Richard P. Guyette; Joseph M. Marschall; Daniel C. Dey

    2016-01-01

    Characterization of scale dependence of fire intervals could inform interpretations of fire history and improve fire prescriptions that aim to mimic historical fire regime conditions. We quantified the temporal variability in fire regimes and described the spatial dependence of fire intervals through the analysis of multi-century fire scar records (8 study sites, 332...

  10. Impacts of climate on shrubland fuels and fire behavior in the Owyhee Basin, Idaho

    NASA Astrophysics Data System (ADS)

    Vogelmann, J. E.; Shi, H.; Hawbaker, T.; Li, Z.

    2013-12-01

    There is evidence that wildland fire is increasing as a function of global change. However, fire activity is spatially, temporally and ecologically variable across the globe, and our understanding of fire risk and behavior in many ecosystems is limited. After a series of severe fire seasons that occurred during the late 1990's in the western United States, the LANDFIRE program was developed with the goals of providing the fire community with objective spatial fuel data for assessing wildland fire risk. Even with access to the data provided by LANDFIRE, assessing fire behavior in shrublands in sagebrush-dominated ecosystems of the western United States has proven especially problematic, in part due to the complex nature of the vegetation, the variable influence of understory vegetation including invasive species (e.g. cheatgrass), and prior fire history events. Climate is undoubtedly playing a major role, affecting the intra- and inter-annual variability in vegetation conditions, which in turn impacts fire behavior. In order to further our understanding of climate-vegetation-fire interactions in shrublands, we initiated a study in the Owyhee Basin, which is located in southwestern Idaho and adjacent Nevada. Our goals include: (1) assessing the relationship between climate and vegetation condition, (2) quantifying the range of temporal variability in grassland and shrubland fuel loads, (3) identifying methods to operationally map the variability in fuel loads, and (4) assessing how the variability in fuel loads affect fire spread simulations. To address these goals, we are using a wide variety of geospatial data, including remotely sensed time-series data sets derived from MODIS and Landsat, and climate data from DAYMET and PRISM. Remotely-sensed information is used to characterize climate-induced temporal variability in primary productivity in the Basin, where fire spread can be extensive after senescence when dry vegetation is added to dead fuel loads. Gridded climate data indicate that this area has become warmer and dryer over the previous three decades. We have also observed that fires are especially prevalent in areas that have high Normalized Difference Vegetation Index (NDVI) values in the spring, followed by low NDVI in the summer. At present we are concentrating on the temporally rich MODIS data to map spatial and temporal variability in live fuel loads. To translate NDVI to biomass, we are scaling the range of biomass values using data from the literature. We assume that departure from maximum NDVI, typically occurring during spring, to NDVI values later in the season are related to the proportion of live biomass transferred to dead biomass, which burns more readily than green biomass. Using the FARSITE fire spread model, our initial simulations show that the conversion from live herbaceous fuel to dead fuel increases the burn area by 30% compared with using default static fuel parameters. This indicates that current fuel models underestimate fire spread and areas that could potentially burn. Our study also indicates that a combined remote sensing product with good temporal resolution (MODIS) and spatial resolution (Landsat) is necessary to provide accurate information on the fuel dynamics in shrublands.

  11. Fire Impacts on Mixed Pine-oak Forests Assessed with High Spatial Resolution Imagery, Imaging Spectroscopy, and LiDAR

    NASA Astrophysics Data System (ADS)

    Meng, R.; Wu, J.; Zhao, F. R.; Kathy, S. L.; Dennison, P. E.; Cook, B.; Hanavan, R. P.; Serbin, S.

    2016-12-01

    As a primary disturbance agent, fire significantly influences forest ecosystems, including the modification or resetting of vegetation composition and structure, which can then significantly impact landscape-scale plant function and carbon stocks. Most ecological processes associated with fire effects (e.g. tree damage, mortality, and vegetation recovery) display fine-scale, species specific responses but can also vary spatially within the boundary of the perturbation. For example, both oak and pine species are fire-adapted, but fire can still induce changes in composition, structure, and dominance in a mixed pine-oak forest, mainly because of their varying degrees of fire adaption. Evidence of post-fire shifts in dominance between oak and pine species has been documented in mixed pine-oak forests, but these processes have been poorly investigated in a spatially explicit manner. In addition, traditional field-based means of quantifying the response of partially damaged trees across space and time is logistically challenging. Here we show how combining high resolution satellite imagery (i.e. Worldview-2,WV-2) and airborne imaging spectroscopy and LiDAR (i.e. NASA Goddard's Lidar, Hyperspectral and Thermal airborne imager, G-LiHT) can be effectively used to remotely quantify spatial and temporal patterns of vegetation recovery following a top-killing fire that occurred in 2012 within mixed pine-oak forests in the Long Island Central Pine Barrens Region, New York. We explore the following questions: 1) what are the impacts of fire on species composition, dominance, plant health, and vertical structure; 2) what are the recovery trajectories of forest biomass, structure, and spectral properties for three years following the fire; and 3) to what extent can fire impacts be captured and characterized by multi-sensor remote sensing techniques from active and passive optical remote sensing.

  12. Fire danger and fire behavior modeling systems in Australia, Europe, and North America

    Treesearch

    Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton

    2009-01-01

    Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...

  13. Mapping the Daily Progression of Large Wildland Fires Using MODIS Active Fire Data

    NASA Technical Reports Server (NTRS)

    Veraverbeke, Sander; Sedano, Fernando; Hook, Simon J.; Randerson, James T.; Jin, Yufang; Rogers, Brendan

    2013-01-01

    High temporal resolution information on burned area is a prerequisite for incorporating bottom-up estimates of wildland fire emissions in regional air transport models and for improving models of fire behavior. We used the Moderate Resolution Imaging Spectroradiometer (MODIS) active fire product (MO(Y)D14) as input to a kriging interpolation to derive continuous maps of the evolution of nine large wildland fires. For each fire, local input parameters for the kriging model were defined using variogram analysis. The accuracy of the kriging model was assessed using high resolution daily fire perimeter data available from the U.S. Forest Service. We also assessed the temporal reporting accuracy of the MODIS burned area products (MCD45A1 and MCD64A1). Averaged over the nine fires, the kriging method correctly mapped 73% of the pixels within the accuracy of a single day, compared to 33% for MCD45A1 and 53% for MCD64A1.

  14. Effects of fire on ash thickness in a Lithuanian grassland and short-term spatio-temporal changes

    NASA Astrophysics Data System (ADS)

    Pereira, P.; Cerdà, A.; Úbeda, X.; Mataix-Solera, J.; Martin, D.; Jordán, A.; Burguet, M.

    2012-12-01

    Ash thickness is a key variable in the protection of soil against erosion agents after planned and unplanned fires. Thicker ash provides better protection against raindrop impact and reduces the runoff response by retaining water and promoting water infiltration although little is known about the distribution and the evolution of the ash layer after the fires. Ash thickness measurements were conducted along two transects (flat and sloping areas) following a a grid experimental design. Both transects extended from the burned area into an adjacent unburned area. We analysed ash thickness evolution according to time and fire severity. In order to interpolate data with accuracy and identify the techniques with the least bias, several interpolation methods were tested in the grid plot. Overall, the fire had a low severity. The fire significantly reduced the ground cover, especially on sloping areas owing to the higher fire severity and/or less biomass previous to the fire. Ash thickness depends on fire severity and is thin where fire severity was higher and thicker in lower fire severity sites. The ash thickness decreased with time after the fire. Between 4 and 16 days after the fire, ash was transported by wind. The major reduction took place between 16 and 34 days after the fire as a result of rainfall, and was more efficient where fire severity was higher. Between 34 and 45 days after the fire no significant differences in ash thickness were identified among ash colours and only traces of the ash layer remained. The omni-directional experimental variograms shown that variable structure did not change importantly with the time, however, the most accurate interpolation methods were different highlighting the slight different patterns of ash thickness distribution with the time. The ash spatial variability increased with the time, particularly on the slope, as a result of water erosion.

  15. The temporal representation of speech in a nonlinear model of the guinea pig cochlea

    NASA Astrophysics Data System (ADS)

    Holmes, Stephen D.; Sumner, Christian J.; O'Mard, Lowel P.; Meddis, Ray

    2004-12-01

    The temporal representation of speechlike stimuli in the auditory-nerve output of a guinea pig cochlea model is described. The model consists of a bank of dual resonance nonlinear filters that simulate the vibratory response of the basilar membrane followed by a model of the inner hair cell/auditory nerve complex. The model is evaluated by comparing its output with published physiological auditory nerve data in response to single and double vowels. The evaluation includes analyses of individual fibers, as well as ensemble responses over a wide range of best frequencies. In all cases the model response closely follows the patterns in the physiological data, particularly the tendency for the temporal firing pattern of each fiber to represent the frequency of a nearby formant of the speech sound. In the model this behavior is largely a consequence of filter shapes; nonlinear filtering has only a small contribution at low frequencies. The guinea pig cochlear model produces a useful simulation of the measured physiological response to simple speech sounds and is therefore suitable for use in more advanced applications including attempts to generalize these principles to the response of human auditory system, both normal and impaired. .

  16. Spatial patterns in vegetation fires in the Indian region.

    PubMed

    Vadrevu, Krishna Prasad; Badarinath, K V S; Anuradha, Eaturu

    2008-12-01

    In this study, we used fire count datasets derived from Along Track Scanning Radiometer (ATSR) satellite to characterize spatial patterns in fire occurrences across highly diverse geographical, vegetation and topographic gradients in the Indian region. For characterizing the spatial patterns of fire occurrences, observed fire point patterns were tested against the hypothesis of a complete spatial random (CSR) pattern using three different techniques, the quadrat analysis, nearest neighbor analysis and Ripley's K function. Hierarchical nearest neighboring technique was used to depict the 'hotspots' of fire incidents. Of the different states, highest fire counts were recorded in Madhya Pradesh (14.77%) followed by Gujarat (10.86%), Maharastra (9.92%), Mizoram (7.66%), Jharkhand (6.41%), etc. With respect to the vegetation categories, highest number of fires were recorded in agricultural regions (40.26%) followed by tropical moist deciduous vegetation (12.72), dry deciduous vegetation (11.40%), abandoned slash and burn secondary forests (9.04%), tropical montane forests (8.07%) followed by others. Analysis of fire counts based on elevation and slope range suggested that maximum number of fires occurred in low and medium elevation types and in very low to low-slope categories. Results from three different spatial techniques for spatial pattern suggested clustered pattern in fire events compared to CSR. Most importantly, results from Ripley's K statistic suggested that fire events are highly clustered at a lag-distance of 125 miles. Hierarchical nearest neighboring clustering technique identified significant clusters of fire 'hotspots' in different states in northeast and central India. The implications of these results in fire management and mitigation were discussed. Also, this study highlights the potential of spatial point pattern statistics in environmental monitoring and assessment studies with special reference to fire events in the Indian region.

  17. GABAB-receptor activation alters the firing pattern of dopamine neurons in the rat substantia nigra.

    PubMed

    Engberg, G; Kling-Petersen, T; Nissbrandt, H

    1993-11-01

    Previous electrophysiological experiments have emphasized the importance of the firing pattern for the functioning of midbrain dopamine (DA) neurons. In this regard, excitatory amino acid receptors appear to constitute an important modulatory control mechanism. In the present study, extracellular recording techniques were used to investigate the significance of GABAB-receptor activation for the firing properties of DA neurons in the substantia nigra (SN) in the rat. Intravenous administration of the GABAB-receptor agonist baclofen (1-16 mg/kg) was associated with a dose-dependent regularization of the firing pattern, concomitant with a reduction in burst firing. At higher doses (16-32 mg/kg), the firing rate of the DA neurons was dose-dependently decreased. Also, microiontophoretic application of baclofen regularized the firing pattern of nigral DA neurons, including a reduction of burst firing. Both the regularization of the firing pattern and inhibition of firing rate produced by systemic baclofen administration was antagonized by the GABAB-receptor antagonist CGP 35348 (200 mg/kg, i.v.). The GABAA-receptor agonist muscimol produced effects on the firing properties of DA neurons that were opposite to those observed following baclofen, i.e., an increase in firing rate accompanied by a decreased regularity. The NMDA receptor antagonist MK 801 (0.4-3.2 mg/kg, i.v.) produced a moderate, dose-dependent increase in the firing rate of the nigral DA neurons as well as a slightly regularized firing pattern. Pretreatment with MK 801 (3.2 mg/kg, i.v., 3-10 min) did neither promote nor prevent the regularization of the firing pattern or inhibition of firing rate on the nigral DA neurons produced by baclofen. The present results clearly show that GABAB-receptors can alter the firing pattern of nigral DA neurons, hereby counterbalancing the previously described ability of glutamate to induce burst firing activity on these neurons.

  18. Simulating spatial and temporally related fire weather

    Treesearch

    Isaac C. Grenfell; Mark Finney; Matt Jolly

    2010-01-01

    Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...

  19. Employing wavelet-based texture features in ammunition classification

    NASA Astrophysics Data System (ADS)

    Borzino, Ángelo M. C. R.; Maher, Robert C.; Apolinário, José A.; de Campos, Marcello L. R.

    2017-05-01

    Pattern recognition, a branch of machine learning, involves classification of information in images, sounds, and other digital representations. This paper uses pattern recognition to identify which kind of ammunition was used when a bullet was fired based on a carefully constructed set of gunshot sound recordings. To do this task, we show that texture features obtained from the wavelet transform of a component of the gunshot signal, treated as an image, and quantized in gray levels, are good ammunition discriminators. We test the technique with eight different calibers and achieve a classification rate better than 95%. We also compare the performance of the proposed method with results obtained by standard temporal and spectrographic techniques

  20. Using remote sensing to create indicators of ecosystem variability for a semi-arid savanna watershed in the Kavango-Zambezi region of Southern Africa

    NASA Astrophysics Data System (ADS)

    Pricope, Narcisa Gabriela

    This dissertation addresses changes in land and resource availability occurring as a result of climate, water variability and changes in fire regimes in a semi-arid savanna region in Southern Africa. The research combines geospatial analyses of climatological and hydrologic data and various remotely-sensed datasets to create measures of ecosystem variability and adaptability to natural and anthropogenic changes in sensitive ecosystems. The study area is the Chobe River Basin (CRB), a watershed shared between Botswana and Namibia situated at the heart of one of the world.s largest transfrontier conservation areas, where different land-use management strategies and economic policies affect both the ecosystem and the livelihoods support system differentially. The southern African savanna is a highly variable environment and people have adapted to its harshness through the generations. However, in light of past and ongoing environmental changes, their ability to adapt may become threatened. By mapping and then analyzing the spatial and temporal variability of two important factors, namely flooding and fires, in conjunction with indices of vegetation health and productivity, the findings of this research can ultimately contribute to enhancing our understanding of local adaptation mechanisms to future environmental change. This is the first reconstruction of the spatial and temporal patterns of inundation for the last 25 years in the CRB, a transboundary basin with an unusual hydrologic regime and an important water resource for both human and wildlife populations. In the context of increasing temperatures, decreasing precipitation trends and increasing frequencies and intensities of El Nino episodes in southern Africa (Boko et al., 2007), I also investigated changes in fire incidences and marked shifts in fire seasonality both within and outside of protected areas of central Kavango Zambezi Transfrontier Conservation Area (KAZA TFCA). These changes are likely to have a series of strong impacts on other components of fire regimes in semi-arid ecosystems that will, in turn, affect their ecology, structure, and function. This dissertation contributes to the field of land use and land change science by proposing a novel spatial coincidence analysis framework for analyzing how the interand intra-annual extents of inundation and fire are correlated with both annual patterns of vegetation productivity and multi-date changes in vegetation productivity. (Full text of this dissertation may be available via the University of Florida Libraries web site. Please check http://www.uflib.ufl.edu/etd.html)

  1. Modeling mesoscopic cortical dynamics using a mean-field model of conductance-based networks of adaptive exponential integrate-and-fire neurons.

    PubMed

    Zerlaut, Yann; Chemla, Sandrine; Chavane, Frederic; Destexhe, Alain

    2018-02-01

    Voltage-sensitive dye imaging (VSDi) has revealed fundamental properties of neocortical processing at macroscopic scales. Since for each pixel VSDi signals report the average membrane potential over hundreds of neurons, it seems natural to use a mean-field formalism to model such signals. Here, we present a mean-field model of networks of Adaptive Exponential (AdEx) integrate-and-fire neurons, with conductance-based synaptic interactions. We study a network of regular-spiking (RS) excitatory neurons and fast-spiking (FS) inhibitory neurons. We use a Master Equation formalism, together with a semi-analytic approach to the transfer function of AdEx neurons to describe the average dynamics of the coupled populations. We compare the predictions of this mean-field model to simulated networks of RS-FS cells, first at the level of the spontaneous activity of the network, which is well predicted by the analytical description. Second, we investigate the response of the network to time-varying external input, and show that the mean-field model predicts the response time course of the population. Finally, to model VSDi signals, we consider a one-dimensional ring model made of interconnected RS-FS mean-field units. We found that this model can reproduce the spatio-temporal patterns seen in VSDi of awake monkey visual cortex as a response to local and transient visual stimuli. Conversely, we show that the model allows one to infer physiological parameters from the experimentally-recorded spatio-temporal patterns.

  2. Spatial and temporal dimensions of fire activity in the fire-prone eastern Canadian taiga.

    PubMed

    Erni, Sandy; Arseneault, Dominique; Parisien, Marc-André; Bégin, Yves

    2017-03-01

    The forest age mosaic is a fundamental attribute of the North American boreal forest. Given that fires are generally lethal to trees, the time since last fire largely determines the composition and structure of forest stands and landscapes. Although the spatiotemporal dynamics of such mosaics has long been assumed to be random under the overwhelming influence of severe fire weather, no long-term reconstruction of mosaic dynamics has been performed from direct field evidence. In this study, we use fire length as a proxy for fire extent across the fire-prone eastern Canadian taiga and systematically reconstruct the spatiotemporal variability of fire extent and fire intervals, as well as the resulting forest age along a 340-km transect for the 1840-2013 time period. Our results indicate an extremely active fire regime over the last two centuries, with an overall burn rate of 2.1% of the land area yr -1 , mainly triggered by seasonal anomalies of high temperature and severe drought. However, the rejuvenation of the age mosaic was strongly patterned in space and time due to the intrinsically lower burn rates in wetland-dominated areas and, more importantly, to the much-reduced likelihood of burning of stands up to 50 years postfire. An extremely high burn rate of ~5% yr -1 would have characterized our study region during the last century in the absence of such fuel age effect. Although recent burn rates and fire sizes are within their range of variability of the last 175 years, a particularly severe weather event allowed a 2013 fire to spread across a large fire refuge, thus shifting the abundance of mature and old forest to a historic low. These results provide reference conditions to evaluate the significance and predict the spatiotemporal dynamics and impacts of the currently strengthening fire activity in the North American boreal forest. © 2016 John Wiley & Sons Ltd.

  3. Psychostimulants affect dopamine transmission through both dopamine transporter-dependent and independent mechanisms

    PubMed Central

    dela Peña, Ike; Gevorkiana, Ruzanna; Shi, Wei-Xing

    2015-01-01

    The precise mechanisms by which cocaine and amphetamine-like psychostimulants exert their reinforcing effects are not yet fully defined. It is widely believed, however, that these drugs produce their effects by enhancing dopamine neurotransmission in the brain, especially in limbic areas such as the nucleus accumbens, by inducing dopamine transporter-mediated reverse transport and/or blocking dopamine reuptake though the dopamine transporter. Here, we present the evidence that aside from dopamine transporter, non-dopamine transporter-mediated mechanisms also participate in psychostimulant-induced dopamine release and contribute to the behavioral effects of these drugs, such as locomotor activation and reward. Accordingly, psychostimulants could increase norepinephrine release in the prefrontal cortex, the latter then alters the firing pattern of dopamine neurons resulting in changes in action potential-dependent dopamine release. These alterations would further affect the temporal pattern of dopamine release in the nucleus accumbens, thereby modifying information processing in that area. Hence, a synaptic input to a nucleus accumbens neuron may be enhanced or inhibited by dopamine depending on its temporal relationship to dopamine release. Specific temporal patterns of dopamine release may also be required for certain forms of synaptic plasticity in the nucleus accumbens. Together, these effects induced by psychostimulants, mediated through a non-dopamine transporter-mediated mechanism involving norepinephrine and the prefrontal cortex, may also contribute importantly to the reinforcing properties of these drugs. PMID:26209364

  4. Variability of wildland fire emissions across the contiguous United States

    Treesearch

    YongQiang Liu

    2004-01-01

    This study analyzes spatial and temporal variability of emissions from wildland fires across the contiguous US. The emissions are estimates based on a recently constructed dataset of historical fire records collected by multiple US governlnental agencies. Both wildfire and prescribed fires have the highest emissions over the Pacific coastal states. Prescribed fire...

  5. Assessing the influence of small fires on trends in fire regime features at mainland Spain

    NASA Astrophysics Data System (ADS)

    Jiménez-Ruano, Adrián; Rodrigues Mimbrero, Marcos; de la Riva Fernández, Juan

    2017-04-01

    Small fires, i.e. fires smaller than 1 Ha, represent a huge proportion of total wildfire occurrence in the Mediterranean region. In the case of Spain, around 53% of fires in the period 1988-2013 fall into this category according to the Spanish EGIF statistics. However, the proportion of small fires is not stationary over time. Small fires are usually excluded from most analysis, given the chance of introducing or falling into temporal bias, being almost mandatory in those assessments using data before the 90s. Inconsistences and inhomogeneity problems related to the diversity of criteria and/or registration procedures among Autonomous Regions are found before that date, although it is widely agreed that small fires are consistently registered starting from 1988. Nevertheless, in terms of fire regimen characterization it is important to know to what extent small fires contribute to the overall fire behaviour. The aim of this study is to analyse spatial-temporal trends of several fire features such as total number of fires and burned area, number and burned area of natural and human fires, and the proportion of natural/human cause in the period 1988-2013 at province level (NUTS3). The analysis is conducted at the mainland Spain at annual and seasonal time scales. We are mainly interested in exploring differences in spatial-temporal trends including or excluding small fires and dealing with them separately as well. This allows determining the extent to which small fires may affect fire regime characterization. We employed a Mann-Kendall test for trend detection and Sen's slope to evaluate the magnitude of the change. Both tests were applied for each fire feature aggregated at NUTS3 level for both autumn-winter and spring-summer seasons. Our results show significant changes in the evolution of annual wildfire frequency; especially strong when small fires are accounted for. A similar outcome was observed in natural and human number fires during the spring-summer season. The increase in number of fires seems to be reversed during autumn-winter. At seasonal scale, the inclusion of small fires allows to detect significant trends in all of fire frequency features, except natural fires. In turn, neither burned area features do not significantly affect the trends through incorporating small fires. Therefore, the inclusion/exclusion of small fires do influence observed trends mostly in terms of fire frequency.

  6. Dual coding with STDP in a spiking recurrent neural network model of the hippocampus.

    PubMed

    Bush, Daniel; Philippides, Andrew; Husbands, Phil; O'Shea, Michael

    2010-07-01

    The firing rate of single neurons in the mammalian hippocampus has been demonstrated to encode for a range of spatial and non-spatial stimuli. It has also been demonstrated that phase of firing, with respect to the theta oscillation that dominates the hippocampal EEG during stereotype learning behaviour, correlates with an animal's spatial location. These findings have led to the hypothesis that the hippocampus operates using a dual (rate and temporal) coding system. To investigate the phenomenon of dual coding in the hippocampus, we examine a spiking recurrent network model with theta coded neural dynamics and an STDP rule that mediates rate-coded Hebbian learning when pre- and post-synaptic firing is stochastic. We demonstrate that this plasticity rule can generate both symmetric and asymmetric connections between neurons that fire at concurrent or successive theta phase, respectively, and subsequently produce both pattern completion and sequence prediction from partial cues. This unifies previously disparate auto- and hetero-associative network models of hippocampal function and provides them with a firmer basis in modern neurobiology. Furthermore, the encoding and reactivation of activity in mutually exciting Hebbian cell assemblies demonstrated here is believed to represent a fundamental mechanism of cognitive processing in the brain.

  7. Soil heating during wildfires and prescribed burns: a global evaluation based on existing and new data

    NASA Astrophysics Data System (ADS)

    Doerr, Stefan; Santin, Cristina; Reardon, James; Mataix-Solera, Jorge; Stoof, Cathelijne; Bryant, Rob; Miesel, Jessica; Badia, David

    2017-04-01

    Heat transfer from the combustion of ground fuels and soil organic matter during vegetation fires can cause substantial changes to the physical, chemical and biological characteristics of soils. Numerous studies have investigated the effects of wildfires and prescribed burns on soil properties based either on field samples or using laboratory experiments. Critical thresholds for changes in soil properties, however, have been determined largely based on laboratory heating experimentation. These experimental approaches have been criticized for being inadequate for reflecting the actual heating patterns soil experienced in vegetation fires, which remain poorly understood. To address this research gap, this study reviews existing and evaluates new field data on key soil heating parameters determined during wildfires and prescribed burns from a wide range of environments. The results highlight the high spatial and temporal variability in soil heating patters not only between, but also within fires. Most wildfires and prescribed burns are associated with heat pulses that are much shorter than those typically applied in laboratory studies, which can lead to erroneous conclusions when results from laboratory studies are used to predict fire impacts on soils in the field.

  8. Proportional spike-timing precision and firing reliability underlie efficient temporal processing of periodicity and envelope shape cues

    PubMed Central

    Zheng, Y.

    2013-01-01

    Temporal sound cues are essential for sound recognition, pitch, rhythm, and timbre perception, yet how auditory neurons encode such cues is subject of ongoing debate. Rate coding theories propose that temporal sound features are represented by rate tuned modulation filters. However, overwhelming evidence also suggests that precise spike timing is an essential attribute of the neural code. Here we demonstrate that single neurons in the auditory midbrain employ a proportional code in which spike-timing precision and firing reliability covary with the sound envelope cues to provide an efficient representation of the stimulus. Spike-timing precision varied systematically with the timescale and shape of the sound envelope and yet was largely independent of the sound modulation frequency, a prominent cue for pitch. In contrast, spike-count reliability was strongly affected by the modulation frequency. Spike-timing precision extends from sub-millisecond for brief transient sounds up to tens of milliseconds for sounds with slow-varying envelope. Information theoretic analysis further confirms that spike-timing precision depends strongly on the sound envelope shape, while firing reliability was strongly affected by the sound modulation frequency. Both the information efficiency and total information were limited by the firing reliability and spike-timing precision in a manner that reflected the sound structure. This result supports a temporal coding strategy in the auditory midbrain where proportional changes in spike-timing precision and firing reliability can efficiently signal shape and periodicity temporal cues. PMID:23636724

  9. Managing fire risk during drought: the influence of certification and El Niño on fire-driven forest conversion for oil palm in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-08-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce sustainable palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance is unclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009, forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident active fire detections. Interannual variability in fire detections was strongly influenced by El Niño and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Niño events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75 % and 66 % lower on certified plantations than noncertified plantations during the 2009 and 2015 El Niño events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero deforestation.

  10. Burst firing and modulation of functional connectivity in cat striate cortex.

    PubMed

    Snider, R K; Kabara, J F; Roig, B R; Bonds, A B

    1998-08-01

    We studied the influences of the temporal firing patterns of presynaptic cat visual cortical cells on spike generation by postsynaptic cells. Multiunit recordings were dissected into the activity of individual neurons within the recorded group. Cross-correlation analysis was then used to identify directly coupled neuron pairs. The 22 multiunit groups recorded typically showed activity from two to six neurons, each containing between 1 and 15 neuron pairs. From a total of 241 neuron pairs, 91 (38%) had a shifted cross-correlation peak, which indicated a possible direct connection. Only two multiunit groups contained no shifted peaks. Burst activity, defined by groups of two or more spikes with intervals of

  11. N2-fixation dynamics during ecosystem recovery in longleaf pine savannas

    NASA Astrophysics Data System (ADS)

    Tierney, J. A.

    2016-12-01

    Biological nitrogen fixation (BNF) can alleviate nitrogen (N) deficiencies that inhibit ecosystem recovery. BNF may be particularly important in ecosystems recovering from land-use change and perturbations from fire, as these disturbances can exacerbate N limitation. Here, we investigated how BNF dynamics change throughout ecosystem development in restored longleaf pine savannas, and how BNF responds to fire. We conducted this study in 59 1-ha plots of longleaf pine distributed across gradients of stand age and fire frequency at two sites in the southeastern US. We determined BNF contributions by three functional groups of N2-fixers (herbaceous legumes, biological soil crusts, and asymbiotic N2-fixing bacteria) by quantifying their abundances, assessing nitrogenase activity, and scaling these estimates up to the plot-level. To determine aboveground N demands, we measured tree growth using diameter increments and allometric equations paired with tissue-specific N concentrations. We fit linear models to evaluate the effects of stand age and time since fire on BNF and N demands throughout stand development, and performed separate analyses on mature stands to determine how fire return interval affects BNF. We observed distinct temporal patterns of N2-fixation across stand development among the three groups of N2 fixers. N2-fixation by legumes and asymbiotic bacteria remained low until stands reached maturity, while N2-fixation by biological soil crusts (BSCs) was high in juvenile stands and decreased with stand age. These patterns suggest a compensatory shift in the importance of these functional groups throughout stand development such that contributions from BSCs are critical for meeting N demands when disturbances may hinder the establishment of legumes and asymbiotic bacteria. N2-fixation by BSCs and asymbiotic bacteria throughout stand development was not affected by time since fire, but legume abundance increased the year following fire, suggesting a recovery mechanism provided by this group. Our findings suggest that BSCs are the most important source of new N in the early phases of ecosystem restoration. In contrast, legumes appear to be critical in mature longleaf pine stands that burn frequently, and particularly for supplying new N in the year following a fire event.

  12. Fire and ecosystem change in the Arctic across the Paleocene-Eocene Thermal Maximum

    NASA Astrophysics Data System (ADS)

    Denis, E. H.; Pedentchouk, N.; Schouten, S.; Pagani, M.; Freeman, K. H.

    2016-12-01

    Fire, an important component of ecosystems at a range of spatial and temporal scales, affects vegetation distribution, the carbon cycle, and climate. In turn, climate influences fuel composition (e.g., amount and type of vegetation), fuel availability (e.g., vegetation that can burn based on precipitation and temperature), and ignition sources (e.g., lightning). Climate studies predict increased wildfire activity in future decades, but mechanisms that control the relationship between climate and fire are complex. Reconstructing environmental conditions during past warming events (e.g., the Paleocene-Eocene Thermal Maximum (PETM)) will help elucidate climate-vegetation-fire relationships that are expressed over long durations (1,000 - 10,000 yrs). The abrupt global warming during the PETM dramatically altered vegetation and hydrologic patterns, and, possibly, fire occurrence. To investigate coincident changes in climate, vegetation, and fire occurrence, we studied biomarkers, including polycyclic aromatic hydrocarbons (PAHs), terpenoids, and alkanes from the PETM interval at IODP site 302 (the Lomonosov Ridge) in the Arctic Ocean. Both pollen and biomarker records indicate angiosperms abundance increased during the PETM relative to gymnosperms, reflecting a significant ecological shift to angiosperm-dominated vegetation. PAH abundances increased relative to plant biomarkers throughout the PETM, which suggests PAH production increased relative to plant productivity. Increased PAH production associated with the angiosperm vegetation shift indicates a greater prevalence of more fire-prone species. A time lag between increased moisture transport (based on published δD of n-alkanes data) to the Arctic and increased angiosperms and PAH production suggests wetter conditions, followed by increased air temperatures, favored angiosperms and combined to enhance fire occurrence.

  13. Trace gas emissions to the atmosphere by biomass burning in the west African savannas. Final report, 1 October 1991-31 March 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frouin, R.J.; Iacobellis, S.F.; Razafimpanilo, H.

    1994-08-01

    Savanna fires and atmospheric carbon dioxide (CO2) detection and estimating burned area using Advanced Very High Resolution Radiometer (AVHRR) reflectance data are investigated in this two part research project. The first part involves carbon dioxide flux estimates and a three-dimensional transport model to quantify the effect of North African savanna fires on atmospheric CO2 concentration, including CO2 spatial and temporal variability patterns and their significance to global emissions. The second article describes two methods used to determine burned area from AVHRR data. The article discusses the relationship between the percentage of burned area and AVHRR channel 2 reflectance (the linearmore » method) and Normalized Difference Vegetation Index (NDVI) (the nonlinear method). A comparative performance analysis of each method is described.« less

  14. Spatial patterns of large natural fires in Sierra Nevada wilderness areas

    USGS Publications Warehouse

    Collins, B.M.; Kelly, M.; van Wagtendonk, J.W.; Stephens, S.L.

    2007-01-01

    The effects of fire on vegetation vary based on the properties and amount of existing biomass (or fuel) in a forest stand, weather conditions, and topography. Identifying controls over the spatial patterning of fire-induced vegetation change, or fire severity, is critical in understanding fire as a landscape scale process. We use gridded estimates of fire severity, derived from Landsat ETM+ imagery, to identify the biotic and abiotic factors contributing to the observed spatial patterns of fire severity in two large natural fires. Regression tree analysis indicates the importance of weather, topography, and vegetation variables in explaining fire severity patterns between the two fires. Relative humidity explained the highest proportion of total sum of squares throughout the Hoover fire (Yosemite National Park, 2001). The lowest fire severity corresponded with increased relative humidity. For the Williams fire (Sequoia/Kings Canyon National Parks, 2003) dominant vegetation type explains the highest proportion of sum of squares. Dominant vegetation was also important in determining fire severity throughout the Hoover fire. In both fires, forest stands that were dominated by lodgepole pine (Pinus contorta) burned at highest severity, while red fir (Abies magnifica) stands corresponded with the lowest fire severities. There was evidence in both fires that lower wind speed corresponded with higher fire severity, although the highest fire severity in the Williams fire occurred during increased wind speed. Additionally, in the vegetation types that were associated with lower severity, burn severity was lowest when the time since last fire was fewer than 11 and 17 years for the Williams and Hoover fires, respectively. Based on the factors and patterns identified, managers can anticipate the effects of management ignited and naturally ignited fires at the forest stand and the landscape levels. ?? 2007 Springer Science+Business Media, Inc.

  15. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    USGS Publications Warehouse

    Schwartz, Mark W.; Butt, Nathalie; Dolanc, Christopher R.; Holguin, Andrew; Moritz, Max A.; North, Malcolm P.; Safford, Hugh D.; Stephenson, Nathan L.; Thorne, James H.; van Mantgem, Phillip J.

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we find that the upper elevation extent of those fires has also been increasing. Factors such as fire season climate and fuel build up are recognized potential drivers of changes in fire regimes. Patterns of warming climate and increasing stand density are consistent with both the direction and magnitude of increasing elevation of wildfire. Reduction in high elevation wildfire suppression and increasing ignition frequencies may also contribute to the observed pattern. Historical biases in fire reporting are recognized, but not likely to explain the observed patterns. The four plausible mechanistic hypotheses (changes in fire management, climate, fuels, ignitions) are not mutually exclusive, and likely have synergistic interactions that may explain the observed changes. Irrespective of mechanism, the observed pattern of increasing occurrence of fire in these subalpine forests may have significant impacts on their resilience to changing climatic conditions.

  16. [Patterns of action potential firing in cortical neurons of neonatal mice and their electrophysiological property].

    PubMed

    Furong, Liu; Shengtian, L I

    2016-05-25

    To investigate patterns of action potential firing in cortical heurons of neonatal mice and their electrophysiological properties. The passive and active membrane properties of cortical neurons from 3-d neonatal mice were observed by whole-cell patch clamp with different voltage and current mode. Three patterns of action potential firing were identified in response to depolarized current injection. The effects of action potential firing patterns on voltage-dependent inward and outward current were found. Neurons with three different firing patterns had different thresholds of depolarized current. In the morphology analysis of action potential, the three type neurons were different in rise time, duration, amplitude and threshold of the first action potential evoked by 80 pA current injection. The passive properties were similar in three patterns of action potential firing. These results indicate that newborn cortical neurons exhibit different patterns of action potential firing with different action potential parameters such as shape and threshold.

  17. RST-FIRES, an exportable algorithm for early/small fires detection: field validation and algorithm inter-comparison by using MSG-SEVIRI data over Italian Regions

    NASA Astrophysics Data System (ADS)

    Lisi, M.; Paciello, R.; Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Pergola, N.; Tramutoli, V.

    2016-12-01

    Fire detection by sensors on-board polar orbiting platforms, due to their relatively low temporal resolution (hours), could results decidedly not adequate to detect short-living events or fires characterized by a strong diurnal cycle and rapid evolution times. The challenge is therefore to try to exploit the very high temporal resolution offered by the geostationary sensors (from 30 to 2,5 minutes) to guarantee a continuous monitoring. Over the last years, many algorithms have been adapted from polar to (or have been specifically designed for) geostationary sensors. Most of them are based on fixed thresholds tests which, to avoid false alarm proliferation, are generally set up in the most conservative way. The result is a low algorithm sensitivity (i.e. only large and/or extremely intense events are generally detected) which could drastically affect Global Fire Emission (GFE) estimate: small fires were recognized to contribute for more than 35% to the global biomass burning carbon emissions. This work describes the multi-temporal change-detection technique named RST-FIRES (Robust Satellite Techniques for FIRES detection and monitoring) which, try to overcome the above mentioned issues being, moreover, immediately exportable on different geographic area and sensors. Its performance in terms of reliability and sensitivity was verified by more than 20,000 SEVIRI images collected throughout the day during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions which provided about 950 near real-time ground and aerial checks of the RST-FIRES detections. This study fully demonstrates the added value of the RST-FIRES technique for the detection of early/small fires and a sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  18. Soil resources influence vegetation and response to fire and fire-surrogate treatments in Sagebrush-Steppe Ecosystems

    Treesearch

    Benjamin M. Rau; Jeanne C. Chambers; David A. Pyke; Bruce A. Roundy; Eugene W. Schupp; Paul Doescher; Todd G. Caldwell

    2014-01-01

    Current paradigm suggests that spatial and temporal competition for resources limit an exotic invader, cheatgrass (Bromus tectorum L.), which once established, alters fire regimes and can result in annual grass dominance in sagebrush steppe. Prescribed fire and fire surrogate treatments (mowing, tebuthiuron, and imazapic) are used to reduce woody...

  19. Abrupt climate-independent fire regime changes

    USGS Publications Warehouse

    Pausas, Juli G.; Keeley, Jon E.

    2014-01-01

    Wildfires have played a determining role in distribution, composition and structure of many ecosystems worldwide and climatic changes are widely considered to be a major driver of future fire regime changes. However, forecasting future climatic change induced impacts on fire regimes will require a clearer understanding of other drivers of abrupt fire regime changes. Here, we focus on evidence from different environmental and temporal settings of fire regimes changes that are not directly attributed to climatic changes. We review key cases of these abrupt fire regime changes at different spatial and temporal scales, including those directly driven (i) by fauna, (ii) by invasive plant species, and (iii) by socio-economic and policy changes. All these drivers might generate non-linear effects of landscape changes in fuel structure; that is, they generate fuel changes that can cross thresholds of landscape continuity, and thus drastically change fire activity. Although climatic changes might contribute to some of these changes, there are also many instances that are not primarily linked to climatic shifts. Understanding the mechanism driving fire regime changes should contribute to our ability to better assess future fire regimes.

  20. [Drivers of human-caused fire occurrence and its variation trend under climate change in the Great Xing'an Mountains, Northeast China].

    PubMed

    Li, Shun; Wu, Zhi Wei; Liang, Yu; He, Hong Shi

    2017-01-01

    The Great Xing'an Mountains are an important boreal forest region in China with high frequency of fire occurrences. With climate change, this region may have a substantial change in fire frequency. Building the relationship between spatial pattern of human-caused fire occurrence and its influencing factors, and predicting the spatial patterns of human-caused fires under climate change scenarios are important for fire management and carbon balance in boreal forests. We employed a spatial point pattern model to explore the relationship between the spatial pattern of human-caused fire occurrence and its influencing factors based on a database of historical fire records (1967-2006) in the Great Xing'an Mountains. The fire occurrence time was used as dependent variable. Nine abiotic (annual temperature and precipitation, elevation, aspect, and slope), biotic (vegetation type), and human factors (distance to the nearest road, road density, and distance to the nearest settlement) were selected as explanatory variables. We substituted the climate scenario data (RCP 2.6 and RCP 8.5) for the current climate data to predict the future spatial patterns of human-caused fire occurrence in 2050. Our results showed that the point pattern progress (PPP) model was an effective tool to predict the future relationship between fire occurrence and its spatial covariates. The climatic variables might significantly affect human-caused fire occurrence, while vegetation type, elevation and human variables were important predictors of human-caused fire occurrence. The human-caused fire occurrence probability was expected to increase in the south of the area, and the north and the area along the main roads would also become areas with high human-caused fire occurrence. The human-caused fire occurrence would increase by 72.2% under the RCP 2.6 scenario and by 166.7% under the RCP 8.5 scenario in 2050. Under climate change scenarios, the spatial patterns of human-caused fires were mainly influenced by the climate and human factors.

  1. Assessing the outstanding 2003 fire events in Portugal with a Regional Climate Model

    NASA Astrophysics Data System (ADS)

    Trigo, Ricardo; Jerez, Sonia; Camara, Carlos; Montávez, Juan Pedro

    2013-04-01

    The heatwave that struck western Iberia in the early days of August 2003 was characterized by record high values of both maximum (47.3°C) and minimum (30.6°c) temperatures in Portugal, associated with extremely low humidity levels and relatively intense wind speed (Trigo et al., 2006). These conditions triggered the most devastating sequence of large fires ever registered in Portugal. The estimated total burnt area was about 450.000 ha, including 280.000 ha of forest (Pereira et al., 2011). The outstanding total burnt area value corresponds to roughly 5% of the Portuguese territory, and represents approximately twice the previous maximum observed in 1998 (~220.000 ha), and about four times the long-term average observed between 1980 and 2004. Here we characterise this unusual episode using meteorological fields obtained from both observations and a regional climate model. In this work we use the longest (49-years) high-resolution regional climate simulation available driven by reanalysis data spanning from 1959 to 2007 and covering the entire Iberian Peninsula. This long run was obtained using the MM5 model with a spatial resolution of 10 km. Using this high spatial and temporal resolution we have computed the Canadian Fire Weather Index (FWI) System to produce hourly values of fire risk. The FWI System consists of six components that account for the effects of fuel moisture and wind on fire behaviour (van Wagner, 1987). We show the temporal evolution of high resolution patterns for several fire related variables during the most important days for triggering new fires (the first week of August 2003). Besides the absolute value of Tmax, Tmin, wind (speed and direction), relative humidity and FWI we also evaluate the corresponding anomalies of these fields, obtained after removing the long-term smoothed daily climatology. Pereira M.G., Malamude B.D., Trigo R.M., Alves P.I. (2011) "The History and Characteristics of the 1980-2005 Portuguese Rural Fire Database". Natural Hazards and Earth System Sciences. 11, 3343-3358, doi:10.5194/nhess-11-3343-2011 Trigo R.M., Pereira J.M.C., Pereira M.G., Mota B., Calado M.T., DaCamara C.C., Santo F.E. (2006) "The exceptional fire season of summer 2003 in Portugal". International Journal of Climatology, 26 (13): 1741-1757 NOV 15 2006. Van Wagner, C.E., 1987. Development and structure of the Canadian forest fire weather index system. Canadian Forestry Service, Forest Technical Report 35, Ottawa, 37 pp.

  2. Spatial controls of occurrence and spread of wildfires in the Missouri Ozark Highlands.

    PubMed

    Yang, Jian; He, Hong S; Shifley, Stephen R

    2008-07-01

    Understanding spatial controls on wildfires is important when designing adaptive fire management plans and optimizing fuel treatment locations on a forest landscape. Previous research about this topic focused primarily on spatial controls for fire origin locations alone. Fire spread and behavior were largely overlooked. This paper contrasts the relative importance of biotic, abiotic, and anthropogenic constraints on the spatial pattern of fire occurrence with that on burn probability (i.e., the probability that fire will spread to a particular location). Spatial point pattern analysis and landscape succession fire model (LANDIS) were used to create maps to show the contrast. We quantified spatial controls on both fire occurrence and fire spread in the Midwest Ozark Highlands region, USA. This area exhibits a typical anthropogenic surface fire regime. We found that (1) human accessibility and land ownership were primary limiting factors in shaping clustered fire origin locations; (2) vegetation and topography had a negligible influence on fire occurrence in this anthropogenic regime; (3) burn probability was higher in grassland and open woodland than in closed-canopy forest, even though fire occurrence density was less in these vegetation types; and (4) biotic and abiotic factors were secondary descriptive ingredients for determining the spatial patterns of burn probability. This study demonstrates how fire occurrence and spread interact with landscape patterns to affect the spatial distribution of wildfire risk. The application of spatial point pattern data analysis would also be valuable to researchers working on landscape forest fire models to integrate historical ignition location patterns in fire simulation.

  3. Managing Fire Risk During Drought: The Influence of Certification and El Nino on Fire-Driven Forest Conversion for Oil Palm in Southeast Asia

    NASA Technical Reports Server (NTRS)

    Noojipady, Praveen; Morton, Douglas C.; Schroeder, Wilfrid; Carlson, Kimberly M.; Huang, Chengquan; Gibbs, Holly K.; Burns, David; Walker, Nathalie F.; Prince, Stephen D.

    2017-01-01

    Indonesia and Malaysia have emerged as leading producers of palm oil in the past several decades, expanding production through the conversion of tropical forests to industrial plantations. Efforts to produce "sustainable" palm oil, including certification by the Roundtable on Sustainable Palm Oil (RSPO), include guidelines designed to reduce the environmental impact of palm oil production. Fire-driven deforestation is prohibited by law in both countries and a stipulation of RSPO certification, yet the degree of environmental compliance isunclear, especially during El Niño events when drought conditions increase fire risk. Here, we used time series of satellite data to estimate the spatial and temporal patterns of fire-driven deforestation on and around oil palm plantations. In Indonesia, fire-driven deforestation accounted for one-quarter of total forest losses on both certified and noncertified plantations. After the first plantations in Indonesia received RSPO certification in 2009,forest loss and fire-driven deforestation declined on certified plantations but did not stop altogether. Oil palm expansion in Malaysia rarely involved fire; only 5 % of forest loss on certified plantations had coincident activefire detections. Interannual variability in fire detections was strongly influenced by El Nino and the timing of certification. Fire activity during the 2002, 2004, and 2006 El Nino events was similar among oil palm plantations in Indonesia that would later become certified, noncertified plantations, and surrounding areas. However, total fire activity was 75% and 66% lower on certified plantations than noncertified plantations during the 2009 and 2015 El Nino events, respectively. The decline in fire activity on certified plantations, including during drought periods, highlights the potential for RSPO certification to safeguard carbon stocks in peatlands and remaining forests in accordance with legislation banning fires. However, aligning certification standards with satellite monitoring capabilities will be critical to realize sustainable palm oil production and meet industry commitments to zero forestation.

  4. The Net Climate Impact of Coal-Fired Power Plant Emissions

    NASA Technical Reports Server (NTRS)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.

  5. The net climate impact of coal-fired power plant emissions

    NASA Astrophysics Data System (ADS)

    Shindell, D.; Faluvegi, G.

    2010-04-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until ~1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low-sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogenaities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate regional temperature responses may provide additional insight.

  6. Regionally synchronous fires in interior British Columbia, Canada, driven by interannual climate variability and weakly associated with large-scale climate patterns between AD 1600-1900

    NASA Astrophysics Data System (ADS)

    Harvey, J. E.; Smith, D. J.

    2016-12-01

    We investigated the influence of climate variability on forest fire occurrence in west central British Columbia (BC), Canada, between AD 1600 and 1900. Fire history was reconstructed at 8 sites in the Cariboo-Chilcotin region and we identified 46 local (fires that affected 1 site) and 16 moderate (fires that affected 2 sites) fires. Preexisting fire history data collected from nearby sites was incorporated to identify 17 regionally synchronous fire years (fires that affected ³ 3 sites). Interannual and multidecadal relationships between fire occurrence and the Palmer Drought Severity Index (PDSI), El Nino Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO) and the Pacific North American (PNA) pattern were examined, in addition to the effects of phase interactions between ENSO and PDO. We examined multiple reconstructions of PDO and ENSO and utilized three methodological approaches to characterize climate-fire relationships. We found that the influence of interannual climate expressed as PDSI, increasingly synchronized the occurrence of of fires from local to regional fires. Regional fires were associated with anomalously dry, warm conditions in the year of the fire and in years preceding the fire. We also identified an association between local fires and antecedent moisture conditions, where wetter and cooler conditions persisted 2-3 years prior to fire. This finding suggests that moisture-driven fine fuel development and proximity to grasslands could function as key determinants of local (small-scale) fire history parameters. The relationships we identified between regional fires and ENSO, PDO and PNA suggest that large-scale patterns of climate variability exert a weak and/or inconsistent influence over fire activity in west central BC between AD 1600-1900. The strongest relationships between regional fires and large-scale climate patterns were identified when ENSO and PDO were both in positive phases. We also documented a relationship between regional fires and positive years of the PNA pattern. Our findings suggest that long-term fire planning using predictions of large scale climate patterns may be limited in west central BC, however, the consideration of additive phases of ENSO and PDO, and the PNA pattern, may be effective and has been suggested by others in the inland Pacific Northwest.

  7. Dynamics of an Anthropogenic Fire Regime

    Treesearch

    R. P. Guyette; R. M. Muzika; D. C. Dey

    2002-01-01

    Human interaction with fire and vegetation occurs at many levels of human population density and cultural development, from subsistence cultures to highly technological societies. The dynamics of these interactions with respect to wildland fire are often difficult to understand and identify at short temporal scales. Dendrochronological fire histories from the Missouri...

  8. Dynamics of an anthropogenic fire regime

    Treesearch

    Richard P. Guyette; R. M. Muzika; Daniel C. Dey

    2002-01-01

    Human interaction with fire and vegetation occurs at many levels of human population density and cultural development, from subsistence cultures to highly technological societies. The dynamics of these interactions with respect to wildland fire are often difficult to understand and identify at short temporal scales. Dendrochronological fire histories from the Missouri...

  9. Fractional-order leaky integrate-and-fire model with long-term memory and power law dynamics.

    PubMed

    Teka, Wondimu W; Upadhyay, Ranjit Kumar; Mondal, Argha

    2017-09-01

    Pyramidal neurons produce different spiking patterns to process information, communicate with each other and transform information. These spiking patterns have complex and multiple time scale dynamics that have been described with the fractional-order leaky integrate-and-Fire (FLIF) model. Models with fractional (non-integer) order differentiation that generalize power law dynamics can be used to describe complex temporal voltage dynamics. The main characteristic of FLIF model is that it depends on all past values of the voltage that causes long-term memory. The model produces spikes with high interspike interval variability and displays several spiking properties such as upward spike-frequency adaptation and long spike latency in response to a constant stimulus. We show that the subthreshold voltage and the firing rate of the fractional-order model make transitions from exponential to power law dynamics when the fractional order α decreases from 1 to smaller values. The firing rate displays different types of spike timing adaptation caused by changes on initial values. We also show that the voltage-memory trace and fractional coefficient are the causes of these different types of spiking properties. The voltage-memory trace that represents the long-term memory has a feedback regulatory mechanism and affects spiking activity. The results suggest that fractional-order models might be appropriate for understanding multiple time scale neuronal dynamics. Overall, a neuron with fractional dynamics displays history dependent activities that might be very useful and powerful for effective information processing. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex.

    PubMed

    Kim, Jangjin; Delcasso, Sébastien; Lee, Inah

    2011-11-23

    Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that Object A, but not Object B, was rewarded in Place 1, but not in Place 2 (vice versa for Object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (1) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (2) spiking activities in both regions were more phase locked to theta rhythms, and (3) CA1-medial PFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event.

  11. Neural correlates of object-in-place learning in hippocampus and prefrontal cortex

    PubMed Central

    Kim, Jangjin; Delcasso, Sébastien; Lee, Inah

    2011-01-01

    Hippocampus and prefrontal cortex (PFC) process spatiotemporally discrete events while maintaining goal-directed task demands. Although some studies have reported that neural activities in the two regions are coordinated, such observations have rarely been reported in an object-place paired-associate (OPPA) task in which animals must learn an object-in-place rule. In this study, we recorded single units and local field potentials simultaneously from the CA1 subfield of the hippocampus and PFC as rats learned that object A, but not object B, was rewarded in place 1, but not in place 2 (vice versa for object B). Both hippocampus and PFC are required for normal performance in this task. PFC neurons fired in association with the regularity of the occurrence of a certain type of event independent of space, whereas neuronal firing in CA1 was spatially localized for representing a discrete place. Importantly, the differential firing patterns were observed in tandem with common learning-related changes in both regions. Specifically, once OPPA learning occurred and rats used an object-in-place strategy, (i) both CA1 and PFC neurons exhibited spatially more similar and temporally more synchronized firing patterns, (ii) spiking activities in both regions were more phase-locked to theta rhythms, (iii) CA1-mPFC coherence in theta oscillation was maximal before entering a critical place for decision making. The results demonstrate differential as well as common neural dynamics between hippocampus and PFC in acquiring the OPPA task and strongly suggest that both regions form a unified functional network for processing an episodic event. PMID:22114269

  12. Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.

    PubMed

    Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy

    2016-07-01

    As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.

  13. The combined use of the RST-FIRES algorithm and geostationary satellite data to timely detect fires

    NASA Astrophysics Data System (ADS)

    Filizzola, Carolina; Corrado, Rosita; Marchese, Francesco; Mazzeo, Giuseppe; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2017-04-01

    Timely detection of fires may enable a rapid contrast action before they become uncontrolled and wipe out entire forests. Remote sensing, especially based on geostationary satellite data, can be successfully used to this aim. Differently from sensors onboard polar orbiting platforms, instruments on geostationary satellites guarantee a very high temporal resolution (from 30 to 2,5 minutes) which may be usefully employed to carry out a "continuous" monitoring over large areas as well as to timely detect fires at their early stages. Together with adequate satellite data, an appropriate fire detection algorithm should be used. Over the last years, many fire detection algorithms have been just adapted from polar to geostationary sensors and, consequently, the very high temporal resolution of geostationary sensors is not exploited at all in tests for fire identification. In addition, even when specifically designed for geostationary satellite sensors, fire detection algorithms are frequently based on fixed thresholds tests which are generally set up in the most conservative way to avoid false alarm proliferation. The result is a low algorithm sensitivity which generally means that only large and/or extremely intense events are detected. This work describes the Robust Satellite Techniques for FIRES detection and monitoring (RST-FIRES) which is a multi-temporal change-detection technique trying to overcome the above mentioned issues. Its performance in terms of reliability and sensitivity was verified using data acquired by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) sensor onboard the Meteosat Second Generation (MSG) geostationary platform. More than 20,000 SEVIRI images, collected during a four-year-collaboration with the Regional Civil Protection Departments and Local Authorities of two Italian regions, were used. About 950 near real-time ground and aerial checks of the RST-FIRES detections were performed. This study also demonstrates the added value of the RST-FIRES technique to detect starting/small fires and its sensitivity from 3 to 70 times higher than any other similar SEVIRI-based products.

  14. Wildland fire emissions, carbon, and climate: U.S. emissions inventories

    Treesearch

    Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand

    2014-01-01

    Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...

  15. Assessment of the FARSITE model for predicting fire behavior in the Southern Appalachian Mountains

    Treesearch

    Ross J. Phillips; Thomas A. Waldrop; Dean M. Simon

    2006-01-01

    Fuel reduction treatments are necessary in fire-adapted ecosystems where fire has been excluded for decades and the potential for severe wildfire is high. Using the Fire Area Simulator, FARSITE, we examined the spatial and temporal effects of these treatments on fire behavior in the Southern Appalachian Mountains. With measurements from temperature sensors during...

  16. Temporal Coupling with Cortex Distinguishes Spontaneous Neuronal Activities in Identified Basal Ganglia-Recipient and Cerebellar-Recipient Zones of the Motor Thalamus

    PubMed Central

    Nakamura, Kouichi C.; Sharott, Andrew; Magill, Peter J.

    2014-01-01

    Neurons of the motor thalamus mediate basal ganglia and cerebellar influences on cortical activity. To elucidate the net result of γ-aminobutyric acid-releasing or glutamatergic bombardment of the motor thalamus by basal ganglia or cerebellar afferents, respectively, we recorded the spontaneous activities of thalamocortical neurons in distinct identified “input zones” in anesthetized rats during defined cortical activity states. Unexpectedly, the mean rates and brain state dependencies of the firing of neurons in basal ganglia-recipient zone (BZ) and cerebellar-recipient zone (CZ) were matched during slow-wave activity (SWA) and cortical activation. However, neurons were distinguished during SWA by their firing regularities, low-threshold spike bursts and, more strikingly, by the temporal coupling of their activities to ongoing cortical oscillations. The firing of neurons across the BZ was stronger and more precisely phase-locked to cortical slow (∼1 Hz) oscillations, although both neuron groups preferentially fired at the same phase. In contrast, neurons in BZ and CZ fired at different phases of cortical spindles (7–12 Hz), but with similar strengths of coupled firing. Thus, firing rates do not reflect the predicted inhibitory–excitatory imbalance across the motor thalamus, and input zone-specific temporal coding through oscillatory synchronization with the cortex could partly mediate the different roles of basal ganglia and cerebellum in behavior. PMID:23042738

  17. Postfire encroachment of Fabiana imbricata is real? Assessing changes of shrubland occupation during 40 years in NW Patagonia steppe

    NASA Astrophysics Data System (ADS)

    Lasaponara, Rosa; Oddi, Facundo; Ghermandi, Luciana

    2014-05-01

    Landscapes are dynamic in space and time, being spatio-temporal processes of particular interest for landscape ecology. In particular, grasslands can change their structure through the expansion of shrubs in the landscape matrix. Shrub encroachment affect biodiversity as well as forage availability that is the key component of the productive use of rangelands. However, despite its recognition as a global problem, knowledge on the rates, dynamics and encroachment patterns is even scarce. For example, although it is generally accepted that fire control shrub encroachment, certain shrubby species could be favored by the occurrence of fire. In northwestern Patagonian steppe, Fabiana imbricata form large monospecific shrublands that are part of the landscape mosaic and its dynamics of regeneration is strongly related to fire. This long-lived shrub (≡ 150 years) is a typical seeder that is killed by fire and recruits seedlings almost exclusively in post-fire, establishing even-age patches. Our objective was to determine whether F. imbricata shrublands have expanded during the last 40 years in a landscape fire prone. The study area corresponds to San Ramon ranch (22,000 ha) located in northwestern Patagonia steppe, Argentina (latitude -41° 04'; longitude -70° 51'). Two distribution maps of the species were made that corresponds to the study area in 1968 and 2011. The 1968 map was elaborated from the digitalization of aerial photographs (1:45000) while the 2011 map was produced with very high resolution satellite images, current aerial photographs and GPS field data. Both maps were loaded into a GIS environment, in which landscape metrics at patch and class level were determined and then compared. From remote sensing and dendroecological techniques, we know that the study area was almost entirely affected by fires during the study period. Therefore, the comparison of both maps allows us to know post-fire changes in the shrublands spatial configuration at the landscape scale and to infer the fire effect on these changes. Our results show that during the studied period F. imbricata shrublands has expanded over the grassland. Nowadays, the species occupies 20% more area than in 1968 and this area, is divided into a smaller number of patches that are closer to each other. The observed change in the shrublands spatial pattern is evidence of a post-fire shrub encroachment. These results contribute to the understanding of the role of fire in vegetation dynamics in fire prone ecosystems

  18. The relationship of large fire occurrence with drought and fire danger indices in the western USA, 1984-2008: The role of temporal scale

    Treesearch

    Karin L. Riley; John T. Abatzoglou; Isaac C. Grenfell; Anna E. Klene; Faith Ann Heinsch

    2013-01-01

    The relationship between large fire occurrence and drought has important implications for fire prediction under current and future climates. This study’s primary objective was to evaluate correlations between drought and fire-danger- rating indices representing short- and long-term drought, to determine which had the strongest relationships with large fire occurrence...

  19. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex.

    PubMed

    Kendrick, Keith M; Zhan, Yang; Fischer, Hanno; Nicol, Alister U; Zhang, Xuejuan; Feng, Jianfeng

    2011-06-09

    How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A network model which can reproduce these changes suggests that a key function of such learning-evoked alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs.

  20. Learning alters theta amplitude, theta-gamma coupling and neuronal synchronization in inferotemporal cortex

    PubMed Central

    2011-01-01

    Background How oscillatory brain rhythms alone, or in combination, influence cortical information processing to support learning has yet to be fully established. Local field potential and multi-unit neuronal activity recordings were made from 64-electrode arrays in the inferotemporal cortex of conscious sheep during and after visual discrimination learning of face or object pairs. A neural network model has been developed to simulate and aid functional interpretation of learning-evoked changes. Results Following learning the amplitude of theta (4-8 Hz), but not gamma (30-70 Hz) oscillations was increased, as was the ratio of theta to gamma. Over 75% of electrodes showed significant coupling between theta phase and gamma amplitude (theta-nested gamma). The strength of this coupling was also increased following learning and this was not simply a consequence of increased theta amplitude. Actual discrimination performance was significantly correlated with theta and theta-gamma coupling changes. Neuronal activity was phase-locked with theta but learning had no effect on firing rates or the magnitude or latencies of visual evoked potentials during stimuli. The neural network model developed showed that a combination of fast and slow inhibitory interneurons could generate theta-nested gamma. By increasing N-methyl-D-aspartate receptor sensitivity in the model similar changes were produced as in inferotemporal cortex after learning. The model showed that these changes could potentiate the firing of downstream neurons by a temporal desynchronization of excitatory neuron output without increasing the firing frequencies of the latter. This desynchronization effect was confirmed in IT neuronal activity following learning and its magnitude was correlated with discrimination performance. Conclusions Face discrimination learning produces significant increases in both theta amplitude and the strength of theta-gamma coupling in the inferotemporal cortex which are correlated with behavioral performance. A network model which can reproduce these changes suggests that a key function of such learning-evoked alterations in theta and theta-nested gamma activity may be increased temporal desynchronization in neuronal firing leading to optimal timing of inputs to downstream neural networks potentiating their responses. In this way learning can produce potentiation in neural networks simply through altering the temporal pattern of their inputs. PMID:21658251

  1. A Million-Plus Neuron Model of the Hippocampal Dentate Gyrus: Critical Role for Topography in Determining Spatio-Temporal Network Dynamics

    PubMed Central

    Hendrickson, Phillip J.; Yu, Gene J.; Song, Dong; Berger, Theodore W.

    2016-01-01

    Goal This manuscript describes a million-plus granule cell compartmental model of the rat hippocampal dentate gyrus, including excitatory, perforant path input from the entorhinal cortex, and feedforward and feedback inhibitory input from dentate interneurons. Methods The model includes experimentally determined morphological and biophysical properties of granule cells, together with glutamatergic AMPA-like EPSP and GABAergic GABAA-like IPSP synaptic excitatory and inhibitory inputs, respectively. Each granule cell was composed of approximately 200 compartments having passive and active conductances distributed throughout the somatic and dendritic regions. Modeling excitatory input from the entorhinal cortex was guided by axonal transport studies documenting the topographical organization of projections from subregions of the medial and lateral entorhinal cortex, plus other important details of the distribution of glutamatergic inputs to the dentate gyrus. Information contained within previously published maps of this major hippocampal afferent were systematically converted to scales that allowed the topographical distribution and relative synaptic densities of perforant path inputs to be quantitatively estimated for inclusion in the current model. Results Results showed that when medial and lateral entorhinal cortical neurons maintained Poisson random firing, dentate granule cells expressed, throughout the million-cell network, a robust, non-random pattern of spiking best described as spatio-temporal “clustering”. To identify the network property or properties responsible for generating such firing “clusters”, we progressively eliminated from the model key mechanisms such as feedforward and feedback inhibition, intrinsic membrane properties underlying rhythmic burst firing, and/or topographical organization of entorhinal afferents. Conclusion Findings conclusively identified topographical organization of inputs as the key element responsible for generating a spatio-temporal distribution of clustered firing. These results uncover a functional organization of perforant path afferents to the dentate gyrus not previously recognized: topography-dependent clusters of granule cell activity as “functional units” or “channels” that organize the processing of entorhinal signals. This modeling study also reveals for the first time how a global signal processing feature of a neural network can evolve from one of its underlying structural characteristics. PMID:26087482

  2. High speed imaging of dynamic processes with a switched source x-ray CT system

    NASA Astrophysics Data System (ADS)

    Thompson, William M.; Lionheart, William R. B.; Morton, Edward J.; Cunningham, Mike; Luggar, Russell D.

    2015-05-01

    Conventional x-ray computed tomography (CT) scanners are limited in their scanning speed by the mechanical constraints of their rotating gantries and as such do not provide the necessary temporal resolution for imaging of fast-moving dynamic processes, such as moving fluid flows. The Real Time Tomography (RTT) system is a family of fast cone beam CT scanners which instead use multiple fixed discrete sources and complete rings of detectors in an offset geometry. We demonstrate the potential of this system for use in the imaging of such high speed dynamic processes and give results using simulated and real experimental data. The unusual scanning geometry results in some challenges in image reconstruction, which are overcome using algebraic iterative reconstruction techniques and explicit regularisation. Through the use of a simple temporal regularisation term and by optimising the source firing pattern, we show that temporal resolution of the system may be increased at the expense of spatial resolution, which may be advantageous in some situations. Results are given showing temporal resolution of approximately 500 µs with simulated data and 3 ms with real experimental data.

  3. Lightning Forcing in Global Fire Models: The Importance of Temporal Resolution

    NASA Astrophysics Data System (ADS)

    Felsberg, A.; Kloster, S.; Wilkenskjeld, S.; Krause, A.; Lasslop, G.

    2018-01-01

    In global fire models, lightning is typically prescribed from observational data with monthly mean temporal resolution while meteorological forcings, such as precipitation or temperature, are prescribed in a daily resolution. In this study, we investigate the importance of the temporal resolution of the lightning forcing for the simulation of burned area by varying from daily to monthly and annual mean forcing. For this, we utilize the vegetation fire model JSBACH-SPITFIRE to simulate burned area, forced with meteorological and lightning data derived from the general circulation model ECHAM6. On a global scale, differences in burned area caused by lightning forcing applied in coarser temporal resolution stay below 0.55% compared to the use of daily mean forcing. Regionally, however, differences reach up to 100%, depending on the region and season. Monthly averaged lightning forcing as well as the monthly lightning climatology cause differences through an interaction between lightning ignitions and fire prone weather conditions, accounted for by the fire danger index. This interaction leads to decreased burned area in the boreal zone and increased burned area in the Tropics and Subtropics under the coarser temporal resolution. The exclusion of interannual variability, when forced with the lightning climatology, has only a minor impact on the simulated burned area. Annually averaged lightning forcing causes differences as a direct result of the eliminated seasonal characteristics of lightning. Burned area is decreased in summer and increased in winter where fuel is available. Regions with little seasonality, such as the Tropics and Subtropics, experience an increase in burned area.

  4. Environmental drivers and spatial dependency in wildfire ignition patterns of northwestern Patagonia.

    PubMed

    Mundo, Ignacio A; Wiegand, Thorsten; Kanagaraj, Rajapandian; Kitzberger, Thomas

    2013-07-15

    Fire management requires an understanding of the spatial characteristics of fire ignition patterns and how anthropogenic and natural factors influence ignition patterns across space. In this study we take advantage of a recent fire ignition database (855 points) to conduct a comprehensive analysis of the spatial pattern of fire ignitions in the western area of Neuquén province (57,649 km(2)), Argentina, for the 1992-2008 period. The objectives of our study were to better understand the spatial pattern and the environmental drivers of the fire ignitions, with the ultimate aim of supporting fire management. We conducted our analyses on three different levels: statistical "habitat" modelling of fire ignition (natural, anthropogenic, and all causes) based on an information theoretic approach to test several competing hypotheses on environmental drivers (i.e. topographic, climatic, anthropogenic, land cover, and their combinations); spatial point pattern analysis to quantify additional spatial autocorrelation in the ignition patterns; and quantification of potential spatial associations between fires of different causes relative to towns using a novel implementation of the independence null model. Anthropogenic fire ignitions were best predicted by the most complex habitat model including all groups of variables, whereas natural ignitions were best predicted by topographic, climatic and land-cover variables. The spatial pattern of all ignitions showed considerable clustering at intermediate distances (<40 km) not captured by the probability of fire ignitions predicted by the habitat model. There was a strong (linear) and highly significant increase in the density of fire ignitions with decreasing distance to towns (<5 km), but fire ignitions of natural and anthropogenic causes were statistically independent. A two-dimensional habitat model that quantifies differences between ignition probabilities of natural and anthropogenic causes allows fire managers to delineate target areas for consideration of major preventive treatments, strategic placement of fuel treatments, and forecasting of fire ignition. The techniques presented here can be widely applied to situations where a spatial point pattern is jointly influenced by extrinsic environmental factors and intrinsic point interactions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. Satellite-based Assessment of Climate Controls on US Burned Area

    NASA Technical Reports Server (NTRS)

    Morton, D. C.; Collatz, G. J.; Wang, D.; Randerson, J. T.; Giglio, L.; Chen, Y.

    2012-01-01

    Climate regulates fire activity through the buildup and drying of fuels and the conditions for fire ignition and spread. Understanding the dynamics of contemporary climate-fire relationships at national and sub-national scales is critical to assess the likelihood of changes in future fire activity and the potential options for mitigation and adaptation. Here, we conducted the first national assessment of climate controls on US fire activity using two satellite-based estimates of monthly burned area (BA), the Global Fire Emissions Database (GFED, 1997 2010) and Monitoring Trends in Burn Severity (MTBS, 1984 2009) BA products. For each US National Climate Assessment (NCA) region, we analyzed the relationships between monthly BA and potential evaporation (PE) derived from reanalysis climate data at 0.5 resolution. US fire activity increased over the past 25 yr, with statistically significant increases in MTBS BA for entire US and the Southeast and Southwest NCA regions. Monthly PE was strongly correlated with US fire activity, yet the climate driver of PE varied regionally. Fire season temperature and shortwave radiation were the primary controls on PE and fire activity in the Alaska, while water deficit (precipitation PE) was strongly correlated with fire activity in the Plains regions and Northwest US. BA and precipitation anomalies were negatively correlated in all regions, although fuel-limited ecosystems in the Southern Plains and Southwest exhibited positive correlations with longer lead times (6 12 months). Fire season PE in creased from the 1980s 2000s, enhancing climate-driven fire risk in the southern and western US where PE-BA correlations were strongest. Spatial and temporal patterns of increasing fire season PE and BA during the 1990s 2000s highlight the potential sensitivity of US fire activity to climate change in coming decades. However, climatefire relationships at the national scale are complex, based on the diversity of fire types, ecosystems, and ignition sources within each NCA region. Changes in the seasonality or magnitude of climate anomalies are therefore unlikely to result in uniform changes in US fire activity.

  6. Climatic and socio-economic fire drivers in the Mediterranean basin at a century scale: Analysis and modelling based on historical fire statistics and dynamic global vegetation models (DGVMs)

    NASA Astrophysics Data System (ADS)

    Mouillot, F.; Koutsias, N.; Conedera, M.; Pezzatti, B.; Madoui, A.; Belhadj Kheder, C.

    2017-12-01

    Wildfire is the main disturbance affecting Mediterranean ecosystems, with implications on biogeochemical cycles, biosphere/atmosphere interactions, air quality, biodiversity, and socio-ecosystems sustainability. The fire/climate relationship is time-scale dependent and may additionally vary according to concurrent changes climatic, environmental (e.g. land use), and fire management processes (e.g. fire prevention and control strategies). To date, however, most studies focus on a decadal scale only, being fire statistics ore remote sensing data usually available for a few decades only. Long-term fire data may allow for a better caption of the slow-varying human and climate constrains and for testing the consistency of the fire/climate relationship on the mid-time to better apprehend global change effects on fire risks. Dynamic Global Vegetation Models (DGVMs) associated with process-based fire models have been recently developed to capture both the direct role of climate on fire hazard and the indirect role of changes in vegetation and human population, to simulate biosphere/atmosphere interactions including fire emissions. Their ability to accurately reproduce observed fire patterns is still under investigation regarding seasonality, extreme events or temporal trend to identify potential misrepresentations of processes. We used a unique long-term fire reconstruction (from 1880 to 2016) of yearly burned area along a North/South and East/West environmental gradient across the Mediterranean Basin (southern Switzerland, Greece, Algeria, Tunisia) to capture the climatic and socio economic drivers of extreme fire years by linking yearly burned area with selected climate indices derived from historical climate databases and socio-economic variables. We additionally compared the actual historical reconstructed fire history with the yearly burned area simulated by a panel of DGVMS (FIREMIP initiative) driven by daily CRU climate data at 0.5° resolution across the Mediterranean basin. We will present and discuss the key processes driving interannual fire hazard along the 20th century, and analysed how DGVMs capture this interannual variability.

  7. Exploiting autoregressive properties to develop prospective urban arson forecasts by target

    Treesearch

    Jeffrey P. Prestemon; David T. Butry; Douglas Thomas

    2013-01-01

    Municipal fire departments responded to approximately 53,000 intentionally-set fires annually from 2003 to 2007, according to National Fire Protection Association figures. A disproportionate amount of these fires occur in spatio-temporal clusters, making them predictable and, perhaps, preventable. The objective of this research is to evaluate how the aggregation of...

  8. Fire regimes, past and present

    Treesearch

    Carl N. Skinner; Chiru Chang

    1996-01-01

    Fire has been an important ecosystem process in the Sierra Nevada for thousands of years. Before the area was settled in the 1850s, fires were generally frequent throughout much of the range. The frequency and severity of these fires varied spatially and temporally depending upon climate, elevation, topography, vegetation, edaphic conditions, and human cultural...

  9. Temporal changes to fire risk in dissimilar WUI communities

    Treesearch

    N. C. Leyshon; C. A. Dicus; D. B. Sapsis

    2015-01-01

    Despite increasing proportions of governmental budgets allocated to fire suppression resources, wildfires annually destroy great numbers of homes and critical infrastructure in the wildland-urban interface (WUI). Since 2002, the largest fires in the histories of California, Arizona, Colorado, New Mexico, Utah, Oregon, and Texas have occurred in spite of increased fire...

  10. Spatiotemporal variability of wildland fuels in US Northern Rocky Mountain forests

    Treesearch

    Robert E. Keane

    2016-01-01

    Fire regimes are ultimately controlled by wildland fuel dynamics over space and time; spatial distributions of fuel influence the size, spread, and intensity of individual fires, while the temporal distribution of fuel deposition influences fire's frequency and controls fire size. These "shifting fuel mosaics" are both a cause and a consequence...

  11. Cortical ensemble activity increasingly predicts behaviour outcomes during learning of a motor task

    NASA Astrophysics Data System (ADS)

    Laubach, Mark; Wessberg, Johan; Nicolelis, Miguel A. L.

    2000-06-01

    When an animal learns to make movements in response to different stimuli, changes in activity in the motor cortex seem to accompany and underlie this learning. The precise nature of modifications in cortical motor areas during the initial stages of motor learning, however, is largely unknown. Here we address this issue by chronically recording from neuronal ensembles located in the rat motor cortex, throughout the period required for rats to learn a reaction-time task. Motor learning was demonstrated by a decrease in the variance of the rats' reaction times and an increase in the time the animals were able to wait for a trigger stimulus. These behavioural changes were correlated with a significant increase in our ability to predict the correct or incorrect outcome of single trials based on three measures of neuronal ensemble activity: average firing rate, temporal patterns of firing, and correlated firing. This increase in prediction indicates that an association between sensory cues and movement emerged in the motor cortex as the task was learned. Such modifications in cortical ensemble activity may be critical for the initial learning of motor tasks.

  12. Spatial-Temporal dynamics of surface water flooding and consequences for emergency services accessibility

    NASA Astrophysics Data System (ADS)

    Pattison, Ian; Green, Daniel; Yu, Dapeng; Bosher, Lee; Wilby, Rob; Yang, Lili; Ryley, Tim

    2016-04-01

    Urban areas are increasingly susceptible to surface water flooding, with more intense precipitation and intensification of land development. Flooding has both direct impacts i.e. locations inundated with water, and indirect impacts i.e. transport networks, utility e.g. electricity/water services etc. The direct areas flooded evolve in space through the event, and are predicted by standard inundation models. However, the wider indirect impacts and the spatial-temporal patterns are less constrained and it is these that are needed to manage the impacts in real-time. This paper focusses on the Category One responders of the Fire and Rescue and Ambulance Services in the City of Leicester, East Midlands, UK. Leicester is ranked 16th out of 4215 settlements at risk of surface water flooding in the UK based upon the population at risk (15,200 people) (DEFRA, 2009). The analysis undertaken involved overlaying the flood extent with the Integrated Transport Network (ITN) data within a GIS framework. Then a simple transport routing algorithm was used to predict the travel time from specific nodes representing ambulance or fire stations to different parts of the city. Flood magnitudes with 1:20, 1:100 and 1:1000 return periods have been investigated. Under a scenario of no flooding, 100% of the city is accessible by the six fire stations in the city. However, in the 1 in 20 year surface water flood event the peak inundation results in 66.5% being accessible in the 10 minute permitted time and 6% is totally inaccessible. This falls to 40% and 13% respectively for the 1 in 100 year event. Maps show the area of the city that are accessible by two or more stations within the permitted response time, which shows these areas are the most resilient to surface water flooding. However, it isn't just the peak water depths at every location which impacts accessibility within the city but the spatial-temporal patterns of the inundation. The areas within the 10 minute response time expand and contract through the event as the inundated area makes roads in different parts of the city inaccessible through the event. These maps also allow key access roads to be identified. Key stakeholders, within the City of Leicester, have highlighted the potential benefit of such dynamic accessibility maps for their multi-agency planning and response for surface water flooding.

  13. Semi-automated mapping of burned areas in semi-arid ecosystems using MODIS time-series imagery

    NASA Astrophysics Data System (ADS)

    Hardtke, Leonardo A.; Blanco, Paula D.; Valle, Héctor F. del; Metternicht, Graciela I.; Sione, Walter F.

    2015-06-01

    Understanding spatial and temporal patterns of burned areas at regional scales, provides a long-term perspective of fire processes and its effects on ecosystems and vegetation recovery patterns, and it is a key factor to design prevention and post-fire restoration plans and strategies. Remote sensing has become the most widely used tool to detect fire affected areas over large tracts of land (e.g., ecosystem, regional and global levels). Standard satellite burned area and active fire products derived from the 500-m Moderate Resolution Imaging Spectroradiometer (MODIS) and the Satellite Pour l'Observation de la Terre (SPOT) are available to this end. However, prior research caution on the use of these global-scale products for regional and sub-regional applications. Consequently, we propose a novel semi-automated algorithm for identification and mapping of burned areas at regional scale. The semi-arid Monte shrublands, a biome covering 240,000 km2 in the western part of Argentina, and exposed to seasonal bushfires was selected as the test area. The algorithm uses a set of the normalized burned ratio index products derived from MODIS time series; using a two-phased cycle, it firstly detects potentially burned pixels while keeping a low commission error (false detection of burned areas), and subsequently labels them as seed patches. Region growing image segmentation algorithms are applied to the seed patches in the second-phase, to define the perimeter of fire affected areas while decreasing omission errors (missing real burned areas). Independently-derived Landsat ETM+ burned-area reference data was used for validation purposes. Additionally, the performance of the adaptive algorithm was assessed against standard global fire products derived from MODIS Aqua and Terra satellites, total burned area (MCD45A1), the active fire algorithm (MOD14); and the L3JRC SPOT VEGETATION 1 km GLOBCARBON products. The correlation between the size of burned areas detected by the global fire products and independently-derived Landsat reference data ranged from R2 = 0.01-0.28, while our algorithm performed showed a stronger correlation coefficient (R2 = 0.96). Our findings confirm prior research calling for caution when using the global fire products locally or regionally.

  14. Stream structure at low flow: biogeochemical patterns in intermittent streams over space and time

    NASA Astrophysics Data System (ADS)

    MacNeille, R. B.; Lohse, K. A.; Godsey, S.; McCorkle, E. P.; Parsons, S.; Baxter, C.

    2017-12-01

    Climate change in the western United States is projected to lead to earlier snowmelt, increasing fire risk and potentially transitioning perennial streams to intermittent ones. Differences between perennial and intermittent streams, especially the temporal and spatial patterns of carbon and nutrient dynamics during periods of drying, are understudied. We examined spatial and temporal patterns in surface water biogeochemistry during a dry (2016) and a wet (2017) water year in southwest Idaho. We hypothesized that as streams dry, carbon concentrations would increase due to evapoconcentration and/or increased in-stream production, and that the heterogeneity of constituents within each stream would increase. We expected these patterns to differ in a high water year compared to a low water year due to algae scour. Finally, we expected that the spatial heterogeneity of biogeochemistry would decrease with time following fire. To test these hypotheses, in 2016 we collected surface water samples at 50 meter intervals from two intermittent headwater streams over 2,500 meter reaches in April, May, and June. One stream is burned and one remains unburned. In 2017, we collected surface water at the 50, 25 and 10 meter intervals from each stream once during low flow. 2016 results showed average concentrations of dissolved inorganic carbon (DIC) and dissolved organic carbon (DOC) increased 3-fold from April to June in the burned site compared to the unburned site. Interestingly, average concentrations of total nitrogen (TN) dropped substantially for the burned site over these three months, but only decreased slightly for the unburned site over the same time period. Between wet and dry water years, we observed a decrease in the spatial heterogeneity as measured by the standard deviation (SD) in conductivity at 50 meter intervals; the burned stream had a SD of 23.08 in 2016 and 11.40 in 2017 whereas the unburned stream had similar SDs. We conclude that the burned stream experienced more inter and intra-annual surface water change in chemistry patterns than did the unburned stream.

  15. A review of sediment budget imbalances along Fire Island, New York: Can nearshore geologic framework and patterns of shoreline change explain the deficit?

    USGS Publications Warehouse

    Hapke, Cheryl J.; Lentz, Erika E.; Gayes, Paul T.; McCoy, Clayton A.; Henderson, Rachel E.; Schwab, William C.; Williams, S. Jeffress

    2010-01-01

    Sediment budget analyses conducted for annual to decadal timescales report variable magnitudes of littoral transport along the south shore of Long Island, New York. It is well documented that the primary transport component is directed alongshore from east to west, but relatively little information has been reported concerning the directions or magnitudes of cross-shore components. Our review of budget calculations for the Fire Island coastal compartment (between Moriches and Fire Island Inlets) indicates an average deficit of 217,700 m3/y. Updrift shoreline erosion, redistribution of nourishment fills, and reworking of inner-shelf deposits have been proposed as the potential sources of additional sediment needed to rectify budget residuals. Each of these sources is probably relevant over various spatial and temporal scales, but previous studies of sediment texture and provenance, inner-shelf geologic mapping, and beach profile comparison indicate that reworking of inner-shelf deposits is the source most likely to resolve budget discrepancies over the broadest scales. This suggests that an onshore component of sediment transport is likely more important along Fire Island than previously thought. Our discussion focuses on relations between geomorphology, inner-shelf geologic framework, and historic shoreline change along Fire Island and the potential pathways by which reworked, inner-shelf sediments are likely transported toward the shoreline.

  16. Exploring spatial patterns and drivers of forest fires in Portugal (1980-2014).

    PubMed

    Nunes, A N; Lourenço, L; Meira, A C Castro

    2016-12-15

    Information on the spatial incidence of fire ignition density and burnt area, trends and drivers of wildfires is vitally important in providing support for environmental and civil protection policies, designing appropriate prevention measures and allocating firefighting resources. The key objectives of this study were to analyse the geographical incidence and temporal trends for wildfires, as well as the main drivers of fire ignition and burnt area in Portugal on a municipal level. The results show that fires are not distributed uniformly throughout Portuguese territory, both in terms of ignition density and burnt area. One spot in the north-western area is well defined, covering 10% of the municipalities where more than one third of the total fire ignitions are concentrated. In >80% of Portuguese municipalities, ignition density has registered a positive trend since the 1980s. With regard to burnt area, 60% of the municipalities had a nil annual trend, 35% showed a positive trend and 5%, located mainly in the central region, revealed negative trends. Geographically weighted regression proved more efficient in identifying the most relevant physical and anthropogenic drivers of municipal wildfires in comparison with simple linear regression models. Topography, density of population, land cover and livestock were found to be significant in both ignition density and burnt area, although considerable variations were observed in municipal explanatory power. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Efficient Training of Supervised Spiking Neural Network via Accurate Synaptic-Efficiency Adjustment Method.

    PubMed

    Xie, Xiurui; Qu, Hong; Yi, Zhang; Kurths, Jurgen

    2017-06-01

    The spiking neural network (SNN) is the third generation of neural networks and performs remarkably well in cognitive tasks, such as pattern recognition. The temporal neural encode mechanism found in biological hippocampus enables SNN to possess more powerful computation capability than networks with other encoding schemes. However, this temporal encoding approach requires neurons to process information serially on time, which reduces learning efficiency significantly. To keep the powerful computation capability of the temporal encoding mechanism and to overcome its low efficiency in the training of SNNs, a new training algorithm, the accurate synaptic-efficiency adjustment method is proposed in this paper. Inspired by the selective attention mechanism of the primate visual system, our algorithm selects only the target spike time as attention areas, and ignores voltage states of the untarget ones, resulting in a significant reduction of training time. Besides, our algorithm employs a cost function based on the voltage difference between the potential of the output neuron and the firing threshold of the SNN, instead of the traditional precise firing time distance. A normalized spike-timing-dependent-plasticity learning window is applied to assigning this error to different synapses for instructing their training. Comprehensive simulations are conducted to investigate the learning properties of our algorithm, with input neurons emitting both single spike and multiple spikes. Simulation results indicate that our algorithm possesses higher learning performance than the existing other methods and achieves the state-of-the-art efficiency in the training of SNN.

  18. Subcellular, Cellular and Circuit Mechanisms underlying Classical Conditioning in Hermissenda crassicornis

    PubMed Central

    2009-01-01

    A breakthrough for studying the neuronal basis of learning emerged when invertebrates with simple nervous systems, such as the sea slug Hermissenda crassicornis, were shown to exhibit classical conditioning. Hermissenda learns to associate light with turbulence: prior to learning, naive animals move toward light (phototaxis) and contract their foot in response to turbulence; after learning, conditioned animals delay phototaxis in response to light. The photoreceptors of the eye, which receive monosynaptic inputs from statocyst hair cells, are both sensory neurons and the first site of sensory convergence. The memory of light associated with turbulence is stored as changes in intrinsic and synaptic currents in these photoreceptors. The subcellular mechanisms producing these changes include activation of protein kinase C and MAP kinase, which act as coincidence detectors because they are activated by convergent signaling pathways. Pathways of interneurons and motorneurons, where additional changes in excitability and synaptic connections are found, contribute to delayed phototaxis. Bursting activity recorded at several points suggest the existence of small networks that produce complex spatio-temporal firing patterns. Thus, the change in behavior may be produced by a non-linear transformation of spatio-temporal firing patterns caused by plasticity of synaptic and intrinsic channels. The change in currents and the activation of PKC and MAPK produced by associative learning are similar to that observed in hippocampal and cerebellar neurons after rabbit classical conditioning, suggesting that these represent general mechanisms of memory storage. Thus, the knowledge gained from further study of Hermissenda will continue to illuminate mechanisms of mammalian learning. PMID:16437555

  19. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons

    PubMed Central

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.

    2012-01-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464

  20. A Learning Theory for Reward-Modulated Spike-Timing-Dependent Plasticity with Application to Biofeedback

    PubMed Central

    Maass, Wolfgang

    2008-01-01

    Reward-modulated spike-timing-dependent plasticity (STDP) has recently emerged as a candidate for a learning rule that could explain how behaviorally relevant adaptive changes in complex networks of spiking neurons could be achieved in a self-organizing manner through local synaptic plasticity. However, the capabilities and limitations of this learning rule could so far only be tested through computer simulations. This article provides tools for an analytic treatment of reward-modulated STDP, which allows us to predict under which conditions reward-modulated STDP will achieve a desired learning effect. These analytical results imply that neurons can learn through reward-modulated STDP to classify not only spatial but also temporal firing patterns of presynaptic neurons. They also can learn to respond to specific presynaptic firing patterns with particular spike patterns. Finally, the resulting learning theory predicts that even difficult credit-assignment problems, where it is very hard to tell which synaptic weights should be modified in order to increase the global reward for the system, can be solved in a self-organizing manner through reward-modulated STDP. This yields an explanation for a fundamental experimental result on biofeedback in monkeys by Fetz and Baker. In this experiment monkeys were rewarded for increasing the firing rate of a particular neuron in the cortex and were able to solve this extremely difficult credit assignment problem. Our model for this experiment relies on a combination of reward-modulated STDP with variable spontaneous firing activity. Hence it also provides a possible functional explanation for trial-to-trial variability, which is characteristic for cortical networks of neurons but has no analogue in currently existing artificial computing systems. In addition our model demonstrates that reward-modulated STDP can be applied to all synapses in a large recurrent neural network without endangering the stability of the network dynamics. PMID:18846203

  1. Modern fire regime resembles historical fire regime in a ponderosa pine forest on Native American land

    Treesearch

    Amanda B. Stan; Peter Z. Fule; Kathryn B. Ireland; Jamie S. Sanderlin

    2014-01-01

    Forests on tribal lands in the western United States have seen the return of low-intensity surface fires for several decades longer than forests on non-tribal lands. We examined the surface fire regime in a ponderosa pinedominated (Pinus ponderosa) forest on the Hualapai tribal lands in the south-western United States. Using fire-scarred trees, we inferred temporal (...

  2. An event-based approach for examining the effects of wildland fire decisions on communities

    Treesearch

    Stephen F. McCool; James A. Burchfield; Daniel R. Williams; Matthew S. Carroll

    2006-01-01

    Public concern over the consequences of forest fire to wildland interface communities has led to increased resources devoted to fire suppression, fuel treatment, and management of fire events. The social consequences of the decisions involved in these and other fire-related actions are largely unknown, except in an anecdotal sense, but do occur at a variety of temporal...

  3. Noise focusing and the emergence of coherent activity in neuronal cultures

    NASA Astrophysics Data System (ADS)

    Orlandi, Javier G.; Soriano, Jordi; Alvarez-Lacalle, Enrique; Teller, Sara; Casademunt, Jaume

    2013-09-01

    At early stages of development, neuronal cultures in vitro spontaneously reach a coherent state of collective firing in a pattern of nearly periodic global bursts. Although understanding the spontaneous activity of neuronal networks is of chief importance in neuroscience, the origin and nature of that pulsation has remained elusive. By combining high-resolution calcium imaging with modelling in silico, we show that this behaviour is controlled by the propagation of waves that nucleate randomly in a set of points that is specific to each culture and is selected by a non-trivial interplay between dynamics and topology. The phenomenon is explained by the noise focusing effect--a strong spatio-temporal localization of the noise dynamics that originates in the complex structure of avalanches of spontaneous activity. Results are relevant to neuronal tissues and to complex networks with integrate-and-fire dynamics and metric correlations, for instance, in rumour spreading on social networks.

  4. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex.

    PubMed

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-07-06

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features.

  5. Dynamics and Physiological Roles of Stochastic Firing Patterns Near Bifurcation Points

    NASA Astrophysics Data System (ADS)

    Jia, Bing; Gu, Huaguang

    2017-06-01

    Different stochastic neural firing patterns or rhythms that appeared near polarization or depolarization resting states were observed in biological experiments on three nervous systems, and closely matched those simulated near bifurcation points between stable equilibrium point and limit cycle in a theoretical model with noise. The distinct dynamics of spike trains and interspike interval histogram (ISIH) of these stochastic rhythms were identified and found to build a relationship to the coexisting behaviors or fixed firing frequency of four different types of bifurcations. Furthermore, noise evokes coherence resonances near bifurcation points and plays important roles in enhancing information. The stochastic rhythms corresponding to Hopf bifurcation points with fixed firing frequency exhibited stronger coherence degree and a sharper peak in the power spectrum of the spike trains than those corresponding to saddle-node bifurcation points without fixed firing frequency. Moreover, the stochastic firing patterns changed to a depolarization resting state as the extracellular potassium concentration increased for the injured nerve fiber related to pathological pain or static blood pressure level increased for aortic depressor nerve fiber, and firing frequency decreased, which were different from the physiological viewpoint that firing frequency increased with increasing pressure level or potassium concentration. This shows that rhythms or firing patterns can reflect pressure or ion concentration information related to pathological pain information. Our results present the dynamics of stochastic firing patterns near bifurcation points, which are helpful for the identification of both dynamics and physiological roles of complex neural firing patterns or rhythms, and the roles of noise.

  6. Remote sensing fire and fuels in southern California

    Treesearch

    Philip Riggan; Lynn Wolden; Bob Tissell; David Weise; J. Coen

    2011-01-01

    Airborne remote sensing at infrared wavelengths has the potential to quantify large-fire properties related to energy release or intensity, residence time, fuel-consumption rate, rate of spread, and soil heating. Remote sensing at a high temporal rate can track fire-line outbreaks and acceleration and spotting ahead of a fire front. Yet infrared imagers and imaging...

  7. Towards the dynamic prediction of wildfire danger. Modeling temporal scenarios of fire-occurrence in Northeast Spain

    NASA Astrophysics Data System (ADS)

    Martín, Yago; Rodrigues, Marcos

    2017-04-01

    Up to date models of human-caused ignition probability have commonly been developed from a static or structural point of view, regardless of the time cycles that drive human behavior or environmental conditions. However, human drivers mostly have a temporal dimension, and fuel conditions are subjected to temporal changes as well, which is why a historical/temporal perspective is often required. Previous studies in the region suggest that human driving factors of wildfires have undergone significant shifts in inter-annual occurrence probability models, thus varying over time. On the other hand, an increasing role of environmental conditions has also been reported. This research comprehensively analyzes the intra-annual dimension of fire occurrence and fire-triggering factors using NW Spain as a test area, moving one-step forward towards achieving more accurate predictions, to ultimately develop dynamic predictive models. To this end, several intra-annual presence-only models have been calibrated, exploring seasonal variations of environmental conditions and short-term cycles of human activity (working- vs non-working days). Models were developed from accurately geolocated fire data in the 2008-2012 period, and GIS and remote sensing (MOD1A2 and MOD16) information . Specifically, 8 occurrence data subsets (scenarios) were constructed by splitting fire records into 4 seasons (winter, spring, summer and autumn) then separating each season into 2 new categories (working and non-working days). This allows analyzing the temporal variation of socioeconomic (urban- and agricultural-interfaces, transport and road networks, and human settlements) and environmental (fuel conditions) factors associated with occurrence. Models were calibrated applying the Maximum Entropy algorithm (MaxEnt). The MaxEnt algorithm was selected as it is the most widespread approach to deal with presence-only data, as may be the case of fire occurrence. The dependent variable for each scenario was created on a conceptual framework which assumed that there were no true cases of fire absence. Model accuracy was assessed using a cross-validation k-fold procedure, whereas variable importance was addressed using a jacknife approach combined with AUC estimation. Results reported model performances around 0.8 AUC in all temporal scenarios. In addition, large variability was observed in the contribution of explanatory factors, with accessibility variables and fuel conditions as key factors along models. Overall, we believe our approach is reliable enough to derive dynamic predictions of human-caused fire occurrence probability. To our knowledge, this is the first attempt to combine presence-only models based on XY located fire data, with remote sensing information and intra-annual scenarios also including cycles of human activity.

  8. Weak climatic control of stand-scale fire history during the late holocene.

    PubMed

    Gavin, Daniel G; Hu, Feng Sheng; Lertzman, Kenneth; Corbett, Peter

    2006-07-01

    Forest fire occurrence is affected by multiple controls that operate at local to regional scales. At the spatial scale of forest stands, regional climatic controls may be obscured by local controls (e.g., stochastic ignitions, topography, and fuel loads), but the long-term role of such local controls is poorly understood. We report here stand-scale (<100 ha) fire histories of the past 5000 years based on the analysis of sediment charcoal at two lakes 11 km apart in southeastern British Columbia. The two lakes are today located in similar subalpine forests, and they likely have experienced the same late-Holocene climatic changes because of their close proximity. We evaluated two independent properties of fire history: (1) fire-interval distribution, a measure of the overall incidence of fire, and (2) fire synchroneity, a measure of the co-occurrence of fire (here, assessed at centennial to millennial time scales due to the resolution of sediment records). Fire-interval distributions differed between the sites prior to, but not after, 2500 yr before present. When the entire 5000-yr period is considered, no statistical synchrony between fire-episode dates existed between the two sites at any temporal scale, but for the last 2500 yr marginal levels of synchrony occurred at centennial scales. Each individual fire record exhibited little coherency with regional climate changes. In contrast, variations in the composite record (average of both sites) matched variations in climate evidenced by late-Holocene glacial advances. This was probably due to the increased sample size and spatial extent represented by the composite record (up to 200 ha) plus increased regional climatic variability over the last several millennia, which may have partially overridden local, non-climatic controls. We conclude that (1) over past millennia, neighboring stands with similar modern conditions may have experienced different fire intervals and asynchronous patterns in fire episodes, likely because local controls outweighed the synchronizing effect of climate; (2) the influence of climate on fire occurrence is more strongly expressed when climatic variability is relatively great; and (3) multiple records from a region are essential if climate-fire relations are to be reliably described.

  9. Temporal-spatial distribution of American bison (Bison bison) in a tallgrass prairie fire mosaic

    USGS Publications Warehouse

    Schuler, K.L.; Leslie, David M.; Shaw, J.H.; Maichak, E.J.

    2006-01-01

    Fire and bison (Bison bison) are thought to be historically responsible for shaping prairie vegetation in North America. Interactions between temporal-spatial distributions of bison and prescribed burning protocols are important in current restoration of tallgrass prairies. We examined dynamics of bison distribution in a patch-burned tallgrass prairie in the south-central United States relative to bison group size and composition, and burn age and temporal distribution. Bison formed larger mixed groups during summer and smaller sexually segregated groups the rest of the year, and bison selected dormant-season burn patches in the 1st posture growing season most often during spring and summer. Large bison herds selecting recently burned areas resulted in seasonally variable and concentrated grazing pressure that may substantially alter site-specific vegetation. These dynamics must be considered when reintroducing bison and fire into tallgrass prairie because variable outcomes of floral richness and structural complexity are likely depending on temporal-spatial distribution of bison. ?? 2006 American Society of Mammalogists.

  10. LSA SAF Meteosat FRP Products: Part 2 - Evaluation and demonstration of use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Kaiser, J.

    2015-06-01

    Characterising the dynamics of landscape scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) on-board the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and northern and southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP dataset, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS), and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 and 65-77% respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35% over the Northern Africa region to 89% over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America, and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 Peloponnese wildfires within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS), as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring System (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions datasets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET AOD indicates that the former is overestimated by ∼ 20-30%, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those currently implemented as part of the Monitoring Atmospheric Composition and Climate (MACC) programme within the CAMS.

  11. Origin and evolution of circular waves and spirals in Dictyostelium discoideum territories.

    PubMed

    Pálsson, E; Cox, E C

    1996-02-06

    Randomly distributed Dictyostelium discoideum cells form cooperative territories by signaling to each other with cAMP. Cells initiate the process by sending out pulsatile signals, which propagate as waves. With time, circular and spiral patterns form. We show that by adding spatial and temporal noise to the levels of an important regulator of external cAMP levels, the cAMP phosphodiesterase inhibitor, we can explain the natural progression of the system from randomly firing cells to circular waves whose symmetries break to form double- and single- or multi-armed spirals. When phosphodiesterase inhibitor is increased with time, mimicking experimental data, the wavelength of the spirals shortens, and a proportion of them evolve into pairs of connected spirals. We compare these results to recent experiments, finding that the temporal and spatial correspondence between experiment and model is very close.

  12. Trends and causes of severity, size, and number of fires in northwestern California, USA.

    PubMed

    Miller, J D; Skinner, C N; Safford, H D; Knapp, E E; Ramirez, C M

    2012-01-01

    Research in the last several years has indicated that fire size and frequency are on the rise in western U.S. forests. Although fire size and frequency are important, they do not necessarily scale with ecosystem effects of fire, as different ecosystems have different ecological and evolutionary relationships with fire. Our study assessed trends and patterns in fire size and frequency from 1910 to 2008 (all fires > 40 ha), and the percentage of high-severity in fires from 1987 to 2008 (all fires > 400 ha) on the four national forests of northwestern California. During 1910-2008, mean and maximum fire size and total annual area burned increased, but we found no temporal trend in the percentage of high-severity fire during 1987-2008. The time series of severity data was strongly influenced by four years with region-wide lightning events that burned huge areas at primarily low-moderate severity. Regional fire rotation reached a high of 974 years in 1984 and fell to 95 years by 2008. The percentage of high-severity fire in conifer-dominated forests was generally higher in areas dominated by smaller-diameter trees than in areas with larger-diameter trees. For Douglas-fir forests, the percentage of high-severity fire did not differ significantly between areas that re-burned and areas that only burned once (10% vs. 9%) when re-burned within 30 years. Percentage of high-severity fire decreased to 5% when intervals between first and second fires were > 30 years. In contrast, in both mixed-conifer and fir/high-elevation conifer forests, the percentage of high-severity fire was less when re-burned within 30 years compared to first-time burned (12% vs. 16% for mixed conifer; 11% vs. 19% for fir/high-elevation conifer). Additionally, the percentage of high-severity fire did not differ whether the re-burn interval was less than or greater than 30 years. Years with larger fires and greatest area burned were produced by region-wide lightning events, and characterized by less winter and spring precipitation than years dominated by smaller human-ignited fires. Overall percentage of high-severity fire was generally less in years characterized by these region-wide lightning events. Our results suggest that, under certain conditions, wildfires could be more extensively used to achieve ecological and management objectives in northwestern California.

  13. Application of wildfire simulation methods to assess wildfire exposure in a Mediterranean fire-prone area (Sardinia, Italy)

    NASA Astrophysics Data System (ADS)

    Salis, M.; Ager, A.; Arca, B.; Finney, M.; Bacciu, V. M.; Spano, D.; Duce, P.

    2012-12-01

    Spatial and temporal patterns of fire spread and behavior are dependent on interactions among climate, topography, vegetation and fire suppression efforts (Pyne et al. 1996; Viegas 2006; Falk et al. 2007). Humans also play a key role in determining frequency and spatial distribution of ignitions (Bar Massada et al, 2011), and thus influence fire regimes as well. The growing incidence of catastrophic wildfires has led to substantial losses for important ecological and human values within many areas of the Mediterranean basin (Moreno et al. 1998; Mouillot et al. 2005; Viegas et al. 2006a; Riaño et al. 2007). The growing fire risk issue has led to many new programs and policies of fuel management and risk mitigation by environmental and fire agencies. However, risk-based methodologies to help identify areas characterized by high potential losses and prioritize fuel management have been lacking for the region. Formal risk assessment requires the joint consideration of likelihood, intensity, and susceptibility, the product of which estimates the chance of a specific loss (Brillinger 2003; Society of Risk Analysis, 2006). Quantifying fire risk therefore requires estimates of a) the probability of a specific location burning at a specific intensity and location, and b) the resulting change in financial or ecological value (Finney 2005; Scott 2006). When large fires are the primary cause of damage, the application of this risk formulation requires modeling fire spread to capture landscape properties that affect burn probability. Recently, the incorporation of large fire spread into risk assessment systems has become feasible with the development of high performance fire simulation systems (Finney et al. 2011) that permit the simulation of hundreds of thousands of fires to generate fine scale maps of burn probability, flame length, and fire size, while considering the combined effects of weather, fuels, and topography (Finney 2002; Andrews et al. 2007; Ager and Finney 2009; Finney et al. 2009; Salis et al. 2012 accepted). In this work, we employed wildfire simulation methods to quantify wildfire exposure to human and ecological values for the island of Sardinia, Italy. The work was focused on the risk and exposure posed by large fires (e.g. 100 - 10,000 ha), and considers historical weather, ignition patterns and fuels. We simulated 100,000 fires using burn periods that replicated the historical size distribution on the Island, and an ignition probability grid derived from historic ignition data. We then examine spatial variation in three exposure components (burn probability, flame length, fire size) among important human and ecological values. The results allowed us to contract exposure among and within the various features examined, and highlighted the importance of human factors in shaping wildfire exposure in Sardinia. The work represents the first application of burn probability modeling in the Mediterranean region, and sets the stage for expanded work in the region to quantify risk from large fires

  14. Development and analysis of a 12-year daily 1-km forest fire dataset across North America from NOAA/AVHRR

    Treesearch

    Ruiliang Pu; Zhanqing Li; Peng Gong; Ivan Csiszar; Robert Fraser; Wei-Min Hao; Shobha Kondragunta; Fuzhong Weng

    2007-01-01

    Fires in boreal and temperate forests play a significant role in the global carbon cycle. While forest fires in North America (NA) have been surveyed extensively by U.S. and Canadian forest services, most fire records are limited to seasonal statistics without information on temporal evolution and spatial expansion. Such dynamic information is crucial for modeling fire...

  15. Spatial products available for identifying areas of likely wildfire ignitions using lightning location data-Wildland Fire Assessment System (WFAS)

    Treesearch

    Paul Sopko; Larry Bradshaw; Matt Jolly

    2016-01-01

    The Wildland Fire Assessment System (WFAS, www.wfas.net) is a one-stop-shop giving wildland fire managers the ability to assess fire potential ranging in scale from national to regional and temporally from 1 to 5 days. Each day, broad-area maps are produced from fire weather station and lightning location networks. Three products are created using 24 hour...

  16. Long-term temporal changes in the occurrence of a high forest fire danger in Finland

    NASA Astrophysics Data System (ADS)

    Mäkelä, H. M.; Laapas, M.; Venäläinen, A.

    2012-08-01

    Climate variation and change influence several ecosystem components including forest fires. To examine long-term temporal variations of forest fire danger, a fire danger day (FDD) model was developed. Using mean temperature and total precipitation of the Finnish wildfire season (June-August), the model describes the climatological preconditions of fire occurrence and gives the number of fire danger days during the same time period. The performance of the model varied between different regions in Finland being best in south and west. In the study period 1908-2011, the year-to-year variation of FDD was large and no significant increasing or decreasing tendencies could be found. Negative slopes of linear regression lines for FDD could be explained by the simultaneous, mostly not significant increases in precipitation. Years with the largest wildfires did not stand out from the FDD time series. This indicates that intra-seasonal variations of FDD enable occurrence of large-scale fires, despite the whole season's fire danger is on an average level. Based on available monthly climate data, it is possible to estimate the general fire conditions of a summer. However, more detailed input data about weather conditions, land use, prevailing forestry conventions and socio-economical factors would be needed to gain more specific information about a season's fire risk.

  17. [Relationships of forest fire with lightning in Daxing' anling Mountains, Northeast China].

    PubMed

    Lei, Xiao-Li; Zhou, Guang-Sheng; Jia, Bing-Rui; Li, Shuai

    2012-07-01

    Forest fire is an important factor affecting forest ecosystem succession. Recently, forest fire, especially forest lightning fire, shows an increasing trend under global warming. To study the relationships of forest fire with lightning is essential to accurately predict the forest fire in time. Daxing' anling Mountains is a region with high frequency of forest lightning fire in China, and an important experiment site to study the relationships of forest fire with lightning. Based on the forest fire records and the corresponding lightning and meteorological observation data in the Mountains from 1966 to 2007, this paper analyzed the relationships of forest fire with lightning in this region. In the period of 1966-2007, both the lightning fire number and the fired forest area in this region increased significantly. The meteorological factors affecting the forest lighting fire were related to temporal scales. At yearly scale, the forest lightning fire was significantly correlated with precipitation, with a correlation coefficient of -0.489; at monthly scale, it had a significant correlation with air temperature, the correlation coefficient being 0.18. The relationship of the forest lightning fire with lightning was also related to temporal scales. At yearly scale, there was no significant correlation between them; at monthly scale, the forest lightning fire was strongly correlated with lightning and affected by precipitation; at daily scale, a positive correlation was observed between forest lightning fire and lightning when the precipitation was less than 5 mm. According to these findings, a fire danger index based on ADTD lightning detection data was established, and a forest lightning fire forecast model was developed. The prediction accuracy of this model for the forest lightning fire in Daxing' anling Mountains in 2005-2007 was > 80%.

  18. Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons.

    PubMed

    Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C; Bunney, Benjamin S; Peterson, Bradley S

    2012-11-01

    Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. © 2012 The Authors. European Journal of Neuroscience © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.

  19. Optimal balance of the striatal medium spiny neuron network.

    PubMed

    Ponzi, Adam; Wickens, Jeffery R

    2013-04-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of 10 ~ 20% and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around 15% connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics - it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation.

  20. Optimal Balance of the Striatal Medium Spiny Neuron Network

    PubMed Central

    Ponzi, Adam; Wickens, Jeffery R.

    2013-01-01

    Slowly varying activity in the striatum, the main Basal Ganglia input structure, is important for the learning and execution of movement sequences. Striatal medium spiny neurons (MSNs) form cell assemblies whose population firing rates vary coherently on slow behaviourally relevant timescales. It has been shown that such activity emerges in a model of a local MSN network but only at realistic connectivities of and only when MSN generated inhibitory post-synaptic potentials (IPSPs) are realistically sized. Here we suggest a reason for this. We investigate how MSN network generated population activity interacts with temporally varying cortical driving activity, as would occur in a behavioural task. We find that at unrealistically high connectivity a stable winners-take-all type regime is found where network activity separates into fixed stimulus dependent regularly firing and quiescent components. In this regime only a small number of population firing rate components interact with cortical stimulus variations. Around connectivity a transition to a more dynamically active regime occurs where all cells constantly switch between activity and quiescence. In this low connectivity regime, MSN population components wander randomly and here too are independent of variations in cortical driving. Only in the transition regime do weak changes in cortical driving interact with many population components so that sequential cell assemblies are reproducibly activated for many hundreds of milliseconds after stimulus onset and peri-stimulus time histograms display strong stimulus and temporal specificity. We show that, remarkably, this activity is maximized at striatally realistic connectivities and IPSP sizes. Thus, we suggest the local MSN network has optimal characteristics – it is neither too stable to respond in a dynamically complex temporally extended way to cortical variations, nor is it too unstable to respond in a consistent repeatable way. Rather, it is optimized to generate stimulus dependent activity patterns for long periods after variations in cortical excitation. PMID:23592954

  1. Interannual variations in fire weather, fire extent, and synoptic-scale circulation patterns in northern California and Oregon

    Treesearch

    Valerie Trouet; Alan H. Taylor; Andrew M. Carleton; Carl N. Skinner

    2009-01-01

    The Mediterranean climate region on the west coast of the United States is characterized by wet winters and dry summers, and by high fire activity. The importance of synoptic-scale circulation patterns (ENSO, PDO, PNA) on fire-climate interactions is evident in contemporary fire data sets and in pre-Euroamerican tree-ring-based fire records. We investigated how...

  2. Effect of prior disturbances on the extent and severity of wildfire in Colorado subalpine forests.

    PubMed

    Kulakowski, Dominik; Veblen, Thomas T

    2007-03-01

    Disturbances are important in creating spatial heterogeneity of vegetation patterns that in turn may affect the spread and severity of subsequent disturbances. Between 1997 and 2002 extensive areas of subalpine forests in northwestern Colorado were affected by a blowdown of trees, bark beetle outbreaks, and salvage logging. Some of these stands were also affected by severe fires in the late 19th century. During a severe drought in 2002, fires affected extensive areas of these subalpine forests. We evaluated and modeled the extent and severity of the 2002 fires in relation to these disturbances that occurred over the five years prior to the fires and in relation to late 19th century stand-replacing fires. Occurrence of disturbances prior to 2002 was reconstructed using a combination of tree-ring methods, aerial photograph interpretation, field surveys, and geographic information systems (GIS). The extent and severity of the 2002 fires were based on the normalized difference burn ratio (NDBR) derived from satellite imagery. GIS and classification trees were used to analyze the effects of prefire conditions on the 2002 fires. Previous disturbance history had a significant influence on the severity of the 2002 fires. Stands that were severely blown down (> 66% trees down) in 1997 burned more severely than other stands, and young (approximately 120 year old) postfire stands burned less severely than older stands. In contrast, prefire disturbances were poor predictors of fire extent, except that young (approximately 120 years old) postfire stands were less extensively burned than older stands. Salvage logging and bark beetle outbreaks that followed the 1997 blowdown (within the blowdown as well as in adjacent forest that was not blown down) did not appear to affect fire extent or severity. Conclusions regarding the influence of the beetle outbreaks on fire extent and severity are limited, however, by spatial and temporal limitations associated with aerial detection surveys of beetle activity. Thus, fire extent in these forests is largely independent of prefire disturbance history and vegetation conditions. In contrast, fire severity, even during extreme fire weather and in conjunction with a multiyear drought, is influenced by prefire stand conditions, including the history of previous disturbances.

  3. Neural coordination can be enhanced by occasional interruption of normal firing patterns: a self-optimizing spiking neural network model.

    PubMed

    Woodward, Alexander; Froese, Tom; Ikegami, Takashi

    2015-02-01

    The state space of a conventional Hopfield network typically exhibits many different attractors of which only a small subset satisfies constraints between neurons in a globally optimal fashion. It has recently been demonstrated that combining Hebbian learning with occasional alterations of normal neural states avoids this problem by means of self-organized enlargement of the best basins of attraction. However, so far it is not clear to what extent this process of self-optimization is also operative in real brains. Here we demonstrate that it can be transferred to more biologically plausible neural networks by implementing a self-optimizing spiking neural network model. In addition, by using this spiking neural network to emulate a Hopfield network with Hebbian learning, we attempt to make a connection between rate-based and temporal coding based neural systems. Although further work is required to make this model more realistic, it already suggests that the efficacy of the self-optimizing process is independent from the simplifying assumptions of a conventional Hopfield network. We also discuss natural and cultural processes that could be responsible for occasional alteration of neural firing patterns in actual brains. Copyright © 2014 Elsevier Ltd. All rights reserved.

  4. Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

    PubMed Central

    Teka, Wondimu; Marinov, Toma M.; Santamaria, Fidel

    2014-01-01

    The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation. PMID:24675903

  5. Combining satellite-based fire observations and ground-based lightning detections to identify lightning fires across the conterminous USA

    USGS Publications Warehouse

    Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2012-01-01

    Lightning fires are a common natural disturbance in North America, and account for the largest proportion of the area burned by wildfires each year. Yet, the spatiotemporal patterns of lightning fires in the conterminous US are not well understood due to limitations of existing fire databases. Our goal here was to develop and test an algorithm that combined MODIS fire detections with lightning detections from the National Lightning Detection Network to identify lightning fires across the conterminous US from 2000 to 2008. The algorithm searches for spatiotemporal conjunctions of MODIS fire clusters and NLDN detected lightning strikes, given a spatiotemporal lag between lightning strike and fire ignition. The algorithm revealed distinctive spatial patterns of lightning fires in the conterminous US While a sensitivity analysis revealed that the algorithm is highly sensitive to the two thresholds that are used to determine conjunction, the density of fires it detected was moderately correlated with ground based fire records. When only fires larger than 0.4 km2 were considered, correlations were higher and the root-mean-square error between datasets was less than five fires per 625 km2 for the entire study period. Our algorithm is thus suitable for detecting broad scale spatial patterns of lightning fire occurrence, and especially lightning fire hotspots, but has limited detection capability of smaller fires because these cannot be consistently detected by MODIS. These results may enhance our understanding of large scale patterns of lightning fire activity, and can be used to identify the broad scale factors controlling fire occurrence.

  6. Temporal redistribution of inhibition over neuronal subcellular domains underlies state-dependent rhythmic change of excitability in the hippocampus

    PubMed Central

    Somogyi, Peter; Katona, Linda; Klausberger, Thomas; Lasztóczi, Bálint; Viney, Tim J.

    2014-01-01

    The behaviour-contingent rhythmic synchronization of neuronal activity is reported by local field potential oscillations in the theta, gamma and sharp wave-related ripple (SWR) frequency ranges. In the hippocampus, pyramidal cell assemblies representing temporal sequences are coordinated by GABAergic interneurons selectively innervating specific postsynaptic domains, and discharging phase locked to network oscillations. We compare the cellular network dynamics in the CA1 and CA3 areas recorded with or without anaesthesia. All parts of pyramidal cells, except the axon initial segment, receive GABA from multiple interneuron types, each with distinct firing dynamics. The axon initial segment is exclusively innervated by axo-axonic cells, preferentially firing after the peak of the pyramidal layer theta cycle, when pyramidal cells are least active. Axo-axonic cells are inhibited during SWRs, when many pyramidal cells fire synchronously. This dual inverse correlation demonstrates the key inhibitory role of axo-axonic cells. Parvalbumin-expressing basket cells fire phase locked to field gamma activity in both CA1 and CA3, and also strongly increase firing during SWRs, together with dendrite-innervating bistratified cells, phasing pyramidal cell discharge. Subcellular domain-specific GABAergic innervation probably developed for the coordination of multiple glutamatergic inputs on different parts of pyramidal cells through the temporally distinct activity of GABAergic interneurons, which differentially change their firing during different network states. PMID:24366131

  7. Spatiotemporal activity patterns detected from single cell measurements from behaving animals

    NASA Astrophysics Data System (ADS)

    Villa, Alessandro E. P.; Tetko, Igor V.

    1999-03-01

    Precise temporal patterning of activity within and between neurons has been predicted on theoretical grounds, and found in the spike trains of neurons recorded from anesthetized and conscious animals, in association with sensor stimuli and particular phases of task performance. However, the functional significance of such patterning in the generation of behavior has not been confirmed. We recorded from multiple single neurons in regions of rat auditory cortex during the waiting period of a Go/NoGo task. During this time the animal waited for an auditory signal with high cognitive load. Of note is the fact that neural activity during the period analyzed was essentially stationary, with no event related variability in firing. Detected patterns therefore provide a measure of brain state that could not be addressed by standard methods relying on analysis of changes in mean discharge rate. The possibility is discussed that some patterns might reflect a preset bias to a particular response, formed in the waiting period. Others patterns might reflect a state of prior preparation of appropriate neural assemblies for analyzing a signal that is expected but of unknown behavioral valence.

  8. Monitoring of fire incidences in vegetation types and Protected Areas of India: Implications on carbon emissions

    NASA Astrophysics Data System (ADS)

    Reddy, C. Sudhakar; Padma Alekhya, V. V. L.; Saranya, K. R. L.; Athira, K.; Jha, C. S.; Diwakar, P. G.; Dadhwal, V. K.

    2017-02-01

    Carbon emissions released from forest fires have been identified as an environmental issue in the context of global warming. This study provides data on spatial and temporal patterns of fire incidences, burnt area and carbon emissions covering natural vegetation types (forest, scrub and grassland) and Protected Areas of India. The total area affected by fire in the forest, scrub and grasslands have been estimated as 48765.45, 6540.97 and 1821.33 km 2, respectively, in 2014 using Resourcesat-2 AWiFS data. The total CO 2 emissions from fires of these vegetation types in India were estimated to be 98.11 Tg during 2014. The highest emissions were caused by dry deciduous forests, followed by moist deciduous forests. The fire season typically occurs in February, March, April and May in different parts of India. Monthly CO 2 emissions from fires for different vegetation types have been calculated for February, March, April and May and estimated as 2.26, 33.53, 32.15 and 30.17 Tg, respectively. Protected Areas represent 11.46% of the total natural vegetation cover of India. Analysis of fire occurrences over a 10-year period with two types of sensor data, i.e., AWiFS and MODIS, have found fires in 281 (out of 614) Protected Areas of India. About 16.78 Tg of CO 2 emissions were estimated in Protected Areas in 2014. The natural vegetation types of Protected Areas have contributed for burnt area of 17.3% and CO 2 emissions of 17.1% as compared to total natural vegetation burnt area and emissions in India in 2014. 9.4% of the total vegetation in the Protected Areas was burnt in 2014. Our results suggest that Protected Areas have to be considered for strict fire management as an effective strategy for mitigating climate change and biodiversity conservation.

  9. Climate-induced variations in global wildfire danger from 1979 to 2013

    Treesearch

    W. Matt Jolly; Mark A. Cochrane; Patrick H. Freeborn; Zachary A. Holden; Timothy J. Brown; Grant J. Williamson; David M. J. S. Bowman

    2015-01-01

    Climate strongly influences global wildfire activity, and recent wildfire surges may signal fire weather-induced pyrogeographic shifts. Here we use three daily global climate data sets and three fire danger indices to develop a simple annual metric of fire weather season length, and map spatio-temporal trends from 1979 to 2013. We show that fire weather seasons have...

  10. Probability based models for estimation of wildfire risk

    Treesearch

    Haiganoush Preisler; D. R. Brillinger; R. E. Burgan; John Benoit

    2004-01-01

    We present a probability-based model for estimating fire risk. Risk is defined using three probabilities: the probability of fire occurrence; the conditional probability of a large fire given ignition; and the unconditional probability of a large fire. The model is based on grouped data at the 1 km²-day cell level. We fit a spatially and temporally explicit non-...

  11. Sensitivity to spatial and temporal scale and fire regime inputs in deriving fire regime condition class

    Treesearch

    Linda Tedrow; Wendel J. Hann

    2015-01-01

    The Fire Regime Condition Class (FRCC) is a composite departure measure that compares current vegetation structure and fire regime to historical reference conditions. FRCC is computed as the average of: 1) Vegetation departure (VDEP) and 2) Regime (frequency and severity) departure (RDEP). In addition to the FRCC rating, the Vegetation Condition Class (VCC) and Regime...

  12. Mapping day-of-burning with coarse-resolution satellite fire-detection data

    Treesearch

    Sean A. Parks

    2014-01-01

    Evaluating the influence of observed daily weather on observed fire-related effects (e.g. smoke production, carbon emissions and burn severity) often involves knowing exactly what day any given area has burned. As such, several studies have used fire progression maps ­ in which the perimeter of an actively burning fire is mapped at a fairly high temporal resolution -...

  13. Ecological foundations for fire management in North American forest and shrubland ecosystems

    Treesearch

    J.E. Keeley; G.H. Aplet; N.L. Christensen; S.G. Conard; E.A. Johnson; P.N. Omi; D.L. Peterson; T.W. Swetnam

    2009-01-01

    This synthesis provides an ecological foundation for management of the diverse ecosystems and fire regimes of North America based on scientific principles of fire interactions with vegetation, fuels, and biophysical processes. Although a large amount of scientific data on fire exists, most of those data have been collected at small spatial and temporal scales. Thus, it...

  14. Relationships between firing pattern, fuel consumption, and turbulence and energy exchange during prescribed fires

    Treesearch

    Kenneth L. ​Clark; Michael Gallagher; Warren E. Heilman; Nicholas Skowronski; Eric Mueller; Albert. Simeoni

    2017-01-01

    Fuel loading and consumption during prescribed fires are well-characterized for many pine-dominated forests, but relationships between firing practices, consumption of specific fuel components, and above-canopy turbulence and energy exchange have received less attention (Ottmar et al. 2016, Clements et al. 2016). However, quantitative information on how firing patterns...

  15. Spatial and Temporal Variability and Trends in 2001-2016 Global Fire Activity

    NASA Astrophysics Data System (ADS)

    Earl, Nick; Simmonds, Ian

    2018-03-01

    Fire regimes across the globe have great spatial and temporal variability, and these are influence by many factors including anthropogenic management, climate, and vegetation types. Here we utilize the satellite-based "active fire" product, from Moderate Resolution Imaging Spectroradiometer (MODIS) sensors, to statistically analyze variability and trends in fire activity from the global to regional scales. We split up the regions by economic development, region/geographical land use, clusters of fire-abundant areas, or by religious/cultural influence. Weekly cycle tests are conducted to highlight and quantify part of the anthropogenic influence on fire regime across the world. We find that there is a strong statistically significant decline in 2001-2016 active fires globally linked to an increase in net primary productivity observed in northern Africa, along with global agricultural expansion and intensification, which generally reduces fire activity. There are high levels of variability, however. The large-scale regions exhibit either little change or decreasing in fire activity except for strong increasing trends in India and China, where rapid population increase is occurring, leading to agricultural intensification and increased crop residue burning. Variability in Canada has been linked to a warming global climate leading to a longer growing season and higher fuel loads. Areas with a strong weekly cycle give a good indication of where fire management is being applied most extensively, for example, the United States, where few areas retain a natural fire regime.

  16. Repeated burning of eastern tallgrass prairie increases richness and diversity, stabilizing late successional vegetation.

    PubMed

    Bowles, Marlin L; Jones, Michael D

    2013-03-01

    Understanding temporal effects of fire frequency on plant species diversity and vegetation structure is critical for managing tallgrass prairie (TGP), which occupies a mid-continental longitudinal precipitation and productivity gradient. Eastern TGP has contributed little information toward understanding whether vegetation-fire interactions are uniform or change across this biome. We resampled 34 fire-managed mid- and late-successional ungrazed TGP remnants occurring across a dry to wet-mesic moisture gradient in the Chicago region of Illinois, USA. We compared hypotheses that burning acts either as a stabilizing force or causes change in diversity and structure, depending upon fire frequency and successional stage. Based on western TGP, we expected a unimodal species richness distribution across a cover-productivity gradient, variable functional group responses to fire frequency, and a negative relationship between fire frequency and species richness. Species diversity was unimodal across the cover gradient and was more strongly humpbacked in stands with greater fire frequency. In support of a stabilizing hypothesis, temporal similarity of late-successional vegetation had a logarithmic relationship with increasing fire frequency, while richness and evenness remained stable. Temporal similarity within mid-successional stands was not correlated with fire frequency, while richness increased and evenness decreased over time. Functional group responses to fire frequency were variable. Summer forb richness increased under high fire frequency, while C4 grasses, spring forbs, and nitrogen-fixing species decreased with fire exclusion. On mesic and wet-mesic sites, vegetation structure measured by the ratio of woody to graminoid species was negatively correlated with abundance of forbs and with fire frequency. Our findings that species richness responds unimodally to an environmental-productivity gradient, and that fire exclusion increases woody vegetation and leads to loss of C4 and N-fixing species, suggest that these processes are uniform across the TGP biome and not affected by its rainfall-productivity gradient. However, increasing fire frequency in eastern TGP appears to increase richness of summer forbs and stabilize late-successional vegetation in the absence of grazing, and these processes may differ across the longitudinal axis of TGP. Managing species diversity in ungrazed eastern TGP may be dependent upon high fire frequency that removes woody vegetation and prevents biomass accumulation.

  17. Mixed-severity fire fosters heterogeneous spatial patterns of conifer regeneration in a dry conifer forest

    Treesearch

    Sparkle L. Malone; Paula J. Fornwalt; Mike A. Battaglia; Marin E. Chambers; Jose M. Iniguez; Carolyn H. Sieg

    2018-01-01

    We examined spatial patterns of post-fire regenerating conifers in a Colorado, USA, dry conifer forest 11-12 years following the reintroduction of mixed-severity fire. We mapped and measured all post-fire regenerating conifers, as well as all other post-fire regenerating trees and all residual (i.e., surviving) trees, in three 4-ha plots following the 2002 Hayman Fire...

  18. Seasonal distribution of African savanna fires

    NASA Technical Reports Server (NTRS)

    Cahoon, Donald R., Jr.; Stocks, Brian J.; Levine, Joel S.; Cofer, Wesley R., III; O'Neill, Katherine P.

    1992-01-01

    The temporal and spatial distribution of savanna fires over the entire African continent, as determined from nighttime satellite imagery, is described. It is found that, contrary to expectations, most fires are left to burn uncontrolled, so that there is no strong diurnal cycle in the fire frequency. The knowledge gained from this study regarding the distribution and variability of fires is helpful in the monitoring of climatically important trace gases emitted from burning biomass.

  19. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    PubMed

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Differential Responses of Neotropical Mountain Forests to Climate Change during the Last Millenium

    NASA Astrophysics Data System (ADS)

    Figueroa-Rangel, B. L.; Olvera Vargas, M.

    2013-05-01

    The long-term perspective in the conservation of mountain ecosystems using palaeoecological and paleoclimatological techniques are providing with crucial information for the understanding of the temporal range and variability of ecological pattern and processes. This perception is contributing with means to anticipate future conditions of these ecosystems, especially their response to climate change. Neotropical mountain forests, created by a particular geological and climatic history in the Americas, represent one of the most distinctive ecosystems in the tropics which are constantly subject to disturbances included climate change. Mexico due to its geographical location between the convergence of temperate and tropical elements, its diverse physiography and climatic heterogeneity, contains neotropical ecosystems with high biodiversity and endemicity whose structure and taxonomical composition have changed along centurial to millennial scales. Different neotropical forests expand along the mountain chains of Mexico with particular responses along spatial and temporal scales. Therefore in order to capture these scales at fine resolution, sedimentary sequences from forest hollows were retrieved from three forest at different altitudes within 10 km; Pine forest (PF), Transitional forest (TF) and Cloud forest (CF). Ordination techniques were used to relate changes in vegetation with the environment every ~60 years. The three forests experience the effect of the dry stage ~AD 800-1200 related to the Medieval Warm Period reported for several regions of the world. CF contracted, PF expanded while the TF evolved from CF to a community dominated by dry-resistant epiphytes. Dry periods in PF and TF overlapped with the increase in fire occurrences while a dissimilar pattern took place in CF. Maize, Asteraceae and Poaceae were higher during dry intervals while epiphytes decreased. A humid period ~1200-1450 AD was associated with an expansion and a high taxa turnover in CF. During periods of aridity, temporal heterogeneity in the abundance of individual taxa was crucial in the determination of forest resilience following climate change, where some taxa disappeared for hundreds years and then reappeared when humidity returns. Given the global climate change prediction for neotropical forests where drier environments are expected, the long-term resilience of these ecosystems may be greatly reduced. Fire was determined as an essential natural component of the PF. Consequently conservation and management strategies should always regard fire as an important tool for its present and future perpetuation. CF is a vulnerable community, distinctive in temporal taxa composition, therefore site-specificity protection schemes are crucial for its future preservation.TF was a CF in the past developing into a Pinus-Carpinus-Quercus forest today. Given the present-day predictions of global warming, the goal in this forest is to avoid its conversion into an open-land establishing strict protection schemes.

  1. Modeling Fire Severity in Black Spruce Stands in the Alaskan Boreal Forest Using Spectral and Non-Spectral Geospatial Data

    NASA Technical Reports Server (NTRS)

    Barrett, K.; Kasischke, E. S.; McGuire, A. D.; Turetsky, M. R.; Kane, E. S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

  2. Modeling fire severity in black spruce stands in the Alaskan boreal forest using spectral and non-spectral geospatial data

    USGS Publications Warehouse

    Barrett, Kirsten M.; Kasischke, E.S.; McGuire, A.D.; Turetsky, M.R.; Kane, E.S.

    2010-01-01

    Biomass burning in the Alaskan interior is already a major disturbance and source of carbon emissions, and is likely to increase in response to the warming and drying predicted for the future climate. In addition to quantifying changes to the spatial and temporal patterns of burned areas, observing variations in severity is the key to studying the impact of changes to the fire regime on carbon cycling, energy budgets, and post-fire succession. Remote sensing indices of fire severity have not consistently been well-correlated with in situ observations of important severity characteristics in Alaskan black spruce stands, including depth of burning of the surface organic layer. The incorporation of ancillary data such as in situ observations and GIS layers with spectral data from Landsat TM/ETM+ greatly improved efforts to map the reduction of the organic layer in burned black spruce stands. Using a regression tree approach, the R2 of the organic layer depth reduction models was 0.60 and 0.55 (pb0.01) for relative and absolute depth reduction, respectively. All of the independent variables used by the regression tree to estimate burn depth can be obtained independently of field observations. Implementation of a gradient boosting algorithm improved the R2 to 0.80 and 0.79 (pb0.01) for absolute and relative organic layer depth reduction, respectively. Independent variables used in the regression tree model of burn depth included topographic position, remote sensing indices related to soil and vegetation characteristics, timing of the fire event, and meteorological data. Post-fire organic layer depth characteristics are determined for a large (N200,000 ha) fire to identify areas that are potentially vulnerable to a shift in post-fire succession. This application showed that 12% of this fire event experienced fire severe enough to support a change in post-fire succession. We conclude that non-parametric models and ancillary data are useful in the modeling of the surface organic layer fire depth. Because quantitative differences in post-fire surface characteristics do not directly influence spectral properties, these modeling techniques provide better information than the use of remote sensing data alone.

  3. Spatial and temporal patterns of wildfires in the Northern Alps

    NASA Astrophysics Data System (ADS)

    Heel, Michael; Sass, Oliver; Friedmann, Arne; Wetzel, Karl-Friedrich

    2010-05-01

    Wildfires in the northern Alps are rare compared to e.g. the Mediterranean region. However, fires occurring on the dry, south-exposed slopes of the inner-alpine valleys can constitute a significant disturbance of the ecosystems in the sub-alpine belt. We reconstructed the younger regional wildfire history (last few centuries) of a part of the the Northern Limestone Alps using chronicles, forestry and fire brigade records as well as historical pictures (postcards, aerial photos etc.), local names and interviews with local people. The long-term fire frequency was investigated using mire drillings, charcoal in soils and dendrochronology. In the surrounding of the Karwendel, Wetterstein and Mieminger Mountains we have identified c. 400 forest fires to date. The earliest detected fire dates to more than 2900 years; the largest one (in 1705) affected an area of several thousand hectares. Approximately 90% of the fires are man-made (negligence, arson, railway) which explains the concentration on the south-exposed slopes of the densely populated Inn valley. Most of the larger fires take place in the altitudinal belt between 1400 and 1900 m a.s.l.; apart from very few exceptions, they are restricted to southerly orientations. Locally, mean recurrence intervals of 200-300 years occur which is similar to e.g. boreal forests in Canada. We observed a strong seasonality with 40% of the fires occurring in spring and 30% in summer. There is a weak correlation with the weather conditions in the one or two weeks before the fire with dry periods promoting wildfire ignition and burnt area size; however, there are many exceptions from the rule. The 1940ies stands out for more than twice as much fires than in all other decades which is both due to climatic and anthropogenic causes. Today, there is an apparent trend towards more frequent and smaller fires. The frequency is biased by the multitude of available documentation today (e.g. websites of fire brigades), while the decreasing size is due to improved fire fighting. Additional first results of the charcoal records in soils and mires will be presented at the meeting.

  4. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    USGS Publications Warehouse

    McCarley, T. Ryan; Kolden, Crystal A.; Vaillant, Nicole M.; Hudak, Andrew T.; Smith, Alistair M.S.; Wing, Brian M.; Kellogg, Bryce; Kreitler, Jason R.

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots. While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often lacks validation with specific variables of change. Additional uncertainty remains regarding how best to account for environmental variables influencing fire effects (e.g., weather) for which observational data cannot easily be acquired, and whether pre-fire agents of change such as bark beetle and timber harvest impact model accuracy. This study quantifies wildfire effects by correlating changes in forest structure derived from multi-temporal Light Detection and Ranging (LiDAR) acquisitions to multi-temporal spectral changes captured by the Landsat Thematic Mapper and Operational Land Imager for the 2012 Pole Creek Fire in central Oregon. Spatial regression modeling was assessed as a methodology to account for spatial autocorrelation, and model consistency was quantified across areas impacted by pre-fire mountain pine beetle and timber harvest. The strongest relationship (pseudo-r2 = 0.86, p < 0.0001) was observed between the ratio of shortwave infrared and near infrared reflectance (d74) and LiDAR-derived estimate of canopy cover change. Relationships between percentage of LiDAR returns in forest strata and spectral indices generally increased in strength with strata height. Structural measurements made closer to the ground were not well correlated. The spatial regression approach improved all relationships, demonstrating its utility, but model performance declined across pre-fire agents of change, suggesting that such studies should stratify by pre-fire forest condition. This study establishes that spectral indices such as d74 and dNBR are most sensitive to wildfire-caused structural changes such as reduction in canopy cover and perform best when that structure has not been reduced pre-fire.

  5. Synchronicity and Rhythmicity of Purkinje Cell Firing during Generalized Spike-and-Wave Discharges in a Natural Mouse Model of Absence Epilepsy

    PubMed Central

    Kros, Lieke; Lindeman, Sander; Eelkman Rooda, Oscar H. J.; Murugesan, Pavithra; Bina, Lorenzo; Bosman, Laurens W. J.; De Zeeuw, Chris I.; Hoebeek, Freek E.

    2017-01-01

    Absence epilepsy is characterized by the occurrence of generalized spike and wave discharges (GSWDs) in electrocorticographical (ECoG) recordings representing oscillatory activity in thalamocortical networks. The oscillatory nature of GSWDs has been shown to be reflected in the simple spike activity of cerebellar Purkinje cells and in the activity of their target neurons in the cerebellar nuclei, but it is unclear to what extent complex spike activity is implicated in generalized epilepsy. Purkinje cell complex spike firing is elicited by climbing fiber activation and reflects action potential firing in the inferior olive. Here, we investigated to what extent modulation of complex spike firing is reflected in the temporal patterns of seizures. Extracellular single-unit recordings in awake, head-restrained homozygous tottering mice, which suffer from a mutation in the voltage-gated CaV2.1 calcium channel, revealed that a substantial proportion of Purkinje cells (26%) showed increased complex spike activity and rhythmicity during GSWDs. Moreover, Purkinje cells, recorded either electrophysiologically or by using Ca2+-imaging, showed a significant increase in complex spike synchronicity for both adjacent and remote Purkinje cells during ictal events. These seizure-related changes in firing frequency, rhythmicity and synchronicity were most prominent in the lateral cerebellum, a region known to receive cerebral input via the inferior olive. These data indicate profound and widespread changes in olivary firing that are most likely induced by seizure-related activity changes in the thalamocortical network, thereby highlighting the possibility that olivary neurons can compensate for pathological brain-state changes by dampening oscillations. PMID:29163057

  6. On wildfire complexity, simple models and environmental templates for fire size distributions

    NASA Astrophysics Data System (ADS)

    Boer, M. M.; Bradstock, R.; Gill, M.; Sadler, R.

    2012-12-01

    Vegetation fires affect some 370 Mha annually. At global and continental scales, fire activity follows predictable spatiotemporal patterns driven by gradients and seasonal fluctuations of primary productivity and evaporative demand that set constraints for fuel accumulation rates and fuel dryness, two key ingredients of fire. At regional scales, fires are also known to affect some landscapes more than others and within landscapes to occur preferentially in some sectors (e.g. wind-swept ridges) and rarely in others (e.g. wet gullies). Another common observation is that small fires occur relatively frequent yet collectively burn far less country than relatively infrequent large fires. These patterns of fire activity are well known to management agencies and consistent with their (informal) models of how the basic drivers and constraints of fire (i.e. fuels, ignitions, weather) vary in time and space across the landscape. The statistical behaviour of these landscape fire patterns has excited the (academic) research community by showing some consistency with that of complex dynamical systems poised at a phase transition. The common finding that the frequency-size distributions of actual fires follow power laws that resemble those produced by simple cellular models from statistical mechanics has been interpreted as evidence that flammable landscapes operate as self-organising systems with scale invariant fire size distributions emerging 'spontaneously' from simple rules of contagious fire spread and a strong feedback between fires and fuel patterns. In this paper we argue that the resemblance of simulated and actual fire size distributions is an example of equifinality, that is fires in model landscapes and actual landscapes may show similar statistical behaviour but this is reached by qualitatively different pathways or controlling mechanisms. We support this claim with two key findings regarding simulated fire spread mechanisms and fire-fuel feedbacks. Firstly, we demonstrate that the power law behaviour of fire size distributions in the widely used Drossel and Schwabl (1992) Forest Fire Model (FFM) is strictly conditional on simulating fire spread as a cell-to-cell contagion over a fixed distance; the invariant scaling of fire sizes breaks down under the slightest variation in that distance, suggesting that pattern formation in the FFM is irreconcilable with the reality of disparate rates and modes of fire spread observed in the field. Secondly, we review field evidence showing that fuel age effects on the probability of fire spread, a key assumption in simulation models like the FFM, do not generally apply across flammable environments. Finally, we explore alternative explanations for the formation of scale invariant fire sizes in real landscapes. Using observations from southern Australian forest regions we demonstrate that the spatiotemporal patterns of fuel dryness and magnitudes of fire driving weather events set strong environmental templates for regional fire size distributions.

  7. A preliminary study of wildland fire pattern indicator reliability following an experimental fire

    Treesearch

    Albert Simeoni; Zachary C. Owens; Erik W. Christiansen; Abid Kemal; Michael Gallagher; Kenneth L. Clark; Nicholas Skowronski; Eric V. Mueller; Jan C. Thomas; Simon Santamaria; Rory M. Hadden

    2017-01-01

    An experimental fire was conducted in 2016, in the Pinelands National Reserve of New Jersey, to assess the reliability of the fire pattern indicators used in wildland fire investigation. Objects were planted in the burn area to support the creation of the indicators. Fuel properties and environmental data were recorded. Video and infrared cameras were used to document...

  8. Spatial and temporal corroboration of a fire-scar-based fire history in a frequently burned ponderosa pine forest.

    PubMed

    Farris, Calvin A; Baisan, Christopher H; Falk, Donald A; Yool, Stephen R; Swetnam, Thomas W

    2010-09-01

    Fire scars are used widely to reconstruct historical fire regime parameters in forests around the world. Because fire scars provide incomplete records of past fire occurrence at discrete points in space, inferences must be made to reconstruct fire frequency and extent across landscapes using spatial networks of fire-scar samples. Assessing the relative accuracy of fire-scar fire history reconstructions has been hampered due to a lack of empirical comparisons with independent fire history data sources. We carried out such a comparison in a 2780-ha ponderosa pine forest on Mica Mountain in southern Arizona (USA) for the time period 1937-2000. Using documentary records of fire perimeter maps and ignition locations, we compared reconstructions of key spatial and temporal fire regime parameters developed from documentary fire maps and independently collected fire-scar data (n = 60 plots). We found that fire-scar data provided spatially representative and complete inventories of all major fire years (> 100 ha) in the study area but failed to detect most small fires. There was a strong linear relationship between the percentage of samples recording fire scars in a given year (i.e., fire-scar synchrony) and total area burned for that year (y = 0.0003x + 0.0087, r2 = 0.96). There was also strong spatial coherence between cumulative fire frequency maps interpolated from fire-scar data and ground-mapped fire perimeters. Widely reported fire frequency summary statistics varied little between fire history data sets: fire-scar natural fire rotations (NFR) differed by < 3 yr from documentary records (29.6 yr); mean fire return intervals (MFI) for large-fire years (i.e., > or = 25% of study area burned) were identical between data sets (25.5 yr); fire-scar MFIs for all fire years differed by 1.2 yr from documentary records. The known seasonal timing of past fires based on documentary records was furthermore reconstructed accurately by observing intra-annual ring position of fire scars and using knowledge of tree-ring growth phenology in the Southwest. Our results demonstrate clearly that representative landscape-scale fire histories can be reconstructed accurately from spatially distributed fire-scar samples.

  9. A comparison of effects from prescribed fires and wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks

    USGS Publications Warehouse

    Nesmith, C.B.; Caprio, Anthony C.; Pfaff, Anne H.; McGinnis, Thomas W.; Keeley, Jon E.

    2011-01-01

    Current goals for prescription burning are focused on measures of fuel consumption and changes in forest density. These benchmarks, however, do not address the extent to which prescription burning meets perceived ecosystem needs of heterogeneity in burning, both for overstory trees and understory herbs and shrubs. There are still questions about how closely prescribed fires mimic these patterns compared to natural wildfires. This study compared burn patterns of prescribed fires and managed unplanned wildfires to understand how the differing burning regimes affect ecosystem properties. Measures of forest structure and fire severity were sampled in three recent prescribed fires and three wildfires managed for resource objectives in Sequoia and Kings Canyon National Parks. Fine scale patterns of fire severity and heterogeneity were compared between fire types using ground-based measures of fire effects on fuels and overstory and understory vegetation. Prescribed fires and wildfires managed for resource objectives displayed similar patterns of overstory and understory fire severity, heterogeneity, and seedling and sapling survival. Variation among plots within the same fire was always greater than between fire types. Prescribed fires can provide burned landscapes that approximate natural fires in many ways. It is recognized that constraints placed on when wildfires managed for resource objectives are allowed to burn freely may bias the range of conditions that might have been experienced under more natural conditions. Therefore they may not exactly mimic natural wildfires. Overall, the similarity in fire effects that we observed between prescribed fires and managed wildfires indicate that despite the restrictions that are often placed on prescribed fires, they appear to be creating post-fire conditions that approximate natural fires when assessed on a fine spatial scale.

  10. Dynamic stereotypic responses of Basal Ganglia neurons to subthalamic nucleus high-frequency stimulation in the parkinsonian primate.

    PubMed

    Moran, Anan; Stein, Edward; Tischler, Hadass; Belelovsky, Katya; Bar-Gad, Izhar

    2011-01-01

    Deep brain stimulation (DBS) in the subthalamic nucleus (STN) is a well-established therapy for patients with severe Parkinson's disease (PD); however, its mechanism of action is still unclear. In this study we explored static and dynamic activation patterns in the basal ganglia (BG) during high-frequency macro-stimulation of the STN. Extracellular multi-electrode recordings were performed in primates rendered parkinsonian using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. Recordings were preformed simultaneously in the STN and the globus pallidus externus and internus. Single units were recorded preceding and during the stimulation. During the stimulation, STN mean firing rate dropped significantly, while pallidal mean firing rates did not change significantly. The vast majority of neurons across all three nuclei displayed stimulation driven modulations, which were stereotypic within each nucleus but differed across nuclei. The predominant response pattern of STN neurons was somatic inhibition. However, most pallidal neurons demonstrated synaptic activation patterns. A minority of neurons across all nuclei displayed axonal activation. Temporal dynamics were observed in the response to stimulation over the first 10 seconds in the STN and over the first 30 seconds in the pallidum. In both pallidal segments, the synaptic activation response patterns underwent delay and decay of the magnitude of the peak response due to short term synaptic depression. We suggest that during STN macro-stimulation the STN goes through a functional ablation as its upper bound on information transmission drops significantly. This notion is further supported by the evident dissociation between the stimulation driven pre-synaptic STN somatic inhibition and the post-synaptic axonal activation of its downstream targets. Thus, BG output maintains its firing rate while losing the deleterious effect of the STN. This may be a part of the mechanism leading to the beneficial effect of DBS in PD.

  11. Dynamic response and transfer function of social systems: A neuro-inspired model of collective human activity patterns.

    PubMed

    Lymperopoulos, Ilias N

    2017-10-01

    The interaction of social networks with the external environment gives rise to non-stationary activity patterns reflecting the temporal structure and strength of exogenous influences that drive social dynamical processes far from an equilibrium state. Following a neuro-inspired approach, based on the dynamics of a passive neuronal membrane, and the firing rate dynamics of single neurons and neuronal populations, we build a state-of-the-art model of the collective social response to exogenous interventions. In this regard, we analyze online activity patterns with a view to determining the transfer function of social systems, that is, the dynamic relationship between external influences and the resulting activity. To this end, first we estimate the impulse response (Green's function) of collective activity, and then we show that the convolution of the impulse response with a time-varying external influence field accurately reproduces empirical activity patterns. To capture the dynamics of collective activity when the generating process is in a state of statistical equilibrium, we incorporate into the model a noisy input convolved with the impulse response function, thus precisely reproducing the fluctuations of stationary collective activity around a resting value. The outstanding goodness-of-fit of the model results to empirical observations, indicates that the model explains human activity patterns generated by time-dependent external influences in various socio-economic contexts. The proposed model can be used for inferring the temporal structure and strength of external influences, as well as the inertia of collective social activity. Furthermore, it can potentially predict social activity patterns. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Modeling very large-fire occurrences over the continental United States from weather and climate forcing

    Treesearch

    R Barbero; J T Abatzoglou; E A Steel

    2014-01-01

    Very large-fires (VLFs) have widespread impacts on ecosystems, air quality, fire suppression resources, and in many regions account for a majority of total area burned. Empirical generalized linear models of the largest fires (>5000 ha) across the contiguous United States (US) were developed at ¡­60 km spatial and weekly temporal resolutions using solely atmospheric...

  13. Wildland fire emissions, carbon, and climate: wildland fire detection and burned area in the United States

    Treesearch

    Wei Min Hao; Narasimhan K. Larkin

    2014-01-01

    Biomass burning is a major source of greenhouse gases, aerosols, black carbon, and atmospheric pollutants that affects regional and global climate and air quality. The spatial and temporal extent of fires and the size of burned areas are critical parameters in the estimation of fire emissions. Tremendous efforts have been made in the past 12 years to characterize the...

  14. Litter and dead wood dynamics in ponderosa pine forests along a 160-year chronosequence.

    PubMed

    Hall, S A; Burke, I C; Hobbs, N T

    2006-12-01

    Disturbances such as fire play a key role in controlling ecosystem structure. In fire-prone forests, organic detritus comprises a large pool of carbon and can control the frequency and intensity of fire. The ponderosa pine forests of the Colorado Front Range, USA, where fire has been suppressed for a century, provide an ideal system for studying the long-term dynamics of detrital pools. Our objectives were (1) to quantify the long-term temporal dynamics of detrital pools; and (2) to determine to what extent present stand structure, topography, and soils constrain these dynamics. We collected data on downed dead wood, litter, duff (partially decomposed litter on the forest floor), stand structure, topographic position, and soils for 31 sites along a 160-year chronosequence. We developed a compartment model and parameterized it to describe the temporal trends in the detrital pools. We then developed four sets of statistical models, quantifying the hypothesized relationship between pool size and (1) stand structure, (2) topography, (3) soils variables, and (4) time since fire. We contrasted how much support each hypothesis had in the data using Akaike's Information Criterion (AIC). Time since fire explained 39-80% of the variability in dead wood of different size classes. Pool size increased to a peak as material killed by the fire fell, then decomposed rapidly to a minimum (61-85 years after fire for the different pools). It then increased, presumably as new detritus was produced by the regenerating stand. Litter was most strongly related to canopy cover (r2 = 77%), suggesting that litter fall, rather than decomposition, controls its dynamics. The temporal dynamics of duff were the hardest to predict. Detrital pool sizes were more strongly related to time since fire than to environmental variables. Woody debris peak-to-minimum time was 46-67 years, overlapping the range of historical fire return intervals (1 to > 100 years). Fires may therefore have burned under a wide range of fuel conditions, supporting the hypothesis that this region's fire regime was mixed severity.

  15. Spatial distribution of temporal dynamics in anthropogenic fires in miombo savanna woodlands of Tanzania.

    PubMed

    Tarimo, Beatrice; Dick, Øystein B; Gobakken, Terje; Totland, Ørjan

    2015-12-01

    Anthropogenic uses of fire play a key role in regulating fire regimes in African savannas. These fires contribute the highest proportion of the globally burned area, substantial biomass burning emissions and threaten maintenance and enhancement of carbon stocks. An understanding of fire regimes at local scales is required for the estimation and prediction of the contribution of these fires to the global carbon cycle and for fire management. We assessed the spatio-temporal distribution of fires in miombo woodlands of Tanzania, utilizing the MODIS active fire product and Landsat satellite images for the past ~40 years. Our results show that up to 50.6% of the woodland area is affected by fire each year. An early and a late dry season peak in wetter and drier miombo, respectively, characterize the annual fire season. Wetter miombo areas have higher fire activity within a shorter annual fire season and have shorter return intervals. The fire regime is characterized by small-sized fires, with a higher ratio of small than large burned areas in the frequency-size distribution (β = 2.16 ± 0.04). Large-sized fires are rare, and occur more frequently in drier than in wetter miombo. Both fire prevalence and burned extents have decreased in the past decade. At a large scale, more than half of the woodland area has less than 2 years of fire return intervals, which prevent the occurrence of large intense fires. The sizes of fires, season of burning and spatial extent of occurrence are generally consistent across time, at the scale of the current analysis. Where traditional use of fire is restricted, a reassessment of fire management strategies may be required, if sustainability of tree cover is a priority. In such cases, there is a need to combine traditional and contemporary fire management practices.

  16. Fire patterns in the Amazonian biome

    NASA Astrophysics Data System (ADS)

    Aragao, Luiz E. O. C.; Shimabukuro, Yosio E.; Lima, Andre; Anderson, Liana O.; Barbier, Nicolas; Saatchi, Sassan

    2010-05-01

    This paper aims to provide an overview of our recent findings on the interplay between climate and land use dynamics in defining fire patterns in Amazonia. Understanding these relationships is currently a fundamental concern for assessing the vulnerability of Amazonia to climate change and its potential for mitigating current increases in atmospheric greenhouse gases. Reducing carbon emissions from tropical deforestation and forest degradation (REDD), for instance, could contribute to a cumulative emission reduction of 13-50 billion tons of carbon (GtC) by 2100. In Amazonia, though, forest fires can release similar quantities of carbon to the atmosphere (~0.2 GtC yr-1) as deforestation alone. Therefore, to achieve carbon savings through REDD mechanism there is an urgent need of understanding and subsequently restraining related Amazonian fire drivers. In this study, we analyze satellite-derived monthly and annual time-series of fires, rainfall and deforestation in Amazonia to: (1) quantify the seasonal patterns and relationships between these variables; (2) quantify fire and rainfall anomalies to evaluate the impact of recent drought on fire patterns; (3) quantify recent trends in fire and deforestation to understand how land use affects fire patterns in Amazonia. Our results demonstrate a marked seasonality of fires. The majority of fires occurs along the Arc of Deforestation, the expanding agricultural frontier in southern and eastern Amazonia, indicating humans are the major ignition sources determining fire seasonality, spatial distribution and long-term patterns. There is a marked seasonality of fires, which is highly correlated (p<0.05) with monthly rainfall and deforestation rates. Deforestation and fires reach their highest values three and six months, respectively, after the peak of the rainy season. This result clearly describes the impact of major human activities on fire incidence, which is generally characterized by the slash-and-burn of Amazonian vegetation for implementation of pastures and agricultural fields. The cumulative number of hot pixels is exponentially related to the monthly rainfall, which ultimately defines where and when fire can potentially strike. During the 2005 Amazonian drought, the number of hot pixels increased 33% in relation to mean 1998-2005. However, even with a large fraction of the basin experiencing considerable water deficits, fires have only affect areas with extensive human activity. Our spatially explicit trend analysis on deforestation and fire data revealed that more than half of the area experiencing increased fire occurrence have reduced deforestation rates. This reverse pattern is likely to be associated with the slash-and-burn of secondary forests and the increase of fragmentation and forest edges, favouring the leakage of fires from deforested lands into forests. Finally, our analysis points towards a reduction of fire incidence due to land use intensification in this region. In this study, we demonstrated that anthropogenic forcing, such as deforestation rates, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region exacerbating human impacts in Amazonia. Due to ongoing deforestation and the predicted intensification of climate change induced droughts, it is anticipated that a large area of forest edge will be under increased risk of fires and carbon savings from REDD may be partially offset by increased emissions following fire events. Improved fire-free land management practices may provide a sustainable solution for reducing emissions from the world's largest rainforest. Acknowledges The first author would like to thank the financial support of the Natural Environment Research Council (NERC-UK/grant NE/F015356/1).

  17. [Multi-channel in vivo recording techniques: analysis of phase coupling between spikes and rhythmic oscillations of local field potentials].

    PubMed

    Wang, Ce-Qun; Chen, Qiang; Zhang, Lu; Xu, Jia-Min; Lin, Long-Nian

    2014-12-25

    The purpose of this article is to introduce the measurements of phase coupling between spikes and rhythmic oscillations of local field potentials (LFPs). Multi-channel in vivo recording techniques allow us to record ensemble neuronal activity and LFPs simultaneously from the same sites in the brain. Neuronal activity is generally characterized by temporal spike sequences, while LFPs contain oscillatory rhythms in different frequency ranges. Phase coupling analysis can reveal the temporal relationships between neuronal firing and LFP rhythms. As the first step, the instantaneous phase of LFP rhythms can be calculated using Hilbert transform, and then for each time-stamped spike occurred during an oscillatory epoch, we marked instantaneous phase of the LFP at that time stamp. Finally, the phase relationships between the neuronal firing and LFP rhythms were determined by examining the distribution of the firing phase. Phase-locked spikes are revealed by the non-random distribution of spike phase. Theta phase precession is a unique phase relationship between neuronal firing and LFPs, which is one of the basic features of hippocampal place cells. Place cells show rhythmic burst firing following theta oscillation within a place field. And phase precession refers to that rhythmic burst firing shifted in a systematic way during traversal of the field, moving progressively forward on each theta cycle. This relation between phase and position can be described by a linear model, and phase precession is commonly quantified with a circular-linear coefficient. Phase coupling analysis helps us to better understand the temporal information coding between neuronal firing and LFPs.

  18. Predicting fire activity in the US over the next 50 years using new IPCC climate projections

    NASA Astrophysics Data System (ADS)

    Wang, D.; Morton, D. C.; Collatz, G. J.

    2012-12-01

    Fire is an integral part of the Earth system with both direct and indirect effects on terrestrial ecosystems, the atmosphere, and human societies (Bowman et al. 2009). Climate conditions regulate fire activities through a variety of ways, e.g., influencing the conditions for ignition and fire spread, changing vegetation growth and decay and thus the accumulation of fuels for combustion (Arora and Boer 2005). Our recent study disclosed the burned area (BA) in US is strongly correlated with potential evaporation (PE), a measurement of climatic dryness derived from National Centers for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR) climate data (Morton et al. 2012). The correlation varies spatially and temporally. With regard to fire of peak fire seasons, Northwestern US, Great Plains and Alaska have the strongest BA/PE relationship. Using the recently released the Global Fire Emissions Database (GFED) Version 3 (van der Werf et al. 2010), we showed increasing BA in the last decade in most of NCA regions. Longer time series of Monitoring Trends in Burn Severity (MTBS) (Eidenshink et al. 2007) data showed the increasing trends occurred in all NCA regions from 1984 to 2010. This relationship between BA and PE provides us the basis to predict the future fire activities in the projected climate conditions. In this study, we build spatially explicit predictors using the historic PE/BA relationship. PE from 2011 to 2060 is calculated from the Coupled Model Intercomparison Project Phase 5 (CMIP5) data and the historic PE/BA relationship is then used to estimate BA. This study examines the spatial pattern and temporal dynamics of the future US fires driven by new climate predictions for the next 50 years. Reference: Arora, V.K., & Boer, G.J. (2005). Fire as an interactive component of dynamic vegetation models. Journal of Geophysical Research-Biogeosciences, 110 Bowman, D.M.J.S., Balch, J.K., Artaxo, P., Bond, W.J., Carlson, J.M., Cochrane, M.A., D'Antonio, C.M., DeFries, R.S., Doyle, J.C., Harrison, S.P., Johnston, F.H., Keeley, J.E., Krawchuk, M.A., Kull, C.A., Marston, J.B., Moritz, M.A., Prentice, I.C., Roos, C.I., Scott, A.C., Swetnam, T.W., van der Werf, G.R., & Pyne, S.J. (2009). Fire in the Earth System. Science, 324, 481-484 Eidenshink, J., Schwind, B., Brewer, K., Zhu, Z.-L., Quayle, B., & Howard, S. (2007). A project for monitoring trends in burn severity. Fire Ecology Special Issue, 3 Morton, D.C., Collatz, G.J., Wang, D., Randerson, J.T., Giglio, L., & Chen, Y. (2012). Satellite-based assessment of climate controls on US burned area. Biogeosciences Discussion, 9, 7853-7892 van der Werf, G.R., Randerson, J.T., Giglio, L., Collatz, G.J., Mu, M., Kasibhatla, P.S., Morton, D.C., DeFries, R.S., Jin, Y., & van Leeuwen, T.T. (2010). Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmospheric Chemistry and Physics, 10, 11707-11735

  19. Sequentially switching cell assemblies in random inhibitory networks of spiking neurons in the striatum.

    PubMed

    Ponzi, Adam; Wickens, Jeff

    2010-04-28

    The striatum is composed of GABAergic medium spiny neurons with inhibitory collaterals forming a sparse random asymmetric network and receiving an excitatory glutamatergic cortical projection. Because the inhibitory collaterals are sparse and weak, their role in striatal network dynamics is puzzling. However, here we show by simulation of a striatal inhibitory network model composed of spiking neurons that cells form assemblies that fire in sequential coherent episodes and display complex identity-temporal spiking patterns even when cortical excitation is simply constant or fluctuating noisily. Strongly correlated large-scale firing rate fluctuations on slow behaviorally relevant timescales of hundreds of milliseconds are shown by members of the same assembly whereas members of different assemblies show strong negative correlation, and we show how randomly connected spiking networks can generate this activity. Cells display highly irregular spiking with high coefficients of variation, broadly distributed low firing rates, and interspike interval distributions that are consistent with exponentially tailed power laws. Although firing rates vary coherently on slow timescales, precise spiking synchronization is absent in general. Our model only requires the minimal but striatally realistic assumptions of sparse to intermediate random connectivity, weak inhibitory synapses, and sufficient cortical excitation so that some cells are depolarized above the firing threshold during up states. Our results are in good qualitative agreement with experimental studies, consistent with recently determined striatal anatomy and physiology, and support a new view of endogenously generated metastable state switching dynamics of the striatal network underlying its information processing operations.

  20. Wildfire patterns and landscape changes in Mediterranean oak woodlands.

    PubMed

    Guiomar, N; Godinho, S; Fernandes, P M; Machado, R; Neves, N; Fernandes, J P

    2015-12-01

    Fire is infrequent in the oak woodlands of southern Portugal (montado) but large and severe fires affected these agro-forestry systems in 2003-2005. We hypothesised transition from forest to shrubland as a fire-driven process and investigated the links between fire incidence and montado change to other land cover types, particularly those related with the presence of pioneer communities (generically designed in this context as "transitions to early-successional communities"). We present a landscape-scale framework for assessing the probability of transition from montado to pioneer communities, considering three sets of explanatory variables: montado patterns in 1990 and prior changes from montado to early-successional communities (occurred between 1960 and 1990), fire patterns, and spatial factors. These three sets of factors captured 78.2% of the observed variability in the transitions from montado to pioneer vegetation. The contributions of fire patterns and spatial factors were high, respectively 60.6% and 43.4%, the influence of montado patterns and former changes in montado being lower (34.4%). The highest amount of explained variation in the occurrence of transitions from montado to early-successional communities was related to the pure effect of fire patterns (19.9%). Low spatial connectedness in montado landscape can increase vulnerability to changes, namely to pioneer vegetation, but the observed changes were mostly explained by fire characteristics and spatial factors. Among all metrics used to characterize fire patterns and extent, effective mesh size provided the best modelling results. Transitions from montado to pioneer communities are more likely in the presence of high values of the effective mesh size of total burned area. This cross-boundary metric is an indicator of the influence of large fires in the distribution of the identified transitions and, therefore, we conclude that the occurrence of large fires in montado increases its probability of transition to shrubland. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Mapping Fuel Loads and Dynamics in Rangelands Using Multi-Sensor Data in the Great Basin, USA

    NASA Astrophysics Data System (ADS)

    Li, Z.; Shi, H.; Vogelmann, J. E.; Hawbaker, T. J.; Reeves, M. C.

    2016-12-01

    Fuel conditions in rangelands are influenced by disturbances such as wildfires, and is also strongly controlled by weather and climate. These factors impact the availability of fuel loads, which is the key component to stimulate burned area and severity. In this paper, we developed an approach for mapping live fuel loads (biomass density) and their dynamics using field collection, Landsat 8, and MODIS data sets at a spatial resolution of 30 m from the growing season. Using the Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) modelling process, we generated monthly shrub and grassland greenness levels for 2015. The spatial resolution of Landsat and the temporal resolution of MODIS complimented each other to allow us to produce monthly products. Understanding the dynamics of these greenness patterns helps the fire management community to recognize areas that have high likelihood of burning in the future, thus enabling them to anticipate and plan accordingly. We obtained field biomass information from selected shrub and grass sites located throughout the Great Basin. This information was used to calibrate fire models and generate remotely-sensed data sets. We then used Landsat 8 NDVI dates representing the phenological profile, regression tree models, and product validation. The calculated fuel loads were further examined and validated using high resolution images (World View 2/3), field measurements, and Google Earth. Once we have the requisite image data converted to biomass, we anticipate fire conditions and behavior using various models developed by the fire community. One key element is to use information from this study to improve and inform the Rangeland Vegetation Simulator. Finally, we analyzed the correlations of fire occurrence (frequency) and burn severity with live fuel loads and climate conditions. Our results show modeled fuel loads and their dynamics in rangelands capture the spatiotemporal heterogeneity of non-forest live fuel types and the variations in both wildfire disturbances and climate/weather conditions. This suggests the developed approach to map fuel loads is robust and can improve the existing LANDFIRE fuel data in rangelands. It can also be used to monitor the changes in fuel conditions in response to management activities and climate change.

  2. LSA SAF Meteosat FRP products - Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS)

    NASA Astrophysics Data System (ADS)

    Roberts, G.; Wooster, M. J.; Xu, W.; Freeborn, P. H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J. W.

    2015-11-01

    Characterising the dynamics of landscape-scale wildfires at very high temporal resolutions is best achieved using observations from Earth Observation (EO) sensors mounted onboard geostationary satellites. As a result, a number of operational active fire products have been developed from the data of such sensors. An example of which are the Fire Radiative Power (FRP) products, the FRP-PIXEL and FRP-GRID products, generated by the Land Surface Analysis Satellite Applications Facility (LSA SAF) from imagery collected by the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard the Meteosat Second Generation (MSG) series of geostationary EO satellites. The processing chain developed to deliver these FRP products detects SEVIRI pixels containing actively burning fires and characterises their FRP output across four geographic regions covering Europe, part of South America and Northern and Southern Africa. The FRP-PIXEL product contains the highest spatial and temporal resolution FRP data set, whilst the FRP-GRID product contains a spatio-temporal summary that includes bias adjustments for cloud cover and the non-detection of low FRP fire pixels. Here we evaluate these two products against active fire data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and compare the results to those for three alternative active fire products derived from SEVIRI imagery. The FRP-PIXEL product is shown to detect a substantially greater number of active fire pixels than do alternative SEVIRI-based products, and comparison to MODIS on a per-fire basis indicates a strong agreement and low bias in terms of FRP values. However, low FRP fire pixels remain undetected by SEVIRI, with errors of active fire pixel detection commission and omission compared to MODIS ranging between 9-13 % and 65-77 % respectively in Africa. Higher errors of omission result in greater underestimation of regional FRP totals relative to those derived from simultaneously collected MODIS data, ranging from 35 % over the Northern Africa region to 89 % over the European region. High errors of active fire omission and FRP underestimation are found over Europe and South America and result from SEVIRI's larger pixel area over these regions. An advantage of using FRP for characterising wildfire emissions is the ability to do so very frequently and in near-real time (NRT). To illustrate the potential of this approach, wildfire fuel consumption rates derived from the SEVIRI FRP-PIXEL product are used to characterise smoke emissions of the 2007 "mega-fire" event focused on Peloponnese (Greece) and used within the European Centre for Medium-Range Weather Forecasting (ECMWF) Integrated Forecasting System (IFS) as a demonstration of what can be achieved when using geostationary active fire data within the Copernicus Atmosphere Monitoring Service (CAMS). Qualitative comparison of the modelled smoke plumes with MODIS optical imagery illustrates that the model captures the temporal and spatial dynamics of the plume very well, and that high temporal resolution emissions estimates such as those available from a geostationary orbit are important for capturing the sub-daily variability in smoke plume parameters such as aerosol optical depth (AOD), which are increasingly less well resolved using daily or coarser temporal resolution emissions data sets. Quantitative comparison of modelled AOD with coincident MODIS and AERONET (Aerosol Robotic Network) AOD indicates that the former is overestimated by ~ 20-30 %, but captures the observed AOD dynamics with a high degree of fidelity. The case study highlights the potential of using geostationary FRP data to drive fire emissions estimates for use within atmospheric transport models such as those implemented in the Monitoring Atmospheric Composition and Climate (MACC) series of projects for the CAMS.

  3. Using tree recruitment patterns and fire history to guide restoration of an unlogged ponderosa pine/Douglas-fir landscape in the southern Rocky Mountains after a century of fire suppression

    Treesearch

    Merrill R. Kaufmann; Laurie S. Huckaby; Paula J. Fornwalt; Jason M. Stoker; William H. Romme

    2003-01-01

    Tree age and fire history were studied in an unlogged ponderosa pine/Douglas-fir (Pinus ponderosa/Pseudotsuga menziesii) landscape in the Colorado Front Range mountains. These data were analysed to understand tree survival during fire and post-fire recruitment patterns after fire, as a basis for understanding the characteristics of, and restoration needs for, an...

  4. Characterizing fire-related spatial patterns in fire-prone ecosystems using optical and microwave remote sensing

    NASA Astrophysics Data System (ADS)

    Henry, Mary Catherine

    The use of active and passive remote sensing systems for relating forest spatial patterns to fire history was tested over one of the Arizona Sky Islands. Using Landsat Thematic Mapper (TM), Shuttle Imaging Radar (SIR-C), and data fusion I examined the relationship between landscape metrics and a range of fire history characteristics. Each data type (TM, SIR-C, and fused) was processed in the following manner: each band, channel, or derived feature was simplified to a thematic layer and landscape statistics were calculated for plots with known fire history. These landscape metrics were then correlated with fire history characteristics, including number of fire-free years in a given time period, mean fire-free interval, and time since fire. Results from all three case studies showed significant relationships between fire history and forest spatial patterns. Data fusion performed as well or better than Landsat TM alone, and better than SIR-C alone. These comparisons were based on number and strength of significant correlations each method achieved. The landscape metric that was most consistent and obtained the greatest number of significant correlations was Shannon's Diversity Index. Results also agreed with field-based research that has linked higher fire frequency to increased landscape diversity and patchiness. An additional finding was that the fused data seem to detect fire-related spatial patterns over a range of scales.

  5. Grand challenges in developing a predictive understanding of global fire dynamics

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.; Chen, Y.; Wiggins, E. B.; Andela, N.; Morton, D. C.; Veraverbeke, S.; van der Werf, G.

    2017-12-01

    High quality satellite observations of burned area and fire thermal anomalies over the past two decades have transformed our understanding of climate, ecosystem, and human controls on the spatial and temporal distribution of landscape fires. The satellite observations provide evidence for a rapid and widespread loss of fire from grassland and savanna ecosystems worldwide. Continued expansion of industrial agriculture suggests that observed declines in global burned area are likely to continue in future decades, with profound consequences for ecosystem function and the habitat of many endangered species. Satellite time series also highlight the importance of El Niño-Southern Oscillation and other climate modes as drivers of interannual variability. In many regions, lead times between climate indices and fire activity are considerable, enabling the development of early warning prediction systems for fire season severity. With the recent availability of high-resolution observations from Suomi NPP, Landsat 8, and Sentinel 2, the field of global fire ecology is poised to make even more significant breakthroughs over the next decade. With these new observations, it may be possible to reduce uncertainties in the spatial pattern of burned area by several fold. It is difficult to overstate the importance of these new data constraints for improving our understanding of fire impacts on human health and radiative forcing of climate change. A key research challenge in this context is to understand how the loss of global burned area will affect magnitude of the terrestrial carbon sink and trends in atmospheric composition. Advances in prognostic fire modeling will require new approaches linking agriculture with landscape fire dynamics. A critical need in this context is the development of predictive models of road networks and other drivers of land fragmentation, and a closer integration of fragmentation information with algorithms predicting fire spread. Concurrently, a better representation of the influence of livestock on fuels and fire management is essential for modeling long-term trends. In northern ecosystems, climate-driven changes in lightning ignition may accelerate the northward migration of boreal forests into arctic tundra, increasing the vulnerability of permafrost carbon.

  6. A multivariate model of plant species richness in forested systems: Old-growth montane forests with a long history of fire

    USGS Publications Warehouse

    Laughlin, D.C.; Grace, J.B.

    2006-01-01

    Recently, efforts to develop multivariate models of plant species richness have been extended to include systems where trees play important roles as overstory elements mediating the influences of environment and disturbance on understory richness. We used structural equation modeling to examine the relationship of understory vascular plant species richness to understory abundance, forest structure, topographic slope, and surface fire history in lower montane forests on the North Rim of Grand Canyon National Park, USA based on data from eighty-two 0.1 ha plots. The questions of primary interest in this analysis were: (1) to what degree are influences of trees on understory richness mediated by effects on understory abundance? (2) To what degree are influences of fire history on richness mediated by effects on trees and/or understory abundance? (3) Can the influences of fire history on this system be related simply to time-since-fire or are there unique influences associated with long-term fire frequency? The results we obtained are consistent with the following inferences. First, it appears that pine trees had a strong inhibitory effect on the abundance of understory plants, which in turn led to lower understory species richness. Second, richness declined over time since the last fire. This pattern appears to result from several processes, including (1) a post-fire stimulation of germination, (2) a decline in understory abundance, and (3) an increase over time in pine abundance (which indirectly leads to reduced richness). Finally, once time-since-fire was statistically controlled, it was seen that areas with higher fire frequency have lower richness than expected, which appears to result from negative effects on understory abundance, possibly by depletions of soil nutrients from repeated surface fire. Overall, it appears that at large temporal and spatial scales, surface fire plays an important and complex role in structuring understory plant communities in old-growth montane forests. These results show how multivariate models of herbaceous richness can be expanded to apply to forested systems. Copyright ?? Oikos 2006.

  7. Method of locating underground mines fires

    DOEpatents

    Laage, Linneas; Pomroy, William

    1992-01-01

    An improved method of locating an underground mine fire by comparing the pattern of measured combustion product arrival times at detector locations with a real time computer-generated array of simulated patterns. A number of electronic fire detection devices are linked thru telemetry to a control station on the surface. The mine's ventilation is modeled on a digital computer using network analysis software. The time reguired to locate a fire consists of the time required to model the mines' ventilation, generate the arrival time array, scan the array, and to match measured arrival time patterns to the simulated patterns.

  8. Spatio-Temporal Trends of Fire in Slash and Burn Agriculture Landscape: A Case Study from Nagaland, India

    NASA Astrophysics Data System (ADS)

    Padalia, H.; Mondal, P. P.

    2014-11-01

    Increasing incidences of fire from land conversion and residue burning in tropics is the major concern in global warming. Spatial and temporal monitoring of trends of fire incidences is, therefore, significant in order to determine contribution of carbon emissions from slash and burn agriculture. In this study, we analyzed time-series Terra / Aqua MODIS satellite hotspot products from 2001 to 2013 to derive intra- and inter-annual trends in fire incidences in Nagaland state, located in the Indo-Burma biodiversity hotspot. Time-series regression was applied to MODIS fire products at variable spatial scales in GIS. Significance of change in fire frequency at each grid level was tested using t statistic. Spatial clustering of higher or lower fire incidences across study area was determined using Getis-OrdGi statistic. Maximum fire incidences were encountered in moist mixed deciduous forests (46%) followed by secondary moist bamboo brakes (30%). In most parts of the study area fire incidences peaked during March while in warmer parts (e.g. Mon district dominated by indigenous people) fire activity starts as early as during November and peaks in January. Regression trend analysis captured noticeable areas with statistically significant positive (e.g. Mokokchung, Wokha, Mon, Tuensang and Kiphire districts) and negative (e.g. Kohima and north-western part of Mokokchung district) inter-annual fire frequency trends based on area-based aggregation of fire occurrences at different grid sizes. Localization of spatial clusters of high fire incidences was observed in Mokokchung, Wokha, Mon,Tuensang and Kiphire districts.

  9. The Effects of Humans and Topography on Wildland Fire, Forests, and Species Abundance

    Treesearch

    Richard P. Guyette; Daniel Dey

    2004-01-01

    Ignitions, fuels, topography, and climate interact through time to create temporal and spatial differences in the frequency of fire, which, in turn, affects ecosystem structure and function. In many ecosystems non-human ignitions are overwhelmed by anthropogenic ignitions. Human population density, culture, and topographic factors are quantitatively related to fire...

  10. Modelling wildfire activity in Iberia with different Atmospheric Circulation WTs

    NASA Astrophysics Data System (ADS)

    Sousa, P. M.; Trigo, R.; Pereira, M. G.; Rasilla, D.; Gouveia, C.

    2012-04-01

    This work focuses on the spatial and temporal variability of burnt area (BA) for the entire Iberian Peninsula (IP) and on the construction of statistical models to reproduce the inter-annual variability, based on Weather Types Classification (WTC). A common BA dataset was assembled for the first time for the entire Iberian Peninsula, by merging BA records for the 66 administrative regions of Portugal and Spain. A normalization procedure was then applied to the various size regions before performing a k-means cluster analysis to identify large areas characterized by similar fire regimes. The most compelling results were obtained for 4 clusters (Northwestern, Northern, Southwestern and Eastern) whose spatial patterns and seasonal fire regimes are shown to be related with constraining factors such as topography, vegetation cover and climate conditions. The response of fire burnt surface at monthly time scales to both long-term climatic pre-conditions and short-term synoptic forcing was assessed through correlation and regression analysis using: (i) temperature and precipitation from 2 to 7 months in advance to fire peak season; (ii) synoptic weather patterns derived from 11 distinct classifications derived under the COSTaction-733. Different responses were obtained for each of the considered regions: (i) a relevant link between BA and short-term synoptic forcing (represented by monthly frequencies of WTC) was identified for all clusters; (ii) long-term climatic preconditioning was relevant for all but one cluster (Northern). Taking into account these links, we developed stepwise regression models with the aim of reproducing the observed BA series (i.e. in hindcast mode). These models were based on the best climatic and synoptic circulation predictors identified previously. All models were cross-validated and their performance varies between clusters, though models exclusively based on WTCs tend to better reproduce annual BA time series than those only based on pre-conditioning climatic information. Nevertheless, the best results are attained when both synoptic and climatic predictors are used simultaneously as predictors, in particular for the two western clusters, where correlation coefficient values are higher than 0.7. Finally, we have used WTC composite maps to characterize the typical synoptic configurations that favor high values of BA. These patterns correspond to dry and warm fluxes, associated with anticyclonic regimes, which foster fire ignition (Pereira et al., 2005). Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. COST733, 2011: "COST 733 Wiki - Harmonisation and Applications of Weather Type Classifications for European regions or COST733 spatial domains for Europe". Available at http://geo21.geo.uni-augsburg.de/cost733wiki/Cost733_Wiki_Main [accessed 1 September 2011].

  11. Comparing Realistic Subthalamic Nucleus Neuron Models

    NASA Astrophysics Data System (ADS)

    Njap, Felix; Claussen, Jens C.; Moser, Andreas; Hofmann, Ulrich G.

    2011-06-01

    The mechanism of action of clinically effective electrical high frequency stimulation is still under debate. However, recent evidence points at the specific activation of GABA-ergic ion channels. Using a computational approach, we analyze temporal properties of the spike trains emitted by biologically realistic neurons of the subthalamic nucleus (STN) as a function of GABA-ergic synaptic input conductances. Our contribution is based on a model proposed by Rubin and Terman and exhibits a wide variety of different firing patterns, silent, low spiking, moderate spiking and intense spiking activity. We observed that most of the cells in our network turn to silent mode when we increase the GABAA input conductance above the threshold of 3.75 mS/cm2. On the other hand, insignificant changes in firing activity are observed when the input conductance is low or close to zero. We thus reproduce Rubin's model with vanishing synaptic conductances. To quantitatively compare spike trains from the original model with the modified model at different conductance levels, we apply four different (dis)similarity measures between them. We observe that Mahalanobis distance, Victor-Purpura metric, and Interspike Interval distribution are sensitive to different firing regimes, whereas Mutual Information seems undiscriminative for these functional changes.

  12. An Evaluation of Historical Fire Occurrence, Drought and the El Niño Southern Oscillation in the Southcentral United States

    NASA Astrophysics Data System (ADS)

    Rooney, M.; Stambaugh, M. C.

    2016-12-01

    Wildfire occurrence in the forested ecosystems of the southcentral United States is driven by conditions of drought. Historically, fire intervals varied temporally and spatially - forced by climate, humans, and environmental conditions. Thus, proxy records are required to assess the relationships between fire occurrence, drought, and the El Niño Southern Oscillation (ENSO). Fire scar data from tree-rings are well-suited to assess historical fire regimes in this region, paired with reconstructions of drought and ENSO that have been developed from networks of ring-width chronologies across the United States. This study combines fire-scar data from twelve different sites in the southcentral United States, including two new fire-history reconstructions. Fire data incorporates 665 fires across Eastern Oklahoma and Northern Texas from 1637-2014. These robust reconstructions of post oak (Quercus stellata) evaluate the variability in fire activity and its association to drought and ENSO. Climate-explained growth variance in post-oak chronologies is strong in this region, providing powerful proxy information in the derived chronologies. In general, most fires occur during the La Niña portion of the ENSO cycle. Many severe fires correspond with drought, and results from super-posed epoch analysis suggest a significant relationship between fire event years and drought conditions in the full period of record. Analysis reveals differences in the relationships of fire, drought and ENSO through time, corresponding to changes in human settlement in the region. Understanding the spatial and temporal relationships that exist between fire occurrence, drought, and ENSO aid in quantifying disturbance characteristics and their associations to climate in the forested ecosystems of the southcentral United States.

  13. Spatial and temporal distribution of fire temperatures from prescribed fires in the mixed oak forests of southern Ohio

    Treesearch

    Louis R. Iverson; Daniel Yaussy; Joanne Rebbeck; Todd Hutchinson; Robert Long; Brian McCarthy; Cynthia Riccardi; Anantha Prasad

    2003-01-01

    Prescribed surface fires are being investigated, in conjunction with thinning, as silvicultural tools for assisting in the regeneration of mixed oak forests in the Central Hardwoods Region. Fires were conducted on 2001 March 28 and 2001 April 4-5, respectively, at the Tar Hollow (TAR) and Zaleski (ZAL) State Forests, and at the Raccoon Ecological Management Area (REMA...

  14. A synoptic climatology for forest fires in the NE US and future implications for GCM simulations

    Treesearch

    Yan Qing; Ronald Sabo; Yiqiang Wu; J.Y. Zhu

    1994-01-01

    We studied surface-pressure patterns corresponding to reduced precipitation, high evaporation potential, and enhanced forest-fire danger for West Virginia, which experienced extensive forest-fire damage in November 1987. From five years of daily weather maps we identified eight weather patterns that describe distinctive flow situations throughout the year. Map patterns...

  15. The Tiptop coal-mine fire, Kentucky: Preliminary investigation of the measurement of mercury and other hazardous gases from coal-fire gas vents

    USGS Publications Warehouse

    Hower, James C.; Henke, Kevin R.; O'Keefe, Jennifer M.K.; Engle, Mark A.; Blake, Donald R.; Stracher, Glenn B.

    2009-01-01

    Variation in gas temperatures, nearly 300 °C during the January visit to the fire versus < 50 °C in May, demonstrates the large temporal variability in fire intensity at the Tiptop mine. These preliminary results suggest that emissions from coal fires may be important, but additional data are required that address the reasons for significant variations in the composition, flow, and temperature of vent gases.

  16. Forest disturbances, deforestation and timber harvest patterns in the Conterminous United States

    NASA Astrophysics Data System (ADS)

    Boschetti, L.; Huo, L. Z.

    2016-12-01

    Current estimates of carbon-equivalent emissions report the contribution of deforestation as 12% of total anthropogenic carbon emissions (van der Werf et al., 2009), but accurate monitoring of forest carbon balance should discriminate between land use change related to forest natural disturbances, forest management and deforestation. The total change in forest cover (Gross Forest Cover Loss, GFCL) needs to be characterized based on the cause (natural/human) and on the outcome of the change (regeneration to forest/transition to non-forest)(Kurtz et al, 2010). We developed a multitemporal, object-oriented methodology to classify GFCL as either (a) deforestation, (b) fire and insect disturbances (c) forest management practices. The Landsat-derived University of Maryland Global Forest Change product (Hansen, 2013) is used to identify all the areas forest cover loss: those areas are subsequently converted to objects, and used to extract temporal profiles of spectral reflectances and spectral indices from the Landsat WELD dataset. Finally, the temporal profiles and descriptive parameters of shapes, textures, and spatial relationships of the objects are used in a rule-based classifier to identify the type of disturbance. To pathfind a global disturbance type classification, the methods are demonstrated by wall-to-wall classification of the forest cover loss in the conterminous United States for the 2002-2011 period. The results show that deforestation accounts for a small percentage (approximately 2%) of the GFCL in the CONUS, and are in agreement with the known patterns of logging activity, fire and insect damage. The time series of timber harvest clearcut is also in agreement with the national timber extraction statistics, showing reduced harvesting following the 2008 economic crisis. The results also highlight the different management practices on private and public lands: 36% of the US forests are publicly owned (federal, state and local institutions) but account only for 12% of the clearcuts, whereas private lands (64% of the total) account for 88% of the clearcut area. Conversely, stand replacing fire and insect disturbances affect primarily public lands (85% versus 15% on private lands).

  17. Mixed severity fire effects within the Rim fire: Relative importance of local climate, fire weather, topography, and forest structure

    Treesearch

    Van R. Kane; C. Alina Cansler; Nicholas A. Povak; Jonathan T. Kane; Robert J. McGaughey; James A. Lutz; Derek J. Churchill; Malcolm P. North

    2015-01-01

    Recent and projected increases in the frequency and severity of large wildfires in the western U.S. makes understanding the factors that strongly affect landscape fire patterns a management priority for optimizing treatment location. We compared the influence of variations in the local environment on burn severity patterns on the large 2013 Rim fire that burned under...

  18. Direct and indirect effects of climate change on projected future fire regimes in the western United States.

    PubMed

    Liu, Zhihua; Wimberly, Michael C

    2016-01-15

    We asked two research questions: (1) What are the relative effects of climate change and climate-driven vegetation shifts on different components of future fire regimes? (2) How does incorporating climate-driven vegetation change into future fire regime projections alter the results compared to projections based only on direct climate effects? We used the western United States (US) as study area to answer these questions. Future (2071-2100) fire regimes were projected using statistical models to predict spatial patterns of occurrence, size and spread for large fires (>400 ha) and a simulation experiment was conducted to compare the direct climatic effects and the indirect effects of climate-driven vegetation change on fire regimes. Results showed that vegetation change amplified climate-driven increases in fire frequency and size and had a larger overall effect on future total burned area in the western US than direct climate effects. Vegetation shifts, which were highly sensitive to precipitation pattern changes, were also a strong determinant of the future spatial pattern of burn rates and had different effects on fire in currently forested and grass/shrub areas. Our results showed that climate-driven vegetation change can exert strong localized effects on fire occurrence and size, which in turn drive regional changes in fire regimes. The effects of vegetation change for projections of the geographic patterns of future fire regimes may be at least as important as the direct effects of climate change, emphasizing that accounting for changing vegetation patterns in models of future climate-fire relationships is necessary to provide accurate projections at continental to global scales. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Spatial and temporal variations of soil moisture under Rosmarinus officinalis and Quercus coccifera in a burned soil

    NASA Astrophysics Data System (ADS)

    Gimeno-García, E.; Pascual-Aguilar, J. A.; Llovet, J.

    2009-04-01

    When studying surface runoff processes, measurement of the soil moisture content (SMC) at the surface could be used to identify sinks and sources areas of runoff. Surface soil moisture patterns variability have been studied in a burned Mediterranean semi-arid area. Since surface SMC and soil water repellency (SWR) are influenced by fire and vegetation (see previous abstract), and soil water dynamics and vegetation dynamics are functionally related, it could be expected to find some changes during the following months after fire when vegetation starts to recover. The identification of these changes is the main goal of this research. The study area is located at the municipality of Les Useres, 40 km from Castellón city (E Spain), where a wildfire occured in August 2007. We selected a burned SSE facing hillslope, located at 570 m a.s.l., with 12° slope angle, in which it was possible to identify the presence of two unique shrub species: Quercus coccifera L. and Rosmarinus officinalis L., which were distributed in a patchy mosaic. Twenty microsites with burned R. officinalis and eight microsites with burned Q. coccifera were selected in an area of 7 m wide by 14 m long. At the burned microsites, it was possible to distinguish three concentric zones (I, II and III) around the stumps showing differences on their soil surface appearance, which indicate a gradient of fire severity. Those differences were considered for field soil moisture measurements. Five measurements of SMC separated approximately 10 cm per zone at each microsite (n= 420) were carried out after different rainfall events. Volumetric soil moisture was measured by means of the moisture meter HH2 with ThetaProbe sensor type ML2x, 6 cm long. SMC was monitored on three occasions, always one day after the following rainfall events: (1) the first rainfall event after fire, when 11 mm were registered (Oct-07); (2) four months later than fire (Dec-07), after six consecutive raining days with a total rain volume of 172 mm; and (3) ten months after fire (Jun-08), when 50 mm were registered in the previous ten days. The spatial pattern of SMC was determined trough geostatistical analysis using GS+ software, calculating the semivariograms, to analyse the spatial correlation scale, interpolating data to estimate values of SMC at unsampled locations by means of kriging and finally, the results of kriging were displayed as different contour maps. Results showed that spatial pattern of SMC was highly variable, with important differences recorded within short distances. In fact, the range of spatial correlation (a0), which is the distance at that spatial correlation exists, varied between 0.5 to 1.4 m. A0 also varied according to the time from fire, with values of 0.5 m in the first rainfall after fire, 0.9 m four months later and 1.4 m ten months after fire occurs. This result suggests that the extent of the wettest areas increase as the vegetation recover. After the first rainfall, the SMC spatial pattern seems to be related to the soil microsite characteristics, mainly organic matter content, presence of hydrophobicity and soil clay content. Generally, the highest SMC (26-31%) appears at the burned bare soil areas. Four months later, as the same time as Q. coccifera resprouts, and in the R. officinalis microsites an important regrowth of Brachypodium resutum is observed, the spatial pattern of SMC changed according this plant cover distribution. This pattern is more clearly observed ten months after fire, when the highest SMC values were located at Q. coccifera and B. resutum areas (28-33%). At this time, no evidence of germination of R. officinalis (obligate seeder specie) was found. The lowest SMC (19-22%) appeared at the half lower part of the plot, where there was a central strip dominated by bare soil, with scarce presence of resprouter species. These results showed that at detailed working scale, the soil moisture pattern in this burned area was highly heterogeneous and the microsite characteristics (mainly soil properties and vegetation regrowth) seem to control the SMC spatial pattern. The interaction of soil-plant-water is more complex that the few environmental factors analysed here, and future research is needed to consider other site factors, such as microtopography, surface stoniness and outcrops, root density, between others. However, the obtained results reflect the capacity of vegetated patches to act as moisture holding areas ten months after fire occurs.

  20. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    NASA Astrophysics Data System (ADS)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  1. Trends in fire patterns in a southern African savanna under alternative land use practices

    Treesearch

    A. T. Hudak; D. H. K. Fairbanks; B. H. Brockett

    2004-01-01

    Climate, topography, vegetation and land use interact to influence fire regimes.Variable fire regimes may promote landscape heterogeneity, diversification in vegetation pattern and biotic diversity. The objective was to compare effects of alternative land use practices on landscape heterogeneity. Patch characteristics of fire scars were measured from 21 annual burn...

  2. UAS Developments Supporting Wildfire Observations

    NASA Astrophysics Data System (ADS)

    Ambrosia, V. G.; Dahlgren, R. P.; Watts, A.; Reynolds, K. W.; Ball, T.

    2014-12-01

    Wildfires are regularly occurring emergency events that threaten life, property, and natural resources in every U.S. State and many countries around the world. Despite projections that $1.8 billion will be spent by U.S. Federal agencies alone on wildfires in 2014, the decades-long trend of increasing fire size, severity, and cost is expected to continue. Furthermore, the enormous potential for UAS (and concomitant sensor systems) to serve as geospatial intelligence tools to improve the safety and effectiveness of fire management, and our ability to forecast fire and smoke movements, remains barely tapped. Although orbital sensor assets are can provide the geospatial extent of wildfires, generally those resources are limited in use due to their spatial and temporal resolution limitations. These two critical elements make orbital assets of limited utility for tactical, real-time wildfire management, or for continuous scientific analysis of the temporal dynamics related to fire energy release rates and plume concentrations that vary significantly thru a fire's progression. Large UAS platforms and sensors can and have been used to monitor wildfire events at improved temporal, spatial and radiometric scales, but more focus is being placed on the use of small UAS (sUAS) and sensors to support wildfire observation strategies. The use of sUAS is therefore more critical for TACTICAL management purposes, rather than strategic observations, where small-scale fire developments are critical to understand. This paper will highlight the historical development and use of UAS for fire observations, as well as the current shift in focus to smaller, more affordable UAS for more rapid integration into operational use on wildfire events to support tactical observation strategies, and support wildfire science measurement inprovements.

  3. Calcium Dynamics in Basal Dendrites of Layer 5A and 5B Pyramidal Neurons Is Tuned to the Cell-Type Specific Physiological Action Potential Discharge

    PubMed Central

    Krieger, Patrik; de Kock, Christiaan P. J.; Frick, Andreas

    2017-01-01

    Layer 5 (L5) is a major neocortical output layer containing L5A slender-tufted (L5A-st) and L5B thick-tufted (L5B-tt) pyramidal neurons. These neuron types differ in their in vivo firing patterns, connectivity and dendritic morphology amongst other features, reflecting their specific functional role within the neocortical circuits. Here, we asked whether the active properties of the basal dendrites that receive the great majority of synaptic inputs within L5 differ between these two pyramidal neuron classes. To quantify their active properties, we measured the efficacy with which action potential (AP) firing patterns backpropagate along the basal dendrites by measuring the accompanying calcium transients using two-photon laser scanning microscopy in rat somatosensory cortex slices. For these measurements we used both “artificial” three-AP patterns and more complex physiological AP patterns that were previously recorded in anesthetized rats in L5A-st and L5B-tt neurons in response to whisker stimulation. We show that AP patterns with relatively few APs (3APs) evoke a calcium response in L5B-tt, but not L5A-st, that is dependent on the temporal pattern of the three APs. With more complex in vivo recorded AP patterns, the average calcium response was similar in the proximal dendrites but with a decay along dendrites (measured up to 100 μm) of L5B-tt but not L5A-st neurons. Interestingly however, the whisker evoked AP patterns—although very different for the two cell types—evoke similar calcium responses. In conclusion, although the effectiveness with which different AP patterns evoke calcium transients vary between L5A-st and L5B-tt cell, the calcium influx appears to be tuned such that whisker-evoked calcium transients are within the same dynamic range for both cell types. PMID:28744201

  4. Fire effects on rangeland hydrology and erosion in a steep sagebrush-dominated landscape

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Corey A. Moffet; Kenneth E. Spaeth; Stuart P. Hardegree; Patrick E. Clark; C. Jason Williams

    2008-01-01

    Post-fire runoff and erosion from wildlands has been well researched, but few studies have researched the degree of control exerted by fire on rangeland hydrology and erosion processes. Furthermore, the spatial continuity and temporal persistence of wildfire impacts on rangeland hydrology and erosion are not well understood. Small-plot rainfall and concentrated flow...

  5. Multi-temporal LiDAR and Landsat quantification of fire-induced changes to forest structure

    Treesearch

    T. Ryan McCarley; Crystal A. Kolden; Nicole M. Vaillant; Andrew T. Hudak; Alistair M. S. Smith; Brian M. Wing; Bryce S. Kellogg; Jason Kreitler

    2017-01-01

    Measuring post-fire effects at landscape scales is critical to an ecological understanding of wildfire effects. Predominantly this is accomplished with either multi-spectral remote sensing data or through ground-based field sampling plots.While these methods are important, field data is usually limited to opportunistic post-fire observations, and spectral data often...

  6. Evaluating crown fire rate of spread predictions from physics-based models

    Treesearch

    C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont

    2015-01-01

    Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...

  7. Spatially explicit and stochastic simulation of forest landscape fire disturbance and succession

    Treesearch

    Hong S. He; David J. Mladenoff

    1999-01-01

    Understanding disturbance and recovery of forest landscapes is a challenge because of complex interactions over a range of temporal and spatial scales. Landscape simulation models offer an approach to studying such systems at broad scales. Fire can be simulated spatially using mechanistic or stochastic approaches. We describe the fire module in a spatially explicit,...

  8. Fire metrology: Current and future directions in physics-based measurements

    Treesearch

    Robert L. Kremens; Alistair M.S. Smith; Matthew B. Dickinson

    2010-01-01

    The robust evaluation of fire impacts on the biota, soil, and atmosphere requires measurement and analysis methods that can characterize combustion processes across a range of temporal and spatial scales. Numerous challenges are apparent in the literature. These challenges have led to novel research to quantify the 1) structure and heterogeneity of the pre-fire...

  9. Temporal evolution of water repellency and preferential flow in the post-fire

    NASA Astrophysics Data System (ADS)

    Alanís, Nancy; Jordán, Antonio; Zavala, Lorena M.

    2015-04-01

    Forest fires usually intensify erosive process due to the reduction of vegetation cover and degradation of aggregation in the topsoil. Another common effect of wildifres is the development of soil water repellency, which in turn favors the formation of runoff, inhibiting or delaying infiltration. Under these conditions, infiltration occurs only when ponded water or runoff flow finds macropores and cracks in the soil surface, producing preferential flow pathways. When water infiltrates through these paths, a significant portion of the soil remains dry, limiting the supply of nutrients to the roots, favoring the rapid leaching of nutrients and agrochemicals, and other impacts on flora and hydrological processes at hillslope- or basin-scale. The existence of irregular wetting fronts has been observed frequently in burned or unburned water repellent soils. Although some authors have suggested that preferential flow paths may be more or less permanent in the case of unburned soils, the temporal evolution of preferential flow has been rarely studied in burned soils during the post-fire, after water repellency decreases or disappears. This research focuses on the temporal evolution of water repellency and preferential flows in an area affected by fire.

  10. Optimal coupling to high-Q whispering gallery modes with a sub-wavelength metallic grating coupler

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Gu, B.; Yu, X.; Luan, F.

    2015-03-01

    Gold grating patterned on the end facet of an optical fiber is able to excite whispering gallery mode (WGM) in a silica microsphere. With a direct pathway of the metal reflection, the coupled WGM is able to superimpose and create an asymmetric Fano resonance. Since multiple resonances are present - the WGM, grating reflection, and a weak Fabry-Perot resonance along the diameter of the sphere - it is difficult to evaluate the power efficiency directly from the measured spectrum. Using temporal coupled-mode theory, a general model is constructed for the end-fire coupling from a grating to a WGM resonator.

  11. Sleep/wake firing patterns of human genioglossus motor units.

    PubMed

    Bailey, E Fiona; Fridel, Keith W; Rice, Amber D

    2007-12-01

    Although studies of the principal tongue protrudor muscle genioglossus (GG) suggest that whole muscle GG electromyographic (EMG) activities are preserved in nonrapid eye movement (NREM) sleep, it is unclear what influence sleep exerts on individual GG motor unit (MU) activities. We characterized the firing patterns of human GG MUs in wakefulness and NREM sleep with the aim of determining 1) whether the range of MU discharge patterns evident in wakefulness is preserved in sleep and 2) what effect the removal of the "wakefulness" input has on the magnitude of the respiratory modulation of MU activities. Microelectrodes inserted into the extrinsic tongue protrudor muscle, the genioglossus, were used to follow the discharge of single MUs. We categorized MU activities on the basis of the temporal relationship between the spike train and the respiration cycle and quantified the magnitude of the respiratory modulation of each MU using the eta (eta(2)) index, in wakefulness and sleep. The majority of MUs exhibited subtle increases or decreases in respiratory modulation but were otherwise unaffected by NREM sleep. In contrast, 30% of MUs exhibited marked sleep-associated changes in discharge frequency and respiratory modulation. We suggest that GG MUs should not be considered exclusively tonic or phasic; rather, the discharge pattern appears to be a flexible feature of GG activities in healthy young adults. Whether such flexibility is important in the response to changes in the chemical and/or mechanical environment and whether it is preserved as a function of aging or in individuals with obstructive sleep apnea are critical questions for future research.

  12. Fire flame detection based on GICA and target tracking

    NASA Astrophysics Data System (ADS)

    Rong, Jianzhong; Zhou, Dechuang; Yao, Wei; Gao, Wei; Chen, Juan; Wang, Jian

    2013-04-01

    To improve the video fire detection rate, a robust fire detection algorithm based on the color, motion and pattern characteristics of fire targets was proposed, which proved a satisfactory fire detection rate for different fire scenes. In this fire detection algorithm: (a) a rule-based generic color model was developed based on analysis on a large quantity of flame pixels; (b) from the traditional GICA (Geometrical Independent Component Analysis) model, a Cumulative Geometrical Independent Component Analysis (C-GICA) model was developed for motion detection without static background and (c) a BP neural network fire recognition model based on multi-features of the fire pattern was developed. Fire detection tests on benchmark fire video clips of different scenes have shown the robustness, accuracy and fast-response of the algorithm.

  13. Assessing SaTScan ability to detect space-time clusters in wildfires

    NASA Astrophysics Data System (ADS)

    Costa, Ricardo; Pereira, Mário; Caramelo, Liliana; Vega Orozco, Carmen; Kanevski, Mikhail

    2013-04-01

    Besides classical cluster analysis techniques which are able to analyse spatial and temporal data, SaTScan software analyses space-time data using the spatial, temporal or space-time scan statistics. This software requires the spatial coordinates of the fire, but since in the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011) the location of each fire is the parish where the ignition occurs, the fire spatial coordinates were considered as coordinates of the centroid of the parishes. Moreover, in general, the northern region is characterized by a large number of small parishes while the southern comprises parish much larger. The objectives of this study are: (i) to test the ability of SaTScan to detect the correct space-time clusters, in what respects to spatial and temporal location and size; and, (ii) to evaluate the effect of the dimensions of the parishes and of aggregating all fires occurred in a parish in a single point. Results obtained with a synthetic database where clusters were artificially created with different densities, in different regions of the country and with different sizes and durations, allow to conclude: the ability of SaTScan to correctly identify the clusters (location, shape and spatial and temporal dimension); and objectively assess the influence of the size of the parishes and windows used in space-time detection. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  14. Reliable sex and strain discrimination in the mouse vomeronasal organ and accessory olfactory bulb.

    PubMed

    Tolokh, Illya I; Fu, Xiaoyan; Holy, Timothy E

    2013-08-21

    Animals modulate their courtship and territorial behaviors in response to olfactory cues produced by other animals. In rodents, detecting these cues is the primary role of the accessory olfactory system (AOS). We sought to systematically investigate the natural stimulus coding logic and robustness in neurons of the first two stages of accessory olfactory processing, the vomeronasal organ (VNO) and accessory olfactory bulb (AOB). We show that firing rate responses of just a few well-chosen mouse VNO or AOB neurons can be used to reliably encode both sex and strain of other mice from cues contained in urine. Additionally, we show that this population code can generalize to new concentrations of stimuli and appears to represent stimulus identity in terms of diverging paths in coding space. Together, the results indicate that firing rate code on the temporal order of seconds is sufficient for accurate classification of pheromonal patterns at different concentrations and may be used by AOS neural circuitry to discriminate among naturally occurring urine stimuli.

  15. Phasic and tonic neuron ensemble codes for stimulus-environment conjunctions in the lateral entorhinal cortex

    PubMed Central

    Pilkiw, Maryna; Insel, Nathan; Cui, Younghua; Finney, Caitlin; Morrissey, Mark D; Takehara-Nishiuchi, Kaori

    2017-01-01

    The lateral entorhinal cortex (LEC) is thought to bind sensory events with the environment where they took place. To compare the relative influence of transient events and temporally stable environmental stimuli on the firing of LEC cells, we recorded neuron spiking patterns in the region during blocks of a trace eyeblink conditioning paradigm performed in two environments and with different conditioning stimuli. Firing rates of some neurons were phasically selective for conditioned stimuli in a way that depended on which room the rat was in; nearly all neurons were tonically selective for environments in a way that depended on which stimuli had been presented in those environments. As rats moved from one environment to another, tonic neuron ensemble activity exhibited prospective information about the conditioned stimulus associated with the environment. Thus, the LEC formed phasic and tonic codes for event-environment associations, thereby accurately differentiating multiple experiences with overlapping features. DOI: http://dx.doi.org/10.7554/eLife.28611.001 PMID:28682237

  16. Spatial and temporal distribution of tropical biomass burning

    NASA Astrophysics Data System (ADS)

    Hao, Wei Min; Liu, Mei-Huey

    1994-12-01

    A database for the spatial and temporal distribution of the amount of biomass burned in tropical America, Africa, and Asia during the late 1970s is presented with a resolution of 5° latitude × 5° longitude. The sources of burning in each grid cell have been quantified. Savanna fires, shifting cultivation, deforestation, fuel wood use, and burning of agricultural residues contribute about 50, 24, 10, 11, and 5%, respectively, of total biomass burned in the tropics. Savanna fires dominate in tropical Africa, and forest fires dominate in tropical Asia. A similar amount of biomass is burned from forest and savanna fires in tropical America. The distribution of biomass burned monthly during the dry season has been derived for each grid cell using the seasonal cycles of surface ozone concentrations. Land use changes during the last decade could have a profound impact on the amount of biomass burned and the amount of trace gases and aerosol particles emitted.

  17. Spatial patterns of modern period human-caused fire occurrence in the Missouri Ozark Highlands

    Treesearch

    Jian Yang; Hong S. Healy; Stephen R. Shifley; Eric J. Gustafson

    2007-01-01

    The spatial pattern of forest fire locations is important in the study of the dynamics of fire disturbance. In this article we used a spatial point process modeling approach to quantitatively study the effects of land cover, topography, roads, municipalities, ownership, and population density on fire occurrence reported between 1970 and 2002 in the Missouri Ozark...

  18. Evidence of fuels management and fire weather influencing fire severity in an extreme fire event

    Treesearch

    Jamie M. Lydersen; Brandon M. Collins; Matthew L. Brooks; John R. Matchett; Kristen L. Shive; Nicholas A. Povak; Van R. Kane; Douglas F. Smith

    2017-01-01

    Following changes in vegetation structure and pattern, along with a changing climate, large wildfire incidence has increased in forests throughout the western U.S. Given this increase there is great interest in whether fuels treatments and previous wildfire can alter fire severity patterns in large wildfires. We assessed the relative influence of previous fuels...

  19. Multivariate statistical analysis of wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Costa, Ricardo; Caramelo, Liliana; Pereira, Mário

    2013-04-01

    Several studies demonstrate that wildfires in Portugal present high temporal and spatial variability as well as cluster behavior (Pereira et al., 2005, 2011). This study aims to contribute to the characterization of the fire regime in Portugal with the multivariate statistical analysis of the time series of number of fires and area burned in Portugal during the 1980 - 2009 period. The data used in the analysis is an extended version of the Rural Fire Portuguese Database (PRFD) (Pereira et al, 2011), provided by the National Forest Authority (Autoridade Florestal Nacional, AFN), the Portuguese Forest Service, which includes information for more than 500,000 fire records. There are many multiple advanced techniques for examining the relationships among multiple time series at the same time (e.g., canonical correlation analysis, principal components analysis, factor analysis, path analysis, multiple analyses of variance, clustering systems). This study compares and discusses the results obtained with these different techniques. Pereira, M.G., Trigo, R.M., DaCamara, C.C., Pereira, J.M.C., Leite, S.M., 2005: "Synoptic patterns associated with large summer forest fires in Portugal". Agricultural and Forest Meteorology. 129, 11-25. Pereira, M. G., Malamud, B. D., Trigo, R. M., and Alves, P. I.: The history and characteristics of the 1980-2005 Portuguese rural fire database, Nat. Hazards Earth Syst. Sci., 11, 3343-3358, doi:10.5194/nhess-11-3343-2011, 2011 This work is supported by European Union Funds (FEDER/COMPETE - Operational Competitiveness Programme) and by national funds (FCT - Portuguese Foundation for Science and Technology) under the project FCOMP-01-0124-FEDER-022692, the project FLAIR (PTDC/AAC-AMB/104702/2008) and the EU 7th Framework Program through FUME (contract number 243888).

  20. Heterogeneity of Intrinsic and Synaptic Properties of Neurons in the Ventral and Dorsal Parts of the Ventral Nucleus of the Lateral Lemniscus

    PubMed Central

    Caspari, Franziska; Baumann, Veronika J.; Garcia-Pino, Elisabet; Koch, Ursula

    2015-01-01

    The ventral nucleus of the lateral lemniscus (VNLL) provides a major inhibitory projection to the inferior colliculus (IC). Neurons in the VNLL respond with various firing patterns and different temporal precision to acoustic stimulation. The present study investigates the underlying intrinsic and synaptic properties of various cell types in different regions of the VNLL, using in vitro electrophysiological recordings from acute brain slices of mice and immunohistochemistry. We show that the biophysical membrane properties and excitatory input characteristics differed between dorsal and ventral VNLL neurons. Neurons in the ventral VNLL displayed an onset-type firing pattern and little hyperpolarization-activated current (Ih). Stimulation of lemniscal inputs evoked a large all-or-none excitatory response similar to Calyx of Held synapses in neurons in the lateral part of the ventral VNLL. Neurons that were located within the fiber tract of the lateral lemniscus, received several and weak excitatory input fibers. In the dorsal VNLL onset-type and sustained firing neurons were intermingled. These neurons showed large Ih and were strongly immunopositive for the hyperpolarization-activated cyclic nucleotide-gated channel 1 (HCN1) subunit. Both neuron types received several excitatory inputs that were weaker and slower compared to ventrolateral VNLL neurons. Using a mouse model that expresses channelrhodopsin under the promotor of the vesicular GABA transporter (VGAT) suggests that dorsal and ventral neurons were inhibitory since they were all depolarized by light stimulation. The diverse membrane and input properties in dorsal and ventral VNLL neurons suggest differential roles of these neurons for sound processing. PMID:26635535

  1. Post-fire recovery of torpor and activity patterns of a small mammal.

    PubMed

    Stawski, Clare; Hume, Taylor; Körtner, Gerhard; Currie, Shannon E; Nowack, Julia; Geiser, Fritz

    2017-05-01

    To cope with the post-fire challenges of decreased availability of food and shelter, brown antechinus ( Antechinus stuartii ), a small marsupial mammal, increase the use of energy-conserving torpor and reduce activity. However, it is not known how long it takes for animals to resume pre-fire torpor and activity patterns during the recovery of burnt habitat. Therefore, we tested the hypothesis that antechinus will adjust torpor use and activity after a fire depending on vegetation recovery. We simultaneously quantified torpor and activity patterns for female antechinus from three adjacent areas: (i) the area of a management burn 1 year post-fire, (ii) an area that was burned 2 years prior, and (iii) a control area. In comparison to shortly after the management burn, antechinus in all three groups displayed less frequent and less pronounced torpor while being more active. We provide the first evidence that only 1 year post-fire antechinus resume pre-fire torpor and activity patterns, probably in response to the return of herbaceous ground cover and foraging opportunities. © 2017 The Author(s).

  2. A review of the main driving factors of forest fire ignition over Europe.

    PubMed

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  3. A Review of the Main Driving Factors of Forest Fire Ignition Over Europe

    NASA Astrophysics Data System (ADS)

    Ganteaume, Anne; Camia, Andrea; Jappiot, Marielle; San-Miguel-Ayanz, Jesus; Long-Fournel, Marlène; Lampin, Corinne

    2013-03-01

    Knowledge of the causes of forest fires, and of the main driving factors of ignition, is an indispensable step towards effective fire prevention policies. This study analyses the factors driving forest fire ignition in the Mediterranean region including the most common human and environmental factors used for modelling in the European context. Fire ignition factors are compared to spatial and temporal variations of fire occurrence in the region, then are compared to results obtained in other areas of the world, with a special focus on North America (US and Canada) where a significant number of studies has been carried out on this topic. The causes of forest fires are varied and their distribution differs among countries, but may also differ spatially and temporally within the same country. In Europe, and especially in the Mediterranean basin, fires are mostly human-caused mainly due arson. The distance to transport networks and the distance to urban or recreation areas are among the most frequently used human factors in modelling exercises and the Wildland-Urban Interface is increasingly taken into account in the modelling of fire occurrence. Depending on the socio-economic context of the region concerned, factors such as the unemployment rate or variables linked to agricultural activity can explain the ignition of intentional and unintentional fires. Regarding environmental factors, those related to weather, fuel and topography are the most significant drivers of ignition of forest fires, especially in Mediterranean-type regions. For both human and lightning-caused fires, there is a geographical gradient of fire ignition, mainly due to variations in climate and fuel composition but also to population density for instance. The timing of fires depends on their causes. In populated areas, the timing of human-caused fires is closely linked to human activities and peaks in the afternoon whereas, in remote areas, the timing of lightning-caused fires is more linked to weather conditions and the season, with most such fires occurring in summer.

  4. Different nucleosomal architectures at early and late replicating origins in Saccharomyces cerevisiae.

    PubMed

    Soriano, Ignacio; Morafraile, Esther C; Vázquez, Enrique; Antequera, Francisco; Segurado, Mónica

    2014-09-13

    Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood. By performing high-resolution analysis of genome-wide nucleosome positioning we have identified different chromatin architectures at early and late replication origins. These different patterns are already established in G1 and are tightly correlated with the organization of adjacent transcription units. Moreover, specific early and late nucleosomal patterns are fixed robustly, even in rpd3 mutants in which histone acetylation and origin timing have been significantly altered. Nevertheless, higher histone acetylation levels correlate with the local modulation of chromatin structure, leading to increased origin accessibility. In addition, we conducted parallel analyses of replication and nucleosome dynamics that revealed that chromatin structure at origins is modulated during origin activation. Our results show that early and late replication origins present distinctive nucleosomal configurations, which are preferentially associated to different genomic regions. Our data also reveal that origin structure is dynamic and can be locally modulated by histone deacetylation, as well as by origin activation. These data offer novel insight into the contribution of chromatin structure to origin selection and firing in budding yeast.

  5. Long-Range Temporal Correlations, Multifractality, and the Causal Relation between Neural Inputs and Movements

    PubMed Central

    Hu, Jing; Zheng, Yi; Gao, Jianbo

    2013-01-01

    Understanding the causal relation between neural inputs and movements is very important for the success of brain-machine interfaces (BMIs). In this study, we analyze 104 neurons’ firings using statistical, information theoretic, and fractal analysis. The latter include Fano factor analysis, multifractal adaptive fractal analysis (MF-AFA), and wavelet multifractal analysis. We find neuronal firings are highly non-stationary, and Fano factor analysis always indicates long-range correlations in neuronal firings, irrespective of whether those firings are correlated with movement trajectory or not, and thus does not reveal any actual correlations between neural inputs and movements. On the other hand, MF-AFA and wavelet multifractal analysis clearly indicate that when neuronal firings are not well correlated with movement trajectory, they do not have or only have weak temporal correlations. When neuronal firings are well correlated with movements, they are characterized by very strong temporal correlations, up to a time scale comparable to the average time between two successive reaching tasks. This suggests that neurons well correlated with hand trajectory experienced a “re-setting” effect at the start of each reaching task, in the sense that within the movement correlated neurons the spike trains’ long-range dependences persisted about the length of time the monkey used to switch between task executions. A new task execution re-sets their activity, making them only weakly correlated with their prior activities on longer time scales. We further discuss the significance of the coalition of those important neurons in executing cortical control of prostheses. PMID:24130549

  6. Replication Origins and Timing of Temporal Replication in Budding Yeast: How to Solve the Conundrum?

    PubMed Central

    Barberis, Matteo; Spiesser, Thomas W.; Klipp, Edda

    2010-01-01

    Similarly to metazoans, the budding yeast Saccharomyces cereviasiae replicates its genome with a defined timing. In this organism, well-defined, site-specific origins, are efficient and fire in almost every round of DNA replication. However, this strategy is neither conserved in the fission yeast Saccharomyces pombe, nor in Xenopus or Drosophila embryos, nor in higher eukaryotes, in which DNA replication initiates asynchronously throughout S phase at random sites. Temporal and spatial controls can contribute to the timing of replication such as Cdk activity, origin localization, epigenetic status or gene expression. However, a debate is going on to answer the question how individual origins are selected to fire in budding yeast. Two opposing theories were proposed: the “replicon paradigm” or “temporal program” vs. the “stochastic firing”. Recent data support the temporal regulation of origin activation, clustering origins into temporal blocks of early and late replication. Contrarily, strong evidences suggest that stochastic processes acting on origins can generate the observed kinetics of replication without requiring a temporal order. In mammalian cells, a spatiotemporal model that accounts for a partially deterministic and partially stochastic order of DNA replication has been proposed. Is this strategy the solution to reconcile the conundrum of having both organized replication timing and stochastic origin firing also for budding yeast? In this review we discuss this possibility in the light of our recent study on the origin activation, suggesting that there might be a stochastic component in the temporal activation of the replication origins, especially under perturbed conditions. PMID:21037857

  7. Temporal and Spatial Wildfire Dynamics of Northern Siberia: Larch Forests and Insect Outbreak Areas

    NASA Astrophysics Data System (ADS)

    Kharuk, Viacheslav; Antamoshkina, Olga; Ponomarev, Eugene

    2017-04-01

    Wildfire number and burned area temporal dynamics within all of Siberia and along a south-north transect in central Siberia (45 - 73°N) were studied based on NOAA/AVHRR and Terra/MODIS data and field measurements for the period since 1996. In addition, fire return interval along the south-north transect was analyzed. Third, pest outbreak (Siberian silkmoth) impact on the wildfires was studied. Both, number of forest fires and burned area in Siberia increased during recent decades. Significant correlations were found between forest fires, burned areas and air temperature (r = 0.5) and drought index (SPEI) (r = -0.43). Within larch stands along the transect wildfire frequency was strongly correlated with incoming solar radiation (r = 0.91). Fire danger period length decreased linearly from south to north along the transect. Fire return interval increased from 80 years at 62°N to 200 years at the Arctic Circle (66°33'N), and to about 300 years near the northern limit of closed forest stands ( 71+°N). That increase was negatively correlated with incoming solar radiation (r = -0.95). Siberian silkmoth outbreaks leads to an order of magnitude increase in burned area and fire frequency. Multiple fires turns former "dark needle conifer" taiga into grass and bush communities for decades.

  8. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression.

    PubMed

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-04-08

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale.

  9. Modeling Fire Occurrence at the City Scale: A Comparison between Geographically Weighted Regression and Global Linear Regression

    PubMed Central

    Song, Chao; Kwan, Mei-Po; Zhu, Jiping

    2017-01-01

    An increasing number of fires are occurring with the rapid development of cities, resulting in increased risk for human beings and the environment. This study compares geographically weighted regression-based models, including geographically weighted regression (GWR) and geographically and temporally weighted regression (GTWR), which integrates spatial and temporal effects and global linear regression models (LM) for modeling fire risk at the city scale. The results show that the road density and the spatial distribution of enterprises have the strongest influences on fire risk, which implies that we should focus on areas where roads and enterprises are densely clustered. In addition, locations with a large number of enterprises have fewer fire ignition records, probably because of strict management and prevention measures. A changing number of significant variables across space indicate that heterogeneity mainly exists in the northern and eastern rural and suburban areas of Hefei city, where human-related facilities or road construction are only clustered in the city sub-centers. GTWR can capture small changes in the spatiotemporal heterogeneity of the variables while GWR and LM cannot. An approach that integrates space and time enables us to better understand the dynamic changes in fire risk. Thus governments can use the results to manage fire safety at the city scale. PMID:28397745

  10. Spatial and temporal evapotranspiration trends after wildfire in semi-arid landscapes

    NASA Astrophysics Data System (ADS)

    Poon, Patrick K.; Kinoshita, Alicia M.

    2018-04-01

    In recent years climate change and other anthropogenic factors have contributed to increased wildfire frequency and size in western United States forests. This research focuses on the evaluation of spatial and temporal changes in evapotranspiration (ET) following the 2011 Las Conchas Fire in New Mexico (USA) using the Operational Simplified Surface Energy Balance Model (SSEBop ET). Evapotranspiration is coupled with soil burn severity and analyzed for 16 watersheds for water years 2001-2014. An average annual decrease of 120 mm of ET is observed within the regions affected by the Las Conchas Fire, and conifers were converted to grassland a year after the fire. On average, the post-fire annual ET in high, moderate, and low burn severity is lower than pre-fire ET by approximately 103-352 mm, 97-304 mm, and 91-268 mm, respectively. The ratio of post-fire evapotranspiration to precipitation (ET/P) is statistically different from pre-fire conditions (α = 0.05) in nine of the watersheds. The largest decrease in ET is approximately 13-57 mm per month and is most prominent during the summer (April to September). The observed decrease in ET contributes to our understanding of changes in water yield following wildfires, which is of interest for accurately modeling and predicting hydrologic processes in semi-arid landscapes.

  11. Multistability, local pattern formation, and global collective firing in a small-world network of nonleaky integrate-and-fire neurons.

    PubMed

    Rothkegel, Alexander; Lehnertz, Klaus

    2009-03-01

    We investigate numerically the collective dynamical behavior of pulse-coupled nonleaky integrate-and-fire neurons that are arranged on a two-dimensional small-world network. To ensure ongoing activity, we impose a probability for spontaneous firing for each neuron. We study network dynamics evolving from different sets of initial conditions in dependence on coupling strength and rewiring probability. Besides a homogeneous equilibrium state for low coupling strength, we observe different local patterns including cyclic waves, spiral waves, and turbulentlike patterns, which-depending on network parameters-interfere with the global collective firing of the neurons. We attribute the various network dynamics to distinct regimes in the parameter space. For the same network parameters different network dynamics can be observed depending on the set of initial conditions only. Such a multistable behavior and the interplay between local pattern formation and global collective firing may be attributable to the spatiotemporal dynamics of biological networks.

  12. Transition of spiral calcium waves between multiple stable patterns can be triggered by a single calcium spark in a fire-diffuse-fire model

    PubMed Central

    Tang, Ai-Hui; Wang, Shi-Qiang

    2009-01-01

    Spiral patterns have been found in various nonequilibrium systems. The Ca2+-induced Ca2+ release system in single cardiac cells is unique for highly discrete reaction elements, each giving rise to a Ca2+ spark upon excitation. We imaged the spiral Ca2+ waves in isolated cardiac cells and numerically studied the effect of system excitability on spiral patterns using a two-dimensional fire-diffuse-fire model. We found that under certain conditions, the system was able to display multiple stable patterns of spiral waves, each exhibiting different periods and distinct routines of spiral tips. Transition between these different patterns could be triggered by an internal fluctuation in the form of a single Ca2+ spark. PMID:19792039

  13. Transition of spiral calcium waves between multiple stable patterns can be triggered by a single calcium spark in a fire-diffuse-fire model.

    PubMed

    Tang, Ai-Hui; Wang, Shi-Qiang

    2009-09-01

    Spiral patterns have been found in various nonequilibrium systems. The Ca(2+)-induced Ca(2+) release system in single cardiac cells is unique for highly discrete reaction elements, each giving rise to a Ca(2+) spark upon excitation. We imaged the spiral Ca(2+) waves in isolated cardiac cells and numerically studied the effect of system excitability on spiral patterns using a two-dimensional fire-diffuse-fire model. We found that under certain conditions, the system was able to display multiple stable patterns of spiral waves, each exhibiting different periods and distinct routines of spiral tips. Transition between these different patterns could be triggered by an internal fluctuation in the form of a single Ca(2+) spark.

  14. A Fire Severity Mapping System (FSMS) for real-time management applications and long term planning: Developing a map of the landscape potential for severe fire in the western United States

    Treesearch

    Gregory K. Dillon; Zachary A. Holden; Penny Morgan; Bob Keane

    2009-01-01

    The Fire Severity Mapping System project is geared toward providing fire managers across the western United States with critical information for dealing with and planning for the ecological effects of wildfire at multiple levels of thematic, spatial, and temporal detail. For this project, we are developing a comprehensive, west-wide map of the landscape potential for...

  15. A fine-particle sodium tracer for long-range transport of the Kuwaiti oil-fire smoke

    NASA Astrophysics Data System (ADS)

    Lowenthal, Douglas H.; Borys, Randolph D.; Rogers, C. Fred; Chow, Judith C.; Stevens, Robert K.; Pinto, Joe P.; Ondov, John M.

    1993-04-01

    Evidence for long-range transport of the Kuwaiti oil-fire smoke during the months following the Persian Gulf War has been more or less indirect. For example, high concentrations of aerosol particles containing soot and oil-combustion tracers such as vanadium observed at great distances from the Middle East may have come from sources other than the oil fires. However, more-recent data on the aerosol chemistry of Kuwaiti oil-fire plumes provides a direct link between those fires and aerosols collected at the Mauna Loa Observatory (MLO) during the late spring and summer of 1991.By itself, temporal covariation of fine-particle concentrations of elemental carbon, sulfur, and the noncrustal V / Zn ratio in MLO aerosols suggested a link to large-scale oil-combustion sources, but not necessarily to Kuwait. However, high concentrations of fine-particle (0.1-1.0 µm diameter) NaCl were observed in the “white” oil-fire plumes over Kuwait during the summer of 1991. Further analysis of the Mauna Loa data indicates strong temporal correspondence between the noncrustal V / Zn and noncrustal Na / Zn ratios and strong consistency between the noncrustal Na to noncrustal V ratios found at Mauna Loa and in the Kuwaiti oil-fire plume. In the absence of other demonstrable sources of fine-particle Na, these relationships provide a direct link between the Kuwaiti oil fires and aerosol composition observed at MLO.

  16. Measurement of inter- and intra-annual variability of landscape fire activity at a continental scale: The Australian case

    Treesearch

    Grant J. Williamson; Lynda D. Prior; Matt Jolly; Mark A. Cochrane; Brett P. Murphy; David M. J. S. Bowman

    2016-01-01

    Climate dynamics at diurnal, seasonal and inter-annual scales shape global fire activity, although difficulties of assembling reliable fire and meteorological data with sufficient spatio-temporal resolution have frustrated quantification of this variability. Using Australia as a case study, we combine data from 4760 meteorological stations with 12 years of satellite-...

  17. Optimizing spatial and temporal treatments to maintain effective fire and non-fire fuels treatments at landscape scales

    Treesearch

    J. Greg Jones; Woodam Chung; Carl Seielstad; Janet Sullivan; Kurt Krueger

    2010-01-01

    There is a recognized need to apply and maintain fuel treatments to reduce catastrophic wildland fires. A number of models and decision support systems have been developed for addressing different aspects of fuel treatments while considering other important resource management issues and constraints. Although these models address diverse aspects of the fuel treatment-...

  18. Investigation of firebrand generation from an experimental fire: Development of a reliable data collection methodology

    Treesearch

    Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni

    2017-01-01

    An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...

  19. FIRE STUDIES IN MALLEE (EUCALYPTUS SPP.) COMMUNITIES OF WESTERN NEW SOUTH WALES: SPATIAL AND TEMPORAL FLUXES IN SOIL CHEMISTRY AND SOIL BIOLOGY FOLLOWING PRESCRIBED FIRE.

    EPA Science Inventory

    The effects of prescribed fires on nutrient pools, soil-organisms, and vegetation patch dynamics were studied in three semi-arid mallee shrublands in western New South Wales. Repeated sampling of surface soil strata (0-2 and 2-4 cm) was undertaken at strategic times (immediately ...

  20. Dorsal–Ventral Gradient for Neuronal Plasticity in the Embryonic Spinal Cord

    PubMed Central

    Pineda, Ricardo H.; Ribera, Angeles B.

    2008-01-01

    Within the developing Xenopus spinal cord, voltage-gated potassium (Kv) channel genes display different expression patterns, many of which occur in opposing dorsal–ventral gradients. Regional differences in Kv gene expression would predict different patterns of potassium current (IKv) regulation. However, during the first 24 h of postmitotic differentiation, all primary spinal neurons undergo a temporally coordinated upregulation of IKv density that shortens the duration of the action potential. Here, we tested whether spinal neurons demonstrate regional differences in IKv regulation subsequent to action potential maturation. We show that two types of neurons, I and II, can be identified in culture on the basis of biophysical and pharmacological properties of IKv and different firing patterns. Chronic increases in extracellular potassium, a signature of high neuronal activity, do not alter excitability properties of either neuron type. However, elevating extracellular potassium acutely after the period of action potential maturation leads to different changes in membrane properties of the two types of neurons. IKv of type I neurons gains sensitivity to the blocker XE991, whereas type II neurons increase IKv density and fire fewer action potentials. Moreover, by recording from neurons in vivo, we found that primary spinal neurons can be identified as either type I or type II. Type I neurons predominate in dorsal regions, whereas type II neurons localize to ventral regions. The findings reveal a dorsal–ventral gradient for IKv regulation and a novel form of neuronal plasticity in spinal cord neurons. PMID:18385340

  1. Temporal variability of foliar nutrients: responses to nitrogen deposition and prescribed fire in a temperate steppe

    USGS Publications Warehouse

    Lü, Xiao-Tao; Reed, Sasha C.; Hou, Shuang-Li; Hu, Yan-Yu; Wei, Hai-Wei; Lü, Fu-Mei; Cui, Qiang; Han, Xing Guo

    2017-01-01

    Plant nutrient concentrations and stoichiometry drive fundamental ecosystem processes, with important implications for primary production, diversity, and ecosystem sustainability. While a range of evidence exists regarding how plant nutrients vary across spatial scales, our understanding of their temporal variation remains less well understood. Nevertheless, we know nutrients regulate plant function across time, and that important temporal controls could strongly interact with environmental change. Here, we report results from a 3-year assessment of inter-annual changes of foliar nitrogen (N) and phosphorus (P) concentrations and stoichiometry in three dominant grasses in response to N deposition and prescribed fire in a temperate steppe of northern China. Foliar N and P concentrations and their ratios varied greatly among years, with this temporal variation strongly related to inter-annual variation in precipitation. Nitrogen deposition significantly increased foliar N concentrations and N:P ratios in all species, while fire significantly altered foliar N and P concentrations but had no significant impacts on N:P ratios. Generally, N addition enhanced the temporal stability of foliar N and decreased that of foliar P and of N:P ratios. Our results indicate that plant nutrient status and response to environmental change are temporally dynamic and that there are differential effects on the interactions between environmental change drivers and timing for different nutrients. These responses have important implications for consideration of global change effects on plant community structure and function, management strategies, and the modeling of biogeochemical cycles under global change scenarios.

  2. Examining the relationship between fire history and sudden oak death patterns: a case study in Sonoma County

    Treesearch

    Max A. Moritz; Dennis C. Odion

    2006-01-01

    Fire is often integral to forest ecology and can affect forest disease dynamics. Sudden oak death has spread across a large, fire-prone portion of California, killing large numbers of oaks and tanoaks and infecting most associated woody plants. Building on our earlier study of fire-disease dynamics, we examined spatial patterns of confirmed infections in relation to...

  3. Increasing elevation of fire in the Sierra Nevada and implications for forest change

    Treesearch

    Mark W. Schwartz; Nathalie Butt; Christopher R. Dolanc; Andrew Holguin; Max A. Moritz; Malcolm P. North; Hugh D. Safford; Nathan L. Stephenson; James H. Thorne; Phillip J. van Mantgem

    2015-01-01

    Fire in high-elevation forest ecosystems can have severe impacts on forest structure, function and biodiversity. Using a 105-year data set, we found increasing elevation extent of fires in the Sierra Nevada, and pose five hypotheses to explain this pattern. Beyond the recognized pattern of increasing fire frequency in the Sierra Nevada since the late 20th century, we...

  4. Tree regeneration spatial patterns in ponderosa pine forests following stand-replacing fire: Influence of topography and neighbors

    Treesearch

    Justin P. Ziegler; Chad M. Hoffman; Paula J. Fornwalt; Carolyn H. Sieg; Michael A. Battaglia; Marin E. Chambers; Jose M. Iniguez

    2017-01-01

    Shifting fire regimes alter forest structure assembly in ponderosa pine forests and may produce structural heterogeneity following stand-replacing fire due, in part, to fine-scale variability in growing environments. We mapped tree regeneration in eighteen plots 11 to 15 years after stand-replacing fire in Colorado and South Dakota, USA. We used point pattern analyses...

  5. Reconciling salvage logging of boreal forests with a tural-disturbance management model.

    PubMed

    Schmiegelow, Fiona K A; Stepnisky, David P; Stambaugh, Curtis A; Koivula, Matti

    2006-08-01

    In North American boreal forests, wildfire is the dominant agent of natural disturbance. A natural-disturbance model has therefore been promoted as an ecologically based approach to forest harvesting in these systems. Given accelerating resource demands, fire competes with harvest for timber and there is increasing pressure to salvage naturally burned areas. This creates a management paradox: simultaneous promotion of natural disturbance as a guide to sustainability while salvaging forests that have been naturally disturbed. The major drivers of postfire salvage in Canadian boreal forests are societal perceptions, overallocation of forest resources, and economic and policy incentives, and postfire salvage compromisesforest sustainability by diminishing the role of fire as a critical, natural process. These factors might be reconciled through consideration of fire in resource allocations and application of active adaptive management. We provide novel treatment of the role of burn severity in mediating biotic response by examining its influence on the amount, type, and distribution of live, postfire residual material, and we highlight the role of fire in shaping spatial and temporal patterns in forest biodiversity. Maintenance of natural postfire forests is a critical component of an ecosystem-based approach to forest management in boreal systems. Nevertheless, presentpracticesfocus heavily on expediting removal of timber from burned forests, despite increasing evidence that postfire communities differ markedly from postharvest systems, and there is a mismatch between emerging management models and past management practices. Policies that recognize the critical role of fire in these systems and facilitate enhanced understanding of natural system dynamics in support of development of sustainable management practices are urgently needed.

  6. Microbial community recovery post-fire in a high elevation mixed conifer catchment in response to varied precipitation regime.

    NASA Astrophysics Data System (ADS)

    Fairbanks, D.; Cook, C.; Chorover, J.; Gallery, R. E.; Rich, V. I.

    2016-12-01

    Fire frequency and severity are increasing across the western United States with enormous impacts on regional carbon and nutrient cycling. Central to the understanding of ecosystem recovery are the microbial communities that transform nutrients in the environment. Temporal changes in precipitation patterns influence the stress response of resident microbiota, in combination with abiotic controls, and in part, controls ecosystem level CO2 and greenhouse gas flux. We explored the relationship between timing of precipitation, terrestrial nutrient cycles on microbial ecology post- fire by sampling across a topographic gradient from two adjacent mountain catchments (north and south-facing) in a high elevation mixed conifer forest three years following a high severity fire disturbance. To best understand microbial community response and recovery to a) a major fire disturbance and b) pulsed precipitation dynamics we analyzed the 16S ribosomal rRNA community metrics, seven hydrolytic enzyme activities, biomass carbon and nitrogen and geochemical parameters following snowmelt, pre and post-monsoon. Six sites were sampled from each catchment across a topographic transect from surface (0-10 cm) and deep (30-40 cm) soil profiles. Samples taken from the south facing catchment were co-located with CO2, O2, redox (platinum electrode) and temperature probes. Results show greater greenhouse gas flux in the convergent zones of the landscape occurring at deeper depths with simultaneous oxygen consumption. These results can be used to integrate our understanding of `hot spots' as a function of landscape position and the pulse coupling of precipitation dynamics influencing the stress response of microbes and the co-occurring nutrient cycling.

  7. Fire history of southeastern Glacier National Park: Missouri River Drainage

    USGS Publications Warehouse

    Barrett, Stephen W.

    1993-01-01

    In 1982, Glacier National Park (GNP) initiated long-term studies to document the fire history of all forested lands in the 410,000 ha. park. To date, studies have been conducted for GNP west of the Continental Divide (Barrett et al. 1991), roughly half of the total park area. These and other fire history studies in the Northern Rockies (Arno 1976, Sneck 1977, Arno 1980, Romme 1982, Romme and Despain 1989, Barrett and Arno 1991, Barrett 1993a, Barrett 1993b) have shown that fire history data can be an integral element of fire management planning, particularly wen natiral fire plans are being developed for parks and wilderness. The value of site specific fire history data is apparent when considering study results for lodgepole pin (Pinus contorta var. latifolia) forests. Lodgepole pine is a major subalpine type in the Northern Rockies and such stands experiences a wide range of presettlement fire patterns. On relatively warm-dry sites at lower elevations, such as in GNP's North Fork drainage (Barrett et al. 1991), short to moderately long interval (25-150 yr) fires occurred in a mixed severity pattern ranging from non-lethal underburns to total stand replacement (Arno 1976, Sneck 1977, Barrett and Arno 1991). Markedly different fire history occurred at high elevation lodgepole pine stands on highly unproductive sites, such as on Yellowstone National Park's (YNP) subalpine plateau. Romme (1982) found that, on some sites, stand replacing fires recurred after very long intervals (300-400 yr), and that non-lethal surface fires were rare. For somewhat more productive sites in the Absaroka Mountains in YNP, Barrett (1993a) estimated a 200 year mean replacement interval, in a pattern similar to that found in steep mountain terrain elsewhere, such as in the Middle Fork Flathead River drainage (Barrett et al. 1991, Sneck 1977). Aside from post-1900 written records (ayres 1900; fire atlas data on file, GNP Archives Div. and GNP Resources Mgt. Div.), little fire history information existed for GNP's east-side forests, which are dominated primarily by lodgepole pine. In fall 1992, the park initiated a study to determine the fire history of the Missouri River drainage portion of southeastern GNP. Given the known variation in pre-1900 fire patterns for lodgepole pine, this study was seen as a potentially important contribution to GNP's Fire Management Plan, and to the expanding data base of fire history studies in the region. Resource managers sought this information to assist their development of appropriate fire management strategies for the east-side forests, and the fire history data also would be a useful interactive component of the park's Geographic Information System (GIS). Primary objectives were to: 1) determine pre-1900 fire periodicities, severities, burning patterns, and post-fire succession for major forest types, and 2) document and map the forest age class mosaic, reflecting the history of stand replacing fires at the landscape level of analysis. Secondary objectives were to interpret the possible effects of modern fire suppression on area forests, and to determine fire regime patterns relative to other lodgepole pine ecosystems in the Northern Rockies.

  8. Temporal scaling behavior of forest and urban fires

    NASA Astrophysics Data System (ADS)

    Wang, J.; Song, W.; Zheng, H.; Telesca, L.

    2009-04-01

    It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.

  9. Control of Phasic Firing by a Background Leak Current in Avian Forebrain Auditory Neurons

    PubMed Central

    Dagostin, André A.; Lovell, Peter V.; Hilscher, Markus M.; Mello, Claudio V.; Leão, Ricardo M.

    2015-01-01

    Central neurons express a variety of neuronal types and ion channels that promote firing heterogeneity among their distinct neuronal populations. Action potential (AP) phasic firing, produced by low-threshold voltage-activated potassium currents (VAKCs), is commonly observed in mammalian brainstem neurons involved in the processing of temporal properties of the acoustic information. The avian caudomedial nidopallium (NCM) is an auditory area analogous to portions of the mammalian auditory cortex that is involved in the perceptual discrimination and memorization of birdsong and shows complex responses to auditory stimuli We performed in vitro whole-cell patch-clamp recordings in brain slices from adult zebra finches (Taeniopygia guttata) and observed that half of NCM neurons fire APs phasically in response to membrane depolarizations, while the rest fire transiently or tonically. Phasic neurons fired APs faster and with more temporal precision than tonic and transient neurons. These neurons had similar membrane resting potentials, but phasic neurons had lower membrane input resistance and time constant. Surprisingly phasic neurons did not express low-threshold VAKCs, which curtailed firing in phasic mammalian brainstem neurons, having similar VAKCs to other NCM neurons. The phasic firing was determined not by VAKCs, but by the potassium background leak conductances, which was more prominently expressed in phasic neurons, a result corroborated by pharmacological, dynamic-clamp, and modeling experiments. These results reveal a new role for leak currents in generating firing diversity in central neurons. PMID:26696830

  10. Quantifying spatial patterns of tree groups and gaps in mixed-conifer forests: reference conditions and long-term changes following fire suppression and logging

    Treesearch

    Jamie M. Lydersen; Malcolm P. North; Eric E. Knapp; Brandon M. Collins

    2013-01-01

    Fire suppression and past logging have dramatically altered forest conditions in many areas, but changes to within-stand tree spatial patterns over time are not as well understood. The few studies available suggest that variability in tree spatial patterns is an important structural feature of forests with intact frequent fire regimes that should be incorporated in...

  11. Grid cells form a global representation of connected environments.

    PubMed

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-05-04

    The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5-8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9-11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Grid Cells Form a Global Representation of Connected Environments

    PubMed Central

    Carpenter, Francis; Manson, Daniel; Jeffery, Kate; Burgess, Neil; Barry, Caswell

    2015-01-01

    Summary The firing patterns of grid cells in medial entorhinal cortex (mEC) and associated brain areas form triangular arrays that tessellate the environment [1, 2] and maintain constant spatial offsets to each other between environments [3, 4]. These cells are thought to provide an efficient metric for navigation in large-scale space [5–8]. However, an accurate and universal metric requires grid cell firing patterns to uniformly cover the space to be navigated, in contrast to recent demonstrations that environmental features such as boundaries can distort [9–11] and fragment [12] grid patterns. To establish whether grid firing is determined by local environmental cues, or provides a coherent global representation, we recorded mEC grid cells in rats foraging in an environment containing two perceptually identical compartments connected via a corridor. During initial exposures to the multicompartment environment, grid firing patterns were dominated by local environmental cues, replicating between the two compartments. However, with prolonged experience, grid cell firing patterns formed a single, continuous representation that spanned both compartments. Thus, we provide the first evidence that in a complex environment, grid cell firing can form the coherent global pattern necessary for them to act as a metric capable of supporting large-scale spatial navigation. PMID:25913404

  13. Development of Fire Emissions Inventory Using Satellite Data

    EPA Science Inventory

    There are multiple satellites observing and reporting fire imagery at various spatial and temporal resolutions and each system has inherent merits and deficiencies. In our study, data are acquired from the Moderate Resolution Imaging Spectro-radiometer (MODIS) aboard the Nationa...

  14. Post-wildfire soil erosion in the Mediterranean: Review and future research directions

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.

    2011-04-01

    Wildfires increased dramatically in frequency and extent in the European Mediterranean region from the 1960s, aided by a general warming and drying trend, but driven primarily by socio-economic changes, including rural depopulation, land abandonment and afforestation with flammable species. Published research into post-wildfire hydrology and soil erosion, beginning during the 1980s in Spain, has been followed by studies in other European Mediterranean countries together with Israel and has now attained a sufficiently large critical mass to warrant a major review. Although variations in climate, vegetation, soil, topography and fire severity cause differences in Mediterranean post-wildfire erosion, the long history of human landscape impact up to the present day is responsible for some its distinctive characteristics. This paper highlights these characteristics in reviewing wildfire impacts on hydrology, soil properties and soil erosion by water. The 'mosaic' nature of many Mediterranean landscapes (e.g. an intricate land-use pattern, abandoned terraces and tracks interrupting slopes) may explain sometimes conflicting post-fire hydrological and erosional responses at different sites and spatial scales. First-year post-wildfire soil losses at point- (average, 45-56 t ha - 1 ) and plot-scales (many < 1 t ha - 1 and the majority < 10 t ha - 1 in the first year) are similar to or even lower than those reported for fire-affected land elsewhere or other disturbed (e.g. cultivated) and natural poorly-vegetated (e.g. badlands, rangeland) land in the Mediterranean. The few published losses at larger-scales (hillslope and catchment) are variable. Thin soil and high stone content can explain supply-limited erosion preceding significant protection by recovering vegetation. Peak erosion can sometimes be delayed for years, largely through slow vegetation recovery and temporal variability of erosive storms. Preferential removal of organic matter and nutrients in the commonly thin, degraded soils is arguably just as if not more important than the total soil loss. Aspect is important, with more erosion reported for south- than north-facing slopes, which is attributed to greater fire frequency, slower vegetation recovery on the former and with soil characteristics more prone to erosion (e.g. lower aggregate stability). Post-fire wind erosion is a potentially important but largely neglected process. Gauging the degradational significance of wildfires has relied on comparison with unburnt land, but the focus for comparison should be switched to other agents of soil disturbance and/or currently poorly understood soil renewal rates. Human impact on land use and vegetation may alter expected effects (increased fire activity and post-wildfire erosion) arising from future climatic change. Different future wildfire mitigation responses and likely erosional consequences are outlined. Research gaps are identified, and more research effort is suggested to: (1) improve assessment of post-wildfire erosion impact on soil fertility, through further quantification of soil nutrient depletion resulting from single and multiple fire cycles, and on soil longevity; (2) investigate prescribed fire impacts on carbon release, air pollution and nutrient losses as well as on soil loss; (3) isolate hillslope- and catchment-scale impacts of soil water repellency under Mediterranean post-wildfire conditions; (4) test and refine application of cosmogenic radionuclides to post-wildfire hillslope-scale soil redistribution at different temporal scales; (5) use better temporal resolution of sedimentary sequences to understand palaeofire-erosion-sedimentation links; (6) quantify post-wildfire wind erosion; (7) improve the integration of wildfire into an overall assessment of the processes and impacts of land degradation in the Mediterranean; and (8) raise public awareness of wildfire impact on soil degradation.

  15. A modeling approach for aerosol optical depth analysis during forest fire events

    NASA Astrophysics Data System (ADS)

    Aube, Martin P.; O'Neill, Normand T.; Royer, Alain; Lavoue, David

    2004-10-01

    Measurements of aerosol optical depth (AOD) are important indicators of aerosol particle behavior. Up to now the two standard techniques used for retrieving AOD are; (i) sun photometry which provides measurements of high temporal frequency and sparse spatial frequency, and (ii) satellite based approaches such as DDV (Dense Dark Vegetation) based inversion algorithms which yield AOD over dark targets in remotely sensed imagery. Although the latter techniques allow AOD retrieval over appreciable spatial domains, the irregular spatial pattern of dark targets and the typically low repeat frequencies of imaging satellites exclude the acquisition of AOD databases on a continuous spatio-temporal basis. We attempt to fill gaps in spatio-temporal AOD measurements using a new assimilation methodology that links AOD measurements and the predictions of a particulate matter Transport Model. This modelling package (AODSEM V2.0 for Aerosol Optical Depth Spatio-temporal Evolution Model) uses a size and aerosol type segregated semi-Lagrangian trajectory algorithm driven by analysed meteorological data. Its novelty resides in the fact that the model evolution may be tied to both ground based and satellite level AOD measurement and all physical processes have been optimized to track this important and robust parameter. We applied this methodology to a significant smoke event that occurred over the eastern part of North America in July 2002.

  16. Forest Fire Management: A Comprehensive And Operational Approach

    NASA Astrophysics Data System (ADS)

    Fabrizi, Roberto; Perez, Bruno; Gomez, Antonio

    2013-12-01

    Remote sensing plays an important role in obtaining rapid and complete information on the occurrence and evolution in space and time of forest fires. In this paper, we present a comprehensive study of fire events through Earth Observation data for early warning, crisis monitoring and post-event damage assessment or a synthesis of the fire event, both in a wide spatial range (local to regional) and temporal scale (short to long term). The fire products are stored and distributed by means of a WebGIS and a Geoportal with additional auxiliary geospatial data. These products allow fire managers to perform analysis and decision making in a more comprehensive manner.

  17. Mapping fire scars in a southern African savannah using Landsat imagery

    Treesearch

    A. T. Hudak; B. H. Brockett

    2004-01-01

    The spectral, spatial and temporal characteristics of the Landsat data record make it appropriate for mapping fire scars. Twenty-two annual fire scar maps from 1972-­2002 were produced from historical Landsat imagery for a semi-arid savannah landscape on the South Africa-­Botswana border, centred over Madikwe Game Reserve (MGR) in South Africa. A principal components...

  18. The influence of prescribed fire and burn interval on fuel loads in four North Carolina forest ecosystems

    Treesearch

    M.J. Gavazzi; S.G. McNulty

    2014-01-01

    Prescribed fire is an important management tool in southern US forests, with more acres burned in the South than any other region of the US. Research from prescribed fire studies shows high temporal and spatial variability in available fuel loads due to physiographic, edaphic, meteorological and biological factors. In an effort to account for parts of this variation...

  19. An analysis of controls on fire activity in boreal Canada: comparing models built with different temporal resolutions

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Meg A. Krawchuk; John M. Little; Mike D. Flannigan; Lynn M. Gowman; Max A. Moritz

    2014-01-01

    Fire regimes of the Canadian boreal forest are driven by certain environmental factors that are highly variable from year to year (e.g., temperature, precipitation) and others that are relatively stable (e.g., land cover, topography). Studies examining the relative influence of these environmental drivers on fire activity suggest that models making explicit use of...

  20. Developing models to predict the number of fire hotspots from an accumulated fuel dryness index by vegetation type and region in Mexico

    Treesearch

    D. Vega-Nieva; J. Briseño-Reyes; M. Nava-Miranda; E. Calleros-Flores; P. López-Serrano; J. Corral-Rivas; E. Montiel-Antuna; M. Cruz-López; M. Cuahutle; R. Ressl; E. Alvarado-Celestino; A. González-Cabán; E. Jiménez; J. Álvarez-González; A. Ruiz-González; R. Burgan; H. Preisler

    2018-01-01

    Understanding the linkage between accumulated fuel dryness and temporal fire occurrence risk is key for improving decision-making in forest fire management, especially under growing conditions of vegetation stress associated with climate change. This study addresses the development of models to predict the number of 10-day observed Moderate-Resolution Imaging...

  1. Using fire return interval departure (FRID) analysis to map spatial and temporal changes in fire frequency on national forest lands in California

    Treesearch

    Hugh D. Safford; Kip M. Van de Water

    2014-01-01

    In California, fire regimes and related ecosystem processes have been altered by land use practices associated with Euro-American settlement, and climate warming is exacerbating the magnitude and effects of these changes. Because of changing environmental baselines, restoration of narrowly defined historical conditions may no longer be an attainable or sustainable long...

  2. Incorporating field wind data into FIRETEC simulations of the International Crown Fire Modeling Experiment (ICFME): preliminary lessons learned

    Treesearch

    Rodman Linn; Kerry Anderson; Judith Winterkamp; Alyssa Broos; Michael Wotton; Jean-Luc Dupuy; Francois Pimont; Carleton Edminster

    2012-01-01

    Field experiments are one way to develop or validate wildland fire-behavior models. It is important to consider the implications of assumptions relating to the locality of measurements with respect to the fire, the temporal frequency of the measured data, and the changes to local winds that might be caused by the experimental configuration. Twenty FIRETEC simulations...

  3. Multicentury fire and forest histories at 19 sites in Utah and eastern Nevada

    Treesearch

    Emily K. Heyerdahl; Peter M. Brown; Stanley G. Kitchen; Marc H. Weber

    2011-01-01

    Our objective is to provide site-specific fire and forest histories from Utah and eastern Nevada that can be used for land management or additional research. We systematically sampled fire scars and tree-recruitment dates across broad gradients in elevation and forest type at 13 sites in Utah and 1 in eastern Nevada to characterize spatial and temporal variation in...

  4. Preserving prairies: Understanding temporal and spatial patterns of invasive annual bromes in the Northern Great Plains

    USGS Publications Warehouse

    Ashton, Isabel; Symstad, Amy J.; Davis, Christopher; Swanson, Daniel J.

    2016-01-01

    Two Eurasian invasive annual brome grasses, cheatgrass (Bromus tectorum) and Japanese brome (Bromus japonicus), are well known for their impact in steppe ecosystems of the western United States where these grasses have altered fire regimes, reduced native plant diversity and abundance, and degraded wildlife habitat. Annual bromes are also abundant in the grasslands of the Northern Great Plains (NGP), but their impact and ecology are not as well studied. It is unclear whether the lessons learned from the steppe will translate to the mixed-grass prairie where native plant species are adapted to frequent fires and grazing. Developing a successful annual brome management strategy for National Park Service units and other NGP grasslands requires better understanding of (1) the impact of annual bromes on grassland condition; (2) the dynamics of these species through space and time; and (3) the relative importance of environmental factors within and outside managers' control for these spatiotemporal dynamics. Here, we use vegetation monitoring data collected from 1998 to 2015 in 295 sites to relate spatiotemporal variability of annual brome grasses to grassland composition, weather, physical environmental characteristics, and ecological processes (grazing and fire). Concern about the impact of these species in NGP grasslands is warranted, as we found a decline in native species richness with increasing annual brome cover. Annual brome cover generally increased over the time of monitoring but also displayed a 3- to 5-yr cycle of reduction and resurgence. Relative cover of annual bromes in the monitored areas was best predicted by park unit, weather, extant plant community, slope grade, soil composition, and fire history. We found no evidence that grazing reduced annual brome cover, but this may be due to the relatively low grazing pressure in our study. By understanding the consequences and patterns of annual brome invasion, we will be better able to preserve and restore these grassland landscapes for future generations.

  5. Examining heterogeneity and wildfire management expenditures using spatially and temporally descriptive data

    Treesearch

    Michael S. Hand; Matthew P. Thompson; Dave Calkin

    2016-01-01

    Increasing costs of wildfire management have highlighted the need to better understand suppression expenditures and potential tradeoffs of land management activities that may affect fire risks. Spatially and temporally descriptive data is used to develop a model of wildfire suppression expenditures, providing new insights into the role of spatial and temporal...

  6. Changes in Carbon Emissions in Colombian Savannas Derived From Recent Land use and Land Cover Change

    NASA Astrophysics Data System (ADS)

    Etter, A.; Sarmiento, A.

    2007-12-01

    The global contribution of carbon emissions from land use dynamics and change to the global carbon (C) cycle is still uncertain, a major concern in global change modeling. Carbon emission from fires in the tropics is significant and represents 9% of the net primary production, and 50% of worldwide C emissions from fires are attributable to savanna fires. Such emissions may vary significantly due to differences in ecosystem types. Most savanna areas are devoted to grazing land uses making methane emissions also important in savanna ecosystems. Land use change driven by intensification of grazing and cropping has become a major factor affecting C emission dynamics from savanna regions. Colombia has some 17 MHa of mesic savannas which have been historically burned. Due to changes in market demands and improved accessibility during the last 20 years, important areas of savannas changed land use from predominantly extensive grazing to crops and intensive grazing systems. This research models and evaluates the impacts of such land use changes on the spatial and temporal burning patterns and C emissions in the Orinoco savannas of Colombia. We address the effects of land use change patterns using remote sensing data from MODIS and Landsat, ecosystem mapping products, and spatial GIS analysis. First we map the expansion of the agricultural frontier from the 1980s-2000s. We then model the changes in land use from the 1980s using a statistical modeling approach to analyze and quantify the impact of accessibility, ecosystem type and land tenure. We calculate the effects on C emissions from fire regimes and other sources of C based on patterns and extent of burned areas in the 2000s for different savanna ecosystem types and land uses. In the Llanos the fire regime exhibits a marked seasonal variability with most fire events occurring during the dry season between December-March. Our analysis shows that fire frequencies vary consistently between 0.6 and 2.8 fires.yr-1 per 2,500 Ha among the different savanna ecosystem types. Highest frequencies and largest burned areas occur in the less accessible well-drained savannas of the southern part of the region. The analysis also reveals a close relationship between land tenure and fire regimes, with highest frequencies in Indigenous Reserves, followed by private land ranches and National Parks, indicating that most fires are human induced. By 2000 more than 500k hectares of natural savannas were transformed to sown pastures (Brachiaria spp.), and some 100k hectares were planted with oil palm and irrigated rice. Such changes have taken place in more accessible areas and slightly better soils. In areas subject to land use change and intensification a significant reduction in fire frequency can be observed. Because such land use changes have been occurring in savanna types with better soils and higher aerial biomass values, the average effect on reduction of C-emissions is some 30 to 50% larger than the effect on fire area reduction. Our results indicate a reduction of fire frequencies greater than 80% in areas where savannas were replaced by introduced Brachiaria pastures. However the reduction in C emissions from fire reduction in these pastures is exceeded by the parallel emissions from the increase in the cattle stocking rates with a net effect of an additional emission of 0.5 Gt.CO2 equivalents. We make preliminary projections of future emission trends based on the land use change model, and we discuss the likely effects of future sources and sinks of C expected from the increase of irrigated rice crops and from projected oil palm and timber plantations.

  7. A life cycle hazard assessment (LCHA) framework to address fire hazards at the wildland-urban interface

    NASA Astrophysics Data System (ADS)

    Lindquist, Eric; Pierce, Jen; Wuerzer, Thomas; Glenn, Nancy; Dialani, Jijay; Gibble, Katie; Frazier, Tim; Strand, Eva

    2015-04-01

    The stages of planning for and responding to natural hazards, such as wildfires and related events, are often conducted as discrete (and often not connected) efforts. Disaster response often takes precedence, exhausting agency and stakeholder resources, and the planning stages are conducted by different agencies or entities with different and often competing agendas and jurisdictions. The result is that evaluation after a disaster can be minimal or even non-existent as resources are expended and interest moves on to the next event. Natural disasters and hazards, however, have a tendency to cascade and multiply: wildfires impact the vulnerability of hillslopes, for example, which may result in landslides, flooding and debris flows long after the initial event has occurred. Connecting decisions across multiple events and time scales is ignored, yet these connections could lead to better policy making at all stages of disaster risk reduction. Considering this situation, we present an adapted life cycle analysis (LCA) approach to examine fire-related hazards at the Wildland-Urban Interface in the American West. The LCHA focuses on the temporal integration of : 1) the 'pre-fire' set of physical conditions (e.g. fuel loads) and human conditions (e.g. hazard awareness), 2) the 'fire event', focusing on computational analysis of the communication patterns and responsibility for response to the event, and 3) the 'post-event' analysis of the landscape susceptibility to fire-related debris flows. The approach of the LCHA follows other models used by governmental agencies to prepare for disasters through 1) preparation and prevention, 2) response and 3) recovery. As an overlay are the diverse agencies and policies associated with these stages and their respective resource and management decisions over time. LCAs have evolved from a business-centric consideration of the environmental impact of a specific product over the products life. This approach takes several phases to end up with an assessment of the impact of the product on the environment over time and is being considered beyond the business and logistics communities in such areas as biodiversity and ecosystem impacts. From our perspective, we consider wildfire as the "product" and want to understand how it impacts the environment (spatially, temporally, across the bio-physical and social domains). Through development of this LCHA we adapt the LCA approach with a focus on the inputs (from fire and pre-fire efforts) outputs (from post fire conditions) and how they evolve and are responded to by the responsible agencies and stakeholders responsible. A Life Cycle Hazard Assessment (LCHA) approach extends and integrates the understanding of hazards over much longer periods of time than previously considered. The LCHA also provides an integrated platform for the necessary interdisciplinary approach to understanding decision and environmental change across the life cycle of the fire event. This presentation will discuss our theoretical and empirical framework for developing a longitudinal LCHA and contribute to the overall goals of the NH7.1 session.

  8. Fire ecology of the forest habitat types of northern Idaho

    Treesearch

    Jane Kapler Smith; William C. Fischer

    1997-01-01

    Provides information on fire ecology in forest habitat and community types occurring in northern Idaho. Identifies fire groups based on presettlement fire regimes and patterns of succession and stand development after fire. Describes forest fuels and suggests considerations for fire management.

  9. Responses of pond-breeding amphibians to wildfire: Short-term patterns in occupancy and colonization

    USGS Publications Warehouse

    Hossack, B.R.; Corn, P.S.

    2007-01-01

    Wildland fires are expected to become more frequent and severe in many ecosystems, potentially posing a threat to many sensitive species. We evaluated the effects of a large, stand-replacement wildfire on three species of pond-breeding amphibians by estimating changes in occupancy of breeding sites during the three years before and after the fire burned 42 of 83 previously surveyed wetlands. Annual occupancy and colonization for each species was estimated using recently developed models that incorporate detection probabilities to provide unbiased parameter estimates. We did not find negative effects of the fire on the occupancy or colonization rates of the long-toed salamander (Ambystoma macrodactylum). Instead, its occupancy was higher across the study area after the fire, possibly in response to a large snowpack that may have facilitated colonization of unoccupied wetlands. Naïve data (uncorrected for detection probability) for the Columbia spotted frog (Rana luteiventris) initially led to the conclusion of increased occupancy and colonization in wetlands that burned. After accounting for temporal and spatial variation in detection probabilities, however, it was evident that these parameters were relatively stable in both areas before and after the fire. We found a similar discrepancy between naïve and estimated occupancy of A. macrodactylum that resulted from different detection probabilities in burned and control wetlands. The boreal toad (Bufo boreas) was not found breeding in the area prior to the fire but colonized several wetlands the year after they burned. Occupancy by B. boreas then declined during years 2 and 3 following the fire. Our study suggests that the amphibian populations we studied are resistant to wildfire and that B. boreas may experience short-term benefits from wildfire. Our data also illustrate how naïve presence–non-detection data can provide misleading results.

  10. Soil wetting patterns of vegetation and inter-patches following single and repeated wildfires

    NASA Astrophysics Data System (ADS)

    González, Óscar; Malvar, Maruxa; van den Elsen, Erik; Hosseini, mohammadreza; Coelho, Celeste; Ritsema, Coen; Bautista, Susana; Keizer, Jan Jacob; Cerdà, Artemi

    2015-04-01

    Although wildfires spread in Mediterranean areas are considered a natural processes, the expected increase in fire frequency has raised concerns about the systems' future resilience (Pausas, 2004). Besides more frequent, future wildfires can become more severe and produce more pronounced changes in topsoil properties, vegetation and litter (Cerdá and Mataix-Solera, 2009). To deal with challenges, the EU funded CASCADE and RECARE projects, which are currently assessing soil threats and tipping-points for land degradation in a climatic gradient across Europe. The present research was developed in Portugal and aims to find relationships between fire frequency and soil wetting patterns following single versus repeated wildfires. In September 2012, a wildfire burnt 3000 ha. of Pine stands and shrub vegetation in the vicinity of Viseu district, North-Central Portugal. Analyses according to the available burnt-area maps (1975-2012), discriminated areas that has been burned 1x (called SD) and 4x (called D) times. In order to evaluate the post-fire soil surface moisture patterns, 6 slopes (3 in SD and 3 in D) were selected and a balanced experimental design with 72 soil moisture sensors (EC5 and GS3, from Decagon devices) was implemented under shrubs (n=18) and on bare (n=18) soil environments, at 2.5 cm and 7.5 cm soil depth each. The spatio-temporal occurrence of soil water repellence (SWR) (Keizer et al., 2008; Prats et al., 2013; Santos et al., 2014) was monthly assessed through the MED test at 2.5 cm and 7.5 cm soil depth into 5 sampling points located at regular distances along a transect running from the top to bottom of a selected slope in SD and D. Automatic and totalize rainfall gauges were also installed across the study area. Preliminary results showed that soil wetting patterns and SWR occurrence differs between SD, D sites and, between soil environment (under shrubs and on bare soil areas). SWR were more pronounced on the SD than in D, affecting soil wetting cycles. Soil moisture content and antecedent rainfall were both correlated with SWR, although insufficient to predict the temporal variations. Antecedent and maximum soil moisture were close related with the SWR status and data analyses showed a top-down breaking mechanism on the SWR Acknowledgements. The research projects CASCADE FP7 (ENV.2011.2.1.4, www.cascade-project.eu) AND RECARE FP7 (n° 603498, http://recare-project.eu/) supported this research. References. Cerdá, A., Mataix-Solera, J., 2009. Incendios forestales en España. Ecosistemas terrestres y suelos. En: Efectos de los incendios forestales sobre los suelos en España. Cerda and Mataix-Solera (eds). Universidad de Valencia, Valencia (España). 529 pp. Keizer, J.J., Doerr, S.H., Malvar, M.C., Prats, S.A., Ferreira, R.S.V., Oñate, M.G., Coelho, C.O.A., Ferreira, A.J.D., 2008. Temporal variation in topsoil water repellency in two recently burnt eucalypt stands in north-central Portugal. Catena 74 (3), 192-204. Pausas, J., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change, 63: 330-340. Prats, S.A., Malvar, M., Vieira, D.C.S., McDonald, L., Keizer, J.J. 2013. Effectiveness of hydromulching to reduce runoff and erosion in a recently burnt pine plantation in central Portugal. Land Degradation and Development. DOI: 10.1002/ldr.2236. Santos J.M., Verheijen F.G.A., Wahren F.T., Wahren A., Feger K.H., Bernard-Jannin L., Rial Rivas M.E., Keizer J.J., Nunes J.P. 2014. Soil Water Repellency dynamics in Pine and Eucalypt plantations in Portugal - A high resolution time series. Land Degradation & Development. DOI: 10.1002/ldr.2251.

  11. Modeling hydrologic and geomorphic hazards across post-fire landscapes using a self-organizing map approach

    USGS Publications Warehouse

    Friedel, Michael J.

    2011-01-01

    Few studies attempt to model the range of possible post-fire hydrologic and geomorphic hazards because of the sparseness of data and the coupled, nonlinear, spatial, and temporal relationships among landscape variables. In this study, a type of unsupervised artificial neural network, called a self-organized map (SOM), is trained using data from 540 burned basins in the western United States. The sparsely populated data set includes variables from independent numerical landscape categories (climate, land surface form, geologic texture, and post-fire condition), independent landscape classes (bedrock geology and state), and dependent initiation processes (runoff, landslide, and runoff and landslide combination) and responses (debris flows, floods, and no events). Pattern analysis of the SOM-based component planes is used to identify and interpret relations among the variables. Application of the Davies-Bouldin criteria following k-means clustering of the SOM neurons identified eight conceptual regional models for focusing future research and empirical model development. A split-sample validation on 60 independent basins (not included in the training) indicates that simultaneous predictions of initiation process and response types are at least 78% accurate. As climate shifts from wet to dry conditions, forecasts across the burned landscape reveal a decreasing trend in the total number of debris flow, flood, and runoff events with considerable variability among individual basins. These findings suggest the SOM may be useful in forecasting real-time post-fire hazards, and long-term post-recovery processes and effects of climate change scenarios.

  12. A low-cost particulate matter (PM2.5) monitor for wildland fire smoke

    NASA Astrophysics Data System (ADS)

    Kelleher, Scott; Quinn, Casey; Miller-Lionberg, Daniel; Volckens, John

    2018-02-01

    Wildfires and prescribed fires produce emissions that degrade visibility and are harmful to human health. Smoke emissions and exposure monitoring is critical for public and environmental health protection; however, ground-level measurements of smoke from wildfires and prescribed fires has proven difficult, as existing (validated) monitoring technologies are expensive, cumbersome, and generally require line power. Few ground-based measurements are made during fire events, which limits our ability to assess the environmental and human health impacts of wildland fire smoke. The objective of this work was to develop and validate an Outdoor Aerosol Sampler (OAS) - a filter-based air sampler that has been miniaturized, solar powered, and weatherproofed. This sampler was designed to overcome several of the technical challenges of wildland fire monitoring by being relatively inexpensive and solar powered. The sampler design objectives were achieved by leveraging low-cost electronic components, open-source programming platforms, and in-house fabrication methods. A direct-reading PM2.5 sensor was selected and integrated with the OAS to provide time-resolved concentration data. Cellular communications established via short message service (SMS) technology were utilized in transmitting online sensor readings and controlling the sampling device remotely. A Monte Carlo simulation aided in the selection of battery and solar power necessary to independently power the OAS, while keeping cost and size to a minimum. Thirteen OAS were deployed to monitor smoke concentrations downwind from a large prescribed fire. Aerosol mass concentrations were interpolated across the monitoring network to depict smoke concentration gradients in the vicinity of the fire. Strong concentration gradients were observed (spatially and temporally) and likely present due to a combination of changing fire location and intensity, topographical features (e.g., mountain ridges), and diurnal weather patterns. Gravimetric filter measurements made by the OAS (when corrected for filter collection efficiency) showed relatively good agreement with measurements from an EPA federal equivalent monitor. However, the real-time optical sensor (Sharp GP2Y1023AU0F, Sharp Electronic Co.) within the OAS suffered from temperature dependence, drift, and imprecision.

  13. Using High Spatial Resolution Satellite Imagery to Map Forest Burn Severity Across Spatial Scales in a Pine Barrens Ecosystem

    NASA Technical Reports Server (NTRS)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; Zhao, Feng; Dennison, Philip E.; Cook, Bruce D.; Brewster, Kristen; Green, Timothy M.; Serbin, Shawn P.

    2017-01-01

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (less than or equal to 5 m) from very-high-resolution (VHR) data. We assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severity was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal - pre- and post-fire event - WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). This work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the less than 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.

  14. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meng, Ran; Wu, Jin; Schwager, Kathy L.

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  15. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem

    DOE PAGES

    Meng, Ran; Wu, Jin; Schwager, Kathy L.; ...

    2017-01-21

    As a primary disturbance agent, fire significantly influences local processes and services of forest ecosystems. Although a variety of remote sensing based approaches have been developed and applied to Landsat mission imagery to infer burn severity at 30 m spatial resolution, forest burn severity have still been seldom assessed at fine spatial scales (≤ 5 m) from very-high-resolution (VHR) data. Here we assessed a 432 ha forest fire that occurred in April 2012 on Long Island, New York, within the Pine Barrens region, a unique but imperiled fire-dependent ecosystem in the northeastern United States. The mapping of forest burn severitymore » was explored here at fine spatial scales, for the first time using remotely sensed spectral indices and a set of Multiple Endmember Spectral Mixture Analysis (MESMA) fraction images from bi-temporal — pre- and post-fire event — WorldView-2 (WV-2) imagery at 2 m spatial resolution. We first evaluated our approach using 1 m by 1 m validation points at the sub-crown scale per severity class (i.e. unburned, low, moderate, and high severity) from the post-fire 0.10 m color aerial ortho-photos; then, we validated the burn severity mapping of geo-referenced dominant tree crowns (crown scale) and 15 m by 15 m fixed-area plots (inter-crown scale) with the post-fire 0.10 m aerial ortho-photos and measured crown information of twenty forest inventory plots. Our approach can accurately assess forest burn severity at the sub-crown (overall accuracy is 84% with a Kappa value of 0.77), crown (overall accuracy is 82% with a Kappa value of 0.76), and inter-crown scales (89% of the variation in estimated burn severity ratings (i.e. Geo-Composite Burn Index (CBI)). Lastly, this work highlights that forest burn severity mapping from VHR data can capture heterogeneous fire patterns at fine spatial scales over the large spatial extents. This is important since most ecological processes associated with fire effects vary at the < 30 m scale and VHR approaches could significantly advance our ability to characterize fire effects on forest ecosystems.« less

  16. WILDLAND FIRE EMISSION MODELING FOR CMAQ: AN UPDATE

    EPA Science Inventory

    This paper summarizes recent efforts to improve the methods used for modeling wild land fire emissions both for retrospective modeling and real-time forecasting. These improvements focus on the temporal and spatial resolution of the activity data as well as the methods to estimat...

  17. Early post-fire succession in California chaparral: changes in diversity, density, cover, and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  18. Early post-fire succession in California chaparral: Changes in diversity, density, cover and biomass

    USGS Publications Warehouse

    Guo, Q.

    2001-01-01

    For four consecutive years, following the fires in November 1993, temporal variations in species richness, cover and biomass of component plant groups in early post-fire chaparral succession were monitored on different aspects at the Stunt Ranch Santa Monica Mountains Reserve, southern California. Plant groups were categorized based on growth form, life form, ability to fix nitrogen, geographic origin and regeneration strategies. North-facing slopes exhibited higher species richness, higher species turnover rate over time and faster vegetation recovery in terms of biomass accumulation and return to pre-fire species composition. This was probably due to higher species richness and biomass of nitrogen-fixing species found on north-facing slopes in comparison to south-facing slopes. On both north- and south-facing slopes, annuals had the highest species turnover rate, followed by herbaceous perennials and shrubs. In the first four post-fire years, annual species were the largest floristic group, but herbaceous perennials and shrubs were the major contributors to community biomass. Nitrogen-fixing species and exotics contributed significantly to early post-fire community structure. Although the general trends in post-fire succession are clear in terms of temporal changes in the relative proportions of different plant groups, environmental variation and the nature of plant life histories of component species, especially dominant species, could alter such trends significantly.

  19. The Ring of Fire: The Effects of Slope upon Pattern Formation in Simulated Forest Fire Systems

    NASA Astrophysics Data System (ADS)

    Morillo, Robin; Manz, Niklas

    We report about spreading fire fronts under sloped conditions using the general cellular automaton model and data from physical scaled-down experiments. Punckt et al. published experimental and computational results for planar systems and our preliminary results confirmed the expected speed-slope dependence of fire fronts propagating up or down the hill with a cut-off slope value above which no fire front can exist. Here we focus on two fascinating structures in reaction-diffusion systems: circular expanding target pattern and rotating spirals. We investigated the behaviors of both structures with varied values for the slope of the forest and the homogeneity of the trees. For both variables, a range of values was found for which target pattern or spiral formation was possible.

  20. Tracing Activity Across the Whole Brain Neural Network with Optogenetic Functional Magnetic Resonance Imaging

    PubMed Central

    Lee, Jin Hyung

    2011-01-01

    Despite the overwhelming need, there has been a relatively large gap in our ability to trace network level activity across the brain. The complex dense wiring of the brain makes it extremely challenging to understand cell-type specific activity and their communication beyond a few synapses. Recent development of the optogenetic functional magnetic resonance imaging (ofMRI) provides a new impetus for the study of brain circuits by enabling causal tracing of activities arising from defined cell types and firing patterns across the whole brain. Brain circuit elements can be selectively triggered based on their genetic identity, cell body location, and/or their axonal projection target with temporal precision while the resulting network response is monitored non-invasively with unprecedented spatial and temporal accuracy. With further studies including technological innovations to bring ofMRI to its full potential, ofMRI is expected to play an important role in our system-level understanding of the brain circuit mechanism. PMID:22046160

  1. Colour based fire detection method with temporal intensity variation filtration

    NASA Astrophysics Data System (ADS)

    Trambitckii, K.; Anding, K.; Musalimov, V.; Linß, G.

    2015-02-01

    Development of video, computing technologies and computer vision gives a possibility of automatic fire detection on video information. Under that project different algorithms was implemented to find more efficient way of fire detection. In that article colour based fire detection algorithm is described. But it is not enough to use only colour information to detect fire properly. The main reason of this is that in the shooting conditions may be a lot of things having colour similar to fire. A temporary intensity variation of pixels is used to separate them from the fire. These variations are averaged over the series of several frames. This algorithm shows robust work and was realised as a computer program by using of the OpenCV library.

  2. Effects of ignition location models on the burn patterns of simulated wildfires

    USGS Publications Warehouse

    Bar-Massada, A.; Syphard, A.D.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C.

    2011-01-01

    Fire simulation studies that use models such as FARSITE often assume that ignition locations are distributed randomly, because spatially explicit information about actual ignition locations are difficult to obtain. However, many studies show that the spatial distribution of ignition locations, whether human-caused or natural, is non-random. Thus, predictions from fire simulations based on random ignitions may be unrealistic. However, the extent to which the assumption of ignition location affects the predictions of fire simulation models has never been systematically explored. Our goal was to assess the difference in fire simulations that are based on random versus non-random ignition location patterns. We conducted four sets of 6000 FARSITE simulations for the Santa Monica Mountains in California to quantify the influence of random and non-random ignition locations and normal and extreme weather conditions on fire size distributions and spatial patterns of burn probability. Under extreme weather conditions, fires were significantly larger for non-random ignitions compared to random ignitions (mean area of 344.5 ha and 230.1 ha, respectively), but burn probability maps were highly correlated (r = 0.83). Under normal weather, random ignitions produced significantly larger fires than non-random ignitions (17.5 ha and 13.3 ha, respectively), and the spatial correlations between burn probability maps were not high (r = 0.54), though the difference in the average burn probability was small. The results of the study suggest that the location of ignitions used in fire simulation models may substantially influence the spatial predictions of fire spread patterns. However, the spatial bias introduced by using a random ignition location model may be minimized if the fire simulations are conducted under extreme weather conditions when fire spread is greatest. ?? 2010 Elsevier Ltd.

  3. Phasic spike patterning in rat supraoptic neurones in vivo and in vitro

    PubMed Central

    Sabatier, Nancy; Brown, Colin H; Ludwig, Mike; Leng, Gareth

    2004-01-01

    In vivo, most vasopressin cells of the hypothalamic supraoptic nucleus fire action potentials in a ‘phasic’ pattern when the systemic osmotic pressure is elevated, while most oxytocin cells fire continuously. The phasic firing pattern is believed to arise as a consequence of intrinsic activity-dependent changes in membrane potential, and these have been extensively studied in vitro. Here we analysed the discharge patterning of supraoptic nucleus neurones in vivo, to infer the characteristics of the post-spike sequence of hyperpolarization and depolarization from the observed spike patterning. We then compared patterning in phasic cells in vivo and in vitro, and we found systematic differences in the interspike interval distributions, and in other statistical parameters that characterized activity patterns within bursts. Analysis of hazard functions (probability of spike initiation as a function of time since the preceding spike) revealed that phasic firing in vitro appears consistent with a regenerative process arising from a relatively slow, late depolarizing afterpotential that approaches or exceeds spike threshold. By contrast, in vivo activity appears to be dominated by stochastic rather than deterministic mechanisms, and appears consistent with a relatively early and fast depolarizing afterpotential that modulates the probability that random synaptic input exceeds spike threshold. Despite superficial similarities in the phasic firing patterns observed in vivo and in vitro, there are thus fundamental differences in the underlying mechanisms. PMID:15146047

  4. An evaluation of image based techniques for wildfire detection and fuel mapping

    NASA Astrophysics Data System (ADS)

    Gabbert, Dustin W.

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiative created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire - both geographically and temporally - can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.

  5. An Evaluation of Image Based Techniques for Early Wildfire Detection and Fuel Mapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gabbert, Dustin W.

    Few events can cause the catastrophic impact to ecology, infrastructure, and human safety of a wildland fire along the wildland urban interface. The suppression of natural wildland fires over the past decade has caused a buildup of dry, dead surface fuels: a condition that, coupled with the right weather conditions, can cause large destructive wildfires that are capable of threatening both ancient tree stands and manmade infrastructure. Firefighters use fire danger models to determine staffing needs on high fire risk days; however models are only as effective as the spatial and temporal density of their observations. OKFIRE, an Oklahoma initiativemore » created by a partnership between Oklahoma State University and the University of Oklahoma, has proven that fire danger assessments close to the fire – both geographically and temporally – can give firefighters a significant increase in their situational awareness while fighting a wildland fire. This paper investigates several possible solutions for a small Unmanned Aerial System (UAS) which could gather information useful for detecting ground fires and constructing fire danger maps. Multiple fire detection and fuel mapping programs utilize satellites, manned aircraft, and large UAS equipped with hyperspectral sensors to gather useful information. Their success provides convincing proof of the utility that could be gained from low-altitude UAS gathering information at the exact time and place firefighters and land managers are interested in. Close proximity, both geographically and operationally, to the end can reduce latency times below what could ever be possible with satellite observation. This paper expands on recent advances in computer vision, photogrammetry, and infrared and color imagery to develop a framework for a next-generation UAS which can assess fire danger and aid firefighters in real time as they observe, contain, or extinguish wildland fires. It also investigates the impact information gained by this system could have on pre-fire risk assessments through the development of very high resolution fuel maps.« less

  6. Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.

    PubMed

    de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca

    2018-05-01

    Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.

  7. Forest and Land Fire Prevention Through the Hotspot Movement Pattern Approach

    NASA Astrophysics Data System (ADS)

    Turmudi, T.; Kardono, P.; Hartanto, P.; Ardhitasari, Y.

    2018-02-01

    Indonesia has experienced a great forest fire disaster in 2015. The losses incurred were enormous. But actually the incidence of forest and land fires occurs almost every year. Various efforts were made to cope with the fire disaster. The appearance of a hotspot becomes an early indication of the fire incident both location and time. By studying the location and time of the hotspot's appearance indicates that the hotspot has certain movement patterns from year to year. This study aims to show the pattern of movement of hotspots from year to year that can be used for the prevention of forest and land fires. The method used is time series analysis of land cover and hotspot distribution. The data used were land cover data from 2005 to 2016, hotspot data from 2005 to 2016. The location of this study is the territory of Meranti Kepulauan District. The results show that the highest hotspot is 425 hotspots occurs in the shrubs and bushes. From year to year, the pattern of hotspot movement occurs in the shrubs and bushes cover. The hotspot pattern follows the direction of unused land for cultivation and is dominated by shrubs. From these results, we need to pay more attentiont for the land with the cover of shrubs adjacent to the cultivated land.

  8. Behavior-Dependent Activity and Synaptic Organization of Septo-hippocampal GABAergic Neurons Selectively Targeting the Hippocampal CA3 Area.

    PubMed

    Joshi, Abhilasha; Salib, Minas; Viney, Tim James; Dupret, David; Somogyi, Peter

    2017-12-20

    Rhythmic medial septal (MS) GABAergic input coordinates cortical theta oscillations. However, the rules of innervation of cortical cells and regions by diverse septal neurons are unknown. We report a specialized population of septal GABAergic neurons, the Teevra cells, selectively innervating the hippocampal CA3 area bypassing CA1, CA2, and the dentate gyrus. Parvalbumin-immunopositive Teevra cells show the highest rhythmicity among MS neurons and fire with short burst duration (median, 38 ms) preferentially at the trough of both CA1 theta and slow irregular oscillations, coincident with highest hippocampal excitability. Teevra cells synaptically target GABAergic axo-axonic and some CCK interneurons in restricted septo-temporal CA3 segments. The rhythmicity of their firing decreases from septal to temporal termination of individual axons. We hypothesize that Teevra neurons coordinate oscillatory activity across the septo-temporal axis, phasing the firing of specific CA3 interneurons, thereby contributing to the selection of pyramidal cell assemblies at the theta trough via disinhibition. VIDEO ABSTRACT. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Faunal responses to fire in chaparral and sage scrub in California, USA

    USGS Publications Warehouse

    van Mantgem, Elizabeth; Keeley, Jon E.; Witter, Marti

    2015-01-01

    Impact of fire on California shrublands has been well studied but nearly all of this work has focused on plant communities. Impact on and recovery of the chaparral fauna has received only scattered attention; this paper synthesizes what is known in this regard for the diversity of animal taxa associated with California shrublands and outlines the primary differences between plant and animal responses to fire. We evaluated the primary faunal modes of resisting fire effects in three categories: 1) endogenous survival in a diapause or diapause-like stage, 2) sheltering in place within unburned refugia, or 3) fleeing and recolonizing. Utilizing these patterns in chaparral and sagescrub, as well as some studies on animals in other mediterranean-climate ecosystems, we derived generalizations about how plants and animals differ in their responses to fire impacts and their post fire recovery. One consequence of these differences is that variation in fire behavior has a much greater potential to affect animals than plants. For example, plants recover from fire endogenously from soil-stored seeds and resprouts, so fire size plays a limited role in determining recovery patterns. However, animals that depend on recolonization of burned sites from metapopulations may be greatly affected by fire size. Animal recolonization may also be greatly affected by regional land use patterns that affect colonization corridors, whereas such regional factors play a minimal role in plant community recovery. Fire characteristics such as rate of spread and fire intensity do not appear to play an important role in determining patterns of chaparral and sage scrub plant recovery after fire. However, these fire behavior characteristics may have a profound role in determining survivorship of some animal populations as slow-moving, smoldering combustion may limit survivorship of animals in burrows, whereas fast-moving, high intensity fires may affect survivorship of animals in above ground refugia or those attempting to flee. Thus, fire regime characteristics may have a much greater effect on postfire recovery of animal communities than plant communities in these shrubland ecosystems.

  10. Extreme Fire Severity Patterns in Topographic, Convective and Wind-Driven Historical Wildfires of Mediterranean Pine Forests

    PubMed Central

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires. PMID:24465492

  11. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests.

    PubMed

    Lecina-Diaz, Judit; Alvarez, Albert; Retana, Javier

    2014-01-01

    Crown fires associated with extreme fire severity are extremely difficult to control. We have assessed fire severity using differenced Normalized Burn Ratio (dNBR) from Landsat imagery in 15 historical wildfires of Pinus halepensis Mill. We have considered a wide range of innovative topographic, fuel and fire behavior variables with the purposes of (1) determining the variables that influence fire severity patterns among fires (considering the 15 wildfires together) and (2) ascertaining whether different variables affect extreme fire severity within the three fire types (topographic, convective and wind-driven fires). The among-fires analysis showed that fires in less arid climates and with steeper slopes had more extreme severity. In less arid conditions there was more crown fuel accumulation and closer forest structures, promoting high vertical and horizontal fuel continuity and extreme fire severity. The analyses carried out for each fire separately (within fires) showed more extreme fire severity in areas in northern aspects, with steeper slopes, with high crown biomass and in climates with more water availability. In northern aspects solar radiation was lower and fuels had less water limitation to growth which, combined with steeper slopes, produced more extreme severity. In topographic fires there was more extreme severity in northern aspects with steeper slopes and in areas with more water availability and high crown biomass; in convection-dominated fires there was also more extreme fire severity in northern aspects with high biomass; while in wind-driven fires there was only a slight interaction between biomass and water availability. This latter pattern could be related to the fact that wind-driven fires spread with high wind speed, which could have minimized the effect of other variables. In the future, and as a consequence of climate change, new zones with high crown biomass accumulated in non-common drought areas will be available to burn as extreme severity wildfires.

  12. Fire and avian ecology in North America: Process influencing pattern

    Treesearch

    Victoria A. Saab; Hugh D. W. Powell

    2005-01-01

    We summarize the findings from 10 subsequent chapters that collectively review fire and avian ecology across 40 North American ecosystems. We highlight patterns and future research topics that recur among the chapters. Vegetation types with long fire-return intervals, such as boreal forests of Canada, forests at high elevations, and those in the humid Pacific Northwest...

  13. Predicting the effect of fire on large-scale vegetation patterns in North America.

    Treesearch

    Donald McKenzie; David L. Peterson; Ernesto. Alvarado

    1996-01-01

    Changes in fire regimes are expected across North America in response to anticipated global climatic changes. Potential changes in large-scale vegetation patterns are predicted as a result of altered fire frequencies. A new vegetation classification was developed by condensing Kuchler potential natural vegetation types into aggregated types that are relatively...

  14. Response of Amazon Fires to the 2015/2016 El Niño and Evaluation of a Seasonal Fire Season Severity Forecast

    NASA Astrophysics Data System (ADS)

    Randerson, J. T.

    2016-12-01

    Recent work has established that year-to-year variability in drought and fire within the Amazon responds to a dual forcing from ocean-atmosphere interactions in the tropical Pacific and North Atlantic. Teleconnections between the Pacific and the Amazon are strongest between October and March, when El Niño contributes to below-average precipitation during the wet season. A reduced build-up of soil moisture during the wet season, in turn, may limit water availability and transpiration in tropical forests during the following dry season, lowering surface humidity, drying fuels, and allowing fires to spread more easily through the understory. The delayed influence of soil moisture through this land - atmosphere coupling provides a means to predict fire season severity 3-6 months before the onset of the dry season. With the aim of creating new opportunities for forest conservation, we have developed an experimental seasonal fire forecasting system for the Amazon. The 2016 fire season severity forecast, released in June by UCI and NASA, predicts unusually high risk across eastern Peru, northern Bolivia, and Brazil. Several surface and satellite data streams confirm that El Niño teleconnections had a significant impact on wet season hydrology within the Amazon. Rainfall observations from the Global Precipitation Climatology Centre provided evidence that cumulative precipitation deficits during August-April were 1 to 2 standard deviations below the long-term mean for most of the basin. These observations were corroborated by strong negative terrestrial water storage anomalies measured by the Gravity Recovery and Climate Experiment, and by fluorescence and vegetation index observations from other sensors that indicated elevated canopy stress. By August 3rd, satellite observations showed above average fire activity in most, but not all, forecast regions. Using additional satellite observations that become available later this year, we plan to describe the full spatial and temporal pattern of fires within the Amazon during the 2016 dry season and evaluate the success of our forecast. As a part of this analysis, we will compare fires from 2016 with other years of extreme drought (i.e., 2005 and 2010), and assess how trends in land use, including regional changes in deforestation, modify El Niño-driven fire risk.

  15. Simulating forest fuel and fire risk dynamics across landscapes--LANDIS fuel module design

    Treesearch

    Hong S. He; Bo Z. Shang; Thomas R. Crow; Eric J. Gustafson; Stephen R. Shifley

    2004-01-01

    Understanding fuel dynamics over large spatial (103-106 ha) and temporal scales (101-103 years) is important in comprehensive wildfire management. We present a modeling approach to simulate fuel and fire risk dynamics as well as impacts of alternative fuel treatments. The...

  16. Alternative characterization of forest fire regimes: incorporating spatial patterns

    Treesearch

    Brandon M. Collins; Jens T. Stevens; Jay D. Miller; Scott L. Stephens; Peter M. Brown; Malcolm P. North

    2017-01-01

    ContextThe proportion of fire area that experienced stand-replacing fire effects is an important attribute of individual fires and fire regimes in forests, and this metric has been used to group forest types into characteristic fire regimes. However, relying on proportion alone ignores important spatial characteristics...

  17. Forest fire spatial pattern analysis in Galicia (NW Spain).

    PubMed

    Fuentes-Santos, I; Marey-Pérez, M F; González-Manteiga, W

    2013-10-15

    Knowledge of fire behaviour is of key importance in forest management. In the present study, we analysed the spatial structure of forest fire with spatial point pattern analysis and inference techniques recently developed in the Spatstat package of R. Wildfires have been the primary threat to Galician forests in recent years. The district of Fonsagrada-Ancares is one of the most seriously affected by fire in the region and, therefore, the central focus of the study. Our main goal was to determine the spatial distribution of ignition points to model and predict fire occurrence. These data are of great value in establishing enhanced fire prevention and fire fighting plans. We found that the spatial distribution of wildfires is not random and that fire occurrence may depend on ownership conflicts. We also found positive interaction between small and large fires and spatial independence between wildfires in consecutive years. Copyright © 2013 Elsevier Ltd. All rights reserved.

  18. Forest disturbance interactions and successional pathways in the Southern Rocky Mountains

    USGS Publications Warehouse

    Lu Liang,; Hawbaker, Todd J.; Zhu, Zhiliang; Xuecao Li,; Peng Gong,

    2016-01-01

    The pine forests in the southern portion of the Rocky Mountains are a heterogeneous mosaic of disturbance and recovery. The most extensive and intensive stress and mortality are received from human activity, fire, and mountain pine beetles (MPB;Dendroctonus ponderosae). Understanding disturbance interactions and disturbance-succession pathways are crucial for adapting management strategies to mitigate their impacts and anticipate future ecosystem change. Driven by this goal, we assessed the forest disturbance and recovery history in the Southern Rocky Mountains Ecoregion using a 13-year time series of Landsat image stacks. An automated classification workflow that integrates temporal segmentation techniques and a random forest classifier was used to examine disturbance patterns. To enhance efficiency in selecting representative samples at the ecoregion scale, a new sampling strategy that takes advantage of the scene-overlap among adjacent Landsat images was designed. The segment-based assessment revealed that the overall accuracy for all 14 scenes varied from 73.6% to 92.5%, with a mean of 83.1%. A design-based inference indicated the average producer’s and user’s accuracies for MPB mortality were 85.4% and 82.5% respectively. We found that burn severity was largely unrelated to the severity of pre-fire beetle outbreaks in this region, where the severity of post-fire beetle outbreaks generally decreased in relation to burn severity. Approximately half the clear-cut and burned areas were in various stages of recovery, but the regeneration rate was much slower for MPB-disturbed sites. Pre-fire beetle outbreaks and subsequent fire produced positive compound effects on seedling reestablishment in this ecoregion. Taken together, these results emphasize that although multiple disturbances do play a role in the resilience mechanism of the serotinous lodgepole pine, the overall recovery could be slow due to the vast area of beetle mortality.

  19. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increase with the firing frequency of C-fibers.

    PubMed

    Adelson, D; Lao, L; Zhang, G; Kim, W; Marvizón, J C G

    2009-06-30

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1-10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Adelta-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli.

  20. Substance P release and neurokinin 1 receptor activation in the rat spinal cord increases with the firing frequency of C-fibers

    PubMed Central

    Adelson, David; Lao, Lijun; Zhang, Guohua; Kim, Woojae; Marvizón, Juan Carlos G.

    2009-01-01

    Both the firing frequency of primary afferents and neurokinin 1 receptor (NK1R) internalization in dorsal horn neurons increase with the intensity of noxious stimulus. Accordingly, we studied how the pattern of firing of primary afferent influences NK1R internalization. In rat spinal cord slices, electrical stimulation of the dorsal root evoked NK1R internalization in lamina I neurons by inducing substance P release from primary afferents. The stimulation frequency had pronounced effects on NK1R internalization, which increased up to 100 Hz and then diminished abruptly at 200 Hz. Peptidase inhibitors increased NK1R internalization at frequencies below 30 Hz, indicating that peptidases limit the access of substance P to the receptor at moderate firing rates. NK1R internalization increased with number of pulses at all frequencies, but maximal internalization was substantially lower at 1–10 Hz than at 30 Hz. Pulses organized into bursts produced the same NK1R internalization as sustained 30 Hz stimulation. To determine whether substance P release induced at high stimulation frequencies was from C-fibers, we recorded compound action potentials in the sciatic nerve of anesthetized rats. We observed substantial NK1R internalization when stimulating at intensities evoking a C-elevation, but not at intensities evoking only an Aδ-elevation. Each pulse in trains at frequencies up to 100 Hz evoked a C-elevation, demonstrating that C-fibers can follow these high frequencies. C-elevation amplitudes declined progressively with increasing stimulation frequency, which was likely caused by a combination of factors including temporal dispersion. In conclusion, the instantaneous firing frequency in C-fibers determines the amount of substance P released by noxious stimuli. PMID:19336248

  1. The role of fuels for understanding fire behavior and fire effects

    Treesearch

    E. Louise Loudermilk; J. Kevin Hiers; Joseph J. O' Brien

    2018-01-01

    Fire ecology, which has emerged as a critical discipline, links the complex interactions that occur between fire regimes and ecosystems. The ecology of fuels, a first principle in fire ecology, identifies feedbacks between vegetation and fire behavior-a cyclic process that starts with fuels influencing fire behavior, which in turn governs patterns of postfire...

  2. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  3. Static and dynamic controls on fire activity at moderate spatial and temporal scales in the Alaskan boreal forest

    USGS Publications Warehouse

    Barrett, Kirsten; Loboda, Tatiana; McGuire, A. David; Genet, Hélène; Hoy, Elizabeth; Kasischke, Eric

    2016-01-01

    Wildfire, a dominant disturbance in boreal forests, is highly variable in occurrence and behavior at multiple spatiotemporal scales. New data sets provide more detailed spatial and temporal observations of active fires and the post-burn environment in Alaska. In this study, we employ some of these new data to analyze variations in fire activity by developing three explanatory models to examine the occurrence of (1) seasonal periods of elevated fire activity using the number of MODIS active fire detections data set (MCD14DL) within an 11-day moving window, (2) unburned patches within a burned area using the Monitoring Trends in Burn Severity fire severity product, and (3) short-to-moderate interval (<60 yr) fires using areas of burned area overlap in the Alaska Large Fire Database. Explanatory variables for these three models included dynamic variables that can change over the course of the fire season, such as weather and burn date, as well as static variables that remain constant over a fire season, such as topography, drainage, vegetation cover, and fire history. We found that seasonal periods of high fire activity are associated with both seasonal timing and aggregated weather conditions, as well as the landscape composition of areas that are burning. Important static inputs to the model of seasonal fire activity indicate that when fire weather conditions are suitable, areas that typically resist fire (e.g., deciduous stands) may become more vulnerable to burning and therefore less effective as fire breaks. The occurrence of short-to-moderate interval fires appears to be primarily driven by weather conditions, as these were the only relevant explanatory variables in the model. The unique importance of weather in explaining short-to-moderate interval fires implies that fire return intervals (FRIs) will be sensitive to projected climate changes in the region. Unburned patches occur most often in younger stands, which may be related to a greater deciduous fraction of vegetation as well as lower fuel loads compared with mature stands. The fraction of unburned patches may therefore increase in response to decreasing FRIs and increased deciduousness in the region, or these may decrease if fire weather conditions become more severe.

  4. Temporal Geophysical Investigations of the FT-2-Plume at the Wurtsmith Air Force Base, Oscoda, Michigan

    EPA Science Inventory

    The decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) facility has been the focus of several geophysical investigations. After several decades of fire training exercises, significant amounts of hydrocarbons and some solvents seeped into the subsurface cont...

  5. TEMPORAL GEOPHYSICAL INVESTIGATIONS OF THE FT-2-PLUME AT THE WURTSMITH AIR FORCE BASE, OSCODA, MICHIGAN

    EPA Science Inventory

    The decommissioned Wurtsmith Air Force Base former Fire Training Cell (FT-02) facility has been the focus of several geophysical investigations. After several decades of fire training exercises, significant amounts of hydrocarbons and some solvents seeped into the Subsurface cont...

  6. In vivo mouse inferior olive neurons exhibit heterogeneous subthreshold oscillations and spiking patterns

    PubMed Central

    Khosrovani, S.; Van Der Giessen, R. S.; De Zeeuw, C. I.; De Jeu, M. T. G.

    2007-01-01

    In vitro whole-cell recordings of the inferior olive have demonstrated that its neurons are electrotonically coupled and have a tendency to oscillate. However, it remains to be shown to what extent subthreshold oscillations do indeed occur in the inferior olive in vivo and whether its spatiotemporal firing pattern may be dynamically generated by including or excluding different types of oscillatory neurons. Here, we did whole-cell recordings of olivary neurons in vivo to investigate the relation between their subthreshold activities and their spiking behavior in an intact brain. The vast majority of neurons (85%) showed subthreshold oscillatory activities. The frequencies of these subthreshold oscillations were used to distinguish four main olivary subtypes by statistical means. Type I showed both sinusoidal subthreshold oscillations (SSTOs) and low-threshold Ca2+ oscillations (LTOs) (16%); type II showed only sinusoidal subthreshold oscillations (13%); type III showed only low-threshold Ca2+ oscillations (56%); and type IV did not reveal any subthreshold oscillations (15%). These subthreshold oscillation frequencies were strongly correlated with the frequencies of preferred spiking. The frequency characteristics of the subthreshold oscillations and spiking behavior of virtually all olivary neurons were stable throughout the recordings. However, the occurrence of spontaneous or evoked action potentials modified the subthreshold oscillation by resetting the phase of its peak toward 90°. Together, these findings indicate that the inferior olive in intact mammals offers a rich repertoire of different neurons with relatively stable frequency settings, which can be used to generate and reset temporal firing patterns in a dynamically coupled ensemble. PMID:17895389

  7. Distinguishing cognitive state with multifractal complexity of hippocampal interspike interval sequences

    PubMed Central

    Fetterhoff, Dustin; Kraft, Robert A.; Sandler, Roman A.; Opris, Ioan; Sexton, Cheryl A.; Marmarelis, Vasilis Z.; Hampson, Robert E.; Deadwyler, Sam A.

    2015-01-01

    Fractality, represented as self-similar repeating patterns, is ubiquitous in nature and the brain. Dynamic patterns of hippocampal spike trains are known to exhibit multifractal properties during working memory processing; however, it is unclear whether the multifractal properties inherent to hippocampal spike trains reflect active cognitive processing. To examine this possibility, hippocampal neuronal ensembles were recorded from rats before, during and after a spatial working memory task following administration of tetrahydrocannabinol (THC), a memory-impairing component of cannabis. Multifractal detrended fluctuation analysis was performed on hippocampal interspike interval sequences to determine characteristics of monofractal long-range temporal correlations (LRTCs), quantified by the Hurst exponent, and the degree/magnitude of multifractal complexity, quantified by the width of the singularity spectrum. Our results demonstrate that multifractal firing patterns of hippocampal spike trains are a marker of functional memory processing, as they are more complex during the working memory task and significantly reduced following administration of memory impairing THC doses. Conversely, LRTCs are largest during resting state recordings, therefore reflecting different information compared to multifractality. In order to deepen conceptual understanding of multifractal complexity and LRTCs, these measures were compared to classical methods using hippocampal frequency content and firing variability measures. These results showed that LRTCs, multifractality, and theta rhythm represent independent processes, while delta rhythm correlated with multifractality. Taken together, these results provide a novel perspective on memory function by demonstrating that the multifractal nature of spike trains reflects hippocampal microcircuit activity that can be used to detect and quantify cognitive, physiological, and pathological states. PMID:26441562

  8. The 3000-4000 cal. BP anthropogenic shift in fire regime in the French Pyrenees.

    NASA Astrophysics Data System (ADS)

    Rius, D.; Vannière, B.; Galop, D.; Richard, H.

    2009-04-01

    Fire is a key disturbing agent in a wide range of ecosystems: boreal biome (Pitkanen, 2000), Mediterranean area (Colombaroli et al., 2008) as well as temperate European mountain zones (Tinner et al., 1999). During the Holocene, climate may control fire regime by both ignition and fire spread-favouring conditions (i.e. composition, structure and moisture of biomass) whereas man may change charcoal accumulation patterns through type and intensity of agro-pastoral activities. In western and Mediterranean Europe, single sites charcoal analysis recorded the anthropogenic forcing over fire regime broadly between the mid and the late-Holocene. Turner et al (2008) showed that climate and fire had been disconnected since 1700 cal. BP in Turkey. In central Swiss, Mean Fire Interval decreased by two times 2000 years ago due to increasing human impact (Stahli et al., 2006). In Italy, climate and man have had a combined influence on fire-hazard since ca 4000 cal. BP (Vannière et al., 2008). In the Pyrenees Mountains, the linkage between agro-pastoral practices and fire could be dated back to ca 4000-3000 cal. BP with a clear succession of a clearance phase (high fire frequency) followed by a quite linear trend throughout Middle Ages and Modern times corresponding to a change in fire use (Vanniere et al., 2001; Galop et al., 2002, Rius et al., in press). The quantification of fire regimes parameters such as frequency with robust methodological tools (Inferred Fire Frequency, Mean Fire Interval) is needed to understand and characterise such shifts. Here we present two sequences from the Lourdes basin (col d'Ech peat bog) and from the occidental Pyrenees (Gabarn peat bog), which cover the last 9000 years with high temporal resolution. The main goals of this study were to (1) assess control factors of fire regime throughout the lateglacial and Holocene (climate and/or man) on the local scale, (2) evidence the local/regional significance of these control factors , (3) discuss the role of fire in landscape management during the last 3000 years. These fire records emphasizes a shift in fire regime between ca 4000 and 3000 cal BP with similar trends during the last 3000 years (i.e. Mean Fire Interval = 150 years), which appear to be human-driven. However, both Neolithic and Bronze Age periods have different charcoal accumulation patterns suggesting discrepancies between local fire histories and thus different land-use trends and intensity. References Colombaroli D., Vannière B., Chapron E., Magny M. & Tinner W., 2008. Fire-vegetation interactions during the Mesolithic-Neolithic at Lago dell'Accesa, Italy. The Holocene 18: 679-692. Galop, D., Vanniere, B., Fontugne, M., 2002. Human activities and fire history since 4500 BC on the northern slope of the Pyrenees: a record from Cuguron (Central Pyrenees, France). Proceedings of the Second International Meeting of Anthracology, Paris, September 2000, BAR International Series, 43-51. Pitkanen A., 2000. Fire frequency and forest structure at a dry site between Ad 400 and 1110 based on charcoal and pollen records from a laminated lake sediment in eastern Finland. The Holocene 10,2: 221-228. Rius D., Vanniere B. & Galop D., in press. Fire frequency and landscape management in the north-western Pyrenean piedmont (France) since early Neolithic (8000 cal. BP). The Holocene. Stähli, M., Finsinger, W., Tinner, W., Allgower, B., 2006. Wildfire history and fire ecology of the Swiss National Park (Central Alps): new evidence from charcoal, pollen and plant macrofossils. The Holocene 16, 805-817. Tinner, W., Hubschmid, P., Wehrli, M., Ammann, B., Conedera, M., 1999. Long-term forest fire ecology and dynamics in southern Switzerland. Journal of Ecology 87, 273-289. Turner R., Roberts N. & Jones M. D., 2008. Climatic pacing of Mediterranean fire histories from lake sedimentary microcharcoal. Global and Planetary Change 63: 317-324. Vanniere, B., Galop, D., Rendu, C., Davasse, B., 2001. Feu et pratiques agro-pastorales dans les Pyrénées-Orientales : le cas de la montagne d'Enveitg (Cerdagne, Pyrénées-Orientales, France). R.G.P.S.O.,11, 29-42. Vanniere, B., Colombaroli, D., Chapron, E., Leroux, A., Tinner, W., Magny, M., 2008. Climate versus human-driven fire regimes in Mediterranean landscapes : the Holocene record of Lago dell'Accesa (Tuscany, Italy). Quaternary Science Reviews 27, 1181- 1196.

  9. Identifying the controls of wildfire activity in Namibia using multivariate statistics

    NASA Astrophysics Data System (ADS)

    Mayr, Manuel; Le Roux, Johan; Samimi, Cyrus

    2015-04-01

    Despite large areas of Namibia being unaffected by fires due to aridity, substantial burning in the northern and north-eastern parts of the country is observed every year. Within the fire-affected regions, a strong spatial and inter-annual variability characterizes the dry-season fire situation. In order to understand these patterns, it appears critical to identify the causative factors behind fire occurrence and to examine their interactions in detail. Furthermore, most studies dealing with causative factor examination focus either on the local or the regional scale. However, these scales seem to be inappropriate from a management perspective, as fire-related strategic action plans are most often set up nationwide. Here, we will present an examination of the fire regimes of Namibia based on a dataset conducted by Le Roux (2011). A decade-spanning fire record (1994-2003) derived from NOAA's Advanced Very High Resolution Radiometer (AVHRR) imagery was used to generate four fire regime metrics (Burned Area, Fire Season Length, Month of Peak Fire Season, and Fire Return Period) and quantitative information on vegetation and phenology derived from Normalized Difference Vegetation Index (NDVI) time series. Further variables contained by this dataset are related to climate, biodiversity, and human activities. Le Roux (2011) analyzed the correlations between the fire metrics mentioned above and the predictor variables. We hypothesize that linear correlations (as estimated by correlation coefficients) simplify the interactions between response and predictor variables. For instance, moderate population densities could induce the highest number of fires, whereas the complete absence of humans lacks one major source of ignition. Around highly populated areas, in contrary, fuels are usually reduced and space is more fragmented - thus, the initiation and spread of a potential fire could as well be inhibited. From a total of over 40 explanatory variables, we will initially use data mining techniques to select a conceivable set of variables by their explanatory value and to remove redundancy. We will then apply two multivariate statistical methods suitable to a large variety of data types and frequently used for (non-linear) causative factor identification: Non-metric Multidimensional Scaling (NMDS) and Regression Trees. The assumed value of these analyses is i) to determine the most important predictor variables of fire activity in Namibia, ii) to decipher their complex interactions in driving fire variability in Namibia, and iii) to compare the performance of two state-of-the-art statistical methods. References: Le Roux, J. (2011): The effect of land use practices on the spatial and temporal characteristics of savanna fires in Namibia. Doctoral thesis at the University of Erlangen-Nuremberg/Germany - 155 pages.

  10. Contributions of ignitions, fuels, and weather to the spatial patterns of burn probability of a boreal landscape

    Treesearch

    Marc-Andre Parisien; Sean A. Parks; Carol Miller; Meg A. Krawchuck; Mark Heathcott; Max A. Moritz

    2011-01-01

    The spatial pattern of fire observed across boreal landscapes is the outcome of complex interactions among components of the fire environment. We investigated how the naturally occurring patterns of ignitions, fuels, and weather generate spatial pattern of burn probability (BP) in a large and highly fireprone boreal landscape of western Canada, Wood Buffalo National...

  11. Laser Transformation Hardening of Firing Zone Cutout Cams.

    DTIC Science & Technology

    1981-06-01

    bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...salt bath nitriding to case harden firing zone cutout cams for the Mk 10 Guided Missile Launcher System (GMLS). These cams, machined of 4340 steel ...Patterns ........ ................ 8 9 Laser Beam Step Pattern ...... .................. .. 10 10 Hardness Profile, 4340 Steel

  12. The influence of a fire-induced convection column on radiological fallout patterns

    Treesearch

    A. Broido; A.W. McMasters

    1959-01-01

    Since no nuclear devices have been detonated by the United States under conditions leading to both mass fires and radiological fallout, a theoretical and small-scale experimental study was undertaken to see if fire-induced convection columns could significantly affect fallout patterns. Experiments were conducted in a 6- by 6-foot low-velocity wind tunnel using full-...

  13. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...

  14. 46 CFR 27.301 - What are the requirements for fire pumps, fire mains, and fire hoses on towing vessels?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... must provide for your towing vessel either a self-priming, power-driven, fixed fire-pump, a fire main... fire hydrants with attached hose to reach any part of the machinery space using a single length of fire... providing a solid stream and a spray pattern. (e) The portable fire pump must be self-priming and power...

  15. Role of temporal processing stages by inferior temporal neurons in facial recognition.

    PubMed

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition.

  16. Role of Temporal Processing Stages by Inferior Temporal Neurons in Facial Recognition

    PubMed Central

    Sugase-Miyamoto, Yasuko; Matsumoto, Narihisa; Kawano, Kenji

    2011-01-01

    In this review, we focus on the role of temporal stages of encoded facial information in the visual system, which might enable the efficient determination of species, identity, and expression. Facial recognition is an important function of our brain and is known to be processed in the ventral visual pathway, where visual signals are processed through areas V1, V2, V4, and the inferior temporal (IT) cortex. In the IT cortex, neurons show selective responses to complex visual images such as faces, and at each stage along the pathway the stimulus selectivity of the neural responses becomes sharper, particularly in the later portion of the responses. In the IT cortex of the monkey, facial information is represented by different temporal stages of neural responses, as shown in our previous study: the initial transient response of face-responsive neurons represents information about global categories, i.e., human vs. monkey vs. simple shapes, whilst the later portion of these responses represents information about detailed facial categories, i.e., expression and/or identity. This suggests that the temporal stages of the neuronal firing pattern play an important role in the coding of visual stimuli, including faces. This type of coding may be a plausible mechanism underlying the temporal dynamics of recognition, including the process of detection/categorization followed by the identification of objects. Recent single-unit studies in monkeys have also provided evidence consistent with the important role of the temporal stages of encoded facial information. For example, view-invariant facial identity information is represented in the response at a later period within a region of face-selective neurons. Consistent with these findings, temporally modulated neural activity has also been observed in human studies. These results suggest a close correlation between the temporal processing stages of facial information by IT neurons and the temporal dynamics of face recognition. PMID:21734904

  17. Climatic and weather factors affecting fire occurrence and behavior

    Treesearch

    Randall P. Benson; John O. Roads; David R. Weise

    2009-01-01

    Weather and climate have a profound influence on wildland fire ignition potential, fire behavior, and fire severity. Local weather and climate are affected by large-scale patterns of winds over the hemispheres that predispose wildland fuels to fire. The characteristics of wildland fuels, especially the moisture content, ultimately determine fire behavior and the impact...

  18. Population dynamics of the endangered Cape Sable seaside-sparrow

    USGS Publications Warehouse

    Curnutt, J.L.; Mayer, A.L.; Brooks, T.M.; Manne, L.; Bass, O.L.; Fleming, D.M.; Philip, Nott M.; Pimm, S.L.

    1998-01-01

    The Cape Sable seaside-sparrow (Ammodramus maritimus mirabilis) has disappeared from its only known breeding areas episodically since its discovery early this century. Systematic surveys across its range in the southern Everglades find the sparrow's range to be fragmented into six subpopulations. The sparrow population decreased by 58% between 1992 and 1995, with the near extinction of the western half of the population and the temporary local extinction of some eastern populations. Other similar grassland sparrows have populations that vary considerably from year to year. Yet the decline in the western subpopulation and the local extinction of some of the peripheral populations cannot be explained by natural variability alone. Hurricane Andrew passed over several subpopulations prior to the particularly poor year of 1993. However, the geographical and temporal patterns of subpopulation decline are not consistent with what would be expected following a hurricane. Frequent fires prevent successful breeding as does flooding during the breeding season. Better management can prevent frequent fires and episodic flooding. However, the long-term survival of the sparrow depends on managing the unanticipated risks that attend its small, fragmented population.

  19. Spike timing analysis in neural networks with unsupervised synaptic plasticity

    NASA Astrophysics Data System (ADS)

    Mizusaki, B. E. P.; Agnes, E. J.; Brunnet, L. G.; Erichsen, R., Jr.

    2013-01-01

    The synaptic plasticity rules that sculpt a neural network architecture are key elements to understand cortical processing, as they may explain the emergence of stable, functional activity, while avoiding runaway excitation. For an associative memory framework, they should be built in a way as to enable the network to reproduce a robust spatio-temporal trajectory in response to an external stimulus. Still, how these rules may be implemented in recurrent networks and the way they relate to their capacity of pattern recognition remains unclear. We studied the effects of three phenomenological unsupervised rules in sparsely connected recurrent networks for associative memory: spike-timing-dependent-plasticity, short-term-plasticity and an homeostatic scaling. The system stability is monitored during the learning process of the network, as the mean firing rate converges to a value determined by the homeostatic scaling. Afterwards, it is possible to measure the recovery efficiency of the activity following each initial stimulus. This is evaluated by a measure of the correlation between spike fire timings, and we analysed the full memory separation capacity and limitations of this system.

  20. Millisecond-Scale Motor Encoding in a Cortical Vocal Area

    NASA Astrophysics Data System (ADS)

    Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel

    2015-03-01

    Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation

Top