Stretton, Jason; Sidhu, Meneka K.; Winston, Gavin P.; Bartlett, Philippa; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.; Thompson, Pamela J.
2014-01-01
Working memory is a crucial cognitive function that is disrupted in temporal lobe epilepsy. It is unclear whether this impairment is a consequence of temporal lobe involvement in working memory processes or due to seizure spread to extratemporal eloquent cortex. Anterior temporal lobe resection controls seizures in 50–80% of patients with drug-resistant temporal lobe epilepsy and the effect of surgery on working memory are poorly understood both at a behavioural and neural level. We investigated the impact of temporal lobe resection on the efficiency and functional anatomy of working memory networks. We studied 33 patients with unilateral medial temporal lobe epilepsy (16 left) before, 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were also assessed in parallel. All subjects had neuropsychological testing and performed a visuospatial working memory functional magnetic resonance imaging paradigm on these three separate occasions. Changes in activation and deactivation patterns were modelled individually and compared between groups. Changes in task performance were included as regressors of interest to assess the efficiency of changes in the networks. Left and right temporal lobe epilepsy patients were impaired on preoperative measures of working memory compared to controls. Working memory performance did not decline following left or right temporal lobe resection, but improved at 3 and 12 months following left and, to a lesser extent, following right anterior temporal lobe resection. After left anterior temporal lobe resection, improved performance correlated with greater deactivation of the left hippocampal remnant and the contralateral right hippocampus. There was a failure of increased deactivation of the left hippocampal remnant at 3 months after left temporal lobe resection compared to control subjects, which had normalized 12 months after surgery. Following right anterior temporal lobe resection there was a progressive increase of activation in the right superior parietal lobe at 3 and 12 months after surgery. There was greater deactivation of the right hippocampal remnant compared to controls between 3 and 12 months after right anterior temporal lobe resection that was associated with lesser improvement in task performance. Working memory improved after anterior temporal lobe resection, particularly following left-sided resections. Postoperative working memory was reliant on the functional capacity of the hippocampal remnant and, following left resections, the functional reserve of the right hippocampus. These data suggest that working memory following temporal lobe resection is dependent on the engagement of the posterior medial temporal lobes and eloquent cortex. PMID:24691395
Altered cortical anatomical networks in temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
Lv, Bin; He, Huiguang; Lu, Jingjing; Li, Wenjing; Dai, Dai; Li, Meng; Jin, Zhengyu
2011-03-01
Temporal lobe epilepsy (TLE) is one of the most common epilepsy syndromes with focal seizures generated in the left or right temporal lobes. With the magnetic resonance imaging (MRI), many evidences have demonstrated that the abnormalities in hippocampal volume and the distributed atrophies in cortical cortex. However, few studies have investigated if TLE patients have the alternation in the structural networks. In the present study, we used the cortical thickness to establish the morphological connectivity networks, and investigated the network properties using the graph theoretical methods. We found that all the morphological networks exhibited the small-world efficiency in left TLE, right TLE and normal groups. And the betweenness centrality analysis revealed that there were statistical inter-group differences in the right uncus region. Since the right uncus located at the right temporal lobe, these preliminary evidences may suggest that there are topological alternations of the cortical anatomical networks in TLE, especially for the right TLE.
Functional connectivity evidence of cortico-cortico inhibition in temporal lobe epilepsy.
Tracy, Joseph I; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R
2014-01-01
Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity (FC) differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of FC at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. Copyright © 2012 Wiley Periodicals, Inc.
Functional Connectivity Evidence of Cortico-Cortico Inhibition in Temporal Lobe Epilepsy
Tracy, Joseph I.; Osipowicz, Karol; Spechler, Philip; Sharan, Ashwini; Skidmore, Christopher; Doucet, Gaelle; Sperling, Michael R.
2012-01-01
Epileptic seizures can initiate a neural circuit and lead to aberrant neural communication with brain areas outside the epileptogenic region. We focus on interictal activity in focal temporal lobe epilepsy and evaluate functional connectivity differences that emerge as function of bilateral versus strictly unilateral epileptiform activity. We assess the strength of functional connectivity at rest between the ictal and non-ictal temporal lobes, in addition to whole brain connectivity with the ictal temporal lobe. Results revealed strong connectivity between the temporal lobes for both patient groups, but this did not vary as a function of unilateral versus bilateral interictal status. Both the left and right unilateral temporal lobe groups showed significant anti-correlated activity in regions outside the epileptogenic temporal lobe, primarily involving the contralateral (non-ictal/non-pathologic) hemisphere, with precuneus involvement prominent. The bilateral groups did not show this contralateral anti-correlated activity. This anti-correlated connectivity may represent a form of protective and adaptive inhibition, helping to constrain epileptiform activity to the pathologic temporal lobe. The absence of this activity in the bilateral groups may be indicative of flawed inhibitory mechanisms, helping to explain their more widespread epileptiform activity. Our data suggest that the location and build up of epilepsy networks in the brain are not truly random, and are not limited to the formation of strictly epileptogenic networks. Functional networks may develop to take advantage of the regulatory function of structures such as the precuneus to instantiate an anti-correlated network, generating protective cortico-cortico inhibition for the purpose of limiting seizure spread or epileptogenesis. PMID:22987774
The Structural Plasticity of White Matter Networks Following Anterior Temporal Lobe Resection
ERIC Educational Resources Information Center
Yogarajah, Mahinda; Focke, Niels K.; Bonelli, Silvia B.; Thompson, Pamela; Vollmar, Christian; McEvoy, Andrew W.; Alexander, Daniel C.; Symms, Mark R.; Koepp, Matthias J.; Duncan, John S.
2010-01-01
Anterior temporal lobe resection is an effective treatment for refractory temporal lobe epilepsy. The structural consequences of such surgery in the white matter, and how these relate to language function after surgery remain unknown. We carried out a longitudinal study with diffusion tensor imaging in 26 left and 20 right temporal lobe epilepsy…
Focal epilepsy recruiting a generalised network of juvenile myoclonic epilepsy: a case report.
Khaing, Myo; Lim, Kheng-Seang; Tan, Chong-Tin
2014-09-01
We report a patient with juvenile myoclonic epilepsy who subsequently developed temporal lobe epilepsy, which gradually became clinically dominant. Video telemetry revealed both myoclonic seizures and temporal lobe seizures. The temporal lobe seizures were accompanied by a focal recruiting rhythm with rapid generalisation on EEG, in which the ictal EEG pattern during the secondary generalised phase was morphologically similar to the ictal pattern during myoclonic seizures. The secondary generalised seizures of the focal epilepsy responded to sodium valproate, similar to the myoclonic epilepsy. In this rare case of coexistent Juvenile Myoclonic Epilepsy and Temporal lobe epilepsy, the possibility of focal epilepsy recruiting a generalised epileptic network was proposed and discussed.
Calhoun, Vince D.; Maciejewski, Paul K.; Pearlson, Godfrey D.; Kiehl, Kent A.
2009-01-01
Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or “spatial modes” exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder. PMID:17894392
Calhoun, Vince D; Maciejewski, Paul K; Pearlson, Godfrey D; Kiehl, Kent A
2008-11-01
Schizophrenia and bipolar disorder are currently diagnosed on the basis of psychiatric symptoms and longitudinal course. The determination of a reliable, biologically-based diagnostic indicator of these diseases (a biomarker) could provide the groundwork for developing more rigorous tools for differential diagnosis and treatment assignment. Recently, methods have been used to identify distinct sets of brain regions or "spatial modes" exhibiting temporally coherent brain activity. Using functional magnetic resonance imaging (fMRI) data and a multivariate analysis method, independent component analysis, we combined the temporal lobe and the default modes to discriminate subjects with bipolar disorder, chronic schizophrenia, and healthy controls. Temporal lobe and default mode networks were reliably identified in all participants. Classification results on an independent set of individuals revealed an average sensitivity and specificity of 90 and 95%, respectively. The use of coherent brain networks such as the temporal lobe and default mode networks may provide a more reliable measure of disease state than task-correlated fMRI activity. A combination of two such hemodynamic brain networks shows promise as a biomarker for schizophrenia and bipolar disorder.
Disrupted dynamic network reconfiguration of the language system in temporal lobe epilepsy.
He, Xiaosong; Bassett, Danielle S; Chaitanya, Ganne; Sperling, Michael R; Kozlowski, Lauren; Tracy, Joseph I
2018-05-01
Temporal lobe epilepsy tends to reshape the language system causing maladaptive reorganization that can be characterized by task-based functional MRI, and eventually can contribute to surgical decision making processes. However, the dynamic interacting nature of the brain as a complex system is often neglected, with many studies treating the language system as a static monolithic structure. Here, we demonstrate that as a specialized and integrated system, the language network is inherently dynamic, characterized by rich patterns of regional interactions, whose transient dynamics are disrupted in patients with temporal lobe epilepsy. Specifically, we applied tools from dynamic network neuroscience to functional MRI data collected from 50 temporal lobe epilepsy patients and 30 matched healthy controls during performance of a verbal fluency task, as well as during rest. By assigning 16 language-related regions into four subsystems (i.e. bilateral frontal and temporal), we observed regional specialization in both the probability of transient interactions and the frequency of such changes, in both healthy controls and patients during task performance but not rest. Furthermore, we found that both left and right temporal lobe epilepsy patients displayed reduced interactions within the left frontal 'core' subsystem compared to the healthy controls, while left temporal lobe epilepsy patients were unique in showing enhanced interactions between the left frontal 'core' and the right temporal subsystems. Also, both patient groups displayed reduced flexibility in the transient interactions of the left temporal and right frontal subsystems, which formed the 'periphery' of the language network. Importantly, such group differences were again evident only during task condition. Lastly, through random forest regression, we showed that dynamic reconfiguration of the language system tracks individual differences in verbal fluency with superior prediction accuracy compared to traditional activation-based static measures. Our results suggest dynamic network measures may be an effective biomarker for detecting the language dysfunction associated with neurological diseases such as temporal lobe epilepsy, specifying both the type of neuronal communications that are missing in these patients and those that are potentially added but maladaptive. Further advancements along these lines, transforming how we characterize and map language networks in the brain, have a high probability of altering clinical decision making in neurosurgical centres.10.1093/brain/awy042_video1awy042media15754656112001.
Mapping a lateralization gradient within the ventral stream for auditory speech perception.
Specht, Karsten
2013-01-01
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory-phonetic to lexico-semantic processing and along the posterior-anterior axis, thus forming a "lateralization" gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe.
Mapping a lateralization gradient within the ventral stream for auditory speech perception
Specht, Karsten
2013-01-01
Recent models on speech perception propose a dual-stream processing network, with a dorsal stream, extending from the posterior temporal lobe of the left hemisphere through inferior parietal areas into the left inferior frontal gyrus, and a ventral stream that is assumed to originate in the primary auditory cortex in the upper posterior part of the temporal lobe and to extend toward the anterior part of the temporal lobe, where it may connect to the ventral part of the inferior frontal gyrus. This article describes and reviews the results from a series of complementary functional magnetic resonance imaging studies that aimed to trace the hierarchical processing network for speech comprehension within the left and right hemisphere with a particular focus on the temporal lobe and the ventral stream. As hypothesized, the results demonstrate a bilateral involvement of the temporal lobes in the processing of speech signals. However, an increasing leftward asymmetry was detected from auditory–phonetic to lexico-semantic processing and along the posterior–anterior axis, thus forming a “lateralization” gradient. This increasing leftward lateralization was particularly evident for the left superior temporal sulcus and more anterior parts of the temporal lobe. PMID:24106470
Memory network plasticity after temporal lobe resection: a longitudinal functional imaging study
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; McEvoy, Andrew W.; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2016-01-01
Abstract Anterior temporal lobe resection can control seizures in up to 80% of patients with temporal lobe epilepsy. Memory decrements are the main neurocognitive complication. Preoperative functional reorganization has been described in memory networks, but less is known of postoperative reorganization. We investigated reorganization of memory-encoding networks preoperatively and 3 and 12 months after surgery. We studied 36 patients with unilateral medial temporal lobe epilepsy (19 right) before and 3 and 12 months after anterior temporal lobe resection. Fifteen healthy control subjects were studied at three equivalent time points. All subjects had neuropsychological testing at each of the three time points. A functional magnetic resonance imaging memory-encoding paradigm of words and faces was performed with subsequent out-of-scanner recognition assessments. Changes in activations across the time points in each patient group were compared to changes in the control group in a single flexible factorial analysis. Postoperative change in memory across the time points was correlated with postoperative activations to investigate the efficiency of reorganized networks. Left temporal lobe epilepsy patients showed increased right anterior hippocampal and frontal activation at both 3 and 12 months after surgery relative to preoperatively, for word and face encoding, with a concomitant reduction in left frontal activation 12 months postoperatively. Right anterior hippocampal activation 12 months postoperatively correlated significantly with improved verbal learning in patients with left temporal lobe epilepsy from preoperatively to 12 months postoperatively. Preoperatively, there was significant left posterior hippocampal activation that was sustained 3 months postoperatively at word encoding, and increased at face encoding. For both word and face encoding this was significantly reduced from 3 to 12 months postoperatively. Patients with right temporal lobe epilepsy showed increased left anterior hippocampal activation on word encoding from 3 to 12 months postoperatively compared to preoperatively. On face encoding, left anterior hippocampal activations were present preoperatively and 12 months postoperatively. Left anterior hippocampal and orbitofrontal cortex activations correlated with improvements in both design and verbal learning 12 months postoperatively. On face encoding, there were significantly increased left posterior hippocampal activations that reduced significantly from 3 to 12 months postoperatively. Postoperative changes occur in the memory-encoding network in both left and right temporal lobe epilepsy patients across both verbal and visual domains. Three months after surgery, compensatory posterior hippocampal reorganization that occurs is transient and inefficient. Engagement of the contralateral hippocampus 12 months after surgery represented efficient reorganization in both patient groups, suggesting that the contralateral hippocampus contributes to memory outcome 12 months after surgery. PMID:26754787
Sanz-García, Ancor; Vega-Zelaya, Lorena; Pastor, Jesús; Torres, Cristina V.; Sola, Rafael G.; Ortega, Guillermo J.
2016-01-01
Approximately 30% of epilepsy patients are refractory to antiepileptic drugs. In these cases, surgery is the only alternative to eliminate/control seizures. However, a significant minority of patients continues to exhibit post-operative seizures, even in those cases in which the suspected source of seizures has been correctly localized and resected. The protocol presented here combines a clinical procedure routinely employed during the pre-operative evaluation of temporal lobe epilepsy (TLE) patients with a novel technique for network analysis. The method allows for the evaluation of the temporal evolution of mesial network parameters. The bilateral insertion of foramen ovale electrodes (FOE) into the ambient cistern simultaneously records electrocortical activity at several mesial areas in the temporal lobe. Furthermore, network methodology applied to the recorded time series tracks the temporal evolution of the mesial networks both interictally and during the seizures. In this way, the presented protocol offers a unique way to visualize and quantify measures that considers the relationships between several mesial areas instead of a single area. PMID:28060326
Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Protzner, Andrea B.; McAndrews, Mary Pat
2011-01-01
Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…
Bonelli, Silvia B.; Thompson, Pamela J.; Yogarajah, Mahinda; Powell, Robert H. W.; Samson, Rebecca S.; McEvoy, Andrew W.; Symms, Mark R.; Koepp, Matthias J.
2013-01-01
Anterior temporal lobe resection controls seizures in 50–60% of patients with intractable temporal lobe epilepsy but may impair memory function, typically verbal memory following left, and visual memory following right anterior temporal lobe resection. Functional reorganization can occur within the ipsilateral and contralateral hemispheres. We investigated the reorganization of memory function in patients with temporal lobe epilepsy before and after left or right anterior temporal lobe resection and the efficiency of postoperative memory networks. We studied 46 patients with unilateral medial temporal lobe epilepsy (25/26 left hippocampal sclerosis, 16/20 right hippocampal sclerosis) before and after anterior temporal lobe resection on a 3 T General Electric magnetic resonance imaging scanner. All subjects had neuropsychological testing and performed a functional magnetic resonance imaging memory encoding paradigm for words, pictures and faces, testing verbal and visual memory in a single scanning session, preoperatively and again 4 months after surgery. Event-related analysis revealed that patients with left temporal lobe epilepsy had greater activation in the left posterior medial temporal lobe when successfully encoding words postoperatively than preoperatively. Greater pre- than postoperative activation in the ipsilateral posterior medial temporal lobe for encoding words correlated with better verbal memory outcome after left anterior temporal lobe resection. In contrast, greater postoperative than preoperative activation in the ipsilateral posterior medial temporal lobe correlated with worse postoperative verbal memory performance. These postoperative effects were not observed for visual memory function after right anterior temporal lobe resection. Our findings provide evidence for effective preoperative reorganization of verbal memory function to the ipsilateral posterior medial temporal lobe due to the underlying disease, suggesting that it is the capacity of the posterior remnant of the ipsilateral hippocampus rather than the functional reserve of the contralateral hippocampus that is important for maintaining verbal memory function after anterior temporal lobe resection. Early postoperative reorganization to ipsilateral posterior or contralateral medial temporal lobe structures does not underpin better performance. Additionally our results suggest that visual memory function in right temporal lobe epilepsy is affected differently by right anterior temporal lobe resection than verbal memory in left temporal lobe epilepsy. PMID:23715092
Functional network alterations and their structural substrate in drug-resistant epilepsy
Caciagli, Lorenzo; Bernhardt, Boris C.; Hong, Seok-Jun; Bernasconi, Andrea; Bernasconi, Neda
2014-01-01
The advent of MRI has revolutionized the evaluation and management of drug-resistant epilepsy by allowing the detection of the lesion associated with the region that gives rise to seizures. Recent evidence indicates marked chronic alterations in the functional organization of lesional tissue and large-scale cortico-subcortical networks. In this review, we focus on recent methodological developments in functional MRI (fMRI) analysis techniques and their application to the two most common drug-resistant focal epilepsies, i.e., temporal lobe epilepsy related to mesial temporal sclerosis and extra-temporal lobe epilepsy related to focal cortical dysplasia. We put particular emphasis on methodological developments in the analysis of task-free or “resting-state” fMRI to probe the integrity of intrinsic networks on a regional, inter-regional, and connectome-wide level. In temporal lobe epilepsy, these techniques have revealed disrupted connectivity of the ipsilateral mesiotemporal lobe, together with contralateral compensatory reorganization and striking reconfigurations of large-scale networks. In cortical dysplasia, initial observations indicate functional alterations in lesional, peri-lesional, and remote neocortical regions. While future research is needed to critically evaluate the reliability, sensitivity, and specificity, fMRI mapping promises to lend distinct biomarkers for diagnosis, presurgical planning, and outcome prediction. PMID:25565942
Consciousness and epilepsy: why are complex-partial seizures complex?
Englot, Dario J.; Blumenfeld, Hal
2010-01-01
Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900
Determinants of brain metabolism changes in mesial temporal lobe epilepsy.
Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia
2016-06-01
To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of hypometabolism in MTLE. Compensatory mechanisms reflected by a relative hypermetabolism in the nonepileptic temporal lobe and in extratemporal areas seem more efficient in LHS and in female patients, whereas long duration, late onset of epilepsy, and high seizure frequency may reduce these adaptive changes. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Different forms of effective connectivity in primate frontotemporal pathways.
Petkov, Christopher I; Kikuchi, Yukiko; Milne, Alice E; Mishkin, Mortimer; Rauschecker, Josef P; Logothetis, Nikos K
2015-01-23
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex.
Different forms of effective connectivity in primate frontotemporal pathways
Petkov, Christopher I.; Kikuchi, Yukiko; Milne, Alice E.; Mishkin, Mortimer; Rauschecker, Josef P.; Logothetis, Nikos K.
2015-01-01
It is generally held that non-primary sensory regions of the brain have a strong impact on frontal cortex. However, the effective connectivity of pathways to frontal cortex is poorly understood. Here we microstimulate sites in the superior temporal and ventral frontal cortex of monkeys and use functional magnetic resonance imaging to evaluate the functional activity resulting from the stimulation of interconnected regions. Surprisingly, we find that, although certain earlier stages of auditory cortical processing can strongly activate frontal cortex, downstream auditory regions, such as voice-sensitive cortex, appear to functionally engage primarily an ipsilateral temporal lobe network. Stimulating other sites within this activated temporal lobe network shows strong activation of frontal cortex. The results indicate that the relative stage of sensory processing does not predict the level of functional access to the frontal lobes. Rather, certain brain regions engage local networks, only parts of which have a strong functional impact on frontal cortex. PMID:25613079
Sidhu, Meneka K.; Stretton, Jason; Winston, Gavin P.; Bonelli, Silvia; Centeno, Maria; Vollmar, Christian; Symms, Mark; Thompson, Pamela J.; Koepp, Matthias J.
2013-01-01
Functional magnetic resonance imaging has demonstrated reorganization of memory encoding networks within the temporal lobe in temporal lobe epilepsy, but little is known of the extra-temporal networks in these patients. We investigated the temporal and extra-temporal reorganization of memory encoding networks in refractory temporal lobe epilepsy and the neural correlates of successful subsequent memory formation. We studied 44 patients with unilateral temporal lobe epilepsy and hippocampal sclerosis (24 left) and 26 healthy control subjects. All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words with subsequent out-of-scanner recognition assessments. A blocked analysis was used to investigate activations during encoding and neural correlates of subsequent memory were investigated using an event-related analysis. Event-related activations were then correlated with out-of-scanner verbal and visual memory scores. During word encoding, control subjects activated the left prefrontal cortex and left hippocampus whereas patients with left hippocampal sclerosis showed significant additional right temporal and extra-temporal activations. Control subjects displayed subsequent verbal memory effects within left parahippocampal gyrus, left orbitofrontal cortex and fusiform gyrus whereas patients with left hippocampal sclerosis activated only right posterior hippocampus, parahippocampus and fusiform gyrus. Correlational analysis showed that patients with left hippocampal sclerosis with better verbal memory additionally activated left orbitofrontal cortex, anterior cingulate cortex and left posterior hippocampus. During face encoding, control subjects showed right lateralized prefrontal cortex and bilateral hippocampal activations. Patients with right hippocampal sclerosis showed increased temporal activations within the superior temporal gyri bilaterally and no increased extra-temporal areas of activation compared with control subjects. Control subjects showed subsequent visual memory effects within right amygdala, hippocampus, fusiform gyrus and orbitofrontal cortex. Patients with right hippocampal sclerosis showed subsequent visual memory effects within right posterior hippocampus, parahippocampal and fusiform gyri, and predominantly left hemisphere extra-temporal activations within the insula and orbitofrontal cortex. Correlational analysis showed that patients with right hippocampal sclerosis with better visual memory activated the amygdala bilaterally, right anterior parahippocampal gyrus and left insula. Right sided extra-temporal areas of reorganization observed in patients with left hippocampal sclerosis during word encoding and bilateral lateral temporal reorganization in patients with right hippocampal sclerosis during face encoding were not associated with subsequent memory formation. Reorganization within the medial temporal lobe, however, is an efficient process. The orbitofrontal cortex is critical to subsequent memory formation in control subjects and patients. Activations within anterior cingulum and insula correlated with better verbal and visual subsequent memory in patients with left and right hippocampal sclerosis, respectively, representing effective extra-temporal recruitment. PMID:23674488
Imaging structural and functional brain networks in temporal lobe epilepsy.
Bernhardt, Boris C; Hong, Seokjun; Bernasconi, Andrea; Bernasconi, Neda
2013-10-01
Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy.
Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou
2017-01-01
Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.
Network-Level Analysis of Cortical Thickness of the Epileptic Brain
Raj, A; Mueller, S.G; Young, K; Laxer, K.D.; Weiner, M
2010-01-01
Temporal lobe epilepsy (TLE) characterized by an epileptogenic focus in the medial temporal lobe is the most common form of focal epilepsy. However, the seizures are not confined to the temporal lobe but can spread to other, anatomically connected brain regions where they can cause similar structural abnormalities as observed in the focus. The aim of this study was to derive whole brain networks from volumetric data and obtain network-centric measures which can capture cortical thinning characteristic for TLE and can be used for classifying a given MRI into TLE or normal, and to obtain additional summary statistics which relate to the extent and spread of the disease. T1 weighted whole brain images were acquired on a 4T magnet in 13 patients with TLE with mesial temporal lobe sclerosis (TLE-MTS), 14 patients with TLE with normal MRI (TLE-no) and 30 controls. Mean cortical thickness and curvature measurements were obtained using the Freesurfer software. These values were used to derive a graph, or network, for each subject. The nodes of the graph are brain regions, and edges represent disease progression paths. We show how to obtain summary statistics like mean, median and variance defined for these networks and to perform exploratory analyses like correlation and classification. Our results indicate that the proposed network approach can improve accuracy of classifying subjects into 2 groups (control and TLE), from 78% for non-network classifiers to 93% using the proposed approach. We also obtain network “peakiness” values using statistical measures like entropy and complexity - this appears to be a good characterizer of the disease, and may have utility in surgical planning. PMID:20553893
Brain regions underlying word finding difficulties in temporal lobe epilepsy.
Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine
2009-10-01
Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in the specific process of word retrieval in temporal lobe epilepsy. A tentative explanation for these findings is that epilepsy induces functional deafferentation between anterior temporal structures devoted to semantic processing and neocortical posterior temporal structures devoted to lexical processing.
Perfusion network shift during seizures in medial temporal lobe epilepsy.
Sequeira, Karen M; Tabesh, Ali; Sainju, Rup K; DeSantis, Stacia M; Naselaris, Thomas; Joseph, Jane E; Ahlman, Mark A; Spicer, Kenneth M; Glazier, Steve S; Edwards, Jonathan C; Bonilha, Leonardo
2013-01-01
Medial temporal lobe epilepsy (MTLE) is associated with limbic atrophy involving the hippocampus, peri-hippocampal and extra-temporal structures. While MTLE is related to static structural limbic compromise, it is unknown whether the limbic system undergoes dynamic regional perfusion network alterations during seizures. In this study, we aimed to investigate state specific (i.e. ictal versus interictal) perfusional limbic networks in patients with MTLE. We studied clinical information and single photon emission computed tomography (SPECT) images obtained with intravenous infusion of the radioactive tracer Technetium- Tc 99 m Hexamethylpropyleneamine Oxime (Tc-99 m HMPAO) during ictal and interictal state confirmed by video-electroencephalography (VEEG) in 20 patients with unilateral MTLE (12 left and 8 right MTLE). Pair-wise voxel-based analyses were used to define global changes in tracer between states. Regional tracer uptake was calculated and state specific adjacency matrices were constructed based on regional correlation of uptake across subjects. Graph theoretical measures were applied to investigate global and regional state specific network reconfigurations. A significant increase in tracer uptake was observed during the ictal state in the medial temporal region, cerebellum, thalamus, insula and putamen. From network analyses, we observed a relative decreased correlation between the epileptogenic temporal region and remaining cortex during the interictal state, followed by a surge of cross-correlated perfusion in epileptogenic temporal-limbic structures during a seizure, corresponding to local network integration. These results suggest that MTLE is associated with a state specific perfusion and possibly functional organization consisting of a surge of limbic cross-correlated tracer uptake during a seizure, with a relative disconnection of the epileptogenic temporal lobe in the interictal period. This pattern of state specific shift in metabolic networks in MTLE may improve the understanding of epileptogenesis and neuropsychological impairments associated with MTLE.
Graph theory findings in the pathophysiology of temporal lobe epilepsy
Chiang, Sharon; Haneef, Zulfi
2014-01-01
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083
[Study based on ICA of "dorsal attention network" in patients with temporal lobe epilepsy].
Yang, Zhigen; Wang, Huinan; Zhang, Zhiqiang; Zhong, Yuan; Chen, Zhili; Lu, Guangming
2010-02-01
Many functional magnetic resonance imaging (fMRI) studies have revealed the deactivation phenomenon of default mode network in the patients with epilepsy; however, nearly not any of the reports has focused on the dorsal attention network of epilepsy. In this paper, independent component analysis (ICA) was used to isolate the dorsal attention network of 16 patients with temporal lobe epilepsy (TLE) and of 20 healthy normals; and a goodness-of-fit analysis was applied at the individual subject level to choose the interesting component. Intra-group analysis and inter-group analysis were performed. The results indicated that the dorsal attention network included bilateral intraparietal sulcus, middle frontal gyrus, human frontal eye field, posterior lobe of right cerebellum, etc. The TLE group showed decreased functional connectivity in most of the dorsal attention regions with the predominance in the bilateral intraparietal sulcus, middle frontal gyrus, and posterior lobe of right cerebellum. These data suggested that the intrinsic organization of the brain function might be disrupted in TLE. In addition, the decrease of goodness-of-fit scores suggests that activity in the dorsal attention network may ultimately prove a sensitive biomarker for TLE.
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain.
Keller, Simon S; Glenn, G Russell; Weber, Bernd; Kreilkamp, Barbara A K; Jensen, Jens H; Helpern, Joseph A; Wagner, Jan; Barker, Gareth J; Richardson, Mark P; Bonilha, Leonardo
2017-01-01
Abstract Approximately one in every two patients with pharmacoresistant temporal lobe epilepsy will not be rendered completely seizure-free after temporal lobe surgery. The reasons for this are unknown and are likely to be multifactorial. Quantitative volumetric magnetic resonance imaging techniques have provided limited insight into the causes of persistent postoperative seizures in patients with temporal lobe epilepsy. The relationship between postoperative outcome and preoperative pathology of white matter tracts, which constitute crucial components of epileptogenic networks, is unknown. We investigated regional tissue characteristics of preoperative temporal lobe white matter tracts known to be important in the generation and propagation of temporal lobe seizures in temporal lobe epilepsy, using diffusion tensor imaging and automated fibre quantification. We studied 43 patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis and 44 healthy controls. Patients underwent preoperative imaging, amygdalohippocampectomy and postoperative assessment using the International League Against Epilepsy seizure outcome scale. From preoperative imaging, the fimbria-fornix, parahippocampal white matter bundle and uncinate fasciculus were reconstructed, and scalar diffusion metrics were calculated along the length of each tract. Altogether, 51.2% of patients were rendered completely seizure-free and 48.8% continued to experience postoperative seizure symptoms. Relative to controls, both patient groups exhibited strong and significant diffusion abnormalities along the length of the uncinate bilaterally, the ipsilateral parahippocampal white matter bundle, and the ipsilateral fimbria-fornix in regions located within the medial temporal lobe. However, only patients with persistent postoperative seizures showed evidence of significant pathology of tract sections located in the ipsilateral dorsal fornix and in the contralateral parahippocampal white matter bundle. Using receiver operating characteristic curves, diffusion characteristics of these regions could classify individual patients according to outcome with 84% sensitivity and 89% specificity. Pathological changes in the dorsal fornix were beyond the margins of resection, and contralateral parahippocampal changes may suggest a bitemporal disorder in some patients. Furthermore, diffusion characteristics of the ipsilateral uncinate could classify patients from controls with a sensitivity of 98%; importantly, by co-registering the preoperative fibre maps to postoperative surgical lacuna maps, we observed that the extent of uncinate resection was significantly greater in patients who were rendered seizure-free, suggesting that a smaller resection of the uncinate may represent insufficient disconnection of an anterior temporal epileptogenic network. These results may have the potential to be developed into imaging prognostic markers of postoperative outcome and provide new insights for why some patients with temporal lobe epilepsy continue to experience postoperative seizures. PMID:28031219
Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei
2018-04-01
Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.
Imaging structural and functional brain networks in temporal lobe epilepsy
Bernhardt, Boris C.; Hong, SeokJun; Bernasconi, Andrea; Bernasconi, Neda
2013-01-01
Early imaging studies in temporal lobe epilepsy (TLE) focused on the search for mesial temporal sclerosis, as its surgical removal results in clinically meaningful improvement in about 70% of patients. Nevertheless, a considerable subgroup of patients continues to suffer from post-operative seizures. Although the reasons for surgical failure are not fully understood, electrophysiological and imaging data suggest that anomalies extending beyond the temporal lobe may have negative impact on outcome. This hypothesis has revived the concept of human epilepsy as a disorder of distributed brain networks. Recent methodological advances in non-invasive neuroimaging have led to quantify structural and functional networks in vivo. While structural networks can be inferred from diffusion MRI tractography and inter-regional covariance patterns of structural measures such as cortical thickness, functional connectivity is generally computed based on statistical dependencies of neurophysiological time-series, measured through functional MRI or electroencephalographic techniques. This review considers the application of advanced analytical methods in structural and functional connectivity analyses in TLE. We will specifically highlight findings from graph-theoretical analysis that allow assessing the topological organization of brain networks. These studies have provided compelling evidence that TLE is a system disorder with profound alterations in local and distributed networks. In addition, there is emerging evidence for the utility of network properties as clinical diagnostic markers. Nowadays, a network perspective is considered to be essential to the understanding of the development, progression, and management of epilepsy. PMID:24098281
Michalka, Samantha W; Kong, Lingqiang; Rosen, Maya L; Shinn-Cunningham, Barbara G; Somers, David C
2015-08-19
The frontal lobes control wide-ranging cognitive functions; however, functional subdivisions of human frontal cortex are only coarsely mapped. Here, functional magnetic resonance imaging reveals two distinct visual-biased attention regions in lateral frontal cortex, superior precentral sulcus (sPCS) and inferior precentral sulcus (iPCS), anatomically interdigitated with two auditory-biased attention regions, transverse gyrus intersecting precentral sulcus (tgPCS) and caudal inferior frontal sulcus (cIFS). Intrinsic functional connectivity analysis demonstrates that sPCS and iPCS fall within a broad visual-attention network, while tgPCS and cIFS fall within a broad auditory-attention network. Interestingly, we observe that spatial and temporal short-term memory (STM), respectively, recruit visual and auditory attention networks in the frontal lobe, independent of sensory modality. These findings not only demonstrate that both sensory modality and information domain influence frontal lobe functional organization, they also demonstrate that spatial processing co-localizes with visual processing and that temporal processing co-localizes with auditory processing in lateral frontal cortex. Copyright © 2015 Elsevier Inc. All rights reserved.
Jackson, Rebecca L; Hoffman, Paul; Pobric, Gorana; Lambon Ralph, Matthew A
2016-02-03
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. Copyright © 2016 Jackson et al.
Jackson, Rebecca L.; Hoffman, Paul; Pobric, Gorana
2016-01-01
The anterior temporal lobe (ATL) makes a critical contribution to semantic cognition. However, the functional connectivity of the ATL and the functional network underlying semantic cognition has not been elucidated. In addition, subregions of the ATL have distinct functional properties and thus the potential differential connectivity between these subregions requires investigation. We explored these aims using both resting-state and active semantic task data in humans in combination with a dual-echo gradient echo planar imaging (EPI) paradigm designed to ensure signal throughout the ATL. In the resting-state analysis, the ventral ATL (vATL) and anterior middle temporal gyrus (MTG) were shown to connect to areas responsible for multimodal semantic cognition, including bilateral ATL, inferior frontal gyrus, medial prefrontal cortex, angular gyrus, posterior MTG, and medial temporal lobes. In contrast, the anterior superior temporal gyrus (STG)/superior temporal sulcus was connected to a distinct set of auditory and language-related areas, including bilateral STG, precentral and postcentral gyri, supplementary motor area, supramarginal gyrus, posterior temporal cortex, and inferior and middle frontal gyri. Complementary analyses of functional connectivity during an active semantic task were performed using a psychophysiological interaction (PPI) analysis. The PPI analysis highlighted the same semantic regions suggesting a core semantic network active during rest and task states. This supports the necessity for semantic cognition in internal processes occurring during rest. The PPI analysis showed additional connectivity of the vATL to regions of occipital and frontal cortex. These areas strongly overlap with regions found to be sensitive to executively demanding, controlled semantic processing. SIGNIFICANCE STATEMENT Previous studies have shown that semantic cognition depends on subregions of the anterior temporal lobe (ATL). However, the network of regions functionally connected to these subregions has not been demarcated. Here, we show that these ventrolateral anterior temporal subregions form part of a network responsible for semantic processing during both rest and an explicit semantic task. This demonstrates the existence of a core functional network responsible for multimodal semantic cognition regardless of state. Distinct connectivity is identified in the superior ATL, which is connected to auditory and language areas. Understanding the functional connectivity of semantic cognition allows greater understanding of how this complex process may be performed and the role of distinct subregions of the anterior temporal cortex. PMID:26843633
Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network.
Yoon, Jaehong; Lee, Jungnyun; Whang, Mincheol
2018-01-01
Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain-computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.
Spatial and Time Domain Feature of ERP Speller System Extracted via Convolutional Neural Network
2018-01-01
Feature of event-related potential (ERP) has not been completely understood and illiteracy problem remains unsolved. To this end, P300 peak has been used as the feature of ERP in most brain–computer interface applications, but subjects who do not show such peak are common. Recent development of convolutional neural network provides a way to analyze spatial and temporal features of ERP. Here, we train the convolutional neural network with 2 convolutional layers whose feature maps represented spatial and temporal features of event-related potential. We have found that nonilliterate subjects' ERP show high correlation between occipital lobe and parietal lobe, whereas illiterate subjects only show correlation between neural activities from frontal lobe and central lobe. The nonilliterates showed peaks in P300, P500, and P700, whereas illiterates mostly showed peaks in around P700. P700 was strong in both subjects. We found that P700 peak may be the key feature of ERP as it appears in both illiterate and nonilliterate subjects.
Smith, Mary Lou
2016-11-01
The new approach to classification of the epilepsies emphasizes the role of dysfunction in networks in defining types of epilepsies. This paper reviews the structural and neuropsychological deficits in two types of childhood epilepsy: frontal lobe and temporal lobe epilepsy. The evidence for and against a pattern of specificity of deficits in executive function and memory associated with these two types of epilepsies is presented. The evidence varies with the methodologies used in the studies, but direct comparison of the two types of epilepsies does not suggest a clear-cut mapping of function onto structure. These findings are discussed in light of the concept of network dysfunction. The evidence supports the conceptualization of epilepsy as a network disease. Implications for future work in the neuropsychology of pediatric epilepsy are suggested. This article is part of a Special Issue entitled "The new approach to classification: Rethinking cognition and behavior in epilepsy". Copyright © 2016 Elsevier Inc. All rights reserved.
Widespread changes in network activity allow non-invasive detection of mesial temporal lobe seizures
Zepeda, Rodrigo; Cole, Andrew J.; Cash, Sydney S.
2016-01-01
Abstract Decades of experience with intracranial recordings in patients with epilepsy have demonstrated that seizures can occur in deep cortical regions such as the mesial temporal lobes without showing any obvious signs of seizure activity on scalp electroencephalogram. Predicated on the idea that these seizures are purely focal, currently, the only way to detect these ‘scalp-negative seizures’ is with intracranial recordings. However, intracranial recordings are only rarely performed in patients with epilepsy, and are almost never performed outside of the context of epilepsy. As such, little is known about scalp-negative seizures and their role in the natural history of epilepsy, their effect on cognitive function, and their association with other neurological diseases. Here, we developed a novel approach to non-invasively identify scalp-negative seizures arising from the mesial temporal lobe based on scalp electroencephalogram network connectivity measures. We identified 25 scalp-negative mesial temporal lobe seizures in 10 patients and obtained control records from an additional 13 patients, all of whom underwent recordings with foramen ovale electrodes and scalp electroencephalogram. Scalp data from these records were used to train a scalp-negative seizure detector, which consisted of a pair of logistic regression classifiers that used scalp electroencephalogram coherence properties as input features. On cross-validation performance, this detector correctly identified scalp-negative seizures in 40% of patients, and correctly identified the side of seizure onset for each seizure detected. In comparison, routine clinical interpretation of these scalp electroencephalograms failed to identify any of the scalp-negative seizures. Among the patients in whom the detector raised seizure alarms, 80% had scalp-negative mesial temporal lobe seizures. The detector had a false alarm rate of only 0.31 per day and a positive predictive value of 75%. Of the 13 control patients, false seizure alarms were raised in only one patient. The fact that our detector specifically recognizes focal mesial temporal lobe seizures based on scalp electroencephalogram coherence features, lends weight to the hypothesis that even focal seizures are a network phenomenon that involve widespread neural connectivity. Our scalp-negative seizure detector has clear clinical utility in patients with temporal lobe epilepsy, and its potential easily translates to other neurological disorders, such as Alzheimer’s disease, in which occult mesial temporal lobe seizures are suspected to play a significant role. Importantly, our work establishes a novel approach of using computational approaches to non-invasively detect deep seizure activity, without the need for invasive intracranial recordings. PMID:27474219
Lv, Zong-xia; Huang, Dong-Hong; Ye, Wei; Chen, Zi-rong; Huang, Wen-li; Zheng, Jin-ou
2014-06-01
This study aimed to investigate the resting-state brain network related to visuospatial working memory (VSWM) in patients with right temporal lobe epilepsy (rTLE). The functional mechanism underlying the cognitive impairment in VSWM was also determined. Fifteen patients with rTLE and 16 healthy controls matched for age, gender, and handedness underwent a 6-min resting-state functional MRI session and a neuropsychological test using VSWM_Nback. The VSWM-related brain network at rest was extracted using multiple independent component analysis; the spatial distribution and the functional connectivity (FC) parameters of the cerebral network were compared between groups. Behavioral data were subsequently correlated with the mean Z-value in voxels showing significant FC difference during intergroup comparison. The distribution of the VSWM-related resting-state network (RSN) in the group with rTLE was virtually consistent with that in the healthy controls. The distribution involved the dorsolateral prefrontal lobe and parietal lobe in the right hemisphere and the partial inferior parietal lobe and posterior lobe of the cerebellum in the left hemisphere (p<0.05, AlphaSim corrected). Between-group differences suggest that the group with rTLE had a decreased FC within the right superior frontal lobe (BA8), right middle frontal lobe, and right ventromedial prefrontal lobe compared with the controls (p<0.05, AlphaSim corrected). The regions of increased FC in rTLE were localized within the right superior frontal lobe (BA11), right superior parietal lobe, and left posterior lobe of the cerebellum (p<0.05, AlphaSim corrected). Moreover, patients with rTLE performed worse than controls in the VSWM_Nback test, and there were negative correlations between ACCmeanRT (2-back) and the mean Z-value in the voxels showing decreased or increased FC in rTLE (p<0.05). The results suggest that the alteration of the VSWM-related RSN might underpin the VSWM impairment in patients with rTLE and possibly implies a functional compensation by enlarging the FC within the ipsilateral cerebral network. Copyright © 2014 Elsevier Inc. All rights reserved.
Vanicek, Thomas; Hahn, Andreas; Traub-Weidinger, Tatjana; Hilger, Eva; Spies, Marie; Wadsak, Wolfgang; Lanzenberger, Rupert; Pataraia, Ekaterina; Asenbaum-Nan, Susanne
2016-06-28
The human brain exhibits marked hemispheric differences, though it is not fully understood to what extent lateralization of the epileptic focus is relevant. Preoperative [(18)F]FDG-PET depicts lateralization of seizure focus in patients with temporal lobe epilepsy and reveals dysfunctional metabolic brain connectivity. The aim of the present study was to compare metabolic connectivity, inferred from inter-regional [(18)F]FDG PET uptake correlations, in right-sided (RTLE; n = 30) and left-sided TLE (LTLE; n = 32) with healthy controls (HC; n = 31) using graph theory based network analysis. Comparing LTLE and RTLE and patient groups separately to HC, we observed higher lobar connectivity weights in RTLE compared to LTLE for connections of the temporal and the parietal lobe of the contralateral hemisphere (CH). Moreover, especially in RTLE compared to LTLE higher local efficiency were found in the temporal cortices and other brain regions of the CH. The results of this investigation implicate altered metabolic networks in patients with TLE specific to the lateralization of seizure focus, and describe compensatory mechanisms especially in the CH of patients with RTLE. We propose that graph theoretical analysis of metabolic connectivity using [(18)F]FDG-PET offers an important additional modality to explore brain networks.
Graph theory findings in the pathophysiology of temporal lobe epilepsy.
Chiang, Sharon; Haneef, Zulfi
2014-07-01
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Perirhinal cortex and temporal lobe epilepsy
Biagini, Giuseppe; D'Antuono, Margherita; Benini, Ruba; de Guzman, Philip; Longo, Daniela; Avoli, Massimo
2013-01-01
The perirhinal cortex—which is interconnected with several limbic structures and is intimately involved in learning and memory—plays major roles in pathological processes such as the kindling phenomenon of epileptogenesis and the spread of limbic seizures. Both features may be relevant to the pathophysiology of mesial temporal lobe epilepsy that represents the most refractory adult form of epilepsy with up to 30% of patients not achieving adequate seizure control. Compared to other limbic structures such as the hippocampus or the entorhinal cortex, the perirhinal area remains understudied and, in particular, detailed information on its dysfunctional characteristics remains scarce; this lack of information may be due to the fact that the perirhinal cortex is not grossly damaged in mesial temporal lobe epilepsy and in models mimicking this epileptic disorder. However, we have recently identified in pilocarpine-treated epileptic rats the presence of selective losses of interneuron subtypes along with increased synaptic excitability. In this review we: (i) highlight the fundamental electrophysiological properties of perirhinal cortex neurons; (ii) briefly stress the mechanisms underlying epileptiform synchronization in perirhinal cortex networks following epileptogenic pharmacological manipulations; and (iii) focus on the changes in neuronal excitability and cytoarchitecture of the perirhinal cortex occurring in the pilocarpine model of mesial temporal lobe epilepsy. Overall, these data indicate that perirhinal cortex networks are hyperexcitable in an animal model of temporal lobe epilepsy, and that this condition is associated with a selective cellular damage that is characterized by an age-dependent sensitivity of interneurons to precipitating injuries, such as status epilepticus. PMID:24009554
Stability of Synchronization Clusters and Seizurability in Temporal Lobe Epilepsy
Palmigiano, Agostina; Pastor, Jesús; García de Sola, Rafael; Ortega, Guillermo J.
2012-01-01
Purpose Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes. Methods The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery. Discussion We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases. PMID:22844524
Levetiracetam reduces abnormal network activations in temporal lobe epilepsy.
Wandschneider, Britta; Stretton, Jason; Sidhu, Meneka; Centeno, Maria; Kozák, Lajos R; Symms, Mark; Thompson, Pamela J; Duncan, John S; Koepp, Matthias J
2014-10-21
We used functional MRI (fMRI) and a left-lateralizing verbal and a right-lateralizing visual-spatial working memory (WM) paradigm to investigate the effects of levetiracetam (LEV) on cognitive network activations in patients with drug-resistant temporal lobe epilepsy (TLE). In a retrospective study, we compared task-related fMRI activations and deactivations in 53 patients with left and 54 patients with right TLE treated with (59) or without (48) LEV. In patients on LEV, activation patterns were correlated with the daily LEV dose. We isolated task- and syndrome-specific effects. Patients on LEV showed normalization of functional network deactivations in the right temporal lobe in right TLE during the right-lateralizing visual-spatial task and in the left temporal lobe in left TLE during the verbal task. In a post hoc analysis, a significant dose-dependent effect was demonstrated in right TLE during the visual-spatial WM task: the lower the LEV dose, the greater the abnormal right hippocampal activation. At a less stringent threshold (p < 0.05, uncorrected for multiple comparisons), a similar dose effect was observed in left TLE during the verbal task: both hippocampi were more abnormally activated in patients with lower doses, but more prominently on the left. Our findings suggest that LEV is associated with restoration of normal activation patterns. Longitudinal studies are necessary to establish whether the neural patterns translate to drug response. This study provides Class III evidence that in patients with drug-resistant TLE, levetiracetam has a dose-dependent facilitation of deactivation of mesial temporal structures. © 2014 American Academy of Neurology.
Beyond the FFA: The Role of the Ventral Anterior Temporal Lobes in Face Processing
Collins, Jessica A.; Olson, Ingrid R.
2014-01-01
Extensive research has supported the existence of a specialized face-processing network that is distinct from the visual processing areas used for general object recognition. The majority of this work has been aimed at characterizing the response properties of the fusiform face area (FFA) and the occipital face area (OFA), which together are thought to constitute the core network of brain areas responsible for facial identification. Although accruing evidence has shown that face-selective patches in the ventral anterior temporal lobes (vATLs) are interconnected with the FFA and OFA, and that they play a role in facial identification, the relative contribution of these brain areas to the core face-processing network has remained unarticulated. Here we review recent research critically implicating the vATLs in face perception and memory. We propose that current models of face processing should be revised such that the ventral anterior temporal lobes serve a centralized role in the visual face-processing network. We speculate that a hierarchically organized system of face processing areas extends bilaterally from the inferior occipital gyri to the vATLs, with facial representations becoming increasingly complex and abstracted from low-level perceptual features as they move forward along this network. The anterior temporal face areas may serve as the apex of this hierarchy, instantiating the final stages of face recognition. We further argue that the anterior temporal face areas are ideally suited to serve as an interface between face perception and face memory, linking perceptual representations of individual identity with person-specific semantic knowledge. PMID:24937188
Lam, Alice D; Zepeda, Rodrigo; Cole, Andrew J; Cash, Sydney S
2016-10-01
Decades of experience with intracranial recordings in patients with epilepsy have demonstrated that seizures can occur in deep cortical regions such as the mesial temporal lobes without showing any obvious signs of seizure activity on scalp electroencephalogram. Predicated on the idea that these seizures are purely focal, currently, the only way to detect these 'scalp-negative seizures' is with intracranial recordings. However, intracranial recordings are only rarely performed in patients with epilepsy, and are almost never performed outside of the context of epilepsy. As such, little is known about scalp-negative seizures and their role in the natural history of epilepsy, their effect on cognitive function, and their association with other neurological diseases. Here, we developed a novel approach to non-invasively identify scalp-negative seizures arising from the mesial temporal lobe based on scalp electroencephalogram network connectivity measures. We identified 25 scalp-negative mesial temporal lobe seizures in 10 patients and obtained control records from an additional 13 patients, all of whom underwent recordings with foramen ovale electrodes and scalp electroencephalogram. Scalp data from these records were used to train a scalp-negative seizure detector, which consisted of a pair of logistic regression classifiers that used scalp electroencephalogram coherence properties as input features. On cross-validation performance, this detector correctly identified scalp-negative seizures in 40% of patients, and correctly identified the side of seizure onset for each seizure detected. In comparison, routine clinical interpretation of these scalp electroencephalograms failed to identify any of the scalp-negative seizures. Among the patients in whom the detector raised seizure alarms, 80% had scalp-negative mesial temporal lobe seizures. The detector had a false alarm rate of only 0.31 per day and a positive predictive value of 75%. Of the 13 control patients, false seizure alarms were raised in only one patient. The fact that our detector specifically recognizes focal mesial temporal lobe seizures based on scalp electroencephalogram coherence features, lends weight to the hypothesis that even focal seizures are a network phenomenon that involve widespread neural connectivity. Our scalp-negative seizure detector has clear clinical utility in patients with temporal lobe epilepsy, and its potential easily translates to other neurological disorders, such as Alzheimer's disease, in which occult mesial temporal lobe seizures are suspected to play a significant role. Importantly, our work establishes a novel approach of using computational approaches to non-invasively detect deep seizure activity, without the need for invasive intracranial recordings. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Interictal 18FDG PET findings in temporal lobe epilepsy with déjà vu.
Adachi, N; Koutroumanidis, M; Elwes, R D; Polkey, C E; Binnie, C D; Reynolds, E H; Barrington, S F; Maisey, M N; Panayiotopoulos, C P
1999-01-01
The authors studied the functional anatomy of the déjà vu (DV) experience in nonlesional temporal lobe epilepsy (TLE), using interictal fluorine-18 fluorodeoxyglucose PET in 14 patients with and 17 patients without DV. Several clinical conditions, such as age at PET study, side of ictal onset zone, and dominance for language, were no different between the two groups. The patients with DV showed significant relative reductions in glucose metabolism in the mesial temporal structures and the parietal cortex. The findings demonstrate that ictal DV is of no lateralizing value. They further suggest that temporal lobe dysfunction is necessary but not sufficient for the generation of DV. Extensive association cortical areas may be involved as part of the network that integrates this distinct experience.
Thalamotemporal alteration and postoperative seizures in temporal lobe epilepsy
Richardson, Mark P.; Schoene‐Bake, Jan‐Christoph; O'Muircheartaigh, Jonathan; Elkommos, Samia; Kreilkamp, Barbara; Goh, Yee Yen; Marson, Anthony G.; Elger, Christian; Weber, Bernd
2015-01-01
Objective There are competing explanations for persistent postoperative seizures after temporal lobe surgery. One is that 1 or more particular subtypes of mesial temporal lobe epilepsy (mTLE) exist that are particularly resistant to surgery. We sought to identify a common brain structural and connectivity alteration in patients with persistent postoperative seizures using preoperative quantitative magnetic resonance imaging and diffusion tensor imaging (DTI). Methods We performed a series of studies in 87 patients with mTLE (47 subsequently rendered seizure free, 40 who continued to experience postoperative seizures) and 80 healthy controls. We investigated the relationship between imaging variables and postoperative seizure outcome. All patients had unilateral temporal lobe seizure onset, had ipsilateral hippocampal sclerosis as the only brain lesion, and underwent amygdalohippocampectomy. Results Quantitative imaging factors found not to be significantly associated with persistent seizures were volumes of ipsilateral and contralateral mesial temporal lobe structures, generalized brain atrophy, and extent of resection. There were nonsignificant trends for larger amygdala and entorhinal resections to be associated with improved outcome. However, patients with persistent seizures had significant atrophy of bilateral dorsomedial and pulvinar thalamic regions, and significant alterations of DTI‐derived thalamotemporal probabilistic paths bilaterally relative to those patients rendered seizure free and controls, even when corrected for extent of mesial temporal lobe resection. Interpretation Patients with bihemispheric alterations of thalamotemporal structural networks may represent a subtype of mTLE that is resistant to temporal lobe surgery. Increasingly sensitive multimodal imaging techniques should endeavor to transform these group‐based findings to individualize prediction of patient outcomes. Ann Neurol 2015;77:760–774 PMID:25627477
Abstract Linguistic Structure Correlates with Temporal Activity during Naturalistic Comprehension
Brennan, Jonathan R.; Stabler, Edward P.; Van Wagenen, Sarah E.; Luh, Wen-Ming; Hale, John T.
2016-01-01
Neurolinguistic accounts of sentence comprehension identify a network of relevant brain regions, but do not detail the information flowing through them. We investigate syntactic information. Does brain activity implicate a computation over hierarchical grammars or does it simply reflect linear order, as in a Markov chain? To address this question, we quantify the cognitive states implied by alternative parsing models. We compare processing-complexity predictions from these states against fMRI timecourses from regions that have been implicated in sentence comprehension. We find that hierarchical grammars independently predict timecourses from left anterior and posterior temporal lobe. Markov models are predictive in these regions and across a broader network that includes the inferior frontal gyrus. These results suggest that while linear effects are wide-spread across the language network, certain areas in the left temporal lobe deal with abstract, hierarchical syntactic representations. PMID:27208858
Thalamocortical Connections and Executive Function in Pediatric Temporal and Frontal Lobe Epilepsy.
Law, N; Smith, M L; Widjaja, E
2018-06-07
Largely accepted in the literature is the role the interconnections between the thalamus and cortex play in generalized epilepsy. However, thalamocortical involvement is less understood in focal epilepsy in terms of the effect of seizures on thalamocortical circuitry in the developing brain and subsequent cognitive outcome. We investigated thalamocortical pathway microstructure in pediatric frontal lobe epilepsy and temporal lobe epilepsy and examined the associations between pathway microstructure and measures of executive function. We examined thalamocortical connections in 24 children with frontal lobe epilepsy, 17 patients with temporal lobe epilepsy, and 25 healthy children using DTI. We investigated several executive function measures in patients and controls, which were distilled into latent executive function components to compare among groups, and the associations between measures of thalamocortical microstructure and executive function. We found no differences in thalamocortical pathway microstructure between the groups, but aspects of executive function (mental flexibility/inhibition/shifting) were impaired in the frontal lobe epilepsy group compared with controls. In patients with frontal lobe epilepsy, younger age at seizure onset and a greater number of antiepileptic drugs were associated with DTI indices indicative of damaged/less developed thalamocortical pathways. In patients with temporal lobe epilepsy, poorer performance on all measures of executive function was associated with DTI indices reflective of damaged/less developed pathways. Our results give insight into vulnerable neural networks in pediatric focal epilepsy and suggest thalamocortical pathway damage as a potential mechanism of executive function impairment in temporal lobe epilepsy but not frontal lobe epilepsy. Identifying structure-function relations can help inform how we measure functional and cognitive/behavioral outcomes in these populations. © 2018 by American Journal of Neuroradiology.
Mesial temporal lobe epilepsy diminishes functional connectivity during emotion perception.
Steiger, Bettina K; Muller, Angela M; Spirig, Esther; Toller, Gianina; Jokeit, Hennric
2017-08-01
Unilateral mesial temporal lobe epilepsy (MTLE) has been associated with impaired recognition of emotional facial expressions. Correspondingly, imaging studies showed decreased activity of the amygdala and cortical face processing regions in response to emotional faces. However, functional connectivity among regions involved in emotion perception has not been studied so far. To address this, we examined intrinsic functional connectivity (FC) modulated by the perception of dynamic fearful faces among the amygdala and limbic, frontal, temporal and brainstem regions. Regions of interest were identified in an activation analysis by presenting a block-design with dynamic fearful faces and dynamic landscapes to 15 healthy individuals. This led to 10 predominately right-hemispheric regions. Functional connectivity between these regions during the perception of fearful faces was examined in drug-refractory patients with left- (n=16) or right-sided (n=17) MTLE, epilepsy patients with extratemporal seizure onset (n=15) and a second group of 15 healthy controls. Healthy controls showed a widespread functional network modulated by the perception of fearful faces that encompassed bilateral amygdalae, limbic, cortical, subcortical and brainstem regions. In patients with left MTLE, a downsized network of frontal and temporal regions centered on the right amygdala was present. Patients with right MTLE showed almost no significant functional connectivity. A maintained network in the epilepsy control group indicates that findings in mesial temporal lobe epilepsy could not be explained by clinical factors such as seizures and antiepileptic medication. Functional networks underlying facial emotion perception are considerably changed in left and right MTLE. Alterations are present for both hemispheres in either MTLE group, but are more pronounced in right MTLE. Disruption of the functional network architecture possibly contributes to deficits in facial emotion recognition frequently reported in MTLE. Copyright © 2017 Elsevier B.V. All rights reserved.
Shih, Y C; Tseng, C E; Lin, F-H; Liou, H H; Tseng, W Y I
2017-03-01
Unilateral mesial temporal lobe epilepsy and hippocampal sclerosis have structural and functional abnormalities in the mesial temporal regions. To gain insight into the pathophysiology of the epileptic network in mesial temporal lobe epilepsy with hippocampal sclerosis, we aimed to clarify the relationships between hippocampal atrophy and the altered connection between the hippocampus and the posterior cingulate cortex in patients with mesial temporal lobe epilepsy with hippocampal sclerosis. Fifteen patients with left mesial temporal lobe epilepsy with hippocampal sclerosis and 15 healthy controls were included in the study. Multicontrast MR imaging, including high-resolution T1WI, diffusion spectrum imaging, and resting-state fMRI, was performed to measure the hippocampal volume, structural connectivity of the inferior cingulum bundle, and intrinsic functional connectivity between the hippocampus and the posterior cingulate cortex, respectively. Compared with controls, patients had decreased left hippocampal volume (volume ratio of the hippocampus and controls, 0.366% ± 0.029%; patients, 0.277% ± 0.063%, corrected P = .002), structural connectivity of the bilateral inferior cingulum bundle (generalized fractional anisotropy, left: controls, 0.234 ± 0.020; patients, 0.193 ± 0.022, corrected P = .0001, right: controls, 0.226 ± 0.022; patients, 0.208 ± 0.017, corrected P = .047), and intrinsic functional connectivity between the left hippocampus and the left posterior cingulate cortex (averaged z-value: controls, 0.314 ± 0.152; patients, 0.166 ± 0.062). The left hippocampal volume correlated with structural connectivity positively (standardized β = 0.864, P = .001), but it had little correlation with intrinsic functional connectivity (standardized β = -0.329, P = .113). On the contralesional side, the hippocampal volume did not show any significant correlation with structural connectivity or intrinsic functional connectivity ( F 2,12 = 0.284, P = .757, R 2 = 0.045). In left mesial temporal lobe epilepsy with hippocampal sclerosis, the left inferior cingulum bundle undergoes degeneration in tandem with the left hippocampal volume, whereas intrinsic functional connectivity seems to react by compensating the loss of connectivity. Such insight might be helpful in understanding the development of the epileptic network in left mesial temporal lobe epilepsy with hippocampal sclerosis. © 2017 by American Journal of Neuroradiology.
Kinjo, Erika Reime; Rodríguez, Pedro Xavier Royero; Dos Santos, Bianca Araújo; Higa, Guilherme Shigueto Vilar; Ferraz, Mariana Sacrini Ayres; Schmeltzer, Christian; Rüdiger, Sten; Kihara, Alexandre Hiroaki
2018-05-01
Epilepsy is a disorder of the brain characterized by the predisposition to generate recurrent unprovoked seizures, which involves reshaping of neuronal circuitries based on intense neuronal activity. In this review, we first detailed the regulation of plasticity-associated genes, such as ARC, GAP-43, PSD-95, synapsin, and synaptophysin. Indeed, reshaping of neuronal connectivity after the primary, acute epileptogenesis event increases the excitability of the temporal lobe. Herein, we also discussed the heterogeneity of neuronal populations regarding the number of synaptic connections, which in the theoretical field is commonly referred as degree. Employing integrate-and-fire neuronal model, we determined that in addition to increased synaptic strength, degree correlations might play essential and unsuspected roles in the control of network activity. Indeed, assortativity, which can be described as a condition where high-degree correlations are observed, increases the excitability of neural networks. In this review, we summarized recent topics in the field, and data were discussed according to newly developed or unusual tools, as provided by mathematical graph analysis and high-order statistics. With this, we were able to present new foundations for the pathological activity observed in temporal lobe epilepsy.
Network reconfiguration and working memory impairment in mesial temporal lobe epilepsy.
Campo, Pablo; Garrido, Marta I; Moran, Rosalyn J; García-Morales, Irene; Poch, Claudia; Toledano, Rafael; Gil-Nagel, Antonio; Dolan, Raymond J; Friston, Karl J
2013-05-15
Mesial temporal lobe epilepsy (mTLE) is the most prevalent form of focal epilepsy, and hippocampal sclerosis (HS) is considered the most frequent associated pathological finding. Recent connectivity studies have shown that abnormalities, either structural or functional, are not confined to the affected hippocampus, but can be found in other connected structures within the same hemisphere, or even in the contralesional hemisphere. Despite the role of hippocampus in memory functions, most of these studies have explored network properties at resting state, and in some cases compared connectivity values with neuropsychological memory scores. Here, we measured magnetoencephalographic responses during verbal working memory (WM) encoding in left mTLE patients and controls, and compared their effective connectivity within a frontotemporal network using dynamic causal modelling. Bayesian model comparison indicated that the best model included bilateral, forward and backward connections, linking inferior temporal cortex (ITC), inferior frontal cortex (IFC), and the medial temporal lobe (MTL). Test for differences in effective connectivity revealed that patients exhibited decreased ipsilesional MTL-ITC backward connectivity, and increased bidirectional IFC-MTL connectivity in the contralesional hemisphere. Critically, a negative correlation was observed between these changes in patients, with decreases in ipsilesional coupling among temporal sources associated with increases contralesional frontotemporal interactions. Furthermore, contralesional frontotemporal interactions were inversely related to task performance and level of education. The results demonstrate that unilateral sclerosis induced local and remote changes in the dynamic organization of a distributed network supporting verbal WM. Crucially, pre-(peri) morbid factors (educational level) were reflected in both cognitive performance and (putative) compensatory changes in physiological coupling. Copyright © 2013 Elsevier Inc. All rights reserved.
Widjaja, E; Zamyadi, M; Raybaud, C; Snead, O C; Smith, M L
2013-12-01
Epilepsy is considered a disorder of neural networks. The aims of this study were to assess functional connectivity within resting-state networks and functional network connectivity across resting-state networks by use of resting-state fMRI in children with frontal lobe epilepsy and to relate changes in resting-state networks with neuropsychological function. Fifteen patients with frontal lobe epilepsy and normal MR imaging and 14 healthy control subjects were recruited. Spatial independent component analysis was used to identify the resting-state networks, including frontal, attention, default mode network, sensorimotor, visual, and auditory networks. The Z-maps of resting-state networks were compared between patients and control subjects. The relation between abnormal connectivity and neuropsychological function was assessed. Correlations from all pair-wise combinations of independent components were performed for each group and compared between groups. The frontal network was the only network that showed reduced connectivity in patients relative to control subjects. The remaining 5 networks demonstrated both reduced and increased functional connectivity within resting-state networks in patients. There was a weak association between connectivity in frontal network and executive function (P = .029) and a significant association between sensorimotor network and fine motor function (P = .004). Control subjects had 79 pair-wise independent components that showed significant temporal coherence across all resting-state networks except for default mode network-auditory network. Patients had 66 pairs of independent components that showed significant temporal coherence across all resting-state networks. Group comparison showed reduced functional network connectivity between default mode network-attention, frontal-sensorimotor, and frontal-visual networks and increased functional network connectivity between frontal-attention, default mode network-sensorimotor, and frontal-visual networks in patients relative to control subjects. We found abnormal functional connectivity within and across resting-state networks in children with frontal lobe epilepsy. Impairment in functional connectivity was associated with impaired neuropsychological function.
Recognition and identification of famous faces in patients with unilateral temporal lobe epilepsy.
Seidenberg, Michael; Griffith, Randall; Sabsevitz, David; Moran, Maria; Haltiner, Alan; Bell, Brian; Swanson, Sara; Hammeke, Thomas; Hermann, Bruce
2002-01-01
We examined the performance of 21 patients with unilateral temporal lobe epilepsy (TLE) and hippocampal damage (10 lefts, and 11 rights) and 10 age-matched controls on the recognition and identification (name and occupation) of well-known faces. Famous face stimuli were selected from four time periods; 1970s, 1980s, 1990-1994, and 1995-1996. Differential patterns of performance were observed for the left and right TLE group across distinct face processing components. The left TLE group showed a selective impairment in naming famous faces while they performed similar to the controls in face recognition and semantic identification (i.e. occupation). In contrast, the right TLE group was impaired across all components of face memory; face recognition, semantic identification, and face naming. Face naming impairment in the left TLE group was characterized by a temporal gradient with better naming performance for famous faces from more distant time periods. Findings are discussed in terms of the role of the temporal lobe system for the acquisition, retention, and retrieval of face semantic networks, and the differential effects of lateralized temporal lobe lesions in this process.
Aberrant topological patterns of brain structural network in temporal lobe epilepsy.
Yasuda, Clarissa Lin; Chen, Zhang; Beltramini, Guilherme Coco; Coan, Ana Carolina; Morita, Marcia Elisabete; Kubota, Bruno; Bergo, Felipe; Beaulieu, Christian; Cendes, Fernando; Gross, Donald William
2015-12-01
Although altered large-scale brain network organization in patients with temporal lobe epilepsy (TLE) has been shown using morphologic measurements such as cortical thickness, these studies, have not included critical subcortical structures (such as hippocampus and amygdala) and have had relatively small sample sizes. Here, we investigated differences in topological organization of the brain volumetric networks between patients with right TLE (RTLE) and left TLE (LTLE) with unilateral hippocampal atrophy. We performed a cross-sectional analysis of 86 LTLE patients, 70 RTLE patients, and 116 controls. RTLE and LTLE groups were balanced for gender (p = 0.64), seizure frequency (Mann-Whitney U test, p = 0.94), age (p = 0.39), age of seizure onset (p = 0.21), and duration of disease (p = 0.69). Brain networks were constructed by thresholding correlation matrices of volumes from 80 cortical/subcortical regions (parcellated with Freesurfer v5.3 https://surfer.nmr.mgh.harvard.edu/) that were then analyzed using graph theoretical approaches. We identified reduced cortical/subcortical connectivity including bilateral hippocampus in both TLE groups, with the most significant interregional correlation increases occurring within the limbic system in LTLE and contralateral hemisphere in RTLE. Both TLE groups demonstrated less optimal topological organization, with decreased global efficiency and increased local efficiency and clustering coefficient. LTLE also displayed a more pronounced network disruption. Contrary to controls, hub nodes in both TLE groups were not distributed across whole brain, but rather found primarily in the paralimbic/limbic and temporal association cortices. Regions with increased centrality were concentrated in occipital lobes for LTLE and contralateral limbic/temporal areas for RTLE. These findings provide first evidence of altered topological organization of the whole brain volumetric network in TLE, with disruption of the coordinated patterns of cortical/subcortical morphology. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Successful decoding of famous faces in the fusiform face area.
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition.
Munsell, B C; Wu, G; Fridriksson, J; Thayer, K; Mofrad, N; Desisto, N; Shen, D; Bonilha, L
2017-09-09
Impaired confrontation naming is a common symptom of temporal lobe epilepsy (TLE). The neurobiological mechanisms underlying this impairment are poorly understood but may indicate a structural disorganization of broadly distributed neuronal networks that support naming ability. Importantly, naming is frequently impaired in other neurological disorders and by contrasting the neuronal structures supporting naming in TLE with other diseases, it will become possible to elucidate the common systems supporting naming. We aimed to evaluate the neuronal networks that support naming in TLE by using a machine learning algorithm intended to predict naming performance in subjects with medication refractory TLE using only the structural brain connectome reconstructed from diffusion tensor imaging. A connectome-based prediction framework was developed using network properties from anatomically defined brain regions across the entire brain, which were used in a multi-task machine learning algorithm followed by support vector regression. Nodal eigenvector centrality, a measure of regional network integration, predicted approximately 60% of the variance in naming. The nodes with the highest regression weight were bilaterally distributed among perilimbic sub-networks involving mainly the medial and lateral temporal lobe regions. In the context of emerging evidence regarding the role of large structural networks that support language processing, our results suggest intact naming relies on the integration of sub-networks, as opposed to being dependent on isolated brain areas. In the case of TLE, these sub-networks may be disproportionately indicative naming processes that are dependent semantic integration from memory and lexical retrieval, as opposed to multi-modal perception or motor speech production. Copyright © 2017. Published by Elsevier Inc.
Structural correlates of impaired working memory in hippocampal sclerosis.
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-07-01
Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. Wiley Periodicals, Inc. © 2013 International League Against Epilepsy.
Structural correlates of impaired working memory in hippocampal sclerosis
Winston, Gavin P; Stretton, Jason; Sidhu, Meneka K; Symms, Mark R; Thompson, Pamela J; Duncan, John S
2013-01-01
Purpose: Temporal lobe epilepsy (TLE) has been considered to impair long-term memory, whilst not affecting working memory, but recent evidence suggests that working memory is compromised. Functional MRI (fMRI) studies demonstrate that working memory involves a bilateral frontoparietal network the activation of which is disrupted in hippocampal sclerosis (HS). A specific role of the hippocampus to deactivate during working memory has been proposed with this mechanism faulty in patients with HS. Structural correlates of disrupted working memory in HS have not been explored. Methods: We studied 54 individuals with medically refractory TLE and unilateral HS (29 left) and 28 healthy controls. Subjects underwent 3T structural MRI, a visuospatial n-back fMRI paradigm and diffusion tensor imaging (DTI). Working memory capacity assessed by three span tasks (digit span backwards, gesture span, motor sequences) was combined with performance in the visuospatial paradigm to give a global working memory measure. Gray and white matter changes were investigated using voxel-based morphometry and voxel-based analysis of DTI, respectively. Key Findings: Individuals with left or right HS performed less well than healthy controls on all measures of working memory. fMRI demonstrated a bilateral frontoparietal network during the working memory task with reduced activation of the right parietal lobe in both patient groups. In left HS, gray matter loss was seen in the ipsilateral hippocampus and parietal lobe, with maintenance of the gray matter volume of the contralateral parietal lobe associated with better performance. White matter integrity within the frontoparietal network, in particular the superior longitudinal fasciculus and cingulum, and the contralateral temporal lobe, was associated with working memory performance. In right HS, gray matter loss was also seen in the ipsilateral hippocampus and parietal lobe. Working memory performance correlated with the gray matter volume of both frontal lobes and white matter integrity within the frontoparietal network and contralateral temporal lobe. Significance: Our data provide further evidence that working memory is disrupted in HS and impaired integrity of both gray and white matter is seen in functionally relevant areas. We suggest this forms the structural basis of the impairment of working memory, indicating widespread and functionally significant structural changes in patients with apparently isolated HS. PMID:23614459
Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.
2015-01-01
Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449
Mesial temporal lobe epilepsy - An overview of surgical techniques.
Muzumdar, Dattatraya; Patil, Manoj; Goel, Atul; Ravat, Sangeeta; Sawant, Nina; Shah, Urvashi
2016-12-01
Mesial temporal lobe epilepsy is one of the commonest indications for epilepsy surgery. Presurgical evaluation for drug resistant epilepsy and identification of appropriate candidates for surgery is essential for optimal seizure freedom. The anatomy of mesial temporal lobe is complex and needs to be understood in the context of the advanced imaging, ictal and interictal Video_EEG monitoring, neuropsychology and psychiatric considerations. The completeness of disconnection of epileptogenic neural networks is paramount and is correlated with the extent of resection of the mesial temporal structures. In the Indian subcontinent, a standard but extended anterior temporal lobectomy is a viable option in view of the diverse socioeconomic, cultural and pathological considerations. The maximum utilization of epilepsy surgery services in this region is also a challenge. There is a need for regional comprehensive epilepsy care teams in a tertiary care academic hospital to form centers of excellence catering to a large population. Copyright © 2016 IJS Publishing Group Ltd. Published by Elsevier Ltd. All rights reserved.
Fan, Xiaotong; Yan, Hao; Shan, Yi; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie; Zhao, Guoguang
2016-01-01
Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients.
Fan, Xiaotong; Shang, Kun; Wang, Xiaocui; Wang, Peipei; Shan, Yongzhi; Lu, Jie
2016-01-01
Occurrence of language impairment in mesial temporal lobe epilepsy (mTLE) patients is common and left mTLE patients always exhibit a primary problem with access to names. To explore different neuropsychological profiles between left and right mTLE patients, the study investigated both structural and effective functional connectivity changes within the semantic cognition network between these two groups and those from normal controls. We found that gray matter atrophy of left mTLE patients was more severe than that of right mTLE patients in the whole brain and especially within the semantic cognition network in their contralateral hemisphere. It suggested that seizure attacks were rather targeted than random for patients with hippocampal sclerosis (HS) in the dominant hemisphere. Functional connectivity analysis during resting state fMRI revealed that subregions of the anterior temporal lobe (ATL) in the left HS patients were no longer effectively connected. Further, we found that, unlike in right HS patients, increased causal linking between ipsilateral regions in the left HS epilepsy patients cannot make up for their decreased contralateral interaction. It suggested that weakened contralateral connection and disrupted effective interaction between subregions of the unitary, transmodal hub of the ATL may be the primary cause of anomia in the left HS patients. PMID:28018680
Lesion correlates of impairments in actual tool use following unilateral brain damage.
Salazar-López, E; Schwaiger, B J; Hermsdörfer, J
2016-04-01
To understand how the brain controls actions involving tools, tests have been developed employing different paradigms such as pantomime, imitation and real tool use. The relevant areas have been localized in the premotor cortex, the middle temporal gyrus and the superior and inferior parietal lobe. This study employs Voxel Lesion Symptom Mapping to relate the functional impairment in actual tool use with extent and localization of the structural damage in the left (LBD, N=31) and right (RBD, N=19) hemisphere in chronic stroke patients. A series of 12 tools was presented to participants in a carousel. In addition, a non-tool condition tested the prescribed manipulation of a bar. The execution was scored according to an apraxic error scale based on the dimensions grasp, movement, direction and space. Results in the LBD group show that the ventro-dorsal stream constitutes the core of the defective network responsible for impaired tool use; it is composed of the inferior parietal lobe, the supramarginal and angular gyrus and the dorsal premotor cortex. In addition, involvement of regions in the temporal lobe, the rolandic operculum, the ventral premotor cortex and the middle occipital gyrus provide evidence of the role of the ventral stream in this task. Brain areas related to the use of the bar largely overlapped with this network. For patients with RBD data were less conclusive; however, a trend for the involvement of the temporal lobe in apraxic errors was manifested. Skilled bar manipulation depended on the same temporal area in these patients. Therefore, actual tool use depends on a well described left fronto-parietal-temporal network. RBD affects actual tool use, however the underlying neural processes may be more widely distributed and more heterogeneous. Goal directed manipulation of non-tool objects seems to involve very similar brain areas as tool use, suggesting that both types of manipulation share identical processes and neural representations. Copyright © 2016 Elsevier Ltd. All rights reserved.
Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R
2014-10-24
Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Kingyon, J; Behroozmand, R; Kelley, R; Oya, H; Kawasaki, H; Narayanan, N S; Greenlee, J D W
2015-10-01
The neural basis of human speech is unclear. Intracranial electrophysiological recordings have revealed that high-gamma band oscillations (70-150Hz) are observed in the frontal lobe during speech production and in the temporal lobe during speech perception. Here, we tested the hypothesis that the frontal and temporal brain regions had high-gamma coherence during speech. We recorded electrocorticography (ECoG) from the frontal and temporal cortices of five humans who underwent surgery for medically intractable epilepsy, and studied coherence between the frontal and temporal cortex during vocalization and playback of vocalization. We report two novel results. First, we observed high-gamma band as well as theta (4-8Hz) coherence between frontal and temporal lobes. Second, both high-gamma and theta coherence were stronger when subjects were actively vocalizing as compared to playback of the same vocalizations. These findings provide evidence that coupling between sensory-motor networks measured by high-gamma coherence plays a key role in feedback-based monitoring and control of vocal output for human vocalization. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Structural covariance mapping delineates medial and medio-lateral temporal networks in déjà vu.
Shaw, Daniel Joel; Mareček, Radek; Brázdil, Milan
2016-12-01
Déjà vu (DV) is an eerie phenomenon experienced frequently as an aura of temporal lobe epilepsy, but also reported commonly by healthy individuals. The former pathological manifestation appears to result from aberrant neural activity among brain structures within the medial temporal lobes. Recent studies also implicate medial temporal brain structures in the non-pathological experience of DV, but as one element of a diffuse neuroanatomical correlate; it remains to be seen if neural activity among the medial temporal lobes also underlies this benign manifestation. The present study set out to investigate this. Due to its unpredictable and infrequent occurrence, however, non-pathological DV does not lend itself easily to functional neuroimaging. Instead, we draw on research showing that brain structure covaries among regions that interact frequently as nodes of functional networks. Specifically, we assessed whether grey-matter covariance among structures implicated in non-pathological DV differs according to the frequency with which the phenomenon is experienced. This revealed two diverging patterns of structural covariation: Among the first, comprised primarily of medial temporal structures and the caudate, grey-matter volume becomes more positively correlated with higher frequency of DV experience. The second pattern encompasses medial and lateral temporal structures, among which greater DV frequency is associated with more negatively correlated grey matter. Using a meta-analytic method of co-activation mapping, we demonstrate a higher probability of functional interactions among brain structures constituting the former pattern, particularly during memory-related processes. Our findings suggest that altered neural signalling within memory-related medial temporal brain structures underlies both pathological and non-pathological DV.
Successful Decoding of Famous Faces in the Fusiform Face Area
Axelrod, Vadim; Yovel, Galit
2015-01-01
What are the neural mechanisms of face recognition? It is believed that the network of face-selective areas, which spans the occipital, temporal, and frontal cortices, is important in face recognition. A number of previous studies indeed reported that face identity could be discriminated based on patterns of multivoxel activity in the fusiform face area and the anterior temporal lobe. However, given the difficulty in localizing the face-selective area in the anterior temporal lobe, its role in face recognition is still unknown. Furthermore, previous studies limited their analysis to occipito-temporal regions without testing identity decoding in more anterior face-selective regions, such as the amygdala and prefrontal cortex. In the current high-resolution functional Magnetic Resonance Imaging study, we systematically examined the decoding of the identity of famous faces in the temporo-frontal network of face-selective and adjacent non-face-selective regions. A special focus has been put on the face-area in the anterior temporal lobe, which was reliably localized using an optimized scanning protocol. We found that face-identity could be discriminated above chance level only in the fusiform face area. Our results corroborate the role of the fusiform face area in face recognition. Future studies are needed to further explore the role of the more recently discovered anterior face-selective areas in face recognition. PMID:25714434
Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-06-01
Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Ekstrom, Arne D.; Bookheimer, Susan Y.
2007-01-01
Imaging, electrophysiological studies, and lesion work have shown that the medial temporal lobe (MTL) is important for episodic memory; however, it is unclear whether different MTL regions support the spatial, temporal, and item elements of episodic memory. In this study we used fMRI to examine retrieval performance emphasizing different aspects…
Laufs, Helmut; Hamandi, Khalid; Salek-Haddadi, Afraim; Kleinschmidt, Andreas K; Duncan, John S; Lemieux, Louis
2007-01-01
A cerebral network comprising precuneus, medial frontal, and temporoparietal cortices is less active both during goal-directed behavior and states of reduced consciousness than during conscious rest. We tested the hypothesis that the interictal epileptic discharges affect activity in these brain regions in patients with temporal lobe epilepsy who have complex partial seizures. At the group level, using electroencephalography-correlated functional magnetic resonance imaging in 19 consecutive patients with focal epilepsy, we found common decreases of resting state activity in 9 patients with temporal lobe epilepsy (TLE) but not in 10 patients with extra-TLE. We infer that the functional consequences of TLE interictal epileptic discharges are different from those in extra-TLE and affect ongoing brain function. Activity increases were detected in the ipsilateral hippocampus in patients with TLE, and in subthalamic, bilateral superior temporal and medial frontal brain regions in patients with extra-TLE, possibly indicating effects of different interictal epileptic discharge propagation. PMID:17133385
Ben-Ari, Yehezkel; Crepel, Valérie; Represa, Alfonso
2008-01-01
Do temporal lobe epilepsy (TLE) seizures in adults promote further seizures? Clinical and experimental data suggest that new synapses are formed after an initial episode of status epilepticus, however their contribution to the transformation of a naive network to an epileptogenic one has been debated. Recent experimental data show that newly formed aberrant excitatory synapses on the granule cells of the fascia dentate operate by means of kainate receptor-operated signals that are not present on naive granule cells. Therefore, genuine epileptic networks rely on signaling cascades that differentiate them from naive networks. Recurrent limbic seizures generated by the activation of kainate receptors and synapses in naive animals lead to the formation of novel synapses that facilitate the emergence of further seizures. This negative, vicious cycle illustrates the central role of reactive plasticity in neurological disorders.
McCormick, Cornelia; Protzner, Andrea B.; Barnett, Alexander J.; Cohn, Melanie; Valiante, Taufik A.; McAndrews, Mary Pat
2014-01-01
Computational models predict that focal damage to the Default Mode Network (DMN) causes widespread decreases and increases of functional DMN connectivity. How such alterations impact functioning in a specific cognitive domain such as episodic memory remains relatively unexplored. Here, we show in patients with unilateral medial temporal lobe epilepsy (mTLE) that focal structural damage leads indeed to specific patterns of DMN functional connectivity alterations, specifically decreased connectivity between both medial temporal lobes (MTLs) and the posterior part of the DMN and increased intrahemispheric anterior–posterior connectivity. Importantly, these patterns were associated with better and worse episodic memory capacity, respectively. These distinct patterns, shown here for the first time, suggest that a close dialogue between both MTLs and the posterior components of the DMN is required to fully express the extensive repertoire of episodic memory abilities. PMID:25068108
Liu, Tao; Li, Jianjun; Huang, Shixiong; Li, Changqinq; Zhao, Zhongyan; Wen, Guoqiang; Chen, Feng
2017-10-13
We used resting-state functional magnetic resonance imaging to investigate the global spontaneous neural activity involved in pathological laughing and crying after stroke. Twelve pathological laughing and crying patients with isolated pontine infarction were included, along with 12 age- and gender-matched acute isolated pontine infarction patients without pathological laughing and crying, and 12 age- and gender-matched healthy controls. We examined both the amplitude of low-frequency fluctuation and the regional homogeneity in order to comprehensively evaluate the intrinsic activity in patients with post-stroke pathological laughing and crying. In the post-stroke pathological laughing and crying group, changes in these measures were observed mainly in components of the default mode network (medial prefrontal cortex/anterior cingulate cortex, middle temporal gyrus, inferior temporal gyrus, superior frontal gyrus, middle frontal gyrus and inferior parietal lobule), sensorimotor network (supplementary motor area, precentral gyrus and paracentral lobule), affective network (medial prefrontal cortex/anterior cingulate cortex, parahippocampal gyrus, middle temporal gyrus and inferior temporal gyrus) and cerebellar lobes (cerebellum posterior lobe). We therefore speculate that when disinhibition of the volitional system is lost, increased activation of the emotional system causes pathological laughing and crying.
Classification of epilepsy types through global network analysis of scalp electroencephalograms
NASA Astrophysics Data System (ADS)
Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young
2006-04-01
Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.
Abnormal Neural Network of Primary Insomnia: Evidence from Spatial Working Memory Task fMRI.
Li, Yongli; Liu, Liya; Wang, Enfeng; Zhang, Hongju; Dou, Shewei; Tong, Li; Cheng, Jingliang; Chen, Chuanliang; Shi, Dapeng
2016-01-01
Contemporary functional MRI (fMRI) methods can provide a wealth of information about the neural mechanisms associated with primary insomnia (PI), which centrally involve neural network circuits related to spatial working memory. A total of 30 participants diagnosed with PI and without atypical brain anatomy were selected along with 30 age- and gender-matched healthy controls. Subjects were administered the Pittsburgh Sleep Quality Index (PSQI), Hamilton Rating Scale for Depression and clinical assessments of spatial working memory, followed by an MRI scan and fMRI in spatial memory task state. Statistically significant differences between PSQI and spatial working memory were observed between PI patients and controls (p < 0.01). Activation of neural networks related to spatial memory task state in the PI group was observed at the left temporal lobe, left occipital lobe and right frontal lobe. Lower levels of activation were observed in the left parahippocampal gyrus, right parahippocampal gyrus, bilateral temporal cortex, frontal cortex and superior parietal lobule. Participants with PI exhibited characteristic abnormalities in the neural network connectivity related to spatial working memory. These results may be indicative of an underlying pathological mechanism related to spatial working memory deterioration in PI, analogous to recently described mechanisms in other mental health disorders. © 2016 S. Karger AG, Basel.
Frequency–specific network connectivity increases underlie accurate spatiotemporal memory retrieval
Watrous, Andrew J.; Tandon, Nitin; Connor, Chris; Pieters, Thomas; Ekstrom, Arne D.
2013-01-01
The medial temporal lobes, prefrontal cortex, and parts of parietal cortex form the neural underpinnings of episodic memory, which includes remembering both where and when an event occurred. Yet how these three key regions interact during retrieval of spatial and temporal context remains largely untested. Here, we employed simultaneous electrocorticographical recordings across multiple lobular regions, employing phase synchronization as a measure of network functional connectivity, while patients retrieved spatial and temporal context associated with an episode. Successful memory retrieval was characterized by greater global connectivity compared to incorrect retrieval, with the MTL acting as a convergence hub for these interactions. Spatial vs. temporal context retrieval resulted in prominent differences in both the spectral and temporal patterns of network interactions. These results emphasize dynamic network interactions as central to episodic memory retrieval, providing novel insight into how multiple contexts underlying a single event can be recreated within the same network. PMID:23354333
Frontotemporal networks and behavioral symptoms in primary progressive aphasia.
D'Anna, Lucio; Mesulam, Marsel M; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily; Catani, Marco
2016-04-12
To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. © 2016 American Academy of Neurology.
Frontotemporal networks and behavioral symptoms in primary progressive aphasia
Mesulam, Marsel M.; Thiebaut de Schotten, Michel; Dell'Acqua, Flavio; Murphy, Declan; Wieneke, Christina; Martersteck, Adam; Cobia, Derin; Rogalski, Emily
2016-01-01
Objective: To determine if behavioral symptoms in patients with primary progressive aphasia (PPA) were associated with degeneration of a ventral frontotemporal network. Methods: We used diffusion tensor imaging tractography to quantify abnormalities of the uncinate fasciculus that connects the anterior temporal lobe and the ventrolateral frontal cortex. Two additional ventral tracts were studied: the inferior fronto-occipital fasciculus and the inferior longitudinal fasciculus. We also measured cortical thickness of anterior temporal and orbitofrontal regions interconnected by these tracts. Thirty-three patients with PPA and 26 healthy controls were recruited. Results: In keeping with the PPA diagnosis, behavioral symptoms were distinctly less prominent than the language deficits. Although all 3 tracts had structural pathology as determined by tractography, significant correlations with scores on the Frontal Behavioral Inventory were found only for the uncinate fasciculus. Cortical atrophy of the orbitofrontal and anterior temporal lobe cortex was also correlated with these scores. Conclusions: Our findings indicate that damage to a frontotemporal network mediated by the uncinate fasciculus may underlie the emergence of behavioral symptoms in patients with PPA. PMID:26992858
Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric
2015-11-01
Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain structures for human empathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
The function of the left anterior temporal pole: evidence from acute stroke and infarct volume
Tsapkini, Kyrana; Frangakis, Constantine E.
2011-01-01
The role of the anterior temporal lobes in cognition and language has been much debated in the literature over the last few years. Most prevailing theories argue for an important role of the anterior temporal lobe as a semantic hub or a place for the representation of unique entities such as proper names of peoples and places. Lately, a few studies have investigated the role of the most anterior part of the left anterior temporal lobe, the left temporal pole in particular, and argued that the left anterior temporal pole is the area responsible for mapping meaning on to sound through evidence from tasks such as object naming. However, another recent study indicates that bilateral anterior temporal damage is required to cause a clinically significant semantic impairment. In the present study, we tested these hypotheses by evaluating patients with acute stroke before reorganization of structure–function relationships. We compared a group of 20 patients with acute stroke with anterior temporal pole damage to a group of 28 without anterior temporal pole damage matched for infarct volume. We calculated the average percent error in auditory comprehension and naming tasks as a function of infarct volume using a non-parametric regression method. We found that infarct volume was the only predictive variable in the production of semantic errors in both auditory comprehension and object naming tasks. This finding favours the hypothesis that left unilateral anterior temporal pole lesions, even acutely, are unlikely to cause significant deficits in mapping meaning to sound by themselves, although they contribute to networks underlying both naming and comprehension of objects. Therefore, the anterior temporal lobe may be a semantic hub for object meaning, but its role must be represented bilaterally and perhaps redundantly. PMID:21685458
NASA Astrophysics Data System (ADS)
Wu, Xianjun; Di, Qian; Li, Yao; Zhao, Xiaojie
2009-02-01
Recently, evidences from fMRI studies have shown that there was decreased activity among the default-mode network in Alzheimer's disease (AD), and DTI researches also demonstrated that demyelinations exist in white matter of AD patients. Therefore, combining these two MRI methods may help to reveal the relationship between white matter damages and alterations of the resting state functional connectivity network. In the present study, we tried to address this issue by means of correlation analysis between DTI and resting state fMRI images. The default-mode networks of AD and normal control groups were compared to find the areas with significantly declined activity firstly. Then, the white matter regions whose fractional anisotropy (FA) value correlated with this decline were located through multiple regressions between the FA values and the BOLD response of the default networks. Among these correlating white matter regions, those whose FA values also declined were found by a group comparison between AD patients and healthy elderly control subjects. Our results showed that the areas with decreased activity among default-mode network included left posterior cingulated cortex (PCC), left medial temporal gyrus et al. And the damaged white matter areas correlated with the default-mode network alterations were located around left sub-gyral temporal lobe. These changes may relate to the decreased connectivity between PCC and medial temporal lobe (MTL), and thus correlate with the deficiency of default-mode network activity.
Atir-Sharon, Tali; Gilboa, Asaf; Hazan, Hananel; Koilis, Ester; Manevitz, Larry M
2015-01-01
Neocortical structures typically only support slow acquisition of declarative memory; however, learning through fast mapping may facilitate rapid learning-induced cortical plasticity and hippocampal-independent integration of novel associations into existing semantic networks. During fast mapping the meaning of new words and concepts is inferred, and durable novel associations are incidentally formed, a process thought to support early childhood's exuberant learning. The anterior temporal lobe, a cortical semantic memory hub, may critically support such learning. We investigated encoding of semantic associations through fast mapping using fMRI and multivoxel pattern analysis. Subsequent memory performance following fast mapping was more efficiently predicted using anterior temporal lobe than hippocampal voxels, while standard explicit encoding was best predicted by hippocampal activity. Searchlight algorithms revealed additional activity patterns that predicted successful fast mapping semantic learning located in lateral occipitotemporal and parietotemporal neocortex and ventrolateral prefrontal cortex. By contrast, successful explicit encoding could be classified by activity in medial and dorsolateral prefrontal and parahippocampal cortices. We propose that fast mapping promotes incidental rapid integration of new associations into existing neocortical semantic networks by activating related, nonoverlapping conceptual knowledge. In healthy adults, this is better captured by unique anterior and lateral temporal lobe activity patterns, while hippocampal involvement is less predictive of this kind of learning.
Alonso-Nanclares, Lidia; DeFelipe, Javier
2014-09-01
Hippocampal sclerosis is the most frequent pathology encountered in resected tissue obtained from patients with temporal lobe epilepsy. The main hallmarks of hippocampal sclerosis are neuronal loss and gliosis. Several authors have proposed that an increase in blood vessel density is a further indicator, based on interpretations from staining of markers related to both blood-brain barrier disruption and the formation of new blood vessels. However, previous studies performed in our laboratory using correlative light and electron microscopy revealed that many of these "blood vessels" are in fact atrophic vascular structures with a reduced or virtually absent lumen and are often filled with processes of reactive astrocytes. Thus, "normal" vasculature within the sclerotic CA1 field is drastically reduced. Since this decrease is consistently observed in the human sclerotic CA1, this feature can be considered another key pathological indicator of hippocampal sclerosis associated with temporal lobe epilepsy. Copyright © 2013 Elsevier Inc. All rights reserved.
Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy
Balter, S.; Lin, G.; Leyden, K.M.; Paul, B.M.; McDonald, C.R.
2016-01-01
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions. PMID:27393391
Zhu, Xi; He, Zhongqiong; Luo, Cheng; Qiu, Xiangmiao; He, Shixu; Peng, Anjiao; Zhang, Lin; Chen, Lei
2018-03-15
To investigate alterations in spontaneous brain activity in MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder using resting-state functional magnetic resonance imaging (RS-fMRI). Eighteen MRI-negative refractory temporal lobe epilepsy patients with major depressive disorder (PDD), 17 MRI-negative refractory temporal lobe epilepsy patients without major depressive disorder (nPDD), and 21 matched healthy controls (HC) were recruited from West China Hospital of SiChuan University from April 2016 to June 2017. The Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV) and 17-item Hamilton Depression Rating Scale were employed to confirm the diagnosis of major depressive disorder and assess the severity of depression. All participants underwent RS-fMRI scans using a 3.0T MRI system. MRI data were compared and analyzed using the amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) to measure spontaneous brain activity. These two methods were both used to evaluate spontaneous cerebral activity. The PDD group showed significantly altered spontaneous brain activity in the bilateral mesial prefrontal cortex, precuneus, angular gyrus, right parahippocampal gyrus, and right temporal pole. Meanwhile, compared with HC, the nPDD group demonstrated altered spontaneous brain activity in the temporal neocortex but no changes in mesial temporal structures. The PDD group showed regional brain activity alterations in the prefrontal-limbic system and dysfunction of the default mode network. The underlying pathophysiology of PDD may be provided for further studies. Copyright © 2018 Elsevier B.V. All rights reserved.
Robin, Jessica; Hirshhorn, Marnie; Rosenbaum, R Shayna; Winocur, Gordon; Moscovitch, Morris; Grady, Cheryl L
2015-01-01
Several recent studies have compared episodic and spatial memory in neuroimaging paradigms in order to understand better the contribution of the hippocampus to each of these tasks. In the present study, we build on previous findings showing common neural activation in default network areas during episodic and spatial memory tasks based on familiar, real-world environments (Hirshhorn et al. (2012) Neuropsychologia 50:3094-3106). Following previous demonstrations of the presence of functionally connected sub-networks within the default network, we performed seed-based functional connectivity analyses to determine how, depending on the task, the hippocampus and prefrontal cortex differentially couple with one another and with distinct whole-brain networks. We found evidence for a medial prefrontal-parietal network and a medial temporal lobe network, which were functionally connected to the prefrontal and hippocampal seeds, respectively, regardless of the nature of the memory task. However, these two networks were functionally connected with one another during the episodic memory task, but not during spatial memory tasks. Replicating previous reports of fractionation of the default network into stable sub-networks, this study also shows how these sub-networks may flexibly couple and uncouple with one another based on task demands. These findings support the hypothesis that episodic memory and spatial memory share a common medial temporal lobe-based neural substrate, with episodic memory recruiting additional prefrontal sub-networks. © 2014 Wiley Periodicals, Inc.
Creative innovation with temporal lobe epilepsy and lobectomy.
Ghacibeh, Georges A; Heilman, Kenneth M
2013-01-15
Some patients with left temporal degeneration develop visual artistic abilities. These new artistic abilities may be due to disinhibition of the visuo-spatially dominant right hemisphere. Many famous artists have had epilepsy and it is possible that some may have had left temporal seizures (LTS) and this left temporal dysfunction disinhibited their right hemisphere. Alternatively, unilateral epilepsy may alter intrahemispheric connectivity and right anterior temporal lobe seizures (RTS) may have increased these artists' right hemisphere mediated visual artistic creativity. To test the disinhibition versus enhanced connectivity hypotheses we studied 9 participants with RTS and 9 with left anterior temporal seizures (LTS) who underwent unilateral lobectomy for the treatment of medically refractory epilepsy. Creativity was tested using the Torrance Test of Creative Thinking (TTCT). There were no between group differences in either the verbal or figural scores of the TTCT, suggesting that unilateral anterior temporal ablation did not enhance visual artistic ability; however, for the RTS participants' figural creativity scores were significantly higher than verbal scores. Whereas these results fail to support the left temporal lobe disinhibition postulate of enhanced figural creativity, the finding that the patients with RTS had better figural than verbal creativity suggests that their recurrent right hemispheric seizures lead to changes in their right hemispheric networks that facilitated visual creativity. To obtain converging evidence, studies on RTS participants who have not undergone lobectomy will need to be performed. Published by Elsevier B.V.
Attention dysfunction of postoperative patients with glioma.
Fang, Dazhao; Jiang, Jian; Sun, Xiaoyang; Wang, Weijie; Dong, Nan; Fu, Xianhua; Pang, Cong; Chen, Xingui; Ding, Lianshu
2014-10-15
Attention dysfunction has been observed among many kinds of nervous system diseases, including glioma. This study aimed to investigate the correlation between glioma localization, malignancy, postoperative recovery time and attention deficit. A total of 45 patients with glioma who underwent surgical resection and 18 healthy volunteers were enrolled. The attention network test, digital span test, color trail test II and Stroop test were used to detect the characteristics of attention deficit. Orientation network dysfunction was detected in the parietal lobe tumor group, and execution network deficit was detected in both the frontal and parietal lobe groups, while no significant difference was detected in the temporal lobe group compared to healthy controls. The high-grade glioma group (grade III-IV) exhibited more serious functional impairment than the low-grade group (grade I-II). No significant correlation was observed between postoperative recovery time and attention impairment. High-grade glioma patients suffer more severe attention impairment. In addition, the frontal and parietal lobe glioma patients suffer attention dysfunction in dissimilar manner. These findings will provide important guidance on the care of glioma patients after therapy.
Temporal plus epilepsy: Anatomo-electroclinical subtypes
Andrade-Machado, René; Benjumea-Cuartas, Vanessa
2016-01-01
Background: Mesial temporal lobe epilepsy (TLE) is a remediable epileptic syndrome. About 40% of patients continue to have seizures after standard temporal lobectomy. It has been suggested that some of these patients could actually suffer from a more complex epileptogenic network. Because a few papers have been dedicated to this topic, we decided to write an article updating this theme. Methods: We performed a literature search using the following terminology: “temporal plus epilepsy and networks,” “temporal plus epilepsy,” “orbito-temporal epilepsy,” “temporo-insular epilepsy,” “temporo-parieto-occipital (TPO) epilepsy,” “parieto-temporal epilepsy,” “intracortical evoked potential and temporal plus epilepsy,” “temporal lobe connectivity and epilepsy,” “intracortical evoked potential and epilepsy surgery,” “role of extratemporal structures in TLE,” “surgical failure after temporal lobectomy,” “Diffusion tensor imaging (DTI) and temporal epilepsy,” and “positron emission tomography (PET) in temporal plus lobe epilepsy” in the existing PubMed databases. We searched only English and Spanish literature. Only papers that fit with the above-mentioned descriptors were included as part of the evidence. Other articles were used to reference some aspects of the temporal plus epilepsy. Results: A total of 48 papers from 2334 were revised. The most frequently reported auras in these groups of patients are gustatory hallucinations, vestibular illusions, laryngeal and throat constriction, atypical distribution of somatosensory symptoms (perioral and hands, bilaterally hands paresthesias, trunk and other). The most common signs are tonic posturing, hemifacial twist, and frequent bilateral clonic movements. Interictal electroencephalographic (EEG) patterns exhibit regional and frequently bilateral spikes and/or slow waves. The first ictal electrographic change is mostly regional. It is important to note that the evidence is supported by case series or case reports. Thus, most of the data presented could represent the features on these cases and not actually the totality of the iceberg. Conclusion: Temporal plus epilepsy is a diagnosis that can be done only after the invasive recordings have been analyzed but an adequate suspicion may arise based on clinical, EEG and imaging data. PMID:27648177
Alterations in regional homogeneity of baseline brain activity in pediatric temporal lobe epilepsy.
Mankinen, Katariina; Long, Xiang-Yu; Paakki, Jyri-Johan; Harila, Marika; Rytky, Seppo; Tervonen, Osmo; Nikkinen, Juha; Starck, Tuomo; Remes, Jukka; Rantala, Heikki; Zang, Yu-Feng; Kiviniemi, Vesa
2011-02-10
Recent findings on intracortical EEG measurements show that the synchrony of localized neuronal networks is altered in epileptogenesis, leading to generalized seizure activity via connector hubs in the neuronal networks. Regional homogeneity (ReHo) analysis of blood oxygen level-dependent (BOLD) signals has demonstrated localized signal synchrony and disease-related alterations in a number of instances. We wanted to find out whether the ReHo of resting-state activity can be used to detect regional signal synchrony alterations in children with non-lesional temporal lobe epilepsy (TLE). Twenty-one TLE patients were compared with age and gender-matched healthy controls. Significantly increased ReHo was discovered in the posterior cingulate gyrus and the right medial temporal lobe of the patients, and they also had significantly decreased ReHo in the cerebellum compared with the healthy controls. However, the alterations in ReHo differed between the patients with normal and abnormal interictal EEGs, the latter showing significantly increased ReHo in the right fusiform gyrus and significantly decreased ReHo in the right medial frontal gyrus relative to the controls, while those with normal EEGs had significantly increased ReHo in the right inferior temporal gyrus and the left posterior cingulate gyrus. We conclude that altered BOLD signal synchrony can be detected in the cerebral and cerebellar cortices of children with TLE even in the absence of interictal EEG abnormalities. Copyright © 2010 Elsevier B.V. All rights reserved.
Park, Ji Eun; Park, Bumwoo; Kim, Sang Joon; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal ( p < 0.001) and supramarginal gyrus ( p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease.
Distinct medial temporal networks encode surprise during motivation by reward versus punishment
Murty, Vishnu P.; LaBar, Kevin S.; Adcock, R. Alison
2016-01-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. PMID:26854903
Distinct medial temporal networks encode surprise during motivation by reward versus punishment.
Murty, Vishnu P; LaBar, Kevin S; Adcock, R Alison
2016-10-01
Adaptive motivated behavior requires predictive internal representations of the environment, and surprising events are indications for encoding new representations of the environment. The medial temporal lobe memory system, including the hippocampus and surrounding cortex, encodes surprising events and is influenced by motivational state. Because behavior reflects the goals of an individual, we investigated whether motivational valence (i.e., pursuing rewards versus avoiding punishments) also impacts neural and mnemonic encoding of surprising events. During functional magnetic resonance imaging (fMRI), participants encountered perceptually unexpected events either during the pursuit of rewards or avoidance of punishments. Despite similar levels of motivation across groups, reward and punishment facilitated the processing of surprising events in different medial temporal lobe regions. Whereas during reward motivation, perceptual surprises enhanced activation in the hippocampus, during punishment motivation surprises instead enhanced activation in parahippocampal cortex. Further, we found that reward motivation facilitated hippocampal coupling with ventromedial PFC, whereas punishment motivation facilitated parahippocampal cortical coupling with orbitofrontal cortex. Behaviorally, post-scan testing revealed that reward, but not punishment, motivation resulted in greater memory selectivity for surprising events encountered during goal pursuit. Together these findings demonstrate that neuromodulatory systems engaged by anticipation of reward and punishment target separate components of the medial temporal lobe, modulating medial temporal lobe sensitivity and connectivity. Thus, reward and punishment motivation yield distinct neural contexts for learning, with distinct consequences for how surprises are incorporated into predictive mnemonic models of the environment. Copyright © 2016 Elsevier Inc. All rights reserved.
Semantic retrieval during overt picture description: Left anterior temporal or the parietal lobe?
Geranmayeh, Fatemeh; Leech, Robert; Wise, Richard J S
2015-09-01
Retrieval of semantic representations is a central process during overt speech production. There is an increasing consensus that an amodal semantic 'hub' must exist that draws together modality-specific representations of concepts. Based on the distribution of atrophy and the behavioral deficit of patients with the semantic variant of fronto-temporal lobar degeneration, it has been proposed that this hub is localized within both anterior temporal lobes (ATL), and is functionally connected with verbal 'output' systems via the left ATL. An alternative view, dating from Geschwind's proposal in 1965, is that the angular gyrus (AG) is central to object-based semantic representations. In this fMRI study we examined the connectivity of the left ATL and parietal lobe (PL) with whole brain networks known to be activated during overt picture description. We decomposed each of these two brain volumes into 15 regions of interest (ROIs), using independent component analysis. A dual regression analysis was used to establish the connectivity of each ROI with whole brain-networks. An ROI within the left anterior superior temporal sulcus (antSTS) was functionally connected to other parts of the left ATL, including anterior ventromedial left temporal cortex (partially attenuated by signal loss due to susceptibility artifact), a large left dorsolateral prefrontal region (including 'classic' Broca's area), extensive bilateral sensory-motor cortices, and the length of both superior temporal gyri. The time-course of this functionally connected network was associated with picture description but not with non-semantic baseline tasks. This system has the distribution expected for the production of overt speech with appropriate semantic content, and the auditory monitoring of the overt speech output. In contrast, the only left PL ROI that showed connectivity with brain systems most strongly activated by the picture-description task, was in the superior parietal lobe (supPL). This region showed connectivity with predominantly posterior cortical regions required for the visual processing of the pictorial stimuli, with additional connectivity to the dorsal left AG and a small component of the left inferior frontal gyrus. None of the other PL ROIs that included part of the left AG were activated by Speech alone. The best interpretation of these results is that the left antSTS connects the proposed semantic hub (specifically localized to ventral anterior temporal cortex based on clinical neuropsychological studies) to posterior frontal regions and sensory-motor cortices responsible for the overt production of speech. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Quantitative MRI in refractory temporal lobe epilepsy: relationship with surgical outcomes
Bonilha, Leonardo
2015-01-01
Medically intractable temporal lobe epilepsy (TLE) remains a serious health problem. Across treatment centers, up to 40% of patients with TLE will continue to experience persistent postoperative seizures at 2-year follow-up. It is unknown why such a large number of patients continue to experience seizures despite being suitable candidates for resective surgery. Preoperative quantitative MRI techniques may provide useful information on why some patients continue to experience disabling seizures, and may have the potential to develop prognostic markers of surgical outcome. In this article, we provide an overview of how quantitative MRI morphometric and diffusion tensor imaging (DTI) data have improved the understanding of brain structural alterations in patients with refractory TLE. We subsequently review the studies that have applied quantitative structural imaging techniques to identify the neuroanatomical factors that are most strongly related to a poor postoperative prognosis. In summary, quantitative imaging studies strongly suggest that TLE is a disorder affecting a network of neurobiological systems, characterized by multiple and inter-related limbic and extra-limbic network abnormalities. The relationship between brain alterations and postoperative outcome are less consistent, but there is emerging evidence suggesting that seizures are less likely to remit with surgery when presurgical abnormalities are observed in the connectivity supporting brain regions serving as network nodes located outside the resected temporal lobe. Future work, possibly harnessing the potential from multimodal imaging approaches, may further elucidate the etiology of persistent postoperative seizures in patients with refractory TLE. Furthermore, quantitative imaging techniques may be explored to provide individualized measures of postoperative seizure freedom outcome. PMID:25853080
Surgical Considerations of Intractable Mesial Temporal Lobe Epilepsy
Boling, Warren W.
2018-01-01
Surgery of temporal lobe epilepsy is the best opportunity for seizure freedom in medically intractable patients. The surgical approach has evolved to recognize the paramount importance of the mesial temporal structures in the majority of patients with temporal lobe epilepsy who have a seizure origin in the mesial temporal structures. For those individuals with medically intractable mesial temporal lobe epilepsy, a selective amygdalohippocampectomy surgery can be done that provides an excellent opportunity for seizure freedom and limits the resection to temporal lobe structures primarily involved in seizure genesis. PMID:29461485
Treating autism by targeting the temporal lobes.
Chi, Richard P; Snyder, Allan W
2014-11-01
Compelling new findings suggest that an early core signature of autism is a deficient left anterior temporal lobe response to language and an atypical over-activation of the right anterior temporal lobe. Intriguingly, our recent results from an entirely different line of reasoning and experiments also show that applying cathodal stimulation (suppressing) at the left anterior temporal lobe together with anodal stimulation (facilitating) at the right anterior temporal lobe, by transcranial direct current stimulation (tDCS), can induce some autistic-like cognitive abilities in otherwise normal adults. If we could briefly induce autistic like cognitive abilities in healthy individuals, it follows that we might be able to mitigate some autistic traits by reversing the above stimulation protocol, in an attempt to restore the typical dominance of the left anterior temporal lobe. Accordingly, we hypothesize that at least some autistic traits can be mitigated, by applying anodal stimulation (facilitating) at the left anterior temporal lobe together with cathodal stimulation (suppressing) at the right anterior temporal lobe. Our hypothesis is supported by strong convergent evidence that autistic symptoms can emerge and later reverse due to the onset and subsequent recovery of various temporal lobe (predominantly the left) pathologies. It is also consistent with evidence that the temporal lobes (especially the left) are a conceptual hub, critical for extracting meaning from lower level sensory information to form a coherent representation, and that a deficit in the temporal lobes underlies autistic traits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Zheng, Yu; Wang, Yuying; Lan, Yujun; Qu, Xiaodong; Lin, Kelin; Zhang, Jiping; Qu, Shanshan; Wang, Yanjie; Tang, Chunzhi; Huang, Yong
2016-01-01
This Study observed the relevant brain areas activated by acupuncture at the Taichong acupoint (LR3) and analyzed the functional connectivity among brain areas using resting state functional magnetic resonance imaging (fMRI) to explore the acupoint specificity of the Taichong acupoint. A total of 45 healthy subjects were randomly divided into the Taichong (LR3) group, sham acupuncture group and sham acupoint group. Subjects received resting state fMRI before acupuncture, after true (sham) acupuncture in each group. Analysis of changes in connectivity among the brain areas was performed using the brain functional connectivity method. The right cerebrum temporal lobe was selected as the seed point to analyze the functional connectivity. It had a functional connectivity with right cerebrum superior frontal gyrus, limbic lobe cingulate gyrus and left cerebrum inferior temporal gyrus (BA 37), inferior parietal lobule compared by before vs. after acupuncture at LR3, and right cerebrum sub-lobar insula and left cerebrum middle frontal gyrus, medial frontal gyrus compared by true vs. sham acupuncture at LR3, and right cerebrum occipital lobe cuneus, occipital lobe sub-gyral, parietal lobe precuneus and left cerebellum anterior lobe culmen by acupuncture at LR3 vs. sham acupoint. Acupuncture at LR3 mainly specifically activated the brain functional network that participates in visual function, associative function, and emotion cognition, which are similar to the features on LR3 in tradition Chinese medicine. These brain areas constituted a neural network structure with specific functions that had specific reference values for the interpretation of the acupoint specificity of the Taichong acupoint.
Postoperative seizure freedom does not normalize altered connectivity in temporal lobe epilepsy.
Maccotta, Luigi; Lopez, Mayra A; Adeyemo, Babatunde; Ances, Beau M; Day, Brian K; Eisenman, Lawrence N; Dowling, Joshua L; Leuthardt, Eric C; Schlaggar, Bradley L; Hogan, Robert Edward
2017-11-01
Specific changes in the functional connectivity of brain networks occur in patients with epilepsy. Yet whether such changes reflect a stable disease effect or one that is a function of active seizure burden remains unclear. Here, we longitudinally assessed the connectivity of canonical cognitive functional networks in patients with intractable temporal lobe epilepsy (TLE), both before and after patients underwent epilepsy surgery and achieved seizure freedom. Seventeen patients with intractable TLE who underwent epilepsy surgery with Engel class I outcome and 17 matched healthy controls took part in the study. The functional connectivity of a set of cognitive functional networks derived from typical cognitive tasks was assessed in patients, preoperatively and postoperatively, as well as in controls, using stringent methods of artifact reduction. Preoperatively, functional networks in TLE patients differed significantly from healthy controls, with differences that largely, but not exclusively, involved the default mode and temporal/auditory subnetworks. However, undergoing epilepsy surgery and achieving seizure freedom did not lead to significant changes in network connectivity, with postoperative functional network abnormalities closely mirroring the preoperative state. This result argues for a stable chronic effect of the disease on brain connectivity, with changes that are largely "burned in" by the time a patient with intractable TLE undergoes epilepsy surgery, which typically occurs years after the initial diagnosis. The result has potential implications for the treatment of intractable epilepsy, suggesting that delaying surgical intervention that may achieve seizure freedom may lead to functional network changes that are no longer reversible by the time of epilepsy surgery. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Zhou, Chaoyang; Hu, Xiaofei; Hu, Jun; Liang, Minglong; Yin, Xuntao; Chen, Lin; Zhang, Jiuquan; Wang, Jian
2016-01-01
Amyotrophic lateral sclerosis (ALS) is a rare degenerative disorder characterized by loss of upper and lower motor neurons. Neuroimaging has provided noticeable evidence that ALS is a complex disease, and shown that anatomical and functional lesions extend beyond precentral cortices and corticospinal tracts, to include the corpus callosum; frontal, sensory, and premotor cortices; thalamus; and midbrain. The aim of this study is to investigate graph theory-based functional network abnormalities at voxel-wise level in ALS patients on a whole brain scale. Forty-three ALS patients and 44 age- and sex-matched healthy volunteers were enrolled. The voxel-wise network degree centrality (DC), a commonly employed graph-based measure of network organization, was used to characterize the alteration of whole brain functional network. Compared with the controls, the ALS patients showed significant increase of DC in the left cerebellum posterior lobes, bilateral cerebellum crus, bilateral occipital poles, right orbital frontal lobe, and bilateral prefrontal lobes; significant decrease of DC in the bilateral primary motor cortex, bilateral sensory motor region, right prefrontal lobe, left bilateral precuneus, bilateral lateral temporal lobes, left cingulate cortex, and bilateral visual processing cortex. The DC's z-scores of right inferior occipital gyrus were significant negative correlated with the ALSFRS-r scores. Our findings confirm that the regions with abnormal network DC in ALS patients were located in multiple brain regions including primary motor, somatosensory and extra-motor areas, supporting the concept that ALS is a multisystem disorder. Specifically, our study found that DC in the visual areas was altered and ALS patients with higher DC in right inferior occipital gyrus have more severity of disease. The result demonstrated that the altered DC value in this region can probably be used to assess severity of ALS.
Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P
2013-06-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.
Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.
2013-01-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097
Segmentation of the thalamus based on BOLD frequencies affected in temporal lobe epilepsy.
Morgan, Victoria L; Rogers, Baxter P; Abou-Khalil, Bassel
2015-11-01
Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula, and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Resting-state functional magnetic resonance imaging (fMRI) was acquired from 20 patients with unilateral temporal lobe epilepsy (TLE; 14 right and 6 left) and 20 healthy controls who were each age and gender matched to a specific patient. Wavelet-based fMRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067-0.013 Hz and 0.024-0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Iwata, Saeko; Tsukiura, Takashi
2017-11-01
Episodic memory is defined as memory for personally experienced events, and includes memory content and contextual information of time and space. Previous neuroimaging and neuropsychological studies have demonstrated three possible roles of the temporal context in episodic memory. First, temporal information contributes to the arrangement of temporal order for sequential events in episodic memory, and this process is involved in the lateral prefrontal cortex. The second possible role of temporal information in episodic memory is the segregation between memories of multiple events, which are segregated by cues of different time information. The role of segregation is associated with the orbitofrontal regions including the orbitofrontal cortex and basal forebrain region. Third, temporal information in episodic memory plays an important role in the integration of multiple components into a coherent episodic memory, in which episodic components in the different modalities are combined by temporal information as an index. The role of integration is mediated by the medial temporal lobe including the hippocampus and parahippocampal gyrus. Thus, temporal information in episodic memory could be represented in multiple stages, which are involved in a network of the lateral prefrontal, orbitofrontal, and medial temporal lobe regions.
Sone, Daichi; Matsuda, Hiroshi; Ota, Miho; Maikusa, Norihide; Kimura, Yukio; Sumida, Kaoru; Yokoyama, Kota; Imabayashi, Etsuko; Watanabe, Masako; Watanabe, Yutaka; Okazaki, Mitsutoshi; Sato, Noriko
2016-09-01
Graph theory is an emerging method to investigate brain networks. Altered cerebral blood flow (CBF) has frequently been reported in temporal lobe epilepsy (TLE), but graph theoretical findings of CBF are poorly understood. Here, we explored graph theoretical networks of CBF in TLE using arterial spin labeling imaging. We recruited patients with TLE and unilateral hippocampal sclerosis (HS) (19 patients with left TLE, and 21 with right TLE) and 20 gender- and age-matched healthy control subjects. We obtained all participants' CBF maps using pseudo-continuous arterial spin labeling and analyzed them using the Graph Analysis Toolbox (GAT) software program. As a result, compared to the controls, the patients with left TLE showed a significantly low clustering coefficient (p=0.024), local efficiency (p=0.001), global efficiency (p=0.010), and high transitivity (p=0.015), whereas the patients with right TLE showed significantly high assortativity (p=0.046) and transitivity (p=0.011). The group with right TLE also had high characteristic path length values (p=0.085), low global efficiency (p=0.078), and low resilience to targeted attack (p=0.101) at a trend level. Lower normalized clustering coefficient (p=0.081) in the left TLE and higher normalized characteristic path length (p=0.089) in the right TLE were found also at a trend level. Both the patients with left and right TLE showed significantly decreased clustering in similar areas, i.e., the cingulate gyri, precuneus, and occipital lobe. Our findings revealed differing left-right network metrics in which an inefficient CBF network in left TLE and vulnerability to irritation in right TLE are suggested. The left-right common finding of regional decreased clustering might reflect impaired default-mode networks in TLE. Copyright © 2016 Elsevier Inc. All rights reserved.
Autonomic symptoms during childhood partial epileptic seizures.
Fogarasi, András; Janszky, József; Tuxhorn, Ingrid
2006-03-01
To analyze systematically the occurrence and age dependence as well as the localizing and lateralizing value of ictal autonomic symptoms (ASs) during childhood partial epilepsies and to compare our results with those of earlier adult studies. Five hundred fourteen video-recorded seizures of 100 consecutive children 12 years or younger with partial epilepsy and seizure-free postoperative outcome were retrospectively analyzed. Sixty patients produced at least one AS; 43 (70%) of 61 with temporal and 17 (44%) of 39 with extratemporal lobe epilepsy (p=0.012). Apnea/bradypnea occurred more frequently in younger children (p<0.01), whereas the presence of other ASs was neither age nor gender related. Postictal coughing (p<0.01) and epigastric aura (p<0.05) localized to the temporal lobe, whereas no ASs lateralized to the seizure-onset zone. Our study shows that ASs are common in childhood focal epilepsies, appearing in infants and young children, too. As in adults, childhood central autonomic networks might have a close connection to temporal lobe structures but do not lateralize the seizure-onset zone. To our knowledge, this is the first study comprehensively assessing ASs in childhood epilepsy.
Rice, Grace E; Caswell, Helen; Moore, Perry; Lambon Ralph, Matthew A; Hoffman, Paul
2018-06-06
One critical feature of any well-engineered system is its resilience to perturbation and minor damage. The purpose of the current study was to investigate how resilience is achieved in higher cognitive systems, which we explored through the domain of semantic cognition. Convergent evidence implicates the bilateral anterior temporal lobes (ATLs) as a conceptual knowledge hub. While bilateral damage to this region produces profound semantic impairment, unilateral atrophy/resection or transient perturbation has a limited effect. Two neural mechanisms might underpin this resilience to unilateral ATL damage: 1) the undamaged ATL upregulates its activation in order to compensate; and/or 2) prefrontal regions involved in control of semantic retrieval upregulate to compensate for the impoverished semantic representations that follow from ATL damage. To test these possibilities, 34 postsurgical temporal lobe epilepsy patients and 20 age-matched controls were scanned whilst completing semantic tasks. Pictorial tasks, which produced bilateral frontal and temporal activation, showed few activation differences between patients and control participants. Written word tasks, however, produced a left-lateralized activation pattern and greater differences between the groups. Patients with right ATL resection increased activation in left inferior frontal gyrus (IFG). Patients with left ATL resection upregulated both the right ATL and right IFG. Consistent with recent computational models, these results indicate that 1) written word semantic processing in patients with ATL resection is supported by upregulation of semantic knowledge and control regions, principally in the undamaged hemisphere, and 2) pictorial semantic processing is less affected, presumably because it draws on a more bilateral network.
Human single neuron activity precedes emergence of conscious perception.
Gelbard-Sagiv, Hagar; Mudrik, Liad; Hill, Michael R; Koch, Christof; Fried, Itzhak
2018-05-25
Identifying the neuronal basis of spontaneous changes in conscious experience in the absence of changes in the external environment is a major challenge. Binocular rivalry, in which two stationary monocular images lead to continuously changing perception, provides a unique opportunity to address this issue. We studied the activity of human single neurons in the medial temporal and frontal lobes while patients were engaged in binocular rivalry. Here we report that internal changes in the content of perception are signaled by very early (~-2000 ms) nonselective medial frontal activity, followed by selective activity of medial temporal lobe neurons that precedes the perceptual change by ~1000 ms. Such early activations are not found for externally driven perceptual changes. These results suggest that a medial fronto-temporal network may be involved in the preconscious internal generation of perceptual transitions.
Episodic simulation of future events is impaired in mild Alzheimer's disease
Addis, Donna Rose; Sacchetti, Daniel C.; Ally, Brandon A.; Budson, Andrew E.; Schacter, Daniel L.
2009-01-01
Recent neuroimaging studies have demonstrated that both remembering the past and simulating the future activate a core neural network including the medial temporal lobes. Regions of this network, in particular the medial temporal lobes, are prime sites for amyloid deposition and are structurally and functionally compromised in Alzheimer's disease (AD). While we know some functions of this core network, specifically episodic autobiographical memory, are impaired in AD, no study has examined whether future episodic simulation is similarly impaired. We tested the ability of sixteen AD patients and sixteen age-matched controls to generate past and future autobiographical events using an adapted version of the Autobiographical Interview. Participants also generated five remote autobiographical memories from across the lifespan. Event transcriptions were segmented into distinct details, classified as either internal (episodic) or external (non-episodic). AD patients exhibited deficits in both remembering past events and simulating future events, generating fewer internal and external episodic details than healthy older controls. The internal and external detail scores were strongly correlated across past and future events, providing further evidence of the close linkages between the mental representations of past and future. PMID:19497331
Retrograde amnesia in patients with diencephalic, temporal lobe or frontal lesions.
Kopelman, M D; Stanhope, N; Kingsley, D
1999-07-01
Patients with focal diencephalic, temporal lobe, or frontal lobe lesions were examined on various measures of remote memory. Korsakoff patients showed a severe impairment with a characteristic 'temporal gradient', whereas two patients with focal diencephalic damage (and anterograde amnesia) were virtually unimpaired on remote memory measures. Patients with frontal lobe pathology were severely impaired in the recall of autobiographical incidents and famous news events. Patients with temporal lobe pathology showed severe impairment but a relatively 'flat' temporal gradient, largely attributable to herpes encephalitis patients. From recognition and cued recall tasks, it is argued that there is an important retrieval component to the remote memory deficit across all the lesion groups. In general, the pattern of performance by the frontal lobe and temporal lobe groups was closely similar, and there was no evidence of any major access/storage difference between them. However, laterality comparisons across these groups indicated that the right temporal and frontal lobe regions may make a greater contribution to the retrieval of past episodic (incident and event) memories, whereas the left temporal region is more closely involved in the lexical-semantic labelling of remote memories.
Wang, Junjing; Qiu, Shijun; Xu, Yong; Liu, Zhenyin; Wen, Xue; Hu, Xiangshu; Zhang, Ruibin; Li, Meng; Wang, Wensheng; Huang, Ruiwang
2014-09-01
Temporal lobe epilepsy (TLE) is one of the most common forms of drug-resistant epilepsy. Previous studies have indicated that the TLE-related impairments existed in extensive local functional networks. However, little is known about the alterations in the topological properties of whole brain functional networks. In this study, we acquired resting-state BOLD-fMRI (rsfMRI) data from 26 TLE patients and 25 healthy controls, constructed their whole brain functional networks, compared the differences in topological parameters between the TLE patients and the controls, and analyzed the correlation between the altered topological properties and the epilepsy duration. The TLE patients showed significant increases in clustering coefficient and characteristic path length, but significant decrease in global efficiency compared to the controls. We also found altered nodal parameters in several regions in the TLE patients, such as the bilateral angular gyri, left middle temporal gyrus, right hippocampus, triangular part of left inferior frontal gyrus, left inferior parietal but supramarginal and angular gyri, and left parahippocampus gyrus. Further correlation analysis showed that the local efficiency of the TLE patients correlated positively with the epilepsy duration. Our results indicated the disrupted topological properties of whole brain functional networks in TLE patients. Our findings indicated the TLE-related impairments in the whole brain functional networks, which may help us to understand the clinical symptoms of TLE patients and offer a clue for the diagnosis and treatment of the TLE patients. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Delgado-González, José-Carlos; Florensa-Vila, José; Mansilla-Legorburo, Francisco; Insausti, Ricardo; Artacho-Pérula, Emilio
2017-01-01
The medial temporal lobe (MTL), and in particular the hippocampal formation, is essential in the processing and consolidation of declarative memory. The 3D environment of the anatomical structures contained in the MTL is an important issue. Our aim was to explore the spatial relationship of the anatomical structures of the MTL and changes in aging and/or Alzheimer's disease (AD). MTL anatomical landmarks are identified and registered to create a 3D network. The brain network is quantitatively described as a plane, rostrocaudally-oriented, and presenting Euclidean/real distances. Correspondence between 1.5T RM, 3T RM, and histological sections were assessed to determine the most important recognizable changes in AD, based on statistical significance. In both 1.5T and 3T RM images and histology, inter-rater reliability was high. Sex and hemisphere had no influence on network pattern. Minor changes were found in relation to aging. Distances from the temporal pole to the dentate gyrus showed the most significant differences when comparing control and AD groups. The best discriminative distance between control and AD cases was found in the temporal pole/dentate gyrus rostrocaudal length in histological sections. Moreover, more distances between landmarks were required to obtain 100% discrimination between control (divided into <65 years or >65 years) and AD cases. Changes in the distance between MTL anatomical landmarks can successfully be detected by using measurements of 3D network patterns in control and AD cases.
Park, Ji Eun; Park, Bumwoo; Kim, Ho Sung; Choi, Choong Gon; Jung, Seung Chai; Oh, Joo Young; Lee, Jae-Hong; Roh, Jee Hoon; Shim, Woo Hyun
2017-01-01
Objective To identify potential imaging biomarkers of Alzheimer's disease by combining brain cortical thickness (CThk) and functional connectivity and to validate this model's diagnostic accuracy in a validation set. Materials and Methods Data from 98 subjects was retrospectively reviewed, including a study set (n = 63) and a validation set from the Alzheimer's Disease Neuroimaging Initiative (n = 35). From each subject, data for CThk and functional connectivity of the default mode network was extracted from structural T1-weighted and resting-state functional magnetic resonance imaging. Cortical regions with significant differences between patients and healthy controls in the correlation of CThk and functional connectivity were identified in the study set. The diagnostic accuracy of functional connectivity measures combined with CThk in the identified regions was evaluated against that in the medial temporal lobes using the validation set and application of a support vector machine. Results Group-wise differences in the correlation of CThk and default mode network functional connectivity were identified in the superior temporal (p < 0.001) and supramarginal gyrus (p = 0.007) of the left cerebral hemisphere. Default mode network functional connectivity combined with the CThk of those two regions were more accurate than that combined with the CThk of both medial temporal lobes (91.7% vs. 75%). Conclusion Combining functional information with CThk of the superior temporal and supramarginal gyri in the left cerebral hemisphere improves diagnostic accuracy, making it a potential imaging biomarker for Alzheimer's disease. PMID:29089831
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
A biased competition account of attention and memory in Alzheimer's disease
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-01-01
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD. PMID:24018724
A biased competition account of attention and memory in Alzheimer's disease.
Finke, Kathrin; Myers, Nicholas; Bublak, Peter; Sorg, Christian
2013-10-19
The common view of Alzheimer's disease (AD) is that of an age-related memory disorder, i.e. declarative memory deficits are the first signs of the disease and associated with progressive brain changes in the medial temporal lobes and the default mode network. However, two findings challenge this view. First, new model-based tools of attention research have revealed that impaired selective attention accompanies memory deficits from early pre-dementia AD stages on. Second, very early distributed lesions of lateral parietal networks may cause these attention deficits by disrupting brain mechanisms underlying attentional biased competition. We suggest that memory and attention impairments might indicate disturbances of a common underlying neurocognitive mechanism. We propose a unifying account of impaired neural interactions within and across brain networks involved in attention and memory inspired by the biased competition principle. We specify this account at two levels of analysis: at the computational level, the selective competition of representations during both perception and memory is biased by AD-induced lesions; at the large-scale brain level, integration within and across intrinsic brain networks, which overlap in parietal and temporal lobes, is disrupted. This account integrates a large amount of previously unrelated findings of changed behaviour and brain networks and favours a brain mechanism-centred view on AD.
Hippocampal Network Modularity Is Associated With Relational Memory Dysfunction in Schizophrenia.
Avery, Suzanne N; Rogers, Baxter P; Heckers, Stephan
2018-05-01
Functional dysconnectivity has been proposed as a major pathophysiological mechanism for cognitive dysfunction in schizophrenia. The hippocampus is a focal point of dysconnectivity in schizophrenia, with decreased hippocampal functional connectivity contributing to the marked memory deficits observed in patients. Normal memory function relies on the interaction of complex corticohippocampal networks. However, only recent technological advances have enabled the large-scale exploration of functional networks with accuracy and precision. We investigated the modularity of hippocampal resting-state functional networks in a sample of 45 patients with schizophrenia spectrum disorders and 38 healthy control subjects. Modularity was calculated for two distinct functional networks: a core hippocampal-medial temporal lobe cortex network and an extended hippocampal-cortical network. As hippocampal function differs along its longitudinal axis, follow-up analyses examined anterior and posterior networks separately. To explore effects of resting network function on behavior, we tested associations between modularity and relational memory ability. Age, sex, handedness, and parental education were similar between groups. Network modularity was lower in schizophrenia patients, especially in the posterior hippocampal network. Schizophrenia patients also showed markedly lower relational memory ability compared with control subjects. We found a distinct brain-behavior relationship in schizophrenia that differed from control subjects by network and anterior/posterior division-while relational memory in control subjects was associated with anterior hippocampal-cortical modularity, schizophrenia patients showed an association with posterior hippocampal-medial temporal lobe cortex network modularity. Our findings support a model of abnormal resting-state corticohippocampal network coherence in schizophrenia, which may contribute to relational memory deficits. Copyright © 2018 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Non ictal onset zone: A window to ictal dynamics.
Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul
2017-01-01
The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.
Persistently active neurons in human medial frontal and medial temporal lobe support working memory
Kamiński, J; Sullivan, S; Chung, JM; Ross, IB; Mamelak, AN; Rutishauser, U
2017-01-01
Persistent neural activity is a putative mechanism for the maintenance of working memories. Persistent activity relies on the activity of a distributed network of areas, but the differential contribution of each area remains unclear. We recorded single neurons in the human medial frontal cortex and the medial temporal lobe while subjects held up to three items in memory. We found persistently active neurons in both areas. Persistent activity of hippocampal and amygdala neurons was stimulus-specific, formed stable attractors, and was predictive of memory content. Medial frontal cortex persistent activity, on the other hand, was modulated by memory load and task set but was not stimulus-specific. Trial-by-trial variability in persistent activity in both areas was related to memory strength, because it predicted the speed and accuracy by which stimuli were remembered. This work reveals, in humans, direct evidence for a distributed network of persistently active neurons supporting working memory maintenance. PMID:28218914
Theories of Impaired Consciousness in Epilepsy
Yu, Lissa; Blumenfeld, Hal
2015-01-01
Although the precise mechanisms for control of consciousness are not fully understood, emerging data show that conscious information processing depends on the activation of certain networks in the brain and that the impairment of consciousness is related to abnormal activity in these systems. Epilepsy can lead to transient impairment of consciousness, providing a window into the mechanisms necessary for normal consciousness. Thus, despite differences in behavioral manifestations, cause, and electrophysiology, generalized tonic–clonic, absence, and partial seizures engage similar anatomical structures and pathways. We review prior concepts of impaired consciousness in epilepsy, focusing especially on temporal lobe complex partial seizures, which are a common and debilitating form of epileptic unconsciousness. We discuss a “network inhibition hypothesis” in which focal temporal lobe seizure activity disrupts normal cortical–subcortical interactions, leading to depressed neocortical function and impaired consciousness. This review of the major prior theories of impaired consciousness in epilepsy allows us to put more recent data into context and to reach a better understanding of the mechanisms important for normal consciousness. PMID:19351355
Gimbel, Sarah I; Brewer, James B
2014-01-01
Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength.
Gimbel, Sarah I.; Brewer, James B.
2014-01-01
Functional imaging studies of episodic memory retrieval consistently report task-evoked and memory-related activity in the medial temporal lobe, default network and parietal lobe subregions. Associated components of memory retrieval, such as attention-shifts, search, retrieval success, and post-retrieval processing also influence regional activity, but these influences remain ill-defined. To better understand how top-down control affects the neural bases of memory retrieval, we examined how regional activity responses were modulated by task goals during recall success or failure. Specifically, activity was examined during memory suppression, recall, and elaborative recall of paired-associates. Parietal lobe was subdivided into dorsal (BA 7), posterior ventral (BA 39), and anterior ventral (BA 40) regions, which were investigated separately to examine hypothesized distinctions in sub-regional functional responses related to differential attention-to-memory and memory strength. Top-down suppression of recall abolished memory strength effects in BA 39, which showed a task-negative response, and BA 40, which showed a task-positive response. The task-negative response in default network showed greater negatively-deflected signal for forgotten pairs when task goals required recall. Hippocampal activity was task-positive and was influenced by memory strength only when task goals required recall. As in previous studies, we show a memory strength effect in parietal lobe and hippocampus, but we show that this effect is top-down controlled and sensitive to whether the subject is trying to suppress or retrieve a memory. These regions are all implicated in memory recall, but their individual activity patterns show distinct memory-strength-related responses when task goals are varied. In parietal lobe, default network, and hippocampus, top-down control can override the commonly identified effects of memory strength. PMID:24586492
Near-death experiences and the temporal lobe.
Britton, Willoughby B; Bootzin, Richard R
2004-04-01
Many studies in humans suggest that altered temporal lobe functioning, especially functioning in the right temporal lobe, is involved in mystical and religious experiences. We investigated temporal lobe functioning in individuals who reported having transcendental "near-death experiences" during life-threatening events. These individuals were found to have more temporal lobe epileptiform electroencephalographic activity than control subjects and also reported significantly more temporal lobe epileptic symptoms. Contrary to predictions, epileptiform activity was nearly completely lateralized to the left hemisphere. The near-death experience was not associated with dysfunctional stress reactions such as dissociation, posttraumatic stress disorder, and substance abuse, but rather was associated with positive coping styles. Additional analyses revealed that near-death experiencers had altered sleep patterns, specifically, a shorter duration of sleep and delayed REM sleep relative to the control group. These results suggest that altered temporal lobe functioning may be involved in the near-death experience and that individuals who have had such experiences are physiologically distinct from the general population.
Li, Yanwei; Yu, Dongchuan
2016-10-01
Functional near infrared spectroscopy (fNIRS) is particularly suited for the young population and ecological measurement. However, thus far, not enough effort has been given to the clinical diagnosis of young children with Autism Spectrum Disorder (ASD) by using fNIRS. The current study provided some insights into the quantitative analysis of functional networks in young children (ages 4.8-8.0years old) with and without ASD and, in particular, investigated the network efficiency and lobe-level connectivity of their functional networks while watching a cartoon. The main results included that: (i) Weak network efficiency was observed in young children with ASD, even for a wide range of threshold for the binarization of functional networks; (ii) A maximum classification accuracy rate of 83.3% was obtained for all participants by using the k-means clustering method with network efficiencies as the feature parameters; and (iii) Weak lobe-level inter-region connections were uncovered in the right prefrontal cortex, including its linkages with the left prefrontal cortex and the bilateral temporal cortex. Such results indicate that the right prefrontal cortex might make a major contribution to the psychopathology of young children with ASD at the functional network architecture level, and at the functional lobe-connectivity level, respectively. Copyright © 2016 Elsevier Inc. All rights reserved.
Benoit, Roland G.; Schacter, Daniel L.
2015-01-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of core network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the lateral temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network’s nodes as wells as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions’ specialized contributions and interactions. PMID:26142352
Inoue, Y; Mihara, T; Matsuda, K; Tottori, T; Otsubo, T; Yagi, K
2000-02-01
The diagnostic and prognostic significance of the absence of simple partial seizures (SPS) immediately preceding complex partial seizures (CPS) was examined in patients with temporal lobe epilepsy. The status of self-reported SPS in 193 patients with temporal lobe epilepsy who had surgical therapy more than 2 years ago was reviewed. Before surgery, 37 patients never experienced SPS before CPS (Group A), 156 patients either always or occasionally had SPS before CPS (Group B). The frequency of mesial temporal sclerosis (MTS) was lower and the age at onset of epilepsy was higher in Group A. The seizure focus was in the language-dominant temporal lobe in 73% of the cases in Group A, compared with 40% in Group B. The surgical outcome did not differ between the two groups. The findings suggest that temporal lobe seizures without preceding SPS tend to originate in the language-dominant temporal lobe that contains a pathologic etiology other than MTS, especially in the lateral temporal lobe. The surgical outcome in patients without SPS is similar to that in patients with SPS.
Oshima, Hirokazu; Shiga, Tetsuya; Niwa, Shin-Ichi; Enomoto, Hiroyuki; Ugawa, Yoshikazu; Yabe, Hirooki
2017-01-01
Mismatch negativity (MMN) is generated by a comparison between an incoming sound and the memory trace of preceding sounds stored in sensory memory without any attention to the sound. N100 (N1) is associated with the afferent response to sound onset and reflects early analysis of stimulus characteristics. MMN generators are present in the temporal and frontal lobe, and N1 generators are present in the temporal lobe. The parietal lobe is involved in MMN generation elicited by a change in duration. The anatomical network connecting these areas, lateralization, and the effect of the side of ear stimulation on MMN remain unknown. Thus, we studied the effects of low-frequency repetitive transcranial magnetic stimulation (rTMS) over the left parietal lobe on MMN and N1 in 10 healthy subjects. Low-frequency rTMS over the left parietal lobe decreased the amplitude of MMN following right ear sound stimulation, but the amplitude was unaffected with left ear sound stimulation. We observed no significant changes in the amplitude of N1 or the latency of MMN or N1. These results suggest that low-frequency rTMS over the left parietal lobe modulates the detection of early auditory changes in duration in healthy subjects. Stimulation that is contralateral to the side of the ear experiencing sound may affect the generation of duration MMN more than ipsilateral stimulation. © EEG and Clinical Neuroscience Society (ECNS) 2016.
Zink, Davor N; Miller, Justin B; Caldwell, Jessica Z K; Bird, Christopher; Banks, Sarah J
2018-06-01
Tests of visuospatial function are often administered in comprehensive neuropsychological evaluations. These tests are generally considered assays of parietal lobe function; however, the neural correlates of these tests, using modern imaging techniques, are not well understood. In the current study we investigated the relationship between three commonly used tests of visuospatial function and lobar cortical thickness in each hemisphere. Data from 374 patients who underwent a neuropsychological evaluation and MRI scans in an outpatient dementia clinic were included in the analysis. We examined the relationships between cortical thickness, as assessed with Freesurfer, and performance on three tests: Judgment of Line Orientation (JoLO), Block Design (BD) from the Fourth edition of the Wechsler Adult Intelligence Scale, and Brief Visuospatial Memory Test-Revised Copy Trial (BVMT-R-C) in patients who showed overall average performance on these tasks. Using a series of multiple regression models, we assessed which lobe's overall cortical thickness best predicted test performance. Among the individual lobes, JoLO performance was best predicted by cortical thickness in the right temporal lobe. BD performance was best predicted by cortical thickness in the right parietal lobe, and BVMT-R-C performance was best predicted by cortical thickness in the left parietal lobe. Performance on constructional tests of visuospatial function appears to correspond best with underlying cortical thickness of the parietal lobes, while performance on visuospatial judgment tests appears to correspond best to temporal lobe thickness. Future research using voxel-wise and connectivity techniques and including more diverse samples will help further understanding of the regions and networks involved in visuospatial tests.
Mapping the convergent temporal epileptic network in left and right temporal lobe epilepsy.
Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Qiu, Shijun; Hu, Dewen
2017-02-03
Left and right mesial temporal lobe epilepsy (mTLE) with hippocampal sclerosis (HS) exhibits similar functional and clinical dysfunctions, such as depressive mood and emotional dysregulation, implying that the left and right mTLE may share a common network substrate. However, the convergent anatomical network disruption between the left and right HS remains largely uncharacterized. This study aimed to investigate whether the left and right mTLE share a similar anatomical network. We examined 43 (22 left, 21 right) mTLE patients with HS and 39 healthy controls using diffusion tensor imaging. Machine learning approaches were applied to extract the abnormal anatomical connectivity patterns in both the left and right mTLE. The left and right mTLE showed that 28 discriminating connections were exactly the same when compared to the controls. The same 28 connections showed high discriminating power in comparisons of the left mTLE versus controls (91.7%) and the right mTLE versus controls (90.0%); however, these connections failed to discriminate the left from the right mTLE. These discriminating connections, which were diminished both in the left and right mTLE, were primarily located in the limbic-frontal network, partially agreeing with the limbic-frontal dysregulation model of depression. These findings suggest that left and right mTLE share a convergent circuit, which may account for the mood and emotional deficits in mTLE and may suggest the neuropathological mechanisms underlying the comorbidity of depression and mTLE. Copyright © 2016. Published by Elsevier B.V.
Morioka, T; Nishio, S; Hisada, K; Muraishi, M; Ishibashi, H; Mamiya, K; Ohfu, M; Fukui, M
1998-05-01
Two cases of intractable temporal lobe epilepsy associated with old intracerebral hemorrhage in the lateral temporal lobe were reported. Although preoperative magnetic resonance imaging (MRI) failed to reveal hippocampal atrophy with T2 hyperintensity, electrocorticographic (ECoG) recording with chronic invasive subdural electrodes indicated the mesial temporal lobe to be an ictal onset zone. After anterior temporal lobectomy involving the lesion and hippocampectomy, the patients became seizure-free. Hippocampal sclerosis, namely "dual pathology", was not noted on histological examination. Careful ECoG recording with chronic subdural electrodes is mandatory even when the preoperative MRI does not demonstrate the radiological hippocampal sclerosis.
Verbal memory after temporal lobe epilepsy surgery in children: Do only mesial structures matter?
Law, Nicole; Benifla, Mony; Rutka, James; Smith, Mary Lou
2017-02-01
Previous findings have been mixed regarding verbal memory outcome after left temporal lobectomy in children, and there are few studies comparing verbal memory change after lateral versus mesial temporal lobe resections. We compared verbal memory outcome associated with sparing or including the mesial structures in children who underwent left or right temporal lobe resection. We also investigated predictors of postsurgical verbal memory change. We retrospectively assessed verbal memory change approximately 1 year after unilateral temporal lobe epilepsy surgery using a list learning task. Participants included 23 children who underwent temporal lobe surgery with sparing of the mesial structures (13 left), and 40 children who had a temporal lobectomy that included resection of mesial structures (22 left). Children who underwent resection from the left lateral and mesial temporal lobe were the only group to show decline in verbal memory. Furthermore, when we considered language representation in the left temporal resection group, patients with left language representation and spared mesial structures showed essentially no change in verbal memory from preoperative to follow-up, whereas those with left language representation and excised mesial structures showed a decline. Postoperative seizure status had no effect on verbal memory change in children after left temporal lobe surgery. Finally, we found that patients with intact preoperative verbal memory experienced a significant decline compared to those with below average preoperative verbal memory. Our findings provide evidence of significant risk factors for verbal memory decline in children, specific to left mesial temporal lobe epilepsy. Children who undergo left temporal lobe surgery that includes mesial structures may be most vulnerable for verbal memory decline, especially when language representation is localized to the left hemisphere and when preoperative verbal memory is intact. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Interictal mood and personality disorders in temporal lobe epilepsy and juvenile myoclonic epilepsy.
Perini, G I; Tosin, C; Carraro, C; Bernasconi, G; Canevini, M P; Canger, R; Pellegrini, A; Testa, G
1996-01-01
BACKGROUND: Mood disorders have been described as the commonest psychiatric disorders in patients with temporal lobe epilepsy. Secondary depression in temporal lobe epilepsy could be interpreted either as an adjustment reaction to a chronic disease or as a limbic dysfunction. To clarify this issue, a controlled study of psychiatric disorders was conducted in different forms of epileptic and non-epileptic chronic conditions. METHODS: Twenty outpatients with temporal lobe epilepsy, 18 outpatients with juvenile myoclonic epilepsy--a primary generalised seizure disorder--20 matched type I diabetic patients, and 20 matched normal controls were assessed by a structured interview (SADS) and by self rating scales (Beck depression inventory (BDI) and the state and trait anxiety scales STAIX1 and STAIX2). RESULTS: Sixteen (80%) patients with temporal lobe epilepsy fulfilled the criteria for a psychiatric diagnosis at the SADS interview with a significantly higher frequency than patients with juvenile myoclonic epilepsy (22%) and diabetic patients (10%) (P < 0.0001). The most frequent disorder in temporal lobe epilepsy was a mood disorder: 11 (55%) patients with temporal lobe epilepsy had depression compared with three patients with juvenile myoclonic epilepsy and two diabetic patients (P < 0.001). Eight patients with temporal lobe epilepsy with an affective disorder also had a comorbid personality or anxiety disorder. Patients with temporal lobe epilepsy scored significantly higher on BDI, STAIX1, and STAIX2 than the three control groups (P < 0.001, P < 0.01, P < 0.001). CONCLUSIONS: Patients with temporal lobe epilepsy have a higher incidence of affective and personality disorders, often in comorbidity, than patients with juvenile myoclonic epilepsy and diabetic patients suggesting that these psychiatric disorders are not an adjustment reaction to a chronic disease but rather reflect a limbic dysfunction. PMID:8971108
Hippocampal Networks Habituate as Novelty Accumulates
ERIC Educational Resources Information Center
Murty, Vishnu P.; Ballard, Ian C.; Macduffie, Katherine E.; Krebs, Ruth M.; Adcock, R. Alison
2013-01-01
Novelty detection, a critical computation within the medial temporal lobe (MTL) memory system, necessarily depends on prior experience. The current study used functional magnetic resonance imaging (fMRI) in humans to investigate dynamic changes in MTL activation and functional connectivity as experience with novelty accumulates. fMRI data were…
Salvato, Gerardo; Scarpa, Pina; Francione, Stefano; Mai, Roberto; Tassi, Laura; Scarano, Elisa; Lo Russo, Giorgio; Bottini, Gabriella
2016-11-01
It is largely recognized that the mesial temporal lobe and its substructure support declarative long-term memory (LTM). So far, different theories have been suggested, and the organization of declarative verbal LTM in the brain is still a matter of debate. In the current study, we retrospectively selected 151 right-handed patients with temporal lobe epilepsy with and without hippocampal sclerosis, with a homogeneous (seizure-free) clinical outcome. We analyzed verbal memory performance within a normalized scores context, by means of prose recall and word paired-associate learning tasks. Patients were tested at presurgical baseline, 6months, 2 and 5years after anteromesial temporal lobe surgery, using parallel versions of the neuropsychological tests. Our main finding revealed a key involvement of the left temporal lobe and, in particular, of the left hippocampus in prose recall rather than word paired-associate task. We also confirmed that shorter duration of epilepsy, younger age, and withdrawal of antiepileptic drugs would predict a better memory outcome. When individual memory performance was taken into account, data showed that females affected by left temporal lobe epilepsy for longer duration were more at risk of presenting a clinically pathologic LTM at 5years after surgery. Taken together, these findings shed new light on verbal declarative memory in the mesial temporal lobe and on the behavioral signature of the functional reorganization after the surgical treatment of temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.
Dinkelacker, Vera; Xin, Xu; Baulac, Michel; Samson, Séverine; Dupont, Sophie
2016-09-01
Temporal lobe epilepsy (TLE) with hippocampal sclerosis has widespread effects on structural and functional connectivity and often entails cognitive dysfunction. EEG is mandatory to disentangle interactions in epileptic and physiological networks which underlie these cognitive comorbidities. Here, we examined how interictal epileptic discharges (IEDs) affect cognitive performance. Thirty-four patients (right TLE=17, left TLE=17) were examined with 24-hour video-EEG and a battery of neuropsychological tests to measure intelligence quotient and separate frontal and temporal lobe functions. Hippocampal segmentation of high-resolution T1-weighted imaging was performed with FreeSurfer. Partial correlations were used to compare the number and distribution of clinical interictal spikes and sharp waves with data from imagery and psychological tests. The number of IEDs was negatively correlated with executive functions, including verbal fluency and intelligence quotient (IQ). Interictal epileptic discharge affected cognitive function in patients with left and right TLE differentially, with verbal fluency strongly related to temporofrontal spiking. In contrast, IEDs had no clear effects on memory functions after corrections with partial correlations for age, age at disease onset, disease duration, and hippocampal volume. In patients with TLE of long duration, IED occurrence was strongly related to cognitive deficits, most pronounced for frontal lobe function. These data suggest that IEDs reflect dysfunctional brain circuitry and may serve as an independent biomarker for cognitive comorbidity. Copyright © 2016. Published by Elsevier Inc.
Westerhausen, René; Grüner, Renate; Specht, Karsten; Hugdahl, Kenneth
2009-06-01
The midsagittal corpus callosum is topographically organized, that is, with regard to their cortical origin several subtracts can be distinguished within the corpus callosum that belong to specific functional brain networks. Recent diffusion tensor tractography studies have also revealed remarkable interindividual differences in the size and exact localization of these tracts. To examine the functional relevance of interindividual variability in callosal tracts, 17 right-handed male participants underwent structural and diffusion tensor magnetic resonance imaging. Probabilistic tractography was carried out to identify the callosal subregions that interconnect left and right temporal lobe auditory processing areas, and the midsagittal size of this tract was seen as indicator of the (anatomical) strength of this connection. Auditory information transfer was assessed applying an auditory speech perception task with dichotic presentations of consonant-vowel syllables (e.g., /ba-ga/). The frequency of correct left ear reports in this task served as a functional measure of interhemispheric transfer. Statistical analysis showed that a stronger anatomical connection between the superior temporal lobe areas supports a better information transfer. This specific structure-function association in the auditory modality supports the general notion that interindividual differences in callosal topography possess functional relevance.
Mapping thalamocortical network pathology in temporal lobe epilepsy.
Bernhardt, Boris C; Bernasconi, Neda; Kim, Hosung; Bernasconi, Andrea
2012-01-10
Although experimental work has provided evidence that the thalamus is a crucial relay structure in temporal lobe epilepsy (TLE), the relation of the thalamus to neocortical pathology remains unclear. To assess thalamocortical network pathology in TLE, we mapped pointwise patterns of thalamic atrophy and statistically related them to neocortical thinning. We studied cross-sectionally 36 patients with drug-resistant TLE and 19 age- and sex-matched healthy control subjects using high-resolution MRI. To localize thalamic pathology, we converted manual labels into surface meshes using the spherical harmonic description and calculated local deformations relative to a template. In addition, we measured cortical thickness by means of the constrained Laplacian anatomic segmentation using proximity algorithm. Compared with control subjects, patients with TLE showed ipsilateral thalamic atrophy that was located along the medial surface, encompassing anterior, medial, and posterior divisions. Unbiased analysis correlating the degree of medial thalamic atrophy with cortical thickness measurements mapped bilateral frontocentral, lateral temporal, and mesiotemporal cortices. These areas overlapped with those of cortical thinning found when patients were compared with control subjects. Thalamic atrophy intensified with a longer duration of epilepsy and was more severe in patients with a history of febrile convulsions. The degree and distribution of thalamic pathology relates to the topography and extent of neocortical atrophy, lending support to the concept that the thalamus is an important hub in the pathologic network of TLE.
Guedj, Eric; Aubert, Sandrine; McGonigal, Aileen; Mundler, Olivier; Bartolomei, Fabrice
2010-06-01
To contribute to the identification of brain regions involved in déjà-vu, we studied the metabolic pattern of cortical involvement in patients with seizures of temporal lobe origin presenting with or without déjà-vu. Using voxel-based analysis of 18FDG-PET brain scans, we compared glucose metabolic rate of 8 patients with déjà-vu, 8 patients without déjà-vu, and 20 age-matched healthy subjects. Patients were selected after comprehensive non-invasive presurgical evaluation, including normal brain MRI and surface electroclinical features compatible with unilateral temporal lobe epilepsy (TLE). Patients with and without déjà-vu did not differ in terms of age, gender, epilepsy lateralization, epilepsy onset, epilepsy duration, and other subjective ictal manifestations. TLE patients with déjà-vu exhibited ipsilateral hypometabolism of superior temporal gyrus and of parahippocampal region, in the vicinity of perirhinal/entorhinal cortex, in comparison either to healthy subjects or to TLE patients without déjà-vu (p<0.05 FDR-corrected). By contrast, no difference was found between patient subgroups for hypometabolism of hippocampus and amygdala. At an individual-level, in comparison to healthy subjects, hypometabolism of both parahippocampal region and superior temporal gyrus was present in 7/8 patients with déjà-vu. Hippocampal metabolism was spared in 3 of these 7 patients. These findings argue for metabolic dysfunction of a medial-lateral temporal network in patients with déjà-vu and normal brain MRI. Within the medial temporal lobe, specific involvement of the parahippocampal region, often in the absence of hippocampal impairment, suggests that the feeling of familiarity during seizures greatly depends on alteration of the recognition memory system. Copyright 2010 Elsevier Ltd. All rights reserved.
McClelland, A C; Gomes, W A; Shinnar, S; Hesdorffer, D C; Bagiella, E; Lewis, D V; Bello, J A; Chan, S; MacFall, J; Chen, M; Pellock, J M; Nordli, D R; Frank, L M; Moshé, S L; Shinnar, R C; Sun, S
2016-12-01
The pathogenesis of febrile status epilepticus is poorly understood, but prior studies have suggested an association with temporal lobe abnormalities, including hippocampal malrotation. We used a quantitative morphometric method to assess the association between temporal lobe morphology and febrile status epilepticus. Brain MR imaging was performed in children presenting with febrile status epilepticus and control subjects as part of the Consequences of Prolonged Febrile Seizures in Childhood study. Medial temporal lobe morphologic parameters were measured manually, including the distance of the hippocampus from the midline, hippocampal height:width ratio, hippocampal angle, collateral sulcus angle, and width of the temporal horn. Temporal lobe morphologic parameters were correlated with the presence of visual hippocampal malrotation; the strongest association was with left temporal horn width (P < .001; adjusted OR, 10.59). Multiple morphologic parameters correlated with febrile status epilepticus, encompassing both the right and left sides. This association was statistically strongest in the right temporal lobe, whereas hippocampal malrotation was almost exclusively left-sided in this cohort. The association between temporal lobe measurements and febrile status epilepticus persisted when the analysis was restricted to cases with visually normal imaging findings without hippocampal malrotation or other visually apparent abnormalities. Several component morphologic features of hippocampal malrotation are independently associated with febrile status epilepticus, even when complete hippocampal malrotation is absent. Unexpectedly, this association predominantly involves the right temporal lobe. These findings suggest that a spectrum of bilateral temporal lobe anomalies are associated with febrile status epilepticus in children. Hippocampal malrotation may represent a visually apparent subset of this spectrum. © 2016 by American Journal of Neuroradiology.
Benoit, Roland G; Schacter, Daniel L
2015-08-01
It has been suggested that the simulation of hypothetical episodes and the recollection of past episodes are supported by fundamentally the same set of brain regions. The present article specifies this core network via Activation Likelihood Estimation (ALE). Specifically, a first meta-analysis revealed joint engagement of expected core-network regions during episodic memory and episodic simulation. These include parts of the medial surface, the hippocampus and parahippocampal cortex within the medial temporal lobes, and the temporal and inferior posterior parietal cortices on the lateral surface. Both capacities also jointly recruited additional regions such as parts of the bilateral dorsolateral prefrontal cortex. All of these core regions overlapped with the default network. Moreover, it has further been suggested that episodic simulation may require a stronger engagement of some of the core network's nodes as well as the recruitment of additional brain regions supporting control functions. A second ALE meta-analysis indeed identified such regions that were consistently more strongly engaged during episodic simulation than episodic memory. These comprised the core-network clusters located in the left dorsolateral prefrontal cortex and posterior inferior parietal lobe and other structures distributed broadly across the default and fronto-parietal control networks. Together, the analyses determine the set of brain regions that allow us to experience past and hypothetical episodes, thus providing an important foundation for studying the regions' specialized contributions and interactions. Copyright © 2015 Elsevier Ltd. All rights reserved.
Wirsich, Jonathan; Perry, Alistair; Ridley, Ben; Proix, Timothée; Golos, Mathieu; Bénar, Christian; Ranjeva, Jean-Philippe; Bartolomei, Fabrice; Breakspear, Michael; Jirsa, Viktor; Guye, Maxime
2016-01-01
The in vivo structure-function relationship is key to understanding brain network reorganization due to pathologies. This relationship is likely to be particularly complex in brain network diseases such as temporal lobe epilepsy, in which disturbed large-scale systems are involved in both transient electrical events and long-lasting functional and structural impairments. Herein, we estimated this relationship by analyzing the correlation between structural connectivity and functional connectivity in terms of analytical network communication parameters. As such, we targeted the gradual topological structure-function reorganization caused by the pathology not only at the whole brain scale but also both in core and peripheral regions of the brain. We acquired diffusion (dMRI) and resting-state fMRI (rsfMRI) data in seven right-lateralized TLE (rTLE) patients and fourteen healthy controls and analyzed the structure-function relationship by using analytical network communication metrics derived from the structural connectome. In rTLE patients, we found a widespread hypercorrelated functional network. Network communication analysis revealed greater unspecific branching of the shortest path (search information) in the structural connectome and a higher global correlation between the structural and functional connectivity for the patient group. We also found evidence for a preserved structural rich-club in the patient group. In sum, global augmentation of structure-function correlation might be linked to a smaller functional repertoire in rTLE patients, while sparing the central core of the brain which may represent a pathway that facilitates the spread of seizures.
NASA Astrophysics Data System (ADS)
Rodrigues, A. C.; Machado, B. S.; Florence, G.; Hamad, A. P.; Sakamoto, A. C.; Fujita, A.; Baccalá, L. A.; Amaro, E.; Sameshima, K.
2014-12-01
Here we propose and evaluate a new approach to analyse multichannel mesial temporal lobe epilepsy EEG data from eight patients through complex network and synchronization theories. The method employs a Granger causality test to infer the directed connectivity graphs and a wavelet transform based phase synchronization measure whose characteristics allow studying dynamical transitions during epileptic seizures. We present a new combined graph measure that quantifies the level of network hub formation, called network hub out-degree, which closely reflects the level of synchronization observed during the ictus.
Atypical febrile seizures, mesial temporal lobe epilepsy, and dual pathology.
Sanon, Nathalie T; Desgent, Sébastien; Carmant, Lionel
2012-01-01
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE.
Goghari, Vina M; Macdonald, Angus W; Sponheim, Scott R
2011-11-01
Temporal lobe abnormalities and emotion recognition deficits are prominent features of schizophrenia and appear related to the diathesis of the disorder. This study investigated whether temporal lobe structural abnormalities were associated with facial emotion recognition deficits in schizophrenia and related to genetic liability for the disorder. Twenty-seven schizophrenia patients, 23 biological family members, and 36 controls participated. Several temporal lobe regions (fusiform, superior temporal, middle temporal, amygdala, and hippocampus) previously associated with face recognition in normative samples and found to be abnormal in schizophrenia were evaluated using volumetric analyses. Participants completed a facial emotion recognition task and an age recognition control task under time-limited and self-paced conditions. Temporal lobe volumes were tested for associations with task performance. Group status explained 23% of the variance in temporal lobe volume. Left fusiform gray matter volume was decreased by 11% in patients and 7% in relatives compared with controls. Schizophrenia patients additionally exhibited smaller hippocampal and middle temporal volumes. Patients were unable to improve facial emotion recognition performance with unlimited time to make a judgment but were able to improve age recognition performance. Patients additionally showed a relationship between reduced temporal lobe gray matter and poor facial emotion recognition. For the middle temporal lobe region, the relationship between greater volume and better task performance was specific to facial emotion recognition and not age recognition. Because schizophrenia patients exhibited a specific deficit in emotion recognition not attributable to a generalized impairment in face perception, impaired emotion recognition may serve as a target for interventions.
The localizing value of ictal EEG in focal epilepsy.
Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H
2001-12-11
To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.
Autobiographical memory and patterns of brain atrophy in frontotemporal lobar degeneration.
McKinnon, Margaret C; Nica, Elena I; Sengdy, Pheth; Kovacevic, Natasa; Moscovitch, Morris; Freedman, Morris; Miller, Bruce L; Black, Sandra E; Levine, Brian
2008-10-01
Autobiographical memory paradigms have been increasingly used to study the behavioral and neuroanatomical correlates of human remote memory. Although there are numerous functional neuroimaging studies on this topic, relatively few studies of patient samples exist, with heterogeneity of results owing to methodological variability. In this study, fronto-temporal lobar degeneration (FTLD), a form of dementia affecting regions crucial to autobiographical memory, was used as a model of autobiographical memory loss. We emphasized the separation of episodic (recollection of specific event, perceptual, and mental state information) from semantic (factual information unspecific in time and place) autobiographical memory, derived from a reliable method for scoring transcribed autobiographical protocols, the Autobiographical Interview [Levine, B., Svoboda, E., Hay, J., Winocur, G., & Moscovitch, M. Aging and autobiographical memory: Dissociating episodic from semantic retrieval. Psychology and Aging, 17, 677-689, 2002]. Patients with the fronto-temporal dementia (FTD) and mixed fronto-temporal and semantic dementia (FTD/SD) variants of FTLD were impaired at reconstructing episodically rich autobiographical memories across the lifespan, with FTD/SD patients generating an excess of generic semantic autobiographical information. Patients with progressive nonfluent aphasia were mildly impaired for episodic autobiographical memory, but this impairment was eliminated with the provision of structured cueing, likely reflecting relatively intact medial-temporal lobe function, whereas the same cueing failed to bolster the FTD and FTD/SD patients' performance relative to that of matched comparison subjects. The pattern of episodic, but not semantic, autobiographical impairment was enhanced with disease progression on 1- to 2-year follow-up testing in a subset of patients, supplementing the cross-sectional evidence for specificity of episodic autobiographical impairment with longitudinal data. This behavioral pattern covaried with volume loss in a distributed left-lateralized posterior network centered on the temporal lobe, consistent with evidence from other patient and functional neuroimaging studies of autobiographical memory. Frontal lobe volumes, however, did not significantly contribute to this network, suggesting that frontal contributions to autobiographical episodic memory may be more complex than previously appreciated.
Abnormal behavior in children with temporal lobe epilepsy and ganglioglioma.
Guimarães, Catarina A; Franzon, Renata C; Souza, Elisabete A P; Schmutzler, Kátia M R S; Montenegro, Maria Augusta; Queiroz, Luciano de S; Cendes, Fernando; Guerreiro, Marilisa M
2004-10-01
Temporal lobe epilepsy in childhood is characterized by great clinical, electroencephalographic, and etiological diversity. The prognosis after temporal lobe epilepsy surgery in childhood is usually good, with most patients achieving complete seizure control. However, in some children behavior deteriorates postoperatively. We report two girls (2 and 6 years of age) with refractory seizures due to temporal lobe ganglioglioma. They exhibited aggression and hyperactivity since the beginning of their epilepsy. In both patients, behavioral disturbances worsened postoperatively, despite complete seizure control. Patients and parents should be advised about possible behavioral disturbances after epilepsy surgery, especially in the presence of a temporal lobe developmental tumor, even when seizure control is achieved postoperatively.
Temporal plus epilepsy is a major determinant of temporal lobe surgery failures.
Barba, Carmen; Rheims, Sylvain; Minotti, Lorella; Guénot, Marc; Hoffmann, Dominique; Chabardès, Stephan; Isnard, Jean; Kahane, Philippe; Ryvlin, Philippe
2016-02-01
Reasons for failed temporal lobe epilepsy surgery remain unclear. Temporal plus epilepsy, characterized by a primary temporal lobe epileptogenic zone extending to neighboured regions, might account for a yet unknown proportion of these failures. In this study all patients from two epilepsy surgery programmes who fulfilled the following criteria were included: (i) operated from an anterior temporal lobectomy or disconnection between January 1990 and December 2001; (ii) magnetic resonance imaging normal or showing signs of hippocampal sclerosis; and (iii) postoperative follow-up ≥ 24 months for seizure-free patients. Patients were classified as suffering from unilateral temporal lobe epilepsy, bitemporal epilepsy or temporal plus epilepsy based on available presurgical data. Kaplan-Meier survival analysis was used to calculate the probability of seizure freedom over time. Predictors of seizure recurrence were investigated using Cox proportional hazards model. Of 168 patients included, 108 (63.7%) underwent stereoelectroencephalography, 131 (78%) had hippocampal sclerosis, 149 suffered from unilateral temporal lobe epilepsy (88.7%), one from bitemporal epilepsy (0.6%) and 18 (10.7%) from temporal plus epilepsy. The probability of Engel class I outcome at 10 years of follow-up was 67.3% (95% CI: 63.4-71.2) for the entire cohort, 74.5% (95% CI: 70.6-78.4) for unilateral temporal lobe epilepsy, and 14.8% (95% CI: 5.9-23.7) for temporal plus epilepsy. Multivariate analyses demonstrated four predictors of seizure relapse: temporal plus epilepsy (P < 0.001), postoperative hippocampal remnant (P = 0.001), past history of traumatic or infectious brain insult (P = 0.022), and secondary generalized tonic-clonic seizures (P = 0.023). Risk of temporal lobe surgery failure was 5.06 (95% CI: 2.36-10.382) greater in patients with temporal plus epilepsy than in those with unilateral temporal lobe epilepsy. Temporal plus epilepsy represents a hitherto unrecognized prominent cause of temporal lobe surgery failures. In patients with temporal plus epilepsy, anterior temporal lobectomy appears very unlikely to control seizures and should not be advised. Whether larger resection of temporal plus epileptogenic zones offers greater chance of seizure freedom remains to be investigated. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Van Someren, Eus J W; Oosterman, J M; Van Harten, B; Vogels, R L; Gouw, A A; Weinstein, H C; Poggesi, A; Scheltens, Ph; Scherder, E J A
2018-06-01
Atrophy of the medial temporal lobe of the brain is key to memory function and memory complaints in old age. While age and some morbidities are major risk factors for medial temporal lobe atrophy, individual differences remain, and mechanisms are insufficiently known. The largest combined neuroimaging and whole genome study to date indicates that medial temporal lobe volume is most associated with common polymorphisms in the GRIN2B gene that encodes for the 2B subunit (NR2B) of the NMDA receptor. Because sleep disruption induces a selective loss of NR2B from hippocampal synaptic membranes in rodents, and because of several other reports on medial temporal lobe sensitivity to sleep disruption, we hypothesized a contribution of the typical age-related increase in sleep-wake rhythm fragmentation to medial temporal lobe atrophy. Magnetic resonance imaging and actigraphy in 138 aged individuals showed that individual differences in sleep-wake rhythm fragmentation accounted for more (19%) of the variance in medial temporal lobe atrophy than age did (15%), or any of a list of health and brain structural indicators. The findings suggest a role of sleep-wake rhythm fragmentation in age-related medial temporal lobe atrophy, that might in part be prevented or reversible. Copyright © 2018. Published by Elsevier Inc.
Quantifying interictal metabolic activity in human temporal lobe epilepsy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.
1990-09-01
The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on (18F)fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a singlemore » investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism.« less
Lah, Suncica; Black, Carly; Gascoigne, Michael B; Gott, Chloe; Epps, Adrienne; Parry, Louise
2017-09-01
Accelerated long-term forgetting (ALF) is characterized by adequate recall after short, but not long delays. ALF is not detected by standardized neuropsychological memory tests. Currently, the prevailing conceptualization of ALF is of a temporal lobe seizure-related phenomenon. Nevertheless, Mayes and colleagues (2003) proposed that ALF may occur when any of the components of the brain network involved in long-term memory formation, or their interaction, is disrupted. This disruption does not have to be caused by temporal lobe seizures for ALF to occur. Here, we investigate this possibility in a group of school-age children who have sustained traumatic brain injury (TBI) (n = 28), as TBI typically disrupts the brain network that is important for long-term memory formation and recall. Healthy control children (n = 62) also participated. Contrary to the dominant conceptualization of ALF being a seizure-related phenomenon, children with TBI showed ALF. Sustaining a severe TBI and diffuse subcortical damage was related to ALF. Individually, 8 of the 13 children with severe TBI presented with ALF. ALF would remain undetected on standardized testing in six of these eight children. One child had the opposite pattern of dissociation, an impaired score on standardized testing, but an average long-term memory score. This is the first study, to our knowledge, to show ALF in patients with TBI, which has remained undiagnosed and untreated in this patient population. Our study also challenges the dominant hypothesis of ALF being a temporal lobe seizure-related phenomenon, and raises a possibility that short-term and long-term memory systems may be independent.
Knopman, Alex A; Wong, Chong H; Stevenson, Richard J; Homewood, Judi; Mohamed, Armin; Somerville, Ernest; Eberl, Stefan; Wen, Lingfeng; Fulham, Michael; Bleasel, Andrew F
2014-08-01
We investigated the cognitive profile of structural occipital lobe epilepsy (OLE) and whether verbal memory impairment is selectively associated with left temporal lobe hypometabolism on [18F]-fluorodeoxyglucose positron emission tomography (FDG-PET). Nine patients with OLE, ages 8-29 years, completed presurgical neuropsychological assessment. Composite measures were calculated for intelligence quotient (IQ), speed, attention, verbal memory, nonverbal memory, and executive functioning. In addition, the Wisconsin Card Sorting Test (WCST) was used as a specific measure of frontal lobe functioning. Presurgical FDG-PET was analyzed with statistical parametric mapping in 8 patients relative to 16 healthy volunteers. Mild impairments were evident for IQ, speed, attention, and executive functioning. Four patients demonstrated moderate or severe verbal memory impairment. Temporal lobe hypometabolism was found in seven of eight patients. Poorer verbal memory was associated with left temporal lobe hypometabolism (p = 0.002), which was stronger (p = 0.03 and p = 0.005, respectively) than the association of left temporal lobe hypometabolism with executive functioning or with performance on the WCST. OLE is associated with widespread cognitive comorbidity, suggesting cortical dysfunction beyond the occipital lobe. Verbal memory impairment is selectively associated with left temporal lobe hypometabolism in OLE, supporting a link between neuropsychological dysfunction and remote hypometabolism in focal epilepsy. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Microsurgical techniques in temporal lobe epilepsy.
Alonso Vanegas, Mario A; Lew, Sean M; Morino, Michiharu; Sarmento, Stenio A
2017-04-01
Temporal lobe resection is the most prevalent epilepsy surgery procedure. However, there is no consensus on the best surgical approach to treat temporal lobe epilepsy. Complication rates are low and efficacy is very high regarding seizures after such procedures. However, there is still ample controversy regarding the best surgical approach to warrant maximum seizure control with minimal functional deficits. We describe the most frequently used microsurgical techniques for removal of both the lateral and mesial temporal lobe structures in the treatment of medically intractable temporal lobe epilepsy (TLE) due to mesial temporal sclerosis (corticoamygdalohippocampectomy and selective amygdalohippocampectomy). The choice of surgical technique appears to remain a surgeon's preference for the near future. Meticulous surgical technique and thorough three-dimensional microsurgical knowledge are essentials for obtaining the best results. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Monsa, R; Peer, M; Arzy, S
2018-06-01
Conversion disorder (CD), or functional neurological disorder, is manifested as a neurological disturbance that is not macroscopically visible on clinical structural neuroimaging and is instead ascribed to underlying psychological stress. Known for many years in neuropsychiatry, a comprehensive explanation of the way in which psychological stress leads to a neurological deficit of a structural-like origin is still lacking. We applied whole-brain network-based data-driven analyses on resting-state functional magnetic resonance imaging, recorded in seven patients with acute-onset, stroke-like CD with unilateral paresis and hypoesthesia as compared with 15 age-matched healthy controls. We used a clustering analysis to measure functional connectivity (FC) strength within 10 different brain networks, as well as between these networks. Finally, we tested FC of specific brain regions that are known to be involved in CD. We found a significant increase in FC strength only within the default-mode network (DMN), which manages self-referential processing. Examination of inter-connectivity between networks showed a structure of disturbed connectivity, which included decreased connectivity between the DMN and limbic/salience network, increased connectivity between the limbic/salience network and body-related temporo-parieto-occipital junction network, decreased connectivity between the temporo-parieto-occipital junction and memory-related medial temporal lobe, and decreased connectivity between the medial temporal lobe and sensorimotor network. Region-specific FC analysis showed increased connectivity between the hippocampus and DMN. These preliminary results of disturbances in brain networks related to memory, emotions and self-referential processing, and networks involved in motor planning and execution, suggest a role of these cognitive functions in the psychopathology of CD. © 2018 EAN.
Skirrow, Caroline; Cross, J. Helen; Harrison, Sue; Cormack, Francesca; Harkness, William; Coleman, Rosie; Meierotto, Ellen; Gaiottino, Johanna; Vargha-Khadem, Faraneh
2015-01-01
The temporal lobes play a prominent role in declarative memory function, including episodic memory (memory for events) and semantic memory (memory for facts and concepts). Surgical resection for medication-resistant and well-localized temporal lobe epilepsy has good prognosis for seizure freedom, but is linked to memory difficulties in adults, especially when the removal is on the left side. Children may benefit most from surgery, because brain plasticity may facilitate post-surgical reorganization, and seizure cessation may promote cognitive development. However, the long-term impact of this intervention in children is not known. We examined memory function in 53 children (25 males, 28 females) who were evaluated for epilepsy surgery: 42 underwent unilateral temporal lobe resections (25 left, 17 right, mean age at surgery 13.8 years), 11 were treated only pharmacologically. Average follow-up was 9 years (range 5–15). Post-surgical change in visual and verbal episodic memory, and semantic memory at follow-up were examined. Pre- and post-surgical T1-weighted MRI brain scans were analysed to extract hippocampal and resection volumes, and evaluate post-surgical temporal lobe integrity. Language lateralization indices were derived from functional magnetic resonance imaging. There were no significant pre- to postoperative decrements in memory associated with surgery. In contrast, gains in verbal episodic memory were seen after right temporal lobe surgery, and visual episodic memory improved after left temporal lobe surgery, indicating a functional release in the unoperated temporal lobe after seizure reduction or cessation. Pre- to post-surgical change in memory function was not associated with any indices of brain structure derived from MRI. However, better verbal memory at follow-up was linked to greater post-surgical residual hippocampal volumes, most robustly in left surgical participants. Better semantic memory at follow-up was associated with smaller resection volumes and greater temporal pole integrity after left temporal surgery. Results were independent of post-surgical intellectual function and language lateralization. Our findings indicate post-surgical, hemisphere-dependent material-specific improvement in memory functions in the intact temporal lobe. However, outcome was linked to the anatomical integrity of the temporal lobe memory system, indicating that compensatory mechanisms are constrained by the amount of tissue which remains in the operated temporal lobe. Careful tailoring of resections for children undergoing epilepsy surgery may enhance long-term memory outcome. PMID:25392199
Microencephaloceles: another dual pathology of intractable temporal lobe epilepsy in childhood.
Aquilina, Kristian; Clarke, Dave F; Wheless, James W; Boop, Frederick A
2010-04-01
Temporal lobe encephaloceles can be associated with temporal lobe epilepsy. The authors report on the case of an adolescent with multiple microencephaloceles, in the anterolateral middle fossa floor, identified at surgery (temporal lobectomy) for intractable partial-onset seizures of temporal origin. Magnetic resonance imaging revealed only hippocampal atrophy. Subdural electrodes demonstrated ictal activity arising primarily from the anterior and lateral temporal lobe, close to the microencephaloceles, spreading to the anterior and posterior mesial structures. Pathological examination revealed diffuse temporal gliosis involving the hippocampus, together with microdysgenesis of the amygdala. The literature on epilepsy secondary to encephaloceles is reviewed and the contribution of the microencephaloceles to the seizure disorder in this patient is discussed.
Large-scale brain networks are distinctly affected in right and left mesial temporal lobe epilepsy.
de Campos, Brunno Machado; Coan, Ana Carolina; Lin Yasuda, Clarissa; Casseb, Raphael Fernandes; Cendes, Fernando
2016-09-01
Mesial temporal lobe epilepsy (MTLE) with hippocampus sclerosis (HS) is associated with functional and structural alterations extending beyond the temporal regions and abnormal pattern of brain resting state networks (RSNs) connectivity. We hypothesized that the interaction of large-scale RSNs is differently affected in patients with right- and left-MTLE with HS compared to controls. We aimed to determine and characterize these alterations through the analysis of 12 RSNs, functionally parceled in 70 regions of interest (ROIs), from resting-state functional-MRIs of 99 subjects (52 controls, 26 right- and 21 left-MTLE patients with HS). Image preprocessing and statistical analysis were performed using UF(2) C-toolbox, which provided ROI-wise results for intranetwork and internetwork connectivity. Intranetwork abnormalities were observed in the dorsal default mode network (DMN) in both groups of patients and in the posterior salience network in right-MTLE. Both groups showed abnormal correlation between the dorsal-DMN and the posterior salience, as well as between the dorsal-DMN and the executive-control network. Patients with left-MTLE also showed reduced correlation between the dorsal-DMN and visuospatial network and increased correlation between bilateral thalamus and the posterior salience network. The ipsilateral hippocampus stood out as a central area of abnormalities. Alterations on left-MTLE expressed a low cluster coefficient, whereas the altered connections on right-MTLE showed low cluster coefficient in the DMN but high in the posterior salience regions. Both right- and left-MTLE patients with HS have widespread abnormal interactions of large-scale brain networks; however, all parameters evaluated indicate that left-MTLE has a more intricate bihemispheric dysfunction compared to right-MTLE. Hum Brain Mapp 37:3137-3152, 2016. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc. © 2016 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Intrinsic functional network architecture of human semantic processing: Modules and hubs.
Xu, Yangwen; Lin, Qixiang; Han, Zaizhu; He, Yong; Bi, Yanchao
2016-05-15
Semantic processing entails the activation of widely distributed brain areas across the temporal, parietal, and frontal lobes. To understand the functional structure of this semantic system, we examined its intrinsic functional connectivity pattern using a database of 146 participants. Focusing on areas consistently activated during semantic processing generated from a meta-analysis of 120 neuroimaging studies (Binder et al., 2009), we found that these regions were organized into three stable modules corresponding to the default mode network (Module DMN), the left perisylvian network (Module PSN), and the left frontoparietal network (Module FPN). These three dissociable modules were integrated by multiple connector hubs-the left angular gyrus (AG) and the left superior/middle frontal gyrus linking all three modules, the left anterior temporal lobe linking Modules DMN and PSN, the left posterior portion of dorsal intraparietal sulcus (IPS) linking Modules DMN and FPN, and the left posterior middle temporal gyrus (MTG) linking Modules PSN and FPN. Provincial hubs, which converge local information within each system, were also identified: the bilateral posterior cingulate cortices/precuneus, the bilateral border area of the posterior AG and the superior lateral occipital gyrus for Module DMN; the left supramarginal gyrus, the middle part of the left MTG and the left orbital inferior frontal gyrus (IFG) for Module FPN; and the left triangular IFG and the left IPS for Module FPN. A neuro-functional model for semantic processing was derived based on these findings, incorporating the interactions of memory, language, and control. Copyright © 2016 Elsevier Inc. All rights reserved.
Mayberg, H S; Sadzot, B; Meltzer, C C; Fisher, R S; Lesser, R P; Dannals, R F; Lever, J R; Wilson, A A; Ravert, H T; Wagner, H N
1991-07-01
Alterations in a variety of neurotransmitter systems have been identified in experimental models of epilepsy and in brain tissue from patients with intractable temporal lobe seizures. The availability of new high-affinity radioligands permits the study of some neuroreceptors in vivo with positron emission tomography (PET). We previously characterized the in vivo binding of 11C-carfentanil, a potent and selective mu opiate receptor agonist, and described increases in 11C-carfentanil binding in the temporal neocortex of patients with unilateral temporal lobe epilepsy. These studies have been extended to 11C-diprenorphine, which labels mu, kappa, and delta opiate receptor subtypes. Paired measurements of opiate receptor binding were performed with PET using 11C-carfentanil and 11C-diprenorphine in patients with unilateral temporal lobe seizures. Carfentanil binding, reflecting changes in mu opiate receptors, was increased in the temporal neocortex and decreased in the amygdala on the side of the epileptic focus. Diprenorphine binding, reflecting mu as well as non-mu opiate subtypes, was not significantly different among regions in the focus and nonfocus temporal lobes. Regional glucose metabolism, measured using 18F-2-fluoro-2-deoxyglucose, was decreased in the mesial and lateral aspects of the temporal lobe ipsilateral to the epileptogenic focus. The variation in pattern of carfentanil and diprenorphine binding supports a differential regulation of opiate subtypes in unilateral temporal lobe epilepsy.
Epilepsy and music: practical notes.
Maguire, M
2017-04-01
Music processing occurs via a complex network of activity far beyond the auditory cortices. This network may become sensitised to music or may be recruited as part of a temporal lobe seizure, manifesting as either musicogenic epilepsy or ictal musical phenomena. The idea that sound waves may directly affect brain waves has led researchers to explore music as therapy for epilepsy. There is limited and low quality evidence of an antiepileptic effect with the Mozart Sonata K.448. We do not have a pathophysiological explanation for the apparent dichotomous effect of music on seizures. However, clinicians should consider musicality when treating patients with antiepileptic medication or preparing patients for epilepsy surgery. Carbamazepine and oxcarbazepine each may cause a reversible altered appreciation of pitch. Surgical cohort studies suggest that musical memory and perception may be affected, particularly following right temporal lobe surgery, and discussion of this risk should form part of presurgical counselling. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Hierarchical Processing of Auditory Objects in Humans
Kumar, Sukhbinder; Stephan, Klaas E; Warren, Jason D; Friston, Karl J; Griffiths, Timothy D
2007-01-01
This work examines the computational architecture used by the brain during the analysis of the spectral envelope of sounds, an important acoustic feature for defining auditory objects. Dynamic causal modelling and Bayesian model selection were used to evaluate a family of 16 network models explaining functional magnetic resonance imaging responses in the right temporal lobe during spectral envelope analysis. The models encode different hypotheses about the effective connectivity between Heschl's Gyrus (HG), containing the primary auditory cortex, planum temporale (PT), and superior temporal sulcus (STS), and the modulation of that coupling during spectral envelope analysis. In particular, we aimed to determine whether information processing during spectral envelope analysis takes place in a serial or parallel fashion. The analysis provides strong support for a serial architecture with connections from HG to PT and from PT to STS and an increase of the HG to PT connection during spectral envelope analysis. The work supports a computational model of auditory object processing, based on the abstraction of spectro-temporal “templates” in the PT before further analysis of the abstracted form in anterior temporal lobe areas. PMID:17542641
Neural microgenesis of personally familiar face recognition
Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno
2015-01-01
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network. PMID:26283361
Neural microgenesis of personally familiar face recognition.
Ramon, Meike; Vizioli, Luca; Liu-Shuang, Joan; Rossion, Bruno
2015-09-01
Despite a wealth of information provided by neuroimaging research, the neural basis of familiar face recognition in humans remains largely unknown. Here, we isolated the discriminative neural responses to unfamiliar and familiar faces by slowly increasing visual information (i.e., high-spatial frequencies) to progressively reveal faces of unfamiliar or personally familiar individuals. Activation in ventral occipitotemporal face-preferential regions increased with visual information, independently of long-term face familiarity. In contrast, medial temporal lobe structures (perirhinal cortex, amygdala, hippocampus) and anterior inferior temporal cortex responded abruptly when sufficient information for familiar face recognition was accumulated. These observations suggest that following detailed analysis of individual faces in core posterior areas of the face-processing network, familiar face recognition emerges categorically in medial temporal and anterior regions of the extended cortical face network.
Counterfactual thinking: an fMRI study on changing the past for a better future
Ma, Ning; Ampe, Lisa; Baetens, Kris; Van Overwalle, Frank
2013-01-01
Recent studies suggest that a brain network mainly associated with episodic memory has a more general function in imagining oneself in another time, place or perspective (e.g. episodic future thought, theory of mind, default mode). If this is true, counterfactual thinking (e.g. ‘If I had left the office earlier, I wouldn’t have missed my train.’) should also activate this network. Present functional magnetic resonance imaging (fMRI) study explores the common and distinct neural activity of counterfactual and episodic thinking by directly comparing the imagining of upward counterfactuals (creating better outcomes for negative past events) with the re-experiencing of negative past events and the imagining of positive future events. Results confirm that episodic and counterfactual thinking share a common brain network, involving a core memory network (hippocampal area, temporal lobes, midline, and lateral parietal lobes) and prefrontal areas that might be related to mentalizing (medial prefrontal cortex) and performance monitoring (right prefrontal cortex). In contrast to episodic past and future thinking, counterfactual thinking recruits some of these areas more strongly and extensively, and additionally activates the bilateral inferior parietal lobe and posterior medial frontal cortex. We discuss these findings in view of recent fMRI evidence on the working of episodic memory and theory of mind. PMID:22403155
Atypical Febrile Seizures, Mesial Temporal Lobe Epilepsy, and Dual Pathology
Sanon, Nathalie T.; Desgent, Sébastien; Carmant, Lionel
2012-01-01
Febrile seizures occurring in the neonatal period, especially when prolonged, are thought to be involved in the later development of mesial temporal lobe epilepsy (mTLE) in children. The presence of an often undetected, underlying cortical malformation has also been reported to be implicated in the epileptogenesis process following febrile seizures. This paper highlights some of the various animal models of febrile seizures and of cortical malformation and portrays a two-hit model that efficiently mimics these two insults and leads to spontaneous recurrent seizures in adult rats. Potential mechanisms are further proposed to explain how these two insults may each, or together, contribute to network hyperexcitability and epileptogenesis. Finally the clinical relevance of the two-hit model is briefly discussed in light of a therapeutic and preventive approach to mTLE. PMID:22957226
Tanaka, Chiaki; Matsui, Mie; Uematsu, Akiko; Noguchi, Kyo; Miyawaki, Toshio
2012-01-01
Brain development during early life in healthy individuals is rapid and dynamic, indicating that this period plays a very important role in neural and functional development. The frontal and temporal lobes are known to play a particularly important role in cognition. The study of healthy frontal and temporal lobe development in children is therefore of considerable importance. A better understanding of how these brain regions develop could also aid in the diagnosis and treatment of neurodevelopmental disorders. Some developmental studies have used magnetic resonance imaging (MRI) to examine infant brains, but it remains the case that relatively little is known about cortical brain development in the first few years of life. In the present study we examined whole brain, temporal lobe and frontal lobe developmental trajectories from infancy to early adulthood in healthy individuals, considering gender and brain hemisphere differences. We performed a cross-sectional, longitudinal morphometric MRI study of 114 healthy individuals (54 females and 60 males) aged 1 month to 25 years old (mean age ± SD 8.8 ± 6.9). We measured whole brain, temporal and frontal lobe gray matter (GM)/white matter (WM) volumes, following previously used protocols. There were significant non-linear age-related volume changes in all regions. Peak ages of whole brain, temporal lobe and frontal lobe development occurred around pre-adolescence (9-12 years old). GM volumes for all regions increased significantly as a function of age. Peak age was nevertheless lobe specific, with a pattern of earlier peak ages for females in both temporal and frontal lobes. Growth change in whole brain GM volume was larger in males than in females. However, GM volume growth changes for the temporal and frontal lobes showed a somewhat different pattern. GM volume for both temporal and frontal lobes showed a greater increase in females until around 5-6 years old, at which point this tendency reversed (GM volume changes in males became greater), with male GM volume increasing for a longer time than that of females. WM volume growth changes were similar across regions, all increasing rapidly until early childhood but slowing down thereafter. All regions displayed significant rightward volumetric asymmetry regardless of sex. Furthermore, the right temporal and frontal lobes showed a greater volumetric increase than the left for the first several years, with this tendency reversing at around 6 years of age. In addition, the left frontal and temporal lobes increased in volume for a longer period of time. Taken together, these findings indicated that brain developmental trajectories differ depending on brain region, sex and brain hemisphere. Gender-related factors such as sex hormones and functional laterality may affect brain development. Copyright © 2012 S. Karger AG, Basel.
Weis, Susanne; Leube, Dirk; Erb, Michael; Heun, Reinhard; Grodd, Wolfgang; Kircher, Tilo
2011-07-01
The aim of our study was to examine brain networks involved with sustaining memory encoding performance in healthy aging and in Alzheimer's disease (AD). Since different brain regions are affected by degradation in these two conditions, it might be conceivable that different compensation mechanisms occur to keep up memory performance in aging and in AD. Using an event-related functional magnetic resonance imaging (FMRI) design and a correlation analysis, 8 patients suffering from AD and 29 elderly control subjects were scanned while they studied a list of words for a subsequent memory test. Individual performance was assessed on the basis of a subsequent recognition test, and brain regions were identified where functional activations during study correlated with memory performance. In both groups, successful memory encoding performance was significantly correlated with the activation of the right frontal cortex. Furthermore, in healthy controls, there was a significant correlation of memory performance and the activation of the left medial and lateral temporal lobe. In contrast, in AD patients, increasing memory performance goes along with increasing activation of the hippocampus and a bilateral brain network including the frontal and temporal cortices. Our data show that in healthy aging and in AD, common and distinct compensatory mechanisms are employed to keep up a certain level of memory performance. Both in healthy aging and in patients with AD, an increased level of monitoring and control processes mediated by the (right) frontal lobe seems to be necessary to maintain a certain level of memory performance. In addition, memory performance in healthy older subjects seems to rely on an increased effort in encoding item-specific semantic and contextual information in lateral areas of the (left) temporal lobe. In AD patients, on the other hand, the maintenance of memory performance is related to an increase of activation of the (left) hippocampus in conjunction with a bilateral network of cortical areas that might be involved with phonological and visual rehearsal of the incoming information.
Szabo, Gergely G.; Armstrong, Caren; Oijala, Mikko; Soltesz, Ivan
2014-01-01
Abstract Cover Figure Krook-Magnuson et al. report a bidirectional functional connectivity between the hippocampus and the cerebellum in a mouse model of temporal lobe epilepsy, and demonstrate that cerebellar directed on-demand optogenetic intervention can stop seizures recorded from the hippocampus. Temporal lobe epilepsy is often medically refractory and new targets for intervention are needed. We used a mouse model of temporal lobe epilepsy, on-line seizure detection, and responsive optogenetic intervention to investigate the potential for cerebellar control of spontaneous temporal lobe seizures. Cerebellar targeted intervention inhibited spontaneous temporal lobe seizures during the chronic phase of the disorder. We further report that the direction of modulation as well as the location of intervention within the cerebellum can affect the outcome of intervention. Specifically, on-demand optogenetic excitation or inhibition of parvalbumin-expressing neurons, including Purkinje cells, in the lateral or midline cerebellum results in a decrease in seizure duration. In contrast, a consistent reduction in spontaneous seizure frequency occurs uniquely with on-demand optogenetic excitation of the midline cerebellum, and was not seen with intervention directly targeting the hippocampal formation. These findings demonstrate that the cerebellum is a powerful modulator of temporal lobe epilepsy, and that intervention targeting the cerebellum as a potential therapy for epilepsy should be revisited. PMID:25599088
Garrido, Lucia; Driver, Jon; Dolan, Raymond J.; Duchaine, Bradley C.; Furl, Nicholas
2016-01-01
Face processing is mediated by interactions between functional areas in the occipital and temporal lobe, and the fusiform face area (FFA) and anterior temporal lobe play key roles in the recognition of facial identity. Individuals with developmental prosopagnosia (DP), a lifelong face recognition impairment, have been shown to have structural and functional neuronal alterations in these areas. The present study investigated how face selectivity is generated in participants with normal face processing, and how functional abnormalities associated with DP, arise as a function of network connectivity. Using functional magnetic resonance imaging and dynamic causal modeling, we examined effective connectivity in normal participants by assessing network models that include early visual cortex (EVC) and face-selective areas and then investigated the integrity of this connectivity in participants with DP. Results showed that a feedforward architecture from EVC to the occipital face area, EVC to FFA, and EVC to posterior superior temporal sulcus (pSTS) best explained how face selectivity arises in both controls and participants with DP. In this architecture, the DP group showed reduced connection strengths on feedforward connections carrying face information from EVC to FFA and EVC to pSTS. These altered network dynamics in DP contribute to the diminished face selectivity in the posterior occipitotemporal areas affected in DP. These findings suggest a novel view on the relevance of feedforward projection from EVC to posterior occipitotemporal face areas in generating cortical face selectivity and differences in face recognition ability. SIGNIFICANCE STATEMENT Areas of the human brain showing enhanced activation to faces compared to other objects or places have been extensively studied. However, the factors leading to this face selectively have remained mostly unknown. We show that effective connectivity from early visual cortex to posterior occipitotemporal face areas gives rise to face selectivity. Furthermore, people with developmental prosopagnosia, a lifelong face recognition impairment, have reduced face selectivity in the posterior occipitotemporal face areas and left anterior temporal lobe. We show that this reduced face selectivity can be predicted by effective connectivity from early visual cortex to posterior occipitotemporal face areas. This study presents the first network-based account of how face selectivity arises in the human brain. PMID:27030766
NEREC, an effective brain mapping protocol for combined language and long-term memory functions.
Perrone-Bertolotti, Marcela; Girard, Cléa; Cousin, Emilie; Vidal, Juan Ricardo; Pichat, Cédric; Kahane, Philippe; Baciu, Monica
2015-12-01
Temporal lobe epilepsy can induce functional plasticity in temporoparietal networks involved in language and long-term memory processing. Previous studies in healthy subjects have revealed the relative difficulty for this network to respond effectively across different experimental designs, as compared to more reactive regions such as frontal lobes. For a protocol to be optimal for clinical use, it has to first show robust effects in a healthy cohort. In this study, we developed a novel experimental paradigm entitled NEREC, which is able to reveal the robust participation of temporoparietal networks in a uniquely combined language and memory task, validated in an fMRI study with healthy subjects. Concretely, NEREC is composed of two runs: (a) an intermixed language-memory task (confrontation naming associated with encoding in nonverbal items, NE) to map language (i.e., word retrieval and lexico-semantic processes) combined with simultaneous long-term verbal memory encoding (NE items named but also explicitly memorized) and (b) a memory retrieval task of items encoded during NE (word recognition, REC) intermixed with new items. Word recognition is based on both perceptual-semantic familiarity (feeling of 'know') and accessing stored memory representations (remembering). In order to maximize the remembering and recruitment of medial temporal lobe structures, we increased REC difficulty by changing the modality of stimulus presentation (from nonverbal during NE to verbal during REC). We report that (a) temporoparietal activation during NE was attributable to both lexico-semantic (language) and memory (episodic encoding and semantic retrieval) processes; that (b) encoding activated the left hippocampus, bilateral fusiform, and bilateral inferior temporal gyri; and that (c) task recognition (recollection) activated the right hippocampus and bilateral but predominant left fusiform gyrus. The novelty of this protocol consists of (a) combining two tasks in one (language and long-term memory encoding/recall) instead of applying isolated tasks to map temporoparietal regions, (b) analyzing NE data based on performances recorded during REC, (c) double-mapping networks involved in naming and in long-term memory encoding and retrieval, (d) focusing on remembering with hippocampal activation and familiarity judgment with lateral temporal cortices activation, and (e) short duration of examination and feasibility. These aspects are of particular interest in patients with TLE, who frequently show impairment of these cognitive functions. Here, we show that the novel protocol is suited for this clinical evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.
Astrocyte uncoupling as a cause of human temporal lobe epilepsy
Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K.; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A.; Henneberger, Christian; Theis, Martin
2015-01-01
Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K+ concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K+ buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. PMID:25765328
Differences in graph theory functional connectivity in left and right temporal lobe epilepsy.
Chiang, Sharon; Stern, John M; Engel, Jerome; Levin, Harvey S; Haneef, Zulfi
2014-12-01
To investigate lateralized differences in limbic system functional connectivity between left and right temporal lobe epilepsy (TLE) using graph theory. Interictal resting state fMRI was performed in 14 left TLE patients, 11 right TLE patients, and 12 controls. Graph theory analysis of 10 bilateral limbic regions of interest was conducted. Changes in edgewise functional connectivity, network topology, and regional topology were quantified, and then left and right TLE were compared. Limbic edgewise functional connectivity was predominantly reduced in both left and right TLE. More regional connections were reduced in right TLE, most prominently involving reduced interhemispheric connectivity between the bilateral insula and bilateral hippocampi. A smaller number of limbic connections were increased in TLE, more so in left than in right TLE. Topologically, the most pronounced change was a reduction in average network betweenness centrality and concurrent increase in left hippocampal betweenness centrality in right TLE. In contrast, left TLE exhibited a weak trend toward increased right hippocampal betweenness centrality, with no change in average network betweenness centrality. Limbic functional connectivity is predominantly reduced in both left and right TLE, with more pronounced reductions in right TLE. In contrast, left TLE exhibits both edgewise and topological changes that suggest a tendency toward reorganization. Network changes in TLE and lateralized differences thereof may have important diagnostic and prognostic implications. Published by Elsevier B.V.
Diehl, Beate; LaPresto, Eric; Najm, Imad; Raja, Shanker; Rona, Sabine; Babb, Thomas; Ying, Zhong; Bingaman, William; Lüders, Hans O; Ruggieri, Paul
2003-04-01
Medically intractable temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS), with or without cortical dysplasia (CD), is associated with atrophy of the hippocampal formation and regional fluorodeoxyglucose positron-emission tomography (FDG-PET) hypometabolism. The relation between areas of functional and structural abnormalities is not well understood. We investigate the relation between FDG-PET metabolism and temporal lobe (TL) and hippocampal atrophy in patients with histologically proven isolated HS and HS associated with CD. Twenty-three patients underwent en bloc resection of the mesial and anterolateral neocortical structures. Ten patients were diagnosed with isolated HS; 13 patients had associated microscopic CD. Temporal lobe volumes (TLVs) and hippocampal volumes were measured. Magnetic resonance imaging (MRI) and PET were co-registered, and regions of interest (ROIs) determined as gray matter of the mesial, lateral, and anterior temporal lobe. All patients (HS with or without CD) had significant ipsilateral PET hypometabolism in all three regions studied (p < 0.0001). In patients with isolated HS, the most prominent hypometabolism was in the anterior and mesial temporal lobe, whereas in dual pathology, it was in the lateral temporal lobe. TLVs and hippocampal volumes were significantly smaller on the epileptogenic side (p < 0.05). The PET asymmetries ipsilateral/contralateral to the epileptogenic zone and TLV asymmetries correlated significantly for the anterior and lateral temporal lobes (p < 0.05) in the HS+CD group, but not in the isolated HS group. Mesial temporal hypometabolism was not significantly different between the two groups. Temporal neocortical microscopic CD with concurrent HS is associated with more prominent lateral temporal metabolic dysfunction compared with isolated HS in TL atrophy. Further studies are needed to confirm these findings and correlate the PET hypometabolic patterns with outcome data in patients operated on for HS with or without CD.
Zhang, Chao; Yang, Hongyu; Qin, Wen; Liu, Chang; Qi, Zhigang; Chen, Nan; Li, Kuncheng
2017-01-01
Executive control function (ECF) deficit is a common complication of temporal lobe epilepsy (TLE). Characteristics of brain network connectivity in TLE with ECF dysfunction are still unknown. The aim of this study was to investigate resting-state functional connectivity (FC) changes in patients with unilateral intractable TLE with impaired ECF. Forty right-handed patients with left TLE confirmed by comprehensive preoperative evaluation and postoperative pathological findings were enrolled. The patients were divided into normal ECF (G1) and decreased ECF (G2) groups according to whether they showed ECF impairment on the Wisconsin Card Sorting Test (WCST). Twenty-three healthy volunteers were recruited as the healthy control (HC) group. All subjects underwent resting-state functional magnetic resonance imaging (rs-fMRI). Group-information-guided independent component analysis (GIG-ICA) was performed to estimate resting-state networks (RSNs) for all subjects. General linear model (GLM) was employed to analyze intra-network FC (p < 0.05, false discovery rate, FDR correction) and inter-network FC (p < 0.05, Bonferroni correction) of RSN among three groups. Pearson correlations between FC and neuropsychological tests were also determined through partial correlation analysis (p < 0.05). Eleven meaningful RSNs were identified from 40 left TLE and 23 HC subjects. Comparison of intra-network FC of all 11 meaningful RSNs did not reveal significant difference among the three groups (p > 0.05, FDR correction). For inter-network analysis, G2 exhibited decreased FC between the executive control network (ECN) and default-mode network (DMN) when compared with G1 (p = 0.000, Bonferroni correction) and HC (p = 0.000, Bonferroni correction). G1 showed no significant difference of FC between ECN and DMN when compared with HC. Furthermore, FC between ECN and DMN had significant negative correlation with perseverative responses (RP), response errors (RE) and perseverative errors (RPE) and had significant positive correlation categories completed (CC) in both G1 and G2 (p < 0.05). No significant difference of Montreal Cognitive Assessment (MoCA) was found between G1 and G2, while intelligence quotient (IQ) testing showed significant difference between G1and G2.There was no correlation between FC and either MoCA or IQ performance. Our findings suggest that ECF impairment in unilateral TLE is not confined to the diseased temporal lobe. Decreased FC between DMN and ECN may be an important characteristic of RSN in intractable unilateral TLE. PMID:29375338
Temporal Lobe Epilepsy Alters Auditory-motor Integration For Voice Control
Li, Weifeng; Chen, Ziyi; Yan, Nan; Jones, Jeffery A.; Guo, Zhiqiang; Huang, Xiyan; Chen, Shaozhen; Liu, Peng; Liu, Hanjun
2016-01-01
Temporal lobe epilepsy (TLE) is the most common drug-refractory focal epilepsy in adults. Previous research has shown that patients with TLE exhibit decreased performance in listening to speech sounds and deficits in the cortical processing of auditory information. Whether TLE compromises auditory-motor integration for voice control, however, remains largely unknown. To address this question, event-related potentials (ERPs) and vocal responses to vocal pitch errors (1/2 or 2 semitones upward) heard in auditory feedback were compared across 28 patients with TLE and 28 healthy controls. Patients with TLE produced significantly larger vocal responses but smaller P2 responses than healthy controls. Moreover, patients with TLE exhibited a positive correlation between vocal response magnitude and baseline voice variability and a negative correlation between P2 amplitude and disease duration. Graphical network analyses revealed a disrupted neuronal network for patients with TLE with a significant increase of clustering coefficients and path lengths as compared to healthy controls. These findings provide strong evidence that TLE is associated with an atypical integration of the auditory and motor systems for vocal pitch regulation, and that the functional networks that support the auditory-motor processing of pitch feedback errors differ between patients with TLE and healthy controls. PMID:27356768
Jin, Seung-Hyun; Chung, Chun Kee
2017-01-01
The main aim of the present study was to evaluate whether resting-state functional connectivity of magnetoencephalography (MEG) signals can differentiate patients with mesial temporal lobe epilepsy (MTLE) from healthy controls (HC) and can differentiate between right and left MTLE as a diagnostic biomarker. To this end, a support vector machine (SVM) method among various machine learning algorithms was employed. We compared resting-state functional networks between 46 MTLE (right MTLE=23; left MTLE=23) patients with histologically proven HS who were free of seizure after surgery, and 46 HC. The optimal SVM group classifier distinguished MTLE patients with a mean accuracy of 95.1% (sensitivity=95.8%; specificity=94.3%). Increased connectivity including the right posterior cingulate gyrus and decreased connectivity including at least one sensory-related resting-state network were key features reflecting the differences between MTLE patients and HC. The optimal SVM model distinguished between right and left MTLE patients with a mean accuracy of 76.2% (sensitivity=76.0%; specificity=76.5%). We showed the potential of electrophysiological resting-state functional connectivity, which reflects brain network reorganization in MTLE patients, as a possible diagnostic biomarker to differentiate MTLE patients from HC and differentiate between right and left MTLE patients. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Acres, K.; Taylor, K. I.; Moss, H. E.; Stamatakis, E. A.; Tyler, L. K.
2009-01-01
Cognitive neuroscientific research proposes complementary hemispheric asymmetries in naming and recognising visual objects, with a left temporal lobe advantage for object naming and a right temporal lobe advantage for object recognition. Specifically, it has been proposed that the left inferior temporal lobe plays a mediational role linking…
Ranganath, Charan
2010-11-01
There is currently an intense debate about the nature of recognition memory and about the roles of medial temporal lobe subregions in recognition memory processes. At a larger level, this debate has been about whether it is appropriate to propose unified theories to explain memory at neural, functional, and phenomenological levels of analysis. Here, I review findings from physiology, functional imaging, and lesion studies in humans, monkeys, and rodents relevant to the roles of medial temporal lobe subregions in recognition memory, as well as in short-term memory and perception. The results from these studies are consistent with the idea that there is functional heterogeneity in the medial temporal lobes, although the differences among medial temporal lobe subregions do not precisely correspond to different types of memory tasks, cognitive processes, or states of awareness. Instead, the evidence is consistent with the idea that medial temporal lobe subregions differ in terms of the kind of information they process and represent, and that these regions collectively support episodic memory by binding item and context information. © 2010 Wiley-Liss, Inc.
Bejanin, Alexandre; Desgranges, Béatrice; La Joie, Renaud; Landeau, Brigitte; Perrotin, Audrey; Mézenge, Florence; Belliard, Serge; de La Sayette, Vincent; Eustache, Francis; Chételat, Gaël
2017-04-01
This study aims at further understanding the distinct vulnerability of brain networks in Alzheimer's disease (AD) versus semantic dementia (SD) investigating the white matter injury associated with medial temporal lobe (MTL) atrophy in both conditions. Twenty-six AD patients, twenty-one SD patients, and thirty-nine controls underwent a high-resolution T1-MRI scan allowing to obtain maps of grey matter volume and white matter density. A statistical conjunction approach was used to identify MTL regions showing grey matter atrophy in both patient groups. The relationship between this common grey matter atrophy and white matter density maps was then assessed within each patient group. Patterns of grey matter atrophy were distinct in AD and SD but included a common region in the MTL, encompassing the hippocampus and amygdala. This common atrophy was associated with alterations in different white matter areas in AD versus SD, mainly including the cingulum and corpus callosum in AD, while restricted to the temporal lobe - essentially the uncinate and inferior longitudinal fasciculi - in SD. Complementary analyses revealed that these relationships remained significant when controlling for global atrophy or disease severity. Overall, this study provides the first evidence that atrophy of the same MTL region is related to damage in distinct white matter fibers in AD and SD. These different patterns emphasize the vulnerability of distinct brain networks related to the MTL in these two disorders, which might underlie the discrepancy in their symptoms. These results further suggest differences between AD and SD in the neuropathological processes occurring in the MTL. Hum Brain Mapp 38:1791-1800, 2017. © 2017 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Besenyei, M; Varga, E; Fekete, I; Puskás, S; Hollódy, K; Fogarasi, A; Emri, M; Opposits, G; Kis, S A; Clemens, B
2012-01-01
Benign rolandic epilepsy of childhood (BERS) is an epilepsy syndrome with presumably genetic-developmental etiology. The pathological basis of this syndrome is completely unknown. We postulated that a developmental abnormality presumably results in abnormal EEG background activity findings. 20 children with typical BERS and an age- and sex-matched group of healthy control children underwent EEG recording and analysis. 60×2 s epochs of waking EEG background activity (without epileptiform potentials and artifacts) were analyzed in the 1-25 Hz frequency range, in very narrow bands (VNB, 1 Hz bandwidth). LORETA (Low Resolution Electromagnetic Tomography) localized multiple distributed sources of EEG background activity in the Talairach space. LORETA activity (current source density) was computed for 2394 voxels and 25 VNBs. Normalized LORETA data were processed to voxel-wise comparison between the BERS and control groups. Bonferroni-corrected p<0.05 Student's t-values were accepted as statistically significant. Increased LORETA activity was found in the BERS group (as compared to the controls) in the left and right temporal lobes (fusiform gyri, posterior parts of the superior, middle and inferior temporal gyri) and in the angular gyri in the parietal lobes, in the 4-6 Hz VNBs, mainly at 5 Hz. (1) Areas of abnormal LORETA activity exactly correspond to the temporal and parietal cortical areas that are major components of the Mirsky attention model and also the perisylvian speech network. Thus the LORETA findings may correspond to impaired attention and speech in BERS patients. (2) The LORETA findings may contribute to delineating the epileptic network in BERS. The novel findings may contribute to investigating neuropsychological disturbances and organization of the epileptic network in BERS. Copyright © 2011 Elsevier B.V. All rights reserved.
Miller-Delaney, Suzanne F.C.; Bryan, Kenneth; Das, Sudipto; McKiernan, Ross C.; Bray, Isabella M.; Reynolds, James P.; Gwinn, Ryder; Stallings, Raymond L.
2015-01-01
Temporal lobe epilepsy is associated with large-scale, wide-ranging changes in gene expression in the hippocampus. Epigenetic changes to DNA are attractive mechanisms to explain the sustained hyperexcitability of chronic epilepsy. Here, through methylation analysis of all annotated C-phosphate-G islands and promoter regions in the human genome, we report a pilot study of the methylation profiles of temporal lobe epilepsy with or without hippocampal sclerosis. Furthermore, by comparative analysis of expression and promoter methylation, we identify methylation sensitive non-coding RNA in human temporal lobe epilepsy. A total of 146 protein-coding genes exhibited altered DNA methylation in temporal lobe epilepsy hippocampus (n = 9) when compared to control (n = 5), with 81.5% of the promoters of these genes displaying hypermethylation. Unique methylation profiles were evident in temporal lobe epilepsy with or without hippocampal sclerosis, in addition to a common methylation profile regardless of pathology grade. Gene ontology terms associated with development, neuron remodelling and neuron maturation were over-represented in the methylation profile of Watson Grade 1 samples (mild hippocampal sclerosis). In addition to genes associated with neuronal, neurotransmitter/synaptic transmission and cell death functions, differential hypermethylation of genes associated with transcriptional regulation was evident in temporal lobe epilepsy, but overall few genes previously associated with epilepsy were among the differentially methylated. Finally, a panel of 13, methylation-sensitive microRNA were identified in temporal lobe epilepsy including MIR27A, miR-193a-5p (MIR193A) and miR-876-3p (MIR876), and the differential methylation of long non-coding RNA documented for the first time. The present study therefore reports select, genome-wide DNA methylation changes in human temporal lobe epilepsy that may contribute to the molecular architecture of the epileptic brain. PMID:25552301
Epilepsy, hippocampal sclerosis and febrile seizures linked by common genetic variation around SCN1A
Kasperavičiūtė, Dalia; Catarino, Claudia B.; Matarin, Mar; Leu, Costin; Novy, Jan; Tostevin, Anna; Leal, Bárbara; Hessel, Ellen V. S.; Hallmann, Kerstin; Hildebrand, Michael S.; Dahl, Hans-Henrik M.; Ryten, Mina; Trabzuni, Daniah; Ramasamy, Adaikalavan; Alhusaini, Saud; Doherty, Colin P.; Dorn, Thomas; Hansen, Jörg; Krämer, Günter; Steinhoff, Bernhard J.; Zumsteg, Dominik; Duncan, Susan; Kälviäinen, Reetta K.; Eriksson, Kai J.; Kantanen, Anne-Mari; Pandolfo, Massimo; Gruber-Sedlmayr, Ursula; Schlachter, Kurt; Reinthaler, Eva M.; Stogmann, Elisabeth; Zimprich, Fritz; Théâtre, Emilie; Smith, Colin; O’Brien, Terence J.; Meng Tan, K.; Petrovski, Slave; Robbiano, Angela; Paravidino, Roberta; Zara, Federico; Striano, Pasquale; Sperling, Michael R.; Buono, Russell J.; Hakonarson, Hakon; Chaves, João; Costa, Paulo P.; Silva, Berta M.; da Silva, António M.; de Graan, Pierre N. E.; Koeleman, Bobby P. C.; Becker, Albert; Schoch, Susanne; von Lehe, Marec; Reif, Philipp S.; Rosenow, Felix; Becker, Felicitas; Weber, Yvonne; Lerche, Holger; Rössler, Karl; Buchfelder, Michael; Hamer, Hajo M.; Kobow, Katja; Coras, Roland; Blumcke, Ingmar; Scheffer, Ingrid E.; Berkovic, Samuel F.; Weale, Michael E.; Delanty, Norman; Depondt, Chantal; Cavalleri, Gianpiero L.; Kunz, Wolfram S.
2013-01-01
Epilepsy comprises several syndromes, amongst the most common being mesial temporal lobe epilepsy with hippocampal sclerosis. Seizures in mesial temporal lobe epilepsy with hippocampal sclerosis are typically drug-resistant, and mesial temporal lobe epilepsy with hippocampal sclerosis is frequently associated with important co-morbidities, mandating the search for better understanding and treatment. The cause of mesial temporal lobe epilepsy with hippocampal sclerosis is unknown, but there is an association with childhood febrile seizures. Several rarer epilepsies featuring febrile seizures are caused by mutations in SCN1A, which encodes a brain-expressed sodium channel subunit targeted by many anti-epileptic drugs. We undertook a genome-wide association study in 1018 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 7552 control subjects, with validation in an independent sample set comprising 959 people with mesial temporal lobe epilepsy with hippocampal sclerosis and 3591 control subjects. To dissect out variants related to a history of febrile seizures, we tested cases with mesial temporal lobe epilepsy with hippocampal sclerosis with (overall n = 757) and without (overall n = 803) a history of febrile seizures. Meta-analysis revealed a genome-wide significant association for mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures at the sodium channel gene cluster on chromosome 2q24.3 [rs7587026, within an intron of the SCN1A gene, P = 3.36 × 10−9, odds ratio (A) = 1.42, 95% confidence interval: 1.26–1.59]. In a cohort of 172 individuals with febrile seizures, who did not develop epilepsy during prospective follow-up to age 13 years, and 6456 controls, no association was found for rs7587026 and febrile seizures. These findings suggest SCN1A involvement in a common epilepsy syndrome, give new direction to biological understanding of mesial temporal lobe epilepsy with hippocampal sclerosis with febrile seizures, and open avenues for investigation of prognostic factors and possible prevention of epilepsy in some children with febrile seizures. PMID:24014518
Pihlajamäki, Maija; Tanila, Heikki; Könönen, Mervi; Hänninen, Tuomo; Aronen, Hannu J; Soininen, Hilkka
2005-10-01
The ventral visual stream processes information about the identity of objects ('what'), whereas the dorsal stream processes the spatial locations of objects ('where'). There is a corresponding, although disputed, distinction for the ventrolateral and dorsolateral prefrontal areas. Furthermore, there seems to be a distinction between the anterior and posterior medial temporal lobe (MTL) structures in the processing of novel items and new spatial arrangements, respectively. Functional differentiation of the intermediary mid-line cortical and temporal neocortical structures that communicate with the occipitotemporal, occipitoparietal, prefrontal, and MTL structures, however, is unclear. Therefore, in the present functional magnetic resonance imaging (fMRI) study, we examined whether the distinction among the MTL structures extends to these closely connected cortical areas. The most striking difference in the fMRI responses during visual presentation of changes in either items or their locations was the bilateral activation of the temporal lobe and ventrolateral prefrontal cortical areas for novel object identification in contrast to wide parietal and dorsolateral prefrontal activation for the novel locations of objects. An anterior-posterior distinction of fMRI responses similar to the MTL was observed in the cingulate/retrosplenial, and superior and middle temporal cortices. In addition to the distinct areas of activation, certain frontal, parietal, and temporo-occipital areas responded to both object and spatial novelty, suggesting a common attentional network for both types of changes in the visual environment. These findings offer new insights to the functional roles and intrinsic specialization of the cingulate/retrosplenial, and lateral temporal cortical areas in visuospatial cognition.
Out of Place, Out of Mind: Schema-Driven False Memory Effects for Object-Location Bindings
ERIC Educational Resources Information Center
Lew, Adina R.; Howe, Mark L.
2017-01-01
Events consist of diverse elements, each processed in specialized neocortical networks, with temporal lobe memory systems binding these elements to form coherent event memories. We provide a novel theoretical analysis of an unexplored consequence of the independence of memory systems for elements and their bindings, 1 that raises the paradoxical…
NASA Astrophysics Data System (ADS)
Kamakura, Katsutoshi
2007-01-01
In this study we measured the variation of brain blood quantity (Oxy-Hb, Deoxy-Hb and Total-Hb) in the temporal lobes using near infrared spectroscopy (NIRS) when the tasks of the memories were presented to the subjects. The memories are classified into the short-term memory (STM) and the long-term memory (LTM) including the episodic and semantic memories. The subjects joined in this study are 11 persons who are university students including graduate students. We used the language task of letter-number sequencing, also reverse sequencing to measure STM and the task of the episodic memory to measure LTM. As a result of analysis, concerning the episodic memory, the variation of Oxy-Hb in the left temporal lobe was larger than that of Oxy-Hb in the right temporal lobe. The result might suggest that the episodic memory has a relationship with cerebral dominance concerning language area in the left temporal lobe. It seems that the episodic memory meditated with the function of language used in this study is much stored in the left temporal lobe than in the right temporal lobe. This result coincides with the principles of lateralization. The variation of Oxy-Hb in the language task of letter-number sequencing was smaller than that of Oxy-Hb in the language task of the episodic memory.
Kiernan, J. A.
2012-01-01
Only primates have temporal lobes, which are largest in man, accommodating 17% of the cerebral cortex and including areas with auditory, olfactory, vestibular, visual and linguistic functions. The hippocampal formation, on the medial side of the lobe, includes the parahippocampal gyrus, subiculum, hippocampus, dentate gyrus, and associated white matter, notably the fimbria, whose fibres continue into the fornix. The hippocampus is an inrolled gyrus that bulges into the temporal horn of the lateral ventricle. Association fibres connect all parts of the cerebral cortex with the parahippocampal gyrus and subiculum, which in turn project to the dentate gyrus. The largest efferent projection of the subiculum and hippocampus is through the fornix to the hypothalamus. The choroid fissure, alongside the fimbria, separates the temporal lobe from the optic tract, hypothalamus and midbrain. The amygdala comprises several nuclei on the medial aspect of the temporal lobe, mostly anterior the hippocampus and indenting the tip of the temporal horn. The amygdala receives input from the olfactory bulb and from association cortex for other modalities of sensation. Its major projections are to the septal area and prefrontal cortex, mediating emotional responses to sensory stimuli. The temporal lobe contains much subcortical white matter, with such named bundles as the anterior commissure, arcuate fasciculus, inferior longitudinal fasciculus and uncinate fasciculus, and Meyer's loop of the geniculocalcarine tract. This article also reviews arterial supply, venous drainage, and anatomical relations of the temporal lobe to adjacent intracranial and tympanic structures. PMID:22934160
McLelland, Victoria C.; Chan, David; Ferber, Susanne; Barense, Morgan D.
2014-01-01
Recent research suggests that the medial temporal lobe (MTL) is involved in perception as well as in declarative memory. Amnesic patients with focal MTL lesions and semantic dementia patients showed perceptual deficits when discriminating faces and objects. Interestingly, these two patient groups showed different profiles of impairment for familiar and unfamiliar stimuli. For MTL amnesics, the use of familiar relative to unfamiliar stimuli improved discrimination performance. By contrast, patients with semantic dementia—a neurodegenerative condition associated with anterolateral temporal lobe damage—showed no such facilitation from familiar stimuli. Given that the two patient groups had highly overlapping patterns of damage to the perirhinal cortex, hippocampus, and temporal pole, the neuroanatomical substrates underlying their performance discrepancy were unclear. Here, we addressed this question with a multivariate reanalysis of the data presented by Barense et al. (2011), using functional connectivity to examine how stimulus familiarity affected the broader networks with which the perirhinal cortex, hippocampus, and temporal poles interact. In this study, healthy participants were scanned while they performed an odd-one-out perceptual task involving familiar and novel faces or objects. Seed-based analyses revealed that functional connectivity of the right perirhinal cortex and right anterior hippocampus was modulated by the degree of stimulus familiarity. For familiar relative to unfamiliar faces and objects, both right perirhinal cortex and right anterior hippocampus showed enhanced functional correlations with anterior/lateral temporal cortex, temporal pole, and medial/lateral parietal cortex. These findings suggest that in order to benefit from stimulus familiarity, it is necessary to engage not only the perirhinal cortex and hippocampus, but also a network of regions known to represent semantic information. PMID:24624075
Salience Network and Parahippocampal Dopamine Dysfunction in Memory-Impaired Parkinson Disease
Christopher, Leigh; Duff-Canning, Sarah; Koshimori, Yuko; Segura, Barbara; Boileau, Isabelle; Chen, Robert; Lang, Anthony E.; Houle, Sylvain; Rusjan, Pablo; Strafella, Antonio P.
2016-01-01
Objective Patients with Parkinson disease (PD) and mild cognitive impairment (MCI) are vulnerable to dementia and frequently experience memory deficits. This could be the result of dopamine dysfunction in corticostriatal networks (salience, central executive networks, and striatum) and/or the medial temporal lobe. Our aim was to investigate whether dopamine dysfunction in these regions contributes to memory impairment in PD. Methods We used positron emission tomography imaging to compare D2 receptor availability in the cortex and striatal (limbic and associative) dopamine neuron integrity in 4 groups: memory-impaired PD (amnestic MCI; n=9), PD with nonamnestic MCI (n=10), PD without MCI (n=11), and healthy controls (n=14). Subjects were administered a full neuropsychological test battery for cognitive performance. Results Memory-impaired patients demonstrated more significant reductions in D2 receptor binding in the salience network (insular cortex and anterior cingulate cortex [ACC] and the right parahippocampal gyrus [PHG]) compared to healthy controls and patients with no MCI. They also presented reductions in the right insula and right ACC compared to nonamnestic MCI patients. D2 levels were correlated with memory performance in the right PHG and left insula of amnestic patients and with executive performance in the bilateral insula and left ACC of all MCI patients. Associative striatal dopamine denervation was significant in all PD patients. Interpretation Dopaminergic differences in the salience network and the medial temporal lobe contribute to memory impairment in PD. Furthermore, these findings indicate the vulnerability of the salience network in PD and its potential role in memory and executive dysfunction. PMID:25448687
ERIC Educational Resources Information Center
St-Laurent, Marie; Moscovitch, Morris; Levine, Brian; McAndrews, Mary Pat
2009-01-01
Patients with unilateral temporal lobe epilepsy from hippocampal origin and patients with unilateral surgical excision of an epileptic focus located in the medial temporal lobe were compared to healthy controls on a version of the Autobiographical Interview (AI) adapted to assess memory for event-specific and generic personal episodes. For both…
Material-Specific Lateralization of Working Memory in the Medial Temporal Lobe
ERIC Educational Resources Information Center
Wagner, Dylan D.; Sziklas, Viviane; Garver, Krista E.; Jones-Gotman, Marilyn
2009-01-01
Mnemonic deficits in patients with medial temporal lobe (MTL) damage arising from temporal lobe epilepsy (TLE) are traditionally constrained to long-term episodic memory, sparing short-term and working memory (WM). This view of WM as being independent of MTL structures has recently been challenged by a small number of patient and neuroimaging…
A common network of functional areas for attention and eye movements
NASA Technical Reports Server (NTRS)
Corbetta, M.; Akbudak, E.; Conturo, T. E.; Snyder, A. Z.; Ollinger, J. M.; Drury, H. A.; Linenweber, M. R.; Petersen, S. E.; Raichle, M. E.; Van Essen, D. C.;
1998-01-01
Functional magnetic resonance imaging (fMRI) and surface-based representations of brain activity were used to compare the functional anatomy of two tasks, one involving covert shifts of attention to peripheral visual stimuli, the other involving both attentional and saccadic shifts to the same stimuli. Overlapping regional networks in parietal, frontal, and temporal lobes were active in both tasks. This anatomical overlap is consistent with the hypothesis that attentional and oculomotor processes are tightly integrated at the neural level.
Autobiographical memory of the recent past following frontal cortex or temporal lobe excisions.
Thaiss, Laila; Petrides, Michael
2008-08-01
Previous research has raised questions regarding the necessity of the frontal cortex in autobiographical memory and the role that it plays in actively retrieving contextual information associated with personally relevant events. Autobiographical memory was studied in patients with unilateral excisions restricted to the frontal cortex or temporal lobe involving the amygdalo-hippocampal region and in normal controls using an event-sampling method. We examined accuracy of free recall, use of strategies during retrieval and memory for specific aspects of the autobiographical events, including temporal order. Patients with temporal lobe excisions were impaired in autobiographical recall. By contrast, patients with frontal cortical excisions exhibited normal autobiographical recall but were less likely to use temporal order spontaneously to organize event retrieval. Instruction to organize retrieval by temporal order failed to improve recall in temporal lobe patients and increased the incidence of plausible intrusion errors in left temporal patients. In contrast, patients with frontal cortical excisions now surpassed control subjects in recall of autobiographical events. Furthermore, the retrieval accuracy for the temporal order of diary events was not impaired in these patients. In a subsequent cued recall test, temporal lobe patients were impaired in their memory for the details of the diary events and their context. In conclusion, a basic impairment in autobiographical memory (including memory for temporal context) results from damage to the temporal lobe and not the frontal cortex. Patients with frontal excisions fail to use organizational strategies spontaneously to aid retrieval but can use these effectively if instructed to do so.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parhar, Preeti K.; Duckworth, Tamara; Shah, Parinda
2010-10-01
Purpose: To compare temporal lobe dose delivered by three pituitary macroadenoma irradiation techniques: three-field three-dimensional conformal radiotherapy (3D-CRT), three-field intensity-modulated radiotherapy (3F IMRT), and a proposed novel alternative of five-field IMRT (5F IMRT). Methods and Materials: Computed tomography-based external beam radiotherapy planning was performed for 15 pituitary macroadenoma patients treated at New York University between 2002 and 2007 using: 3D-CRT (two lateral, one midline superior anterior oblique [SAO] beams), 3F IMRT (same beam angles), and 5F IMRT (same beam angles with additional right SAO and left SAO beams). Prescription dose was 45 Gy. Target volumes were: gross tumor volume (GTV)more » = macroadenoma, clinical target volume (CTV) = GTV, and planning target volume = CTV + 0.5 cm. Structure contouring was performed by two radiation oncologists guided by an expert neuroradiologist. Results: Five-field IMRT yielded significantly decreased temporal lobe dose delivery compared with 3D-CRT and 3F IMRT. Temporal lobe sparing with 5F IMRT was most pronounced at intermediate doses: mean V25Gy (% of total temporal lobe volume receiving {>=}25 Gy) of 13% vs. 28% vs. 29% for right temporal lobe and 14% vs. 29% vs. 30% for left temporal lobe for 5F IMRT, 3D-CRT, and 3F IMRT, respectively (p < 10{sup -7} for 5F IMRT vs. 3D-CRT and 5F IMRT vs. 3F IMRT). Five-field IMRT plans did not compromise target coverage, exceed normal tissue dose constraints, or increase estimated brain integral dose. Conclusions: Five-field IMRT irradiation technique results in a statistically significant decrease in the dose to the temporal lobes and may thus help prevent neurocognitive sequelae in irradiated pituitary macroadenoma patients.« less
Yang, Xiao-Yan; Long, Li-Li; Xiao, Bo
2016-07-01
To investigate the effects of temporal lobe epilepsy and idiopathic epilepsy on cognitive function and emotion in children and the risk factors for cognitive impairment. A retrospective analysis was performed for the clinical data of 38 children with temporal lobe epilepsy and 40 children with idiopathic epilepsy. The controls were 42 healthy children. All subjects received the following neuropsychological tests: Montreal Cognitive Assessment (MoCA) scale, verbal fluency test, digit span test, block design test, Social Anxiety Scale for Children (SASC), and Depression Self-rating Scale for Children (DSRSC). Compared with the control group, the temporal lobe epilepsy and idiopathic epilepsy groups showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). Compared with the idiopathic epilepsy group, the temporal lobe epilepsy group showed significantly lower scores of MoCA, verbal fluency, digit span, and block design (P<0.05) and significantly higher scores on SASC and DSRSC (P<0.05). In the temporal lobe epilepsy group, MoCA score was negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.571, -0.529, and -0.545 respectively; P<0.01). In the idiopathic epilepsy group, MoCA score was also negatively correlated with SASC score, DSRSC score, and seizure frequency (r=-0.542, -0.487, and -0.555 respectively; P<0.01). Children with temporal lobe epilepsy and idiopathic epilepsy show impaired whole cognition, verbal fluency, memory, and executive function and have anxiety and depression, which are more significant in children with temporal lobe epilepsy. High levels of anxiety, depression, and seizure frequency are risk factors for impaired cognitive function.
[Clinical characteristics of epileptic seizures in insular gliomas].
Buklina, S B; Bykanov, A E; Pitskhelauri, D I
To study the characteristics of epileptic seizures in insular gliomas. Forty-five patients with insular gliomas were examined. The spread of a tumor was established by MRI results and intraoperational findings. A tumor within the insular only was found in 9 out of 45 patients (7 left-sided and 2 right-sided). In 36 patients, a tumor slightly spread into temporal lobe pole and medial-basal regions of the frontal lobe (27 left-sided and 18 right-sided). The control group consisted of 50 patients with tumors of temporal and frontal lobes. Paroxysmal symptoms were similar in patients with tumors of the insular and patients with tumors of temporal lobes. Seizures in patients with frontal lobe tumors differed significantly from insular and temporal tumors, with the exception of a tumor localized in the opercula area. The following quantitative differences were identified: different forms of unconsciousness were significantly less frequent in symptomatic epilepsy in patients with insular tumor than in epilepsy caused by temporal lobe tumors (36% of patients vs 84% in temporal tumors (p<0.0001)). In patients with insular tumors, olfactory and taste hallucinations occur more often compared to temporal lobe tumors (51% vs 16% (p<0.003). The frequency of paroxysmal seizures of fear and anxiety in patients with those tumors was similar (20% with insular tumors and 14 with temporal tumors). An autonomic component of episeizures did not differ between tumors of both localizations. Olfactory and taste hallucinations were qualitatively similar in insular and temporal lobe tumors: smell and taste were unpleasant or associated with a danger: smell of burning, gas, something spoiled, sour, tart chemistry, taste of somethong metallic, chemical, sour. No pleasant smell or taste were reported. Epileptic seizures in insular tumors had similarities and certain differences compared with temporal seizures that well reflect function of the insula and its links, in the first turn, with limbic system structures.
Time Is Not Space: Core Computations and Domain-Specific Networks for Mental Travels.
Gauthier, Baptiste; van Wassenhove, Virginie
2016-11-23
Humans can consciously project themselves in the future and imagine themselves at different places. Do mental time travel and mental space navigation abilities share common cognitive and neural mechanisms? To test this, we recorded fMRI while participants mentally projected themselves in time or in space (e.g., 9 years ago, in Paris) and ordered historical events from their mental perspective. Behavioral patterns were comparable for mental time and space and shaped by self-projection and by the distance of historical events to the mental position of the self, suggesting the existence of egocentric mapping in both dimensions. Nonetheless, self-projection in space engaged the medial and lateral parietal cortices, whereas self-projection in time engaged a widespread parietofrontal network. Moreover, while a large distributed network was found for spatial distances, temporal distances specifically engaged the right inferior parietal cortex and the anterior insula. Across these networks, a robust overlap was only found in a small region of the inferior parietal lobe, adding evidence for its role in domain-general egocentric mapping. Our findings suggest that mental travel in time or space capitalizes on egocentric remapping and on distance computation, which are implemented in distinct dimension-specific cortical networks converging in inferior parietal lobe. As humans, we can consciously imagine ourselves at a different time (mental time travel) or at a different place (mental space navigation). Are such abilities domain-general, or are the temporal and spatial dimensions of our conscious experience separable? Here, we tested the hypothesis that mental time travel and mental space navigation required the egocentric remapping of events, including the estimation of their distances to the self. We report that, although both remapping and distance computation are foundational for the processing of the temporal and spatial dimensions of our conscious experience, their neuroanatomical implementations were clearly dissociable and engaged distinct parietal and parietofrontal networks for mental space navigation and mental time travel, respectively. Copyright © 2016 the authors 0270-6474/16/3611891-13$15.00/0.
Bando, Silvia Yumi; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre V.; Pimentel-Silva, Luciana R.; Castro, Luiz HM.; Wen, Hung-Tzu; Amaro, Edson; Moreira-Filho, Carlos Alberto
2013-01-01
We previously described – studying transcriptional signatures of hippocampal CA3 explants – that febrile (FS) and afebrile (NFS) forms of refractory mesial temporal lobe epilepsy constitute two distinct genomic phenotypes. That network analysis was based on a limited number (hundreds) of differentially expressed genes (DE networks) among a large set of valid transcripts (close to two tens of thousands). Here we developed a methodology for complex network visualization (3D) and analysis that allows the categorization of network nodes according to distinct hierarchical levels of gene-gene connections (node degree) and of interconnection between node neighbors (concentric node degree). Hubs are highly connected nodes, VIPs have low node degree but connect only with hubs, and high-hubs have VIP status and high overall number of connections. Studying the whole set of CA3 valid transcripts we: i) obtained complete transcriptional networks (CO) for FS and NFS phenotypic groups; ii) examined how CO and DE networks are related; iii) characterized genomic and molecular mechanisms underlying FS and NFS phenotypes, identifying potential novel targets for therapeutic interventions. We found that: i) DE hubs and VIPs are evenly distributed inside the CO networks; ii) most DE hubs and VIPs are related to synaptic transmission and neuronal excitability whereas most CO hubs, VIPs and high hubs are related to neuronal differentiation, homeostasis and neuroprotection, indicating compensatory mechanisms. Complex network visualization and analysis is a useful tool for systems biology approaches to multifactorial diseases. Network centrality observed for hubs, VIPs and high hubs of CO networks, is consistent with the network disease model, where a group of nodes whose perturbation leads to a disease phenotype occupies a central position in the network. Conceivably, the chance for exerting therapeutic effects through the modulation of particular genes will be higher if these genes are highly interconnected in transcriptional networks. PMID:24278214
Riederer, Franz; Bittsanský, Michal; Lehner-Baumgartner, Eva; Baumgartner, Christoph; Mlynárik, Vladimír; Gruber, Stephan; Moser, Ewald; Kaya, Marihan; Serles, Wolfgang
2007-11-07
There is evidence that chronic pharmacoresistant temporal lobe epilepsy (TLE) is a progressive disorder accompanied by mental deterioration. We investigated effects of aging on cerebral N-acetyl-aspartate (NAA) concentrations in the temporal lobe of 12 patients with pharmacoresistant mesial TLE (mTLE) and 22 healthy controls by means of proton-magnetic resonance spectroscopy ((1)H-MRS) at 3 T. Furthermore, we calculated correlations between NAA concentrations and measures of verbal and figural memory in patients. In mTLE patients but not in healthy controls the concentration of NAA in the lateral temporal lobe was negatively correlated with age. In patients with mTLE NAA in left lateral temporal voxels correlated with verbal memory. NAA in medial temporal voxels did not correlate with age or neuropsychological measures. Significant decrease of NAA with age in the lateral temporal lobe of patients with mTLE provides evidence for progressive neuronal dysfunction with aging. NAA is a marker of neuronal integrity since it correlates with verbal memory.
Temporal lobe anatomy: eight imaging signs to facilitate interpretation of MRI.
Lehman, Vance T; Black, David F; Bernstein, Matt A; Welker, Kirk M
2016-05-01
The temporal lobe is anatomically and functionally complex. However, relatively few radiologic signs are described to facilitate recognition of temporal lobe sulci and gyri in clinical practice. We devised and tested 8 radiologic signs of temporal lobe anatomy. Images from volumetric magnetization-prepared rapid gradient-echo imaging were analyzed of 100 temporal lobes from 26 female and 24 male patients. Patient age ranged from 1 to 79 years (mean 19 years; standard deviation 16 years). Standardized axial, coronal, and sagittal planes were evaluated and cross-referenced. Eight signs to delineate the superior temporal gyrus, Heschl gyrus (HG), parahippocampal gyrus, rhinal sulcus, collateral sulcus proper, or the occipitotemporal sulcus, or a combination, were evaluated in the sagittal or axial plane. Two neuroradiologists independently evaluated each sign; the sign was considered present only with positive reader agreement. All 8 signs were present in most patients. The most frequent signs were the posterior insular corner to identify HG in the axial plane (100 %), pointed STG to identify STG in the axial plane (98 %), and parahippocampal Y to identify the posterior parahippocampal gyrus in the sagittal plane (98 %). The frequencies were similar between the right and left cerebral hemispheres. Temporal lobe gyri and sulci can be reliably identified in multiple planes using anatomic signs.
DEPDC5 mutations are not a frequent cause of familial temporal lobe epilepsy.
Striano, Pasquale; Serioli, Elena; Santulli, Lia; Manna, Ida; Labate, Angelo; Dazzo, Emanuela; Pasini, Elena; Gambardella, Antonio; Michelucci, Roberto; Striano, Salvatore; Nobile, Carlo
2015-10-01
Mutations in the DEPDC5 (DEP domain-containing protein 5) gene are a major cause of familial focal epilepsy with variable foci (FFEVF) and are predicted to account for 12-37% of families with inherited focal epilepsies. To assess the clinical impact of DEPDC5 mutations in familial temporal lobe epilepsy, we screened a collection of Italian families with either autosomal dominant lateral temporal epilepsy (ADLTE) or familial mesial temporal lobe epilepsy (FMTLE). The probands of 28 families classified as ADLTE and 17 families as FMTLE were screened for DEPDC5 mutations by whole exome or targeted massive parallel sequencing. Putative mutations were validated by Sanger sequencing. We identified a DEPDC5 nonsense mutation (c.918C>G; p.Tyr306*) in a family with two affected members, clinically classified as FMTLE. The proband had temporal lobe seizures with prominent psychic symptoms (déjà vu, derealization, and forced thoughts); her mother had temporal lobe seizures, mainly featuring visceral epigastric auras and anxiety. In total, we found a single DEPDC5 mutation in one of (2.2%) 45 families with genetic temporal lobe epilepsy, a proportion much lower than that reported in other inherited focal epilepsies. © 2015 The Authors. Epilepsia published by Wiley Periodicals Inc. on behalf of International League Against Epilepsy.
Craniopharyngioma in the Temporal Lobe: A Case Report
Baik, Seung Kug; Kim, Sang-Pyo; Kim, Il-Man; Sevick, Robert J.
2004-01-01
Herein, we report on an unusual case of craniopharyngioma arising in the temporal lobe with no prior history of surgery and with no connection to the craniopharyngeal duct. MR images showed a cystic tumor with a small solid portion. To the best of our knowledge, this is the first case of a craniopharyngioma occurring in the temporal lobe. PMID:15064562
Displaced aggression predicts switching deficits in people with temporal lobe epilepsy.
Gul, Amara; Ahmad, Hira
2014-12-01
This study examined the relationship between task-switching abilities and displaced aggression in people with temporal lobe epilepsy (PWE). Participants (35 PWE and 35 healthy controls) performed emotion and gender classification switching tasks. People with temporal lobe epilepsy showed larger switch costs than controls. This result reflected task-switching deficits in PWE. People with temporal lobe epilepsy reported higher anger rumination, revenge planning, and behavioral displaced aggression compared with controls. Displaced aggression was a significant predictor of the task switch costs. It is suggested that displaced aggression is a significant marker of task-switching deficits. Copyright © 2014 Elsevier Inc. All rights reserved.
Lateralising value of experiential hallucinations in temporal lobe epilepsy.
Heydrich, Lukas; Marillier, Guillaume; Evans, Nathan; Blanke, Olaf; Seeck, Margitta
2015-11-01
Ever since John Hughlings Jackson first described the so-called 'dreamy state' during temporal lobe epilepsy, that is, the sense of an abnormal familiarity (déjà vu) or vivid memory-like hallucinations from the past (experiential hallucinations), these phenomena have been studied and repeatedly linked to mesial temporal lobe structures. However, little is known about the lateralising value of either déjà vu or experiential hallucinations. We analysed a sample of 28 patients with intractable focal epilepsy suffering from either déjà vu or experiential hallucinations. All the patients underwent thorough presurgical examination, including MRI, positron emission tomography, single-photon emission CT, EEG and neuropsychological examination. While déjà vu was due to right or left mesial temporal lobe epilepsy, experiential hallucinations were strongly lateralised to the left mesial temporal lobe. Moreover, there was a significant effect for interictal language deficits being more frequent in patients suffering from experiential hallucinations. These results suggest a lateralising value for experiential hallucinations to the left temporal lobe. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Sex differences in verbal and nonverbal learning before and after temporal lobe epilepsy surgery.
Berger, Justus; Oltmanns, Frank; Holtkamp, Martin; Bengner, Thomas
2017-01-01
Women outperform men in a host of episodic memory tasks, yet the neuroanatomical basis for this effect is unclear. It has been suggested that the anterior temporal lobe might be especially relevant for sex differences in memory. In the current study, we investigated whether temporal lobe epilepsy (TLE) has an influence on sex effects in learning and memory and whether women and men with TLE differ in their risk for memory deficits after epilepsy surgery. 177 patients (53 women and 41 men with left TLE, 42 women and 41 men with right TLE) were neuropsychologically tested before and one year after temporal lobe resection. We found that women with TLE had better verbal, but not figural, memory than men with TLE. The female advantage in verbal memory was not affected by temporal lobe resection. The same pattern of results was found in a more homogeneous subsample of 84 patients with only hippocampal sclerosis who were seizure-free after surgery. Our findings challenge the concept that the anterior temporal lobe plays a central role in the verbal memory advantage for women. Copyright © 2016 Elsevier Inc. All rights reserved.
Brown, Franklin C; Hirsch, Lawrence J; Spencer, Dennis D
2015-11-01
This study examined the ability of an asymmetrical dot location memory test (Brown Location Test, BLT) and two verbal memory tests (Verbal Selective Reminding Test (VSRT) and California Verbal Learning Test, Second Edition (CVLT-II)) to correctly lateralize left (LTLE) or right (RTLE) mesial temporal lobe epilepsy that was confirmed with video-EEG. Subjects consisted of 16 patients with medically refractory RTLE and 13 patients with medically refractory LTLE who were left hemisphere language dominant. Positive predictive values for lateralizing TLE correctly were 87.5% for the BLT, 72.7% for the VSRT, and 80% for the CVLT-II. Binary logistic regression indicated that the BLT alone correctly classified 76.9% of patients with left temporal lobe epilepsy and 87.5% of patients with right temporal lobe epilepsy. Inclusion of the verbal memory tests improved this to 92.3% of patients with left temporal lobe epilepsy and 100% correct classification of patients with right temporal lobe epilepsy. Though of a limited sample size, this study suggests that the BLT alone provides strong laterality information which improves with the addition of verbal memory tests. Copyright © 2015 Elsevier Inc. All rights reserved.
Auditory temporal processing in patients with temporal lobe epilepsy.
Lavasani, Azam Navaei; Mohammadkhani, Ghassem; Motamedi, Mahmoud; Karimi, Leyla Jalilvand; Jalaei, Shohreh; Shojaei, Fereshteh Sadat; Danesh, Ali; Azimi, Hadi
2016-07-01
Auditory temporal processing is the main feature of speech processing ability. Patients with temporal lobe epilepsy, despite their normal hearing sensitivity, may present speech recognition disorders. The present study was carried out to evaluate the auditory temporal processing in patients with unilateral TLE. The present study was carried out on 25 patients with epilepsy: 11 patients with right temporal lobe epilepsy and 14 with left temporal lobe epilepsy with a mean age of 31.1years and 18 control participants with a mean age of 29.4years. The two experimental and control groups were evaluated via gap-in-noise and duration pattern sequence tests. One-way ANOVA was run to analyze the data. The mean of the threshold of the GIN test in the control group was observed to be better than that in participants with LTLE and RTLE. Also, it was observed that the percentage of correct responses on the DPS test in the control group and in participants with RTLE was better than that in participants with LTLE. Patients with TLE have difficulties in temporal processing. Difficulties are more significant in patients with LTLE, likely because the left temporal lobe is specialized for the processing of temporal information. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDonald, Mark W., E-mail: markmcdonaldmd@gmail.com; Indiana University Health Proton Therapy Center, Bloomington, Indiana; Linton, Okechukwu R.
Purpose: We evaluated patient and treatment parameters correlated with development of temporal lobe radiation necrosis. Methods and Materials: This was a retrospective analysis of a cohort of 66 patients treated for skull base chordoma, chondrosarcoma, adenoid cystic carcinoma, or sinonasal malignancies between 2005 and 2012, who had at least 6 months of clinical and radiographic follow-up. The median radiation dose was 75.6 Gy (relative biological effectiveness [RBE]). Analyzed factors included gender, age, hypertension, diabetes, smoking status, use of chemotherapy, and the absolute dose:volume data for both the right and left temporal lobes, considered separately. A generalized estimating equation (GEE) regression analysis evaluatedmore » potential predictors of radiation necrosis, and the median effective concentration (EC50) model estimated dose–volume parameters associated with radiation necrosis. Results: Median follow-up time was 31 months (range 6-96 months) and was 34 months in patients who were alive. The Kaplan-Meier estimate of overall survival at 3 years was 84.9%. The 3-year estimate of any grade temporal lobe radiation necrosis was 12.4%, and for grade 2 or higher radiation necrosis was 5.7%. On multivariate GEE, only dose–volume relationships were associated with the risk of radiation necrosis. In the EC50 model, all dose levels from 10 to 70 Gy (RBE) were highly correlated with radiation necrosis, with a 15% 3-year risk of any-grade temporal lobe radiation necrosis when the absolute volume of a temporal lobe receiving 60 Gy (RBE) (aV60) exceeded 5.5 cm{sup 3}, or aV70 > 1.7 cm{sup 3}. Conclusions: Dose–volume parameters are highly correlated with the risk of developing temporal lobe radiation necrosis. In this study the risk of radiation necrosis increased sharply when the temporal lobe aV60 exceeded 5.5 cm{sup 3} or aV70 > 1.7 cm{sup 3}. Treatment planning goals should include constraints on the volume of temporal lobes receiving higher dose. The EC50 model provides suggested dose–volume temporal lobe constraints for conventionally fractionated high-dose skull base radiation therapy.« less
Coan, Ana C.; Campos, Brunno M.; Yasuda, Clarissa L.; Kubota, Bruno Y.; Bergo, Felipe PG.; Guerreiro, Carlos AM.; Cendes, Fernando
2014-01-01
Objective Patients with temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) have diffuse subtle gray matter (GM) atrophy detectable by MRI quantification analyses. However, it is not clear whether the etiology and seizure frequency are associated with this atrophy. We aimed to evaluate the occurrence of GM atrophy and the influence of seizure frequency in patients with TLE and either normal MRI (TLE-NL) or MRI signs of HS (TLE-HS). Methods We evaluated a group of 172 consecutive patients with unilateral TLE-HS or TLE-NL as defined by hippocampal volumetry and signal quantification (122 TLE-HS and 50 TLE-NL) plus a group of 82 healthy individuals. Voxel-based morphometry was performed with VBM8/SPM8 in 3T MRIs. Patients with up to three complex partial seizures and no generalized tonic-clonic seizures in the previous year were considered to have infrequent seizures. Those who did not fulfill these criteria were considered to have frequent seizures. Results Patients with TLE-HS had more pronounced GM atrophy, including the ipsilateral mesial temporal structures, temporal lobe, bilateral thalami and pre/post-central gyri. Patients with TLE-NL had more subtle GM atrophy, including the ipsilateral orbitofrontal cortex, bilateral thalami and pre/post-central gyri. Both TLE-HS and TLE-NL showed increased GM volume in the contralateral pons. TLE-HS patients with frequent seizures had more pronounced GM atrophy in extra-temporal regions than TLE-HS with infrequent seizures. Patients with TLE-NL and infrequent seizures had no detectable GM atrophy. In both TLE-HS and TLE-NL, the duration of epilepsy correlated with GM atrophy in extra-hippocampal regions. Conclusion Although a diffuse network GM atrophy occurs in both TLE-HS and TLE-NL, this is strikingly more evident in TLE-HS and in patients with frequent seizures. These findings suggest that neocortical atrophy in TLE is related to the ongoing seizures and epilepsy duration, while thalamic atrophy is more probably related to the original epileptogenic process. PMID:24475055
Frontal lobe connectivity and cognitive impairment in pediatric frontal lobe epilepsy.
Braakman, Hilde M H; Vaessen, Maarten J; Jansen, Jacobus F A; Debeij-van Hall, Mariette H J A; de Louw, Anton; Hofman, Paul A M; Vles, Johan S H; Aldenkamp, Albert P; Backes, Walter H
2013-03-01
Cognitive impairment is frequent in children with frontal lobe epilepsy (FLE), but its etiology is unknown. With functional magnetic resonance imaging (fMRI), we have explored the relationship between brain activation, functional connectivity, and cognitive functioning in a cohort of pediatric patients with FLE and healthy controls. Thirty-two children aged 8-13 years with FLE of unknown cause and 41 healthy age-matched controls underwent neuropsychological assessment and structural and functional brain MRI. We investigated to which extent brain regions activated in response to a working memory task and assessed functional connectivity between distant brain regions. Data of patients were compared to controls, and patients were grouped as cognitively impaired or unimpaired. Children with FLE showed a global decrease in functional brain connectivity compared to healthy controls, whereas brain activation patterns in children with FLE remained relatively intact. Children with FLE complicated by cognitive impairment typically showed a decrease in frontal lobe connectivity. This decreased frontal lobe connectivity comprised both connections within the frontal lobe as well as connections from the frontal lobe to the parietal lobe, temporal lobe, cerebellum, and basal ganglia. Decreased functional frontal lobe connectivity is associated with cognitive impairment in pediatric FLE. The importance of impairment of functional integrity within the frontal lobe network, as well as its connections to distant areas, provides new insights in the etiology of the broad-range cognitive impairments in children with FLE. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
Functional connectivity in task-negative network of the Deaf: effects of sign language experience
Talavage, Thomas M.; Wilbur, Ronnie B.
2014-01-01
Prior studies investigating cortical processing in Deaf signers suggest that life-long experience with sign language and/or auditory deprivation may alter the brain’s anatomical structure and the function of brain regions typically recruited for auditory processing (Emmorey et al., 2010; Pénicaud et al., 2013 inter alia). We report the first investigation of the task-negative network in Deaf signers and its functional connectivity—the temporal correlations among spatially remote neurophysiological events. We show that Deaf signers manifest increased functional connectivity between posterior cingulate/precuneus and left medial temporal gyrus (MTG), but also inferior parietal lobe and medial temporal gyrus in the right hemisphere- areas that have been found to show functional recruitment specifically during sign language processing. These findings suggest that the organization of the brain at the level of inter-network connectivity is likely affected by experience with processing visual language, although sensory deprivation could be another source of the difference. We hypothesize that connectivity alterations in the task negative network reflect predictive/automatized processing of the visual signal. PMID:25024915
Astrocyte uncoupling as a cause of human temporal lobe epilepsy.
Bedner, Peter; Dupper, Alexander; Hüttmann, Kerstin; Müller, Julia; Herde, Michel K; Dublin, Pavel; Deshpande, Tushar; Schramm, Johannes; Häussler, Ute; Haas, Carola A; Henneberger, Christian; Theis, Martin; Steinhäuser, Christian
2015-05-01
Glial cells are now recognized as active communication partners in the central nervous system, and this new perspective has rekindled the question of their role in pathology. In the present study we analysed functional properties of astrocytes in hippocampal specimens from patients with mesial temporal lobe epilepsy without (n = 44) and with sclerosis (n = 75) combining patch clamp recording, K(+) concentration analysis, electroencephalography/video-monitoring, and fate mapping analysis. We found that the hippocampus of patients with mesial temporal lobe epilepsy with sclerosis is completely devoid of bona fide astrocytes and gap junction coupling, whereas coupled astrocytes were abundantly present in non-sclerotic specimens. To decide whether these glial changes represent cause or effect of mesial temporal lobe epilepsy with sclerosis, we developed a mouse model that reproduced key features of human mesial temporal lobe epilepsy with sclerosis. In this model, uncoupling impaired K(+) buffering and temporally preceded apoptotic neuronal death and the generation of spontaneous seizures. Uncoupling was induced through intraperitoneal injection of lipopolysaccharide, prevented in Toll-like receptor4 knockout mice and reproduced in situ through acute cytokine or lipopolysaccharide incubation. Fate mapping confirmed that in the course of mesial temporal lobe epilepsy with sclerosis, astrocytes acquire an atypical functional phenotype and lose coupling. These data suggest that astrocyte dysfunction might be a prime cause of mesial temporal lobe epilepsy with sclerosis and identify novel targets for anti-epileptogenic therapeutic intervention. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Brain networks governing the golf swing in professional golfers.
Kim, Jin Hyun; Han, Joung Kyue; Kim, Bung-Nyun; Han, Doug Hyun
2015-01-01
Golf, as with most complex motor skills, requires multiple different brain functions, including attention, motor planning, coordination, calculation of timing, and emotional control. In this study we assessed the correlation between swing components and brain connectivity from the cerebellum to the cerebrum. Ten female golf players and 10 age-matched female controls were recruited. In order to determine swing consistency among participants, the standard deviation (SD) of the mean swing speed time and the SD of the mean swing angle were assessed over 30 swings. Functional brain connectivity was assessed by resting state functional MRI. Pro-golfers showed greater positive left cerebellum connectivity to the occipital lobe, temporal lobe, parietal lobe and both frontal lobes compared to controls. The SD of play scores was positively correlated with the SD of the impact angle. Constant swing speed and back swing angle in professional golfers were associated with functional connectivity (FC) between the cerebellum and parietal and frontal lobes. In addition, the constant impact angle in professional golfers was associated with improved golf scores and additional FC of the thalamus.
Familial mesial temporal lobe epilepsy: a benign epilepsy syndrome showing complex inheritance.
Crompton, Douglas E; Scheffer, Ingrid E; Taylor, Isabella; Cook, Mark J; McKelvie, Penelope A; Vears, Danya F; Lawrence, Kate M; McMahon, Jacinta M; Grinton, Bronwyn E; McIntosh, Anne M; Berkovic, Samuel F
2010-11-01
Temporal lobe epilepsy is the commonest partial epilepsy of adulthood. Although generally perceived as an acquired disorder, several forms of familial temporal lobe epilepsy, with mesial or lateral seizure semiology, have been described. Descriptions of familial mesial temporal lobe epilepsy have varied widely from a benign epilepsy syndrome with prominent déjà vu and without antecedent febrile seizures or magnetic resonance imaging abnormalities, to heterogeneous, but generally more refractory epilepsies, often with a history of febrile seizures and with frequent hippocampal atrophy and high T₂ signal on magnetic resonance imaging. Compelling evidence of a genetic aetiology (rather than chance aggregation) in familial mesial temporal lobe epilepsy has come from twin studies. Dominant inheritance has been reported in two large families, though the usual mode of inheritance is not known. Here, we describe clinical and neurophysiological features of 20 new mesial temporal lobe epilepsy families including 51 affected individuals. The epilepsies in these families were generally benign, and febrile seizure history was infrequent (9.8%). No evidence of hippocampal sclerosis or dysplasia was present on brain imaging. A single individual underwent anterior temporal lobectomy, with subsequent seizure freedom and histopathological evidence of hippocampal sclerosis was not found. Inheritance patterns in probands' relatives were analysed in these families, together with 19 other temporal lobe epilepsy families previously reported by us. Observed frequencies of epilepsies in relatives were lower than predicted by dominant Mendelian models, while only a minority (8/39) of families could be compatible with recessive inheritance. These findings strongly suggest that complex inheritance, similar to that widely accepted in the idiopathic generalized epilepsies, is the usual mode of inheritance in familial mesial temporal lobe epilepsy. This disorder, which appears to be relatively common, and not typically associated with hippocampal sclerosis, is an appropriate target for contemporary approaches to complex disorders such as genome-wide association studies for common genetic variants or deep sequencing for rare variants.
Yang, Peng-Fan; Pei, Jia-Sheng; Jia, Yan-Zeng; Lin, Qiao; Xiao, Hui; Zhang, Ting-Ting; Zhong, Zhong-Hui
2018-02-01
Operative strategies for cerebral cavernous malformation (CCM)-associated temporal lobe epilepsy and timing of surgical intervention continue to be debated. This study aimed to establish an algorithm to evaluate the efficacy of surgical intervention strategies, to maximize positive surgical outcomes and minimize postsurgical neurologic deficits. 47 patients having undergone operation for CCM-associated temporal lobe epilepsy were retrospectively reviewed. They had received a diagnostic series for seizure localization, including long-term video electroencephalography (vEEG), high-resolution magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT). In patients with mesial temporal lobe CCMs, the involved structures (amygdala, hippocampus, or parahippocampal gyrus) were resected in addition to the lesions. Patients with neocortical epileptogenic CCM underwent extended lesionectomy guided by intraoperative electrocorticography; further performance of amygdalohippocampectomy depended on the extent of hippocampal epileptogenicity. The study cohort contained 28 patients with drug-resistant epilepsy (DRE), 12 with chronic epilepsy (CE), and 7 with sporadic seizure (SS). Normal temporal lobe metabolism was seen in 7/7 patients of the SS group. Hypometabolism was found in all patients with chronic disease except for those with posterior inferior and middle temporal gyrus cavernous malformations (CMs). Of the 31 patients with superficial neocortical CCM, 7 had normal PET without hippocampal sclerosis, 14 had ipsilateral temporal lobe hypometabolism without hippocampal sclerosis, and 10 had obvious hippocampal sclerosis and hypometabolism. Seizure freedom in DRE, CE, and SS was 82.1%, 75%, and 100%, respectively. A significant difference was found between lesion laterality and postoperative seizure control; the rate was lower in left-sided cases because of less aggressive resection. Our study demonstrates that the data from the presurgical evaluation, particularly regarding CM location, responsiveness to antiepileptic drugs, and temporal lobe metabolism, are crucial parameters for choosing surgical approaches to CCM-associated temporal lobe epilepsy. By this operative strategy, patients may receive maximized seizure control and minimized postsurgical neurologic sequelae. Copyright © 2017 Elsevier Inc. All rights reserved.
Midline thalamic neurons are differentially engaged during hippocampus network oscillations.
Lara-Vásquez, Ariel; Espinosa, Nelson; Durán, Ernesto; Stockle, Marcelo; Fuentealba, Pablo
2016-07-14
The midline thalamus is reciprocally connected with the medial temporal lobe, where neural circuitry essential for spatial navigation and memory formation resides. Yet, little information is available on the dynamic relationship between activity patterns in the midline thalamus and medial temporal lobe. Here, we report on the functional heterogeneity of anatomically-identified thalamic neurons and the differential modulation of their activity with respect to dorsal hippocampal rhythms in the anesthetized mouse. Midline thalamic neurons expressing the calcium-binding protein calretinin, irrespective of their selective co-expression of calbindin, discharged at overall low levels, did not increase their activity during hippocampal theta oscillations, and their firing rates were inhibited during hippocampal sharp wave-ripples. Conversely, thalamic neurons lacking calretinin discharged at higher rates, increased their activity during hippocampal theta waves, but remained unaffected during sharp wave-ripples. Our results indicate that the midline thalamic system comprises at least two different classes of thalamic projection neuron, which can be partly defined by their differential engagement by hippocampal pathways during specific network oscillations that accompany distinct behavioral contexts. Thus, different midline thalamic neuronal populations might be selectively recruited to support distinct stages of memory processing, consistent with the thalamus being pivotal in the dialogue of cortical circuits.
Mesial Temporal Sclerosis: Accuracy of NeuroQuant versus Neuroradiologist.
Azab, M; Carone, M; Ying, S H; Yousem, D M
2015-08-01
We sought to compare the accuracy of a volumetric fully automated computer assessment of hippocampal volume asymmetry versus neuroradiologists' interpretations of the temporal lobes for mesial temporal sclerosis. Detecting mesial temporal sclerosis (MTS) is important for the evaluation of patients with temporal lobe epilepsy as it often guides surgical intervention. One feature of MTS is hippocampal volume loss. Electronic medical record and researcher reports of scans of patients with proved mesial temporal sclerosis were compared with volumetric assessment with an FDA-approved software package, NeuroQuant, for detection of mesial temporal sclerosis in 63 patients. The degree of volumetric asymmetry was analyzed to determine the neuroradiologists' threshold for detecting right-left asymmetry in temporal lobe volumes. Thirty-six patients had left-lateralized MTS, 25 had right-lateralized MTS, and 2 had bilateral MTS. The estimated accuracy of the neuroradiologist was 72.6% with a κ statistic of 0.512 (95% CI, 0.315-0.710) [moderate agreement, P < 3 × 10(-6)]), whereas the estimated accuracy of NeuroQuant was 79.4% with a κ statistic of 0.588 (95% CI, 0.388-0.787) [moderate agreement, P < 2 × 10(-6)]). This discrepancy in accuracy was not statistically significant. When at least a 5%-10% volume discrepancy between temporal lobes was present, the neuroradiologists detected it 75%-80% of the time. As a stand-alone fully automated software program that can process temporal lobe volume in 5-10 minutes, NeuroQuant compares favorably with trained neuroradiologists in predicting the side of mesial temporal sclerosis. Neuroradiologists can often detect even small temporal lobe volumetric changes visually. © 2015 by American Journal of Neuroradiology.
Neurobiological underpinnings of shame and guilt: a pilot fMRI study
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R.; Reiser, Maximilian
2014-01-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.’s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings. PMID:23051901
Neurobiological underpinnings of shame and guilt: a pilot fMRI study.
Michl, Petra; Meindl, Thomas; Meister, Franziska; Born, Christine; Engel, Rolf R; Reiser, Maximilian; Hennig-Fast, Kristina
2014-02-01
In this study, a functional magnetic resonance imaging paradigm originally employed by Takahashi et al. was adapted to look for emotion-specific differences in functional brain activity within a healthy German sample (N = 14), using shame- and guilt-related stimuli and neutral stimuli. Activations were found for both of these emotions in the temporal lobe (shame condition: anterior cingulate cortex, parahippocampal gyrus; guilt condition: fusiform gyrus, middle temporal gyrus). Specific activations were found for shame in the frontal lobe (medial and inferior frontal gyrus), and for guilt in the amygdala and insula. This is consistent with Takahashi et al.'s results obtained for a Japanese sample (using Japanese stimuli), which showed activations in the fusiform gyrus, hippocampus, middle occipital gyrus and parahippocampal gyrus. During the imagination of shame, frontal and temporal areas (e.g. middle frontal gyrus and parahippocampal gyrus) were responsive regardless of gender. In the guilt condition, women only activate temporal regions, whereas men showed additional frontal and occipital activation as well as a responsive amygdala. The results suggest that shame and guilt share some neural networks, as well as having individual areas of activation. It can be concluded that frontal, temporal and limbic areas play a prominent role in the generation of moral feelings.
Viskontas, Indre V
2008-12-01
To gain a complete understanding of how the brain functions, both in illness and good health, data from multiple levels of analysis must be integrated. Technical advances have made direct recordings of neuronal activity deep inside the human brain tractable, providing a rare glimpse into cellular processes during long-term memory formation. Recent findings using intracranial recordings in the medial temporal lobe inform current neural network models of memory, and may lead to a more comprehensive understanding of the neural basis of memory-related processes. These recordings have shown that cells in the hippocampus appear to support declarative learning by distinguishing novel and familiar stimuli via changes in firing patterns. Some cells with highly selective and invariant responses have also been described, and these responses seem to represent abstract concepts such as identity, rather than superficial perceptual features of items. Importantly, however, both selective and globally responsive cells are capable of changing their preferred stimulus depending on the conscious demands of the task. Firing patterns of human medial temporal lobe neurons indicate that cells can be both plastic and stable in terms of the information that they code; although some cells show highly selective and reproducible excitatory responses when presented with a familiar object, other cells change their receptive fields in line with changes in experience and the cognitive environment.
Abnormalities of Intrinsic Functional Connectivity in Autism Spectrum Disorders
Monk, Christopher S.; Peltier, Scott J.; Wiggins, Jillian Lee; Weng, Shih-Jen; Carrasco, Melisa; Risi, Susan; Lord, Catherine
2009-01-01
Autism spectrum disorders (ASD) impact social functioning and communication, and individuals with these disorders often have restrictive and repetitive behaviors. Accumulating data indicate that ASD is associated with alterations of neural circuitry. Functional MRI (FMRI) studies have focused on connectivity in the context of psychological tasks. However, even in the absence of a task, the brain exhibits a high degree of functional connectivity, known as intrinsic or resting connectivity. Notably, the default network, which includes the posterior cingulate cortex, retro-splenial, lateral parietal cortex/angular gyrus, medial prefrontal cortex, superior frontal gyrus, temporal lobe, and parahippocampal gyrus, is strongly active when there is no task. Altered intrinsic connectivity within the default network may underlie offline processing that may actuate ASD impairments. Using FMRI, we sought to evaluate intrinsic connectivity within the default network in ASD. Relative to controls, the ASD group showed weaker connectivity between the posterior cingulate cortex and superior frontal gyrus and stronger connectivity between the posterior cingulate cortex and both the right temporal lobe and right parahippocampal gyrus. Moreover, poorer social functioning in the ASD group was correlated with weaker connectivity between the posterior cingulate cortex and the superior frontal gyrus. In addition, more severe restricted and repetitive behaviors in ASD were correlated with stronger connectivity between the posterior cingulate cortex and right parahippocampal gyrus. These findings indicate that ASD subjects show altered intrinsic connectivity within the default network, and connectivity between these structures is associated with specific ASD symptoms. PMID:19409498
Cellular and network properties of the subiculum in the pilocarpine model of temporal lobe epilepsy.
Knopp, Andreas; Kivi, Anatol; Wozny, Christian; Heinemann, Uwe; Behr, Joachim
2005-03-21
The subiculum was recently shown to be crucially involved in the generation of interictal activity in human temporal lobe epilepsy. Using the pilocarpine model of epilepsy, this study examines the anatomical substrates for network hyperexcitability recorded in the subiculum. Regular- and burst-spiking subicular pyramidal cells were stained with fluorescence dyes and reconstructed to analyze seizure-induced alterations of the dendritic and axonal system. In control animals burst-spiking cells outnumbered regular-spiking cells by about two to one. Regular- and burst-spiking cells were characterized by extensive axonal branching and autapse-like contacts, suggesting a high intrinsic connectivity. In addition, subicular axons projecting to CA1 indicate a CA1-subiculum-CA1 circuit. In the subiculum of pilocarpine-treated rats we found an enhanced network excitability characterized by spontaneous rhythmic activity, polysynaptic responses, and all-or-none evoked bursts of action potentials. In pilocarpine-treated rats the subiculum showed cell loss of about 30%. The ratio of regular- and burst-spiking cells was practically inverse as compared to control preparations. A reduced arborization and spine density in the proximal part of the apical dendrites suggests a partial deafferentiation from CA1. In pilocarpine-treated rats no increased axonal outgrowth of pyramidal cells was observed. Hence, axonal sprouting of subicular pyramidal cells is not mandatory for the development of the pathological events. We suggest that pilocarpine-induced seizures cause an unmasking or strengthening of synaptic contacts within the recurrent subicular network. Copyright 2005 Wiley-Liss, Inc.
Clinical correlates of graph theory findings in temporal lobe epilepsy.
Haneef, Zulfi; Chiang, Sharon
2014-11-01
Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30-50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. Copyright © 2014 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Clinical correlates of graph theory findings in temporal lobe epilepsy
Haneef, Zulfi; Chiang, Sharon
2014-01-01
Purpose Temporal lobe epilepsy (TLE) is considered a brain network disorder, additionally representing the most common form of pharmaco-resistant epilepsy in adults. There is increasing evidence that seizures in TLE arise from abnormal epileptogenic networks, which extend beyond the clinico-radiologically determined epileptogenic zone and may contribute to the failure rate of 30–50% following epilepsy surgery. Graph theory allows for a network-based representation of TLE brain networks using several neuroimaging and electrophysiologic modalities, and has potential to provide clinicians with clinically useful biomarkers for diagnostic and prognostic purposes. Methods We performed a review of the current state of graph theory findings in TLE as they pertain to localization of the epileptogenic zone, prediction of pre- and post-surgical seizure frequency and cognitive performance, and monitoring cognitive decline in TLE. Results Although different neuroimaging and electrophysiologic modalities have yielded occasionally conflicting results, several potential biomarkers have been characterized for identifying the epileptogenic zone, pre-/post-surgical seizure prediction, and assessing cognitive performance. For localization, graph theory measures of centrality have shown the most potential, including betweenness centrality, outdegree, and graph index complexity, whereas for prediction of seizure frequency, measures of synchronizability have shown the most potential. The utility of clustering coefficient and characteristic path length for assessing cognitive performance in TLE is also discussed. Conclusions Future studies integrating data from multiple modalities and testing predictive models are needed to clarify findings and develop graph theory for its clinical utility. PMID:25127370
Subthalamic nucleus stimulation affects theory of mind network: a PET study in Parkinson's disease.
Péron, Julie; Le Jeune, Florence; Haegelen, Claire; Dondaine, Thibaut; Drapier, Dominique; Sauleau, Paul; Reymann, Jean-Michel; Drapier, Sophie; Rouaud, Tiphaine; Millet, Bruno; Vérin, Marc
2010-03-29
There appears to be an overlap between the limbic system, which is modulated by subthalamic nucleus (STN) deep brain stimulation (DBS) in Parkinson's disease (PD), and the brain network that mediates theory of mind (ToM). Accordingly, the aim of the present study was to investigate the effects of STN DBS on ToM of PD patients and to correlate ToM modifications with changes in glucose metabolism. To this end, we conducted (18)FDG-PET scans in 13 PD patients in pre- and post-STN DBS conditions and correlated changes in their glucose metabolism with modified performances on the Eyes test, a visual ToM task requiring them to describe thoughts or feelings conveyed by photographs of the eye region. Postoperative PD performances on this emotion recognition task were significantly worse than either preoperative PD performances or those of healthy controls (HC), whereas there was no significant difference between preoperative PD and HC. Conversely, PD patients in the postoperative condition performed within the normal range on the gender attribution task included in the Eyes test. As far as the metabolic results are concerned, there were correlations between decreased cerebral glucose metabolism and impaired ToM in several cortical areas: the bilateral cingulate gyrus (BA 31), right middle frontal gyrus (BA 8, 9 and 10), left middle frontal gyrus (BA 6), temporal lobe (fusiform gyrus, BA 20), bilateral parietal lobe (right BA 3 and right and left BA 7) and bilateral occipital lobe (BA 19). There were also correlations between increased cerebral glucose metabolism and impaired ToM in the left superior temporal gyrus (BA 22), left inferior frontal gyrus (BA 13 and BA 47) and right inferior frontal gyrus (BA 47). All these structures overlap with the brain network that mediates ToM. These results seem to confirm that STN DBS hinders the ability to infer the mental states of others and modulates a distributed network known to subtend ToM.
Effects of smoking marijuana on brain perfusion and cognition.
O'Leary, Daniel S; Block, Robert I; Koeppel, Julie A; Flaum, Michael; Schultz, Susan K; Andreasen, Nancy C; Ponto, Laura Boles; Watkins, G Leonard; Hurtig, Richard R; Hichwa, Richard D
2002-06-01
The effects of smoking marijuana on regional cerebral blood flow (rCBF) and cognitive performance were assessed in 12 recreational users in a double-blinded, placebo-controlled study. PET with [(15)Oxygen]-labeled water ([(15)O]H(2)O) was used to measure rCBF before and after smoking of marijuana and placebo cigarettes, as subjects repeatedly performed an auditory attention task. Smoking marijuana resulted in intoxication, as assessed by a behavioral rating scale, but did not significantly alter mean behavioral performance on the attention task. Heart rate and blood pressure increased dramatically following smoking of marijuana but not placebo cigarettes. However, mean global CBF did not change significantly. Increased rCBF was observed in orbital and mesial frontal lobes, insula, temporal poles, anterior cingulate, as well as in the cerebellum. The increases in rCBF in anterior brain regions were predominantly in "paralimbic" regions and may be related to marijuana's mood-related effects. Reduced rCBF was observed in temporal lobe auditory regions, in visual cortex, and in brain regions that may be part of an attentional network (parietal lobe, frontal lobe and thalamus). These rCBF decreases may be the neural basis of perceptual and cognitive alterations that occur with acute marijuana intoxication. There was no significant rCBF change in the nucleus accumbens or other reward-related brain regions, nor in basal ganglia or hippocampus, which have a high density of cannabinoid receptors.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
Behaviors induced or disrupted by complex partial seizures.
Leung, L S; Ma, J; McLachlan, R S
2000-09-01
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
An unusual case of complicated temporal lobe abscess following tympanomastoidectomy
Yin, Tuanfang; Ren, Jihao; Lu, Yongde; Chen, Xing; Wang, Yaowen; Huang, Fengying
2013-01-01
We report a unusual case of complicated temporal lobe abscess following tympanomastoidectomy in a 26-year-old Chinese man here. The patient complained of binaural recurrent purulent discharge accompanied by hearing loss more than 10 years, then he received a right tympanomastoidectomy three months ago, but 3 weeks after surgery, he started to experience fierce headache and nausea and so on. The CT and MRI suggested the diagnosis of right temporal lobe abscess and then right temporal lobe abscess was excised. The patient was successfully treated with a right temporal lobe abscess resection and a radical right mastoidectomy. Although the cerebral abscess following radical tympanomastoidectomy are extremely rare, we should pay attention to it. we suggest the main reasons was still suffering from purulent discharge in the ear after the first tympanomastoidectomy, the granulation and cholesteatoma failed to completely remove during the first operation. and even resulted in substantial bone defect. It is well-known that good drainage is a key to reduce intra-cranial complications. PMID:23826430
2014-09-01
delivery persistently reduces seizure severity in a rat model of temporal lobe epilepsy ," Session number: 314, Session title: Non-pharmacological...delivery persistently reduces seizure severity in a rat model of temporal lobe epilepsy Location: WCC Hall A-C Presentation time: Monday, Nov 17, 2014...therapeutic potential administered prior to last-resort neurosurgical resections in pharmacoresistant cases of temporal lobe epilepsy . Disclosures: G. Natarajan
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2013-07-01
temporal lobe epilepsy (TLE), a frequently medically intractable and permanent epilepsy syndrome. Unlike many TLE models, which cause global brain injury...addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well-established etiology of temporal lobe epilepsy (TLE), a...is one of the most common causes of temporal lobe epilepsy (TLE). Changes in inhibitory signaling after CCI include hilar inhibitory neuron loss
Epilepsy in multiple sclerosis: The role of temporal lobe damage.
Calabrese, M; Castellaro, M; Bertoldo, A; De Luca, A; Pizzini, F B; Ricciardi, G K; Pitteri, M; Zimatore, S; Magliozzi, R; Benedetti, M D; Manganotti, P; Montemezzi, S; Reynolds, R; Gajofatto, A; Monaco, S
2017-03-01
Although temporal lobe pathology may explain some of the symptoms of multiple sclerosis (MS), its role in the pathogenesis of seizures has not been clarified yet. To investigate the role of temporal lobe damage in MS patients suffering from epilepsy, by the application of advanced multimodal 3T magnetic resonance imaging (MRI) analysis. A total of 23 relapsing remitting MS patients who had epileptic seizures (RRMS/E) and 23 disease duration matched RRMS patients without any history of seizures were enrolled. Each patient underwent advanced 3T MRI protocol specifically conceived to evaluate grey matter (GM) damage. This includes grey matter lesions (GMLs) identification, evaluation of regional cortical thickness and indices derived from the Neurite Orientation Dispersion and Density Imaging model. Regional analysis revealed that in RRMS/E, the regions most affected by GMLs were the hippocampus (14.2%), the lateral temporal lobe (13.5%), the cingulate (10.0%) and the insula (8.4%). Cortical thinning and alteration of diffusion metrics were observed in several regions of temporal lobe, in insular cortex and in cingulate gyrus of RRMS/E compared to RRMS ( p< 0.05 for all comparisons). Compared to RRMS, RRMS/E showed more severe damage of temporal lobe, which exceeds what would be expected on the basis of the global GM damage observed.
Ercan, Serdar; Scerrati, Alba; Wu, Phengfei; Zhang, Jun; Ammirati, Mario
2017-07-01
OBJECTIVE The subtemporal approach is one of the surgical routes used to reach the interpeduncular fossa. Keyhole subtemporal approaches and zygomatic arch osteotomy have been proposed in an effort to decrease the amount of temporal lobe retraction. However, the effects of these modified subtemporal approaches on temporal lobe retraction have never been objectively validated. METHODS A keyhole and a classic subtemporal craniotomy were executed in 4 fresh-frozen silicone-injected cadaver heads. The target was defined as the area bordered by the superior cerebellar artery, the anterior clinoid process, supraclinoid internal carotid artery, and the posterior cerebral artery. Once the target was fully visualized, the authors evaluated the amount of temporal lobe retraction by measuring the distance between the base of the middle fossa and the temporal lobe. In addition, the volume of the surgical and anatomical corridors was assessed as well as the surgical maneuverability using navigation and 3D moldings. The same evaluation was conducted after a zygomatic osteotomy was added to the two approaches. RESULTS Temporal lobe retraction was the same in the two approaches evaluated while the surgical corridor and the maneuverability were all greater in the classic subtemporal approach. CONCLUSIONS The zygomatic arch osteotomy facilitates the maneuverability and the surgical volume in both approaches, but the temporal lobe retraction benefit is confined to the lateral part of the middle fossa skull base and does not result in the retraction necessary to expose the selected target.
[Successful treatment with anti-epileptic-drug of an 83-year-old man with musical hallucinosis].
Futamura, Akinori; Katoh, Hirotaka; Kawamura, Mitsuru
2014-05-01
An 83-year-old man with 3 years symptomatic hearing loss suddenly experienced musical hallucinosis. He heard children's songs, folk songs, military songs, and the Japanese national anthem for seven months every day. He sometime had paroxysmal nausea, dull headaches and depressive mood. On examination he had no psychosis or neurological symptoms except sensorineural hearing loss in both ears. MRI brain imaging and electroencephalography showed no significant abnormalities, however 123I-IMP brain SPECT showed decreased activity in the right temporal lobe and increased activity in the left temporal and parietal lobes. Late phase 123I-iomazenil brain SPECT showed decreased accumulation in the right temporal lobe compared to the early phase. This indicates right temporal lobe epilepsy. He was diagnosed with epilepsy because of paroxysmal nausea and headache and the laterality of 123I-IMP brain SPECT and 123I-iomazenil brain SPECT. The musical hallucinosis was much reduced by carbamazepine 200mg per day. Nine months after beginning carbamazepine we detected decreased activity in the right temporal lobe and increased activity in left temporal and parietal lobes was improved. We do not believe he had epileptogenic musical hallucinosis because his musical hallusinosis was neither paroxysmal nor lateral. We diagnosed auditory Charles Bonnet syndrome with onset 3 years after sensorineural hearing loss due to reversible epileptic like discharge in temporal and parietal lobes. There is no established treatment for musical hallucinosis, but anti-epileptic drugs may be of some help.
Bostock, Emmanuelle C S; Kirkby, Kenneth C; Garry, Michael I; Taylor, Bruce V M
2017-01-01
Bipolar disorder (BD) and temporal lobe epilepsy (TLE) overlap in domains including epidemiology, treatment response, shared neurotransmitter involvement and temporal lobe pathology. Comparison of cognitive function in both disorders may indicate temporal lobe mediated processes relevant to BD. This systematic review examines neuropsychological test profiles in euthymic bipolar disorder type I (BD-I) and pre-surgical TLE and compares experimental designs used. A search of PubMed, PsychINFO, and Scopus using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted. Inclusion criteria were comparison group or pre- to post-surgical patients; reported neuropsychological tests; participants aged 18-60 years. Fifty six studies met criteria: 27 BD-I; 29 TLE. Deficits in BD-I compared to healthy controls (HC) were in executive function, attention span and verbal memory. Deficits in TLE compared to HC were in executive function and memory. In the pre- to post-surgical comparisons, verbal memory in left temporal lobe (LTL) and, less consistently, visuospatial memory in right temporal lobe (RTL) epilepsy declined following surgery. BD-I studies used comprehensive test batteries in well-defined euthymic patients compared to matched HC groups. TLE studies used convenience samples pre- to post-surgery, comparing LTL and RTL subgroups, few included comparisons to HC (5 studies). TLE studies typically examined a narrow range of known temporal lobe-mediated neuropsychological functions, particularly verbal and visuospatial memory. Both disorders exhibit deficits in executive function and verbal memory suggestive of both frontal and temporal lobe involvement. However, deficits in TLE are measured pre- to post-surgery and not controlled at baseline pre-surgery. Further research involving a head-to-head comparison of the two disorders on a broad range of neuropsychological tests is needed to clarify the nature and extent of cognitive deficits and potential overlaps.
Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.
Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico
2009-10-01
Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.
Neocortical Temporal Lobe Epilepsy
Bercovici, Eduard; Kumar, Balagobal Santosh; Mirsattari, Seyed M.
2012-01-01
Complex partial seizures (CPSs) can present with various semiologies, while mesial temporal lobe epilepsy (mTLE) is a well-recognized cause of CPS, neocortical temporal lobe epilepsy (nTLE) albeit being less common is increasingly recognized as separate disease entity. Differentiating the two remains a challenge for epileptologists as many symptoms overlap due to reciprocal connections between the neocortical and the mesial temporal regions. Various studies have attempted to correctly localize the seizure focus in nTLE as patients with this disorder may benefit from surgery. While earlier work predicted poor outcomes in this population, recent work challenges those ideas yielding good outcomes in part due to better localization using improved anatomical and functional techniques. This paper provides a comprehensive review of the diagnostic workup, particularly the application of recent advances in electroencephalography and functional brain imaging, in neocortical temporal lobe epilepsy. PMID:22953057
ERIC Educational Resources Information Center
Hayes, Scott M.; Buchler, Norbou; Stokes, Jared; Kragel, James; Cabeza, Roberto
2011-01-01
Although the medial-temporal lobes (MTL), PFC, and parietal cortex are considered primary nodes in the episodic memory network, there is much debate regarding the contributions of MTL, PFC, and parietal subregions to recollection versus familiarity (dual-process theory) and the feasibility of accounts on the basis of a single memory strength…
Preoperative EEG predicts memory and selective cognitive functions after temporal lobe surgery.
Tuunainen, A; Nousiainen, U; Hurskainen, H; Leinonen, E; Pilke, A; Mervaala, E; Vapalahti, M; Partanen, J; Riekkinen, P
1995-01-01
Preoperative and postoperative cognitive and memory functions, psychiatric outcome, and EEGs were evaluated in 32 epileptic patients who underwent temporal lobe surgery. The presence and location of preoperative slow wave focus in routine EEG predicted memory functions of the non-resected side after surgery. Neuropsychological tests of the function of the frontal lobes also showed improvement. Moreover, psychiatric ratings showed that seizure free patients had significantly less affective symptoms postoperatively than those who were still exhibiting seizures. After temporal lobectomies, successful outcome in postoperative memory functions can be achieved in patients with unilateral slow wave activity in preoperative EEGs. This study suggests a new role for routine EEG in preoperative evaluation of patients with temporal lobe epilepsy. PMID:7608663
A dedicated network for social interaction processing in the primate brain.
Sliwa, J; Freiwald, W A
2017-05-19
Primate cognition requires interaction processing. Interactions can reveal otherwise hidden properties of intentional agents, such as thoughts and feelings, and of inanimate objects, such as mass and material. Where and how interaction analyses are implemented in the brain is unknown. Using whole-brain functional magnetic resonance imaging in macaque monkeys, we discovered a network centered in the medial and ventrolateral prefrontal cortex that is exclusively engaged in social interaction analysis. Exclusivity of specialization was found for no other function anywhere in the brain. Two additional networks, a parieto-premotor and a temporal one, exhibited both social and physical interaction preference, which, in the temporal lobe, mapped onto a fine-grain pattern of object, body, and face selectivity. Extent and location of a dedicated system for social interaction analysis suggest that this function is an evolutionary forerunner of human mind-reading capabilities. Copyright © 2017, American Association for the Advancement of Science.
Feng, Li; Motelow, Joshua E; Ma, Chanthia; Biche, William; McCafferty, Cian; Smith, Nicholas; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro; Blumenfeld, Hal
2017-11-22
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. Copyright © 2017 the authors 0270-6474/17/3711441-14$15.00/0.
Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan
2015-01-01
Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single-unit activity for the prediction of seizure onset and closed-loop seizure intervention, we show a need for monitoring brain state to interpret correctly whether changes in neural activity before seizure onset is pathological or normal. Moreover, we also find that the brain state preceding a seizure determines the success of therapeutic interventions to curtail seizure duration. Together, these findings suggest that seizure prediction and intervention will be more successful if tailored for the specific brain states from which seizures emerge. PMID:26609157
Feng, Li; Motelow, Joshua E.; Ma, Chanthia; Liu, Mengran; Zhan, Qiong; Jia, Ruonan; Xiao, Bo; Duque, Alvaro
2017-01-01
The thalamus plays diverse roles in cortical-subcortical brain activity patterns. Recent work suggests that focal temporal lobe seizures depress subcortical arousal systems and convert cortical activity into a pattern resembling slow-wave sleep. The potential simultaneous and paradoxical role of the thalamus in both limbic seizure propagation, and in sleep-like cortical rhythms has not been investigated. We recorded neuronal activity from the central lateral (CL), anterior (ANT), and ventral posteromedial (VPM) nuclei of the thalamus in an established female rat model of focal limbic seizures. We found that population firing of neurons in CL decreased during seizures while the cortex exhibited slow waves. In contrast, ANT showed a trend toward increased neuronal firing compatible with polyspike seizure discharges seen in the hippocampus. Meanwhile, VPM exhibited a remarkable increase in sleep spindles during focal seizures. Single-unit juxtacellular recordings from CL demonstrated reduced overall firing rates, but a switch in firing pattern from single spikes to burst firing during seizures. These findings suggest that different thalamic nuclei play very different roles in focal limbic seizures. While limbic nuclei, such as ANT, appear to participate directly in seizure propagation, arousal nuclei, such as CL, may contribute to depressed cortical function, whereas sleep spindles in relay nuclei, such as VPM, may interrupt thalamocortical information flow. These combined effects could be critical for controlling both seizure severity and impairment of consciousness. Further understanding of differential effects of seizures on different thalamocortical networks may lead to improved treatments directly targeting these modes of impaired function. SIGNIFICANCE STATEMENT Temporal lobe epilepsy has a major negative impact on quality of life. Previous work suggests that the thalamus plays a critical role in thalamocortical network modulation and subcortical arousal maintenance, but its precise seizure-associated functions are not known. We recorded neuronal activity in three different thalamic regions and found divergent activity patterns, which may respectively participate in seizure propagation, impaired level of conscious arousal, and altered relay of information to the cortex during focal limbic seizures. These very different activity patterns within the thalamus may help explain why focal temporal lobe seizures often disrupt widespread network function, and can help guide future treatments aimed at restoring normal thalamocortical network activity and cognition. PMID:29066556
Temporal Lobe Epilepsy Surgery Failures: A Review
Harroud, Adil; Bouthillier, Alain; Weil, Alexander G.; Nguyen, Dang Khoa
2012-01-01
Patients with temporal lobe epilepsy (TLE) are refractory to antiepileptic drugs in about 30% of cases. Surgical treatment has been shown to be beneficial for the selected patients but fails to provide a seizure-free outcome in 20–30% of TLE patients. Several reasons have been identified to explain these surgical failures. This paper will address the five most common causes of TLE surgery failure (a) insufficient resection of epileptogenic mesial temporal structures, (b) relapse on the contralateral mesial temporal lobe, (c) lateral temporal neocortical epilepsy, (d) coexistence of mesial temporal sclerosis and a neocortical lesion (dual pathology); and (e) extratemporal lobe epilepsy mimicking TLE or temporal plus epilepsy. Persistence of epileptogenic mesial structures in the posterior temporal region and failure to distinguish mesial and lateral temporal epilepsy are possible causes of seizure persistence after TLE surgery. In cases of dual pathology, failure to identify a subtle mesial temporal sclerosis or regions of cortical microdysgenesis is a likely explanation for some surgical failures. Extratemporal epilepsy syndromes masquerading as or coexistent with TLE result in incomplete resection of the epileptogenic zone and seizure relapse after surgery. In particular, the insula may be an important cause of surgical failure in patients with TLE. PMID:22934162
Radiosurgery in the Management of Intractable Mesial Temporal Lobe Epilepsy.
Peñagarícano, José; Serletis, Demitre
2015-09-01
Mesial temporal lobe epilepsy (MTLE) describes recurrent seizure activity originating from the depths of the temporal lobe. MTLE patients who fail two trials of medication now require testing for surgical candidacy at an epilepsy center. For these individuals, temporal lobectomy offers the greatest likelihood for seizure-freedom (up to 80-90%); unfortunately, this procedure remains largely underutilized. Moreover, for select patients unable to tolerate open surgery, novel techniques are emerging for selective ablation of the mesial temporal structures, including stereotactic radiosurgery (SRS). We present here a review of SRS as a potential therapy for MTLE, when open surgery is not an option.
Radiosurgery for Medial Temporal Lobe Epilepsy Resulting from Mesial Temporal Sclerosis.
Gianaris, Thomas; Witt, Thomas; Barbaro, Nicholas M
2016-01-01
Medial temporal lobe epilepsy associated with mesial temporal sclerosis (MTS) is perhaps the most well-defined epilepsy syndrome that is responsive to structural interventions such as surgery. Several minimally invasive techniques have arisen that provide additional options for the treatment of MTS while potentially avoiding many of open surgery's associated risks. By evading these risks, they also open up treatment options to patients who otherwise are poor surgical candidates. Radiosurgery is one of the most intensively studied of these alternatives and has found a growing role in the treatment of medial temporal lobe epilepsy. Copyright © 2016 Elsevier Inc. All rights reserved.
Arain, Amir M; Azar, Nabil J; Lagrange, Andre H; McLean, Michael; Singh, Pradumna; Sonmezturk, Hasan; Konrad, Peter; Neimat, Joseph; Abou-Khalil, Bassel
2016-11-01
Hypermotor seizures are most often reported from the frontal lobe but may also have temporal, parietal, or insular origin. We noted a higher proportion of patients with temporal lobe epilepsy in our surgical cohort who had hypermotor seizures. We evaluated the anatomic localization and surgical outcome in patient with refractory hypermotor seizures who had epilepsy surgery in our center. We identified twenty three patients with refractory hypermotor seizures from our epilepsy surgery database. We analyzed demographics, presurgical evaluation including semiology, MRI, PET scan, interictal/ictal scalp video-EEG, intracranial recording, and surgical outcomes. We evaluated preoperative variables as predictors of outcome. Most patients (65%) had normal brain MRI. Intracranial EEG was required in 20 patients (86.9%). Based on the presurgical evaluation, the resection was anterior temporal in fourteen patients, orbitofrontal in four patients, cingulate in four patients, and temporoparietal in one patient. The median duration of follow-up after surgery was 76.4months. Fourteen patients (60%) had been seizure free at the last follow up while 3 patients had rare disabling seizures. Hypermotor seizures often originated from the temporal lobe in this series of patients who had epilepsy surgery. This large proportion of temporal lobe epilepsy may be the result of a selection bias, due to easier localization and expected better outcome in temporal lobe epilepsy. With extensive presurgical evaluation, including intracranial EEG when needed, seizure freedom can be expected in the majority of patients. Copyright © 2016. Published by Elsevier Inc.
Superficial Temporal Artery-Superior Cerebellar Artery Bypass with Anterior Petrosectomy.
Hokari, Masaaki; Asaoka, Katsuyuki; Shimbo, Daisuke; Uchida, Kazuki; Itamoto, Koji
2018-06-01
Superficial temporal artery (STA) to superior cerebellar artery (SCA) bypass is associated with a relatively high risk of surgical complications, such as hematoma and/or edema caused by temporal lobe retraction. Therefore, the right side is typically used to avoid retraction of the left temporal lobe. In this report, we present a case of left STA-SCA bypass with anterior petrosectomy to avoid retraction of dominant-side temporal lobe and describe the surgical technique in detail. A 69-year-old man presented with gradual worsening of dysarthria and gait disturbance. Magnetic resonance imaging showed no signs of acute infarction, but digital subtraction angiography showed severe stenosis of basilar artery and faint flow in the distal basilar artery. On 3-dimensional computed tomography angiography, posterior communicating arteries were not visualized; we could identify the left SCA, but not the right SCA. Despite dual antiplatelet therapy, a small fresh brainstem infarct was detected 10 days after admission. To avert fatal brainstem infarction and further enlargement of the infarct, we performed left STA-SCA bypass with anterior petrosectomy to avoid retraction of the dominant-side temporal lobe. Postoperative imaging revealed no new lesions, such as infarction or temporal lobe contusional hematoma, and confirmed the patency of the bypass. Postoperative single-photon emission computed tomography demonstrated improved cerebral blood flow in the posterior circulation. The patient was transferred to another hospital for rehabilitation. This method helps minimize the risk of injury to the temporal lobe, especially that of the dominant side. Copyright © 2018. Published by Elsevier Inc.
Olichney, John M; Riggins, Brock R; Hillert, Dieter G; Nowacki, Ralph; Tecoma, Evelyn; Kutas, Marta; Iragui, Vicente J
2002-07-01
We studied 14 patients with well-characterized refractory temporal lobe epilepsy (TLE), 7 with right temporal lobe epilepsy (RTE) and 7 with left temporal lobe epilepsy (LTE), on a word repetition ERP experiment. Much prior literature supports the view that patients with left TLE are more likely to develop verbal memory deficits, often attributable to left hippocampal sclerosis. Our main objectives were to test if abnormalities of the N400 or Late Positive Component (LPC, P600) were associated with a left temporal seizure focus, or left temporal lobe dysfunction. A minimum of 19 channels of EEG/EOG data were collected while subjects performed a semantic categorization task. Auditory category statements were followed by a visual target word, which were 50% "congruous" (category exemplars) and 50% "incongruous" (non-category exemplars) with the preceding semantic context. These auditory-visual pairings were repeated pseudo-randomly at time intervals ranging from approximately 10-140 seconds later. The ERP data were submitted to repeated-measures ANOVAs, which showed the RTE group had generally normal effects of word repetition on the LPC and the N400. Also, the N400 component was larger to incongruous than congruous new words, as is normally the case. In contrast, the LTE group did not have statistically significant effects of either word repetition or congruity on their ERPs (N400 or LPC), suggesting that this ERP semantic categorization paradigm is sensitive to left temporal lobe dysfunction. Further studies are ongoing to determine if these ERP abnormalities predict hippocampal sclerosis on histopathology, or outcome after anterior temporal lobectomy.
The neurobiology of cognitive disorders in temporal lobe epilepsy
Bell, Brian; Lin, Jack J.; Seidenberg, Michael; Hermann, Bruce
2013-01-01
Cognitive impairment and especially memory disruption is a major complicating feature of the epilepsies. In this review we begin with a focus on the problem of memory impairment in temporal lobe epilepsy. We start with a brief overview of the early development of knowledge regarding the anatomic substrates of memory disorder in temporal lobe epilepsy, followed by discussion of the refinement of that knowledge over time as informed by the outcomes of epilepsy surgery (anterior temporal lobectomy) and the clinical efforts to predict those patients at greatest risk of adverse cognitive outcomes following epilepsy surgery. These efforts also yielded new theoretical insights regarding the function of the human hippocampus and a few examples of these insights are touched on briefly. Finally, the vastly changing view of temporal lobe epilepsy is examined including findings demonstrating that anatomic abnormalities extend far outside the temporal lobe, cognitive impairments extend beyond memory function, with linkage of these distributed cognitive and anatomic abnormalities pointing to a new understanding of the anatomic architecture of cognitive impairment in epilepsy. Challenges remain in understanding the origin of these cognitive and anatomic abnormalities, their progression over time, and most importantly, how to intervene to protect cognitive and brain health in epilepsy. PMID:21304484
Neuropsychological outcome after traumatic temporal lobe damage.
Formisano, R; Schmidhuber-Eiler, B; Saltuari, L; Cigany, E; Birbamer, G; Gerstenbrand, F
1991-01-01
The most frequent sequelae after severe brain injury include changes in personality traits, disturbances of emotional behaviour and impairment of cognitive functions. In particular, emotional changes and/or verbal and non verbal dysfunctions were found in patients with bilateral or unilateral temporal lobe lesions. The aim of our study is to correlate the localization of the brain damage after severe brain injury, in particular of the temporal lobe, with the cognitive impairment and the emotional and behavioural changes resulting from these lesions. The patients with right temporal lobe lesions showed significantly better scores in verbal intelligence and verbal memory in comparison with patients with left temporal lobe lesions and those with other focal brain lesions or diffuse brain damage. In contradistinction, study of the personality and the emotional changes (MMPI and FAF) failed to demonstrate pathological scores in the 3 groups with different CT lesions, without any significant difference being found between the groups with temporal lesions and those with other focal brain lesions or diffuse brain damage. The severity of the brain injury and the prolongation of the disturbance of consciousness could, in our patients, account for prevalence of congnitive impairment on personality and emotional changes.
Chen, H Isaac; Bohman, Leif-Erik; Emery, Lyndsey; Martinez-Lage, Maria; Richardson, Andrew G; Davis, Kathryn A; Pollard, John R; Litt, Brian; Gausas, Roberta E; Lucas, Timothy H
2015-01-01
Transorbital approaches traditionally have focused on skull base and cavernous sinus lesions medial to the globe. Lateral orbital approaches to the temporal lobe have not been widely explored despite several theoretical advantages compared to open craniotomy. Recently, we demonstrated the feasibility of the lateral transorbital technique in cadaveric specimens with endoscopic visualization. We describe our initial clinical experience with the endoscope-assisted lateral transorbital approach to lesions in the temporal lobe. Two patients with mesial temporal lobe pathology presenting with seizures underwent surgery. The use of a transpalpebral or Stallard-Wright eyebrow incision enabled access to the intraorbital compartment, and a lateral orbital wall 'keyhole' opening permitted visualization of the anterior temporal pole. This approach afforded adequate access to the surgical target and surrounding structures and was well tolerated by the patients. To the best of our knowledge, this report constitutes the first case series describing the endoscope-assisted lateral transorbital approach to the temporal lobe. We discuss the limits of exposure, the nuances of opening and closing, and comparisons to open craniotomy. Further prospective investigation of this approach is warranted for comparison to traditional approaches to the mesial temporal lobe. © 2015 S. Karger AG, Basel.
Seizure semiology identifies patients with bilateral temporal lobe epilepsy.
Loesch, Anna Mira; Feddersen, Berend; Tezer, F Irsel; Hartl, Elisabeth; Rémi, Jan; Vollmar, Christian; Noachtar, Soheyl
2015-01-01
Laterality in temporal lobe epilepsy is usually defined by EEG and imaging results. We investigated whether the analysis of seizure semiology including lateralizing seizure phenomena identifies bilateral independent temporal lobe seizure onset. We investigated the seizure semiology in 17 patients in whom invasive EEG-video-monitoring documented bilateral temporal seizure onset. The results were compared to 20 left and 20 right consecutive temporal lobe epilepsy (TLE) patients who were seizure free after anterior temporal lobe resection. The seizure semiology was analyzed using the semiological seizure classification with particular emphasis on the sequence of seizure phenomena over time and lateralizing seizure phenomena. Statistical analysis included chi-square test or Fisher's exact test. Bitemporal lobe epilepsy patients had more frequently different seizure semiology (100% vs. 40%; p<0.001) and significantly more often lateralizing seizure phenomena pointing to bilateral seizure onset compared to patients with unilateral TLE (67% vs. 11%; p<0.001). The sensitivity of identical vs. different seizure semiology for the identification of bilateral TLE was high (100%) with a specificity of 60%. Lateralizing seizure phenomena had a low sensitivity (59%) but a high specificity (89%). The combination of lateralizing seizure phenomena and different seizure semiology showed a high specificity (94%) but a low sensitivity (59%). The analysis of seizure semiology including lateralizing seizure phenomena adds important clinical information to identify patients with bilateral TLE. Copyright © 2014 Elsevier B.V. All rights reserved.
Mapping Anterior Temporal Lobe Language Areas with FMRI: A Multi-Center Normative Study
Binder, Jeffrey R.; Gross, William L.; Allendorfer, Jane B.; Bonilha, Leonardo; Chapin, Jessica; Edwards, Jonathan C.; Grabowski, Thomas J.; Langfitt, John T.; Loring, David W.; Lowe, Mark J.; Koenig, Katherine; Morgan, Paul S.; Ojemann, Jeffrey G.; Rorden, Christopher; Szaflarski, Jerzy P.; Tivarus, Madalina E.; Weaver, Kurt E.
2010-01-01
Removal of the anterior temporal lobe (ATL) is an effective surgical treatment for intractable temporal lobe epilepsy but carries a risk of language and verbal memory deficits. Preoperative localization of functional zones in the ATL might help reduce these risks, yet fMRI protocols in current widespread use produce very little activation in this region. Based on recent evidence suggesting a role for the ATL in semantic integration, we designed an fMRI protocol comparing comprehension of brief narratives (Story task) with a semantically shallow control task involving serial arithmetic (Math task). The Story > Math contrast elicited strong activation throughout the ATL, lateral temporal lobe, and medial temporal lobe bilaterally in an initial cohort of 18 healthy participants. The task protocol was then implemented at 6 other imaging centers using identical methods. Data from a second cohort of participants scanned at these centers closely replicated the results from the initial cohort. The Story-Math protocol provides a reliable method for activation of surgical regions of interest in the ATL. The bilateral activation supports previous claims that conceptual processing involves both temporal lobes. Used in combination with language lateralization measures, reliable ATL activation maps may be useful for predicting cognitive outcome in ATL surgery, though the validity of this approach needs to be established in a prospective surgical series. PMID:20884358
Familial temporal lobe epilepsy due to focal cortical dysplasia type IIIa.
Fabera, Petr; Krijtova, Hana; Tomasek, Martin; Krysl, David; Zamecnik, Josef; Mohapl, Milan; Jiruska, Premysl; Marusic, Petr
2015-09-01
Focal cortical dysplasia (FCD) represents a common cause of refractory epilepsy. It is considered a sporadic disorder, but its occasional familial occurrence suggests the involvement of genetic mechanisms. Siblings with intractable epilepsy were referred for epilepsy surgery evaluation. Both patients were examined using video-EEG monitoring, MRI examination and PET imaging. They underwent left anteromedial temporal lobe resection. Electroclinical features pointed to left temporal lobe epilepsy and MRI examination revealed typical signs of left-sided hippocampal sclerosis and increased white matter signal intensity in the left temporal pole. PET examination confirmed interictal hypometabolism in the left temporal lobe. Histopathological examination of resected tissue demonstrated the presence FCD type IIIa, i.e. hippocampal sclerosis and focal cortical dysplasia in the left temporal pole. We present a unique case of refractory mesial temporal lobe epilepsy in siblings, characterized by an identical clinical profile and histopathology of FCD type IIIa, who were successfully treated by epilepsy surgery. The presence of such a high concordance between the clinical and morphological data, together with the occurrence of epilepsy and febrile seizures in three generations of the family pedigree points towards a possible genetic nature of the observed FCD type IIIa. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Bai, Feng; Zhang, Zhijun; Watson, David R; Yu, Hui; Shi, Yongmei; Yuan, Yonggui; Zang, Yufeng; Zhu, Chaozhe; Qian, Yun
2009-06-01
Functional connectivity magnetic resonance imaging technique has revealed the importance of distributed network structures in higher cognitive processes in the human brain. The hippocampus has a key role in a distributed network supporting memory encoding and retrieval. Hippocampal dysfunction is a recurrent finding in memory disorders of aging such as amnestic mild cognitive impairment (aMCI) in which learning- and memory-related cognitive abilities are the predominant impairment. The functional connectivity method provides a novel approach in our attempts to better understand the changes occurring in this structure in aMCI patients. Functional connectivity analysis was used to examine episodic memory retrieval networks in vivo in twenty 28 aMCI patients and 23 well-matched control subjects, specifically between the hippocampal structures and other brain regions. Compared with control subjects, aMCI patients showed significantly lower hippocampus functional connectivity in a network involving prefrontal lobe, temporal lobe, parietal lobe, and cerebellum, and higher functional connectivity to more diffuse areas of the brain than normal aging control subjects. In addition, those regions associated with increased functional connectivity with the hippocampus demonstrated a significantly negative correlation to episodic memory performance. aMCI patients displayed altered patterns of functional connectivity during memory retrieval. The degree of this disturbance appears to be related to level of impairment of processes involved in memory function. Because aMCI is a putative prodromal syndrome to Alzheimer's disease (AD), these early changes in functional connectivity involving the hippocampus may yield important new data to predict whether a patient will eventually develop AD.
Levels of processing with free and cued recall and unilateral temporal lobe epilepsy.
Lespinet-Najib, Véronique; N'Kaoua, Bernard; Sauzéon, Hélène; Bresson, Christel; Rougier, Alain; Claverie, Bernard
2004-04-01
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.
Jack, C R; Twomey, C K; Zinsmeister, A R; Sharbrough, F W; Petersen, R C; Cascino, G D
1989-08-01
Volumes of the right and left anterior temporal lobes and hippocampal formations were measured from magnetic resonance images in 52 healthy volunteers, aged 20-40 years. Subjects were selected by age, sex, and handedness to evaluate possible effect of these variables. Data were normalized for variation in total intracranial volume between individuals. Right-left asymmetry in the volumes of the anterior temporal lobes and hippocampal formations was a normal finding. The anterior temporal lobe of the non-dominant (right) hemisphere was larger than the left by a small (mean right-left difference, 2.3 cm3) but statistically significant amount (P less than .005) in right-handed subjects. No significant effect of age or sex was seen in normalized right or left anterior temporal lobe volume. The right hippocampal formation was larger than the left for all subjects by a small (mean right-left difference, 0.3 cm3) but statistically significant amount (P less than .001). No effect of age, sex, or handedness was seen in normalized hippocampal formation volumes.
A Method for Automatic Extracting Intracranial Region in MR Brain Image
NASA Astrophysics Data System (ADS)
Kurokawa, Keiji; Miura, Shin; Nishida, Makoto; Kageyama, Yoichi; Namura, Ikuro
It is well known that temporal lobe in MR brain image is in use for estimating the grade of Alzheimer-type dementia. It is difficult to use only region of temporal lobe for estimating the grade of Alzheimer-type dementia. From the standpoint for supporting the medical specialists, this paper proposes a data processing approach on the automatic extraction of the intracranial region from the MR brain image. The method is able to eliminate the cranium region with the laplacian histogram method and the brainstem with the feature points which are related to the observations given by a medical specialist. In order to examine the usefulness of the proposed approach, the percentage of the temporal lobe in the intracranial region was calculated. As a result, the percentage of temporal lobe in the intracranial region on the process of the grade was in agreement with the visual sense standards of temporal lobe atrophy given by the medical specialist. It became clear that intracranial region extracted by the proposed method was good for estimating the grade of Alzheimer-type dementia.
Garcia Espinosa, Arlety; Andrade Machado, René; Borges González, Susana; García González, María Eugenia; Pérez Montoto, Ariadna; Toledo Sotomayor, Guillermo
2010-01-01
The goal of the study described here was to determine if executive dysfunction and impulsivity are related to risk for suicide and suicide attempts in patients with temporal lobe epilepsy. Forty-two patients with temporal lobe epilepsy were recruited. A detailed medical history, neurological examination, serial EEGs, Mini-International Neuropsychiatric Interview, executive function, and MRI were assessed. Multiple regression analysis was carried out to examine predictive associations between clinical variables and Wisconsin Card Sorting Test measures. Patients' scores on the Risk for Suicide Scale (n=24) were greater than 7, which means they had the highest relative risk for suicide attempts. Family history of psychiatric disease, current major depressive episode, left temporal lobe epilepsy, and perseverative responses and total errors on the Wisconsin Card Sorting Test increased by 6.3 and 7.5 suicide risk and suicide attempts, respectively. Executive dysfunction (specifically perseverative responses and more total errors) contributed greatly to suicide risk. Executive performance has a major impact on suicide risk and suicide attempts in patients with temporal lobe epilepsy. 2009 Elsevier Inc. All rights reserved.
Easton, Alexander; Eacott, Madeline J
2010-12-31
In recent years there has been significant debate about whether there is a single medial temporal lobe memory system or dissociable systems for episodic and other types of declarative memory. In addition there has been a similar debate over the dissociability of recollection and familiarity based processes in recognition memory. Here we present evidence from recent work using episodic memory tasks in animals that allows us to explore these issues in more depth. We review studies that demonstrate triple dissociations within the medial temporal lobe, with only the hippocampal system being necessary for episodic memory. Similarly we review behavioural evidence for a dissociation in a task of episodic memory in rats where animals with lesions of the fornix are only impaired at recollection of the episodic memory, not recognition within the same trial. This work, then, supports recent models of dissociable neural systems within the medial temporal lobe but also raises questions for future investigation about the interactions of these medial temporal lobe memory systems with other structures. Copyright © 2009 Elsevier B.V. All rights reserved.
Hayashi, Norio; Sanada, Shigeru; Suzuki, Masayuki; Matsuura, Yukihiro; Kawahara, Kazuhiro; Tsujii, Hideo; Yamamoto, Tomoyuki; Matsui, Osamu
2008-02-01
The aim of this study was to develop an automated method of segmenting the cerebrum, cerebellum-brain stem, and temporal lobe simultaneously on magnetic resonance (MR) images. We obtained T1-weighted MR images from 10 normal subjects and 19 patients with brain atrophy. To perform automated volumetry from MR images, we performed the following three steps: (1) segmentation of the brain region; (2) separation between the cerebrum and the cerebellum-brain stem; and (3) segmentation of the temporal lobe. Evaluation was based on the correctly recognized region (CRR) (i.e., the region recognized by both the automated and manual methods). The mean CRRs of the normal and atrophic brains were 98.2% and 97.9% for the cerebrum, 87.9% and 88.5% for the cerebellum-brain stem, and 76.9% and 85.8% for the temporal lobe, respectively. We introduce an automated volumetric method for the cerebrum, cerebellum-brain stem, and temporal lobe on brain MR images. Our method can be applied to not only the normal brain but also the atrophic brain.
Pugash, D; Lehman, A M; Langlois, S
2014-09-01
Thanatophoric dysplasia, hypochondroplasia and achondroplasia are all caused by FGFR3 (fibroblast growth factor receptor 3) mutations. Neuropathological findings of temporal lobe dysplasia are found in thanatophoric dysplasia, and temporal and occipital lobe abnormalities have been described recently in brain imaging studies of children with hypochondroplasia. We describe twins discordant for achondroplasia, in one of whom the prenatal diagnosis was based on ultrasound and fetal MRI documentation of temporal and occipital lobe abnormalities characteristic of hypochondroplasia, in addition to the finding of short long bones. Despite the intracranial findings suggestive of hypochondroplasia, achondroplasia was confirmed following postnatal clinical and genetic testing. These intracranial abnormalities have not been previously described in a fetus with achondroplasia. Copyright © 2014 ISUOG. Published by John Wiley & Sons Ltd.
Fernandes, Myra A; Davidson, Patrick S R; Glisky, Elizabeth L; Moscovitch, Morris
2004-07-01
On the basis of their scores on composite measures of frontal and temporal lobe function, derived from neuropsychological testing, seniors were divided preexperimentally into 4 groups. Participants studied a list of unrelated words under full attention and recalled them while concurrently performing an animacy decision task to words, an odd-digit identification task to numbers, or no distracting task. Large interference effects on memory were produced by the animacy but not by the odd-digit distracting task, and this pattern was not influenced by level of frontal or temporal lobe function. Results show associative retrieval is largely disrupted by competition for common representations, and it is not affected by a reduction in general processing resources, attentional capacity, or competition for memory structures in the temporal lobe.
Cao, Song; Qin, Bangyong; Zhang, Yi; Yuan, Jie; Fu, Bao; Xie, Peng; Song, Ganjun; Li, Ying; Yu, Tian
2018-01-01
Objective: Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), which is a chronic neuropathic pain (NP). Whether the chronification from HZ to PHN induced brain functional or structural change is unknown and no study compared the changes of the same brains of patients who transited from HZ to PHN. We minimized individual differences and observed whether the chronification of HZ to PHN induces functional and pain duration dependent grey matter volume (GMV) change in HZ-PHN patients. Methods: To minimize individual differences induced error, we enrolled 12 patients with a transition from HZ to PHN. The functional and structural changes of their brains between the two states were identified with resting-state functional MRI (rs-fMRI) technique (i.e., the regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) method) and the voxel based morphometry (VBM) technology respectively. The correlations between MRI parameters (i.e., ΔReHo, ΔfALFF and ΔVBM) and Δpain duration were analyzed too. Results: Compared with HZ brains, PHN brains exhibited abnormal ReHo, fALFF and VBM values in pain matrix (the frontal lobe, parietal lobe, thalamus, limbic lobe and cerebellum) as well as the occipital lobe and temporal lobe. Nevertheless, the activity of vast area of cerebellum and frontal lobe significantly increased while that of occipital lobe and limbic lobe showed apparent decrease when HZ developed to PHN. In addition, PHN brain showed decreased GMV in the frontal lobe, the parietal lobe and the occipital lobe but increased in the cerebellum and the temporal lobe. Correlation analyses showed that some of the ReHo, fALFF and VBM differential areas (such as the cerebellum posterior lobe, the thalamus extra-nuclear and the middle temporal gyrus) correlated well with Δpain duration. Conclusions: HZ chronification induced functional and structural change in cerebellum, occipital lobe, temporal lobe, parietal lobe and limbic lobe. These changes may be correlated with HZ-PHN chronification. In addition, these changes could be reasons of refractory chronic pain of PHN. PMID:29423004
Coding of odors by temporal binding within a model network of the locust antennal lobe.
Patel, Mainak J; Rangan, Aaditya V; Cai, David
2013-01-01
The locust olfactory system interfaces with the external world through antennal receptor neurons (ORNs), which represent odors in a distributed, combinatorial manner. ORN axons bundle together to form the antennal nerve, which relays sensory information centrally to the antennal lobe (AL). Within the AL, an odor generates a dynamically evolving ensemble of active cells, leading to a stimulus-specific temporal progression of neuronal spiking. This experimental observation has led to the hypothesis that an odor is encoded within the AL by a dynamically evolving trajectory of projection neuron (PN) activity that can be decoded piecewise to ascertain odor identity. In order to study information coding within the locust AL, we developed a scaled-down model of the locust AL using Hodgkin-Huxley-type neurons and biologically realistic connectivity parameters and current components. Using our model, we examined correlations in the precise timing of spikes across multiple neurons, and our results suggest an alternative to the dynamic trajectory hypothesis. We propose that the dynamical interplay of fast and slow inhibition within the locust AL induces temporally stable correlations in the spiking activity of an odor-dependent neural subset, giving rise to a temporal binding code that allows rapid stimulus detection by downstream elements.
Staffaroni, Adam M; Melrose, Rebecca J; Leskin, Lorraine P; Riskin-Jones, Hannah; Harwood, Dylan; Mandelkern, Mark; Sultzer, David L
2017-09-01
The objective of this study was to distinguish the functional neuroanatomy of verbal learning and recognition in Alzheimer's disease (AD) using the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) Word Learning task. In 81 Veterans diagnosed with dementia due to AD, we conducted a cluster-based correlation analysis to assess the relationships between recency and recognition memory scores from the CERAD Word Learning Task and cortical metabolic activity measured using [ 18 F]-fluoro-2-deoxy-D-glucose positron emission tomography (FDG-PET). AD patients (Mini-Mental State Examination, MMSE mean = 20.2) performed significantly better on the recall of recency items during learning trials than of primacy and middle items. Recency memory was associated with cerebral metabolism in the left middle and inferior temporal gyri and left fusiform gyrus (p < .05 at the corrected cluster level). In contrast, recognition memory was correlated with metabolic activity in two clusters: (a) a large cluster that included the left hippocampus, parahippocampal gyrus, entorhinal cortex, anterior temporal lobe, and inferior and middle temporal gyri; (b) the bilateral orbitofrontal cortices (OFC). The present study further informs our understanding of the disparate functional neuroanatomy of recency memory and recognition memory in AD. We anticipated that the recency effect would be relatively preserved and associated with temporoparietal brain regions implicated in short-term verbal memory, while recognition memory would be associated with the medial temporal lobe and possibly the OFC. Consistent with our a priori hypotheses, list learning in our AD sample was characterized by a reduced primacy effect and a relatively spared recency effect; however, recency memory was associated with cerebral metabolism in inferior and lateral temporal regions associated with the semantic memory network, rather than regions associated with short-term verbal memory. The correlates of recognition memory included the medial temporal lobe and OFC, replicating prior studies.
Harciarek, Michał; Williamson, John B; Biedunkiewicz, Bogdan; Lichodziejewska-Niemierko, Monika; Dębska-Ślizień, Alicja; Rutkowski, Bolesław
2012-01-01
Although dialyzed patients often have cognitive problems, little is known about the nature of these deficits. We hypothesized that, in contrast to semantic fluency relying mainly on temporal lobes, phonemic fluency, preferentially depending on functions of frontal-subcortical systems, would be particularly sensitive to the constellation of physiological pathological processes associated with end-stage renal disease and dialysis. Therefore, we longitudinally compared phonemic and semantic fluency performance between 49 dialyzed patients and 30 controls. Overall, patients performed below controls only on the phonemic fluency task. Furthermore, their performance on this task declined over time, whereas there was no change in semantic fluency. Moreover, this decline was related to the presence of hypertension and higher blood urea nitrogen. We suggest that these findings may be due to a combination of vascular and topic effects that impact more on fronto-subcortical than temporal lobe networks, but this speculation requires direct confirmation.
Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy
Gelinas, Jennifer N.; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsáki, György
2016-01-01
Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy. PMID:27111281
Long-term consequences of a prolonged febrile seizure in a dual pathology model.
Gibbs, Steve; Chattopadhyaya, Bidisha; Desgent, Sébastien; Awad, Patricia N; Clerk-Lamalice, Olivier; Levesque, Maxime; Vianna, Rose-Mari; Rébillard, Rose-Marie; Delsemme, Andrée-Anne; Hébert, David; Tremblay, Luc; Lepage, Martin; Descarries, Laurent; Di Cristo, Graziella; Carmant, Lionel
2011-08-01
Clinical evidence suggests that febrile status epilepticus (SE) in children can lead to acute hippocampal injury and subsequent temporal lobe epilepsy. The contribution of febrile SE to the mechanisms underlying temporal lobe epilepsy are however poorly understood. A rat model of temporal lobe epilepsy following hyperthermic SE was previously established in our laboratory, wherein a focal cortical lesion induced at postnatal day 1 (P1), followed by a hyperthermic SE (more than 30 min) at P10, leads to hippocampal atrophy at P22 (dual pathology model) and spontaneous recurrent seizures (SRS) with mild visuospatial memory deficits in adult rats. The goal of this study was to identify the long term electrophysiological, anatomical and molecular changes in this model. Following hyperthermic SE, all cortically lesioned pups developed progressive SRS as adults, characterized by the onset of highly rhythmic activity in the hippocampus. A reduction of hippocampal volume on the side of the lesion preceded the SRS and was associated with a loss of hippocampal neurons, a marked decrease in pyramidal cell spine density, an increase in the hippocampal levels of NMDA receptor NR2A subunit, but no significant change in GABA receptors. These findings suggest that febrile SE in the abnormal brain leads to hippocampal injury that is followed by progressive network reorganization and molecular changes that contribute to the epileptogenesis as well as the observed memory deficits. Copyright © 2011 Elsevier Inc. All rights reserved.
Different macaque models of cognitive aging exhibit task-dependent behavioral disparities.
Comrie, Alison E; Gray, Daniel T; Smith, Anne C; Barnes, Carol A
2018-05-15
Deficits in cognitive functions that rely on the integrity of the frontal and temporal lobes are characteristic of normative human aging. Due to similar aging phenotypes and homologous cortical organization between nonhuman primates and humans, several species of macaque monkeys are used as models to explore brain senescence. These macaque species are typically regarded as equivalent models of cognitive aging, yet no direct comparisons have been made to support this assumption. Here we used adult and aged rhesus and bonnet macaques (Macaca mulatta and Macaca radiata) to characterize the effect of age on acquisition and retention of information across delays in a battery of behavioral tasks that rely on prefrontal cortex and medial temporal lobe networks. The cognitive functions that were tested include visuospatial short-term memory, object recognition memory, and object-reward association memory. In general, bonnet macaques at all ages outperformed rhesus macaques on tasks thought to rely primarily on the prefrontal cortex, and were more resilient to age-related deficits in these behaviors. On the other hand, both species were comparably impaired by age on tasks thought to preferentially engage the medial temporal lobe. Together, these results suggest that rhesus and bonnet macaques are not equivalent models of cognitive aging and highlight the value of cross-species comparisons. These observations should enable improved design and interpretation of future experiments aimed at understanding changes in cognition across the lifespan. Copyright © 2018 Elsevier B.V. All rights reserved.
Temporal order processing of syllables in the left parietal lobe.
Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius
2009-10-07
Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.
Temporal Order Processing of Syllables in the Left Parietal Lobe
Baker, Julie M.; Sanchez, Carmen E.; Rorden, Chris; Fridriksson, Julius
2009-01-01
Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere. PMID:19812331
Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda; Riba, Jordi
2017-09-01
Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the "nonjudging" subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. © The Author 2017. Published by Oxford University Press on behalf of CINP.
Sampedro, Frederic; de la Fuente Revenga, Mario; Valle, Marta; Roberto, Natalia; Domínguez-Clavé, Elisabet; Elices, Matilde; Luna, Luís Eduardo; Crippa, José Alexandre S; Hallak, Jaime E C; de Araujo, Draulio B; Friedlander, Pablo; Barker, Steven A; Álvarez, Enrique; Soler, Joaquim; Pascual, Juan C; Feilding, Amanda
2017-01-01
Abstract Background Ayahuasca is a plant tea containing the psychedelic 5-HT2A agonist N,N-dimethyltryptamine and harmala monoamine-oxidase inhibitors. Acute administration leads to neurophysiological modifications in brain regions of the default mode network, purportedly through a glutamatergic mechanism. Post-acutely, ayahuasca potentiates mindfulness capacities in volunteers and induces rapid and sustained antidepressant effects in treatment-resistant patients. However, the mechanisms underlying these fast and maintained effects are poorly understood. Here, we investigated in an open-label uncontrolled study in 16 healthy volunteers ayahuasca-induced post-acute neurometabolic and connectivity modifications and their association with mindfulness measures. Methods Using 1H-magnetic resonance spectroscopy and functional connectivity, we compared baseline and post-acute neurometabolites and seed-to-voxel connectivity in the posterior and anterior cingulate cortex after a single ayahuasca dose. Results Magnetic resonance spectroscopy showed post-acute reductions in glutamate+glutamine, creatine, and N-acetylaspartate+N-acetylaspartylglutamate in the posterior cingulate cortex. Connectivity was increased between the posterior cingulate cortex and the anterior cingulate cortex, and between the anterior cingulate cortex and limbic structures in the right medial temporal lobe. Glutamate+glutamine reductions correlated with increases in the “nonjudging” subscale of the Five Facets Mindfulness Questionnaire. Increased anterior cingulate cortex-medial temporal lobe connectivity correlated with increased scores on the self-compassion questionnaire. Post-acute neural changes predicted sustained elevations in nonjudging 2 months later. Conclusions These results support the involvement of glutamate neurotransmission in the effects of psychedelics in humans. They further suggest that neurometabolic changes in the posterior cingulate cortex, a key region within the default mode network, and increased connectivity between the anterior cingulate cortex and medial temporal lobe structures involved in emotion and memory potentially underlie the post-acute psychological effects of ayahuasca. PMID:28525587
Frontal lobe atrophy is associated with small vessel disease in ischemic stroke patients.
Chen, Yangkun; Chen, Xiangyan; Xiao, Weimin; Mok, Vincent C T; Wong, Ka Sing; Tang, Wai Kwong
2009-12-01
The pathogenesis of frontal lobe atrophy (FLA) in stroke patients is unclear. We aimed to ascertain whether subcortical ischemic changes were more associated with FLA than with parietal lobe atrophy (PLA) and temporal lobe atrophy (TLA). Brain magnetic resonance images (MRIs) from 471 Chinese ischemic stroke patients were analyzed. Lobar atrophy was defined by a widely used visual rating scale. All patients were divided into non-severe, mild-moderate, and severe atrophy of the frontal, parietal, and temporal lobe groups. The severity of white matter lesions (WMLs) was rated with the Fazekas' scale. Clinical and radiological features were compared among the groups. Subsequent logistic regressions were performed to determine the risk factors of atrophy and severe atrophy of the frontal, parietal and temporal lobes. The frequency of FLA in our cohort was 36.9% (174/471). Severe FLA occurred in 30 (6.4%) patients. Age, previous stroke, and periventricular hyperintensities (PVH) (odds ratio (OR)=1.640, p=0.039) were independent risk factors of FLA. Age and deep white matter hyperintensities (DWMH) (OR=3.634, p=0.002) were independent risk factors of severe FLA. PVH and DWMH were not independent risk factors of PLA and TLA. Frontal lobe atrophy in ischemic stroke patients may be associated with small vessel disease. The association between WMLs and FLA was predominant over atrophy of the parietal and temporal lobes, which suggests that the frontal lobe may be vulnerable to subcortical ischemic changes.
Temporal lobe epilepsy and affective disorders: the role of the subgenual anterior cingulate cortex.
Stretton, J; Pope, R A; Winston, G P; Sidhu, M K; Symms, M; Duncan, J S; Koepp, M; Thompson, P J; Foong, J
2015-02-01
Reduced deactivation within the default mode network (DMN) is common in individuals with primary affective disorders relative to healthy volunteers (HVs). It is unknown whether similar network abnormalities are present in temporal lobe epilepsy (TLE) patients with a history of affective psychopathology. 17 TLE patients with a lifetime affective diagnosis, 31 TLE patients with no formal psychiatric history and 30 HVs were included. We used a visuo-spatial 'n-back' paradigm to compare working memory (WM) network activation between these groups. Post hoc analyses included voxel-based morphometry and diffusion tensor imaging. The Beck Depression Inventory-Fast Screen and Beck Anxiety Inventory were completed on the day of scanning. Each group activated the fronto-parietal WM networks and deactivated the typical DMN in response to increasing task demands. Group comparison revealed that TLE patients with lifetime affective morbidity showed significantly greater deactivation in subgenual anterior cingulate cortex (sACC) than either the TLE-only or the HVs (p<0.001). This effect persisted after covarying for current psychotropic medication and severity of current depressive/anxiety symptoms (all p<0.001). Correlational analysis revealed that this finding was not driven by differences in task performance. There were no significant differences in grey matter volume or structural connectivity between the TLE groups. Our results provide novel evidence suggesting that affective psychopathology in TLE has a neurobiological correlate, and in this context the sACC performs differently compared with network activity in primary affective disorders. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Segmentation of the Thalamus Based on BOLD Frequencies Affected in Temporal Lobe Epilepsy
Morgan, Victoria L.; Rogers, Baxter P.; Abou-Khalil, Bassel
2015-01-01
Objective Temporal lobe epilepsy is associated with functional changes throughout the brain, particularly including a putative seizure propagation network involving the hippocampus, insula and thalamus. We identified a specified frequency range where functional connectivity in this network was related to duration of disease. Then, to identify specific thalamic nuclei involved in seizure propagation, we determined the subregions of the thalamus that have increased resting functional oscillations in this frequency range. Methods Resting-state functional MRI (fMRI) was acquired from twenty unilateral TLE (14 right, 6 left) patients and twenty healthy controls who were each age and gender matched to a specific patient. Wavelet based functional MRI connectivity mapping across the network was computed at each frequency to determine those frequencies where connectivity significantly decreases with duration of disease consistent with impairment due to repeated seizures. The voxel-wise power of the spontaneous blood oxygenation fluctuations of this frequency band was computed in the thalamus of each subject. Results Functional connectivity was impaired in the proposed seizure propagation network over a specific range (0.0067–0.013 Hz and 0.024–0.032 Hz) of blood oxygenation oscillations. Increased power in this frequency band (<0.032 Hz) was detected bilaterally in the pulvinar and anterior nucleus of the thalamus of healthy controls, and was increased over the ipsilateral thalamus compared to the contralateral thalamus in TLE. Significance This study identified frequencies of impaired connectivity in a TLE seizure propagation network and used them to localize the anterior nucleus and pulvinar of the thalamus as subregions most susceptible to TLE seizures. Further examinations of these frequencies in healthy and TLE subjects may provide unique information relating to the mechanism of seizure propagation and potential treatment using electrical stimulation. PMID:26360535
Fang, Peng; An, Jie; Zeng, Ling-Li; Shen, Hui; Chen, Fanglin; Wang, Wensheng; Qiu, Shijun; Hu, Dewen
2015-01-01
Previous studies have demonstrated differences of clinical signs and functional brain network organizations between the left and right mesial temporal lobe epilepsy (mTLE), but the anatomical connectivity differences underlying functional variance between the left and right mTLE remain uncharacterized. We examined 43 (22 left, 21 right) mTLE patients with hippocampal sclerosis and 39 healthy controls using diffusion tensor imaging. After the whole-brain anatomical networks were constructed for each subject, multivariate pattern analysis was applied to classify the left mTLE from the right mTLE and extract the anatomical connectivity differences between the left and right mTLE patients. The classification results reveal 93.0% accuracy for the left mTLE versus the right mTLE, 93.4% accuracy for the left mTLE versus controls and 90.0% accuracy for the right mTLE versus controls. Compared with the right mTLE, the left mTLE exhibited a different connectivity pattern in the cortical-limbic network and cerebellum. The majority of the most discriminating anatomical connections were located within or across the cortical-limbic network and cerebellum, thereby indicating that these disease-related anatomical network alterations may give rise to a portion of the complex of emotional and memory deficit between the left and right mTLE. Moreover, the orbitofrontal gyrus, cingulate cortex, hippocampus and parahippocampal gyrus, which exhibit high discriminative power in classification, may play critical roles in the pathophysiology of mTLE. The current study demonstrated that anatomical connectivity differences between the left mTLE and the right mTLE may have the potential to serve as a neuroimaging biomarker to guide personalized diagnosis of the left and right mTLE.
Katz, A; Awad, I A; Kong, A K; Chelune, G J; Naugle, R I; Wyllie, E; Beauchamp, G; Lüders, H
1989-01-01
We present correlations of extent of temporal lobectomy for intractable epilepsy with postoperative memory changes (20 cases) and abnormalities of visual field and neurologic examination (45 cases). Postoperative magnetic resonance imaging (MRI) in the coronal plane was used to quantify anteroposterior extent of resection of various quadrants of the temporal lobe, using a 20-compartment model of that structure. The Wechsler Memory Scale-Revised (WMS-R) was administered preoperatively and postoperatively. Postoperative decrease in percentage of retention of verbal material correlated with extent of medial resection of left temporal lobe, whereas decrease in percentage of retention of visual material correlated with extent of medial resection of right temporal lobe. These correlations approached but did not reach statistical significance. Extent of resection correlated significantly with the presence of visual field defect on perimetry testing but not with severity, denseness, or congruity of the defect. There was no correlation between postoperative dysphasia and extent of resection in any quadrant. Assessment of extent of resection after temporal lobectomy allows a rational interpretation of postoperative neurologic deficits in light of functional anatomy of the temporal lobe.
Sidhu, Meneka K; Thompson, Pamela J; Wandschneider, Britta; Foulkes, Alexandra; de Tisi, Jane; Stretton, Jason; Perona, Marina; Thom, Maria; Bonelli, Silvia B; Burdett, Jane; Williams, Elaine; Duncan, John S; Matarin, Mar
2018-06-27
Medial temporal lobe epilepsy (mTLE) is the most common refractory focal epilepsy in adults. Around 30%-40% of patients have prominent memory impairment and experience significant postoperative memory and language decline after surgical treatment. BDNF Val66Met polymorphism has also been associated with cognition and variability in structural and functional hippocampal indices in healthy controls and some patient groups. We examined whether BDNF Val66Met variation was associated with cognitive impairment in mTLE. In this study, we investigated the association of Val66Met polymorphism with cognitive performance (n = 276), postoperative cognitive change (n = 126) and fMRI activation patterns during memory encoding and language paradigms in 2 groups of patients with mTLE (n = 37 and 34). mTLE patients carrying the Met allele performed more poorly on memory tasks and showed reduced medial temporal lobe activation and reduced task-related deactivations within the default mode networks in both the fMRI memory and language tasks than Val/Val patients. Although cognitive impairment in epilepsy is the result of a complex interaction of factors, our results suggest a role of genetic factors on cognitive impairment in mTLE. © 2018 John Wiley & Sons Ltd.
Genesis of interictal spikes in the CA1: a computational investigation
Ratnadurai-Giridharan, Shivakeshavan; Stefanescu, Roxana A.; Khargonekar, Pramod P.; Carney, Paul R.; Talathi, Sachin S.
2014-01-01
Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a biophysically relevant network model of the CA1 subfield and investigate how changes in the network properties influence the susceptibility of CA1 to exhibit an IIS. We present a novel template based approach to identify conditions under which synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal (Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic parameters of a minimal network model that is capable of generating PDS in response to afferent synaptic input. The minimal network model parameters are then incorporated into a detailed network model of the CA1 subfield in order to address the following questions: (1) How does the formation of an IIS in the CA1 depend on the degree of sprouting (recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral (SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with low recurrent connectivity (absence of sprouting), mimicking the topology of a normal brain, has a very low probability of producing an IIS except when a large fraction of CA1 neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent connectivity of the CA1 (Psprout > 40); mimicking sprouting in a pathological CA1 network, the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1 Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson distributed random input via SC, the CA1 network is able to generate spontaneous periodic IISs (≈3 Hz) for high degrees of recurrent Py connectivity (Psprout > 70). We investigate the conditions necessary for this phenomenon and find that spontaneous IISs closely depend on the degree of the network's intrinsic excitability. PMID:24478636
Genesis of interictal spikes in the CA1: a computational investigation.
Ratnadurai-Giridharan, Shivakeshavan; Stefanescu, Roxana A; Khargonekar, Pramod P; Carney, Paul R; Talathi, Sachin S
2014-01-01
Interictal spikes (IISs) are spontaneous high amplitude, short time duration <400 ms events often observed in electroencephalographs (EEG) of epileptic patients. In vitro analysis of resected mesial temporal lobe tissue from patients with refractory temporal lobe epilepsy has revealed the presence of IIS in the CA1 subfield. In this paper, we develop a biophysically relevant network model of the CA1 subfield and investigate how changes in the network properties influence the susceptibility of CA1 to exhibit an IIS. We present a novel template based approach to identify conditions under which synchronization of paroxysmal depolarization shift (PDS) events evoked in CA1 pyramidal (Py) cells can trigger an IIS. The results from this analysis are used to identify the synaptic parameters of a minimal network model that is capable of generating PDS in response to afferent synaptic input. The minimal network model parameters are then incorporated into a detailed network model of the CA1 subfield in order to address the following questions: (1) How does the formation of an IIS in the CA1 depend on the degree of sprouting (recurrent connections) between the CA1 Py cells and the fraction of CA3 Shaffer collateral (SC) connections onto the CA1 Py cells? and (2) Is synchronous afferent input from the SC essential for the CA1 to exhibit IIS? Our results suggest that the CA1 subfield with low recurrent connectivity (absence of sprouting), mimicking the topology of a normal brain, has a very low probability of producing an IIS except when a large fraction of CA1 neurons (>80%) receives a barrage of quasi-synchronous afferent input (input occurring within a temporal window of ≤24 ms) via the SC. However, as we increase the recurrent connectivity of the CA1 (P sprout > 40); mimicking sprouting in a pathological CA1 network, the CA1 can exhibit IIS even in the absence of a barrage of quasi-synchronous afferents from the SC (input occurring within temporal window >80 ms) and a low fraction of CA1 Py cells (≈30%) receiving SC input. Furthermore, we find that in the presence of Poisson distributed random input via SC, the CA1 network is able to generate spontaneous periodic IISs (≈3 Hz) for high degrees of recurrent Py connectivity (P sprout > 70). We investigate the conditions necessary for this phenomenon and find that spontaneous IISs closely depend on the degree of the network's intrinsic excitability.
Ahmedov, Merdin Lyutviev; Kemerdere, Rahsan; Baran, Oguz; Inal, Berrin Bercik; Gumus, Alper; Coskun, Cihan; Yeni, Seher Naz; Eren, Bulent; Uzan, Mustafa; Tanriverdi, Taner
2017-10-01
We sought to simply demonstrate how levels of soluble human epoxide hydrolase-2 show changes in both temporal the cortex and hippocampal complex in patients with temporal lobe epilepsy. A total of 20 patients underwent anterior temporal lobe resection due to temporal lobe epilepsy. The control group comprised 15 people who died in traffic accidents or by falling from a height, and their autopsy findings were included. Adequately sized temporal cortex and hippocampal samples were removed from each patient during surgery, and the same anatomic structures were removed from the control subjects during the autopsy procedures. Each sample was stored at -80°C as rapidly as possible until the enzyme assay. The temporal cortex in the epilepsy patients had a significantly higher enzyme level than did the temporal cortex of the control group (P = 0.03). Correlation analysis showed that as the enzyme level increases in the temporal cortex, it also increases in the hippocampal complex (r 2 = 0.06, P = 0.00001). More important, enzyme tissue levels showed positive correlations with seizure frequency in both the temporal cortex and hippocampal complex in patients (r 2 = 0.7, P = 0.00001 and r 2 = 0.4, P = 0.003, respectively). The duration of epilepsy was also positively correlated with the hippocampal enzyme level (r 2 = 0.06, P = 0.00001). Soluble human epoxy hydrolase enzyme-2 is increased in both lateral and medial temporal tissues in temporal lobe epilepsy. Further studies should be conducted as inhibition of this enzyme has resulted in a significant decrease in or stopping of seizures and attenuated neuroinflammation in experimental epilepsy models in the current literature. Copyright © 2017 Elsevier Inc. All rights reserved.
Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.
Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan
2015-12-01
Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.
Leng, Xi; Fang, Peng; Lin, Huan; An, Jie; Tan, Xin; Zhang, Chi; Wu, Donglin; Shen, Wen; Qiu, Shijun
2017-11-01
The aim of the present study was to investigate the microstructural characteristics of the brain lobes following radiotherapy (RT) for patients with nasopharyngeal carcinoma (NPC) at distinct times. Diffusion tensor imaging (DTI) and 3D-T1-weighted imaging was performed in 70 age- and sex-matched subjects, 24 of whom were pre-treatment patients. The patients were divided into three groups, according to the time following completion of RT. Fractional anisotropy (FA) and gray matter (GM) volume were determined. The DTI data were analyzed using tract-based spatial statistics and the GM volume was analyzed using voxel-based morphometry (VBM). Compared with the pre-RT group, the mean FA values in the left parietal lobe white matter (WM) and right cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05). In addition, the mean FA values in the right parietal lobe WM decreased significantly in the post-RT 6-12 month group (P<0.05), compared with the pre-RT group. The FA level in the right temporal lobe remained significantly decreased, compared with that in the pre-RT group (P<0.05) for 1 year after RT. Furthermore, compared with pre-RT group, the GM volume in the bilateral frontal lobe, right occipital lobe, left parietal lobe, right temporal lobe and left cerebellum decreased significantly in the post-RT 0-6 month group (P<0.05), and in the bilateral temporal lobe, parietal lobe, right frontal lobe and left cerebellum, the GM volume decreased significantly in the post-RT 6-12 month group (P<0.05). The GM volume in the right temporal lobe, bilateral frontal lobe and bilateral cerebellum remained significantly decreased compared with that in the pre-RT group (P<0.05) for 1 year after RT. A combination of DTI and VBM may be used to determine radiation-induced brain injury in patients treated for NPC.
Akiyama, Yukinori; Suzuki, Kengo; Ochi, Satoko; Miyamoto, Susumu; Mikuni, Nobuhiro
2015-11-01
Cavernomas frequently are associated with intractable epilepsy. When cavernomas located in the temporal lobe are associated with intractable epilepsy, the hippocampus also may have an epileptic focus. The objective in the present study was to clarify the importance of evaluation of the posterior hippocampal epileptogenicity during epilepsy surgery for posteromedial temporal lobe cavernoma. In this study, we describe 2 rare cases of medically intractable epilepsy in patients with posteromedial temporal lobe cavernomas who underwent surgery via the occipital approach. Using longitudinal insertion of depth electrodes into the hippocampus, we evaluated epileptogenicity in both patients from the cavernoma cavity and its surrounding hemosiderin, as well as from the posterior hippocampus near the cavernoma. We show that the transoccipital approach to the posteromedial temporal lobe is compatible with depth electrode insertion and subdural electrode placement on the temporal lobe, enabling an accurate evaluation of potential epileptogenic zones in the posterior part of the hippocampus. Both patients did not experience any seizures and had no postoperative neurologic deficits, and their cognitive functions were intact. The transoccipital approach enables the optimization of the extent of posterior hippocampectomy while avoiding unnecessary resection for seizure control. We suggest resecting the posterior part of the hippocampus in addition to the cavernoma and surrounding areas in patients with medically refractory epilepsy due to a posteromedial temporal cavernoma. Tailored systematic resection guided by intraoperative electrocorticography and electroencephalography with a depth electrode was important and necessary in the present cases. Copyright © 2015 Elsevier Inc. All rights reserved.
Osório, Camila Moreira; Latini, Alexandra; Leal, Rodrigo Bainy; de Oliveira Thais, Maria Emília Rodrigues; Vascouto, Helena Dresch; Remor, Aline Pertile; Lopes, Mark William; Linhares, Marcelo Neves; Ben, Juliana; de Paula Martins, Roberta; Prediger, Rui Daniel; Hoeller, Alexandre Ademar; Markowitsch, Hans Joachim; Wolf, Peter; Lin, Kátia; Walz, Roger
2017-12-01
Interictal hypometabolism is commonly measured by 18-fluoro-deoxyglucose Positron Emission Tomography (FDG-PET) in the temporal lobe of patients with mesial temporal lobe epilepsy (MTLE-HS). Left temporal lobe interictal FDG-PET hypometabolism has been associated with verbal memory impairment, while right temporal lobe FDG-PET hypometabolism is associated with nonverbal memory impairment. The biochemical mechanisms involved in these findings remain unknown. In comparison to healthy controls (n=21), surgically treated patients with MTLE-HS (n=32, left side=17) had significant lower scores in the Rey Auditory Verbal Learning Test (RAVLT retention and delayed), Logical Memory II (LMII), Boston Naming test (BNT), Letter Fluency and Category Fluency. We investigated whether enzymatic activities of the mitochondrial enzymes Complex I (C I), Complex II (C II), Complex IV (C IV) and Succinate Dehydrogenase (SDH) from the resected samples of the middle temporal neocortex (mTCx), amygdala (AMY) and hippocampus (HIP) were associated with performance in the RAVLT, LMII, BNT and fluency tests of our patients. After controlling for the side of hippocampus sclerosis, years of education, disease duration, antiepileptic treatment and seizure outcome after surgery, no independent associations were observed between the cognitive test scores and the analyzed mitochondrial enzymatic activities (p>0.37). Results indicate that memory and language impairment observed in MTLE-HS patients are not strongly associated with the levels of mitochondrial CI, CII, SDH and C IV enzymatic activities in the temporal lobe structures ipsilateral to the HS lesion. Copyright © 2017 Elsevier B.V. All rights reserved.
Straus, David; Byrne, Richard W; Sani, Sepehr; Serici, Anthony; Moftakhar, Roham
2013-01-01
Various vascular, neoplastic, and epileptogenic pathologies occur in the mediobasal temporal region. A transsylvian translimen insula (TTI) approach can be used as an alternative to temporal transcortical approach to the mediobasal temporal region. The aim of this study was to demonstrate the surgical anatomy of the TTI approach, including the gyral, sulcal, and vascular anatomy in and around the limen insula. The use of this approach is illustrated in the resection of a complex arteriovenous malformation. The TTI approach to the mediobasal temporal region was performed on three silicone-injected cadaveric heads. The gyral, sulcal, and arterial anatomy of the limen insula was studied in six formalin-fixed injected hemispheres. The TTI approach provided access to the anterior and middle segments of the mediobasal temporal lobe region as well as allowing access to temporal horn of the lateral ventricle. Using this approach we were able to successfully resect an arteriovenous malformation of the dominant medial temporal lobe. The TTI approach provides a viable surgical route to the region of mediobasal temporal lobe region. This approach offers an advantage over the temporal transcortical route in that there is less risk of damage to optic radiations and speech area in the dominant hemisphere.
Thakkar, Katharine N.; Peterman, Joel S.; Park, Sohee
2015-01-01
Objective Social impairments are a key feature of schizophrenia, but their underlying mechanisms are poorly understood. Imitation, a process through which we understand the minds of others, involves the so-called mirror neuron system, a network comprising the inferior parietal lobe, inferior frontal gyrus, and posterior superior temporal sulcus. The authors examined mirror neuron system function in schizophrenia. Method Sixteen medicated schizophrenia patients and 16 healthy comparison subjects performed an action imitation/ observation task during functional MRI. Participants saw a video of a moving hand or spatial cue and were instructed to either execute finger movements associated with the stimulus or simply observe. Activation in the mirror neuron system was measured during imitative versus nonimitative actions and observation of a moving hand versus a moving spatial cue. These contrasts were compared across groups. Results Activation in the mirror neuron system was less specific for imitation in schizophrenia. Relative to healthy subjects, patients had reduced activity in the posterior superior temporal sulcus during imitation and greater activity in the posterior superior temporal sulcus and inferior parietal lobe during nonimitative action. Patients also showed reduced activity in these regions during action observation. Mirror neuron system activation was related to symptom severity and social functioning in patients and to schizotypal syndrome in comparison subjects. Conclusions Given the role of the inferior parietal lobe and posterior superior temporal sulcus in imitation and social cognition, impaired imitative ability in schizophrenia may stem from faulty perception of biological motion and transformations from perception to action. These findings extend our understanding of social dysfunction in schizophrenia. PMID:24626638
Neural circuitry of emotional face processing in autism spectrum disorders.
Monk, Christopher S; Weng, Shih-Jen; Wiggins, Jillian Lee; Kurapati, Nikhil; Louro, Hugo M C; Carrasco, Melisa; Maslowsky, Julie; Risi, Susan; Lord, Catherine
2010-03-01
Autism spectrum disorders (ASD) are associated with severe impairments in social functioning. Because faces provide nonverbal cues that support social interactions, many studies of ASD have examined neural structures that process faces, including the amygdala, ventromedial prefrontal cortex and superior and middle temporal gyri. However, increases or decreases in activation are often contingent on the cognitive task. Specifically, the cognitive domain of attention influences group differences in brain activation. We investigated brain function abnormalities in participants with ASD using a task that monitored attention bias to emotional faces. Twenty-four participants (12 with ASD, 12 controls) completed a functional magnetic resonance imaging study while performing an attention cuing task with emotional (happy, sad, angry) and neutral faces. In response to emotional faces, those in the ASD group showed greater right amygdala activation than those in the control group. A preliminary psychophysiological connectivity analysis showed that ASD participants had stronger positive right amygdala and ventromedial prefrontal cortex coupling and weaker positive right amygdala and temporal lobe coupling than controls. There were no group differences in the behavioural measure of attention bias to the emotional faces. The small sample size may have affected our ability to detect additional group differences. When attention bias to emotional faces was equivalent between ASD and control groups, ASD was associated with greater amygdala activation. Preliminary analyses showed that ASD participants had stronger connectivity between the amygdala ventromedial prefrontal cortex (a network implicated in emotional modulation) and weaker connectivity between the amygdala and temporal lobe (a pathway involved in the identification of facial expressions, although areas of group differences were generally in a more anterior region of the temporal lobe than what is typically reported for emotional face processing). These alterations in connectivity are consistent with emotion and face processing disturbances in ASD.
Adaptive significance of right hemisphere activation in aphasic language comprehension
Meltzer, Jed A.; Wagage, Suraji; Ryder, Jennifer; Solomon, Beth; Braun, Allen R.
2013-01-01
Aphasic patients often exhibit increased right hemisphere activity during language tasks. This may represent takeover of function by regions homologous to the left-hemisphere language networks, maladaptive interference, or adaptation of alternate compensatory strategies. To distinguish between these accounts, we tested language comprehension in 25 aphasic patients using an online sentence-picture matching paradigm while measuring brain activation with MEG. Linguistic conditions included semantically irreversible (“The boy is eating the apple”) and reversible (“The boy is pushing the girl”) sentences at three levels of syntactic complexity. As expected, patients performed well above chance on irreversible sentences, and at chance on reversible sentences of high complexity. Comprehension of reversible non-complex sentences ranged from nearly perfect to chance, and was highly correlated with offline measures of language comprehension. Lesion analysis revealed that comprehension deficits for reversible sentences were predicted by damage to the left temporal lobe. Although aphasic patients activated homologous areas in the right temporal lobe, such activation was not correlated with comprehension performance. Rather, patients with better comprehension exhibited increased activity in dorsal fronto-parietal regions. Correlations between performance and dorsal network activity occurred bilaterally during perception of sentences, and in the right hemisphere during a post-sentence memory delay. These results suggest that effortful reprocessing of perceived sentences in short-term memory can support improved comprehension in aphasia, and that strategic recruitment of alternative networks, rather than homologous takeover, may account for some findings of right hemisphere language activation in aphasia. PMID:23566891
Guo, Tao; Guan, Xiaojun; Zeng, Qiaoling; Xuan, Min; Gu, Quanquan; Huang, Peiyu; Xu, Xiaojun; Zhang, Minming
2018-01-01
Rapid eye movement sleep behavior disorder (RBD) has a strong association with alpha synucleinpathies such as Parkinson's disease (PD) and PD patients with RBD tend to have a poorer prognosis. However, we still know little about the pathogenesis of RBD in PD. Therefore, we aim to detect the alterations of structural correlation network (SCN) in PD patients with and without RBD. A total of 191 PD patients, including 51 patients with possible RBD (pRBD) and 140 patients with non-possible RBD, and 76 normal controls were included in the present study. Structural brain networks were constructed by thresholding gray matter volume correlation matrices of 116 regions and analyzed using graph theoretical approaches. There was no difference in global properties among the three groups. Significant enhanced regional nodal measures in limbic system, frontal-temporal regions, and occipital regions and decreased nodal measures in cerebellum were found in PD patients with pRBD (PD-pRBD) compared with PD patients without pRBD. Besides, nodes in frontal lobe, temporal lobe, and limbic system were served as hubs in both two PD groups, and PD-pRBD exhibited additionally recruited hubs in limbic regions. Based on the SCN analysis, we found PD-pRBD exhibited a reorganization of nodal properties as well as the remapping of the hub distribution in whole brain especially in limbic system, which may shed light to the pathophysiology of PD with RBD.
Long-term subdural strip electrocorticographic monitoring of ictal déjà vu.
Weinand, M E; Hermann, B; Wyler, A R; Carter, L P; Oommen, K J; Labiner, D; Ahern, G; Herring, A
1994-01-01
We report a series of 8 patients with ictal déjà vu. Subdural strip electrocorticographic (ECoG) monitoring localized the ictal epileptogenic focus as follows: right (n = 6) and left (n = 2) mesiotemporal lobe. In all 8 patients, the left hemisphere was dominant for language function based on intracarotid amytal testing. In 6 right-handed patients, ictal déjà vu was associated with a right temporal lobe focus. However, in the 2 left-handed patients, the ictal focus was left temporal lobe. Although ictal déjà vu localizes the epileptic focus to temporal lobe, this experimental phenomenon appears to lateralize to the hemisphere nondominant for handedness.
Genetics Home Reference: GRN-related frontotemporal dementia
... temporal lobes . The frontal lobes are involved in reasoning, planning, judgment, and problem-solving, while the temporal ... MND. Phenotype variability in progranulin mutation carriers: a clinical, neuropsychological, imaging and genetic study. Brain. 2008 Mar; ...
Lah, Suncica; Smith, Mary Lou
2014-01-01
Children with temporal lobe epilepsy are at risk for deficits in new learning (episodic memory) and literacy skills. Semantic memory deficits and double dissociations between episodic and semantic memory have recently been found in this patient population. In the current study we investigate whether impairments of these 2 distinct memory systems relate to literacy skills. 57 children with unilateral temporal lobe epilepsy completed tests of verbal memory (episodic and semantic) and literacy skills (reading and spelling accuracy, and reading comprehension). For the entire group, semantic memory explained over 30% of variance in each of the literacy domains. Episodic memory explained a significant, but rather small proportion (< 10%) of variance in reading and spelling accuracy, but not in reading comprehension. Moreover, when children with opposite patterns of specific memory impairments (intact semantic/impaired episodic, intact episodic/impaired semantic) were compared, significant reductions in literacy skills were evident only in children with semantic memory impairments, but not in children with episodic memory impairments relative to the norms and to children with temporal lobe epilepsy who had intact memory. Our study provides the first evidence for differential relations between episodic and semantic memory impairments and literacy skills in children with temporal lobe epilepsy. As such, it highlights the urgent need to consider semantic memory deficits in management of children with temporal lobe epilepsy and undertake further research into the nature of reading difficulties of children with semantic memory impairments.
Neuropsychological deficits in temporal lobe epilepsy: A comprehensive review
Zhao, Fengqing; Kang, Hai; You, LIbo; Rastogi, Priyanka; Venkatesh, D.; Chandra, Mina
2014-01-01
Temporal lobe epilepsy (TLE) is the most prevalent form of complex partial seizures with temporal lobe origin of electrical abnormality. Studies have shown that recurrent seizures affect all aspects of cognitive functioning, including memory, language, praxis, executive functions, and social judgment, among several others. In this article, we will review these cognitive impairments along with their neuropathological correlates in a comprehensive manner. We will see that neuropsychological deficits are prevalent in TLE. Much of the effort has been laid on memory due to the notion that temporal lobe brain structures involved in TLE play a central role in consolidating information into memory. It seems that damage to the mesial structure of the temporal lobe, particularly the amygdale and hippocampus, has the main role in these memory difficulties and the neurobiological plausibility of the role of the temporal lobe in different aspects of memory. Here, we will cover the sub-domains of working memory and episodic memory deficits. This is we will further proceed to evaluate the evidences of executive function deficits in TLE and will see that set-shifting among other EFs is specifically affected in TLE as is social cognition. Finally, critical components of language related deficits are also found in the form of word-finding difficulties. To conclude, TLE affects several of cognitive function domains, but the etiopathogenesis of all these dysfunctions remain elusive. Further well-designed studies are needed for a better understanding of these disorders. PMID:25506156
Cortical thickness and folding deficits in conduct-disordered adolescents
Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.
2012-01-01
Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639
Frontal and temporal lobe involvement on verbal fluency measures in amyotrophic lateral sclerosis.
Lepow, Lauren; Van Sweringen, James; Strutt, Adriana M; Jawaid, Ali; MacAdam, Claire; Harati, Yadollah; Schulz, Paul E; York, Michele K
2010-11-01
Amyotrophic lateral sclerosis (ALS) has been associated with changes in frontal and temporal lobe-mediated cognitive and behavioral functions. Verbal fluency, a sensitive measure to these changes, was utilized to investigate phonemic and semantic abilities in 49 ALS patients and 25 healthy controls (HCs). A subset of the ALS patients was classified as ALS-intact, ALS with mild cognitive impairments (ALS-mild), and ALS with fronto-temporal dementia (ALS-FTD) based on a comprehensive neuropsychological evaluation. Clustering and switching, the underlying component processes of verbal fluency, were analyzed using Troyer's (Troyer, Moscovitch, & Winocur, 1997) and Abwender's (Abwender, Swan, Bowerman, & Connolly, 2001) scoring systems. ALS patients exhibited decreased fluency versus HCs. For phonemic fluency, the intact ALS sample generated fewer clusters and more switches than the ALS-mild and ALS-FTD patients using both scoring systems. This suggests temporal involvement in ALS patients, with increasing frontal lobe involvement in patients with greater cognitive dysfunction. For semantic fluency, similar results were obtained with a greater emphasis on declines in clustering or increased temporal lobe dysfunction. These results suggest that verbal fluency measures identify frontal and temporal lobe involvement in the cognitive decline associated with ALS, particularly when the component processes are evaluated. The clinical utility of these scoring systems with ALS patients is also discussed.
The right hemisphere's contribution to discourse processing: A study in temporal lobe epilepsy.
Lomlomdjian, Carolina; Múnera, Claudia P; Low, Daniel M; Terpiluk, Verónica; Solís, Patricia; Abusamra, Valeria; Kochen, Silvia
2017-08-01
Discourse skills - in which the right hemisphere has an important role - enables verbal communication by selecting contextually relevant information and integrating it coherently to infer the correct meaning. However, language research in epilepsy has focused on single word analysis related mainly to left hemisphere processing. The purpose of this study was to investigate discourse abilities in patients with right lateralized medial temporal lobe epilepsy (RTLE) by comparing their performance to that of patients with left temporal lobe epilepsy (LTLE). 74 pharmacoresistant temporal lobe epilepsy (TLE) patients were evaluated: 34 with RTLE and 40 with LTLE. Subjects underwent a battery of tests that measure comprehension and production of conversational and narrative discourse. Disease related variables and general neuropsychological data were evaluated. The RTLE group presented deficits in interictal conversational and narrative discourse, with a disintegrated speech, lack of categorization and misinterpretation of social meaning. LTLE group, on the other hand, showed a tendency to lower performance in logical-temporal sequencing. RTLE patients showed discourse deficits which have been described in right hemisphere damaged patients due to other etiologies. Medial and anterior temporal lobe structures appear to link semantic, world knowledge, and social cognition associated areas to construct a contextually related coherent meaning. Copyright © 2017 Elsevier Inc. All rights reserved.
H.M. never again! An analysis of H.M.'s epilepsy and treatment.
Mauguière, F; Corkin, S
2015-03-01
On August 25, 1953, the patient H.M., aged 27, underwent a bilateral surgical destruction of the inner aspect of his temporal lobes performed by William Beecher Scoville with the aim to control H.M.'s drug refractory epileptic seizures and alleviate their impact on his quality of life. Postoperatively, H.M. presented for 55 years a "striking and totally unexpected grave loss of recent memories". This paper reports what we know about H.M.'s epilepsy before and after surgery and puts forward arguments supporting the syndromic classification of his epilepsy. We attempted to elucidate what could have been the rationale, in 1953, of Scoville's decision to carry out a bilateral ablation of H.M.'s medial temporal lobe structures, and we examined whether there was any convincing argument published before 1953 suggesting that bilateral hippocampal ablation could result in a permanent and severe amnesia. Our a posteriori analysis of H.M.'s medical history suggested that he was most probably suffering from idiopathic generalized epilepsy with absences and generalized convulsive seizures worsened by high dosage phenytoin treatment, or less probably from cryptogenic frontal lobe epilepsy. Importantly, he did not have temporal lobe epilepsy. Scoville based his proposal of bilateral mesial temporal lobe ablation on his experience as a psychosurgeon and on the assumption that the threshold of generalized epileptic activity could be lowered by some kind of hippocampal dysfunction potentially epileptic in nature. Given the scanty information on the link between amnesia and medial temporal lobe lesions that was available in humans in 1953, one can understand why Scoville was so surprised by the "striking and totally unexpected" memory loss he observed in H.M. after the bilateral ablation of his mesial temporal lobe structures. Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Demars, Fanny; Clark, Kristen; Wyeth, Megan S; Abrams, Emily; Buckmaster, Paul S
2018-05-01
Harmful blooms of domoic acid (DA)-producing algae are a problem in oceans worldwide. DA is a potent glutamate receptor agonist that can cause status epilepticus and in survivors, temporal lobe epilepsy. In mice, one-time low-dose in utero exposure to DA was reported to cause hippocampal damage and epileptiform activity, leading to the hypothesis that unrecognized exposure to DA from contaminated seafood in pregnant women can damage the fetal hippocampus and initiate temporal lobe epileptogenesis. However, development of epilepsy (i.e., spontaneous recurrent seizures) has not been tested. In the present study, long-term seizure monitoring and histology was used to test for temporal lobe epilepsy following prenatal exposure to DA. In Experiment One, the previous study's in utero DA treatment protocol was replicated, including use of the CD-1 mouse strain. Afterward, mice were video-monitored for convulsive seizures from 2 to 6 months old. None of the CD-1 mice treated in utero with vehicle or DA was observed to experience spontaneous convulsive seizures. After seizure monitoring, mice were evaluated for pathological evidence of temporal lobe epilepsy. None of the mice treated in utero with DA displayed the hilar neuron loss that occurs in patients with temporal lobe epilepsy and in the mouse pilocarpine model of temporal lobe epilepsy. In Experiment Two, a higher dose of DA was administered to pregnant FVB mice. FVB mice were tested as a potentially more sensitive strain, because they have a lower seizure threshold, and some females spontaneously develop epilepsy. Female offspring were monitored with continuous video and telemetric bilateral hippocampal local field potential recording at 1-11 months old. A similar proportion of vehicle- and DA-treated female FVB mice spontaneously developed epilepsy, beginning in the fourth month of life. Average seizure frequency and duration were similar in both groups. Seizure frequency was lower than that of positive-control pilocarpine-treated mice, but seizure duration was similar. None of the mice treated in utero with vehicle or DA displayed hilar neuron loss or intense mossy fiber sprouting, a form of aberrant synaptic reorganization that develops in patients with temporal lobe epilepsy and in pilocarpine-treated mice. FVB mice that developed epilepsy (vehicle- and DA-treated) displayed mild mossy fiber sprouting. Results of this study suggest that a single subconvulsive dose of DA at mid-gestation does not cause temporal lobe epilepsy in mice. Copyright © 2018 Elsevier B.V. All rights reserved.
Temporal lobe epilepsy in a cat with a pyriform lobe oligodendroglioma and hippocampal necrosis.
Vanhaesebrouck, An E; Posch, Barbara; Baker, Sam; Plessas, Ioannis N; Palmer, Anthony C; Constantino-Casas, Fernando
2012-12-01
A 14-year-old male domestic shorthair cat presented with an acute onset of aggressive behaviour, fear and hypersalivation. Neurological examination revealed bilateral mydriasis and left-sided facial twitching and hemiparesis. Magnetic resonance imaging (MRI) showed moderate bilateral symmetrical T2-hyperintensity along the entire hippocampus and bilateral asymmetric T2-hyperintensity in the pyriform lobes. Marked bilateral contrast enhancement of the hippocampus was evident on post-contrast T1-weighted images. The partial complex seizures were refractory to medical treatment and the cat was euthanased 4 days after admission. The clinical and MRI findings were consistent with feline hippocampal necrosis (FHN). On histopathology, neuronal necrosis and astrocytosis were present in the hippocampi and pyriform lobes. In addition, an oligodendroglioma was detected in the right pyriform lobe. Contrary to previous reports of FHN in which no underlying cause could be identified, we believe that in this case the seizure focus arose from a neoplastic lesion within the right pyriform lobe. This unique case report represents the so-called 'dual pathology' of temporal lobe epilepsy in humans, in which an extrahippocampal lesion within the temporal lobe results in hippocampal sclerosis.
Fetal alcohol syndrome and secondary schizophrenia: a unique neuropathologic study.
Stoos, Catherine; Nelsen, Laura; Schissler, Kathryn A; Elliott, Amy J; Kinney, Hannah C
2015-04-01
We report the unique neuropathologic study of an adult brain of a patient with fetal alcohol syndrome who developed the well-recognized complication of schizophrenia in adolescence. The major finding was asymmetric formation of the lateral temporal lobes, with marked enlargement of the right superior temporal gyrus, suggesting that alcohol is preferentially toxic to temporal lobe patterning during gestation. Critical maturational changes unique to adolescence can unmask psychotic symptomatology mediated by temporal lobe pathology that has been clinically dormant since birth. Elucidating the neuropathologic basis of the secondary psychiatric disorders in fetal alcohol syndrome can help provide insight into their putative developmental origins. © The Author(s) 2014.
Cortical connectivity in fronto-temporal focal epilepsy from EEG analysis: A study via graph theory.
Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Della Marca, Giacomo; Vollono, Catello; Mazzucchi, Edoardo; Bramanti, Placido; Rossini, Paolo Maria
2015-06-01
It is believed that effective connectivity and optimal network structure are essential for proper information processing in the brain. Indeed, functional abnormalities of the brain are found to be associated with pathological changes in connectivity and network structures. The aim of the present study was to explore the interictal network properties of EEG signals from temporal lobe structures in the context of fronto-temporal lobe epilepsy. To complete this aim, the graph characteristics of the EEG data of 17 patients suffering from focal epilepsy of the fronto-temporal type, recorded during interictal periods, were examined and compared in terms of the affected versus the unaffected hemispheres. EEG connectivity analysis was performed using eLORETA software in 15 fronto-temporal regions (Brodmann Areas BAs 8, 9, 10, 11, 20, 21, 22, 37, 38, 41, 42, 44, 45, 46, 47) on both affected and unaffected hemispheres. The evaluation of the graph analysis parameters, such as 'global' (characteristic path length) and 'local' connectivity (clustering coefficient) showed a statistically significant interaction among side (affected and unaffected hemisphere) and Band (delta, theta, alpha, beta, gamma). Duncan post hoc testing showed an increase of the path length in the alpha band in the affected hemisphere with respect to the unaffected one, as evaluated by an inter-hemispheric marker. The affected hemisphere also showed higher values of local connectivity in the alpha band. In general, an increase of local and global graph theory parameters in the alpha band was found in the affected hemisphere. It was also demonstrated that these effects were more evident in drug-free patients than in those undergoing pharmacological therapy. The increased measures in the affected hemisphere of both functional local segregation and global integration could result from the combination of overlapping mechanisms, including reactive neuroplastic changes seeking to maintain constant integration and segregation properties. This reactive neuroplastic mechanism seeking to maintain constant integration and segregation properties seems to be more evident in the absence of antiepileptic treatment. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Smith, Mary Lou; Lah, Suncica
2011-09-01
This study explored verbal semantic and episodic memory in children with unilateral temporal lobe epilepsy to determine whether they had impairments in both or only 1 aspect of memory, and to examine relations between performance in the 2 domains. Sixty-six children and adolescents (37 with seizures of left temporal lobe onset, 29 with right-sided onset) were given 4 tasks assessing different aspects of semantic memory (picture naming, fluency, knowledge of facts, knowledge of word meanings) and 2 episodic memory tasks (story recall, word list recall). High rates of impairments were observed across tasks, and no differences were found related to the laterality of the seizures. Individual patient analyses showed that there was a double dissociation between the 2 aspects of memory in that some children were impaired on episodic but not semantic memory, whereas others showed intact episodic but impaired semantic memory. This double dissociation suggests that these 2 memory systems may develop independently in the context of temporal lobe pathology, perhaps related to differential effects of dysfunction in the lateral and mesial temporal lobe structures. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Henkin, Yael; Kishon-Rabin, Liat; Tatin-Schneider, Simona; Urbach, Doron; Hildesheimer, Minka; Kileny, Paul R
2004-12-01
The current preliminary report describes the utilization of low-resolution electromagnetic tomography (LORETA) in a small group of highly performing children using the Nucleus 22 cochlear implant (CI) and in normal-hearing (NH) adults. LORETA current density estimations were performed on an averaged target P3 component that was elicited by non-speech and speech oddball discrimination tasks. The results indicated that, when stimulated with tones, patients with right implants and NH adults (regardless of stimulated ear) showed enhanced activation in the right temporal lobe, whereas patients with left implants showed enhanced activation in the left temporal lobe. When stimulated with speech, patients with right implants showed bilateral activation of the temporal and frontal lobes, whereas patients with left implants showed only left temporal lobe activation. NH adults (regardless of stimulated ear) showed enhanced bilateral activation of the temporal and parietal lobes. The differences in activation patterns between patients with CI and NH subjects may be attributed to the long-term exposure to degraded input conditions which may have resulted in reorganization in terms of functional specialization. The difference between patients with right versus left implants, however, is intriguing and requires further investigation.
Peri-ictal water drinking: a rare automatic behaviour in temporal lobe epilepsy.
Pietrafusa, Nicola; Trivisano, Marina; de Palma, Luca; Serino, Domenico; Moavero, Romina; Benvenga, Antonella; Cappelletti, Simona; Boero, Giovanni; Vigevano, Federico; La Neve, Angela; Specchio, Nicola
2015-12-01
Peri-ictal water drinking (PIWD) has been reported as the action of drinking during or within two minutes of an electroclinical seizure. It is considered a peri-ictal vegetative symptom, evident both during childhood and adulthood epilepsy. The aim of this paper was to describe the clinical and electroencephalographic features of two new adult subjects suffering from symptomatic temporal lobe epilepsy with episodes of PIWD recorded by VIDEO-EEG and to review literature data in order to better define this peculiar event during seizures, a rare and probably underestimated semiological sign. To date, 51 cases with focal epilepsy and seizures associated with PIWD have been reported. All patients presented with temporal lobe epilepsy. All cases but one had symptomatic epilepsy. Most of the patients had an involvement of the right hemisphere. Water drinking was reported as an ictal sign in the majority of patients, and less frequently was reported as postictal. We believe that PIWD might be considered a rare automatic behaviour, like other automatisms. Automatisms are more frequently described in patients with temporal lobe epilepsy. PIWD was reported also to have lateralizing significance in the non-dominant temporal lobe, however, because of its rarity, this finding remains unclear.
Hisada, K; Morioka, T; Nishio, S; Yamamoto, T; Fukui, M
2001-12-01
To evaluate the usefulness and limitations of magneto-encephalography (MEG) for epilepsy surgery, we compared 'interictal' epileptic spike fields on MEG with ictal electrocorticography (ECoG) using invasive chronic subdural electrodes in a patient with intractable medial temporal lobe epilepsy (MTLE) associated with vitamin K deficiency intracerebral hemorrhage. A 19-year-old male with an 8-year history of refractory complex partial seizures, secondarily generalized, and right hemispheric atrophy and porencephaly in the right frontal lobe on MRI, was studied with MEG to define the interictal paroxysmal sources based on the single-dipole model. This was followed by invasive ECoG monitoring to delineate the epileptogenic zone. MEG demonstrated two paroxysmal foci, one each on the right lateral temporal and frontal lobes. Ictal ECoG recordings revealed an ictal onset zone on the right medial temporal lobe, which was different from that defined by MEG. Anterior temporal lobectomy with hippocampectomy was performed and the patient has been seizure free for two years. Our results indicate that interictal MEG does not always define the epileptogenic zone in patients with MTLE.
Memory Outcomes Following Selective versus Nonselective Temporal Lobe Removal: A Systematic Review
ERIC Educational Resources Information Center
Girgis, Fady
2012-01-01
The surgical removal of brain tissue for the treatment of temporal lobe epilepsy can be either nonselective, as with an anterior temporal lobectomy (ATL), or selective, as with a selective amygdalohippocampectomy (SAH). Although seizure outcomes are similar with both procedures, cognitive and memory outcomes remain a matter of debate. This study…
Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.
Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa
2012-10-01
Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.
Bakhtadze, Sophia; Beridze, Maia; Geladze, Nana; Khachapuridze, Nana; Bornstein, Natan
2016-03-01
Attention deficit hyperactivity disorder (ADHD) is one of the most common developmental disorders in school-aged children. Symptoms consistent with ADHD have been observed in 8-77 % of children with epilepsy. Researchers have been motivated to search for alternative forms of treatment because 30 % of patients with ADHD cannot be treated by psychostimulants. Several studies support the use of a multimodal treatment approach that includes neurofeedback (NF) for the long-term management of ADHD. These studies have shown that NF provides a sustained effect, even without concurrent treatment with stimulants. We aimed to assess cognitive flexibility in ADHD children with and without temporal lobe epilepsy (TLE), and to evaluate the effects of NF on cognitive flexibility in these groups of children. We prospectively evaluated 69 patients with ADHD aged 9-12 years. The control group was 26 ADHD children without TLE who received no treatment. The first experimental group comprised 18 children with ADHD. The second experimental group comprised 25 age-matched ADHD children with TLE. This group was further divided in two subgroups. One subgroup comprised those with mesial temporal lobe epilepsy (16 patients, 9 with hippocampal sclerosis and 7 with hippocampal atrophy), and the other with lateral temporal lobe epilepsy (9 patients, 5 with temporal lobe dysplasia, 3 with temporal lobe cysts, and 1 with a temporal lobe cavernoma). We treated their ADHD by conducting 30 sessions of EEG NF. Reaction time and error rates on the Trail Making Test Part B were compared before and after treatment, and significant differences were found for all groups of patients except those who had mesial temporal lobe epilepsy with hippocampal atrophy. Our results demonstrate that in most cases, NF can be considered an alternative treatment option for ADHD children even if they have TLE. Additional studies are needed to confirm our results.
[Local brain activity in different motor subtypes of Parkinson's disease with fMRI].
Hou, Ya'nan; Zhang, Jiarong; Chen, Biao; Wu, Tao
2015-02-17
To explore the changes of local brain activity in motor subtypes of Parkinson's disease (PD) with functional magnetic resonance imaging (fMRI). A total of 60 idiopathic PD and 30 age- and gender-matched normal controls were examined with resting-state fMRI from January 2013 to March 2014. All subjects gave their written informed consent for the study. The amplitude of low-frequency fluctuation (ALFF) was calculated to measure local brain activity. The PD patients were divided into two groups of tremor dominant (TD) and postural instability/gait difficulty (PIGD) (n = 30 each). All subjects gave their written in formed consent for the study.One-way ANOVA and post-hoc t-test were performed to detect the differences of local brain activity between PD and normal subjects. And the correlations were examined between ALFF, scores and levodopa dose. Compared with normal subjects, the TD group showed increased activity in bilateral cerebellums (-37, -47, -38), thalamus (-18, -17,0), pons (-3, -23, -37) and left precentral gyrus (-41, -30, 46) versus decreased activity in bilateral frontal lobes (-13, 69, 6), temporal lobes (-42, 18, -21), left insula (-32, 22, 2) and left anterior cingulated (-7, 32, -5). The PIGD group showed increased activity in right postcentral gyrus (63, -18, 39) and decreased activity in bilateral putamens (-24, 12, 3), pre-supplementary motor area (10, 10, 58), frontal lobes (15, -15, 57), temporal lobes (-39, 18, -3) and left insula (-29, 20, 11). Compared with PIGD, the TD group showed increased activity in temporal lobes, but decreased activity in frontal lobes. Additionally, ALFF in bilateral cerebellums and frontal lobes was positively correlated with TD scores while ALFF in left precentral gyrus, bilateral putamens and temporal lobes negatively correlated with TD scores. ALFF in bilateral frontal lobes and left temporal lobe was positively correlated with PIGD scores.However, in right postcentral gyrus and bilateral putamens, ALFF was negatively correlated with PIGD scores. The levodopa dose was positively correlated with frontal lobes and temporal lobe in TD and cerebellums and inferior parietal lobule in PIGD. A specific pattern of intrinsic activity in TD and PIGD may provide insights into neurophysiological mechanisms of PD motor subtypes. The changes of brain activity in TD are caused by the interaction between cerebello-thalamo-cortical circuit and basal ganglia loop while the changes in PIGD result largely from damaged basal ganglia loop.
Rosas, Antonio; Peña-Melián, Angel; García-Tabernero, Antonio; Bastir, Markus; De La Rasilla, Marco
2014-12-01
Correspondence between temporal lobe sulcal pattern and bony impressions on the middle cranial fossae (MCF) was analyzed. MCF bone remains (SD-359, SD-315, and SD-1219) from the El Sidrón (Spain) neandertal site are analyzed in this context. Direct comparison of the soft and hard tissues from the same individual was studied by means of: 1) dissection of two human heads; 2) optic (white light) surface scans; 3) computed tomography and magnetic resonance of the same head. The inferior temporal sulcus and gyrus are the features most strongly influencing MCF bone surface. The Superior temporal sulcus and middle temporal and fusiform gyri also leave imprints. Temporal lobe form differs between Homo sapiens and neandertals. A wider and larger post-arcuate fossa (posterior limit of Brodmann area 20 and the anterior portion of area 37) is present in modern humans as compared to neandertals. However other traits of the MCF surface are similar in these two large-brained human groups. A conspicuous variation is appreciated in the more vertical location of the inferior temporal gyrus in H. sapiens. In parallel, structures of the lower surface of the temporal lobe are more sagittally orientated. Grooves accommodating the fusiform and the lower temporal sulci become grossly parallel to the temporal squama. These differences can be understood within the context of a supero-lateral deployment of the lobe in H. sapiens, a pattern previously identified (Bastir et al., Nat Commun 2 (2011) 588-595). Regarding dural sinus pattern, a higher incidence of petrosquamous sinus is detected in neandertal samples. © 2014 Wiley Periodicals, Inc.
Smagula, Stephen F; Karim, Helmet T; Rangarajan, Anusha; Santos, Fernando Pasquini; Wood, Sossena C; Santini, Tales; Jakicic, John M; Reynolds, Charles F; Cameron, Judy L; Vallejo, Abbe N; Butters, Meryl A; Rosano, Caterina; Ibrahim, Tamer S; Erickson, Kirk I; Aizenstein, Howard J
2018-06-01
Hippocampal hyperactivation marks preclinical dementia pathophysiology, potentially due to differences in the connectivity of specific medial temporal lobe structures. Our aims were to characterize the resting-state functional connectivity of medial temporal lobe sub-structures in older adults, and evaluate whether specific substructural (rather than global) functional connectivity relates to memory function. In 15 adults (mean age: 69 years), we evaluated the resting state functional connectivity of medial temporal lobe substructures: dentate/Cornu Ammonis (CA) 4, CA1, CA2/3, subiculum, the molecular layer, entorhinal cortex, and parahippocampus. We used 7-Tesla susceptibility weighted imaging and magnetization-prepared rapid gradient echo sequences to segment substructures of the hippocampus, which were used as structural seeds for examining functional connectivity in a resting BOLD sequence. We then assessed correlations between functional connectivity with memory performance (short and long delay free recall on the California Verbal Learning Test [CVLT]). All the seed regions had significant connectivity within the temporal lobe (including the fusiform, temporal, and lingual gyri). The left CA1 was the only seed with significant functional connectivity to the amygdala. The left entorhinal cortex was the only seed to have significant functional connectivity with frontal cortex (anterior cingulate and superior frontal gyrus). Only higher left dentate-left lingual connectivity was associated with poorer CVLT performance (Spearman r = -0.81, p = 0.0003, Benjamini-Hochberg false discovery rate: 0.01) after multiple comparison correction. Rather than global hyper-connectivity of the medial temporal lobe, left dentate-lingual connectivity may provide a specific assay of medial temporal lobe hyper-connectivity relevant to memory in aging. Copyright © 2018 American Association for Geriatric Psychiatry. Published by Elsevier Inc. All rights reserved.
Temporal lobe volumes in patients with hippocampal sclerosis with or without cortical dysplasia.
Diehl, B; Najm, I; LaPresto, E; Prayson, R; Ruggieri, P; Mohamed, A; Ying, Z; Lieber, M; Babb, T; Bingaman, W; Lüders, H O
2004-05-25
Recent MRI-based volume reconstruction studies in intractable temporal lobe epilepsy (TLE) due to hippocampal sclerosis (HS) suggested atrophy that extends to the adjacent neocortical areas. To study the extent of temporal lobe volume (TLV) abnormalities in patients with pathologically confirmed HS (with or without cortical dysplasia [CD]) who underwent anterior temporal lobectomy for the treatment of drug-resistant TLE. Fifty patients (right TLE: n = 24; left TLE: n = 26) were found to have HS (hippocampal cell loss of >30%). Associated neocortical CD was seen in 20 patients (43%). MRI-based TLVs and hippocampal and hemispheric volume reconstructions in all patients were compared between pathologic groups and with volumes acquired from 10 age-matched control subjects. TLVs ipsilateral to the epileptogenic zone in patients with TLE were smaller than TLVs in control subjects (p < 0.01). In patients with left TLE, TLVs ipsilateral to the epileptogenic zone were smaller than contralateral TLVs (left: 66.6 +/- 8.3 cm3, right: 74.9 +/- 10.0 cm3; p < 0.001). In patients with right TLE, there were no significant asymmetries. The contralateral TLVs (regardless of the side of surgery) were smaller in the HS + CD group than the HS group (HS + CD group: 74.9 +/- 8.6 cm3, HS group: 79.7 +/- 6.6 cm3; p < 0.05). Patients with HS + CD had a tendency to have less hippocampal atrophy and slightly smaller TLVs ipsilateral to the epileptogenic zone, accounting for significantly smaller TLV/hippocampal volume ratios compared with patients with HS alone. Drug-resistant TLE due to HS is associated with extrahippocampal temporal lobe atrophy. The presence of bilateral temporal lobe atrophy is suggestive of a more widespread (bilateral) temporal lobe involvement in patients with HS and CD.
Personal semantic memory: insights from neuropsychological research on amnesia.
Grilli, Matthew D; Verfaellie, Mieke
2014-08-01
This paper provides insight into the cognitive and neural mechanisms of personal semantic memory, knowledge that is specific and unique to individuals, by reviewing neuropsychological research on stable amnesia secondary to medial temporal lobe damage. The results reveal that personal semantic memory does not depend on a unitary set of cognitive and neural mechanisms. Findings show that autobiographical fact knowledge reflects an experience-near type of personal semantic memory that relies on the medial temporal lobe for retrieval, albeit less so than personal episodic memory. Additional evidence demonstrates that new autobiographical fact learning likely relies on the medial temporal lobe, but the extent to which remains unclear. Other findings show that retrieval of personal traits/roles and new learning of personal traits/roles and thoughts/beliefs are independent of the medial temporal lobe and thus may represent highly conceptual types of personal semantic memory that are stored in the neocortex. Published by Elsevier Ltd.
Hippocampal and Parahippocampal Volumes in Schizophrenia: A Structural MRI Study
Sim, Kang; DeWitt, Iain; Ditman, Tali; Zalesak, Martin; Greenhouse, Ian; Goff, Donald; Weiss, Anthony P; Heckers, Stephan
2006-01-01
Smaller medial temporal lobe volume is a frequent finding in studies of patients with schizophrenia, but the relative contributions of the hippocampus and three surrounding cortical regions (entorhinal cortex, perirhinal cortex, and parahippocampal cortex) are poorly understood. We tested the hypothesis that the volumes of medial temporal lobe regions are selectively changed in schizophrenia. We studied 19 male patients with schizophrenia and 19 age-matched male control subjects. Hippocampal and cortical volumes were estimated using a three-dimensional morphometric protocol for the analysis of high-resolution structural magnetic resonance images, and repeated measures ANOVA was used to test for region-specific differences. Patients had smaller overall medial temporal lobe volumes compared to controls. The volume difference was not specific for either region or hemisphere. The finding of smaller medial temporal lobe volumes in the absence of regional specificity has important implications for studying the functional role of the hippocampus and surrounding cortical regions in schizophrenia. PMID:16319377
Atypical language representation in children with intractable temporal lobe epilepsy.
Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem
2016-05-01
This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.
Global Interactions Analysis of Epileptic ECoG Data
NASA Astrophysics Data System (ADS)
Ortega, Guillermo J.; Sola, Rafael G.; Pastor, Jesús
2007-05-01
Localization of the epileptogenic zone is an important issue in epileptology, even though there is not a unique definition of the epileptic focus. The objective of the present study is to test ultrametric analysis to uncover cortical interactions in human epileptic data. Correlation analysis has been carried out over intraoperative Electro-Corticography (ECoG) data in 2 patients suffering from temporal lobe epilepsy (TLE). Recordings were obtained using a grid of 20 electrodes (5×4) covering the lateral temporal lobe and a strip of either 4 or 8 electrodes at the mesial temporal lobe. Ultrametric analysis was performed in the averaged final correlation matrices. By using the matrix of linear correlation coefficients and the appropriate metric distance between pairs of electrodes time series, we were able to construct Minimum Spanning Trees (MST). The topological connectivity displayed by these trees gives useful and valuable information regarding physiological and pathological information in the temporal lobe of epileptic patients.
Cognitive Function and Heat Shock Protein 70 in Children With Temporal Lobe Epilepsy.
Oraby, Azza M; Raouf, Ehab R Abdol; El-Saied, Mostafa M; Abou-Khadra, Maha K; Helal, Suzette I; Hashish, Adel F
2017-01-01
We conducted the present study to examine cognitive function and serum heat shock protein 70 levels among children with temporal lobe epilepsy. The Stanford-Binet Intelligence Test was carried out to examine cognitive function in 30 children with temporal lobe epilepsy and 30 controls. Serum heat shock protein 70 levels were determined with an enzyme-linked immunosorbent assay. The epilepsy group had significantly lower cognitive function testing scores and significantly higher serum heat shock protein 70 levels than the control group; there were significant negative correlations between serum heat shock protein 70 levels and short-term memory and composite scores. Children with uncontrolled seizures had significantly lower verbal reasoning scores and significantly higher serum heat shock protein 70 levels than children with controlled seizures. Children with temporal lobe epilepsy have cognitive dysfunction and elevated levels of serum heat shock protein 70, which may be considered a stress biomarker.
Kubota, Bruno Yukio; Coan, Ana Carolina; Yasuda, Clarissa Lin; Cendes, Fernando
2015-05-01
Increased MRI T2 signal is commonly present not only in the hippocampus but also in other temporal structures of patients with temporal lobe epilepsy (TLE), and it is associated with histological abnormalities related to the epileptogenic lesion. This study aimed to verify the distribution of T2 increased signal in temporal lobe structures and its correlations with clinical characteristics of TLE patients with (TLE-HS) or without (TLE-NL) MRI signs of hippocampal sclerosis. We selected 203 consecutive patients: 124 with TLE-HS and 79 with TLE-NL. Healthy controls (N=59) were used as a comparison group/comparative group. T2 multiecho images obtained via a 3-T MRI were evaluated with in-house software. T2 signal decays were computed from five original echoes in regions of interest in the hippocampus, amygdala, and white matter of the anterior temporal lobe. Values higher than 2 standard deviations from the mean of controls were considered as abnormal. T2 signal increase was observed in the hippocampus in 78% of patients with TLE-HS and in 17% of patients with TLE-NL; in the amygdala in 13% of patients with TLE-HS and in 14% of patients with TLE-NL; and in the temporal lobe white matter in 22% of patients with TLE-HS and in 8% of patients with TLE-NL. Group analysis demonstrated a significant difference in the distribution of the T2 relaxation times of the hippocampus (ANOVA, p<0.0001), amygdala (p=0.003), and temporal lobe white matter (p<0.0001) ipsilateral to the epileptogenic zone for patients with TLE-HS compared with controls but only for the amygdala (p=0.029) and temporal lobe white matter (ANOVA, p=0.025) for patients with TLE-NL compared with controls. The average signal from the hippocampus ipsilateral to the epileptogenic zone was significantly higher in patients with no family history of epilepsy (two-sample T-test, p=0.005). Increased T2 signal occurs in different temporal structures of patients with TLE-HS and in patients with TLE-NL. The hippocampal hyperintense signal is more pronounced in patients without family history of epilepsy and is influenced by earlier seizure onset. These changes in T2 signal may be associated with structural abnormalities related to the epileptogenic zone or to the nature of the initial precipitating injury in patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Lee, Ricky W; Hoogs, Marietta M; Burkholder, David B; Trenerry, Max R; Drazkowski, Joseph F; Shih, Jerry J; Doll, Karey E; Tatum, William O; Cascino, Gregory D; Marsh, W Richard; Wirrell, Elaine C; Worrell, Gregory A; So, Elson L
2014-07-01
We evaluated the outcomes of intracranial electroencephalography (iEEG) recording and subsequent resective surgery in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE). Thirty-two patients were identified from the Mayo Clinic Epilepsy Surgery Database (Arizona, Florida, and Minnesota). Eight (25.0%) had chronic iEEG monitoring that recorded neocortical temporal seizure onsets; 12 (37.5%) had mesial temporal seizure onsets; 5 (15.6%) had independent neocortical and mesial temporal seizure onsets; and 7 (21.9%) had simultaneous neocortical and mesial seizure onsets. Neocortical temporal lobe seizure semiology was the only factor significantly associated with neocortical temporal seizure onsets on iEEG. Only 33.3% of patients who underwent lateral temporal neocorticectomy had an Engel class 1 outcome, whereas 76.5% of patients with iEEG-guided anterior temporal lobectomy that included the amygdala and the hippocampus had an Engel class 1 outcome. Limitations in cohort size precluded statistical analysis of neuropsychological test data. Copyright © 2014 Elsevier B.V. All rights reserved.
Wang, Mengxing; Zhang, Jilei; Dong, Guangheng; Zhang, Hui; Lu, Haifeng; Du, Xiaoxia
2017-06-01
Although the mirror neuron system (MNS) has been extensively studied in monkeys and adult humans, very little is known about its development. Previous studies suggest that the MNS is present by infancy and that the brain and MNS-related cognitive abilities (such as language, empathy, and imitation learning) continue to develop after childhood. In humans, the PFt area of the inferior parietal lobule (IPL) seems to particularly correlate with the functional properties of the PF area in primates, which contains mirror neurons. However, little is known about the functional connectivity (FC) of the PFt area with other brain areas and whether these networks change over time. Here, we investigated the FC development of the PFt area-based network in 59 healthy subjects aged 7-26 years at resting-state to study brain development from late childhood through adolescence to early adulthood. The bilateral PFt showed similar core FC networks, which included the frontal lobe, the cingulate gyri, the insula, the somatosensory cortex, the precuneus, the superior and inferior parietal lobules, the temporal lobe, and the cerebellum posterior lobes. Furthermore, the FC between the left PFt and the left IPL exhibited a significantly positive correlation with age, and the FC between the left PFt and the right postcentral gyrus exhibited a significantly negative correlation with age. In addition, the FC between the right PFt and the right putamen exhibited a significantly negative correlation with age. Our findings suggest that the PFt area-based network develops and is reorganized with age. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.
Temporal Lobe Epilepsy in Children
Nickels, Katherine C.; Wong-Kisiel, Lily C.; Moseley, Brian D.; Wirrell, Elaine C.
2012-01-01
The temporal lobe is a common focus for epilepsy. Temporal lobe epilepsy in infants and children differs from the relatively homogeneous syndrome seen in adults in several important clinical and pathological ways. Seizure semiology varies by age, and the ictal EEG pattern may be less clear cut than what is seen in adults. Additionally, the occurrence of intractable seizures in the developing brain may impact neurocognitive function remote from the temporal area. While many children will respond favorably to medical therapy, those with focal imaging abnormalities including cortical dysplasia, hippocampal sclerosis, or low-grade tumors are likely to be intractable. Expedient workup and surgical intervention in these medically intractable cases are needed to maximize long-term developmental outcome. PMID:22957247
Limotai, Chusak; McLachlan, Richard S; Hayman-Abello, Susan; Hayman-Abello, Brent; Brown, Suzan; Bihari, Frank; Mirsattari, Seyed M
2018-06-19
This study was aimed to longitudinally assess memory function and whole-brain memory circuit reorganization in patients with temporal lobe epilepsy (TLE) by comparing activation potentials before versus after anterior temporal lobe (ATL) resection. Nineteen patients with medically-intractable TLE (10 left TLE, 9 right TLE) and 15 healthy controls were enrolled. Group analyses were conducted pre- and post-ATL of a novelty complex scene-encoding paradigm comparing areas of blood oxygen-level-dependent (BOLD) signal activations on functional magnetic resonance imaging (fMRI). None of the pre-operative patient characteristics we studied predicted the extent of pre- to post-operative memory loss. On fMRI, extra-temporal activations were detected pre-operatively in both LTLE and RTLE, particularly in the frontal lobe. Greater activations also were noted in the contralateral hippocampus and parahippocampus in both groups. Performing within-subject comparisons, post-op relative to pre-op, pronounced ipsilateral activations were identified in the left parahippocampal gyrus in LTLE, versus the right middle temporal gyrus in RTLE patients. Memory function was impaired pre-operatively but declined after ATL resection in both RTLE and LTLE patients. Post-operative fMRI results indicate possible functional adaptations to ATL loss, primarily occurring within the left parahippocampal gyrus versus right middle temporal gyrus in LTLE versus RTLE patients, respectively. Copyright © 2018 Elsevier Ltd. All rights reserved.
Naming and recognizing famous faces in temporal lobe epilepsy.
Glosser, G; Salvucci, A E; Chiaravalloti, N D
2003-07-08
To assess naming and recognition of faces of familiar famous people in patients with epilepsy before and after anterior temporal lobectomy (ATL). Color photographs of famous people were presented for naming and description to 63 patients with temporal lobe epilepsy (TLE) either before or after ATL and to 10 healthy age- and education-matched controls. Spontaneous naming of photographed famous people was impaired in all patient groups, but was most abnormal in patients who had undergone left ATL. When allowed to demonstrate knowledge of the famous faces through verbal descriptions, rather than naming, patients with left TLE, left ATL, and right TLE improved to normal levels, but patients with right ATL were still impaired, suggesting a new deficit in identifying famous faces. Naming of famous people was related to naming of other common objects, verbal memory, and perceptual discrimination of faces. Recognition of the identity of pictured famous people was more related to visuospatial perception and memory. Lesions in anterior regions of the right temporal lobe impair recognition of the identities of familiar faces, as well as the learning of new faces. Lesions in the left temporal lobe, especially in anterior regions, disrupt access to the names of known people, but do not affect recognition of the identities of famous faces. Results are consistent with the hypothesized role of lateralized anterior temporal lobe structures in facial recognition and naming of unique entities.
Umile, Eric M; Sandel, M Elizabeth; Alavi, Abass; Terry, Charles M; Plotkin, Rosette C
2002-11-01
To determine whether patients with mild traumatic brain injury (TBI) and persistent postconcussive symptoms have evidence of temporal lobe injury on dynamic imaging. Case series. An academic medical center. Twenty patients with a clinical diagnosis of mild TBI and persistent postconcussive symptoms were referred for neuropsychologic evaluation and dynamic imaging. Fifteen (75%) had normal magnetic resonance imaging (MRI) and/or computed tomography (CT) scans at the time of injury. Neuropsychologic testing, positron-emission tomography (PET), and single-photon emission-computed tomography (SPECT). Temporal lobe findings on static imaging (MRI, CT) and dynamic imaging (PET, SPECT); neuropsychologic test findings on measures of verbal and visual memory. Testing documented neurobehavioral deficits in 19 patients (95%). Dynamic imaging documented abnormal findings in 18 patients (90%). Fifteen patients (75%) had temporal lobe abnormalities on PET and SPECT (primarily in medial temporal regions); abnormal findings were bilateral in 10 patients (50%) and unilateral in 5 (25%). Six patients (30%) had frontal abnormalities, and 8 (40%) had nonfrontotemporal abnormalities. Correlations between neuropsychologic testing and dynamic imaging could be established but not consistently across the whole group. Patients with mild TBI and persistent postconcussive symptoms have a high incidence of temporal lobe injury (presumably involving the hippocampus and related structures), which may explain the frequent finding of memory disorders in this population. The abnormal temporal lobe findings on PET and SPECT in humans may be analogous to the neuropathologic evidence of medial temporal injury provided by animal studies after mild TBI. Copyright 2002 by the American Congress of Rehabilitation Medicine and the American Academy of Physical Medicine and Rehabilitation
Klamer, Silke; Milian, Monika; Erb, Michael; Rona, Sabine; Lerche, Holger; Ethofer, Thomas
2017-01-01
We aimed to identify reorganization processes of episodic memory networks in patients with left and right temporal lobe epilepsy (TLE) due to hippocampal sclerosis as well as their relations to neuropsychological memory performance. We investigated 28 healthy subjects, 12 patients with left TLE (LTLE) and 9 patients with right TLE (RTLE) with hippocampal sclerosis by means of functional magnetic resonance imaging (fMRI) using a face-name association task, which combines verbal and non-verbal memory functions. Regions-of-interest (ROIs) were defined based on the group results of the healthy subjects. In each ROI, fMRI activations were compared across groups and correlated with verbal and non-verbal memory scores. The face-name association task yielded activations in bilateral hippocampus (HC), left inferior frontal gyrus (IFG), left superior frontal gyrus (SFG), left superior temporal gyrus, bilateral angular gyrus (AG), bilateral medial prefrontal cortex and right anterior temporal lobe (ATL). LTLE patients demonstrated significantly less activation in the left HC and left SFG, whereas RTLE patients showed significantly less activation in the HC bilaterally, the left SFG and right AG. Verbal memory scores correlated with activations in the left and right HC, left SFG and right ATL and non-verbal memory scores with fMRI activations in the left and right HC and left SFG. The face-name association task can be employed to examine functional alterations of hippocampal activation during encoding of both verbal and non-verbal material in one fMRI paradigm. Further, the left SFG seems to be a convergence region for encoding of verbal and non-verbal material.
Park, Chang-Hyun; Choi, Yun Seo; Jung, A-Reum; Chung, Hwa-Kyoung; Kim, Hyeon Jin; Yoo, Jeong Hyun; Lee, Hyang Woon
2017-01-01
Brain functional integration can be disrupted in patients with temporal lobe epilepsy (TLE), but the clinical relevance of this disruption is not completely understood. The authors hypothesized that disrupted functional integration over brain regions remote from, as well as adjacent to, the seizure focus could be related to clinical severity in terms of seizure control and memory impairment. Using resting-state functional MRI data acquired from 48 TLE patients and 45 healthy controls, the authors mapped functional brain networks and assessed changes in a network parameter of brain functional integration, efficiency, to examine the distribution of disrupted functional integration within and between brain regions. The authors assessed whether the extent of altered efficiency was influenced by seizure control status and whether the degree of altered efficiency was associated with the severity of memory impairment. Alterations in the efficiency were observed primarily near the subcortical region ipsilateral to the seizure focus in TLE patients. The extent of regional involvement was greater in patients with poor seizure control: it reached the frontal, temporal, occipital, and insular cortices in TLE patients with poor seizure control, whereas it was limited to the limbic and parietal cortices in TLE patients with good seizure control. Furthermore, TLE patients with poor seizure control experienced more severe memory impairment, and this was associated with lower efficiency in the brain regions with altered efficiency. These findings indicate that the distribution of disrupted brain functional integration is clinically relevant, as it is associated with seizure control status and comorbid memory impairment.
Two areas for familiar face recognition in the primate brain.
Landi, Sofia M; Freiwald, Winrich A
2017-08-11
Familiarity alters face recognition: Familiar faces are recognized more accurately than unfamiliar ones and under difficult viewing conditions when unfamiliar face recognition fails. The neural basis for this fundamental difference remains unknown. Using whole-brain functional magnetic resonance imaging, we found that personally familiar faces engage the macaque face-processing network more than unfamiliar faces. Familiar faces also recruited two hitherto unknown face areas at anatomically conserved locations within the perirhinal cortex and the temporal pole. These two areas, but not the core face-processing network, responded to familiar faces emerging from a blur with a characteristic nonlinear surge, akin to the abruptness of familiar face recognition. In contrast, responses to unfamiliar faces and objects remained linear. Thus, two temporal lobe areas extend the core face-processing network into a familiar face-recognition system. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.
Kellermann, Tanja S; Bonilha, Leonardo; Eskandari, Ramin; Garcia-Ramos, Camille; Lin, Jack J; Hermann, Bruce P
2016-10-01
Normal cognitive function is defined by harmonious interaction among multiple neuropsychological domains. Epilepsy has a disruptive effect on cognition, but how diverse cognitive abilities differentially interact with one another compared with healthy controls (HC) is unclear. This study used graph theory to analyze the community structure of cognitive networks in adults with temporal lobe epilepsy (TLE) compared with that in HC. Neuropsychological assessment was performed in 100 patients with TLE and 82 HC. For each group, an adjacency matrix was constructed representing pair-wise correlation coefficients between raw scores obtained in each possible test combination. For each cognitive network, each node corresponded to a cognitive test; each link corresponded to the correlation coefficient between tests. Global network structure, community structure, and node-wise graph theory properties were qualitatively assessed. The community structure in patients with TLE was composed of fewer, larger, more mixed modules, characterizing three main modules representing close relationships between the following: 1) aspects of executive function (EF), verbal and visual memory, 2) speed and fluency, and 3) speed, EF, perception, language, intelligence, and nonverbal memory. Conversely, controls exhibited a relative division between cognitive functions, segregating into more numerous, smaller modules consisting of the following: 1) verbal memory, 2) language, perception, and intelligence, 3) speed and fluency, and 4) visual memory and EF. Overall node-wise clustering coefficient and efficiency were increased in TLE. Adults with TLE demonstrate a less clear and poorly structured segregation between multiple cognitive domains. This panorama suggests a higher degree of interdependency across multiple cognitive domains in TLE, possibly indicating compensatory mechanisms to overcome functional impairments. Copyright © 2016 Elsevier Inc. All rights reserved.
Remembering what could have happened: Neural correlates of episodic counterfactual thinking
De Brigard, F; Addis, D.R.; Ford, J.H.; Schacter, D.L.; Giovanello, K.S
2014-01-01
Recent evidence suggests that our capacities to remember the past and to imagine what might happen in the future largely depend on the same core brain network that includes the middle temporal lobe, the posterior cingulate/retrosplenial cortex, the inferior parietal lobe, the medial prefrontal cortex, and the lateral temporal cortex. However, the extent to which regions of this core brain network are also responsible for our capacity to think about what could have happened in our past, yet did not occur (i.e., episodic counterfactual thinking), is still unknown. The present study examined this issue. Using a variation of the experimental recombination paradigm (Addis et al., 2009), participants were asked both to remember personal past events and to envision alternative outcomes to such events while undergoing functional magnetic resonance imaging. Three sets of analyses were performed on the imaging data in order to investigate two related issues. First, a mean-centered spatiotemporal partial least square (PLS) analysis identified a pattern of brain activity across regions of the core network that was common to episodic memory and episodic counterfactual thinking. Second, a non-rotated PLS analysis identified two different patterns of brain activity for likely and unlikely episodic counterfactual thoughts, with the former showing significant overlap with the set of regions engaged during episodic recollection. Finally, a parametric modulation was conducted to explore the differential engagement of brain regions during counterfactual thinking, revealing that areas such as the parahippocampal gyrus and the right hippocampus were modulated by the subjective likelihood of counterfactual simulations. These results suggest that episodic counterfactual thinking engages regions that form the core brain network, and also that the subjective likelihood of our counterfactual thoughts modulates the engagement of different areas within this set of regions. PMID:23376052
Doucet, Gaëlle E.; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R.; Tracy, Joseph I.
2015-01-01
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. PMID:25187327
Zhang, Haosu; Shi, Yonghong; Yao, Chengjun; Tang, Weijun; Yao, Demin; Zhang, Chenxi; Wang, Manning; Wu, Jinsong; Song, Zhijian
2016-06-01
Patients with frontal lobe gliomas often experience neurocognitive dysfunctions before surgery, which affects the default mode network (DMN) to different degrees. This study quantitatively analyzed this effect from the perspective of cerebral hemispheric functional connectivity (FC). We collected resting-state fMRI data from 20 frontal lobe glioma patients before treatment and 20 healthy controls. All of the patients and controls were right-handed. After pre-processing the images, FC maps were built from the seed defined in the left or right posterior cingulate cortex (PCC) to the target regions determined in the left or right temporal-parietal junction (TPJ), respectively. The intra- and cross-group statistical calculations of FC strength were compared. The conclusions were as follows: (1) the intra-hemisphere FC strength values between the PCC and TPJ on the left and right were decreased in patients compared with controls; and (2) the correlation coefficients between the FC pairs in the patients were increased compared with the corresponding controls. When all of the patients were grouped by their tumor's hemispheric location, (3) the FC of the subgroups showed that the dominant hemisphere was vulnerable to glioma, and (4) the FC in the dominant hemisphere showed a significant correlation with WHO grade.
Frontal lobe function in temporal lobe epilepsy
Stretton, J.; Thompson, P.J.
2012-01-01
Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further. PMID:22100147
Network analysis of brain activations in working memory: behavior and age relationships.
Mencl, W E; Pugh, K R; Shaywitz, S E; Shaywitz, B A; Fulbright, R K; Constable, R T; Skudlarski, P; Katz, L; Marchione, K E; Lacadie, C; Gore, J C
2000-10-01
Forty-six middle-aged female subjects were scanned using functional Magnetic Resonance Imaging (fMRI) during performance of three distinct stages of a working memory task-encoding, rehearsal, and recognition-for both printed pseudowords and visual forms. An expanse of areas, involving the inferior frontal, parietal, and extrastriate cortex, was active in response to stimuli during both the encoding and recognition periods. Additional increases during memory recognition were seen in right prefrontal regions, replicating a now-common finding [for reviews, see Fletcher et al. (1997) Trends Neurosci 20:213-218; MacLeod et al. (1998) NeuroImage 7:41-48], and broadly supporting the Hemispheric Encoding/Retrieval Asymmetry hypothesis [Tulving et al. (1994) Proc Natl Acad Sci USA 91:2016-2020]. Notably, this asymmetry was not qualified by the type of material being processed. A few sites demonstrated higher activity levels during the rehearsal period, in the absence of any new stimuli, including the medial extrastriate, precuneus, and the medial temporal lobe. Further analyses examined relationships among subjects' brain activations, age, and behavioral scores on working memory tests, acquired outside the scanner. Correlations between brain scores and behavior scores indicated that activations in a number of areas, mainly frontal, were associated with performance. A multivariate analysis, Partial Least Squares [McIntosh et al. (1996) NeuroImage 3:143-157, (1997) Hum Brain Map 5:323-327], was then used to extract component effects from this large set of univariate correlations. Results indicated that better memory performance outside the scanner was associated with higher activity at specific sites within the frontal and, additionally, the medial temporal lobes. Analysis of age effects revealed that younger subjects tended to activate more than older subjects in areas of extrastriate cortex, medial frontal cortex, and the right medial temporal lobe; older subjects tended to activate more than younger subjects in the insular cortex, right inferior temporal lobe, and right inferior frontal gyrus. These results extend recent reports indicating that these regions are specifically involved in the memory impairments seen with aging. Copyright 2000 Wiley-Liss, Inc.
Proteomic analysis and comparison of the biopsy and autopsy specimen of human brain temporal lobe.
He, Sizhi; Wang, Qingsong; He, Jintang; Pu, Hai; Yang, Wei; Ji, Jianguo
2006-09-01
The proteomic study on human temporal lobe can help us to understand the physiological function of CNS in normal as well as in pathological state. Proteomic tools are potent for the assessment of protein stability post mortem. In this pilot study, the human temporal lobe biopsy specimen with chronic pharmacoresistant temporal lobe epilepsy (TLE) and autopsy specimen in control were separated by 2-DE. Using MALDI-TOF-MS and MS/MS, 375 protein spots were identified which were the products of 267 genes. Six down-regulated and 23 up-regulated protein spots in the autopsy specimen were ascertained after the gel image analysis with the ImageMaster software. A number of proteins that include neurotransmitter metabolic and glycolytic enzymes, cytoprotective proteins and cytoskeleton were found decreased while the precursor of apolipoprotein A-I increased in the TLE brain. We tried several methods to prepare the protein samples and found that DNase and RNase treatment, ultracentrifugation and Amersham clean-up kit purification can improve gel separation quality. This work optimized the sample preparation method and constructed a primary protein database of human temporal lobe and found some proteins with remarkable level change probably involved in the post-mortem process and chronic pharmacoresistant TLE pathogenesis.
[Kumagusu Minakata with temporal lobe epilepsy: a pathographic study].
Sengoku, Akira
2006-01-01
Kumagusu Minakata (1867-1941), a Japanese genius devoted to natural history and folklore, is famous for his immense range of works (including 50 monographs in 'Nature') and his discovery of several varieties of mycetozoa. His diary and the observations of other persons reveal that he was affected by several grand mal epileptic seizures, and he complained himself of frequent déjà vu experiences which he called promnesia according to Myers. Promnesia means, for example, "I have lived through all this before, and I know what will happen this next minute." Minakata also had this rare type of aural sign. MRI analysis of his postmortem brain found evidence of right hippocampal atrophy. This result showed that he had temporal lobe epilepsy with focus of the right side, and this coincides with his déjà vu experiences which were the aura of the loss of consciousness. However, he did not notice that these were aural signs, and he also complained of memory disturbances due to frequent déjà vu. His behavioral characteristics were peculiar, and those of Dostoyevsky who also had temporal lobe epilepsy were similar. Temporal lobe epilepsies may influence behavioral patterns which control the emotions. As a positive point, some patients with temporal lobe epilepsy can exhibit their primordial mental actions and perform persistent works.
ERIC Educational Resources Information Center
Shriver, A. S.; Canady, J.; Richman, L.; Andreasen, N. C.; Nopoulos, P.
2006-01-01
Background: In a previous study from our lab, adult males with non-syndromic cleft lip and/or palate (NSCLP) were shown to have significantly lower temporal lobe gray matter volume than matched controls. The current study was designed to begin a regional analysis of specific subregions of the temporal lobe. The superior temporal plane (STP) is a…
Levels of Processing with Free and Cued Recall and Unilateral Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Lespinet-Najib, Veronique; N'Kaoua, Bernard; Sauzeon, Helene; Bresson, Christel; Rougier, Alain; Claverie, Bernard
2004-01-01
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right ''RTLE''=24; left ''LTLE''=24) and a normal group (n=24). The results indicated…
Memory for Faces Dissociates from Memory for Location Following Anterior Temporal Lobectomy
ERIC Educational Resources Information Center
Chiaravalloti, Nancy D.; Glosser, Guila
2004-01-01
It has been suggested that the right and left mesial temporal lobes are specialized for processing different types of information for long-term memory (LTM). Although findings have been consistent in regard to the dominant role of the left mesial temporal lobe (MTL) in verbal memory, the role of the right MTL in non-verbal memory remains…
Postencephalitic focal retrograde amnesia after bilateral anterior temporal lobe damage.
Tanaka, Y; Miyazawa, Y; Hashimoto, R; Nakano, I; Obayashi, T
1999-07-22
Marked retrograde amnesia with no or almost no anterograde amnesia is rare. Recently, a combination of ventrolateral prefrontal and temporopolar cortical lesions has been suggested as the cause of such isolated or focal retrograde amnesia. It is also assumed that when the right-sided cortical structures are damaged, autobiographical episodic memories are affected. To search for new anatomic substrates for focal retrograde amnesia. We performed extensive neuropsychological tests and obtained detailed neuroimages on a 43-year-old woman who showed a severe, persistent retrograde amnesia but only a limited anterograde amnesia after probable herpes simplex encephalitis. Tests of autobiographical memory revealed that she had a memory loss extending back to her childhood for both semantics and incidents; however, the ability to recall specific episodes appeared much more severely impaired than the ability to recall factual information about her past. The patient also showed profound impairments in recalling public memories; however, her scores improved nearly to a control level on forced-choice recognition memory tasks, although the recall of memories for a decade just before her illness remained mildly impaired. MRI revealed focal pathologies in the temporal poles and the anterior parts of the inferotemporal lobes on both sides, predominantly on the left, with some extension to the anterior parts of the medial temporal lobes. There was additional damage to the left insular cortex and its surrounding structures but no evidence of frontal lobe damage on MRIs or cognitive tests. A profound retrograde amnesia may be produced by damage to the bilateral temporal poles and anterior inferotemporal lobes in the absence of frontal lobe pathologies, and a dense and persistent episodic old memory loss can arise even with a relatively small lesion in the right anterior temporal lobe if it is combined with extensive damage to the left.
The Predictive Brain State: Asynchrony in Disorders of Attention?
Ghajar, Jamshid; Ivry, Richard B.
2015-01-01
It is postulated that a key function of attention in goal-oriented behavior is to reduce performance variability by generating anticipatory neural activity that can be synchronized with expected sensory information. A network encompassing the prefrontal cortex, parietal lobe, and cerebellum may be critical in the maintenance and timing of such predictive neural activity. Dysfunction of this temporal process may constitute a fundamental defect in attention, causing working memory problems, distractibility, and decreased awareness. PMID:19074688
Lesting, Jörg; Geiger, Matthias; Narayanan, Rajeevan T; Pape, Hans-Christian; Seidenbecher, Thomas
2011-02-01
The relationship between epilepsy and fear has received much attention. However, seizure-modulated fear and physiologic or structural correlates have not been examined systematically, and the underlying basics of network levels remain unclear to date. Therefore, this project was set up to characterize the neurophysiologic basis of seizure-related fear and the contribution of the amygdala-hippocampus system. The experimental strategy was composed of the following steps: (1) use of the mouse pilocarpine model of temporal lobe epilepsy (TLE); (2) behavioral analyses of anxiety states in the elevated plus maze test, light-dark avoidance test, and Pavlovian fear conditioning; and (3) probing neurophysiologic activity patterns in amygdala-hippocampal circuits in freely behaving mice. Our results displayed no significant differences in basic anxiety levels comparing mice that developed spontaneous recurrent seizures (SRS) and controls. Furthermore, conditioned fear memory retrieval was not influenced in SRS mice. However, during fear memory extinction, SRS mice showed an extended freezing behavior and a maintained amygdala-hippocampal theta frequency synchronization compared to controls. These results indicate specific alterations in conditioned fear behavior and related neurophysiologic activities in the amygdala-hippocampal network contributing to impaired fear memory extinction in mice with TLE. Clinically, the nonextinguished fear memories may well contribute to the experience of fear in patients with TLE. Wiley Periodicals, Inc. © 2010 International League Against Epilepsy.
Ford, Jaclyn Hennessey; Addis, Donna Rose; Giovanello, Kelly S.
2011-01-01
Previous neuroimaging studies that have examined autobiographical memory specificity have utilized retrieval cues associated with prior searches of the event, potentially changing the retrieval processes being investigated. In the current study, musical cues were used to naturally elicit memories from multiple levels of specificity (i.e., lifetime period, general event, and event-specific). Sixteen young adults participated in a neuroimaging study in which they retrieved autobiographical memories associated with musical cues. These musical cues led to the retrieval of highly emotional memories that had low levels of prior retrieval. Retrieval of all autobiographical memory levels was associated with activity in regions in the autobiographical memory network, specifically the ventromedial prefrontal cortex, posterior cingulate, and right medial temporal lobe. Owing to the use of music, memories from varying levels of specificity were retrieved, allowing for comparison of event memory and abstract personal knowledge, as well as comparison of specific and general event memory. Dorsolateral and dorsomedial prefrontal regions were engaged during event retrieval relative to personal knowledge retrieval, and retrieval of specific event memories was associated with increased activity in the bilateral medial temporal lobe and dorsomedial prefrontal cortex relative to retrieval of general event memories. These results suggest that the initial search processes for memories of different specificity levels preferentially engage different components of the autobiographical memory network. The potential underlying causes of these neural differences are discussed. PMID:21600227
Striatal and Hippocampal Involvement in Motor Sequence Chunking Depends on the Learning Strategy
Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien
2014-01-01
Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy. PMID:25148078
Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy.
Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien
2014-01-01
Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.
de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain
2016-01-01
Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542
Similar patterns of neural activity predict memory function during encoding and retrieval.
Kragel, James E; Ezzyat, Youssef; Sperling, Michael R; Gorniak, Richard; Worrell, Gregory A; Berry, Brent M; Inman, Cory; Lin, Jui-Jui; Davis, Kathryn A; Das, Sandhitsu R; Stein, Joel M; Jobst, Barbara C; Zaghloul, Kareem A; Sheth, Sameer A; Rizzuto, Daniel S; Kahana, Michael J
2017-07-15
Neural networks that span the medial temporal lobe (MTL), prefrontal cortex, and posterior cortical regions are essential to episodic memory function in humans. Encoding and retrieval are supported by the engagement of both distinct neural pathways across the cortex and common structures within the medial temporal lobes. However, the degree to which memory performance can be determined by neural processing that is common to encoding and retrieval remains to be determined. To identify neural signatures of successful memory function, we administered a delayed free-recall task to 187 neurosurgical patients implanted with subdural or intraparenchymal depth electrodes. We developed multivariate classifiers to identify patterns of spectral power across the brain that independently predicted successful episodic encoding and retrieval. During encoding and retrieval, patterns of increased high frequency activity in prefrontal, MTL, and inferior parietal cortices, accompanied by widespread decreases in low frequency power across the brain predicted successful memory function. Using a cross-decoding approach, we demonstrate the ability to predict memory function across distinct phases of the free-recall task. Furthermore, we demonstrate that classifiers that combine information from both encoding and retrieval states can outperform task-independent models. These findings suggest that the engagement of a core memory network during either encoding or retrieval shapes the ability to remember the past, despite distinct neural interactions that facilitate encoding and retrieval. Copyright © 2017 Elsevier Inc. All rights reserved.
Lesion network localization of criminal behavior
Darby, R. Ryan; Horn, Andreas; Fox, Michael D.
2018-01-01
Following brain lesions, previously normal patients sometimes exhibit criminal behavior. Although rare, these cases can lend unique insight into the neurobiological substrate of criminality. Here we present a systematic mapping of lesions with known temporal association to criminal behavior, identifying 17 lesion cases. The lesion sites were spatially heterogeneous, including the medial prefrontal cortex, orbitofrontal cortex, and different locations within the bilateral temporal lobes. No single brain region was damaged in all cases. Because lesion-induced symptoms can come from sites connected to the lesion location and not just the lesion location itself, we also identified brain regions functionally connected to each lesion location. This technique, termed lesion network mapping, has recently identified regions involved in symptom generation across a variety of lesion-induced disorders. All lesions were functionally connected to the same network of brain regions. This criminality-associated connectivity pattern was unique compared with lesions causing four other neuropsychiatric syndromes. This network includes regions involved in morality, value-based decision making, and theory of mind, but not regions involved in cognitive control or empathy. Finally, we replicated our results in a separate cohort of 23 cases in which a temporal relationship between brain lesions and criminal behavior was implied but not definitive. Our results suggest that lesions in criminals occur in different brain locations but localize to a unique resting state network, providing insight into the neurobiology of criminal behavior. PMID:29255017
Beer, Anton L.; Plank, Tina; Meyer, Georg; Greenlee, Mark W.
2013-01-01
Functional magnetic resonance imaging (MRI) showed that the superior temporal and occipital cortex are involved in multisensory integration. Probabilistic fiber tracking based on diffusion-weighted MRI suggests that multisensory processing is supported by white matter connections between auditory cortex and the temporal and occipital lobe. Here, we present a combined functional MRI and probabilistic fiber tracking study that reveals multisensory processing mechanisms that remained undetected by either technique alone. Ten healthy participants passively observed visually presented lip or body movements, heard speech or body action sounds, or were exposed to a combination of both. Bimodal stimulation engaged a temporal-occipital brain network including the multisensory superior temporal sulcus (msSTS), the lateral superior temporal gyrus (lSTG), and the extrastriate body area (EBA). A region-of-interest (ROI) analysis showed multisensory interactions (e.g., subadditive responses to bimodal compared to unimodal stimuli) in the msSTS, the lSTG, and the EBA region. Moreover, sounds elicited responses in the medial occipital cortex. Probabilistic tracking revealed white matter tracts between the auditory cortex and the medial occipital cortex, the inferior occipital cortex (IOC), and the superior temporal sulcus (STS). However, STS terminations of auditory cortex tracts showed limited overlap with the msSTS region. Instead, msSTS was connected to primary sensory regions via intermediate nodes in the temporal and occipital cortex. Similarly, the lSTG and EBA regions showed limited direct white matter connections but instead were connected via intermediate nodes. Our results suggest that multisensory processing in the STS is mediated by separate brain areas that form a distinct network in the lateral temporal and inferior occipital cortex. PMID:23407860
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Pharmacological modulation in mesial temporal lobe epilepsy: Current status and future perspectives.
Gambardella, Antonio; Labate, Angelo; Cifelli, Pierangelo; Ruffolo, Gabriele; Mumoli, Laura; Aronica, Eleonora; Palma, Eleonora
2016-11-01
Mesial temporal lobe epilepsy (MTLE) is frequently associated with hippocampal sclerosis (Hs), possibly caused by a primary brain injury that occurs a long time before the appearance of neurological symptoms. MTLE-Hs is, however, a heterogeneous condition that evolves with time, involving both environmental and genetic components. Recent experimental studies emphasize that drugs or drug combinations that target modulation and circuitry reorganization of the epileptogenic networks favorably modify the complex molecular and cellular alterations underlying MTLE. In particular, the link between neuroinflammation, GABA A R and epilepsy has been extensively studied mainly because of the relevant therapeutic implications that the pharmacological modulation of these phenomena would have in the clinical practice. In this review, we briefly summarize the studies that could pave the road to develop new disease-modifying therapeutic strategies for pharmacoresistant MTLE patients. Both clinical observations in human MTLE and experimental findings will be discussed, highlighting the potential modulatory crosstalk between the deregulation of the inhibitory (GABAergic) transmission and the sustained activation of the innate immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.
The effect of white matter hyperintensities on verbal memory: Mediation by temporal lobe atrophy.
Swardfager, Walter; Cogo-Moreira, Hugo; Masellis, Mario; Ramirez, Joel; Herrmann, Nathan; Edwards, Jodi D; Saleem, Mahwesh; Chan, Parco; Yu, Di; Nestor, Sean M; Scott, Christopher J M; Holmes, Melissa F; Sahlas, Demetrios J; Kiss, Alexander; Oh, Paul I; Strother, Stephen C; Gao, Fuqiang; Stefanovic, Bojana; Keith, Julia; Symons, Sean; Swartz, Richard H; Lanctôt, Krista L; Stuss, Donald T; Black, Sandra E
2018-02-20
To determine the relationship between white matter hyperintensities (WMH) presumed to indicate disease of the cerebral small vessels, temporal lobe atrophy, and verbal memory deficits in Alzheimer disease (AD) and other dementias. We recruited groups of participants with and without AD, including strata with extensive WMH and minimal WMH, into a cross-sectional proof-of-principle study (n = 118). A consecutive case series from a memory clinic was used as an independent validation sample (n = 702; Sunnybrook Dementia Study; NCT01800214). We assessed WMH volume and left temporal lobe atrophy (measured as the brain parenchymal fraction) using structural MRI and verbal memory using the California Verbal Learning Test. Using path modeling with an inferential bootstrapping procedure, we tested an indirect effect of WMH on verbal recall that depends sequentially on temporal lobe atrophy and verbal learning. In both samples, WMH predicted poorer verbal recall, specifically due to temporal lobe atrophy and poorer verbal learning (proof-of-principle -1.53, 95% bootstrap confidence interval [CI] -2.45 to -0.88; and confirmation -0.66, 95% CI [-0.95 to -0.41] words). This pathway was significant in subgroups with (-0.20, 95% CI [-0.38 to -0.07] words, n = 363) and without (-0.71, 95% CI [-1.12 to -0.37] words, n = 339) AD. Via the identical pathway, WMH contributed to deficits in recognition memory (-1.82%, 95% CI [-2.64% to -1.11%]), a sensitive and specific sign of AD. Across dementia syndromes, WMH contribute indirectly to verbal memory deficits considered pathognomonic of Alzheimer disease, specifically by contributing to temporal lobe atrophy. © 2018 American Academy of Neurology.
Evidence That Default Network Connectivity During Rest Consolidates Social Information.
Meyer, Meghan L; Davachi, Lila; Ochsner, Kevin N; Lieberman, Matthew D
2018-04-13
Brain regions engaged during social inference, medial prefrontal cortex (MPFC) and tempoparietal junction (TPJ), are also known to spontaneously engage during rest. While this overlap is well known, the social cognitive function of engaging these regions during rest remains unclear. Building on past research suggesting that new information is committed to memory during rest, we explored whether one function of MPFC and TPJ engagement during rest may be to consolidate new social information. MPFC and TPJ regions significantly increased connectivity during rest after encoding new social information (relative to baseline and post nonsocial encoding rest periods). Moreover, greater connectivity between rTPJ and MPFC, as well as other portions of the default network (vMPFC, anterior temporal lobe, and middle temporal gyrus) during post social encoding rest corresponded with superior social recognition and social associative memory. The tendency to engage MPFC and TPJ during rest may tune people towards social learning.
Distinct frontal regions for processing sentence syntax and story grammar.
Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y
1998-12-01
Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.
Visser, M; Embleton, K V; Jefferies, E; Parker, G J; Ralph, M A Lambon
2010-05-01
The neural basis of semantic memory generates considerable debate. Semantic dementia results from bilateral anterior temporal lobe (ATL) atrophy and gives rise to a highly specific impairment of semantic memory, suggesting that this region is a critical neural substrate for semantic processing. Recent rTMS experiments with neurologically-intact participants also indicate that the ATL are a necessary substrate for semantic memory. Exactly which regions within the ATL are important for semantic memory are difficult to detect from these methods (because the damage in SD covers a large part of the ATL). Functional neuroimaging might provide important clues about which specific areas exhibit activation that correlates with normal semantic performance. Neuroimaging studies, however, have not consistently found anterior temporal lobe activation in semantic tasks. A recent meta-analysis indicates that this inconsistency may be due to a collection of technical limitations associated with previous studies, including a reduced field-of-view and magnetic susceptibility artefacts associated with standard gradient echo fMRI. We conducted an fMRI study of semantic memory using a combination of techniques which improve sensitivity to ATL activations whilst preserving whole-brain coverage. As expected from SD patients and ATL rTMS experiments, this method revealed bilateral temporal activation extending from the inferior temporal lobe along the fusiform gyrus to the anterior temporal regions, bilaterally. We suggest that the inferior, anterior temporal lobe region makes a crucial contribution to semantic cognition and utilising this version of fMRI will enable further research on the semantic role of the ATL. 2010 Elsevier Ltd. All rights reserved.
Tai, Xin You; Koepp, Matthias; Duncan, John S; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y W; Reeves, Cheryl; Michalak, Zuzanna; Thom, Maria
2016-09-01
SEE BERNASCONI DOI101093/AWW202 FOR A SCIENTIFIC COMMENTARY ON THIS ARTICLE: Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer's disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer's disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer's disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and co-localization with mossy fibre sprouting, a feature of temporal lobe epilepsy. We demonstrated that the more extensive the tau pathology, the greater the decline in verbal learning (Spearman correlation, r = -0.63), recall (r = -0.44) and graded naming test scores (r = -0.50) over 1-year post-temporal lobe resection (P < 0.05). This relationship with tau burden was also present when examining decline in verbal learning from 3 months to 1 year post-resection (r = -0.54). We found an association between modified tau score and history of secondary generalized seizures (likelihood-ratio χ(2), P < 0.05) however there was no clear relationship between tau pathology and other clinical risk factors assessed. Our findings suggest an epilepsy-related tauopathy in temporal lobe epilepsy, which contributes to accelerated cognitive decline and has diagnostic and treatment implications. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Tai, Xin You; Koepp, Matthias; Duncan, John S.; Fox, Nick; Thompson, Pamela; Baxendale, Sallie; Liu, Joan Y. W.; Reeves, Cheryl; Michalak, Zuzanna
2016-01-01
Abstract See Bernasconi (doi:10.1093/aww202) for a scientific commentary on this article. Temporal lobe epilepsy, the most prevalent form of chronic focal epilepsy, is associated with a high prevalence of cognitive impairment but the responsible underlying pathological mechanisms are unknown. Tau, the microtubule-associated protein, is a hallmark of several neurodegenerative diseases including Alzheimer’s disease and chronic traumatic encephalopathy. We hypothesized that hyperphosphorylated tau pathology is associated with cognitive decline in temporal lobe epilepsy and explored this through clinico-pathological study. We first performed pathological examination on tissue from 33 patients who had undergone temporal lobe resection between ages 50 and 65 years to treat drug-refractory temporal lobe epilepsy. We identified hyperphosphorylated tau protein using AT8 immunohistochemistry and compared this distribution to Braak patterns of Alzheimer’s disease and patterns of chronic traumatic encephalopathy. We quantified tau pathology using a modified tau score created specifically for analysis of temporal lobectomy tissue and the Braak staging, which was limited without extra-temporal brain areas available. Next, we correlated tau pathology with pre- and postoperative cognitive test scores and clinical risk factors including age at time of surgery, duration of epilepsy, history of secondary generalized seizures, history of head injury, handedness and side of surgery. Thirty-one of 33 cases (94%) showed hyperphosphorylated tau pathology in the form of neuropil threads and neurofibrillary tangles and pre-tangles. Braak stage analysis showed 12% of our epilepsy cohort had a Braak staging III-IV compared to an age-matched non-epilepsy control group from the literature (8%). We identified a mixture of tau pathology patterns characteristic of Alzheimer’s disease and chronic traumatic encephalopathy. We also found unusual patterns of subpial tau deposition, sparing of the hippocampus and co-localization with mossy fibre sprouting, a feature of temporal lobe epilepsy. We demonstrated that the more extensive the tau pathology, the greater the decline in verbal learning (Spearman correlation, r = −0.63), recall (r = −0.44) and graded naming test scores (r = −0.50) over 1-year post-temporal lobe resection (P < 0.05). This relationship with tau burden was also present when examining decline in verbal learning from 3 months to 1 year post-resection (r = −0.54). We found an association between modified tau score and history of secondary generalized seizures (likelihood-ratio χ2, P < 0.05) however there was no clear relationship between tau pathology and other clinical risk factors assessed. Our findings suggest an epilepsy-related tauopathy in temporal lobe epilepsy, which contributes to accelerated cognitive decline and has diagnostic and treatment implications. PMID:27497924
Keller, Simon S; O'Muircheartaigh, Jonathan; Traynor, Catherine; Towgood, Karren; Barker, Gareth J; Richardson, Mark P
2014-02-01
Thalamic abnormality in temporal lobe epilepsy (TLE) is well known from imaging studies, but evidence is lacking regarding connectivity profiles of the thalamus and their involvement in the disease process. We used a novel multisequence magnetic resonance imaging (MRI) protocol to elucidate the relationship between mesial temporal and thalamic pathology in TLE. For 23 patients with TLE and 23 healthy controls, we performed T1 -weighted (for analysis of tissue structure), diffusion tensor imaging (tissue connectivity), and T1 and T2 relaxation (tissue integrity) MRI across the whole brain. We used connectivity-based segmentation to determine connectivity patterns of thalamus to ipsilateral cortical regions (occipital, parietal, prefrontal, postcentral, precentral, and temporal). We subsequently determined volumes, mean tractography streamlines, and mean T1 and T2 relaxometry values for each thalamic segment preferentially connecting to a given cortical region, and of the hippocampus and entorhinal cortex. As expected, patients had significant volume reduction and increased T2 relaxation time in ipsilateral hippocampus and entorhinal cortex. There was bilateral volume loss, mean streamline reduction, and T2 increase of the thalamic segment preferentially connected to temporal lobe, corresponding to anterior, dorsomedial, and pulvinar thalamic regions, with no evidence of significant change in any other thalamic segments. Left and right thalamotemporal segment volume and T2 were significantly correlated with volume and T2 of ipsilateral (epileptogenic), but not contralateral (nonepileptogenic), mesial temporal structures. These convergent and robust data indicate that thalamic abnormality in TLE is restricted to the area of the thalamus that is preferentially connected to the epileptogenic temporal lobe. The degree of thalamic pathology is related to the extent of mesial temporal lobe damage in TLE. © 2014 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Radonovich, Krestin J; Mostofsky, Stewart H
2004-09-01
Clinicians, parents, and teachers alike have noted that individuals with ADHD often have difficulties with "time management," which has led some to suggest a primary deficit in time perception in ADHD. Previous studies have implicated the basal ganglia, cerebellum, and frontal lobes in time estimation and production, with each region purported to make different contributions to the processing and utilization of temporal information. Given the observed involvement of the frontal-subcortical networks in ADHD, we examined judgment of durations in children with ADHD (N = 27) and age- and gender-matched control subjects (N = 15). Two judgment tasks were administered: short duration (550 ms) and long duration (4 s). The two groups did not differ significantly in their judgments of short interval durations; however, subjects with ADHD performed more poorly when making judgments involving long intervals. The groups also did not differ on a judgment-of-pitch task, ruling out a generalized deficit in auditory discrimination. Selective impairment in making judgments involving long intervals is consistent with performance by patients with frontal lobe lesions and suggests that there is a deficiency in the utilization of temporal information in ADHD (possibly secondary to deficits in working memory and/or strategy utilization), rather than a problem involving a central timing mechanism.
Sikka, Ritu; Cuddy, Lola L.; Johnsrude, Ingrid S.; Vanstone, Ashley D.
2015-01-01
Several studies of semantic memory in non-musical domains involving recognition of items from long-term memory have shown an age-related shift from the medial temporal lobe structures to the frontal lobe. However, the effects of aging on musical semantic memory remain unexamined. We compared activation associated with recognition of familiar melodies in younger and older adults. Recognition follows successful retrieval from the musical lexicon that comprises a lifetime of learned musical phrases. We used the sparse-sampling technique in fMRI to determine the neural correlates of melody recognition by comparing activation when listening to familiar vs. unfamiliar melodies, and to identify age differences. Recognition-related cortical activation was detected in the right superior temporal, bilateral inferior and superior frontal, left middle orbitofrontal, bilateral precentral, and left supramarginal gyri. Region-of-interest analysis showed greater activation for younger adults in the left superior temporal gyrus and for older adults in the left superior frontal, left angular, and bilateral superior parietal regions. Our study provides powerful evidence for these musical memory networks due to a large sample (N = 40) that includes older adults. This study is the first to investigate the neural basis of melody recognition in older adults and to compare the findings to younger adults. PMID:26500480
Associative episodic memory and recollective processes in childhood temporal lobe epilepsy.
Martins, Sylvie; Guillery-Girard, Bérengère; Clochon, Patrice; Bulteau, Christine; Hertz-Pannier, Lucie; Chiron, Catherine; Eustache, Francis; Jambaqué, Isabelle
2015-03-01
While the current literature on children suffering from temporal lobe epilepsy (CTLE) mostly focuses on material-related episodic memory deficits according to seizure-onset lateralization, the present study examined associative episodic memory according to the type of information to memorize (e.g., factual, spatial, and sequential) and further investigated subjective and objective recollection. Eleven children with left temporal lobe epilepsy (LTLE), 10 children with right temporal lobe epilepsy (RTLE), among whom 9 displayed hippocampal sclerosis (HS), and 42 healthy controls completed the WHAT-WHEN-WHERE protocol (Guillery-Girard et al., 2013). Group comparisons were first conducted according to the affected side and second according to the underlying pathology. Results showed associative memory impairments in patients irrespective of the affected side. Moreover, this study revealed that HS is particularly deleterious to associative and subjective recollection in CTLE. In addition, this study emphasizes the need for assessing episodic memory in childhood TLE beyond material specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
De novo 12q22.q23.3 duplication associated with temporal lobe epilepsy.
Vari, Maria Stella; Traverso, Monica; Bellini, Tommaso; Madia, Francesca; Pinto, Francesca; Minetti, Carlo; Striano, Pasquale; Zara, Federico
2017-08-01
Temporal lobe epilepsy (TLE) is the most common form of focal epilepsy and may be associated with acquired central nervous system lesions or could be genetic. Various susceptibility genes and environmental factors are believed to be involved in the aetiology of TLE, which is considered to be a heterogeneous, polygenic, and complex disorder. Rare point mutations in LGI1, DEPDC5, and RELN as well as some copy number variations (CNVs) have been reported in families with TLE patients. We perform a genetic analysis by Array-CGH in a patient with dysmorphic features and temporal lobe epilepsy. We report a de novo duplication of the long arm of chromosome 12. We confirm that 12q22-q23.3 is a candidate locus for familial temporal lobe epilepsy with febrile seizures and highlight the role of chromosomal rearrangements in patients with epilepsy and intellectual disability. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
[Research on brain white matter network in cerebral palsy infant].
Li, Jun; Yang, Cheng; Wang, Yuanjun; Nie, Shengdong
2017-10-01
Present study used diffusion tensor image and tractography to construct brain white matter networks of 15 cerebral palsy infants and 30 healthy infants that matched for age and gender. After white matter network analysis, we found that both cerebral palsy and healthy infants had a small-world topology in white matter network, but cerebral palsy infants exhibited abnormal topological organization: increased shortest path length but decreased normalize clustering coefficient, global efficiency and local efficiency. Furthermore, we also found that white matter network hub regions were located in the left cuneus, precuneus, and left posterior cingulate gyrus. However, some abnormal nodes existed in the frontal, temporal, occipital and parietal lobes of cerebral palsy infants. These results indicated that the white matter networks for cerebral palsy infants were disrupted, which was consistent with previous studies about the abnormal brain white matter areas. This work could help us further study the pathogenesis of cerebral palsy infants.
Bilateral temporal lobe volume reduction parallels cognitive impairment in progressive aphasia.
Andersen, C; Dahl, C; Almkvist, O; Ostberg, P; Julin, P; Wahlund, L O
1997-10-01
Patients with isolated aphasia in the absence of other cognitive abnormalities have been the focus of several studies during the past decade. It has been called primary progressive aphasia (PPA), and the typical features of this syndrome are marked atrophy of the left temporal lobe according to the radiological examination and a language disorder as the initial symptom. In previous studies of PPA, the selection of the patients was based mainly on linguistic symptoms. Now, when computed tomography or magnetic resonance imaging scans are part of the routine investigation of cognitive impairment and suspected dementia, the patients with lobar atrophy will be found at an earlier stage. In the present study, we used a new approach and defined the study group by selecting patients with obvious left temporal lobe atrophy, assessed by MRI, and we referred to them as patients with temporal lobe atrophy (TLA). To identify the features that distinguish TLA from other primary neurodegenerative disorders. Six patients with TLA were compared with patients with Alzheimer disease (AD), patients with frontal lobe dementia (FLD), and healthy control subjects. The investigations included magnetic resonance imaging volumetry, single photon emission computed tomography, and neuropsychologic and linguistic evaluations. In the TLA group, the mean volume of the left temporal lobe was 35% smaller than the right, while in the AD and FLD groups, the atrophy was symmetrical and bilateral. In the TLA group, the absolute volumes of the temporal lobes were significantly smaller on the left side compared with the AD and FLD groups, whereas there was no difference on the right side. The cerebral blood flow pattern in TLA was asymmetric and differed from that in the other study groups. All patients with TLA had a history of progressive Wernicke-type aphasia, ranging from 2 to 6 years. They showed primary verbal memory impairment but had preserved visuospatial functions. The clinical condition of all patients with TLA deteriorated during the study period; severe aphasia developed, and the patients exhibited signs of frontal lobe dysfunction. Serial volumetric measurements in 4 of 6 patients showed an annual 8% to 9% decrease of both left and right temporal lobes. The initial marked asymmetry in cognitive function found in patients with TLA contrasts with the general decline found in patients with AD. The bilateral degenerative process evident in patients with TLA paralleled the clinical deterioration, indicating TLA to be a non-AD lobar atrophy that develops into generalized cognitive dysfunction and dementia.
Hetherington, Hoby P; Pan, Jullie W; Spencer, Dennis D
2002-10-01
Over the past decade, (1)H and (31)P spectroscopy measurements have demonstrated that significant metabolic alterations occur in temporal lobe epilepsy. However, to most accurately interpret these changes, metabolic heterogeneity and differences between gray and white matter must be accounted for. These alterations, decreased NAA and the ratio of phosphocreatine/inorganic phosphate, can be reversed with successful treatment of seizures. The reversibility of these two measures is consistent with the localization of NAA synthesis to neuronal mitochondria and the important role for bioenergetics in the pathophysiology of temporal lobe epilepsy. Copyright 2002 Wiley-Liss, Inc.
Time reversibility of intracranial human EEG recordings in mesial temporal lobe epilepsy
NASA Astrophysics Data System (ADS)
van der Heyden, M. J.; Diks, C.; Pijn, J. P. M.; Velis, D. N.
1996-02-01
Intracranial electroencephalograms from patients suffering from mesial temporal lobe epilepsy were tested for time reversibility. If the recorded time series is irreversible, the input of the recording system cannot be a realisation of a linear Gaussian random process. We confirmed experimentally that the measurement equipment did not introduce irreversibility in the recorded output when the input was a realisation of a linear Gaussian random process. In general, the non-seizure recordings are reversible, whereas the seizure recordings are irreversible. These results suggest that time reversibility is a useful property for the characterisation of human intracranial EEG recordings in mesial temporal lobe epilepsy.
Gonzálvez, Gloria G; Trimmel, Karin; Haag, Anja; van Graan, Louis A; Koepp, Matthias J; Thompson, Pamela J; Duncan, John S
2016-12-01
Verbal fluency functional MRI (fMRI) is used for predicting language deficits after anterior temporal lobe resection (ATLR) for temporal lobe epilepsy (TLE), but primarily engages frontal lobe areas. In this observational study we investigated fMRI paradigms using visual and auditory stimuli, which predominately involve language areas resected during ATLR. Twenty-three controls and 33 patients (20 left (LTLE), 13 right (RTLE)) were assessed using three fMRI paradigms: verbal fluency, auditory naming with a contrast of auditory reversed speech; picture naming with a contrast of scrambled pictures and blurred faces. Group analysis showed bilateral temporal activations for auditory naming and picture naming. Correcting for auditory and visual input (by subtracting activations resulting from auditory reversed speech and blurred pictures/scrambled faces respectively) resulted in left-lateralised activations for patients and controls, which was more pronounced for LTLE compared to RTLE patients. Individual subject activations at a threshold of T>2.5, extent >10 voxels, showed that verbal fluency activated predominantly the left inferior frontal gyrus (IFG) in 90% of LTLE, 92% of RTLE, and 65% of controls, compared to right IFG activations in only 15% of LTLE and RTLE and 26% of controls. Middle temporal (MTG) or superior temporal gyrus (STG) activations were seen on the left in 30% of LTLE, 23% of RTLE, and 52% of controls, and on the right in 15% of LTLE, 15% of RTLE, and 35% of controls. Auditory naming activated temporal areas more frequently than did verbal fluency (LTLE: 93%/73%; RTLE: 92%/58%; controls: 82%/70% (left/right)). Controlling for auditory input resulted in predominantly left-sided temporal activations. Picture naming resulted in temporal lobe activations less frequently than did auditory naming (LTLE 65%/55%; RTLE 53%/46%; controls 52%/35% (left/right)). Controlling for visual input had left-lateralising effects. Auditory and picture naming activated temporal lobe structures, which are resected during ATLR, more frequently than did verbal fluency. Controlling for auditory and visual input resulted in more left-lateralised activations. We hypothesise that these paradigms may be more predictive of postoperative language decline than verbal fluency fMRI. Copyright © 2016 Elsevier B.V. All rights reserved.
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Whitwell, Jennifer L; Przybelski, Scott A; Weigand, Stephen D; Ivnik, Robert J; Vemuri, Prashanthi; Gunter, Jeffrey L; Senjem, Matthew L; Shiung, Maria M; Boeve, Bradley F; Knopman, David S; Parisi, Joseph E; Dickson, Dennis W; Petersen, Ronald C; Jack, Clifford R; Josephs, Keith A
2009-11-01
The behavioural variant of frontotemporal dementia is a progressive neurodegenerative syndrome characterized by changes in personality and behaviour. It is typically associated with frontal lobe atrophy, although patterns of atrophy are heterogeneous. The objective of this study was to examine case-by-case variability in patterns of grey matter atrophy in subjects with the behavioural variant of frontotemporal dementia and to investigate whether behavioural variant of frontotemporal dementia can be divided into distinct anatomical subtypes. Sixty-six subjects that fulfilled clinical criteria for a diagnosis of the behavioural variant of frontotemporal dementia with a volumetric magnetic resonance imaging scan were identified. Grey matter volumes were obtained for 26 regions of interest, covering frontal, temporal and parietal lobes, striatum, insula and supplemental motor area, using the automated anatomical labelling atlas. Regional volumes were divided by total grey matter volume. A hierarchical agglomerative cluster analysis using Ward's clustering linkage method was performed to cluster the behavioural variant of frontotemporal dementia subjects into different anatomical clusters. Voxel-based morphometry was used to assess patterns of grey matter loss in each identified cluster of subjects compared to an age and gender-matched control group at P < 0.05 (family-wise error corrected). We identified four potentially useful clusters with distinct patterns of grey matter loss, which we posit represent anatomical subtypes of the behavioural variant of frontotemporal dementia. Two of these subtypes were associated with temporal lobe volume loss, with one subtype showing loss restricted to temporal lobe regions (temporal-dominant subtype) and the other showing grey matter loss in the temporal lobes as well as frontal and parietal lobes (temporofrontoparietal subtype). Another two subtypes were characterized by a large amount of frontal lobe volume loss, with one subtype showing grey matter loss in the frontal lobes as well as loss of the temporal lobes (frontotemporal subtype) and the other subtype showing loss relatively restricted to the frontal lobes (frontal-dominant subtype). These four subtypes differed on clinical measures of executive function, episodic memory and confrontation naming. There were also associations between the four subtypes and genetic or pathological diagnoses which were obtained in 48% of the cohort. The clusters did not differ in behavioural severity as measured by the Neuropsychiatric Inventory; supporting the original classification of the behavioural variant of frontotemporal dementia in these subjects. Our findings suggest behavioural variant of frontotemporal dementia can therefore be subdivided into four different anatomical subtypes.
Krumm, Sabine; Kivisaari, Sasa L; Monsch, Andreas U; Reinhardt, Julia; Ulmer, Stephan; Stippich, Christoph; Kressig, Reto W; Taylor, Kirsten I
2017-05-01
The parietal lobe is important for successful recognition memory, but its role is not yet fully understood. We investigated the parietal lobes' contribution to immediate paired-associate memory and delayed item-recognition memory separately for hits (targets) and correct rejections (distractors). We compared the behavioral performance of 56 patients with known parietal and medial temporal lobe dysfunction (i.e. early Alzheimer's Disease) to 56 healthy control participants in an immediate paired and delayed single item object memory task. Additionally, we performed voxel-based morphometry analyses to investigate the functional-neuroanatomic relationships between performance and voxel-based estimates of atrophy in whole-brain analyses. Behaviorally, all participants performed better identifying targets than rejecting distractors. The voxel-based morphometry analyses associated atrophy in the right ventral parietal cortex with fewer correct responses to familiar items (i.e. hits) in the immediate and delayed conditions. Additionally, medial temporal lobe integrity correlated with better performance in rejecting distractors, but not in identifying targets, in the immediate paired-associate task. Our findings suggest that the parietal lobe critically supports successful immediate and delayed target recognition memory, and that the ventral aspect of the parietal cortex and the medial temporal lobe may have complementary preferences for identifying targets and rejecting distractors, respectively, during recognition memory. Copyright © 2017. Published by Elsevier Inc.
The anterior temporal lobes support residual comprehension in Wernicke’s aphasia
Robson, Holly; Zahn, Roland; Keidel, James L.; Binney, Richard J.; Sage, Karen; Lambon Ralph, Matthew A.
2014-01-01
Wernicke’s aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory–verbal comprehension is significantly impaired in Wernicke’s aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke’s aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke’s aphasia and 12 control participants performed semantic animate–inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke’s aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke’s aphasia group displayed an ‘over-activation’ in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke’s aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions. PMID:24519979
Outcome of temporal lobe epilepsy surgery predicted by statistical parametric PET imaging.
Wong, C Y; Geller, E B; Chen, E Q; MacIntyre, W J; Morris, H H; Raja, S; Saha, G B; Lüders, H O; Cook, S A; Go, R T
1996-07-01
PET is useful in the presurgical evaluation of temporal lobe epilepsy. The purpose of this retrospective study is to assess the clinical use of statistical parametric imaging in predicting surgical outcome. Interictal 18FDG-PET scans in 17 patients with surgically-treated temporal lobe epilepsy (Group A-13 seizure-free, group B = 4 not seizure-free at 6 mo) were transformed into statistical parametric imaging, with each pixel representing a z-score value by using the mean and s.d. of count distribution in each individual patient, for both visual and quantitative analysis. Mean z-scores were significantly more negative in anterolateral (AL) and mesial (M) regions on the operated side than the nonoperated side in group A (AL: p < 0.00005, M: p = 0.0097), but not in group B (AL: p = 0.46, M: p = 0.08). Statistical parametric imaging correctly lateralized 16 out of 17 patients. Only the AL region, however, was significant in predicting surgical outcome (F = 29.03, p < 0.00005). Using a cut-off z-score value of -1.5, statistical parametric imaging correctly classified 92% of temporal lobes from group A and 88% of those from Group B. The preliminary results indicate that statistical parametric imaging provides both clinically useful information for lateralization in temporal lobe epilepsy and a reliable predictive indicator of clinical outcome following surgical treatment.
The anterior temporal lobes support residual comprehension in Wernicke's aphasia.
Robson, Holly; Zahn, Roland; Keidel, James L; Binney, Richard J; Sage, Karen; Lambon Ralph, Matthew A
2014-03-01
Wernicke's aphasia occurs after a stroke to classical language comprehension regions in the left temporoparietal cortex. Consequently, auditory-verbal comprehension is significantly impaired in Wernicke's aphasia but the capacity to comprehend visually presented materials (written words and pictures) is partially spared. This study used functional magnetic resonance imaging to investigate the neural basis of written word and picture semantic processing in Wernicke's aphasia, with the wider aim of examining how the semantic system is altered after damage to the classical comprehension regions. Twelve participants with chronic Wernicke's aphasia and 12 control participants performed semantic animate-inanimate judgements and a visual height judgement baseline task. Whole brain and region of interest analysis in Wernicke's aphasia and control participants found that semantic judgements were underpinned by activation in the ventral and anterior temporal lobes bilaterally. The Wernicke's aphasia group displayed an 'over-activation' in comparison with control participants, indicating that anterior temporal lobe regions become increasingly influential following reduction in posterior semantic resources. Semantic processing of written words in Wernicke's aphasia was additionally supported by recruitment of the right anterior superior temporal lobe, a region previously associated with recovery from auditory-verbal comprehension impairments. Overall, the results provide support for models in which the anterior temporal lobes are crucial for multimodal semantic processing and that these regions may be accessed without support from classic posterior comprehension regions.
Garcia, Maria Teresa Fernandes Castilho; Gaça, Larissa Botelho; Sandim, Gabriel Barbosa; Assunção Leme, Idaiane Batista; Carrete, Henrique; Centeno, Ricardo Silva; Sato, João Ricardo; Yacubian, Elza Márcia Targas
2017-05-01
Corticoamygdalohippocampectomy (CAH) improves seizure control, quality of life, and decreases mortality for refractory mesial temporal lobe epilepsy with hippocampal sclerosis (MTLE-HS). One-third of patients continue having seizures, and it is pivotal to determine structural abnormalities that might influence the postoperative outcome. Studies indicate that nonhippocampal regions may play a role in the epileptogenic network in MTLE-HS and could generate seizures postoperatively. The aim of this study is to analyze areas of atrophy, not always detected on routine MRI, comparing patients who became seizure free (SF) with those non seizure free (NSF) after CAH, in an attempt to establish possible predictors of surgical outcome. 105 patients with refractory MTLE-HS submitted to CAH (59 left MTLE; 46 males) and 47 controls were enrolled. FreeSurfer was performed for cortical thickness and volume estimation comparing patients to controls and SF versus NSF patients. The final sample after post processing procedures resulted in 99 patients. Cortical thickness analyses showed reductions in left insula in NSF patients compared to those SF. Significant volume reductions in SF patients were present in bilateral thalami, hippocampi and pars opercularis, left parahippocampal gyrus and right temporal pole. In NSF patients reductions were present bilaterally in thalami, hippocampi, entorhinal cortices, superior frontal and supramarginal gyri; on the left: superior and middle temporal gyri, temporal pole, parahippocampal gyrus, pars opercularis and middle frontal gyrus; and on the right: precentral, superior, middle and inferior temporal gyri. Comparison between SF and NSF patients showed ipsilateral gray matter reductions in the right entorhinal cortex (p=0.003) and contralateral parahippocampal gyrus (p=0.05) in right MTLE-HS. Patients NSF had a longer duration of epilepsy than those SF (p=0.028). NSF patients exhibited more extensive areas of atrophy than SF ones. As entorhinal cortex and parahippocampal gyrus are reduced in NSF patients compared to those SF these structures might be implicated in the network responsible for the maintenance of postoperative seizures. Duration of epilepsy is a predictor of seizure outcome. Copyright © 2017 Elsevier B.V. All rights reserved.
Memory Functions following Surgery for Temporal Lobe Epilepsy in Children
ERIC Educational Resources Information Center
Jambaque, Isabelle; Dellatolas, Georges; Fohlen, Martine; Bulteau, Christine; Watier, Laurence; Dorfmuller, Georg; Chiron, Catherine; Delalande, Olivier
2007-01-01
Surgical treatment appears to improve the cognitive prognosis in children undergoing surgery for temporal lobe epilepsy (TLE). The beneficial effects of surgery on memory functions, particularly on material-specific memory, are more difficult to assess because of potentially interacting factors such as age range, intellectual level,…
Content-Specific Source Encoding in the Human Medial Temporal Lobe
ERIC Educational Resources Information Center
Awipi, T.; Davachi, L.
2008-01-01
Although the medial temporal lobe (MTL) is known to be essential for episodic encoding, the contributions of individual MTL subregions remain unclear. Data from recognition memory studies have provided evidence that the hippocampus supports relational encoding important for later episodic recollection, whereas the perirhinal cortex has been linked…
Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine
2009-01-01
Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…
ERIC Educational Resources Information Center
Kates, Wendy R.; Miller, Adam M.; Abdulsabur, Nuria; Antshel, Kevin M.; Conchelos, Jena; Fremont, Wanda; Roizen, Nancy
2006-01-01
Objective: To investigate the association between mesial temporal lobe morphology, ratios of prefrontal cortex to amygdala and hippocampus volumes, and psychiatric symptomatology in children and adolescents with velocardiofacial syndrome (VCFS). Method: Scores on behavioral rating scales and volumetric measures of the amygdala, hippocampus, and…
Implications of Animal Object Memory Research for Human Amnesia
ERIC Educational Resources Information Center
Winters, Boyer D.; Saksida, Lisa M.; Bussey, Timothy J.
2010-01-01
Damage to structures in the human medial temporal lobe causes severe memory impairment. Animal object recognition tests gained prominence from attempts to model "global" human medial temporal lobe amnesia, such as that observed in patient HM. These tasks, such as delayed nonmatching-to-sample and spontaneous object recognition, for assessing…
Medial Temporal Lobe Memory in Childhood: Developmental Transitions
ERIC Educational Resources Information Center
Townsend, Elise L.; Richmond, Jenny L.; Vogel-Farley, Vanessa K.; Thomas, Kathleen
2010-01-01
The medial temporal lobes (MTL) support declarative memory and mature structurally and functionally during the postnatal years in humans. Although recent work has addressed the development of declarative memory in early childhood, less is known about continued development beyond this period of time. The purpose of this investigation was to explore…
MEG Evidence for Incremental Sentence Composition in the Anterior Temporal Lobe
ERIC Educational Resources Information Center
Brennan, Jonathan R.; Pylkkänen, Liina
2017-01-01
Research investigating the brain basis of language comprehension has associated the left anterior temporal lobe (ATL) with sentence-level combinatorics. Using magnetoencephalography (MEG), we test the parsing strategy implemented in this brain region. The number of incremental parse steps from a predictive left-corner parsing strategy that is…
Sub-Centimeter Language Organization in the Human Temporal Lobe
ERIC Educational Resources Information Center
Flinker, A.; Chang, E. F.; Barbaro, N. M.; Berger, M. S.; Knight, R. T.
2011-01-01
The human temporal lobe is well known to be critical for language comprehension. Previous physiological research has focused mainly on non-invasive neuroimaging and electrophysiological techniques with each approach requiring averaging across many trials and subjects. The results of these studies have implicated extended anatomical regions in…
ERIC Educational Resources Information Center
Takaya, Shigetoshi; Mikuni, Nobuhiro; Mitsueda, Takahiro; Satow, Takeshi; Taki, Junya; Kinoshita, Masako; Miyamoto, Susumu; Hashimoto, Nobuo; Ikeda, Akio; Fukuyama, Hidenao
2009-01-01
The functional changes that occur throughout the human brain after the selective removal of an epileptogenic lesion remain unclear. Subtemporal selective amygdalohippocampectomy (SAH) has been advocated as a minimally invasive surgical procedure for patients with medically intractable mesial temporal lobe epilepsy (MTLE). We evaluated the effects…
Martin, Markus; Dressing, Andrea; Bormann, Tobias; Schmidt, Charlotte S M; Kümmerer, Dorothee; Beume, Lena; Saur, Dorothee; Mader, Irina; Rijntjes, Michel; Kaller, Christoph P; Weiller, Cornelius
2017-08-01
The study aimed to elucidate areas involved in recognizing tool-associated actions, and to characterize the relationship between recognition and active performance of tool use.We performed voxel-based lesion-symptom mapping in a prospective cohort of 98 acute left-hemisphere ischemic stroke patients (68 male, age mean ± standard deviation, 65 ± 13 years; examination 4.4 ± 2 days post-stroke). In a video-based test, patients distinguished correct tool-related actions from actions with spatio-temporal (incorrect grip, kinematics, or tool orientation) or conceptual errors (incorrect tool-recipient matching, e.g., spreading jam on toast with a paintbrush). Moreover, spatio-temporal and conceptual errors were determined during actual tool use.Deficient spatio-temporal error discrimination followed lesions within a dorsal network in which the inferior parietal lobule (IPL) and the lateral temporal cortex (sLTC) were specifically relevant for assessing functional hand postures and kinematics, respectively. Conversely, impaired recognition of conceptual errors resulted from damage to ventral stream regions including anterior temporal lobe. Furthermore, LTC and IPL lesions impacted differently on action recognition and active tool use, respectively.In summary, recognition of tool-associated actions relies on a componential network. Our study particularly highlights the dissociable roles of LTC and IPL for the recognition of action kinematics and functional hand postures, respectively. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Characterization of neurons in the cortical white matter in human temporal lobe epilepsy.
Richter, Zsófia; Janszky, József; Sétáló, György; Horváth, Réka; Horváth, Zsolt; Dóczi, Tamás; Seress, László; Ábrahám, Hajnalka
2016-10-01
The aim of the present work was to characterize neurons in the archi- and neocortical white matter, and to investigate their distribution in mesial temporal sclerosis. Immunohistochemistry and quantification of neurons were performed on surgically resected tissue sections of patients with therapy-resistant temporal lobe epilepsy. Temporal lobe tissues of patients with tumor but without epilepsy and that from autopsy were used as controls. Neurons were identified with immunohistochemistry using antibodies against NeuN, calcium-binding proteins, transcription factor Tbr1 and neurofilaments. We found significantly higher density of neurons in the archi- and neocortical white matter of patients with temporal lobe epilepsy than in that of controls. Based on their morphology and neurochemical content, both excitatory and inhibitory cells were present among these neurons. A subset of neurons in the white matter was Tbr-1-immunoreactive and these neurons coexpressed NeuN and neurofilament marker SMI311R. No colocalization of Tbr1 was observed with the inhibitory neuronal markers, calcium-binding proteins. We suggest that a large population of white matter neurons comprises remnants of the subplate. Furthermore, we propose that a subset of white matter neurons was arrested during migration, highlighting the role of cortical maldevelopment in epilepsy associated with mesial temporal sclerosis. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
Electrophysiological signatures of atypical intrinsic brain connectivity networks in autism
NASA Astrophysics Data System (ADS)
Shou, Guofa; Mosconi, Matthew W.; Wang, Jun; Ethridge, Lauren E.; Sweeney, John A.; Ding, Lei
2017-08-01
Objective. Abnormal local and long-range brain connectivity have been widely reported in autism spectrum disorder (ASD), yet the nature of these abnormalities and their functional relevance at distinct cortical rhythms remains unknown. Investigations of intrinsic connectivity networks (ICNs) and their coherence across whole brain networks hold promise for determining whether patterns of functional connectivity abnormalities vary across frequencies and networks in ASD. In the present study, we aimed to probe atypical intrinsic brain connectivity networks in ASD from resting-state electroencephalography (EEG) data via characterizing the whole brain network. Approach. Connectivity within individual ICNs (measured by spectral power) and between ICNs (measured by coherence) were examined at four canonical frequency bands via a time-frequency independent component analysis on high-density EEG, which were recorded from 20 ASD and 20 typical developing (TD) subjects during an eyes-closed resting state. Main results. Among twelve identified electrophysiological ICNs, individuals with ASD showed hyper-connectivity in individual ICNs and hypo-connectivity between ICNs. Functional connectivity alterations in ASD were more severe in the frontal lobe and the default mode network (DMN) and at low frequency bands. These functional connectivity measures also showed abnormal age-related associations in ICNs related to frontal, temporal and motor regions in ASD. Significance. Our findings suggest that ASD is characterized by the opposite directions of abnormalities (i.e. hypo- and hyper-connectivity) in the hierarchical structure of the whole brain network, with more impairments in the frontal lobe and the DMN at low frequency bands, which are critical for top-down control of sensory systems, as well as for both cognition and social skills.
Temporal lobe stimulation reveals anatomic distinction between auditory naming processes.
Hamberger, M J; Seidel, W T; Goodman, R R; Perrine, K; McKhann, G M
2003-05-13
Language errors induced by cortical stimulation can provide insight into function(s) supported by the area stimulated. The authors observed that some stimulation-induced errors during auditory description naming were characterized by tip-of-the-tongue responses or paraphasic errors, suggesting expressive difficulty, whereas others were qualitatively different, suggesting receptive difficulty. They hypothesized that these two response types reflected disruption at different stages of auditory verbal processing and that these "subprocesses" might be supported by anatomically distinct cortical areas. To explore the topographic distribution of error types in auditory verbal processing. Twenty-one patients requiring left temporal lobe surgery underwent preresection language mapping using direct cortical stimulation. Auditory naming was tested at temporal sites extending from 1 cm from the anterior tip to the parietal operculum. Errors were dichotomized as either "expressive" or "receptive." The topographic distribution of error types was explored. Sites associated with the two error types were topographically distinct from one another. Most receptive sites were located in the middle portion of the superior temporal gyrus (STG), whereas most expressive sites fell outside this region, scattered along lateral temporal and temporoparietal cortex. Results raise clinical questions regarding the inclusion of the STG in temporal lobe epilepsy surgery and suggest that more detailed cortical mapping might enable better prediction of postoperative language decline. From a theoretical perspective, results carry implications regarding the understanding of structure-function relations underlying temporal lobe mediation of auditory language processing.
Doucet, Gaëlle E; Pustina, Dorian; Skidmore, Christopher; Sharan, Ashwini; Sperling, Michael R; Tracy, Joseph I
2015-01-01
In temporal lobe epilepsy (TLE), determining the hemispheric specialization for language before surgery is critical to preserving a patient's cognitive abilities post-surgery. To date, the major techniques utilized are limited by the capacity of patients to efficiently realize the task. We determined whether resting-state functional connectivity (rsFC) is a reliable predictor of language hemispheric dominance in right and left TLE patients, relative to controls. We chose three subregions of the inferior frontal cortex (pars orbitalis, pars triangularis, and pars opercularis) as the seed regions. All participants performed both a verb generation task and a resting-state fMRI procedure. Based on the language task, we computed a laterality index (LI) for the resulting network. This revealed that 96% of the participants were left-hemisphere dominant, although there remained a large degree of variability in the strength of left lateralization. We tested whether LI correlated with rsFC values emerging from each seed. We revealed a set of regions that was specific to each group. Unique correlations involving the epileptic mesial temporal lobe were revealed for the right and left TLE patients, but not for the controls. Importantly, for both TLE groups, the rsFC emerging from a contralateral seed was the most predictive of LI. Overall, our data depict the broad patterns of rsFC that support strong versus weak left hemisphere language laterality. This project provides the first evidence that rsFC data may potentially be used on its own to verify the strength of hemispheric dominance for language in impaired or pathologic populations. © 2014 Wiley Periodicals, Inc.
Ariza, Mar; Pueyo, Roser; Junqué, Carme; Mataró, María; Poca, María Antonia; Mena, Maria Pau; Sahuquillo, Juan
2006-09-01
The aim of the present study was to determine whether the type of lesion in a sample of moderate and severe traumatic brain injury (TBI) was related to material-specific memory impairment. Fifty-nine patients with TBI were classified into three groups according to whether the site of the lesion was right temporal, left temporal or diffuse. Six-months post-injury, visual (Warrington's Facial Recognition Memory Test and Rey's Complex Figure Test) and verbal (Rey's Auditory Verbal Learning Test) memories were assessed. Visual memory deficits assessed by facial memory were associated with right temporal lobe lesion, whereas verbal memory performance assessed with a list of words was related to left temporal lobe lesion. The group with diffuse injury showed both verbal and visual memory impairment. These results suggest a material-specific memory impairment in moderate and severe TBI after focal temporal lesions and a non-specific memory impairment after diffuse damage.
Relationship of Temporal Lobe Volumes to Neuropsychological Test Performance in Healthy Children
Wells, Carolyn T.; Matson, Melissa A.; Kates, Wendy R.; Hay, Trisha; Horska, Alena
2008-01-01
Ecological validity of neuropsychological assessment includes the ability of tests to predict real-world functioning and/or covary with brain structures. Studies have examined the relationship between adaptive skills and test performance, with less focus on the association between regional brain volumes and neurobehavioral function in healthy children. The present study examined the relationship between temporal lobe gray matter volumes and performance on two neuropsychological tests hypothesized to measure temporal lobe functioning (Visual Perception-VP; Peabody Picture Vocabulary Test, Third Edition-PPVT-III) in 48 healthy children ages 5-18 years. After controlling for age and gender, left and right temporal and left occipital volumes were significant predictors of VP. Left and right frontal and temporal volumes were significant predictors of PPVT-III. Temporal volume emerged as the strongest lobar correlate with both tests. These results provide convergent and discriminant validity supporting VP as a measure of the “what” system; but suggest the PPVT-III as a complex measure of receptive vocabulary, potentially involving executive function demands. PMID:18513844
Akama-Garren, Elliot H.; Bianchi, Matt T.; Leveroni, Catherine; Cole, Andrew J.; Cash, Sydney S.; Westover, M. Brandon
2016-01-01
SUMMARY Objectives Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. Methods We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. Results For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Significance Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. PMID:25244498
Akama-Garren, Elliot H; Bianchi, Matt T; Leveroni, Catherine; Cole, Andrew J; Cash, Sydney S; Westover, M Brandon
2014-11-01
Anterior temporal lobectomy is curative for many patients with disabling medically refractory temporal lobe epilepsy, but carries an inherent risk of disabling verbal memory loss. Although accurate prediction of iatrogenic memory loss is becoming increasingly possible, it remains unclear how much weight such predictions should have in surgical decision making. Here we aim to create a framework that facilitates a systematic and integrated assessment of the relative risks and benefits of surgery versus medical management for patients with left temporal lobe epilepsy. We constructed a Markov decision model to evaluate the probabilistic outcomes and associated health utilities associated with choosing to undergo a left anterior temporal lobectomy versus continuing with medical management for patients with medically refractory left temporal lobe epilepsy. Three base-cases were considered, representing a spectrum of surgical candidates encountered in practice, with varying degrees of epilepsy-related disability and potential for decreased quality of life in response to post-surgical verbal memory deficits. For patients with moderately severe seizures and moderate risk of verbal memory loss, medical management was the preferred decision, with increased quality-adjusted life expectancy. However, the preferred choice was sensitive to clinically meaningful changes in several parameters, including quality of life impact of verbal memory decline, quality of life with seizures, mortality rate with medical management, probability of remission following surgery, and probability of remission with medical management. Our decision model suggests that for patients with left temporal lobe epilepsy, quantitative assessment of risk and benefit should guide recommendation of therapy. In particular, risk for and potential impact of verbal memory decline should be carefully weighed against the degree of disability conferred by continued seizures on a patient-by-patient basis. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Emotions induced by intracerebral electrical stimulation of the temporal lobe.
Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo
2006-01-01
To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.
Functional network changes in the hippocampus contribute to depressive symptoms in epilepsy.
Peng, Weifeng; Mao, Lingyan; Yin, Dazhi; Sun, Wei; Wang, He; Zhang, Qianqian; Wang, Jing; Chen, Caizhong; Zeng, Mengsu; Ding, Jing; Wang, Xin
2018-06-01
Our study aimed to investigate the functional connectivity (FC) between the hippocampus and other brain regions in epilepsy patients with depressive symptoms. Epilepsy patients with and without depressive symptoms, assessed using the 17-item Hamilton Depression Rating Scale scores, were enrolled. Healthy volunteers were recruited as the control group. Resting state functional magnetic resonance imaging was performed, and the data were processed using Resting-State fMRI (DPARSFA2.0) software. The regional homogeneity (ReHo) values and the FC between the right hippocampus and other brain regions were analysed. The ReHo value of the cerebellum (particularly the left cerebellar hemisphere) was significantly lower in epilepsy patients than in healthy controls, and was lower in epilepsy patients with depressive symptoms (EP + DS group) than in those without depressive symptoms (EP-DS group, p < 0.05). Additionally, the FC between the right hippocampus and the bilateral cerebellum was significantly greater in the EP + DS group than in the EP-DS group (p < 0.05). Moreover, abnormal ReHo values in the bilateral frontal lobes, including the right anterior cingulate cortex, and changes in the FC between the right hippocampus and the bilateral frontal lobes were found in the EP + DS group. Minor changes in the FC between the temporal and parietal lobes were also found in the epilepsy patients. The functional right hippocampus-cerebellum circuit might contribute to the pathogenesis of depressive symptoms in epilepsy, with the exception of brain areas associated with emotion such as the frontal and temporal lobes. Modulating the hippocampus-cerebellum circuit is a potential therapeutic strategy for epilepsy patients with depressive symptoms. Copyright © 2018 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Harvey, Denise Y; Schnur, Tatiana T
2015-06-01
Naming pictures and matching words to pictures belonging to the same semantic category negatively affects language production and comprehension. By most accounts, semantic interference arises when accessing lexical representations in naming (e.g., Damian, Vigliocco, & Levelt, 2001) and semantic representations in comprehension (e.g., Forde & Humphreys, 1997). Further, damage to the left inferior frontal gyrus (LIFG), a region implicated in cognitive control, results in increasing semantic interference when items repeat across cycles in both language production and comprehension (Jefferies, Baker, Doran, & Lambon Ralph, 2007). This generates the prediction that the LIFG via white matter connections supports resolution of semantic interference arising from different loci (lexical vs semantic) in the temporal lobe. However, it remains unclear whether the cognitive and neural mechanisms that resolve semantic interference are the same across tasks. Thus, we examined which gray matter structures [using whole brain and region of interest (ROI) approaches] and white matter connections (using deterministic tractography) when damaged impact semantic interference and its increase across cycles when repeatedly producing and understanding words in 15 speakers with varying lexical-semantic deficits from left hemisphere stroke. We found that damage to distinct brain regions, the posterior versus anterior temporal lobe, was associated with semantic interference (collapsed across cycles) in naming and comprehension, respectively. Further, those with LIFG damage compared to those without exhibited marginally larger increases in semantic interference across cycles in naming but not comprehension. Lastly, the inferior fronto-occipital fasciculus, connecting the LIFG with posterior temporal lobe, related to semantic interference in naming, whereas the inferior longitudinal fasciculus (ILF), connecting posterior with anterior temporal regions related to semantic interference in comprehension. These neuroanatomical-behavioral findings have implications for models of the lexical-semantic language network by demonstrating that semantic interference in language production and comprehension involves different representations which differentially recruit a cognitive control mechanism for interference resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Villena-Gonzalez, Mario; Wang, Hao-Ting; Sormaz, Mladen; Mollo, Giovanna; Margulies, Daniel S; Jefferies, Elizabeth A; Smallwood, Jonathan
2018-02-01
It is well recognized that the default mode network (DMN) is involved in states of imagination, although the cognitive processes that this association reflects are not well understood. The DMN includes many regions that function as cortical "hubs", including the posterior cingulate/retrosplenial cortex, anterior temporal lobe and the hippocampus. This suggests that the role of the DMN in cognition may reflect a process of cortical integration. In the current study we tested whether functional connectivity from uni-modal regions of cortex into the DMN is linked to features of imaginative thought. We found that strong intrinsic communication between visual and retrosplenial cortex was correlated with the degree of social thoughts about the future. Using an independent dataset, we show that the same region of retrosplenial cortex is functionally coupled to regions of primary visual cortex as well as core regions that make up the DMN. Finally, we compared the functional connectivity of the retrosplenial cortex, with a region of medial prefrontal cortex implicated in the integration of information from regions of the temporal lobe associated with future thought in a prior study. This analysis shows that the retrosplenial cortex is preferentially coupled to medial occipital, temporal lobe regions and the angular gyrus, areas linked to episodic memory, scene construction and navigation. In contrast, the medial prefrontal cortex shows preferential connectivity with motor cortex and lateral temporal and prefrontal regions implicated in language, motor processes and working memory. Together these findings suggest that integrating neural information from visual cortex into retrosplenial cortex may be important for imagining the future and may do so by creating a mental scene in which prospective simulations play out. We speculate that the role of the DMN in imagination may emerge from its capacity to bind together distributed representations from across the cortex in a coherent manner. Copyright © 2017 Elsevier Ltd. All rights reserved.
Hales, J. B.
2011-01-01
The process of associating items encountered over time and across variable time delays is fundamental for creating memories in daily life, such as for stories and episodes. Forming associative memory for temporally discontiguous items involves medial temporal lobe structures and additional neocortical processing regions, including prefrontal cortex, parietal lobe, and lateral occipital regions. However, most prior memory studies, using concurrently presented stimuli, have failed to examine the temporal aspect of successful associative memory formation to identify when activity in these brain regions is predictive of associative memory formation. In the current study, functional MRI data were acquired while subjects were shown pairs of sequentially presented visual images with a fixed interitem delay within pairs. This design allowed the entire time course of the trial to be analyzed, starting from onset of the first item, across the 5.5-s delay period, and through offset of the second item. Subjects then completed a postscan recognition test for the items and associations they encoded during the scan and their confidence for each. After controlling for item-memory strength, we isolated brain regions selectively involved in associative encoding. Consistent with prior findings, increased regional activity predicting subsequent associative memory success was found in anterior medial temporal lobe regions of left perirhinal and entorhinal cortices and in left prefrontal cortex and lateral occipital regions. The temporal separation within each pair, however, allowed extension of these findings by isolating the timing of regional involvement, showing that increased response in these regions occurs during binding but not during maintenance. PMID:21248058
Qu, Haibo; Lu, Su; Zhang, Wenjing; Xiao, Yuan; Ning, Gang; Sun, Huaiqiang
2016-10-01
We applied resting-state functional magnetic resonance imaging(rfMRI)combined with graph theory to analyze 90 regions of the infantile small world neural network of the whole brain.We tried to get the following two points clear:1 whether the parameters of the node property of the infantile small world neural network are correlated with the level of infantile intelligence development;2 whether the parameters of the infantile small world neural network are correlated with the children’s baseline parameters,i.e.,the demographic parameters such as gender,age,parents’ education level,etc.Twelve cases of healthy infants were included in the investigation(9males and 3females with the average age of 33.42±8.42 months.)We then evaluated the level of infantile intelligence of all the cases and graded by Gesell Development Scale Test.We used a Siemens 3.0T Trio imaging system to perform resting-state(rs)EPI scans,and collected the BOLD functional Magnetic Resonance Imaging(fMRI)data.We performed the data processing with Statistical Parametric Mapping 5(SPM5)based on Matlab environment.Furthermore,we got the attributes of the whole brain small world and node attributes of 90 encephalic regions of templates of Anatomatic Automatic Labeling(ALL).At last,we carried out correlation study between the above-mentioned attitudes,intelligence scale parameters and demographic data.The results showed that many node attributes of small world neural network were closely correlated with intelligence scale parameters.Betweeness was mainly centered in thalamus,superior frontal gyrus,and occipital lobe(negative correlation).The r value of superior occipital gyrus associated with the individual and social intelligent scale was-0.729(P=0.007);degree was mainly centered in amygdaloid nucleus,superior frontal gyrus,and inferior parietal gyrus(positive correlation).The r value of inferior parietal gyrus associated with the gross motor intelligent scale was 0.725(P=0.008);efficiency was mainly centered in inferior frontal gyrus,inferior parietal gyrus,and insular lobe(positive correlation).The r value of inferior parietal gyrus associated with the language intelligent scale was 0.738(P=0.006);Anoda cluster coefficient(anodalCp)was centered in frontal lobe,inferior parietal gyrus,and paracentral lobule(positive correlation);Node shortest path length(nlp)was centered in frontal lobe,inferior parietal gyrus,and insular lobe.The distribution of the encephalic regions in the left and right brain was different.However,no statistical significance was found between the correlation of monolithic attributes of small world and intelligence scale.The encephalic regions,in which node attributes of small world were related to other demographic indices,were mainly centered in temporal lobe,cuneus,cingulated gyrus,angular gyrus,and paracentral lobule areas.Most of them belong to the default mode network(DMN).The node attributes of small world neural network are widely related to infantile intelligence level,moreover the distribution is characteristic in different encephalic regions.The distribution of dominant encephalic is in accordance the related functions.The existing correlations reflect the ever changing small world nervous network during infantile development.
Brain Decoding-Classification of Hand Written Digits from fMRI Data Employing Bayesian Networks
Yargholi, Elahe'; Hossein-Zadeh, Gholam-Ali
2016-01-01
We are frequently exposed to hand written digits 0–9 in today's modern life. Success in decoding-classification of hand written digits helps us understand the corresponding brain mechanisms and processes and assists seriously in designing more efficient brain–computer interfaces. However, all digits belong to the same semantic category and similarity in appearance of hand written digits makes this decoding-classification a challenging problem. In present study, for the first time, augmented naïve Bayes classifier is used for classification of functional Magnetic Resonance Imaging (fMRI) measurements to decode the hand written digits which took advantage of brain connectivity information in decoding-classification. fMRI was recorded from three healthy participants, with an age range of 25–30. Results in different brain lobes (frontal, occipital, parietal, and temporal) show that utilizing connectivity information significantly improves decoding-classification and capability of different brain lobes in decoding-classification of hand written digits were compared to each other. In addition, in each lobe the most contributing areas and brain connectivities were determined and connectivities with short distances between their endpoints were recognized to be more efficient. Moreover, data driven method was applied to investigate the similarity of brain areas in responding to stimuli and this revealed both similarly active areas and active mechanisms during this experiment. Interesting finding was that during the experiment of watching hand written digits, there were some active networks (visual, working memory, motor, and language processing), but the most relevant one to the task was language processing network according to the voxel selection. PMID:27468261
Hoffmann, Elgin; Brück, Carolin; Kreifelts, Benjamin; Ethofer, Thomas; Wildgruber, Dirk
2016-08-01
People diagnosed with autism spectrum disorder (ASD) characteristically present with severe difficulties in interpreting every-day social signals. Currently it is assumed that these difficulties might have neurobiological correlates in alterations in activation as well as in connectivity in and between regions of the social perception network suggested to govern the processing of social cues. In this study, we conducted functional magnetic resonance imaging (fMRI)-based activation and connectivity analyses focusing on face-, voice-, and audiovisual-processing brain regions as the most important subareas of the social perception network. Results revealed alterations in connectivity among regions involved in the processing of social stimuli in ASD subjects compared to typically developed (TD) controls-specifically, a reduced connectivity between the left temporal voice area (TVA) and the superior and medial frontal gyrus. Alterations in connectivity, moreover, were correlated with the severity of autistic traits: correlation analysis indicated that the connectivity between the left TVA and the limbic lobe, anterior cingulate and the medial frontal gyrus as well as between the right TVA and the frontal lobe, anterior cingulate, limbic lobe and the caudate decreased with increasing symptom severity. As these frontal regions are understood to play an important role in interpreting and mentalizing social signals, the observed underconnectivity might be construed as playing a role in social impairments in ASD.
Broyd, Samantha J.; Helps, Suzannah K.; Sonuga-Barke, Edmund J. S.
2011-01-01
Background The default-mode network (DMN) is characterised by coherent very low frequency (VLF) brain oscillations. The cognitive significance of this VLF profile remains unclear, partly because of the temporally constrained nature of the blood oxygen-level dependent (BOLD) signal. Previously we have identified a VLF EEG network of scalp locations that shares many features of the DMN. Here we explore the intracranial sources of VLF EEG and examine their overlap with the DMN in adults with high and low ADHD ratings. Methodology/Principal Findings DC-EEG was recorded using an equidistant 66 channel electrode montage in 25 adult participants with high- and 25 participants with low-ratings of ADHD symptoms during a rest condition and an attention demanding Eriksen task. VLF EEG power was calculated in the VLF band (0.02 to 0.2 Hz) for the rest and task condition and compared for high and low ADHD participants. sLORETA was used to identify brain sources associated with the attention-induced deactivation of VLF EEG power, and to examine these sources in relation to ADHD symptoms. There was significant deactivation of VLF EEG power between the rest and task condition for the whole sample. Using s-LORETA the sources of this deactivation were localised to medial prefrontal regions, posterior cingulate cortex/precuneus and temporal regions. However, deactivation sources were different for high and low ADHD groups: In the low ADHD group attention-induced VLF EEG deactivation was most significant in medial prefrontal regions while for the high ADHD group this deactivation was predominantly localised to the temporal lobes. Conclusions/Significance Attention-induced VLF EEG deactivations have intracranial sources that appear to overlap with those of the DMN. Furthermore, these seem to be related to ADHD symptom status, with high ADHD adults failing to significantly deactivate medial prefrontal regions while at the same time showing significant attenuation of VLF EEG power in temporal lobes. PMID:21408092
Coexistence of meningoencephalocele and hippocampal sclerosis: a new type of dual pathology.
Martinoni, Matteo; Marucci, Gianluca; Gagliardini, Gabriele; Tinuper, Paolo; Michelucci, Roberto; Giulioni, Marco
2017-05-01
Both temporal lobe meningoencephalocele (TE) and hippocampal sclerosis (HS) are causes of drug-resistant temporal lobe epilepsy. Spontaneous TE constitutes a rare but well-known and increasingly recognised cause of refractory epilepsy. It is well known that HS may be associated with another neocortical lesion (dual pathology). Here we report for the first time a new type of dual pathology; namely, the coexistence of temporal pole meningoencephalocele and HS.
Śmigielska-Kuzia, Joanna; Boćkowski, Leszek; Sobaniec, Wojciech; Kułak, Wojciech; Sendrowski, Krzysztof
2010-01-01
Down syndrome (DS), or trisomy 21, is one of the most common autosomal mutations. The overexpression of the β-amyloid precursor protein gene, located on chromosome 21, causes an increased production of the specific amyloid. The current study is a continuation of our earlier investigations relating to the profile of metabolic changes in the frontal lobes of DS patients as assessed by proton magnetic resonance spectroscopy ((1)H MRS). The aims of the study were the morphological assessment of the brain using magnetic resonance imaging (MRI) and the evaluation of metabolic disorders of the temporal lobes using (1)H MRS in DS children. The study group included 20 children with DS aged 3-15 years and treated in the Department of Pediatric Neurology and Rehabilitation, Medical University of Białystok. The control group included healthy children (n = 20). MRI scans of the heads of DS children were performed using a 1.5 T MR scanner under standard conditions. (1)H MRS investigations were also carried out to assess metabolic changes in the temporal lobes. Metabolites, such as N-acetylaspartate (NAA), glutamate-glutamine complex (Glx), choline (Cho), myoinositol (mI) and γ-aminobutyric acid (GABA), were determined in both temporal lobes with reference to the internal marker creatine (Cr). Results were compared with the control group.We found a statistically significant decrease in NAA/Cr, Cho/Cr, mI/Cr and GABA/Cr ratios. The Glx/Cr ratio in both temporal lobes of DS patients did not differ from the control group. Our results indicate metabolic neurotransmitter disorders in the central nervous system in children with DS.
Bethmann, Anja; Scheich, Henning; Brechmann, André
2012-01-01
It is widely accepted that the perception of human voices is supported by neural structures located along the superior temporal sulci. However, there is an ongoing discussion to what extent the activations found in fMRI studies are evoked by the vocal features themselves or are the result of phonetic processing. To show that the temporal lobes are indeed engaged in voice processing, short utterances spoken by famous and unknown people were presented to healthy young participants whose task it was to identify the familiar speakers. In two event-related fMRI experiments, the temporal lobes were found to differentiate between familiar and unfamiliar voices such that named voices elicited higher BOLD signal intensities than unfamiliar voices. Yet, the temporal cortices did not only discriminate between familiar and unfamiliar voices. Experiment 2, which required overtly spoken responses and allowed to distinguish between four familiarity grades, revealed that there was a fine-grained differentiation between all of these familiarity levels with higher familiarity being associated with larger BOLD signal amplitudes. Finally, we observed a gradual response change such that the BOLD signal differences between unfamiliar and highly familiar voices increased with the distance of an area from the transverse temporal gyri, especially towards the anterior temporal cortex and the middle temporal gyri. Therefore, the results suggest that (the anterior and non-superior portions of) the temporal lobes participate in voice-specific processing independent from phonetic components also involved in spoken speech material. PMID:23112826
ERIC Educational Resources Information Center
Sommer, Tobias; Rose, Michael; Glascher, Jan; Wolbers, Thomas; Buchel, Christian
2005-01-01
The crucial role of the medial temporal lobe (MTL) in episodic memory is well established. Although there is little doubt that its anatomical subregions--the hippocampus, peri-, entorhinal and parahippocampal cortex (PHC)--contribute differentially to mnemonic processes, their specific functions in episodic memory are under debate. Data from…
Dichotic Listening and School Performance in Dyslexia
ERIC Educational Resources Information Center
Helland, Turid; Asbjornsen, Arve E.; Hushovd, Aud Ellen; Hugdahl, Kenneth
2008-01-01
This study focused on the relationship between school performance and performance on a dichotic listening (DL) task in dyslexic children. Dyslexia is associated with impaired phonological processing, related to functions in the left temporal lobe. DL is a frequently used task to assess functions of the left temporal lobe. Due to the predominance…
Medial Temporal Lobe Structures Contribute to On-Line Processing
ERIC Educational Resources Information Center
Warren, David
2009-01-01
For the last five decades, the medial temporal lobes have been generally understood to facilitate enduring representation of certain kinds of information. In particular, knowledge about the relations among items and concepts appears to rely on that region of the brain. Recent results suggest that those same structures also play a subtle role in…
Treatment of Proper Name Retrieval Deficits in an Individual with Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Minkina, Irene; Ojemann, Jeffrey G.; Grabowski, Thomas J.; Silkes, JoAnn P.; Phatak, Vaishali; Kendall, Diane L.
2013-01-01
Purpose: Studies investigating language deficits in individuals with left temporal-lobe epilepsy have consistently demonstrated impairments in proper name retrieval. The aim of this Phase I rehabilitation study was to investigate the effects of a linguistically distributed word retrieval treatment on proper name retrieval in an individual with…
Epileptic Hypergraphia: The Impact of Prolific Writing on Language Creativity
ERIC Educational Resources Information Center
Ammari, Elham H.
2012-01-01
Catalyzed academic concerns have been shown so far to tackle the issue of temporal lobe epileptic hypergraphia and the extent of its creativity. Temporal lobe epilepsy hence, (TLE) as a neurological brain disorder, has captured the attention of concerned scholars ever since. A constellation of TLE and its cohorts have baffled scientists,…
ERIC Educational Resources Information Center
Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A.
2008-01-01
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated…
Is déjà vu a symptom of temporal lobe epilepsy?
Neppe, V M
1981-12-05
The definition and conceptualization of the déjà vu phenomenon are interpreted in various ways. The common occurrence of déjà vu is the general population stresses the need for the development of specific qualitative features which will be valuable in the diagnosis of temporal lobe epilepsy.
Medial Temporal Lobe Activity during Source Retrieval Reflects Information Type, Not Memory Strength
ERIC Educational Resources Information Center
Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan
2010-01-01
The medial temporal lobes (MTLs) are critical for episodic memory but the functions of MTL subregions are controversial. According to memory strength theory, MTL subregions collectively support declarative memory in a graded manner. In contrast, other theories assert that MTL subregions support functionally distinct processes. For instance, one…
Adaptation to Cognitive Context and Item Information in the Medial Temporal Lobes
ERIC Educational Resources Information Center
Diana, Rachel A.; Yonelinas, Andrew P.; Ranganath, Charan
2012-01-01
The medial temporal lobes (MTL) play an essential role in episodic memory, and accumulating evidence indicates that two MTL subregions--the perirhinal (PRc) and parahippocampal (PHc) cortices--might have different functions. According to the binding of item and context theory ( [16] and [21]), PRc is involved in processing item information, the…
ERIC Educational Resources Information Center
Greer, Margaret K.; And Others
1989-01-01
This case study illustrates the highly significant language difficulties, marked memory deficits, and propensity for physical aggression following temporal lobe damage brought about by herpes encephalitis, and presents the usefulness of a new diagnostic measure in delineating such a variable cognitive pattern. (Author)
ERIC Educational Resources Information Center
Tendolkar, Indira; Arnold, Jennifer; Petersson, Karl Magnus; Weis, Susanne; Brockhaus-Dumke, Anke; van Eijndhoven, Philip; Buitelaar, Jan; Fernandez, Guillen
2008-01-01
We investigated how the hippocampus and its adjacent mediotemporal structures contribute to contextual and noncontextual declarative memory retrieval by manipulating the amount of contextual information across two levels of the same contextual dimension in a source memory task. A first analysis identified medial temporal lobe (MTL) substructures…
Memory, Metamemory and Their Dissociation in Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Howard, Charlotte E.; Andres, Pilar; Broks, Paul; Noad, Rupert; Sadler, Martin; Coker, Debbie; Mazzoni, Giuliana
2010-01-01
Patients with temporal-lobe epilepsy (TLE) present with memory difficulties. The aim of the current study was to determine to what extent these difficulties could be related to a metamemory impairment. Fifteen patients with TLE and 15 matched healthy controls carried out a paired-associates learning task. Memory recall was measured at intervals of…
Fluoxetine Restores Spatial Learning but Not Accelerated Forgetting in Mesial Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Barkas, Lisa; Redhead, Edward; Taylor, Matthew; Shtaya, Anan; Hamilton, Derek A.; Gray, William P.
2012-01-01
Learning and memory dysfunction is the most common neuropsychological effect of mesial temporal lobe epilepsy, and because the underlying neurobiology is poorly understood, there are no pharmacological strategies to help restore memory function in these patients. We have demonstrated impairments in the acquisition of an allocentric spatial task,…
Working Memory, Long-Term Memory, and Medial Temporal Lobe Function
ERIC Educational Resources Information Center
Jeneson, Annette; Squire, Larry R.
2012-01-01
Early studies of memory-impaired patients with medial temporal lobe (MTL) damage led to the view that the hippocampus and related MTL structures are involved in the formation of long-term memory and that immediate memory and working memory are independent of these structures. This traditional idea has recently been revisited. Impaired performance…
Arousal Enhanced Memory Retention Is Eliminated Following Temporal Lobe Resection
ERIC Educational Resources Information Center
Ahs, Fredrik; Kumlien, Eva; Fredrikson, Mats
2010-01-01
The amygdala, situated in the anterior medial temporal lobe (MTL), is involved in the emotional enhancement of memory. The present study evaluated whether anterior MTL-resections attenuated arousal induced memory enhancement for pictures. Also, the effect of MTL-resections on response latencies at retrieval was assessed. Thirty-one patients with…
Distinct Roles for Medial Temporal Lobe Structures in Memory for Objects and Their Locations
ERIC Educational Resources Information Center
Buffalo, Elizabeth A.; Bellgowan, Patrick S. F.; Martin, Alex
2006-01-01
The ability to learn and retain novel information depends on a system of structures in the medial temporal lobe (MTL) including the hippocampus and the surrounding entorhinal, perirhinal, and parahippocampal cortices. Damage to these structures produces profound memory deficits; however, the unique contribution to memory of each of these…
ERIC Educational Resources Information Center
Parsons, Michael W.; Haut, Marc W.; Lemieux, Susan K.; Moran, Maria T.; Leach, Sharon G.
2006-01-01
The existence of a rostrocaudal gradient of medial temporal lobe (MTL) activation during memory encoding has historically received support from positron emission tomography studies, but less so from functional MRI (FMRI) studies. More recently, FMRI studies have demonstrated that characteristics of the stimuli can affect the location of activation…
ERIC Educational Resources Information Center
Balderas, Israela; Rodriguez-Ortiz, Carlos J.; Salgado-Tonda, Paloma; Chavez-Hurtado, Julio; McGaugh, James L.; Bermudez-Rattoni, Federico
2008-01-01
These experiments investigated the involvement of several temporal lobe regions in consolidation of recognition memory. Anisomycin, a protein synthesis inhibitor, was infused into the hippocampus, perirhinal cortex, insular cortex, or basolateral amygdala of rats immediately after the sample phase of object or object-in-context recognition memory…
Mientus, Susanne; Gallinat, Jürgen; Wuebben, Yvonne; Pascual-Marqui, Roberto D; Mulert, Christoph; Frick, Kurt; Dorn, Hans; Herrmann, Werner M; Winterer, Georg
2002-11-30
This study was performed in order to address the question whether the newly introduced technique of low-resolution electromagnetic tomography (LORETA) is able to detect hypofrontality in schizophrenic patients. We investigated resting EEGs of 19 unmedicated schizophrenics and 20 normal subjects. For comparison, we also investigated 19 subjects with schizotypal personality and 30 unmedicated depressive patients. A significant increase of delta activity was found in schizophrenic patients over the whole cortex, most strongly in the anterior cingulate gyrus and temporal lobe (fusiform gyrus). Both schizotypal subjects and depressive subjects showed significantly less delta, theta and beta activity in the anterior cingulum, a decrease of alpha1 activity in the right temporal lobe and a decrease of alpha2 activity in the left temporal lobe. The results suggest general cortical hypoactivation, most pronounced in the anterior cingulate and temporal lobe in schizophrenics, whereas there is evidence for a complex, frequency-dependent spatial pattern of hyperactivation in schizotypal subjects and depressive patients. The results are discussed within a neurophysiological and methodological framework.
Bartha-Doering, Lisa; Novak, Astrid; Kollndorfer, Kathrin; Kasprian, Gregor; Schuler, Anna-Lisa; Berl, Madison M; Fischmeister, Florian Ph S; Gaillard, William D; Alexopoulos, Johanna; Prayer, Daniela; Seidl, Rainer
2018-06-15
This study considered the involvement of the mesial temporal lobe (MTL) in language and verbal memory functions in healthy children and adolescents. We investigated 30 healthy, right-handed children and adolescents, aged 7-16, with a fMRI language paradigm and a comprehensive cognitive test battery. We found significant MTL activations during language fMRI in all participants; 63% of them had left lateralized MTL activations, 20% exhibited right MTL lateralization, and 17% showed bilateral MTL involvement during the fMRI language paradigm. Group analyses demonstrated a strong negative correlation between the lateralization of MTL activations and language functions. Specifically, children with less lateralized MTL activation showed significantly better vocabulary skills. These findings suggest that the mesial temporal lobes of both hemispheres play an important role in language functioning, even in right-handers. Our results furthermore show that bilateral mesial temporal lobe involvement is advantageous for vocabulary skills in healthy, right-handed children and adolescents. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Syntactic structure building in the anterior temporal lobe during natural story listening.
Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J; Pylkkänen, Liina
2012-02-01
The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to reconcile because they rely on different laboratory tasks which tap into distinct computations, and may only indirectly relate to natural sentence processing. Here we assessed neural correlates of syntactic structure building in natural language comprehension, free from artificial task demands. Subjects passively listened to Alice in Wonderland during functional magnetic resonance imaging and we correlated brain activity with a word-by-word measure of the amount syntactic structure analyzed. Syntactic structure building correlated with activity in the left anterior temporal lobe, but there was no evidence for a correlation between syntactic structure building and activity in inferior frontal areas. Our results suggest that the anterior temporal lobe computes syntactic structure under natural conditions. Copyright © 2010 Elsevier Inc. All rights reserved.
Ivanovic, Jugoslav; Larsson, Pål G; Østby, Ylva; Hald, John; Krossnes, Bård K; Fjeld, Jan G; Pripp, Are H; Alfstad, Kristin Å; Egge, Arild; Stanisic, Milo
2017-05-01
Seizure outcome following surgery in pharmacoresistant temporal lobe epilepsy patients with normal magnetic resonance imaging and normal or non-specific histopathology is not sufficiently presented in the literature. In a retrospective design, we reviewed data of 263 patients who had undergone temporal lobe epilepsy surgery and identified 26 (9.9%) who met the inclusion criteria. Seizure outcomes were determined at 2-year follow-up. Potential predictors of Engel class I (satisfactory outcome) were identified by logistic regression analyses. Engel class I outcome was achieved in 61.5% of patients, 50% being completely seizure free (Engel class IA outcome). The strongest predictors of satisfactory outcome were typical ictal seizure semiology (p = 0.048) and localised ictal discharges on scalp EEG (p = 0.036). Surgery might be an effective treatment choice for the majority of these patients, although outcomes are less favourable than in patients with magnetic resonance imaging-defined lesional temporal lobe epilepsy. Typical ictal seizure semiology and localised ictal discharges on scalp EEG were predictors of Engel class I outcome.
Decreased astroglial monocarboxylate transporter 4 expression in temporal lobe epilepsy.
Liu, Bei; Niu, Le; Shen, Ming-Zhi; Gao, Lei; Wang, Chao; Li, Jie; Song, Li-Jia; Tao, Ye; Meng, Qiang; Yang, Qian-Li; Gao, Guo-Dong; Zhang, Hua
2014-10-01
Efflux of monocaroxylates like lactate, pyruvate, and ketone bodies from astrocytes through monocarboxylate transporter 4 (MCT4) supplies the local neuron population with metabolic intermediates to meet energy requirements under conditions of increased demand. Disruption of this astroglial-neuron metabolic coupling pathway may contribute to epileptogenesis. We measured MCT4 expression in temporal lobe epileptic foci excised from patients with intractable epilepsy and in rats injected with pilocarpine, an animal model of temporal lobe epilepsy (TLE). Cortical MCT4 expression levels were significantly lower in TLE patients compared with controls, due at least partially to MCT4 promoter methylation. Expression of MCT4 also decreased progressively in pilocarpine-treated rats from 12 h to 14 days post-administration. Underexpression of MCT4 in cultured astrocytes induced by a short hairpin RNA promoted apoptosis. Knockdown of astrocyte MCT4 also suppressed excitatory amino acid transporter 1 (EAAT1) expression. Reduced MCT4 and EAAT1 expression by astrocytes may lead to neuronal hyperexcitability and epileptogenesis in the temporal lobe by reducing the supply of metabolic intermediates and by allowing accumulation of extracellular glutamate.
Emergence of artistic talent in frontotemporal dementia.
Miller, B L; Cummings, J; Mishkin, F; Boone, K; Prince, F; Ponton, M; Cotman, C
1998-10-01
To describe the clinical, neuropsychological, and imaging features of five patients with frontotemporal dementia (FTD) who acquired new artistic skills in the setting of dementia. Creativity in the setting of dementia has recently been reported. We describe five patients who became visual artists in the setting of FTD. Sixty-nine FTD patients were interviewed regarding visual abilities. Five became artists in the early stages of FTD. Their history, artistic process, neuropsychology, and anatomy are described. On SPECT or pathology, four of the five patients had the temporal variant of FTD in which anterior temporal lobes are involved but the dorsolateral frontal cortex is spared. Visual skills were spared but language and social skills were devastated. Loss of function in the anterior temporal lobes may lead to the "facilitation" of artistic skills. Patients with the temporal lobe variant of FTD offer a window into creativity.
A Consensus Network of Gene Regulatory Factors in the Human Frontal Lobe
Berto, Stefano; Perdomo-Sabogal, Alvaro; Gerighausen, Daniel; Qin, Jing; Nowick, Katja
2016-01-01
Cognitive abilities, such as memory, learning, language, problem solving, and planning, involve the frontal lobe and other brain areas. Not much is known yet about the molecular basis of cognitive abilities, but it seems clear that cognitive abilities are determined by the interplay of many genes. One approach for analyzing the genetic networks involved in cognitive functions is to study the coexpression networks of genes with known importance for proper cognitive functions, such as genes that have been associated with cognitive disorders like intellectual disability (ID) or autism spectrum disorders (ASD). Because many of these genes are gene regulatory factors (GRFs) we aimed to provide insights into the gene regulatory networks active in the human frontal lobe. Using genome wide human frontal lobe expression data from 10 independent data sets, we first derived 10 individual coexpression networks for all GRFs including their potential target genes. We observed a high level of variability among these 10 independently derived networks, pointing out that relying on results from a single study can only provide limited biological insights. To instead focus on the most confident information from these 10 networks we developed a method for integrating such independently derived networks into a consensus network. This consensus network revealed robust GRF interactions that are conserved across the frontal lobes of different healthy human individuals. Within this network, we detected a strong central module that is enriched for 166 GRFs known to be involved in brain development and/or cognitive disorders. Interestingly, several hubs of the consensus network encode for GRFs that have not yet been associated with brain functions. Their central role in the network suggests them as excellent new candidates for playing an essential role in the regulatory network of the human frontal lobe, which should be investigated in future studies. PMID:27014338
Brauer, Jens; Xiao, Yaqiong; Poulain, Tanja; Friederici, Angela D; Schirmer, Annett
2016-08-01
Previous behavioral research points to a positive relationship between maternal touch and early social development. Here, we explored the brain correlates of this relationship. The frequency of maternal touch was recorded for 43 five-year-old children during a 10 min standardized play session. Additionally, all children completed a resting-state functional magnetic resonance imaging session. Investigating the default mode network revealed a positive relation between the frequency of maternal touch and activity in the right posterior superior temporal sulcus (pSTS) extending into the temporo-parietal junction. Using this effect as a seed in a functional connectivity analysis identified a network including extended bilateral regions along the temporal lobe, bilateral frontal cortex, and left insula. Compared with children with low maternal touch, children with high maternal touch showed additional connectivity with the right dorso-medial prefrontal cortex. Together these results support the notion that childhood tactile experiences shape the developing "social brain" with a particular emphasis on a network involved in mentalizing. © The Author 2016. Published by Oxford University Press.
Keller, Simon S; Schoene-Bake, Jan-Christoph; Gerdes, Jan S; Weber, Bernd; Deppe, Michael
2012-01-01
In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients.
Völlm, Birgit A; Taylor, Alexander N W; Richardson, Paul; Corcoran, Rhiannon; Stirling, John; McKie, Shane; Deakin, John F W; Elliott, Rebecca
2006-01-01
Theory of Mind (ToM), the ability to attribute mental states to others, and empathy, the ability to infer emotional experiences, are important processes in social cognition. Brain imaging studies in healthy subjects have described a brain system involving medial prefrontal cortex, superior temporal sulcus and temporal pole in ToM processing. Studies investigating networks associated with empathic responding also suggest involvement of temporal and frontal lobe regions. In this fMRI study, we used a cartoon task derived from Sarfati et al. (1997) [Sarfati, Y., Hardy-Bayle, M.C., Besche, C., Widlocher, D. 1997. Attribution of intentions to others in people with schizophrenia: a non-verbal exploration with comic strips. Schizophrenia Research 25, 199-209.]with both ToM and empathy stimuli in order to allow comparison of brain activations in these two processes. Results of 13 right-handed, healthy, male volunteers were included. Functional images were acquired using a 1.5 T Phillips Gyroscan. Our results confirmed that ToM and empathy stimuli are associated with overlapping but distinct neuronal networks. Common areas of activation included the medial prefrontal cortex, temporoparietal junction and temporal poles. Compared to the empathy condition, ToM stimuli revealed increased activations in lateral orbitofrontal cortex, middle frontal gyrus, cuneus and superior temporal gyrus. Empathy, on the other hand, was associated with enhanced activations of paracingulate, anterior and posterior cingulate and amygdala. We therefore suggest that ToM and empathy both rely on networks associated with making inferences about mental states of others. However, empathic responding requires the additional recruitment of networks involved in emotional processing. These results have implications for our understanding of disorders characterized by impairments of social cognition, such as autism and psychopathy.
Time-dependence of graph theory metrics in functional connectivity analysis
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J.; Haneef, Zulfi; Stern, John M.
2016-01-01
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. PMID:26518632
Time-dependence of graph theory metrics in functional connectivity analysis.
Chiang, Sharon; Cassese, Alberto; Guindani, Michele; Vannucci, Marina; Yeh, Hsiang J; Haneef, Zulfi; Stern, John M
2016-01-15
Brain graphs provide a useful way to computationally model the network structure of the connectome, and this has led to increasing interest in the use of graph theory to quantitate and investigate the topological characteristics of the healthy brain and brain disorders on the network level. The majority of graph theory investigations of functional connectivity have relied on the assumption of temporal stationarity. However, recent evidence increasingly suggests that functional connectivity fluctuates over the length of the scan. In this study, we investigate the stationarity of brain network topology using a Bayesian hidden Markov model (HMM) approach that estimates the dynamic structure of graph theoretical measures of whole-brain functional connectivity. In addition to extracting the stationary distribution and transition probabilities of commonly employed graph theory measures, we propose two estimators of temporal stationarity: the S-index and N-index. These indexes can be used to quantify different aspects of the temporal stationarity of graph theory measures. We apply the method and proposed estimators to resting-state functional MRI data from healthy controls and patients with temporal lobe epilepsy. Our analysis shows that several graph theory measures, including small-world index, global integration measures, and betweenness centrality, may exhibit greater stationarity over time and therefore be more robust. Additionally, we demonstrate that accounting for subject-level differences in the level of temporal stationarity of network topology may increase discriminatory power in discriminating between disease states. Our results confirm and extend findings from other studies regarding the dynamic nature of functional connectivity, and suggest that using statistical models which explicitly account for the dynamic nature of functional connectivity in graph theory analyses may improve the sensitivity of investigations and consistency across investigations. Copyright © 2015 Elsevier Inc. All rights reserved.
Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania
2014-12-01
A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.
Superior temporal sulcus--It's my area: or is it?
Hein, Grit; Knight, Robert T
2008-12-01
The superior temporal sulcus (STS) is the chameleon of the human brain. Several research areas claim the STS as the host brain region for their particular behavior of interest. Some see it as one of the core structures for theory of mind. For others, it is the main region for audiovisual integration. It plays an important role in biological motion perception, but is also claimed to be essential for speech processing and processing of faces. We review the foci of activations in the STS from multiple functional magnetic resonance imaging studies, focusing on theory of mind, audiovisual integration, motion processing, speech processing, and face processing. The results indicate a differentiation of the STS region in an anterior portion, mainly involved in speech processing, and a posterior portion recruited by cognitive demands of all these different research areas. The latter finding argues against a strict functional subdivision of the STS. In line with anatomical evidence from tracer studies, we propose that the function of the STS varies depending on the nature of network coactivations with different regions in the frontal cortex and medial-temporal lobe. This view is more in keeping with the notion that the same brain region can support different cognitive operations depending on task-dependent network connections, emphasizing the role of network connectivity analysis in neuroimaging.
Trébuchon-Da Fonseca, Agnès; Bénar, Christian-G; Bartoloméi, Fabrice; Régis, Jean; Démonet, Jean-François; Chauvel, Patrick; Liégeois-Chauvel, Catherine
2009-03-01
Regions involved in language processing have been observed in the inferior part of the left temporal lobe. Although collectively labelled 'the Basal Temporal Language Area' (BTLA), these territories are functionally heterogeneous and are involved in language perception (i.e. reading or semantic task) or language production (speech arrest after stimulation). The objective of this study was to clarify the role of BTLA in the language network in an epileptic patient who displayed jargonaphasia. Intracerebral evoked related potentials to verbal and non-verbal stimuli in auditory and visual modalities were recorded from BTLA. Time-frequency analysis was performed during ictal events. Evoked potentials and induced gamma-band activity provided direct evidence that BTLA is sensitive to language stimuli in both modalities, 350 ms after stimulation. In addition, spontaneous gamma-band discharges were recorded from this region during which we observed phonological jargon. The findings emphasize the multimodal nature of this region in speech perception. In the context of transient dysfunction, the patient's lexical semantic processing network is disrupted, reducing spoken output to meaningless phoneme combinations. This rare opportunity to study the BTLA "in vivo" demonstrates its pivotal role in lexico-semantic processing for speech production and its multimodal nature in speech perception.
Functional Network Dynamics of the Language System.
Chai, Lucy R; Mattar, Marcelo G; Blank, Idan Asher; Fedorenko, Evelina; Bassett, Danielle S
2016-10-17
During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration. © The Author 2016. Published by Oxford University Press.
Functional Network Dynamics of the Language System
Chai, Lucy R.; Mattar, Marcelo G.; Blank, Idan Asher; Fedorenko, Evelina; Bassett, Danielle S.
2016-01-01
During linguistic processing, a set of brain regions on the lateral surfaces of the left frontal, temporal, and parietal cortices exhibit robust responses. These areas display highly correlated activity while a subject rests or performs a naturalistic language comprehension task, suggesting that they form an integrated functional system. Evidence suggests that this system is spatially and functionally distinct from other systems that support high-level cognition in humans. Yet, how different regions within this system might be recruited dynamically during task performance is not well understood. Here we use network methods, applied to fMRI data collected from 22 human subjects performing a language comprehension task, to reveal the dynamic nature of the language system. We observe the presence of a stable core of brain regions, predominantly located in the left hemisphere, that consistently coactivate with one another. We also observe the presence of a more flexible periphery of brain regions, predominantly located in the right hemisphere, that coactivate with different regions at different times. However, the language functional ROIs in the angular gyrus and the anterior temporal lobe were notable exceptions to this trend. By highlighting the temporal dimension of language processing, these results suggest a trade-off between a region's specialization and its capacity for flexible network reconfiguration. PMID:27550868
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gillmann, Clarissa, E-mail: clarissa.gillmann@med.uni-heidelberg.de; Jäkel, Oliver; Heidelberg Ion Beam Therapy Center
2014-04-01
Purpose: To compare the relative biological effectiveness (RBE)–weighted tolerance doses for temporal lobe reactions after carbon ion radiation therapy using 2 different versions of the local effect model (LEM I vs LEM IV) for the same patient collective under identical conditions. Methods and Materials: In a previous study, 59 patients were investigated, of whom 10 experienced temporal lobe reactions (TLR) after carbon ion radiation therapy for low-grade skull-base chordoma and chondrosarcoma at Helmholtzzentrum für Schwerionenforschung (GSI) in Darmstadt, Germany in 2002 and 2003. TLR were detected as visible contrast enhancements on T1-weighted MRI images within a median follow-up time ofmore » 2.5 years. Although the derived RBE-weighted temporal lobe doses were based on the clinically applied LEM I, we have now recalculated the RBE-weighted dose distributions using LEM IV and derived dose-response curves with Dmax,V-1 cm³ (the RBE-weighted maximum dose in the remaining temporal lobe volume, excluding the volume of 1 cm³ with the highest dose) as an independent dosimetric variable. The resulting RBE-weighted tolerance doses were compared with those of the previous study to assess the clinical impact of LEM IV relative to LEM I. Results: The dose-response curve of LEM IV is shifted toward higher values compared to that of LEM I. The RBE-weighted tolerance dose for a 5% complication probability (TD{sub 5}) increases from 68.8 ± 3.3 to 78.3 ± 4.3 Gy (RBE) for LEM IV as compared to LEM I. Conclusions: LEM IV predicts a clinically significant increase of the RBE-weighted tolerance doses for the temporal lobe as compared to the currently applied LEM I. The limited available photon data do not allow a final conclusion as to whether RBE predictions of LEM I or LEM IV better fit better clinical experience in photon therapy. The decision about a future clinical application of LEM IV therefore requires additional analysis of temporal lobe reactions in a comparable photon-treated collective using the same dosimetric variable as in the present study.« less
The Structural Connectome of the Human Central Homeostatic Network.
Edlow, Brian L; McNab, Jennifer A; Witzel, Thomas; Kinney, Hannah C
2016-04-01
Homeostatic adaptations to stress are regulated by interactions between the brainstem and regions of the forebrain, including limbic sites related to respiratory, autonomic, affective, and cognitive processing. Neuroanatomic connections between these homeostatic regions, however, have not been thoroughly identified in the human brain. In this study, we perform diffusion spectrum imaging tractography using the MGH-USC Connectome MRI scanner to visualize structural connections in the human brain linking autonomic and cardiorespiratory nuclei in the midbrain, pons, and medulla oblongata with forebrain sites critical to homeostatic control. Probabilistic tractography analyses in six healthy adults revealed connections between six brainstem nuclei and seven forebrain regions, several over long distances between the caudal medulla and cerebral cortex. The strongest evidence for brainstem-homeostatic forebrain connectivity in this study was between the brainstem midline raphe and the medial temporal lobe. The subiculum and amygdala were the sampled forebrain nodes with the most extensive brainstem connections. Within the human brainstem-homeostatic forebrain connectome, we observed that a lateral forebrain bundle, whose connectivity is distinct from that of rodents and nonhuman primates, is the primary conduit for connections between the brainstem and medial temporal lobe. This study supports the concept that interconnected brainstem and forebrain nodes form an integrated central homeostatic network (CHN) in the human brain. Our findings provide an initial foundation for elucidating the neuroanatomic basis of homeostasis in the normal human brain, as well as for mapping CHN disconnections in patients with disorders of homeostasis, including sudden and unexpected death, and epilepsy.
Impact of Zika Virus on adult human brain structure and functional organization.
Bido-Medina, Richard; Wirsich, Jonathan; Rodríguez, Minelly; Oviedo, Jairo; Miches, Isidro; Bido, Pamela; Tusen, Luis; Stoeter, Peter; Sadaghiani, Sepideh
2018-06-01
To determine the impact of Zika virus (ZIKV) infection on brain structure and functional organization of severely affected adult patients with neurological complications that extend beyond Guillain-Barré Syndrome (GBS)-like manifestations and include symptoms of the central nervous system (CNS). In this first case-control neuroimaging study, we obtained structural and functional magnetic resonance images in nine rare adult patients in the subacute phase, and healthy age- and sex-matched controls. ZIKV patients showed atypical descending and rapidly progressing peripheral nervous system (PNS) manifestations, and importantly, additional CNS presentations such as perceptual deficits. Voxel-based morphometry was utilized to evaluate gray matter volume, and resting state functional connectivity and Network Based Statistics were applied to assess the functional organization of the brain. Gray matter volume was decreased bilaterally in motor areas (supplementary motor cortex, specifically Frontal Eye Fields) and beyond (left inferior frontal sulcus). Additionally, gray matter volume increased in right middle frontal gyrus. Functional connectivity increased in a widespread network within and across temporal lobes. We provide preliminary evidence for a link between ZIKV neurological complications and changes in adult human brain structure and functional organization, comprising both motor-related regions potentially secondary to prolonged PNS weakness, and nonsomatomotor regions indicative of PNS-independent alternations. The latter included the temporal lobes, particularly vulnerable in a range of neurological conditions. While future studies into the ZIKV-related neuroinflammatory mechanisms in adults are urgently needed, this study indicates that ZIKV infection can lead to an impact on the brain.
Early seizures and temporal lobe trauma predict post-traumatic epilepsy: A longitudinal study.
Tubi, Meral A; Lutkenhoff, Evan; Blanco, Manuel Buitrago; McArthur, David; Villablanca, Pablo; Ellingson, Benjamin; Diaz-Arrastia, Ramon; Van Ness, Paul; Real, Courtney; Shrestha, Vikesh; Engel, Jerome; Vespa, Paul M; Agoston, Denes; Au, Alicia; Bell, Michael J; Branch, Craig; Buitrago Blanco, Manuel; Bullock, Ross; Claassen, Jan; Clarke, Robert; Cloyd, James; Coles, Lisa; Crawford, Karen; Diaz-Arrastia, Ramon; Duncan, Dominique; Ellingson, Benjamin; Engel, Jerome; Foreman, Brandon; Galanopoulou, Aristea; Gilmore, Emily; Olli, Grohn; Harris, Neil; Hartings, Jed; Lawrence, Hirsch; Hunn, Martin; Jette, Nathalie; Johnston, Leigh; Jones, Nigel; Kanner, Andres; McArthur, David; Monti, Martin; Morokoff, Andrew; Moshe, Solomon; Mowrey, Wenzhu; Naughton, Tomas; O'Brien, Terence; O'Phelan, Kristine; Pitkanen, Asla; Raman, Rema; Robertson, Courtney; Rosenthal, Eric; Shultz, Sandy; Snutch, Terrance; Staba, Richard; Toga, Arthur; Van Horn, Jack; Vespa, Paul; Willyerd, Frederick; Zimmermann, Lara
2018-05-31
Injury severity after traumatic brain injury (TBI) is a well-established risk factor for the development of post-traumatic epilepsy (PTE). However, whether lesion location influences the susceptibility of seizures and development of PTE longitudinally has yet to be defined. We hypothesized that lesion location, specifically in the temporal lobe, would be associated with an increased incidence of both early seizures and PTE. As secondary analysis measures, we assessed the degree of brain atrophy and functional recovery, and performed a between-group analysis, comparing patients who developed PTE with those who did not develop PTE. We assessed early seizure incidence (n = 90) and longitudinal development of PTE (n = 46) in a prospective convenience sample of patients with moderate-severe TBI. Acutely, patients were monitored with prospective cEEG and a high-resolution Magnetic Resonance Imaging (MRI) scan for lesion location classification. Chronically, patients underwent a high-resolution MRI, clinical assessment, and were longitudinally monitored for development of epilepsy for a minimum of 2 years post-injury. Early seizures, occurring within the first week post-injury, occurred in 26.7% of the patients (n = 90). Within the cohort of subjects who had evidence of early seizures (n = 24), 75% had a hemorrhagic temporal lobe injury on admission. For longitudinal analyses (n = 46), 45.7% of patients developed PTE within a minimum of 2 years post-injury. Within the cohort of subjects who developed PTE (n = 21), 85.7% had a hemorrhagic temporal lobe injury on admission and 38.1% had early (convulsive or non-convulsive) seizures on cEEG monitoring during their acute ICU stay. In a between-group analysis, patients with PTE (n = 21) were more likely than patients who did not develop PTE (n = 25) to have a hemorrhagic temporal lobe injury (p < 0.001), worse functional recovery (p = 0.003), and greater temporal lobe atrophy (p = 0.029). Our results indicate that in a cohort of patients with a moderate-severe TBI, 1) lesion location specificity (e.g. the temporal lobe) is related to both a high incidence of early seizures and longitudinal development of PTE, 2) early seizures, whether convulsive or non-convulsive in nature, are associated with an increased risk for PTE development, and 3) patients who develop PTE have greater chronic temporal lobe atrophy and worse functional outcomes, compared to those who do not develop PTE, despite matched injury severity characteristics. This study provides the foundation for a future prospective study focused on elucidating the mechanisms and risk factors for epileptogenesis. Copyright © 2017. Published by Elsevier Inc.
Errguig, L; Lahjouji, F; Belaidi, H; Jiddane, M; Elkhamlichi, A; Dakka, T; Ouazzani, R
2013-11-01
Peri-ictal behavior disorders can be helpful in localizing and lateralizing seizure onset in partial epilepsies, especially those originating in the temporal lobe. In this paper, we present the case of two right-handed women aged 36 and 42 years who presented with partial seizures of mesial temporal type. Both of the patients had drug resistant epilepsy and undergone presurgical evaluation tests including brain magnetic resonance imaging, video-EEG monitoring and neuropsychological testing. The two patients had hippocampal sclerosis in the right temporal lobe and exhibited PIWD behavior concomitant with right temporal lobe discharges documented during video-EEG recordings. Anterior temporal lobectomy was performed in one case with an excellent outcome after surgery. The patient was free of seizures at 3 years follow-up. We reviewed other publications of peri-ictal autonomic symptoms considered to have a lateralizing significance, such as peri-ictal vomiting, urinary urge, ictal pilo-erection. Clinicians should search for these symptoms, even if not spontaneously reported by the patient, because they are often under-estimated, both by the patients themselves and by physicians. Additionally, patients with lateralizing auras during seizures have a significantly better outcome after epilepsy surgery than those without lateralizing features. Copyright © 2013. Published by Elsevier Masson SAS.
Martínez-Levy, G A; Rocha, L; Rodríguez-Pineda, F; Alonso-Vanegas, M A; Nani, A; Buentello-García, R M; Briones-Velasco, M; San-Juan, D; Cienfuegos, J; Cruz-Fuentes, C S
2018-05-01
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Neuromagnetic Vistas into Typical and Atypical Development of Frontal Lobe Functions
Taylor, Margot J.; Doesburg, Sam M.; Pang, Elizabeth W.
2014-01-01
The frontal lobes are involved in many higher-order cognitive functions such as social cognition executive functions and language and speech. These functions are complex and follow a prolonged developmental course from childhood through to early adulthood. Magnetoencephalography (MEG) is ideal for the study of development of these functions, due to its combination of temporal and spatial resolution which allows the determination of age-related changes in both neural timing and location. There are several challenges for MEG developmental studies: to design tasks appropriate to capture the neurodevelopmental trajectory of these cognitive functions, and to develop appropriate analysis strategies to capture various aspects of neuromagnetic frontal lobe activity. Here, we review our MEG research on social and executive functions, and speech in typically developing children and in two clinical groups – children with autism spectrum disorder and children born very preterm. The studies include facial emotional processing, inhibition, visual short-term memory, speech production, and resting-state networks. We present data from event-related analyses as well as on oscillations and connectivity analyses and review their contributions to understanding frontal lobe cognitive development. We also discuss the challenges of testing young children in the MEG and the development of age-appropriate technologies and paradigms. PMID:24994980
ERIC Educational Resources Information Center
Martin, Chris B.; Bowles, Ben; Mirsattari, Seyed M.; Kohler, Stefan
2011-01-01
Research has firmly established a link between recognition memory and the functional integrity of the medial temporal lobes (MTL). Dual-process models of MTL organization maintain that there is a division of labour within the MTL, with the hippocampus (HC) supporting recollective processes and perirhinal cortex (PRc) supporting familiarity…
Verbal Memory Compensation: Application to Left and Right Temporal Lobe Epileptic Patients
ERIC Educational Resources Information Center
Bresson, Christel; Lespinet-Najib, Veronique; Rougier, Alain; Claverie, Bernard; N'Kaoua, Bernard
2007-01-01
This study investigates the compensatory impact of cognitive aids on left and right temporal lobe epileptic patients suffering from verbal memory disorders, who were candidates for surgery. Cognitive aids are defined in the levels-of-processing framework and deal with the depth of encoding, the elaboration of information, and the use of retrieval…
Syntactic Structure Building in the Anterior Temporal Lobe during Natural Story Listening
ERIC Educational Resources Information Center
Brennan, Jonathan; Nir, Yuval; Hasson, Uri; Malach, Rafael; Heeger, David J.; Pylkkanen, Liina
2012-01-01
The neural basis of syntax is a matter of substantial debate. In particular, the inferior frontal gyrus (IFG), or Broca's area, has been prominently linked to syntactic processing, but the anterior temporal lobe has been reported to be activated instead of IFG when manipulating the presence of syntactic structure. These findings are difficult to…
Auditory/visual Duration Bisection in Patients with Left or Right Medial-Temporal Lobe Resection
ERIC Educational Resources Information Center
Melgire, Manuela; Ragot, Richard; Samson, Severine; Penney, Trevor B.; Meck, Warren H.; Pouthas, Viviane
2005-01-01
Patients with unilateral (left or right) medial temporal lobe lesions and normal control (NC) volunteers participated in two experiments, both using a duration bisection procedure. Experiment 1 assessed discrimination of auditory and visual signal durations ranging from 2 to 8 s, in the same test session. Patients and NC participants judged…
Words and Objects at the Tip of the Left Temporal Lobe in Primary Progressive Aphasia
ERIC Educational Resources Information Center
Mesulam, M.-Marsel; Wieneke, Christina; Hurley, Robert; Rademaker, Alfred; Thompson, Cynthia K.; Weintraub, Sandra; Rogalski, Emily J.
2013-01-01
Eleven of 69 prospectively enrolled primary progressive aphasics were selected for this study because of peak atrophy sites located predominantly or exclusively within the anterior left temporal lobe. Cortical volumes in these areas were reduced to less than half of control values, whereas average volume elsewhere in the left hemisphere deviated…
Interictal spike detection comparing subdural and depth electrodes during electrocorticography.
Privitera, M D; Quinlan, J G; Yeh, H S
1990-11-01
We compared the ability of subdural and depth electrodes to detect and localize interictal epileptiform discharges (IEDs) in the temporal lobe. Sixteen patients had simultaneous intraoperative recordings with depth and subdural electrodes while undergoing anterior temporal lobe resections under local anesthesia for medically intractable seizures. IEDs that were focal (detected at just 1 or 2 electrode contacts) typically registered at the nearest contact, regardless of type. IEDs that were regional (engaging more than 2 electrode contacts) typically appeared simultaneously at both electrode types. Neither method was better able to indicate whether an IED was mesial or lateral, posterior or anterior. Subdural and depth electrodes seem to provide complementary information on the location of IEDs within the temporal lobe.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qi, X. Sharon, E-mail: xqi@mednet.ucla.edu; Department of Radiation Oncology, University of Colorado Denver, Aurora, Colorado; Stinauer, Michelle
Purpose: To compare volumetric modulated arc therapy (VMAT) with 3-dimensional conformal radiation therapy (3D-CRT) in the treatment of localized intracranial germinoma. We modeled the effect of the dosimetric differences on intelligence quotient (IQ). Method and Materials: Ten children with intracranial germinomas were used for planning. The prescription doses were 23.4 Gy to the ventricles followed by 21.6 Gy to the tumor located in the pineal region. For each child, a 3D-CRT and full arc VMAT was generated. Coverage of the target was assessed by computing a conformity index and heterogeneity index. We also generated VMAT plans with explicit temporal lobemore » sparing and with smaller ventricular margin expansions. Mean dose to the temporal lobe was used to estimate IQ 5 years after completion of radiation, using a patient age of 10 years. Results: Compared with the 3D-CRT plan, VMAT improved conformality (conformity index 1.10 vs 1.85), with slightly higher heterogeneity (heterogeneity index 1.09 vs 1.06). The averaged mean doses for left and right temporal lobes were 31.3 and 31.7 Gy, respectively, for VMAT plans and 37.7 and 37.6 Gy for 3D-CRT plans. This difference in mean temporal lobe dose resulted in an estimated IQ difference of 3.1 points at 5 years after radiation therapy. When the temporal lobes were explicitly included in the VMAT optimization, the mean temporal lobe dose was reduced 5.6-5.7 Gy, resulting in an estimated IQ difference of an additional 3 points. Reducing the ventricular margin from 1.5 cm to 0.5 cm decreased mean temporal lobe dose 11.4-13.1 Gy, corresponding to an estimated increase in IQ of 7 points. Conclusion: For treatment of children with intracranial pure germinomas, VMAT compared with 3D-CRT provides increased conformality and reduces doses to normal tissue. This may result in improvements in IQ in these children.« less
Temporal lobe epilepsy: analysis of patients with dual pathology.
Salanova, V; Markand, O; Worth, R
2004-02-01
To determine the frequency and types of dual pathology in patients with temporal lobe epilepsy (TLE) and to analyze the clinical manifestations and surgical outcome. A total of 240 patients with TLE underwent temporal resections following a comprehensive pre-surgical evaluation. Thirty-seven (15.4%) of these had hippocampal sclerosis (HS) or temporal lobe gliosis in association with another lesion (dual pathology). Eighteen of 37 patients with dual pathology had heterotopia of the temporal lobe, nine had cortical dysplasia, four had cavernous angiomas or arteriovenous malformations, one had a dysembryoplastic neuroepithelial tumor, one had a contusion and four patients had cerebral infarctions in childhood. 68.5% had abnormal head magnetic resonance imagings, 91.3% had abnormal positron emission tomography scans, and 96% had abnormal ictal SPECT. The intracarotid amobarbital procedure (IAP) showed impaired memory of the epileptogenic side in 72% of the patients. Twenty patients had left and 17 had right-sided en bloc temporal resections, including the lesion and mesial temporal structures. Twenty-six (70.2%) became seizure-free, eight (21.6%) had rare seizures, two (5.4%) had worthwhile seizure reduction and one (2.7%) had no improvement (range of follow-up 1-16 years, mean = 7.4 years). 15.4% had dual pathology. The dual pathology was almost exclusively seen in patients whose lesions were congenital, or occurred early in life, suggesting that the hippocampus is more vulnerable and more readily develops HS in early childhood. Resections, including the lateral and mesial temporal structures led to a favorable outcome with no mortality and little morbidity.
On the definition and interpretation of voice selective activation in the temporal cortex
Bethmann, Anja; Brechmann, André
2014-01-01
Regions along the superior temporal sulci and in the anterior temporal lobes have been found to be involved in voice processing. It has even been argued that parts of the temporal cortices serve as voice-selective areas. Yet, evidence for voice-selective activation in the strict sense is still missing. The current fMRI study aimed at assessing the degree of voice-specific processing in different parts of the superior and middle temporal cortices. To this end, voices of famous persons were contrasted with widely different categories, which were sounds of animals and musical instruments. The argumentation was that only brain regions with statistically proven absence of activation by the control stimuli may be considered as candidates for voice-selective areas. Neural activity was found to be stronger in response to human voices in all analyzed parts of the temporal lobes except for the middle and posterior STG. More importantly, the activation differences between voices and the other environmental sounds increased continuously from the mid-posterior STG to the anterior MTG. Here, only voices but not the control stimuli excited an increase of the BOLD response above a resting baseline level. The findings are discussed with reference to the function of the anterior temporal lobes in person recognition and the general question on how to define selectivity of brain regions for a specific class of stimuli or tasks. In addition, our results corroborate recent assumptions about the hierarchical organization of auditory processing building on a processing stream from the primary auditory cortices to anterior portions of the temporal lobes. PMID:25071527
Ide, M; Mizukami, K; Suzuki, T; Shiraishi, H
2000-10-01
A 26-year-old female presented psychomotor seizures, deja vu and amnestic syndrome after meningitis at the age of 14 years. Repeated electroencephalograms (EEG) demonstrated occasional spikes localized in the right temporal region in addition to a considerable amount of theta waves mainly in the right fronto-temporal region. Single photon emission computed tomography (SPECT) showed a marked hypoperfusion corresponding to the region in which the EEG showed abnormal findings, although magnetic resonance imaging (MRI) demonstrated no abnormal findings associated with the clinical features. Treatment with clonazepam in addition to sodium valproate resulted in a remarkable improvement of clinical symptoms (i.e. psychomotor seizures and deja vu), as well as of the EEG and SPECT findings. The present study suggests that SPECT is a useful method not only to determine the localization of regions associated with temporal lobe epilepsy but also to evaluate the effect of treatment in temporal lobe epilepsy.
Cao, Song; Li, Ying; Deng, Wenwen; Qin, Bangyong; Zhang, Yi; Xie, Peng; Yuan, Jie; Yu, Buwei; Yu, Tian
2017-07-01
Herpes zoster (HZ) can develop into postherpetic neuralgia (PHN), both of which are painful diseases. PHN patients suffer chronic pain and emotional disorders. Previous studies showed that the PHN brain displayed abnormal activity and structural change, but the difference in brain activity between HZ and PHN is still not known. To identify regional brain activity changes in HZ and PHN brains with resting-state functional magnetic resonance imaging (rs-fMRI) technique, and to observe the differences between HZ and PHN patients. Observational study. University hospital. Regional homogeneity (ReHo) and fractional aptitude of low-frequency fluctuation (fALFF) methods were employed to analysis resting-state brain activity. Seventy-three age and gender matched patients (50 HZ, 23 PHN) and 55 healthy controls were enrolled. ReHo and fALFF changes were analyzed to detect the functional abnormality in HZ and PHN brains. Compared with healthy controls, HZ and PHN patients exhibited abnormal ReHo and fALFF values in classic pain-related brain regions (such as the frontal lobe, thalamus, insular, and cerebellum) as well as the brainstem, limbic lobe, and temporal lobe. When HZ developed to PHN, the activity in the vast area of the cerebellum significantly increased while that of some regions in the occipital lobe, temporal lobe, parietal lobe, and limbic lobe showed an apparent decrease. (a) Relatively short pain duration (mean 12.2 months) and small sample size (n = 23) for PHN group. (b) Comparisons at different time points (with paired t-tests) for each patient may minimize individual differences. HZ and PHN induced local brain activity changed in the pain matrix, brainstem, and limbic system. HZ chronification induced functional change in the cerebellum, occipital lobe, temporal lobe, parietal lobe, and limbic lobe. These brain activity changes may be correlated with HZ-PHN transition. Herpes zoster, postherpetic neuralgia, resting-state fMRI (rs-fMRI), regional homogeneity (ReHo), fractional aptitude of low-frequency fluctuation (fALFF).
The neuropsychology of the Klüver-Bucy syndrome in children.
Lippe, S; Gonin-Flambois, C; Jambaqué, I
2013-01-01
The Klüver-Bucy syndrome (KBS) is characterized by a number of peculiar behavioral symptoms. The syndrome was first observed in 1939 by Heinrich Klüver and Paul Bucy in the rhesus monkey following removal of the greater portion of the monkey's temporal lobes and rhinencephalon. The animal showed (a) visual agnosia (inability to recognize objects without general loss of visual discrimination), (b) excessive oral tendency (oral exploration of objects), (c) hypermetamorphosis (excessive visual attentiveness), (d) placidity with loss of normal fear and anger responses, (e) altered sexual behavior manifesting mainly as marked and indiscriminate hypersexuality, and (f) changes in eating behavior. In humans, KBS can be complete or incomplete. It occurs as a consequence of neurological disorders that essentially cause destruction or dysfunction of bilateral mesial temporal lobe structures (i.e., Pick disease, Alzheimer disease, cerebral trauma, cerebrovascular accidents, temporal lobe epilepsy, herpetic encephalopathy, heat stroke). As for epilepsy, complete and incomplete KBS are well documented in temporal lobe epilepsy, temporal lobectomy, and partial status epilepticus. KBS can occur at any age. Children seem to show similar symptoms to adults, although some differences in the manifestations of symptoms may be related to the fact that children have not yet learned certain behaviors. Copyright © 2013 Elsevier B.V. All rights reserved.
When should temporal-lobe epilepsy be treated surgically?
Spencer, Susan S
2002-10-01
Our current knowledge of mesial-temporal-lobe epilepsy (MTLE) is extensive, yet still insufficient to draw final conclusions on the optimal approach to its therapy. MTLE has been well characterised and can usually be identified with noninvasive studies including scalp electroencephalography (EEG) and video monitoring with ictal recording, magnetic resonance imaging, single-photon-emission computed tomography, positron emission tomography, neuropsychological assessment, and historical and clinical data. Sometimes, invasive EEG is needed to confirm mesial-temporal-lobe seizure onset, which, combined with the underlying pathological abnormality (the substrate) of mesial temporal sclerosis (hippocampal neuronal loss and gliosis), defines MTLE. This disorder is the most common refractory partial epilepsy, and also the one most often treated surgically, because medical treatment fails in 75% of cases, and surgical treatment succeeds in a similar percentage. Despite the recent publication of the first randomised trial of surgical treatment for MTLE, questions remain about the neurological consequences of both medical and surgical treatment, the ultimate gains in quality of life parameters, and the precise predictors of success. Long-term follow-up and analyses of multiple factors in large groups of contemporary patient populations will be necessary to fully answer the question, "is temporal lobe epilepsy a surgical disease?" Right now it should be considered one in most cases.
The temporal relation between seizure onset and arousal-awakening in temporal lobe seizures.
Gumusyayla, Sadiye; Erdal, Abidin; Tezer, F Irsel; Saygi, Serap
2016-07-01
Our main aim was to determine the time interval between the seizure onsets and arousal-awakening related to these seizures in patients with temporal lobe epilepsy (TLE) and to discuss the role of lateralization on arousal-awakening mechanisms. Thirty-three TLE patients who underwent video-EEG monitoring with simultaneous polysomnography (PSG) and had recorded nocturnal seizures were retrospectively examined. These TLE patients had 64 seizures during sleep. The onsets of seizures and arousal-awakening related to these seizures were marked according to clinical and electrophysiological features. The time interval between the seizure onset and arousal-awakening related to the seizure was compared in patients with right- or left-sided temporal lobe seizures. In our TLE patients nocturnal seizures mostly followed arousal-awakening (64%). The time interval between the seizure onset and arousal-awakening related to the seizure was significantly shorter in patients with left-sided temporal lobe seizures (p=0.01). Video-EEG monitoring and PSG with scalp electrodes in our TLE patients showed that nocturnal seizures mostly followed arousal-awakening, and it was more pronounced in those with left-sided seizures. Arousal-awakening might be a signal for subsequent seizures in patients with TLE. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Akanuma, Kyoko; Meguro, Kenichi; Satoh, Masayuki; Tashiro, Manabu; Itoh, Masatoshi
2016-01-01
Clinically, we know that some aphasic patients can sing well despite their speech disturbances. Herein, we report 10 patients with non-fluent aphasia, of which half of the patients improved their speech function after singing training. We studied ten patients with non-fluent aphasia complaining of difficulty finding words. All had lesions in the left basal ganglia or temporal lobe. They selected the melodies they knew well, but which they could not sing. We made a new lyric with a familiar melody using words they could not name. The singing training using these new lyrics was performed for 30 minutes once a week for 10 weeks. Before and after the training, their speech functions were assessed by language tests. At baseline, 6 of them received positron emission tomography to evaluate glucose metabolism. Five patients exhibited improvements after intervention; all but one exhibited intact right basal ganglia and left temporal lobes, but all exhibited left basal ganglia lesions. Among them, three subjects exhibited preserved glucose metabolism in the right temporal lobe. We considered that patients who exhibit intact right basal ganglia and left temporal lobes, together with preserved right hemispheric glucose metabolism, might be an indication of the effectiveness of singing therapy.
Boylan, Christine; Trueswell, John C.; Thompson-Schill, Sharon L.
2018-01-01
The angular gyrus (AG) and anterior temporal lobe (ATL) have been found to respond to a number of tasks involving combinatorial processing. In this study, we investigate the conceptual combination of nominal compounds, and ask whether ATL/AG activity is modulated by the type of combinatorial operation applied to a nominal compound. We compare relational and attributive interpretations of nominal compounds and find that ATL and AG both discriminate these two types, but in distinct ways. While right AG demonstrated greater positive task-responsive activity for relational compounds, there was a greater negative deflection in the BOLD response in left AG for relational compounds. In left ATL, we found an earlier peak in subjects’ BOLD response curves for attributive interpretations. In other words, we observed dissociations in both AG and ATL between relational and attributive nominal compounds, with regard to magnitude in the former and to timing in the latter. These findings expand on prior studies that posit roles for both AG and ATL in conceptual processing generally, and in conceptual combination specifically, by indicating possible functional specializations of these two regions within a larger conceptual knowledge network. PMID:28236762
Temporal lobe epilepsy: origin and significance of simple and complex auras.
Taylor, D C; Lochery, M
1987-01-01
The aura experience of 88 patients with temporal lobe epilepsy was recorded, classified and analysed. Despite the great richness of the 215 experiences described, correlations with left or right brain, nature of lesion, age of onset, etc. were only apparent when a classification into three aura groups was used. "Simple primitive" auras as sole auras were more likely with early onset epilepsy, in lower IQ patients, in males, from the right temporal lobe, and with mesial temporal sclerosis. Exclusively "intellectual" auras were confined to a group of high IQ males. The number of aura experiences described per person correlated with Verbal IQ for males but not females, but also varied with side, sex, and nature of lesion. The results are discussed in terms of the necessary conditions for aura and their relevance and in relationship to the results of brain stimulation studies by Penfield and others. PMID:3612148
The extratemporal lobe epilepsies in the epilepsy monitoring unit
Dash, Deepa; Tripathi, Manjari
2014-01-01
Extratemporal lobe epilepsies (ETLE) are characterized by the epileptogenic foci outside the temporal lobe. They have a wide spectrum of semiological presentation depending upon the site of origin. They can arise from frontal, parietal, occipital lobes and from hypothalamic hamartoma. We discuss in this review the semiology of different types of ETLE encountered in the epilepsy monitoring unit. PMID:24791090
Temporal lobe deficits in murderers: EEG findings undetected by PET.
Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L
2001-01-01
This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.
Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu
2015-01-01
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system’s constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery. PMID:26011637
Alderson-Day, Ben; McCarthy-Jones, Simon; Fernyhough, Charles
2018-01-01
Resting state networks (RSNs) are thought to reflect the intrinsic functional connectivity of brain regions. Alterations to RSNs have been proposed to underpin various kinds of psychopathology, including the occurrence of auditory verbal hallucinations (AVH). This review outlines the main hypotheses linking AVH and the resting state, and assesses the evidence for alterations to intrinsic connectivity provided by studies of resting fMRI in AVH. The influence of hallucinations during data acquisition, medication confounds, and movement are also considered. Despite a large variety of analytic methods and designs being deployed, it is possible to conclude that resting connectivity in the left temporal lobe in general and left superior temporal gyrus in particular are disrupted in AVH. There is also preliminary evidence of atypical connectivity in the default mode network and its interaction with other RSNs. Recommendations for future research include the adoption of a common analysis protocol to allow for more overlapping datasets and replication of intrinsic functional connectivity alterations. PMID:25956256
Anatomical origin of déjà vu and vivid 'memories' in human temporal lobe epilepsy.
Bancaud, J; Brunet-Bourgin, F; Chauvel, P; Halgren, E
1994-02-01
Jackson (Brain 1898; 21: 580-90) observed that seizures arising in the medial temporal lobe may result in a 'dreamy state', consisting of vivid memory-like hallucinations, and/or the sense of having previously lived through exactly the same situation (déjà vu). Penfield demonstrated that the dreamy state can sometimes be evoked by electrical stimulation of the lateral temporal neocortex, especially the superior temporal gyrus. Halgren et al. (Brain 1978; 101: 83-117) showed that the dreamy state can be evoked by stimulation of the hippocampal formation and amygdala and Gloor (Brain 1990; 113: 1673-94) has suggested that it is evoked by lateral stimulation only when the resulting after-discharge spreads medially. In order to resolve the relative importance of these areas, we considered the mental phenomena observed in epileptic patients with electrodes stereotaxically implanted into different brain areas for seizure localization prior to surgical treatment. Sixteen patients, all with seizures involving the temporal lobe, experienced the dreamy state either as a result of spontaneous seizures (nine dreamy states in six patients), or due to electrical stimulation (43 in 14) or to chemical activation (five in three). Déjà vu and hallucinations of scenes were often evoked by different stimulations of the same electrode in the same patient. As Jackson had also observed, the dreamy state could occur alone but was often associated with epigastric phenomena and fear, and followed by loss of contact and oro-alimentary automatisms, and then by simple gestural automatisms, all characteristic of partial seizures beginning in the medial temporal lobe. Furthermore, as also emphasized by Jackson, the dreamy state was seldom associated with sensory illusions. Stimulation of either the neocortex (15 occurrences), anterior hippocampus (17) or amygdala (10) could evoke a dreamy state. However, since fewer hippocampal and amygdala leads were stimulated than temporal neocortical, the proportion of medial temporal electrodes where dreamy states could be evoked was much higher than in the neocortex. Most responsive lateral temporal sites were located in the superior temporal gyrus, rather than the middle temporal gyrus which was significantly less responsive. In 85% of dreamy states evoked by medial temporal lobe stimulation, the discharge spread to the temporal neocortex; and in 53% of dreamy states evoked by lateral temporal stimulation, the discharge spread medially. Considering all dreamy states, the amygdala was involved (as the stimulated structure, or as the site of ictal- or after-discharge) in 73% of cases, the anterior hippocampus in 83% and the temporal neocortex in 88%.(ABSTRACT TRUNCATED AT 400 WORDS)
Wang, Wei-Chun; Giovanello, Kelly S
2016-06-01
Considerable neuropsychological and neuroimaging work indicates that the medial temporal lobes are critical for both item and relational memory retrieval. However, there remain outstanding issues in the literature, namely the extent to which medial temporal lobe regions are differentially recruited during incidental and intentional retrieval of item and relational information, and the extent to which aging may affect these neural substrates. The current fMRI study sought to address these questions; participants incidentally encoded word pairs embedded in sentences and incidental item and relational retrieval were assessed through speeded reading of intact, rearranged, and new word-pair sentences, while intentional item and relational retrieval were assessed through old/new associative recognition of a separate set of intact, rearranged, and new word pairs. Results indicated that, in both younger and older adults, anterior hippocampus and perirhinal cortex indexed incidental and intentional item retrieval in the same manner. In contrast, posterior hippocampus supported incidental and intentional relational retrieval in both age groups and an adjacent cluster in posterior hippocampus was recruited during both forms of relational retrieval for older, but not younger, adults. Our findings suggest that while medial temporal lobe regions do not differentiate between incidental and intentional forms of retrieval, there are distinct roles for anterior and posterior medial temporal lobe regions during retrieval of item and relational information, respectively, and further indicate that posterior regions may, under certain conditions, be over-recruited in healthy aging. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Calibrated fMRI in the Medial Temporal Lobe During a Memory Encoding Task
Restom, Khaled; Perthen, Joanna E.; Liu, Thomas T.
2008-01-01
Prior measures of the blood oxygenation level dependent (BOLD) and cerebral blood flow (CBF) responses to a memory encoding task within the medial temporal lobe have suggested that the coupling between functional changes in CBF and changes in the cerebral metabolic rate of oxgyen (CMRO2) may be tighter in the medial temporal lobe as compared to the primary sensory areas. In this study, we used a calibrated functional magnetic resonance imaging (fMRI) approach to directly estimate memory-encoding-related changes in CMRO2 and to assess the coupling between CBF and CMRO2 in the medial temporal lobe. The CBF-CMRO2 coupling ratio was estimated using a linear fit to the flow and metabolism changes observed across subjects. In addition, we examined the effect of region-of-interest (ROI) selection on the estimates. In response to the memory encoding task, CMRO2 increased by 23.1% ± 8.8 to 25.3% ± 5.7 (depending upon ROI), with an estimated CBF-CMRO2 coupling ratio of 1.66 ± 0.07 to 1.75± 0.16. There was not a significant effect of ROI selection on either the CMRO2 or coupling ratio estimates. The observed coupling ratios were significantly lower than the values (2 to 4.5) that have been reported in previous calibrated fMRI studies of the visual and motor cortices. In addition, the estimated coupling ratio was found to be less sensitive to the calibration procedure for functional responses in the medial temporal lobe as compared to the primary sensory areas. PMID:18329291
Gerdes, Jan S.; Weber, Bernd; Deppe, Michael
2012-01-01
Background In patients with temporal lobe epilepsy and associated hippocampal sclerosis (TLEhs) there are brain abnormalities extending beyond the presumed epileptogenic zone as revealed separately in conventional magnetic resonance imaging (MRI) and MR diffusion tensor imaging (DTI) studies. However, little is known about the relation between macroscopic atrophy (revealed by volumetric MRI) and microstructural degeneration (inferred by DTI). Methodology/Principal Findings For 62 patients with unilateral TLEhs and 68 healthy controls, we determined volumes and mean fractional anisotropy (FA) of ipsilateral and contralateral brain structures from T1-weighted and DTI data, respectively. We report significant volume atrophy and FA alterations of temporal lobe, subcortical and callosal regions, which were more diffuse and bilateral in patients with left TLEhs relative to right TLEhs. We observed significant relationships between volume loss and mean FA, particularly of the thalamus and putamen bilaterally. When corrected for age, duration of epilepsy was significantly correlated with FA loss of an anatomically plausible route - including ipsilateral parahippocampal gyrus and temporal lobe white matter, the thalamus bilaterally, and posterior regions of the corpus callosum that contain temporal lobe fibres - that may be suggestive of progressive brain degeneration in response to recurrent seizures. Conclusions/Significance Chronic TLEhs is associated with interrelated DTI-derived and volume-derived brain degenerative abnormalities that are influenced by the duration of the disorder and the side of seizure onset. This work confirms previously contradictory findings by employing multi-modal imaging techniques in parallel in a large sample of patients. PMID:23071638
Nakano, Yoshiteru; Saito, Takeshi; Yamamoto, Junkoh; Takahashi, Mayu; Akiba, Daisuke; Kitagawa, Takehiro; Miyaoka, Ryo; Ueta, Kunihiro; Kurokawa, Toru; Nishizawa, Shigeru
2011-12-01
Only a small number of aneurysms arising on the posterior communicating artery itself (true Pcom aneurysm) have been reported. We report two cases of ruptured true Pcom aneurysms with some characteristic features of true Pcom aneurysm. A 43 year old man suffering from subarachnoid hemorrhage (SAH) had an aneurysm arising on the fetal-type Pcom artery itself, and underwent surgery for clipping. Most of the aneurysm was buried in the temporal lobe, so retraction of the temporal lobe was mandatory. During the retraction, premature rupture was encountered. After tentative dome clipping and the control of bleeding, complete clipping was achieved. Another patient, a 71 year old woman presenting with consciousness disturbance due to SAH, had an aneurysm on the fetal-type Pcom artery itself, and underwent surgery for clipping. It has been generally considered that hemodynamic factor plays an important role in the formation, the growth, and the rupture of the cerebral aneurysm. This factor is especially significant in true Pcom aneurysm formation and rupture. According to the literature, a combination of fetal type Pcom and formation of the true Pcom aneurysm has been reported in most cases (81.8%). Most of the aneurysm can be buried in the temporal lobe, and the retraction of the temporal lobe during the dissection of the neck would be necessary, which causes premature rupture of the true Pcom aneurysm. In the surgery for a true Pcom aneurysm, we should be aware of possible premature rupture when temporal lobe retraction is necessary.
Mnemonic training reshapes brain networks to support superior memory
Dresler, Martin; Shirer, William R.; Konrad, Boris N.; Müller, Nils C.J.; Wagner, Isabella C.; Fernández, Guillén; Czisch, Michael; Greicius, Michael D.
2017-01-01
Summary Memory skills strongly differ across the general population, however little is known about the brain characteristics supporting superior memory performance. Here, we assess functional brain network organization of 23 of the world’s most successful memory athletes and matched controls by fMRI during both task-free resting state baseline and active memory encoding. We demonstrate that in a group of naïve controls, functional connectivity changes induced by six weeks of mnemonic training were correlated with the network organization that distinguishes athletes from controls. During rest, this effect was mainly driven by connections between rather than within the visual, medial temporal lobe and default mode networks, whereas during task it was driven by connectivity within these networks. Similarity with memory athlete connectivity patterns predicted memory improvements up to 4 months after training. In conclusion, mnemonic training drives distributed rather than regional changes, reorganizing the brain’s functional network organization to enable superior memory performance. PMID:28279356
Interictal Epileptiform Discharges Impair Word Recall in Multiple Brain Areas
Horak, Peter C.; Meisenhelter, Stephen; Song, Yinchen; Testorf, Markus E.; Kahana, Michael J.; Viles, Weston D.; Bujarski, Krzysztof A.; Connolly, Andrew C.; Robbins, Ashlee A.; Sperling, Michael R.; Sharan, Ashwini D.; Worrell, Gregory A.; Miller, Laura R.; Gross, Robert E.; Davis, Kathryn A.; Roberts, David W.; Lega, Bradley; Sheth, Sameer A.; Zaghloul, Kareem A.; Stein, Joel M.; Das, Sandhitsu R.; Rizzuto, Daniel S.; Jobst, Barbara C.
2016-01-01
Summary Objectives Interictal epileptiform discharges (IEDs) have been linked to memory impairment, but the spatial and temporal dynamics of this relationship remain elusive. In the present study, we aim to systematically characterize the brain areas and times at which IEDs affect memory. Methods Eighty epilepsy patients participated in a delayed free recall task while undergoing intracranial EEG monitoring. We analyzed the locations and timing of IEDs relative to the behavioral data in order to measure their effects on memory. Results Overall IED rates did not correlate with task performance across subjects (r = 0.03, p = 0.8). However, at a finer temporal scale, within-subject memory was negatively affected by IEDs during the encoding and recall periods of the task but not during the rest and distractor periods (p < 0.01, p < 0.001, p = 0.3, and p = 0.8 respectively). The effects of IEDs during encoding and recall were stronger in the left hemisphere than in the right (p < 0.05). Out of six brain areas analyzed, IEDs in the inferior temporal, medial temporal, and parietal areas significantly affected memory (false discovery rate < 0.05). Significance These findings reveal a network of brain areas sensitive to IEDs with key nodes in temporal as well as parietal lobes. They also demonstrate the time-dependent effects of IEDs in this network on memory. PMID:27935031
Hsu, Chia-Fen; Sonuga-Barke, Edmund J S
2016-08-01
fMRI studies have implicated the medial prefrontal cortex and medial temporal lobe, components of the default mode network (DMN), in episodic prospection. This study compared quantitative EEG localized to these DMN regions during prospection and during resting and while waiting for rewards. EEG was recorded in twenty-two adults while they were asked to (i) envision future monetary episodes; (ii) wait for rewards and (iii) rest. Activation sources were localized to core DMN regions. EEG power and phase coherence were compared across conditions. Prospection, compared to resting and waiting, was associated with reduced power in the medial prefrontal gyrus and increased power in the bilateral medial temporal gyrus across frequency bands as well as greater phase synchrony between these regions in the delta band. The current quantitative EEG analysis confirms prior fMRI research suggesting that medial prefrontal and medial temporal gyrus interactions are central to the capacity for episodic prospection. Copyright © 2016 Elsevier B.V. All rights reserved.
Psychosis following temporal lobe surgery: a report of six cases.
Mace, C J; Trimble, M R
1991-01-01
Six consecutive patients who had had temporal lobe surgery for epilepsy, and been referred for psychiatric assessment of psychotic symptoms, are reported. Their symptoms (a delusional depression, four schizophrenia-like illnesses, and a case of Capgras' syndrome) are discussed in relation to the possible role of their operations, all of which were on the right hemisphere. PMID:1895129
ERIC Educational Resources Information Center
Ledoux, Kerry; Gordon, Barry
2011-01-01
Processing and/or hemispheric differences in the neural bases of word recognition were examined in patients with long-standing, medically-intractable epilepsy localized to the left (N = 18) or right (N = 7) temporal lobe. Participants were asked to read words that varied in the frequency of their spelling-to-sound correspondences. For the right…
Epilepsy and the Wnt Signaling Pathway
2015-06-01
transforms into one that sustains seizures. It is instigated by an inciting event (e.g. prolonged seizure called status epilepticus (SE), head injury...Surprisingly, the combination attenuates seizures in two different models of temporal lobe epilepsy. 15. SUBJECT TERMS Status Epilepticus , Wnt...will investigate the mechanisms of Status Epilepticus (SE) and the ensuing latent period in animal models of temporal lobe epilepsy (TLE), a disease
Temporal Lobe Epilepsy and the Selective Reminding Test: The Conventional 30-Minute Delay Suffices
ERIC Educational Resources Information Center
Bell, Brian D.; Fine, Jason; Dow, Christian; Seidenberg, Michael; Hermann, Bruce P.
2005-01-01
Conventional memory assessment may fail to identify memory dysfunction characterized by intact recall for a relatively brief period but rapid forgetting thereafter. This study assessed learning and retention after 30-min and 24-hr delays on auditory and visual selective reminding tests (SRTs) in right (n=20) and left (n=22) temporal lobe epilepsy…
JaK/STAT Inhibition to Prevent Post-Traumatic Epileptogenesis
2014-09-01
Distribution Unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT Traumatic Brain Injury (TBI) is a well-established inducer of temporal lobe epilepsy (TLE...INTRODUCTION: This research addresses the FY10 PRMRP topic area of Epilepsy . Traumatic Brain Injury (TBI) is a well- established etiology of temporal ... lobe epilepsy (TLE), a frequently medically intractable and often progressive epilepsy syndrome. Much evidence indicates that abnormalities in
ERIC Educational Resources Information Center
Helmstaedter, C.; Brosch, T.; Kurthen, M.; Elger, C. E.
2004-01-01
Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language…
ERIC Educational Resources Information Center
Golouboff, Nathalie; Fiori, Nicole; Delalande, Olivier; Fohlen, Martine; Dellatolas, Georges; Jambaque, Isabelle
2008-01-01
The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8-16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and…
Golden, Hannah L; Downey, Laura E; Fletcher, Philip D; Mahoney, Colin J; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D
2015-05-15
Recognition of nonverbal sounds in semantic dementia and other syndromes of anterior temporal lobe degeneration may determine clinical symptoms and help to define phenotypic profiles. However, nonverbal auditory semantic function has not been widely studied in these syndromes. Here we investigated semantic processing in two key nonverbal auditory domains - environmental sounds and melodies - in patients with semantic dementia (SD group; n=9) and in patients with anterior temporal lobe atrophy presenting with behavioural decline (TL group; n=7, including four cases with MAPT mutations) in relation to healthy older controls (n=20). We assessed auditory semantic performance in each domain using novel, uniform within-modality neuropsychological procedures that determined sound identification based on semantic classification of sound pairs. Both the SD and TL groups showed comparable overall impairments of environmental sound and melody identification; individual patients generally showed superior identification of environmental sounds than melodies, however relative sparing of melody over environmental sound identification also occurred in both groups. Our findings suggest that nonverbal auditory semantic impairment is a common feature of neurodegenerative syndromes with anterior temporal lobe atrophy. However, the profile of auditory domain involvement varies substantially between individuals. Copyright © 2015. Published by Elsevier B.V.
Acute marijuana effects on rCBF and cognition: a PET study.
O'Leary, D S; Block, R I; Flaum, M; Schultz, S K; Boles Ponto, L L; Watkins, G L; Hurtig, R R; Andreasen, N C; Hichwa, R D
2000-11-27
The effects of smoking marijuana on cognition and brain function were assessed with PET using H2(15)O. Regional cerebral blood flow (rCBF) was measured in five recreational users before and after smoking a marijuana cigarette, as they repeatedly performed an auditory attention task. Blood flow increased following smoking in a number of paralimbic brain regions (e.g. orbital frontal lobes, insula, temporal poles) and in anterior cingulate and cerebellum. Large reductions in rCBF were observed in temporal lobe regions that are sensitive to auditory attention effects. Brain regions showing increased rCBF may mediate the intoxicating and mood-related effects of smoking marijuana, whereas reduction of task-related rCBF in temporal lobe cortices may account for the impaired cognitive functions associated with acute intoxication.
[The contribution of patient H.M. to modern neuroscience].
Kawachi, Juro
2013-08-01
In 1953, 27-year-old H.M. underwent bilateral medial temporal lobes resection to control his seizures; however, he suffered from severe amnesia as a result. For the next five decades until his death in December 2008 at the age 82, he was the subject of numerous studies performed by over 100 investigators. The reason why research on H.M. continued for so long is mostly attributed to the efficient organization of excellent researchers. The principal findings of H.M. study encouraged the concept of medial temporal lobe memory system and multiple memory systems, and suggested the slow acquisition of semantic knowledge without medial temporal lobe memory system through repeated experience. By the grace of H.M.'s lifelong contribution, the neuroscience of memory is in full flourish.
Temporal lobe networks supporting the comprehension of spoken words.
Bonilha, Leonardo; Hillis, Argye E; Hickok, Gregory; den Ouden, Dirk B; Rorden, Chris; Fridriksson, Julius
2017-09-01
Auditory word comprehension is a cognitive process that involves the transformation of auditory signals into abstract concepts. Traditional lesion-based studies of stroke survivors with aphasia have suggested that neocortical regions adjacent to auditory cortex are primarily responsible for word comprehension. However, recent primary progressive aphasia and normal neurophysiological studies have challenged this concept, suggesting that the left temporal pole is crucial for word comprehension. Due to its vasculature, the temporal pole is not commonly completely lesioned in stroke survivors and this heterogeneity may have prevented its identification in lesion-based studies of auditory comprehension. We aimed to resolve this controversy using a combined voxel-based-and structural connectome-lesion symptom mapping approach, since cortical dysfunction after stroke can arise from cortical damage or from white matter disconnection. Magnetic resonance imaging (T1-weighted and diffusion tensor imaging-based structural connectome), auditory word comprehension and object recognition tests were obtained from 67 chronic left hemisphere stroke survivors. We observed that damage to the inferior temporal gyrus, to the fusiform gyrus and to a white matter network including the left posterior temporal region and its connections to the middle temporal gyrus, inferior temporal gyrus, and cingulate cortex, was associated with word comprehension difficulties after factoring out object recognition. These results suggest that the posterior lateral and inferior temporal regions are crucial for word comprehension, serving as a hub to integrate auditory and conceptual processing. Early processing linking auditory words to concepts is situated in posterior lateral temporal regions, whereas additional and deeper levels of semantic processing likely require more anterior temporal regions.10.1093/brain/awx169_video1awx169media15555638084001. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Huang, J; Friedland, R P; Auchus, A P
2007-01-01
Diffusion tensor imaging (DTI) is a sensitive technique for studying cerebral white matter. We used DTI to characterize microstructural white matter changes and their associations with cognitive dysfunction in Alzheimer disease (AD) and mild cognitive impairment (MCI). We studied elderly subjects with mild AD (n = 6), MCI (n = 11), or normal cognition (n = 8). A standardized clinical and neuropsychological evaluation was conducted on each subject. DTI images were acquired, and fractional anisotropy (FA), axial diffusivity (DA), and radial diffusivity (DR) of normal-appearing white matter (NAWM) in frontal, temporal, parietal, and occipital lobes were determined. These diffusion measurements were compared across the 3 groups, and significant differences were further examined for correlations with tests of cognitive function. Compared with normal controls, AD subjects demonstrated decreased FA and increased DR in the temporal, parietal, and frontal NAWM and decreased DA in temporal NAWM. MCI subjects also showed decreased FA and decreased DA in temporal NAWM, with decreased FA and increased DR in parietal NAWM. Diffusion measurements showed no differences in occipital NAWM. Across all subjects, temporal lobe FA and DR correlated with episodic memory, frontal FA and DR correlated with executive function, and parietal DR significantly correlated with visuospatial ability. We found evidence for functionally relevant microstructural changes in the NAWM of patients with AD and MCI. These changes were present in brain regions serving higher cortical functions, but not in regions serving primary functions, and are consistent with a hypothesized loss of axonal processes in the temporal lobe.
Schoenberg, Mike R; Clifton, William E; Sever, Ryan W; Vale, Fernando L
2018-06-01
Surgery is indicated in cases of mesial temporal lobe epilepsy(MTLE) that are refractory to medical management. The inferior temporal gyrus (ITG) approach provides access to the mesial temporal lobe (MTL) structures with minimal tissue disruption. Reported neuropsychology outcomes following this approach are limited. To report neuropsychological outcomes using an ITG approach to amygdalohippocampectomy (AH) in patients with medically refractory MTLE based on a prospective design. Fifty-four participants had Engel class I/II outcome following resection of MTL using the ITG approach. All participants had localization-related epilepsy confirmed by long-term surface video-electroencephalography and completed pre/postsurgical evaluations that included magnetic resonance imaging (MRI), Wada test or functional MRI, and neuropsychology assessment. Clinical semiology/video-electroencephalography indicated that of the 54 patients, 28 (52%) had left MTLE and 26 (48%) had right MTLE. Dominant hemisphere resections were performed on 23 patients (43%), nondominant on 31(57%). Twenty-nine (29) had pathology-confirmed mesial temporal sclerosis (MTS). Group level analyses found declines in verbal memory for patients with language-dominant resections (P < .05). No significant decline in neuropsychological measures occurred for patients with MTS. Participants without MTS who underwent a language-dominant lobe resection exhibited a significant decline in verbal and visual memory (P < .05). Nondominant resection participants did not exhibit significant change in neuropsychology scores (P > .05). Neuropsychology outcomes of an ITG approach for selective mesial temporal resection are comparable to other selective AH techniques showing minimal adverse cognitive effects. These data lend support to the ITG approach for selective AH as an option for MTLE.
Three-Dimensional Anatomy of the White Matter Fibers of the Temporal Lobe: Surgical Implications.
Pescatori, Lorenzo; Tropeano, Maria Pia; Manfreda, Andrea; Delfini, Roberto; Santoro, Antonio
2017-04-01
The aim of this work is to describe in detail the complex 3-dimensional organization of the white matter of the temporal lobe and discuss the surgical implications of the approaches to lesions located into the mesial temporal region and within the temporal horn and the atrium of the lateral ventricles. Sixteen human cerebral hemispheres fixed in a 10% formalin solution for at least 40 days were studied. After removal of the arachnoid membrane, the hemispheres were frozen at -15°C for at least 14 days, and the Klingler technique, which consists of the microscopic dissection and progressive identification of white matter fibers, was performed. The dissection allowed us to appreciate the topographical organization of the white matter of the temporal lobe identifying the most important association, projection, and commissural fasciculi. The dissection from the lateral side allowed the progressive visualization of the superior longitudinal fasciculus and its components, the extreme and external capsule, the uncinate fasciculus, the inferior fronto-occipital fasciculus, the anterior commissure, the internal capsule, and the optic radiations. The dissection was completed from the inferior and medial side for identification of the cingulum and the fornix. The complex 3-dimensional organization of the white matter substance of the temporal lobe is characterized by 2 main systems of boundaries: the sagittal stratum and the temporal stem. Their knowledge is essential for the appropriate treatment of pathologies localized in this region as demonstrated by the 2 clinical cases presented in this work. Copyright © 2017 Elsevier Inc. All rights reserved.
Carne, R P; Cook, M J; MacGregor, L R; Kilpatrick, C J; Hicks, R J; O'Brien, T J
2007-01-01
Some patients with temporal lobe epilepsy (TLE) lack evidence of hippocampal sclerosis (HS) on MRI (HS-ve). We hypothesized that this group would have a different pattern of 2-deoxy-2-[F-18]fluoro-D-glucose (FDG)-positron emission tomography (PET) hypometabolism than typical mesial TLE/HS patients with evidence of hippocampal atrophy on magnetic resonance imaging (MRI) (HS+ve), with a lateral temporal neocortical rather than mesial focus. Thirty consecutive HS-ve patients and 30 age- and sex-matched HS+ve patients with well-lateralized EEG were identified. FDG-PET was performed on 28 HS-ve patients and 24 HS+ve patients. Both groups were compared using statistical parametric mapping (SPM), directly and with FDG-PET from 20 healthy controls. Both groups showed lateralized temporal hypometabolism compared to controls. In HS+ve, this was antero-infero-mesial (T = 17.13); in HS-ve the main clustering was inferolateral (T = 17.63). When directly compared, HS+ve had greater hypometabolism inmesial temporal/hippocampal regions (T = 4.86); HS-ve had greater inferolateral temporal hypometabolism (T = 4.18). These data support the hypothesis that focal hypometabolism involves primarily lateal neocortical rather than mesial temporal structures in 'MRI-negative PET-positive TLE.'
Default network connectivity as a vulnerability marker for obsessive compulsive disorder.
Peng, Z W; Xu, T; He, Q H; Shi, C Z; Wei, Z; Miao, G D; Jing, J; Lim, K O; Zuo, X N; Chan, R C K
2014-05-01
Aberrant functional connectivity within the default network is generally assumed to be involved in the pathophysiology of obsessive compulsive disorder (OCD); however, the genetic risk of default network connectivity in OCD remains largely unknown. Here, we systematically investigated default network connectivity in 15 OCD patients, 15 paired unaffected siblings and 28 healthy controls. We sought to examine the profiles of default network connectivity in OCD patients and their siblings, exploring the correlation between abnormal default network connectivity and genetic risk for this population. Compared with healthy controls, OCD patients exhibited reduced strength of default network functional connectivity with the posterior cingulate cortex (PCC), and increased functional connectivity in the right inferior frontal lobe, insula, superior parietal cortex and superior temporal cortex, while their unaffected first-degree siblings only showed reduced local connectivity in the PCC. These findings suggest that the disruptions of default network functional connectivity might be associated with family history of OCD. The decreased default network connectivity in both OCD patients and their unaffected siblings may serve as a potential marker of OCD.
First-pass selectivity for semantic categories in human anteroventral temporal lobe
Chan, Alexander M.; Baker, Janet M.; Eskandar, Emad; Schomer, Donald; Ulbert, Istvan; Marinkovic, Ksenija; Cash, Sydney S.; Halgren, Eric
2012-01-01
How the brain encodes the semantic concepts represented by words is a fundamental question in cognitive neuroscience. Hemodynamic neuroimaging studies have robustly shown that different areas of posteroventral temporal lobe are selectively activated by images of animals versus manmade objects. Selective responses in these areas to words representing animals versus objects are sometimes also seen, but they are task-dependent, suggesting that posteroventral temporal cortex may encode visual categories, while more anterior areas encode semantic categories. Here, using the spatiotemporal resolution provided by intracranial macroelectrode and microelectrode arrays, we report category-selective responses to words representing animals and objects in human anteroventral temporal areas including inferotemporal, perirhinal and entorhinal cortices. This selectivity generalizes across tasks and sensory modalities, suggesting that it represents abstract lexico-semantic categories. Significant category-specific responses are found in measures sensitive to synaptic activity (local field potentials, high gamma power, current sources and sinks) and unit-firing (multi- and single-unit activity). Category-selective responses can occur at short latency, as early as 130ms, in middle cortical layers and thus are extracted in the first-pass of activity through the anteroventral temporal lobe. This activation may provide input to posterior areas for iconic representations when required by the task, as well as to the hippocampal formation for categorical encoding and retrieval of memories, and to the amygdala for emotional associations. More generally, these results support models in which the anteroventral temporal lobe plays a primary role in the semantic representation of words. PMID:22159123