Asadi-Pooya, Ali A; Sperling, Michael R
2015-08-01
To evaluate the demographic and clinical manifestations and postsurgical outcome of childhood-onset mesial temporal sclerosis and temporal lobe epilepsy (MTS-TLE) and establishing the potential differences as compared to the patients with adult-onset MTS-TLE. In this retrospective study all patients with a clinical diagnosis of medically refractory TLE due to mesial temporal sclerosis, who underwent epilepsy surgery at Jefferson comprehensive epilepsy center, were recruited. Patients were prospectively registered in a database from 1986 through 2014. Postsurgical outcome was classified into two groups; seizure-free or relapsed. Clinical manifestations and outcome were compared between patients with childhood-onset MTS-TLE (i.e., age at onset of the first afebrile habitual seizure below 10 years) and those with adult-onset MTS-TLE (i.e., age at onset of the first afebrile habitual seizure 20 years or above). One hundred and twelve patients had childhood-onset MTS-TLE and 76 had adult-onset MTS-TLE. Demographic, clinical, EEG and MRI characteristics of these two groups were similar. Postoperative outcome was not statistically different between these two groups of patients (P=0.9). Temporal lobe epilepsy due to mesial temporal sclerosis is a common cause of epilepsy that can start from early childhood to late adulthood. The etiology of MTS-TLE may be different in various age groups, but it seems that when mesial temporal sclerosis is the pathological substrate of TLE, clinical manifestations and response to surgical treatment of patients are very similar in patients with childhood-onset MTS-TLE compared to those with adult-onset disease. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
ten Oever, Sanne; Sack, Alexander T.; Wheat, Katherine L.; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception. PMID:23805110
Ten Oever, Sanne; Sack, Alexander T; Wheat, Katherine L; Bien, Nina; van Atteveldt, Nienke
2013-01-01
Content and temporal cues have been shown to interact during audio-visual (AV) speech identification. Typically, the most reliable unimodal cue is used more strongly to identify specific speech features; however, visual cues are only used if the AV stimuli are presented within a certain temporal window of integration (TWI). This suggests that temporal cues denote whether unimodal stimuli belong together, that is, whether they should be integrated. It is not known whether temporal cues also provide information about the identity of a syllable. Since spoken syllables have naturally varying AV onset asynchronies, we hypothesize that for suboptimal AV cues presented within the TWI, information about the natural AV onset differences can aid in speech identification. To test this, we presented low-intensity auditory syllables concurrently with visual speech signals, and varied the stimulus onset asynchronies (SOA) of the AV pair, while participants were instructed to identify the auditory syllables. We revealed that specific speech features (e.g., voicing) were identified by relying primarily on one modality (e.g., auditory). Additionally, we showed a wide window in which visual information influenced auditory perception, that seemed even wider for congruent stimulus pairs. Finally, we found a specific response pattern across the SOA range for syllables that were not reliably identified by the unimodal cues, which we explained as the result of the use of natural onset differences between AV speech signals. This indicates that temporal cues not only provide information about the temporal integration of AV stimuli, but additionally convey information about the identity of AV pairs. These results provide a detailed behavioral basis for further neuro-imaging and stimulation studies to unravel the neurofunctional mechanisms of the audio-visual-temporal interplay within speech perception.
Recalibration of the Multisensory Temporal Window of Integration Results from Changing Task Demands
Mégevand, Pierre; Molholm, Sophie; Nayak, Ashabari; Foxe, John J.
2013-01-01
The notion of the temporal window of integration, when applied in a multisensory context, refers to the breadth of the interval across which the brain perceives two stimuli from different sensory modalities as synchronous. It maintains a unitary perception of multisensory events despite physical and biophysical timing differences between the senses. The boundaries of the window can be influenced by attention and past sensory experience. Here we examined whether task demands could also influence the multisensory temporal window of integration. We varied the stimulus onset asynchrony between simple, short-lasting auditory and visual stimuli while participants performed two tasks in separate blocks: a temporal order judgment task that required the discrimination of subtle auditory-visual asynchronies, and a reaction time task to the first incoming stimulus irrespective of its sensory modality. We defined the temporal window of integration as the range of stimulus onset asynchronies where performance was below 75% in the temporal order judgment task, as well as the range of stimulus onset asynchronies where responses showed multisensory facilitation (race model violation) in the reaction time task. In 5 of 11 participants, we observed audio-visual stimulus onset asynchronies where reaction time was significantly accelerated (indicating successful integration in this task) while performance was accurate in the temporal order judgment task (indicating successful segregation in that task). This dissociation suggests that in some participants, the boundaries of the temporal window of integration can adaptively recalibrate in order to optimize performance according to specific task demands. PMID:23951203
Eimer, Martin; Grubert, Anna
2015-09-01
Previous electrophysiological studies have shown that attentional selection processes are highly sensitive to the temporal order of task-relevant visual events. When two successively presented colour-defined target stimuli are separated by a stimulus onset asynchrony (SOA) of only 10 ms, the onset latencies of N2pc components to these stimuli (which reflect their attentional selection) precisely match their objective temporal separation. We tested whether such small onset differences are accessible to conscious awareness by instructing participants to report the category (letter or digit) of the first of two target-colour items that were separated by an SOA of 10, 20, or 30 ms. Performance was at chance level for the 10 ms SOA, demonstrating that temporal order information which is available to attentional control processes cannot be utilized for conscious temporal order judgments. These results provide new evidence that selective attention and conscious awareness are functionally separable, and support the hypothesis that attention and awareness operate at different stages of cognitive processing. Copyright © 2015 Elsevier Inc. All rights reserved.
Jaworska, Natalia; MacMaster, Frank P; Gaxiola, Ismael; Cortese, Filomeno; Goodyear, Bradley; Ramasubbu, Rajamannar
2014-01-01
Major depressive disorder (MDD) neural underpinnings may differ based on onset age and childhood trauma. We assessed cortical thickness in patients who differed in age of MDD onset and examined trauma history influence. Adults with MDD (N=36) and controls (HC; N=18) underwent magnetic resonance imaging. Twenty patients had MDD onset<24 years of age (pediatric onset) and 16 had onset>25 years of age (adult onset). The MDD group was also subdivided into those with (N=12) and without (N=19) physical and/or sexual abuse as assessed by the Childhood Trauma Questionnaire (CTQ). Cortical thickness was analyzed with FreeSurfer software. Thicker frontal pole and a tendency for thinner transverse temporal cortices existed in MDD. The former was driven by the pediatric onset group and abuse history (independently), particularly in the right frontal pole. Inverse correlations existed between CTQ scores and frontal pole cortex thickness. A similar inverse relation existed with left inferior and right superior parietal cortex thickness. The superior temporal cortex tended to be thinner in pediatric versus adult onset groups with childhood abuse. This preliminary work suggests neural differences between pediatric and adult MDD onset. Trauma history also contributes to cytoarchitectural modulation. Thickened frontal pole cortices as a compensatory mechanism in MDD warrant evaluation.
Towgood, Karren; Barker, Gareth J; Caceres, Alejandro; Crum, William R; Elwes, Robert D C; Costafreda, Sergi G; Mehta, Mitul A; Morris, Robin G; von Oertzen, Tim J; Richardson, Mark P
2015-04-01
fMRI is increasingly implemented in the clinic to assess memory function. There are multiple approaches to memory fMRI, but limited data on advantages and reliability of different methods. Here, we compared effect size, activation lateralisation, and between-sessions reliability of seven memory fMRI protocols: Hometown Walking (block design), Scene encoding (block design and event-related design), Picture encoding (block and event-related), and Word encoding (block and event-related). All protocols were performed on three occasions in 16 patients with temporal lobe epilepsy (TLE). Group T-maps showed activity bilaterally in medial temporal lobe for all protocols. Using ANOVA, there was an interaction between hemisphere and seizure-onset lateralisation (P = 0.009) and between hemisphere, protocol and seizure-onset lateralisation (P = 0.002), showing that the distribution of memory-related activity between left and right temporal lobes differed between protocols and between patients with left-onset and right-onset seizures. Using voxelwise intraclass Correlation Coefficient, between-sessions reliability was best for Hometown and Scenes (block and event). The between-sessions spatial overlap of activated voxels was also greatest for Hometown and Scenes. Lateralisation of activity between hemispheres was most reliable for Scenes (block and event) and Words (event). Using receiver operating characteristic analysis to explore the ability of each fMRI protocol to classify patients as left-onset or right-onset TLE, only the Words (event) protocol achieved a significantly above-chance classification of patients at all three sessions. We conclude that Words (event) protocol shows the best combination of between-sessions reliability of the distribution of activity between hemispheres and reliable ability to distinguish between left-onset and right-onset patients. © 2015 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.
Lee, Gregory P; Park, Yong D; Hempel, Ann; Westerveld, Michael; Loring, David W
2002-09-01
Because the capacity of intracarotid amobarbital (Wada) memory assessment to predict seizure-onset laterality in children has not been thoroughly investigated, three comprehensive epilepsy surgery centers pooled their data and examined Wada memory asymmetries to predict side of seizure onset in children being considered for epilepsy surgery. One hundred fifty-two children with intractable epilepsy underwent Wada testing. Although the type and number of memory stimuli and methods varied at each institution, all children were presented with six to 10 items soon after amobarbital injection. After return to neurologic baseline, recognition memory for the stimuli was assessed. Seizure onset was determined by simultaneous video-EEG recordings of multiple seizures. In children with unilateral temporal lobe seizures (n = 87), Wada memory asymmetries accurately predicted seizure laterality to a statistically significant degree. Wada memory asymmetries also correctly predicted side of seizure onset in children with extra-temporal lobe seizures (n = 65). Although individual patient prediction accuracy was statistically significant in temporal lobe cases, onset laterality was incorrectly predicted in < or =52% of children with left temporal lobe seizure onset, depending on the methods and asymmetry criterion used. There also were significant differences between Wada prediction accuracy across the three epilepsy centers. Results suggest that Wada memory assessment is useful in predicting side of seizure onset in many children. However, Wada memory asymmetries should be interpreted more cautiously in children than in adults.
Temporally selective attention supports speech processing in 3- to 5-year-old children.
Astheimer, Lori B; Sanders, Lisa D
2012-01-01
Recent event-related potential (ERP) evidence demonstrates that adults employ temporally selective attention to preferentially process the initial portions of words in continuous speech. Doing so is an effective listening strategy since word-initial segments are highly informative. Although the development of this process remains unexplored, directing attention to word onsets may be important for speech processing in young children who would otherwise be overwhelmed by the rapidly changing acoustic signals that constitute speech. We examined the use of temporally selective attention in 3- to 5-year-old children listening to stories by comparing ERPs elicited by attention probes presented at four acoustically matched times relative to word onsets: concurrently with a word onset, 100 ms before, 100 ms after, and at random control times. By 80 ms, probes presented at and after word onsets elicited a larger negativity than probes presented before word onsets or at control times. The latency and distribution of this effect is similar to temporally and spatially selective attention effects measured in adults and, despite differences in polarity, spatially selective attention effects measured in children. These results indicate that, like adults, preschool aged children modulate temporally selective attention to preferentially process the initial portions of words in continuous speech. Copyright © 2011 Elsevier Ltd. All rights reserved.
Seizure semiology identifies patients with bilateral temporal lobe epilepsy.
Loesch, Anna Mira; Feddersen, Berend; Tezer, F Irsel; Hartl, Elisabeth; Rémi, Jan; Vollmar, Christian; Noachtar, Soheyl
2015-01-01
Laterality in temporal lobe epilepsy is usually defined by EEG and imaging results. We investigated whether the analysis of seizure semiology including lateralizing seizure phenomena identifies bilateral independent temporal lobe seizure onset. We investigated the seizure semiology in 17 patients in whom invasive EEG-video-monitoring documented bilateral temporal seizure onset. The results were compared to 20 left and 20 right consecutive temporal lobe epilepsy (TLE) patients who were seizure free after anterior temporal lobe resection. The seizure semiology was analyzed using the semiological seizure classification with particular emphasis on the sequence of seizure phenomena over time and lateralizing seizure phenomena. Statistical analysis included chi-square test or Fisher's exact test. Bitemporal lobe epilepsy patients had more frequently different seizure semiology (100% vs. 40%; p<0.001) and significantly more often lateralizing seizure phenomena pointing to bilateral seizure onset compared to patients with unilateral TLE (67% vs. 11%; p<0.001). The sensitivity of identical vs. different seizure semiology for the identification of bilateral TLE was high (100%) with a specificity of 60%. Lateralizing seizure phenomena had a low sensitivity (59%) but a high specificity (89%). The combination of lateralizing seizure phenomena and different seizure semiology showed a high specificity (94%) but a low sensitivity (59%). The analysis of seizure semiology including lateralizing seizure phenomena adds important clinical information to identify patients with bilateral TLE. Copyright © 2014 Elsevier B.V. All rights reserved.
Non ictal onset zone: A window to ictal dynamics.
Afra, Pegah; Hanrahan, Sara J; Kellis, Spencer Sterling; House, Paul
2017-01-01
The focal and network concepts of epilepsy present different aspects of electroclinical phenomenon of seizures. Here, we present a 23-year-old man undergoing surgical evaluation with left fronto-temporal electrocorticography (ECoG) and microelectrode-array (MEA) in the middle temporal gyrus (MTG). We compare action-potential (AP) and local field potentials (LFP) recorded from MEA with ECoG. Seizure onset in the mesial-temporal lobe was characterized by changes in the pattern of AP-firing without clear changes in LFP or ECoG in MTG. This suggests simultaneous analysis of neuronal activity in differing spatial scales and frequency ranges provide complementary insights into how focal and network neurophysiological activity contribute to ictal activity.
Barron, Daniel S; Fox, Peter T; Pardoe, Heath; Lancaster, Jack; Price, Larry R; Blackmon, Karen; Berry, Kristen; Cavazos, Jose E; Kuzniecky, Ruben; Devinsky, Orrin; Thesen, Thomas
2015-01-01
Noninvasive markers of brain function could yield biomarkers in many neurological disorders. Disease models constrained by coordinate-based meta-analysis are likely to increase this yield. Here, we evaluate a thalamic model of temporal lobe epilepsy that we proposed in a coordinate-based meta-analysis and extended in a diffusion tractography study of an independent patient population. Specifically, we evaluated whether thalamic functional connectivity (resting-state fMRI-BOLD) with temporal lobe areas can predict seizure onset laterality, as established with intracranial EEG. Twenty-four lesional and non-lesional temporal lobe epilepsy patients were studied. No significant differences in functional connection strength in patient and control groups were observed with Mann-Whitney Tests (corrected for multiple comparisons). Notwithstanding the lack of group differences, individual patient difference scores (from control mean connection strength) successfully predicted seizure onset zone as shown in ROC curves: discriminant analysis (two-dimensional) predicted seizure onset zone with 85% sensitivity and 91% specificity; logistic regression (four-dimensional) achieved 86% sensitivity and 100% specificity. The strongest markers in both analyses were left thalamo-hippocampal and right thalamo-entorhinal cortex functional connection strength. Thus, this study shows that thalamic functional connections are sensitive and specific markers of seizure onset laterality in individual temporal lobe epilepsy patients. This study also advances an overall strategy for the programmatic development of neuroimaging biomarkers in clinical and genetic populations: a disease model informed by coordinate-based meta-analysis was used to anatomically constrain individual patient analyses.
Menstrual cycle and the temporal discrimination threshold.
Mc Govern, Eavan M; O'Connor, Emer; Beiser, Ines; Williams, Laura; Butler, John S; Quinlivan, Brendan; Narasimham, Shruti; Beck, Rebecca; Reilly, Richard B; O'Riordan, Sean; Hutchinson, Michael
2017-02-01
The temporal discrimination threshold (TDT) is a proposed pre-clinical biomarker (endophenotype) for adult onset isolated focal dystonia (AOIFD). Age- and sex-related effects on temporal discrimination demonstrate that women, before the age of 40 years, have faster temporal discrimination than men but their TDTs worsen with age at almost three times the rate of men. Thus after 40 years the TDT in women is progressively worse than in men. AOIFD is an increasingly female-predominant disorder after the age of 40; it is not clear whether this age-related sexually-dimorphic difference observed for both the TDT and sex ratio at disease onset in AOIFD is a hormonal or chromosomal effect. The aim of this study was to examine temporal discrimination at weekly intervals during two consecutive menstrual cycles in 14 healthy female volunteers to determine whether physiological hormonal changes affected temporal discrimination. We observed no significant differences in weekly temporal discrimination threshold values during the menstrual cycles and no significant correlation with the menstrual cycle stage. This observed stability of temporal discrimination during cyclical hormonal change raises interesting questions concerning the age-related sexually-dimorphic decline observed in temporal discrimination. Our findings pave the way for future studies exploring potential pathomechanisms for this age-related deterioration.
Lee, Ricky W; Hoogs, Marietta M; Burkholder, David B; Trenerry, Max R; Drazkowski, Joseph F; Shih, Jerry J; Doll, Karey E; Tatum, William O; Cascino, Gregory D; Marsh, W Richard; Wirrell, Elaine C; Worrell, Gregory A; So, Elson L
2014-07-01
We evaluated the outcomes of intracranial electroencephalography (iEEG) recording and subsequent resective surgery in patients with magnetic resonance imaging (MRI)-negative temporal lobe epilepsy (TLE). Thirty-two patients were identified from the Mayo Clinic Epilepsy Surgery Database (Arizona, Florida, and Minnesota). Eight (25.0%) had chronic iEEG monitoring that recorded neocortical temporal seizure onsets; 12 (37.5%) had mesial temporal seizure onsets; 5 (15.6%) had independent neocortical and mesial temporal seizure onsets; and 7 (21.9%) had simultaneous neocortical and mesial seizure onsets. Neocortical temporal lobe seizure semiology was the only factor significantly associated with neocortical temporal seizure onsets on iEEG. Only 33.3% of patients who underwent lateral temporal neocorticectomy had an Engel class 1 outcome, whereas 76.5% of patients with iEEG-guided anterior temporal lobectomy that included the amygdala and the hippocampus had an Engel class 1 outcome. Limitations in cohort size precluded statistical analysis of neuropsychological test data. Copyright © 2014 Elsevier B.V. All rights reserved.
Short-term and long-term memory in early temporal lobe dysfunction.
Hershey, T; Craft, S; Glauser, T A; Hale, S
1998-01-01
Following medial temporal damage, mature humans are impaired in retaining new information over long delays but not short delays. The question of whether a similar dissociation occurs in children was addressed by testing children (ages 7-16) with unilateral temporal lobe epilepsy (TLE) and controls on short- and long-term memory tasks, including a spatial delayed response task (SDR). Early-onset TLE did not affect performance on short delays on SDR, but it did impair performance at the longest delay (60 s), similar to adults with unilateral medial temporal damage. In addition, early-onset TLE affected performance on pattern recall, spatial span, and verbal span with rehearsal interference. No differences were found on story recall or on a response inhibition task.
Hlobil, Ulf; Rathore, Chaturbhuj; Alexander, Aley; Sarma, Sankara; Radhakrishnan, Kurupath
2008-08-01
To define the determinants of impaired facial emotion recognition (FER) in patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS), we examined 76 patients with unilateral MTLE-HS, 36 prior to antero-mesial temporal lobectomy (AMTL) and 40 after AMTL, and 28 healthy control subjects with a FER test consisting of 60 items (20 each for anger, fear, and happiness). Mean percentages of the accurate responses were calculated for different subgroups: right vs. left MTLE-HS, early (age at onset <6 years) vs. late-onset, and before vs. after AMTL. After controlling for years of education, duration of epilepsy and number of antiepileptic drugs (AEDs) taken, on multivariate analysis, fear recognition was profoundly impaired in early-onset right MTLE-HS patients compared to other MTLE patients and control subjects. Happiness recognition was significantly better in post-AMTL MTLE-HS patients compared to pre-AMTL patients while anger and fear recognition did not differ. We conclude that patients with right MTLE-HS with age at seizure onset <6 years are maximally predisposed to impaired fear recognition. In them, right AMTL does not further worsen FER abilities. Longitudinal studies comparing FER in the same patients before and after AMTL will be required to refine and confirm our cross-sectional observations.
Characterization of Early Partial Seizure Onset: Frequency, Complexity and Entropy
Jouny, Christophe C.; Bergey, Gregory K.
2011-01-01
Objective A clear classification of partial seizures onset features is not yet established. Complexity and entropy have been very widely used to describe dynamical systems, but a systematic evaluation of these measures to characterize partial seizures has never been performed. Methods Eighteen different measures including power in frequency bands up to 300Hz, Gabor atom density (GAD), Higuchi fractal dimension (HFD), Lempel-Ziv complexity, Shannon entropy, sample entropy, and permutation entropy, were selected to test sensitivity to partial seizure onset. Intracranial recordings from forty-five patients with mesial temporal, neocortical temporal and neocortical extratemporal seizure foci were included (331 partial seizures). Results GAD, Lempel-Ziv complexity, HFD, high frequency activity, and sample entropy were the most reliable measures to assess early seizure onset. Conclusions Increases in complexity and occurrence of high-frequency components appear to be commonly associated with early stages of partial seizure evolution from all regions. The type of measure (frequency-based, complexity or entropy) does not predict the efficiency of the method to detect seizure onset. Significance Differences between measures such as GAD and HFD highlight the multimodal nature of partial seizure onsets. Improved methods for early seizure detection may be achieved from a better understanding of these underlying dynamics. PMID:21872526
Kimmich, Okka; Bradley, David; Whelan, Robert; Mulrooney, Nicola; Reilly, Richard B; Hutchinson, Siobhan; O'Riordan, Sean; Hutchinson, Michael
2011-09-01
Adult-onset primary torsion dystonia is an autosomal dominant disorder with markedly reduced penetrance; patients with sporadic adult-onset primary torsion dystonia are much more prevalent than familial. The temporal discrimination threshold is the shortest time interval at which two stimuli are detected to be asynchronous and has been shown to be abnormal in adult-onset primary torsion dystonia. The aim was to determine the frequency of abnormal temporal discrimination thresholds in patients with sporadic adult-onset primary torsion dystonia and their first-degree relatives. We hypothesized that abnormal temporal discrimination thresholds in first relatives would be compatible with an autosomal dominant endophenotype. Temporal discrimination thresholds were examined in 61 control subjects (39 subjects <50 years of age; 22 subjects >50 years of age), 32 patients with sporadic adult-onset primary torsion dystonia (cervical dystonia n = 30, spasmodic dysphonia n = 1 and Meige's syndrome n = 1) and 73 unaffected first-degree relatives (36 siblings, 36 offspring and one parent) using visual and tactile stimuli. Z-scores were calculated for all subjects; a Z > 2.5 was considered abnormal. Abnormal temporal discrimination thresholds were found in 1/61 (2%) control subjects, 27/32 (84%) patients with adult-onset primary torsion dystonia and 32/73 (44%) unaffected relatives [siblings (20/36; 56%), offspring (11/36; 31%) and one parent]. When two or more relatives were tested in any one family, 22 of 24 families had at least one first-degree relative with an abnormal temporal discrimination threshold. The frequency of abnormal temporal discrimination thresholds in first-degree relatives of patients with sporadic adult-onset primary torsion dystonia is compatible with an autosomal dominant disorder and supports the hypothesis that apparently sporadic adult-onset primary torsion dystonia is genetic in origin.
Relative hyperperfusion by SPECT in a family with a presenilin 1 (T245P) mutation.
Edwards-Lee, Terri; Wen, Johnny; Chung, Julia A; Vasinrapee, Panukorn; Mishkin, Frederick S
2008-01-01
Clinical characteristics of autosomal dominant Alzheimer's disease often differ clinically from sporadic disease with the onset of seizures, spasticity and myoclonus early in the disease course. Similarly imaging characteristics may also differ. We report the findings of relative hyperperfusion by Tc-99m HMPAO SPECT in the medial orbitofrontal cortex and anterior temporal lobe in four affected family members carrying a presenilin 1 mutation. SPECT of the four individuals was compared to an age-matched normal database. We speculate that the findings of relative medial orbitofrontal and anterior temporal lobe hyperperfusion may be a marker of early onset Alzheimer's disease in this family.
Kaganovich, Natalya; Schumaker, Jennifer
2016-01-01
Sensitivity to the temporal relationship between auditory and visual stimuli is key to efficient audiovisual integration. However, even adults vary greatly in their ability to detect audiovisual temporal asynchrony. What underlies this variability is currently unknown. We recorded event-related potentials (ERPs) while participants performed a simultaneity judgment task on a range of audiovisual (AV) and visual-auditory (VA) stimulus onset asynchronies (SOAs) and compared ERP responses in good and poor performers to the 200 ms SOA, which showed the largest individual variability in the number of synchronous perceptions. Analysis of ERPs to the VA200 stimulus yielded no significant results. However, those individuals who were more sensitive to the AV200 SOA had significantly more positive voltage between 210 and 270 ms following the sound onset. In a follow-up analysis, we showed that the mean voltage within this window predicted approximately 36% of variability in sensitivity to AV temporal asynchrony in a larger group of participants. The relationship between the ERP measure in the 210-270 ms window and accuracy on the simultaneity judgment task also held for two other AV SOAs with significant individual variability - 100 and 300 ms. Because the identified window was time-locked to the onset of sound in the AV stimulus, we conclude that sensitivity to AV temporal asynchrony is shaped to a large extent by the efficiency in the neural encoding of sound onsets. PMID:27094850
Butler, John S; Beiser, Ines M; Williams, Laura; McGovern, Eavan; Molloy, Fiona; Lynch, Tim; Healy, Dan G; Moore, Helena; Walsh, Richard; Reilly, Richard B; O'Riordan, Seán; Walsh, Cathal; Hutchinson, Michael
2015-01-01
Adult-onset isolated focal dystonia (AOIFD) presenting in early adult life is more frequent in men, whereas in middle age it is female predominant. Temporal discrimination, an endophenotype of adult-onset idiopathic isolated focal dystonia, shows evidence of sexual dimorphism in healthy participants. We assessed the distinctive features of age-related sexual dimorphism of (i) sex ratios in dystonia phenotypes and (ii) sexual dimorphism in temporal discrimination in unaffected relatives of cervical dystonia patients. We performed (i) a meta-regression analysis of the proportion of men in published cohorts of phenotypes of adult-onset dystonia in relation to their mean age of onset and (ii) an analysis of temporal discrimination thresholds in 220 unaffected first-degree relatives (125 women) of cervical dystonia patients. In 53 studies of dystonia phenotypes, the proportion of men showed a highly significant negative association with mean age of onset (p < 0.0001, pseudo-R (2) = 59.6%), with increasing female predominance from 40 years of age. Age of onset and phenotype together explained 92.8% of the variance in proportion of men. Temporal discrimination in relatives under the age of 35 years is faster in women than men but the age-related rate of deterioration in women is twice that of men; after 45 years of age, men have faster temporal discrimination than women. Temporal discrimination in unaffected relatives of cervical dystonia patients and sex ratios in adult-onset dystonia phenotypes show similar patterns of age-related sexual dimorphism. Such age-related sexual dimorphism in temporal discrimination and adult-onset focal dystonia may reflect common underlying mechanisms. Cerebral GABA levels have been reported to show similar age-related sexual dimorphism in healthy participants and may be the mechanism underlying the observed age-related sexual dimorphism in temporal discrimination and the sex ratios in AOIFD.
Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System
Anderson, Lucy A.
2016-01-01
High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621
Payne, Alexander R; Plimmer, Beryl; McDaid, Andrew; Davies, T Claire
2017-05-01
The effects of cerebral palsy on movement planning for simple reaching tasks are not well understood. Movement planning is complex and entails many processes which could be affected. This study specifically sought to evaluate integrating task information, decoupling movements, and adjusting to altered mapping. For a reaching task, the asynchrony between the eye onset and the hand onset was measured across different movement planning conditions for participants with and without cerebral palsy. Previous research shows people without cerebral palsy vary this temporal coordination for different planning conditions. Our measurements show similar adaptations in temporal coordination for groups with and without cerebral palsy, to three of the four variations in planning condition tested. However, movement durations were still longer for the participants with cerebral palsy. Hence for simple goal-directed reaching, movement execution problems appear to limit activity more than movement planning deficits.
Wutz, Andreas; Weisz, Nathan; Braun, Christoph; Melcher, David
2014-01-22
Dynamic vision requires both stability of the current perceptual representation and sensitivity to the accumulation of sensory evidence over time. Here we study the electrophysiological signatures of this intricate balance between temporal segregation and integration in vision. Within a forward masking paradigm with short and long stimulus onset asynchronies (SOA), we manipulated the temporal overlap of the visual persistence of two successive transients. Human observers enumerated the items presented in the second target display as a measure of the informational capacity read-out from this partly temporally integrated visual percept. We observed higher β-power immediately before mask display onset in incorrect trials, in which enumeration failed due to stronger integration of mask and target visual information. This effect was timescale specific, distinguishing between segregation and integration of visual transients that were distant in time (long SOA). Conversely, for short SOA trials, mask onset evoked a stronger visual response when mask and targets were correctly segregated in time. Examination of the target-related response profile revealed the importance of an evoked α-phase reset for the segregation of those rapid visual transients. Investigating this precise mapping of the temporal relationships of visual signals onto electrophysiological responses highlights how the stream of visual information is carved up into discrete temporal windows that mediate between segregated and integrated percepts. Fragmenting the stream of visual information provides a means to stabilize perceptual events within one instant in time.
Smith, Mary Lou; Lah, Suncica
2011-09-01
This study explored verbal semantic and episodic memory in children with unilateral temporal lobe epilepsy to determine whether they had impairments in both or only 1 aspect of memory, and to examine relations between performance in the 2 domains. Sixty-six children and adolescents (37 with seizures of left temporal lobe onset, 29 with right-sided onset) were given 4 tasks assessing different aspects of semantic memory (picture naming, fluency, knowledge of facts, knowledge of word meanings) and 2 episodic memory tasks (story recall, word list recall). High rates of impairments were observed across tasks, and no differences were found related to the laterality of the seizures. Individual patient analyses showed that there was a double dissociation between the 2 aspects of memory in that some children were impaired on episodic but not semantic memory, whereas others showed intact episodic but impaired semantic memory. This double dissociation suggests that these 2 memory systems may develop independently in the context of temporal lobe pathology, perhaps related to differential effects of dysfunction in the lateral and mesial temporal lobe structures. PsycINFO Database Record (c) 2011 APA, all rights reserved.
Structural neuroplasticity in expert pianists depends on the age of musical training onset.
Vaquero, Lucía; Hartmann, Karl; Ripollés, Pablo; Rojo, Nuria; Sierpowska, Joanna; François, Clément; Càmara, Estela; van Vugt, Floris Tijmen; Mohammadi, Bahram; Samii, Amir; Münte, Thomas F; Rodríguez-Fornells, Antoni; Altenmüller, Eckart
2016-02-01
In the last decade, several studies have investigated the neuroplastic changes induced by long-term musical training. Here we investigated structural brain differences in expert pianists compared to non-musician controls, as well as the effect of the age of onset (AoO) of piano playing. Differences with non-musicians and the effect of sensitive periods in musicians have been studied previously, but importantly, this is the first time in which the age of onset of music-training was assessed in a group of musicians playing the same instrument, while controlling for the amount of practice. We recruited a homogeneous group of expert pianists who differed in their AoO but not in their lifetime or present amount of training, and compared them to an age-matched group of non-musicians. A subset of the pianists also completed a scale-playing task in order to control for performance skill level differences. Voxel-based morphometry analysis was used to examine gray-matter differences at the whole-brain level. Pianists showed greater gray matter (GM) volume in bilateral putamen (extending also to hippocampus and amygdala), right thalamus, bilateral lingual gyri and left superior temporal gyrus, but a GM volume shrinkage in the right supramarginal, right superior temporal and right postcentral gyri, when compared to non-musician controls. These results reveal a complex pattern of plastic effects due to sustained musical training: a network involved in reinforcement learning showed increased GM volume, while areas related to sensorimotor control, auditory processing and score-reading presented a reduction in the volume of GM. Behaviorally, early-onset pianists showed higher temporal precision in their piano performance than late-onset pianists, especially in the left hand. Furthermore, early onset of piano playing was associated with smaller GM volume in the right putamen and better piano performance (mainly in the left hand). Our results, therefore, reveal for the first time in a single large dataset of healthy pianists the link between onset of musical practice, behavioral performance, and putaminal gray matter structure. In summary, skill-related plastic adaptations may include decreases and increases in GM volume, dependent on an optimization of the system caused by an early start of musical training. We believe our findings enrich the plasticity discourse and shed light on the neural basis of expert skill acquisition. Copyright © 2015 Elsevier Inc. All rights reserved.
Falk, Daniel E; Yi, Hsiao-Ye; Hilton, Michael E
2008-04-01
Understanding the temporal sequencing of alcohol use disorders (AUDs) and comorbid mood and anxiety disorders may help to disentangle the etiological underpinnings of comorbidity. Methodological limitations of previous studies, however, may have led to inconsistent or inconclusive findings. To describe the temporal sequencing of the onset of AUDs relative to the onset of specific comorbid mood and anxiety disorders using a large, nationally representative survey. AUD onset tended to follow the onset of 2 of the 9 mood and anxiety disorders (specific and social phobia). The onset of alcohol abuse tended to precede the onset of 5 of the 9 mood and anxiety disorders (GAD, panic, panic with agoraphobia, major depression, and dysthymia), whereas the onset of alcohol dependence tended to precede the onset of only 2 of the 9 mood and anxiety disorders (GAD and panic). Lag times between primary and subsequent disorders generally ranged from 7 to 16 years. Comorbid individuals whose alcohol dependence came after panic with agoraphobia, hypomania, and GAD had increased risk of persistent alcohol dependence. Alcohol abuse, but not dependence, precedes many mood and anxiety disorders. If the primary disorder does in fact play a causative or contributing role in the development of the subsequent disorder, this role can best be described as "temporally distal." However, in assessing the risk for persistent alcohol dependence, clinicians should not only consider the type of comorbid mood/anxiety disorder, but also the temporal ordering of these disorders.
Can a model of overlapping gestures account for scanning speech patterns?
Tjaden, K
1999-06-01
A simple acoustic model of overlapping, sliding gestures was used to evaluate whether coproduction was reduced for neurologic speakers with scanning speech patterns. F2 onset frequency was used as an acoustic measure of coproduction or gesture overlap. The effects of speaking rate (habitual versus fast) and utterance position (initial versus medial) on F2 frequency, and presumably gesture overlap, were examined. Regression analyses also were used to evaluate the extent to which across-repetition temporal variability in F2 trajectories could be explained as variation in coproduction for consonants and vowels. The lower F2 onset frequencies for disordered speakers suggested that gesture overlap was reduced for neurologic individuals with scanning speech. Speaking rate change did not influence F2 onset frequencies, and presumably gesture overlap, for healthy or disordered speakers. F2 onset frequency differences for utterance-initial and -medial repetitions were interpreted to suggest reduced coproduction for the utterance-initial position. The utterance-position effects on F2 onset frequency, however, likely were complicated by position-related differences in articulatory scaling. The results of the regression analysis indicated that gesture sliding accounts, in part, for temporal variability in F2 trajectories. Taken together, the results of this study provide support for the idea that speech production theory for healthy talkers helps to account for disordered speech production.
Development of on-off spiking in superior paraolivary nucleus neurons of the mouse
Felix, Richard A.; Vonderschen, Katrin; Berrebi, Albert S.
2013-01-01
The superior paraolivary nucleus (SPON) is a prominent cell group in the auditory brain stem that has been increasingly implicated in representing temporal sound structure. Although SPON neurons selectively respond to acoustic signals important for sound periodicity, the underlying physiological specializations enabling these responses are poorly understood. We used in vitro and in vivo recordings to investigate how SPON neurons develop intrinsic cellular properties that make them well suited for encoding temporal sound features. In addition to their hallmark rebound spiking at the stimulus offset, SPON neurons were characterized by spiking patterns termed onset, adapting, and burst in response to depolarizing stimuli in vitro. Cells with burst spiking had some morphological differences compared with other SPON neurons and were localized to the dorsolateral region of the nucleus. Both membrane and spiking properties underwent strong developmental regulation, becoming more temporally precise with age for both onset and offset spiking. Single-unit recordings obtained in young mice demonstrated that SPON neurons respond with temporally precise onset spiking upon tone stimulation in vivo, in addition to the typical offset spiking. Taken together, the results of the present study demonstrate that SPON neurons develop sharp on-off spiking, which may confer sensitivity to sound amplitude modulations or abrupt sound transients. These findings are consistent with the proposed involvement of the SPON in the processing of temporal sound structure, relevant for encoding communication cues. PMID:23515791
Cortical evoked potentials to an auditory illusion: binaural beats.
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-08-01
To define brain activity corresponding to an auditory illusion of 3 and 6Hz binaural beats in 250Hz or 1000Hz base frequencies, and compare it to the sound onset response. Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000Hz to one ear and 3 or 6Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3Hz and 6Hz, in base frequencies of 250Hz and 1000Hz. Tones were 2000ms in duration and presented with approximately 1s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. All stimuli evoked tone-onset P(50), N(100) and P(200) components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P(50) had significantly different sources than the beats-evoked oscillations; and N(100) and P(200) sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp.
Cortical Evoked Potentials to an Auditory Illusion: Binaural Beats
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Dimitrijevic, Andrew; Bleich, Naomi; Mittelman, Nomi
2009-01-01
Objective: To define brain activity corresponding to an auditory illusion of 3 and 6 Hz binaural beats in 250 Hz or 1,000 Hz base frequencies, and compare it to the sound onset response. Methods: Event-Related Potentials (ERPs) were recorded in response to unmodulated tones of 250 or 1000 Hz to one ear and 3 or 6 Hz higher to the other, creating an illusion of amplitude modulations (beats) of 3 Hz and 6 Hz, in base frequencies of 250 Hz and 1000 Hz. Tones were 2,000 ms in duration and presented with approximately 1 s intervals. Latency, amplitude and source current density estimates of ERP components to tone onset and subsequent beats-evoked oscillations were determined and compared across beat frequencies with both base frequencies. Results: All stimuli evoked tone-onset P50, N100 and P200 components followed by oscillations corresponding to the beat frequency, and a subsequent tone-offset complex. Beats-evoked oscillations were higher in amplitude with the low base frequency and to the low beat frequency. Sources of the beats-evoked oscillations across all stimulus conditions located mostly to left lateral and inferior temporal lobe areas in all stimulus conditions. Onset-evoked components were not different across stimulus conditions; P50 had significantly different sources than the beats-evoked oscillations; and N100 and P200 sources located to the same temporal lobe regions as beats-evoked oscillations, but were bilateral and also included frontal and parietal contributions. Conclusions: Neural activity with slightly different volley frequencies from left and right ear converges and interacts in the central auditory brainstem pathways to generate beats of neural activity to modulate activities in the left temporal lobe, giving rise to the illusion of binaural beats. Cortical potentials recorded to binaural beats are distinct from onset responses. Significance: Brain activity corresponding to an auditory illusion of low frequency beats can be recorded from the scalp. PMID:19616993
Global and Temporal Cortical Folding in Patients with Early-Onset Schizophrenia
ERIC Educational Resources Information Center
Penttila, Jani; Paillere-Martinot, Marie-Laure; Martinot, Jean-Luc; Mangin, Jean-Francois; Burke, Lisa; Corrigall, Richard; Frangou, Sophia; Cachia, Arnaud
2008-01-01
Disturbances in the temporal lobes and alterations in cortical folding in adult on-set schizophrenia are studied using magnetic resonance T1 images of 51 patients. The study showed that patients with early on-set schizophrenia had lower global sulcal indices in both hemispheres and the left collateral sulcus has a lower sulcal index irrespective…
The performance of the spatiotemporal Kalman filter and LORETA in seizure onset localization.
Hamid, Laith; Sarabi, Masoud; Japaridze, Natia; Wiegand, Gert; Heute, Ulrich; Stephani, Ulrich; Galka, Andreas; Siniatchkin, Michael
2015-08-01
The assumption of spatial-smoothness is often used to solve the bioelectric inverse problem during electroencephalographic (EEG) source imaging, e.g., in low resolution electromagnetic tomography (LORETA). Since the EEG data show a temporal structure, the combination of the temporal-smoothness and the spatial-smoothness constraints may improve the solution of the EEG inverse problem. This study investigates the performance of the spatiotemporal Kalman filter (STKF) method, which is based on spatial and temporal smoothness, in the localization of a focal seizure's onset and compares its results to those of LORETA. The main finding of the study was that the STKF with an autoregressive model of order two significantly outperformed LORETA in the accuracy and consistency of the localization, provided that the source space consists of a whole-brain volumetric grid. In the future, these promising results will be confirmed using data from more patients and performing statistical analyses on the results. Furthermore, the effects of the temporal smoothness constraint will be studied using different types of focal seizures.
Distinct 18F-AV-1451 tau PET retention patterns in early- and late-onset Alzheimer's disease.
Schöll, Michael; Ossenkoppele, Rik; Strandberg, Olof; Palmqvist, Sebastian; Jögi, Jonas; Ohlsson, Tomas; Smith, Ruben; Hansson, Oskar
2017-09-01
Patients with Alzheimer's disease can present with different clinical phenotypes. Individuals with late-onset Alzheimer's disease (>65 years) typically present with medial temporal lobe neurodegeneration and predominantly amnestic symptomatology, while patients with early-onset Alzheimer's disease (<65 years) exhibit greater neocortical involvement associated with a clinical presentation including dyspraxia, executive dysfunction, or visuospatial impairment. We recruited 20 patients with early-onset Alzheimer's disease, 21 with late-onset Alzheimer's disease, three with prodromal early-onset Alzheimer's disease and 13 with prodromal late-onset Alzheimer's disease, as well as 30 cognitively healthy elderly controls, that had undergone 18F-AV-1451 tau positron emission tomography and structural magnetic resonance imaging to explore whether early- and late-onset Alzheimer's disease exhibit differential regional tau pathology and atrophy patterns. Strong associations of lower age at symptom onset with higher 18F-AV-1451 uptake were observed in several neocortical regions, while higher age did not yield positive associations in neither patient group. Comparing patients with early-onset Alzheimer's disease with controls resulted in significantly higher 18F-AV-1451 retention throughout the neocortex, while comparing healthy controls with late-onset Alzheimer's disease patients yielded a distinct pattern of higher 18F-AV-1451 retention, predominantly confined to temporal lobe regions. When compared against each other, the early-onset Alzheimer's disease group exhibited greater uptake than the late-onset group in prefrontal and premotor, as well as in inferior parietal cortex. These preliminary findings indicate that age may constitute an important contributor to Alzheimer's disease heterogeneity highlighting the potential of tau positron emission tomography to capture phenotypic variation across patients with Alzheimer's disease. © The Author (2017). Published by Oxford University Press on behalf of the Guarantors of Brain.
Peri-ictal ECG changes in childhood epilepsy: implications for detection systems.
Jansen, Katrien; Varon, Carolina; Van Huffel, Sabine; Lagae, Lieven
2013-10-01
Early detection of seizures could reduce associated morbidity and mortality and improve the quality of life of patients with epilepsy. In this study, the aim was to investigate whether ictal tachycardia is present in focal and generalized epileptic seizures in children. We sought to predict in which type of seizures tachycardia can be identified before actual seizure onset. Electrocardiogram segments in 80 seizures were analyzed in time and frequency domains before and after the onset of epileptic seizures on EEG. These ECG parameters were analyzed to find the most informative ones that can be used for seizure detection. The algorithm of Leutmezer et al. was used to find the temporal relationship between the change in heart rate and seizure onset. In the time domain, the mean RR shows a significant difference before compared to after onset of the seizure in focal seizures. This can be observed in temporal lobe seizures as well as frontal lobe seizures. Calculation of mean RR interval has a high specificity for detection of ictal heart rate changes. Preictal heart rate changes are observed in 70% of the partial seizures. Ictal heart rate changes are present only in partial seizures in this childhood epilepsy study. The changes can be observed in temporal lobe seizures as well as in frontal lobe seizures. Heart rate changes precede seizure onset in 70% of the focal seizures, making seizure detection and closed-loop systems a possible therapeutic alternative in the population of children with refractory epilepsy. © 2013.
The localizing value of ictal EEG in focal epilepsy.
Foldvary, N; Klem, G; Hammel, J; Bingaman, W; Najm, I; Lüders, H
2001-12-11
To investigate the lateralization and localization of ictal EEG in focal epilepsy. A total of 486 ictal EEG of 72 patients with focal epilepsy arising from the mesial temporal, neocortical temporal, mesial frontal, dorsolateral frontal, parietal, and occipital regions were analyzed. Surface ictal EEG was adequately localized in 72% of cases, more often in temporal than extratemporal epilepsy. Localized ictal onsets were seen in 57% of seizures and were most common in mesial temporal lobe epilepsy (MTLE), lateral frontal lobe epilepsy (LFLE), and parietal lobe epilepsy, whereas lateralized onsets predominated in neocortical temporal lobe epilepsy and generalized onsets in mesial frontal lobe epilepsy (MFLE) and occipital lobe epilepsy. Approximately two-thirds of seizures were localized, 22% generalized, 4% lateralized, and 6% mislocalized/lateralized. False localization/lateralization occurred in 28% of occipital and 16% of parietal seizures. Rhythmic temporal theta at ictal onset was seen exclusively in temporal lobe seizures, whereas localized repetitive epileptiform activity was highly predictive of LFLE. Seizures arising from the lateral convexity and mesial regions were differentiated by a high incidence of repetitive epileptiform activity at ictal onset in the former and rhythmic theta activity in the latter. With the exception of mesial frontal lobe epilepsy, ictal recordings are very useful in the localization/lateralization of focal seizures. Some patterns are highly accurate in localizing the epileptogenic lobe. One limitation of ictal EEG is the potential for false localization/lateralization in occipital and parietal lobe epilepsies.
The auditory P50 component to onset and offset of sound
Pratt, Hillel; Starr, Arnold; Michalewski, Henry J.; Bleich, Naomi; Mittelman, Nomi
2008-01-01
Objective: The auditory Event-Related Potentials (ERP) component P50 to sound onset and offset have been reported to be similar, but their magnetic homologue has been reported absent to sound offset. We compared the spatio-temporal distribution of cortical activity during P50 to sound onset and offset, without confounds of spectral change. Methods: ERPs were recorded in response to onsets and offsets of silent intervals of 0.5 s (gaps) appearing randomly in otherwise continuous white noise and compared to ERPs to randomly distributed click pairs with half second separation presented in silence. Subjects were awake and distracted from the stimuli by reading a complicated text. Measures of P50 included peak latency and amplitude, as well as source current density estimates to the clicks and sound onsets and offsets. Results P50 occurred in response to noise onsets and to clicks, while to noise offset it was absent. Latency of P50 was similar to noise onset (56 msec) and to clicks (53 msec). Sources of P50 to noise onsets and clicks included bilateral superior parietal areas. In contrast, noise offsets activated left inferior temporal and occipital areas at the time of P50. Source current density was significantly higher to noise onset than offset in the vicinity of the temporo-parietal junction. Conclusions: P50 to sound offset is absent compared to the distinct P50 to sound onset and to clicks, at different intracranial sources. P50 to stimulus onset and to clicks appears to reflect preattentive arousal by a new sound in the scene. Sound offset does not involve a new sound and hence the absent P50. Significance: Stimulus onset activates distinct early cortical processes that are absent to offset. PMID:18055255
Integrating speech in time depends on temporal expectancies and attention.
Scharinger, Mathias; Steinberg, Johanna; Tavano, Alessandro
2017-08-01
Sensory information that unfolds in time, such as in speech perception, relies on efficient chunking mechanisms in order to yield optimally-sized units for further processing. Whether or not two successive acoustic events receive a one-unit or a two-unit interpretation seems to depend on the fit between their temporal extent and a stipulated temporal window of integration. However, there is ongoing debate on how flexible this temporal window of integration should be, especially for the processing of speech sounds. Furthermore, there is no direct evidence of whether attention may modulate the temporal constraints on the integration window. For this reason, we here examine how different word durations, which lead to different temporal separations of sound onsets, interact with attention. In an Electroencephalography (EEG) study, participants actively and passively listened to words where word-final consonants were occasionally omitted. Words had either a natural duration or were artificially prolonged in order to increase the separation of speech sound onsets. Omission responses to incomplete speech input, originating in left temporal cortex, decreased when the critical speech sound was separated from previous sounds by more than 250 msec, i.e., when the separation was larger than the stipulated temporal window of integration (125-150 msec). Attention, on the other hand, only increased omission responses for stimuli with natural durations. We complemented the event-related potential (ERP) analyses by a frequency-domain analysis on the stimulus presentation rate. Notably, the power of stimulation frequency showed the same duration and attention effects than the omission responses. We interpret these findings on the background of existing research on temporal integration windows and further suggest that our findings may be accounted for within the framework of predictive coding. Copyright © 2017 Elsevier Ltd. All rights reserved.
Chronobiology of Takotsubo Syndrome and Myocardial Infarction: Analogies and Differences.
Manfredini, Roberto; Manfredini, Fabio; Fabbian, Fabio; Salmi, Raffaella; Gallerani, Massimo; Bossone, Eduardo; Deshmukh, Abhishek J
2016-10-01
Several pathophysiologic factors, not harmful if taken alone, are capable of triggering unfavorable events when presenting together within the same temporal window (chronorisk), and the occurrence of many cardiovascular events is not evenly distributed in time. Both acute myocardial infarction and takotsubo syndrome seem to exhibit a temporal preference in their onset, characterized by variations according to time of day, day of the week, and month of the year, although with both analogies and differences. Copyright © 2016 Elsevier Inc. All rights reserved.
Piano Transcription with Convolutional Sparse Lateral Inhibition
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
2017-02-08
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Piano Transcription with Convolutional Sparse Lateral Inhibition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt Egon
This paper extends our prior work on contextdependent piano transcription to estimate the length of the notes in addition to their pitch and onset. This approach employs convolutional sparse coding along with lateral inhibition constraints to approximate a musical signal as the sum of piano note waveforms (dictionary elements) convolved with their temporal activations. The waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. A dictionary containing multiple waveforms per pitch is generated by truncating a long waveform for each pitch to different lengths. During transcription, the dictionary elements are fixed and their temporal activationsmore » are estimated and post-processed to obtain the pitch, onset and note length estimation. A sparsity penalty promotes globally sparse activations of the dictionary elements, and a lateral inhibition term penalizes concurrent activations of different waveforms corresponding to the same pitch within a temporal neighborhood, to achieve note length estimation. Experiments on the MAPS dataset show that the proposed approach significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting in transcription accuracy.« less
Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.
Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan
2015-12-01
Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.
The temporal relation between seizure onset and arousal-awakening in temporal lobe seizures.
Gumusyayla, Sadiye; Erdal, Abidin; Tezer, F Irsel; Saygi, Serap
2016-07-01
Our main aim was to determine the time interval between the seizure onsets and arousal-awakening related to these seizures in patients with temporal lobe epilepsy (TLE) and to discuss the role of lateralization on arousal-awakening mechanisms. Thirty-three TLE patients who underwent video-EEG monitoring with simultaneous polysomnography (PSG) and had recorded nocturnal seizures were retrospectively examined. These TLE patients had 64 seizures during sleep. The onsets of seizures and arousal-awakening related to these seizures were marked according to clinical and electrophysiological features. The time interval between the seizure onset and arousal-awakening related to the seizure was compared in patients with right- or left-sided temporal lobe seizures. In our TLE patients nocturnal seizures mostly followed arousal-awakening (64%). The time interval between the seizure onset and arousal-awakening related to the seizure was significantly shorter in patients with left-sided temporal lobe seizures (p=0.01). Video-EEG monitoring and PSG with scalp electrodes in our TLE patients showed that nocturnal seizures mostly followed arousal-awakening, and it was more pronounced in those with left-sided seizures. Arousal-awakening might be a signal for subsequent seizures in patients with TLE. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Schoeberl, Tobias; Ansorge, Ulrich
2018-05-15
Prior research suggested that attentional capture by subliminal abrupt onset cues is stimulus driven. In these studies, reacting was faster when a searched-for target appeared at the location of a preceding abrupt onset cue compared to when the same target appeared at a location away from the cue (cueing effect), although the earlier onset of the cue was subliminal, because it appeared as one out of three horizontally aligned placeholders with a lead time that was too short to be noticed by the participants. Because the cueing effects seemed to be independent of top-down search settings for target features, the effect was attributed to stimulus-driven attentional capture. However, prior studies did not investigate if participants experienced the cues as useful temporal warning signals and, therefore, attended to the cues in a top-down way. Here, we tested to which extent search settings based on temporal contingencies between cue and target onset could be responsible for spatial cueing effects. Cueing effects were replicated, and we showed that removing temporal contingencies between cue and target onset did not diminish the cueing effects (Experiments 1 and 2). Neither presenting the cues in the majority of trials after target onset (Experiment 1) nor presenting cue and target unrelated to one another (Experiment 2) led to a significant reduction of the spatial cueing effects. Results thus support the hypothesis that the subliminal cues captured attention in a stimulus-driven way.
Hisada, K; Morioka, T; Nishio, S; Yamamoto, T; Fukui, M
2001-12-01
To evaluate the usefulness and limitations of magneto-encephalography (MEG) for epilepsy surgery, we compared 'interictal' epileptic spike fields on MEG with ictal electrocorticography (ECoG) using invasive chronic subdural electrodes in a patient with intractable medial temporal lobe epilepsy (MTLE) associated with vitamin K deficiency intracerebral hemorrhage. A 19-year-old male with an 8-year history of refractory complex partial seizures, secondarily generalized, and right hemispheric atrophy and porencephaly in the right frontal lobe on MRI, was studied with MEG to define the interictal paroxysmal sources based on the single-dipole model. This was followed by invasive ECoG monitoring to delineate the epileptogenic zone. MEG demonstrated two paroxysmal foci, one each on the right lateral temporal and frontal lobes. Ictal ECoG recordings revealed an ictal onset zone on the right medial temporal lobe, which was different from that defined by MEG. Anterior temporal lobectomy with hippocampectomy was performed and the patient has been seizure free for two years. Our results indicate that interictal MEG does not always define the epileptogenic zone in patients with MTLE.
On the onset of surface condensation: formation and transition mechanisms of condensation mode
Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng
2016-01-01
Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the ‘classical hypotheses’ of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation. PMID:27481071
On the onset of surface condensation: formation and transition mechanisms of condensation mode.
Sheng, Qiang; Sun, Jie; Wang, Qian; Wang, Wen; Wang, Hua Sheng
2016-08-02
Molecular dynamics simulations have been carried out to investigate the onset of surface condensation. On surfaces with different wettability, we snapshot different condensation modes (no-condensation, dropwise condensation and filmwise condensation) and quantitatively analyze their characteristics by temporal profiles of surface clusters. Two different types of formation of nanoscale droplets are identified, i.e. the formations with and without film-like condensate. We exhibit the effect of surface tensions on the formations of nanoscale droplets and film. We reveal the formation mechanisms of different condensation modes at nanoscale based on our simulation results and classical nucleation theory, which supplements the 'classical hypotheses' of the onset of dropwise condensation. We also reveal the transition mechanism between different condensation modes based on the competition between surface tensions and reveal that dropwise condensation represents the transition states from no-condensation to filmwise condensation.
NASA Astrophysics Data System (ADS)
Arndt, S.; Haas, C.
2017-12-01
Snow is one of the key drivers determining the seasonal energy and mass budgets of sea ice in the Southern Ocean. Here, we analyze radar backscatter time series from the European Remote Sensing Satellites (ERS)-1 and-2 scatterometers, from the Quick Scatterometer (QSCAT), and from the Advanced Scatterometer (ASCAT) in order to observe the regional and inter-annual variability of Antarctic snowmelt processes from 1992 to 2014. On perennial ice, seasonal backscatter changes show two different snowmelt stages: A weak backscatter rise indicating the initial warming and metamorphosis of the snowpack (pre-melt), followed by a rapid rise indicating the onset of internal snowmelt and thaw-freeze cycles (snowmelt). In contrast, similar seasonal backscatter cycles are absent on seasonal ice, preventing the periodic retrieval of spring/summer transitions. This may be due to the dominance of ice bottom melt over snowmelt, leading to flooding and ice disintegration before strong snowmelt sets in. Resulting snowmelt onset dates on perennial sea ice show the expected latitudinal gradient from early melt onsets (mid-November) in the northern Weddell Sea towards late (end-December) or even absent snowmelt conditions further south. This result is likely related to seasonal variations in solar shortwave radiation (absorption). In addition, observations with different microwave frequencies allow to detect changing snow properties at different depths. We show that short wavelengths of passive microwave observations indicate earlier pre-melt and snowmelt onset dates than longer wavelength scatterometer observations, in response to earlier warming of upper snow layers compared to lower snow layers. Similarly, pre-melt and snowmelt onset dates retrieved from Ku-Band radars were earlier by an average of 11 and 23 days, respectively, than those retrieved from C-Band. This time difference was used to correct melt onset dates retrieved from Ku-Band to compile a consistent time series from 1992 to 2014. The subsequent regression analysis showed that no significant temporal trend in the retrieved snowmelt onset dates can be observed, but strong inter-annual variability. This absence of any notable changes in snowmelt behavior is in line with the small observed temporal changes of the Antarctic sea ice cover and atmospheric warming
Effects of square-wave and simulated natural light-dark cycles on hamster circadian rhythms
NASA Technical Reports Server (NTRS)
Tang, I. H.; Murakami, D. M.; Fuller, C. A.
1999-01-01
Circadian rhythms of activity (Act) and body temperature (Tb) were recorded from male Syrian hamsters under square-wave (LDSq) and simulated natural (LDSN, with dawn and dusk transitions) light-dark cycles. Light intensity and data sampling were under the synchronized control of a laboratory computer. Changes in reactive and predictive onsets and offsets for the circadian rhythms of Act and Tb were examined in both lighting conditions. The reactive Act onset occurred 1.1 h earlier (P < 0.01) in LDSN than in LDSq and had a longer alpha-period (1.7 h; P < 0.05). The reactive Tb onset was 0.7 h earlier (P < 0.01) in LDSN. In LDSN, the predictive Act onset advanced by 0.3 h (P < 0.05), whereas the Tb predictive onset remained the same as in LDSq. The phase angle difference between Act and Tb predictive onsets decreased by 0.9 h (P < 0.05) in LDSN, but the offsets of both measures remained unchanged. In this study, animals exhibited different circadian entrainment characteristics under LDSq and LDSN, suggesting that gradual and abrupt transitions between light and dark may provide different temporal cues.
The sensory timecourses associated with conscious visual item memory and source memory.
Thakral, Preston P; Slotnick, Scott D
2015-09-01
Previous event-related potential (ERP) findings have suggested that during visual item and source memory, nonconscious and conscious sensory (occipital-temporal) activity onsets may be restricted to early (0-800 ms) and late (800-1600 ms) temporal epochs, respectively. In an ERP experiment, we tested this hypothesis by separately assessing whether the onset of conscious sensory activity was restricted to the late epoch during source (location) memory and item (shape) memory. We found that conscious sensory activity had a late (>800 ms) onset during source memory and an early (<200 ms) onset during item memory. In a follow-up fMRI experiment, conscious sensory activity was localized to BA17, BA18, and BA19. Of primary importance, the distinct source memory and item memory ERP onsets contradict the hypothesis that there is a fixed temporal boundary separating nonconscious and conscious processing during all forms of visual conscious retrieval. Copyright © 2015 Elsevier B.V. All rights reserved.
Geller, Eric B; Skarpaas, Tara L; Gross, Robert E; Goodman, Robert R; Barkley, Gregory L; Bazil, Carl W; Berg, Michael J; Bergey, Gregory K; Cash, Sydney S; Cole, Andrew J; Duckrow, Robert B; Edwards, Jonathan C; Eisenschenk, Stephan; Fessler, James; Fountain, Nathan B; Goldman, Alicia M; Gwinn, Ryder P; Heck, Christianne; Herekar, Aamar; Hirsch, Lawrence J; Jobst, Barbara C; King-Stephens, David; Labar, Douglas R; Leiphart, James W; Marsh, W Richard; Meador, Kimford J; Mizrahi, Eli M; Murro, Anthony M; Nair, Dileep R; Noe, Katherine H; Park, Yong D; Rutecki, Paul A; Salanova, Vicenta; Sheth, Raj D; Shields, Donald C; Skidmore, Christopher; Smith, Michael C; Spencer, David C; Srinivasan, Shraddha; Tatum, William; Van Ness, Paul C; Vossler, David G; Wharen, Robert E; Worrell, Gregory A; Yoshor, Daniel; Zimmerman, Richard S; Cicora, Kathy; Sun, Felice T; Morrell, Martha J
2017-06-01
Evaluate the seizure-reduction response and safety of mesial temporal lobe (MTL) brain-responsive stimulation in adults with medically intractable partial-onset seizures of mesial temporal lobe origin. Subjects with mesial temporal lobe epilepsy (MTLE) were identified from prospective clinical trials of a brain-responsive neurostimulator (RNS System, NeuroPace). The seizure reduction over years 2-6 postimplantation was calculated by assessing the seizure frequency compared to a preimplantation baseline. Safety was assessed based on reported adverse events. There were 111 subjects with MTLE; 72% of subjects had bilateral MTL onsets and 28% had unilateral onsets. Subjects had one to four leads placed; only two leads could be connected to the device. Seventy-six subjects had depth leads only, 29 had both depth and strip leads, and 6 had only strip leads. The mean follow-up was 6.1 ± (standard deviation) 2.2 years. The median percent seizure reduction was 70% (last observation carried forward). Twenty-nine percent of subjects experienced at least one seizure-free period of 6 months or longer, and 15% experienced at least one seizure-free period of 1 year or longer. There was no difference in seizure reduction in subjects with and without mesial temporal sclerosis (MTS), bilateral MTL onsets, prior resection, prior intracranial monitoring, and prior vagus nerve stimulation. In addition, seizure reduction was not dependent on the location of depth leads relative to the hippocampus. The most frequent serious device-related adverse event was soft tissue implant-site infection (overall rate, including events categorized as device-related, uncertain, or not device-related: 0.03 per implant year, which is not greater than with other neurostimulation devices). Brain-responsive stimulation represents a safe and effective treatment option for patients with medically intractable epilepsy, including patients with unilateral or bilateral MTLE who are not candidates for temporal lobectomy or who have failed a prior MTL resection. © 2017 The Authors. Epilepsia published by Wiley Periodicals, Inc. on behalf of International League Against Epilepsy.
Aziz, Anne-Laure; Giusiano, Bernard; Joubert, Sven; Duprat, Lauréline; Didic, Mira; Gueriot, Claude; Koric, Lejla; Boucraut, José; Felician, Olivier; Ranjeva, Jean-Philippe; Guedj, Eric; Ceccaldi, Mathieu
2017-06-01
Neuroimaging biomarkers differ between patients with early-onset Alzheimer's disease (EOAD) and late-onset Alzheimer's disease (LOAD). Whether these changes reflect cognitive heterogeneity or differences in disease severity is still unknown. This study aimed at investigating changes in neuroimaging biomarkers, according to the age of onset of the disease, in mild amnestic Alzheimer's disease patients with positive amyloid biomarkers in cerebrospinal fluid. Both patient groups were impaired on tasks assessing verbal and visual recognition memory. EOAD patients showed greater executive and linguistic deficits, while LOAD patients showed greater semantic memory impairment. In EOAD and LOAD, hypometabolism involved the bilateral temporoparietal junction and the posterior cingulate cortex. In EOAD, atrophy was widespread, including frontotemporoparietal areas, whereas it was limited to temporal regions in LOAD. Atrophic volumes were greater in EOAD than in LOAD. Hypometabolic volumes were similar in the 2 groups. Greater extent of atrophy in EOAD, despite similar extent of hypometabolism, could reflect different underlying pathophysiological processes, different glucose-based compensatory mechanisms or distinct level of premorbid atrophic lesions. Copyright © 2017 Elsevier Inc. All rights reserved.
Wu, Shasha; Kunhi Veedu, Hari Prasad; Lhatoo, Samden D; Koubeissi, Mohamad Z; Miller, Jonathan P; Lüders, Hans O
2014-05-01
To assess the role of ictal baseline shifts (IBS) and ictal high-frequency oscillations (iHFOs) in intracranial electroencephalography (EEG) presurgical evaluation by analysis of the spatial and temporal relationship of IBS, iHFOs with ictal conventional stereo-electroencephalography (icEEG) in mesial temporal lobe seizures (MTLS). We studied 15 adult patients with medically refractory MTLS who underwent monitoring with depth electrodes. Seventy-five ictal EEG recordings at 1,000 Hz sampling rate were studied. Visual comparison of icEEG, IBS, and iHFOs were performed using Nihon-Kohden Neurofax systems (acquisition range 0.016-300 Hz). Each recorded ictal EEG was analyzed with settings appropriate for displaying icEEG, IBS, and iHFOs. IBS and iHFOs were observed in all patients and in 91% and 81% of intracranial seizures, respectively. IBS occurred before (22%), at (57%), or after (21%) icEEG onset. In contrast, iHFOs occurred at (30%) or after (70%) icEEG onset. The onset of iHFOs was 11.5 s later than IBS onset (p < 0.0001). All of the earliest onset of IBS and 70% of the onset of iHFOs overlapped with the ictal onset zone (IOZ). Compared with iHFOs, interictal HFOs (itHFOs) were less correlated with IOZ. In contrast to icEEG, IBS and iHFOs had smaller spatial distributions in 70% and 100% of the seizures, respectively. An IBS dipole was observed in 66% of the seizures. Eighty-seven percent of the dipoles had a negative pole at the anterior/medial part of amygdala/hippocampus complex (A-H complex) and a positive pole at the posterior/lateral part of the A-H complex. The results suggest that evaluation of IBS and iHFOs, in addition to routine icEEG, helps in more accurately defining the IOZ. This study also shows that the onset and the spatial distribution of icEEG, IBS, and iHFOs do not overlap, suggesting that they reflect different cellular or network dynamics. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
The twilight zone: ambient light levels trigger activity in primitive ants.
Narendra, Ajay; Reid, Samuel F; Hemmi, Jan M
2010-05-22
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation.
The twilight zone: ambient light levels trigger activity in primitive ants
Narendra, Ajay; Reid, Samuel F.; Hemmi, Jan M.
2010-01-01
Many animals become active during twilight, a narrow time window where the properties of the visual environment are dramatically different from both day and night. Despite the fact that many animals including mammals, reptiles, birds and insects become active in this specific temporal niche, we do not know what cues trigger this activity. To identify the onset of specific temporal niches, animals could anticipate the timing of regular events or directly measure environmental variables. We show that the Australian bull ant, Myrmecia pyriformis, starts foraging only during evening twilight throughout the year. The onset occurs neither at a specific temperature nor at a specific time relative to sunset, but at a specific ambient light intensity. Foraging onset occurs later when light intensities at sunset are brighter than normal or earlier when light intensities at sunset are darker than normal. By modifying ambient light intensity experimentally, we provide clear evidence that ants indeed measure light levels and do not rely on an internal rhythm to begin foraging. We suggest that the reason for restricting the foraging onset to twilight and measuring light intensity to trigger activity is to optimize the trade-off between predation risk and ease of navigation. PMID:20129978
Rate and onset cues can improve cochlear implant synthetic vowel recognition in noise
Mc Laughlin, Myles; Reilly, Richard B.; Zeng, Fan-Gang
2013-01-01
Understanding speech-in-noise is difficult for most cochlear implant (CI) users. Speech-in-noise segregation cues are well understood for acoustic hearing but not for electric hearing. This study investigated the effects of stimulation rate and onset delay on synthetic vowel-in-noise recognition in CI subjects. In experiment I, synthetic vowels were presented at 50, 145, or 795 pulse/s and noise at the same three rates, yielding nine combinations. Recognition improved significantly if the noise had a lower rate than the vowel, suggesting that listeners can use temporal gaps in the noise to detect a synthetic vowel. This hypothesis is supported by accurate prediction of synthetic vowel recognition using a temporal integration window model. Using lower rates a similar trend was observed in normal hearing subjects. Experiment II found that for CI subjects, a vowel onset delay improved performance if the noise had a lower or higher rate than the synthetic vowel. These results show that differing rates or onset times can improve synthetic vowel-in-noise recognition, indicating a need to develop speech processing strategies that encode or emphasize these cues. PMID:23464025
Spatio-Temporal Patterning in Primary Motor Cortex at Movement Onset.
Best, Matthew D; Suminski, Aaron J; Takahashi, Kazutaka; Brown, Kevin A; Hatsopoulos, Nicholas G
2017-02-01
Voluntary movement initiation involves the engagement of large populations of motor cortical neurons around movement onset. Despite knowledge of the temporal dynamics that lead to movement, the spatial structure of these dynamics across the cortical surface remains unknown. In data from 4 rhesus macaques, we show that the timing of attenuation of beta frequency local field potential oscillations, a correlate of locally activated cortex, forms a spatial gradient across primary motor cortex (MI). We show that these spatio-temporal dynamics are recapitulated in the engagement order of ensembles of MI neurons. We demonstrate that these patterns are unique to movement onset and suggest that movement initiation requires a precise spatio-temporal sequential activation of neurons in MI. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Haidekker, M A; White, C R; Frangos, J A
2001-10-01
Endothelial cells in blood vessels are exposed to bloodflow and thus fluid shear stress. In arterial bifurcations and stenoses, disturbed flow causes zones of recirculation and stagnation, which are associated with both spatial and temporal gradients of shear stress. Such gradients have been linked to the generation of atherosclerotic plaques. For in-vitro studies of endothelial cell responses, the sudden-expansion flow chamber has been widely used and described. A two-dimensional numerical simulation of the onset phase of flow through the chamber was performed. The wall shear stress action on the bottom plate was computed as a function of time and distance from the sudden expansion. The results showed that depending on the time for the flow to be established, significant temporal gradients occurred close to the second stagnation point of flow. Slowly ramping the flow over 15 s instead of 200 ms reduces the temporal gradients by a factor of 300, while spatial gradients are reduced by 23 percent. Thus, the effects of spatial and temporal gradients can be observed separately. In experiments on endothelial cells, disturbed flow stimulated cell proliferation only when flow onset was sudden. The spatial patterns of proliferation rate match the exposure to temporal gradients. This study provides information on the dynamics of spatial and temporal gradients to which the cells are exposed in a sudden-expansion flow chamber and relates them to changes in the onset phase of flow.
Toyoda, Izumi; Bower, Mark R.; Leyva, Fernando
2013-01-01
Temporal lobe epilepsy is the most common form of epilepsy in adults. The pilocarpine-treated rat model is used frequently to investigate temporal lobe epilepsy. The validity of the pilocarpine model has been challenged based largely on concerns that seizures might initiate in different brain regions in rats than in patients. The present study used 32 recording electrodes per rat to evaluate spontaneous seizures in various brain regions including the septum, dorsomedial thalamus, amygdala, olfactory cortex, dorsal and ventral hippocampus, substantia nigra, entorhinal cortex, and ventral subiculum. Compared with published results from patients, seizures in rats tended to be shorter, spread faster and more extensively, generate behavioral manifestations more quickly, and produce generalized convulsions more frequently. Similarities to patients included electrographic waveform patterns at seizure onset, variability in sites of earliest seizure activity within individuals, and variability in patterns of seizure spread. Like patients, the earliest seizure activity in rats was recorded most frequently within the hippocampal formation. The ventral hippocampus and ventral subiculum displayed the earliest seizure activity. Amygdala, olfactory cortex, and septum occasionally displayed early seizure latencies, but not above chance levels. Substantia nigra and dorsomedial thalamus demonstrated consistently late seizure onsets, suggesting their unlikely involvement in seizure initiation. The results of the present study reveal similarities in onset sites of spontaneous seizures in patients with temporal lobe epilepsy and pilocarpine-treated rats that support the model's validity. PMID:23825415
ERIC Educational Resources Information Center
Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin
2011-01-01
Objective: Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Engel, J. Jr.; Henry, T.R.; Risinger, M.W.
1990-11-01
One hundred fifty-three patients with medically refractory partial epilepsy underwent chronic stereotactic depth-electrode EEG (SEEG) evaluations after being studied by positron emission tomography (PET) with 18F-fluorodeoxyglucose (FDG) and scalp-sphenoidal EEG telemetry. We carried out retrospective standardized reviews of local cerebral metabolism and scalp-sphenoidal ictal onsets to determine when SEEG recordings revealed additional useful information. FDG-PET localization was misleading in only 3 patients with temporal lobe SEEG ictal onsets for whom extratemporal or contralateral hypometabolism could be attributed to obvious nonepileptic structural defects. Two patients with predominantly temporal hypometabolism may have had frontal epileptogenic regions, but ultimate localization remains uncertain. Scalp-sphenoidalmore » ictal onsets were misleading in 5 patients. For 37 patients with congruent focal scalp-sphenoidal ictal onsets and temporal hypometabolic zones, SEEG recordings never demonstrated extratemporal or contralateral epileptogenic regions; however, 3 of these patients had nondiagnostic SEEG evaluations. The results of subsequent subdural grid recordings indicated that at least 1 of these patients may have been denied beneficial surgery as a result of an equivocal SEEG evaluation. Weighing risks and benefits, it is concluded that anterior temporal lobectomy is justified without chronic intracranial recording when specific criteria for focal scalp-sphenoidal ictal EEG onsets are met, localized hypometabolism predominantly involves the same temporal lobe, and no other conflicting information has been obtained from additional tests of focal functional deficit, structural imaging, or seizure semiology.« less
Empirical prediction of the onset dates of South China Sea summer monsoon
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Li, Tim
2017-03-01
The onset of South China Sea summer monsoon (SCSSM) signifies the commencement of the wet season over East Asia. Predicting the SCSSM onset date is of significant importance. In this study, we establish two different statistical models, namely the physical-empirical model (PEM) and the spatial-temporal projection model (STPM) to predict the SCSSM onset. The PEM is constructed from the seasonal prediction perspective. Observational diagnoses reveal that the early onset of the SCSSM is preceded by (a) a warming tendency in middle and lower troposphere (850-500 hPa) over central Siberia from January to March, (b) a La Niña-like zonal dipole sea surface temperature pattern over the tropical Pacific in March, and (c) a dipole sea level pressure pattern with negative center in subtropics and positive center over high latitude of Southern Hemisphere in January. The PEM built on these predictors achieves a cross-validated reforecast temporal correlation coefficient (TCC) skill of 0.84 for the period of 1979-2004, and an independent forecast TCC skill of 0.72 for the period 2005-2014. The STPM is built on the extended-range forecast perspective. Pentad data are used to predict a zonal wind index over the South China Sea region. Similar to PEM, the STPM is constructed using 1979-2004 data. Based on the forecasted zonal wind index, the independent forecast of the SCSSM onset dates achieves a TCC skill of 0.90 for 2005-2014. The STPM provides more detailed information for the intraseasonal evolution during the period of the SCSSM onset (pentad 25-35). The two models proposed herein are expected to facilitate the real-time prediction of the SCSSM onset.
Altered self-identity and autobiographical memory in epilepsy.
Allebone, James; Rayner, Genevieve; Siveges, Benjamin; Wilson, Sarah J
2015-12-01
Research suggests that individuals with chronic epilepsy display differences in their self-identity. The mechanisms by which self-identity is altered, however, are not well understood. Neural networks supporting autobiographical memory retrieval in the mesial temporal (MT) lobe are thought to be fundamental to self-identity processes. Thus, we examined differences in self-identity and autobiographical memory in patients with either MT or non-mesial temporal (NMT) foci with early or late age of habitual seizure onset. Participants included 102 adults: 51 healthy individuals and 51 patients with drug-resistant focal seizures (19 MT, 32 NMT). We used the Ego Identity Process Questionnaire to profile the identity development of participants, and examined how this related to memory function assessed using the Autobiographical Memory Test. Patients and controls had strikingly different self-identity profiles, with early onset MT patients showing the least identity development compared to controls and other patient groups. In contrast, late-onset NMT patients showed the highest level of identity development of the patient groups and closely resembled healthy controls (p < 0.05 for all comparisons). For all MT patients, poor autobiographical memory retrieval was correlated with altered self-identity (p < 0.001). No associations between autobiographical memory and self-identity were evident in the NMT group. Self-identity in epilepsy may be modulated by the extent to which seizure foci impinge on the autobiographical memory network and the timing of seizure onset. Early disruption to MT regions of the autobiographical memory network may constitute a neurocognitive mechanism by which self-identity is altered in chronic focal epilepsy. Wiley Periodicals, Inc. © 2015 International League Against Epilepsy.
Gordon, Brian A; Blazey, Tyler M; Su, Yi; Hari-Raj, Amrita; Dincer, Aylin; Flores, Shaney; Christensen, Jon; McDade, Eric; Wang, Guoqiao; Xiong, Chengjie; Cairns, Nigel J; Hassenstab, Jason; Marcus, Daniel S; Fagan, Anne M; Jack, Clifford R; Hornbeck, Russ C; Paumier, Katrina L; Ances, Beau M; Berman, Sarah B; Brickman, Adam M; Cash, David M; Chhatwal, Jasmeer P; Correia, Stephen; Förster, Stefan; Fox, Nick C; Graff-Radford, Neill R; la Fougère, Christian; Levin, Johannes; Masters, Colin L; Rossor, Martin N; Salloway, Stephen; Saykin, Andrew J; Schofield, Peter R; Thompson, Paul M; Weiner, Michael M; Holtzman, David M; Raichle, Marcus E; Morris, John C; Bateman, Randall J; Benzinger, Tammie L S
2018-03-01
Models of Alzheimer's disease propose a sequence of amyloid β (Aβ) accumulation, hypometabolism, and structural decline that precedes the onset of clinical dementia. These pathological features evolve both temporally and spatially in the brain. In this study, we aimed to characterise where in the brain and when in the course of the disease neuroimaging biomarkers become abnormal. Between Jan 1, 2009, and Dec 31, 2015, we analysed data from mutation non-carriers, asymptomatic carriers, and symptomatic carriers from families carrying gene mutations in presenilin 1 (PSEN1), presenilin 2 (PSEN2), or amyloid precursor protein (APP) enrolled in the Dominantly Inherited Alzheimer's Network. We analysed 11 C-Pittsburgh Compound B ( 11 C-PiB) PET, 18 F-Fluorodeoxyglucose ( 18 F-FDG) PET, and structural MRI data using regions of interest to assess change throughout the brain. We estimated rates of biomarker change as a function of estimated years to symptom onset at baseline using linear mixed-effects models and determined the earliest point at which biomarker trajectories differed between mutation carriers and non-carriers. This study is registered at ClinicalTrials.gov (number NCT00869817) FINDINGS: 11 C-PiB PET was available for 346 individuals (162 with longitudinal imaging), 18 F-FDG PET was available for 352 individuals (175 with longitudinal imaging), and MRI data were available for 377 individuals (201 with longitudinal imaging). We found a sequence to pathological changes, with rates of Aβ deposition in mutation carriers being significantly different from those in non-carriers first (across regions that showed a significant difference, at a mean of 18·9 years [SD 3·3] before expected onset), followed by hypometabolism (14·1 years [5·1] before expected onset), and lastly structural decline (4·7 years [4·2] before expected onset). This biomarker ordering was preserved in most, but not all, regions. The temporal emergence within a biomarker varied across the brain, with the precuneus being the first cortical region for each method to show divergence between groups (22·2 years before expected onset for Aβ accumulation, 18·8 years before expected onset for hypometabolism, and 13·0 years before expected onset for cortical thinning). Mutation carriers had elevations in Aβ deposition, reduced glucose metabolism, and cortical thinning compared with non-carriers which preceded the expected onset of dementia. Accrual of these pathologies varied throughout the brain, suggesting differential regional and temporal vulnerabilities to Aβ, metabolic decline, and structural atrophy, which should be taken into account when using biomarkers in a clinical setting as well as designing and evaluating clinical trials. US National Institutes of Health, the German Center for Neurodegenerative Diseases, and the Medical Research Council Dementias Platform UK. Copyright © 2018 Elsevier Ltd. All rights reserved.
Parietal and temporal activity during a multimodal dance video game: an fNIRS study.
Tachibana, Atsumichi; Noah, J Adam; Bronner, Shaw; Ono, Yumie; Onozuka, Minoru
2011-10-03
Using functional near infrared spectroscopy (fNIRS) we studied how playing a dance video game employs coordinated activation of sensory-motor integration centers of the superior parietal lobe (SPL) and superior temporal gyrus (STG). Subjects played a dance video game, in a block design with 30s of activity alternating with 30s of rest, while changes in oxy-hemoglobin (oxy-Hb) levels were continuously measured. The game was modified to compare difficult (4-arrow), simple (2-arrow), and stepping conditions. Oxy-Hb levels were greatest with increased task difficulty. The quick-onset, trapezoidal time-course increase in SPL oxy-Hb levels reflected the on-off neuronal response of spatial orienting and rhythmic motor timing that were required during the activity. Slow-onset, bell-shaped increases in oxy-Hb levels observed in STG suggested the gradually increasing load of directing multisensory information to downstream processing centers associated with motor behavior and control. Differences in temporal relationships of SPL and STG oxy-Hb concentration levels may reflect the functional roles of these brain structures during the task period. NIRS permits insights into temporal relationships of cortical hemodynamics during real motor tasks. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.
Spatio-temporal Organization During Ventricular Fibrillation in the Human Heart.
Robson, Jinny; Aram, Parham; Nash, Martyn P; Bradley, Chris P; Hayward, Martin; Paterson, David J; Taggart, Peter; Clayton, Richard H; Kadirkamanathan, Visakan
2018-06-01
In this paper, we present a novel approach to quantify the spatio-temporal organization of electrical activation during human ventricular fibrillation (VF). We propose three different methods based on correlation analysis, graph theoretical measures and hierarchical clustering. Using the proposed approach, we quantified the level of spatio-temporal organization during three episodes of VF in ten patients, recorded using multi-electrode epicardial recordings with 30 s coronary perfusion, 150 s global myocardial ischaemia and 30 s reflow. Our findings show a steady decline in spatio-temporal organization from the onset of VF with coronary perfusion. We observed transient increases in spatio-temporal organization during global myocardial ischaemia. However, the decline in spatio-temporal organization continued during reflow. Our results were consistent across all patients, and were consistent with the numbers of phase singularities. Our findings show that the complex spatio-temporal patterns can be studied using complex network analysis.
Perception of initial obstruent voicing is influenced by gestural organization
Best, Catherine T.; Hallé, Pierre A.
2009-01-01
Cross-language differences in phonetic settings for phonological contrasts of stop voicing have posed a challenge for attempts to relate specific phonological features to specific phonetic details. We probe the phonetic-phonological relationship for voicing contrasts more broadly, analyzing in particular their relevance to nonnative speech perception, from two theoretical perspectives: feature geometry and articulatory phonology. Because these perspectives differ in assumptions about temporal/phasing relationships among features/gestures within syllable onsets, we undertook a cross-language investigation on perception of obstruent (stop, fricative) voicing contrasts in three nonnative onsets that use a common set of features/gestures but with differing time-coupling. Listeners of English and French, which differ in their phonetic settings for word-initial stop voicing distinctions, were tested on perception of three onset types, all nonnative to both English and French, that differ in how initial obstruent voicing is coordinated with a lateral feature/gesture and additional obstruent features/gestures. The targets, listed from least complex to most complex onsets, were: a lateral fricative voicing distinction (Zulu /ɬ/-ɮ/), a laterally-released affricate voicing distinction (Tlingit /tɬ/-/dɮ/), and a coronal stop voicing distinction in stop+/l/ clusters (Hebrew /tl/-/dl/). English and French listeners' performance reflected the differences in their native languages' stop voicing distinctions, compatible with prior perceptual studies on singleton consonant onsets. However, both groups' abilities to perceive voicing as a separable parameter also varied systematically with the structure of the target onsets, supporting the notion that the gestural organization of syllable onsets systematically affects perception of initial voicing distinctions. PMID:20228878
Valdizón-Rodríguez, Roberto
2017-01-01
Inhibition plays an important role in creating the temporal response properties of duration-tuned neurons (DTNs) in the mammalian inferior colliculus (IC). Neurophysiological and computational studies indicate that duration selectivity in the IC is created through the convergence of excitatory and inhibitory synaptic inputs offset in time. We used paired-tone stimulation and extracellular recording to measure the frequency tuning of the inhibition acting on DTNs in the IC of the big brown bat (Eptesicus fuscus). We stimulated DTNs with pairs of tones differing in duration, onset time, and frequency. The onset time of a short, best-duration (BD), probe tone set to the best excitatory frequency (BEF) was varied relative to the onset of a longer-duration, nonexcitatory (NE) tone whose frequency was varied. When the NE tone frequency was near or within the cell’s excitatory bandwidth (eBW), BD tone-evoked spikes were suppressed by an onset-evoked inhibition. The onset of the spike suppression was independent of stimulus frequency, but both the offset and duration of the suppression decreased as the NE tone frequency departed from the BEF. We measured the inhibitory frequency response area, best inhibitory frequency (BIF), and inhibitory bandwidth (iBW) of each cell. We found that the BIF closely matched the BEF, but the iBW was broader and usually overlapped the eBW measured from the same cell. These data suggest that temporal selectivity of midbrain DTNs is created and preserved by having cells receive an onset-evoked, constant-latency, broadband inhibition that largely overlaps the cell’s excitatory receptive field. We conclude by discussing possible neural sources of the inhibition. NEW & NOTEWORTHY Duration-tuned neurons (DTNs) arise from temporally offset excitatory and inhibitory synaptic inputs. We used single-unit recording and paired-tone stimulation to measure the spectral tuning of the inhibitory inputs to DTNs. The onset of inhibition was independent of stimulus frequency; the offset and duration of inhibition systematically decreased as the stimulus departed from the cell’s best excitatory frequency. Best inhibitory frequencies matched best excitatory frequencies; however, inhibitory bandwidths were more broadly tuned than excitatory bandwidths. PMID:28100657
Cho, Ok Hyun; Mallappa, Chandrashekara; Hernández-Hernández, J Manuel; Rivera-Pérez, Jaime A; Imbalzano, Anthony N
2015-01-01
Among the complexities of skeletal muscle differentiation is a temporal distinction in the onset of expression of different lineage-specific genes. The lineage-determining factor MyoD is bound to myogenic genes at the onset of differentiation whether gene activation is immediate or delayed. How temporal regulation of differentiation-specific genes is established remains unclear. Using embryonic tissue, we addressed the molecular differences in the organization of the myogenin and muscle creatine kinase (MCK) gene promoters by examining regulatory factor binding as a function of both time and spatial organization during somitogenesis. At the myogenin promoter, binding of the homeodomain factor Pbx1 coincided with H3 hyperacetylation and was followed by binding of co-activators that modulate chromatin structure. MyoD and myogenin binding occurred subsequently, demonstrating that Pbx1 facilitates chromatin remodeling and modification before myogenic regulatory factor binding. At the same time, the MCK promoter was bound by HDAC2 and MyoD, and activating histone marks were largely absent. The association of HDAC2 and MyoD was confirmed by co-immunoprecipitation, proximity ligation assay (PLA), and sequential ChIP. MyoD differentially promotes activated and repressed chromatin structures at myogenic genes early after the onset of skeletal muscle differentiation in the developing mouse embryo. © 2014 Wiley Periodicals, Inc.
deCarvalho, Tagide N.; Shaw, Kerry L.
2011-01-01
The Hawaiian cricket genus Laupala (Gryllidae: Trigonidiinae) has undergone rapid and extensive speciation, with divergence in male song and female acoustic preference playing a role in maintaining species boundaries. Recent study of interspecific differences in the diel rhythmicity of singing and mating, suggests that temporal variation in behavior may reduce gene flow between species. In addition, Laupala perform an elaborate and protracted courtship, providing potential for further temporal variation. However, whether these behavioral differences have a genetic basis or result from environmental variation is unknown. We observed courtship and mating in a common garden study of the sympatric species, Laupala cerasina and Laupala paranigra. We document interspecific differences in the onset and duration of courtship, spermatophore production rate, and diel mating rhythmicity. Our study demonstrates a genetic contribution to interspecific behavioral differences, and suggests an evolutionary pathway to the origins of novel timing phenotypes. PMID:20878226
ERIC Educational Resources Information Center
Golouboff, Nathalie; Fiori, Nicole; Delalande, Olivier; Fohlen, Martine; Dellatolas, Georges; Jambaque, Isabelle
2008-01-01
The amygdala has been implicated in the recognition of facial emotions, especially fearful expressions, in adults with early-onset right temporal lobe epilepsy (TLE). The present study investigates the recognition of facial emotions in children and adolescents, 8-16 years old, with epilepsy. Twenty-nine subjects had TLE (13 right, 16 left) and…
Bellgowan, P. S. F.; Saad, Z. S.; Bandettini, P. A.
2003-01-01
Estimates of hemodynamic amplitude, delay, and width were combined to investigate system dynamics involved in lexical decision making. Subjects performed a lexical decision task using word and nonword stimuli rotated 0°, 60°, or 120°. Averaged hemodynamic responses to repeated stimulation were fit to a Gamma-variate function convolved with a heavyside function of varying onset and duration to estimate each voxel's activation delay and width. Consistent with prolonged reaction times for the rotated stimuli and nonwords, the motor cortex showed delayed hemodynamic onset for both conditions. Language areas such as the lingual gyrus, middle temporal gyrus, fusiform gyrus, and precuneus all showed delayed hemodynamic onsets to rotated stimuli but not to nonword stimuli. The inferior frontal gyrus showed both increased onset latency for rotated stimuli and a wider hemodynamic response to nonwords, consistent with prolonged processing in this area during the lexical decision task. Phonological processing areas such as superior temporal and angular gyrus showed no delay or width difference for rotated stimuli. These results suggest that phonological routes but not semantic routes to the lexicon can proceed regardless of stimulus orientation. This study demonstrates the utility of estimating hemodynamic delay and width in addition to amplitude allowing for more quantitative measures of brain function such as mental chronometry. PMID:12552093
Martínez-Ortega, José M.; Goldstein, Benjamin I.; Gutiérrez-Rojas, Luis; Sala, Regina; Wang, Shuai; Blanco, Carlos
2013-01-01
Bipolar disorder (BD) and nicotine dependence (ND) often co-occur. However, the mechanisms underlying this association remain unclear. We aimed to examine, for the first time in a national and representative sample, the magnitude and direction of the temporal relationship between BD and ND; and to compare, among individuals with lifetime ND and BD, the sociodemographic and clinical characteristics of individuals whose onset of ND preceded the onset of BD (ND-prior) with those whose onset of ND followed the onset of BD (BD-prior). The sample included individuals with lifetime BD type I or ND (n=7958) from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, n=43093). Survival analyses and logistic regression models were computed to study the temporal association between ND and BD, and to compare ND-prior (n=135) and BD-prior (n=386) individuals. We found that ND predicted the onset of BD and BD also predicted the onset of ND. Furthermore, the risk of developing one disorder following the other one was greatest early in the course of illness. Most individuals with lifetime ND and BD were BD-prior (72.6%). BD-prior individuals had an earlier onset of BD and a higher number of manic episodes. By contrast, ND-prior individuals had an earlier onset of both daily smoking and ND, and an increased prevalence of alcohol use disorder. In conclusion, ND and BD predict the development of each other. The phenomenology and course of ND and BD varied significantly depending on which disorder had earlier onset. PMID:23582710
Kumar, U A; Jayaram, M
2013-07-01
The purpose of this study was to evaluate the effect of lengthening of voice onset time and burst duration of selected speech stimuli on perception by individuals with auditory dys-synchrony. This is the second of a series of articles reporting the effect of signal enhancing strategies on speech perception by such individuals. Two experiments were conducted: (1) assessment of the 'just-noticeable difference' for voice onset time and burst duration of speech sounds; and (2) assessment of speech identification scores when speech sounds were modified by lengthening the voice onset time and the burst duration in units of one just-noticeable difference, both in isolation and in combination with each other plus transition duration modification. Lengthening of voice onset time as well as burst duration improved perception of voicing. However, the effect of voice onset time modification was greater than that of burst duration modification. Although combined lengthening of voice onset time, burst duration and transition duration resulted in improved speech perception, the improvement was less than that due to lengthening of transition duration alone. These results suggest that innovative speech processing strategies that enhance temporal cues may benefit individuals with auditory dys-synchrony.
NASA Astrophysics Data System (ADS)
Rankine, C.; Sánchez-Azofeifa, G. A.; Guzmán, J. Antonio; Espirito-Santo, M. M.; Sharp, Iain
2017-10-01
Tropical dry forests (TDFs) present strong seasonal greenness signals ideal for tracking phenology and primary productivity using remote sensing techniques. The tightly synchronized relationship these ecosystems have with water availability offer a valuable natural experiment for observing the complex interactions between the atmosphere and the biosphere in the tropics. To investigate how well the MODIS vegetation indices (normalized difference vegetation index (NDVI) and the enhanced vegetation index (EVI)) represented the phenology of different successional stages of naturally regenerating TDFs, within a widely conserved forest fragment in the semi-arid southeast of Brazil, we installed several canopy towers with radiometric sensors to produce high temporal resolution near-surface vegetation greenness indices. Direct comparison of several years of ground measurements with a combined Aqua/Terra 8 day satellite product showed similar broad temporal trends, but MODIS often suffered from cloud contamination during the onset of the growing season and occasionally during the peak growing season. The strength of the in-situ and MODIS linear relationship was greater for NDVI than for EVI across sites but varied with forest stand age. Furthermore, we describe the onset dates and duration of canopy development phases for three years of in-situ monitoring. A seasonality analysis revealed significant discrepancies between tower and MODIS phenology transitions dates, with up to five weeks differences in growing season length estimation. Our results indicate that 8 and 16 day MODIS satellite vegetation monitoring products are suitable for tracking general patterns of tropical dry forest phenology in this region but are not temporally sufficient to characterize inter-annual differences in phenology phase onset dates or changes in productivity due to mid-season droughts. Such rapid transitions in canopy greenness are important indicators of climate change sensitivity of these already endangered forest ecosystems and should be further monitored using both ground and satellite approaches.
NASA Astrophysics Data System (ADS)
Konapala, Goutam; Mishra, Ashok
2017-12-01
The quantification of spatio-temporal hydroclimatic extreme events is a key variable in water resources planning, disaster mitigation, and preparing climate resilient society. However, quantification of these extreme events has always been a great challenge, which is further compounded by climate variability and change. Recently complex network theory was applied in earth science community to investigate spatial connections among hydrologic fluxes (e.g., rainfall and streamflow) in water cycle. However, there are limited applications of complex network theory for investigating hydroclimatic extreme events. This article attempts to provide an overview of complex networks and extreme events, event synchronization method, construction of networks, their statistical significance and the associated network evaluation metrics. For illustration purpose, we apply the complex network approach to study the spatio-temporal evolution of droughts in Continental USA (CONUS). A different drought threshold leads to a new drought event as well as different socio-economic implications. Therefore, it would be interesting to explore the role of thresholds on spatio-temporal evolution of drought through network analysis. In this study, long term (1900-2016) Palmer drought severity index (PDSI) was selected for spatio-temporal drought analysis using three network-based metrics (i.e., strength, direction and distance). The results indicate that the drought events propagate differently at different thresholds associated with initiation of drought events. The direction metrics indicated that onset of mild drought events usually propagate in a more spatially clustered and uniform approach compared to onsets of moderate droughts. The distance metric shows that the drought events propagate for longer distance in western part compared to eastern part of CONUS. We believe that the network-aided metrics utilized in this study can be an important tool in advancing our knowledge on drought propagation as well as other hydroclimatic extreme events. Although the propagation of droughts is investigated using the network approach, however process (physics) based approaches is essential to further understand the dynamics of hydroclimatic extreme events.
The grouping benefit in extinction: overcoming the temporal order bias.
Rappaport, Sarah J; Riddoch, M Jane; Humphreys, Glyn W
2011-01-01
Grouping between contra- and ipsilesional stimuli can alleviate the lateralised bias in spatial extinction (Gilchrist, Humphreys, & Riddoch, 1996; Ward, Goodrich, & Driver, 1994). In the current study we demonstrate for the first time that perceptual grouping can also modulate the spatio/temporal biases in temporal order judgements affecting the temporal as well as the spatial coding of stimuli. Perceived temporal order was assessed by presenting two coloured letter stimuli in either hemi-field temporally segregated by a range of onset-intervals. Items were either identical (grouping condition) or differed in both shape and colour (non-grouping condition). Observers were required to indicate which item appeared second. Patients with visual extinction had a bias against the contralesional item appearing first, but this was modulated by perceptual grouping. When both items were identical in shape and colour the temporal bias against reporting the contralesional item was reduced. The results suggest that grouping can alter the coding of temporal relations between stimuli. Copyright © 2010 Elsevier Ltd. All rights reserved.
Arctic Sea Ice Basal Melt Onset Variability and Associated Ocean Surface Heating
NASA Astrophysics Data System (ADS)
Merrick, R. A.; Hutchings, J. K.
2015-12-01
The interannual and regional variability in Arctic sea ice melt has previously been characterized only in terms of surface melting. A focus on the variability in the onset of basal melt is additionally required to understand Arctic melt patterns. Monitoring basal melt provides a glimpse into the importance of ocean heating to sea ice melt. This warming is predominantly through seawater exposure due to lead opening and the associated solar warming at the ocean's surface. We present the temporal variability in basal melt onset observed by ice mass balance buoys throughout the Arctic Ocean since 2003, providing a different perspective than the satellite microwave data used to measure the onset of surface melt. We found that melt onset varies greatly, even for buoys deployed within 100km of each other. Therefore large volumes of data are necessary to accurately estimate the variability of basal melt onset. Once the variability of basal melt onset has been identified, we can investigate how this range has been changing as a response to atmospheric and oceanic warming, changes in ice morphology as well as the intensification of the ice albedo feedback.
Enlarged temporal integration window in schizophrenia indicated by the double-flash illusion.
Haß, Katharina; Sinke, Christopher; Reese, Tanya; Roy, Mandy; Wiswede, Daniel; Dillo, Wolfgang; Oranje, Bob; Szycik, Gregor R
2017-03-01
In the present study we were interested in the processing of audio-visual integration in schizophrenia compared to healthy controls. The amount of sound-induced double-flash illusions served as an indicator of audio-visual integration. We expected an altered integration as well as a different window of temporal integration for patients. Fifteen schizophrenia patients and 15 healthy volunteers matched for age and gender were included in this study. We used stimuli with eight different temporal delays (stimulus onset asynchronys (SOAs) 25, 50, 75, 100, 125, 150, 200 and 300 ms) to induce a double-flash illusion. Group differences and the widths of temporal integration windows were calculated on percentages of reported double-flash illusions. Patients showed significantly more illusions (ca. 36-44% vs. 9-16% in control subjects) for SOAs 150-300. The temporal integration window for control participants went from SOAs 25 to 200 whereas for patients integration was found across all included temporal delays. We found no significant relationship between the amount of illusions and either illness severity, chlorpromazine equivalent doses or duration of illness in patients. Our results are interpreted in favour of an enlarged temporal integration window for audio-visual stimuli in schizophrenia patients, which is consistent with previous research.
Factors affecting reorganisation of memory encoding networks in temporal lobe epilepsy
Sidhu, M.K.; Stretton, J.; Winston, G.P.; Symms, M.; Thompson, P.J.; Koepp, M.J.; Duncan, J.S.
2015-01-01
Summary Aims In temporal lobe epilepsy (TLE) due to hippocampal sclerosis reorganisation in the memory encoding network has been consistently described. Distinct areas of reorganisation have been shown to be efficient when associated with successful subsequent memory formation or inefficient when not associated with successful subsequent memory. We investigated the effect of clinical parameters that modulate memory functions: age at onset of epilepsy, epilepsy duration and seizure frequency in a large cohort of patients. Methods We studied 53 patients with unilateral TLE and hippocampal sclerosis (29 left). All participants performed a functional magnetic resonance imaging memory encoding paradigm of faces and words. A continuous regression analysis was used to investigate the effects of age at onset of epilepsy, epilepsy duration and seizure frequency on the activation patterns in the memory encoding network. Results Earlier age at onset of epilepsy was associated with left posterior hippocampus activations that were involved in successful subsequent memory formation in left hippocampal sclerosis patients. No association of age at onset of epilepsy was seen with face encoding in right hippocampal sclerosis patients. In both left hippocampal sclerosis patients during word encoding and right hippocampal sclerosis patients during face encoding, shorter duration of epilepsy and lower seizure frequency were associated with medial temporal lobe activations that were involved in successful memory formation. Longer epilepsy duration and higher seizure frequency were associated with contralateral extra-temporal activations that were not associated with successful memory formation. Conclusion Age at onset of epilepsy influenced verbal memory encoding in patients with TLE due to hippocampal sclerosis in the speech-dominant hemisphere. Shorter duration of epilepsy and lower seizure frequency were associated with less disruption of the efficient memory encoding network whilst longer duration and higher seizure frequency were associated with greater, inefficient, extra-temporal reorganisation. PMID:25616449
Beyond the double banana: improved recognition of temporal lobe seizures in long-term EEG.
Rosenzweig, Ivana; Fogarasi, András; Johnsen, Birger; Alving, Jørgen; Fabricius, Martin Ejler; Scherg, Michael; Neufeld, Miri Y; Pressler, Ronit; Kjaer, Troels W; van Emde Boas, Walter; Beniczky, Sándor
2014-02-01
To investigate whether extending the 10-20 array with 6 electrodes in the inferior temporal chain and constructing computed montages increases the diagnostic value of ictal EEG activity originating in the temporal lobe. In addition, the accuracy of computer-assisted spectral source analysis was investigated. Forty EEG samples were reviewed by 7 EEG experts in various montages (longitudinal and transversal bipolar, common average, source derivation, source montage, current source density, and reference-free montages) using 2 electrode arrays (10-20 and the extended one). Spectral source analysis used source montage to calculate density spectral array, defining the earliest oscillatory onset. From this, phase maps were calculated for localization. The reference standard was the decision of the multidisciplinary epilepsy surgery team on the seizure onset zone. Clinical performance was compared with the double banana (longitudinal bipolar montage, 10-20 array). Adding the inferior temporal electrode chain, computed montages (reference free, common average, and source derivation), and voltage maps significantly increased the sensitivity. Phase maps had the highest sensitivity and identified ictal activity at earlier time-point than visual inspection. There was no significant difference concerning specificity. The findings advocate for the use of these digital EEG technology-derived analysis methods in clinical practice.
Multiwavelength Observations of GRB 110731A: GeV Emission From Onset to Afterglow
Ackermann, M.; Ajello, M.; Asano, K.; ...
2013-01-09
In this paper, we report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for whichmore » simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. Lastly, the observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.« less
Multiwavelength Observations of GRB 110731A: GeV Emission from Onset to Afterglow
NASA Astrophysics Data System (ADS)
Ackermann, M.; Ajello, M.; Asano, K.; Baldini, L.; Barbiellini, G.; Baring, M. G.; Bastieri, D.; Bellazzini, R.; Blandford, R. D.; Bonamente, E.; Borgland, A. W.; Bottacini, E.; Bregeon, J.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Caraveo, P. A.; Cecchi, C.; Charles, E.; Chaves, R. C. G.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; D'Ammando, F.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Drlica-Wagner, A.; Favuzzi, C.; Fegan, S. J.; Focke, W. B.; Franckowiak, A.; Fukazawa, Y.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Giglietto, N.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Granot, J.; Greiner, J.; Grenier, I. A.; Grove, J. E.; Guiriec, S.; Hadasch, D.; Hanabata, Y.; Hayashida, M.; Hays, E.; Hughes, R. E.; Jackson, M. S.; Jogler, T.; Jóhannesson, G.; Johnson, A. S.; Knödlseder, J.; Kocevski, D.; Kuss, M.; Lande, J.; Larsson, S.; Latronico, L.; Longo, F.; Loparco, F.; Lovellette, M. N.; Lubrano, P.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Mészáros, P.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Moretti, E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Naumann-Godo, M.; Norris, J. P.; Nuss, E.; Nymark, T.; Ohno, M.; Ohsugi, T.; Omodei, N.; Orienti, M.; Orlando, E.; Paneque, D.; Perkins, J. S.; Pesce-Rollins, M.; Piron, F.; Pivato, G.; Racusin, J. L.; Rainò, S.; Rando, R.; Razzano, M.; Razzaque, S.; Reimer, A.; Reimer, O.; Romoli, C.; Roth, M.; Ryde, F.; Sanchez, D. A.; Sgrò, C.; Siskind, E. J.; Sonbas, E.; Spinelli, P.; Stamatikos, M.; Takahashi, H.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Tibaldo, L.; Tinivella, M.; Tosti, G.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vitale, V.; Waite, A. P.; Winer, B. L.; Wood, K. S.; Yang, Z.; Gruber, D.; Bhat, P. N.; Bissaldi, E.; Briggs, M. S.; Burgess, J. M.; Connaughton, V.; Foley, S.; Kippen, R. M.; Kouveliotou, C.; McBreen, S.; McGlynn, S.; Paciesas, W. S.; Pelassa, V.; Preece, R.; Rau, A.; van der Horst, A. J.; von Kienlin, A.; Kann, D. A.; Filgas, R.; Klose, S.; Krühler, T.; Fukui, A.; Sako, T.; Tristram, P. J.; Oates, S. R.; Ukwatta, T. N.; Littlejohns, O.
2013-02-01
We report on the multiwavelength observations of the bright, long gamma-ray burst GRB 110731A, by the Fermi and Swift observatories, and by the MOA and GROND optical telescopes. The analysis of the prompt phase reveals that GRB 110731A shares many features with bright Large Area Telescope bursts observed by Fermi during the first three years on-orbit: a light curve with short time variability across the whole energy range during the prompt phase, delayed onset of the emission above 100 MeV, extra power-law component and temporally extended high-energy emission. In addition, this is the first GRB for which simultaneous GeV, X-ray, and optical data are available over multiple epochs beginning just after the trigger time and extending for more than 800 s, allowing temporal and spectral analysis in different epochs that favor emission from the forward shock in a wind-type medium. The observed temporally extended GeV emission is most likely part of the high-energy end of the afterglow emission. Both the single-zone pair transparency constraint for the prompt signal and the spectral and temporal analysis of the forward-shock afterglow emission independently lead to an estimate of the bulk Lorentz factor of the jet Γ ~ 500-550.
Noise-induced hearing loss alters the temporal dynamics of auditory-nerve responses
Scheidt, Ryan E.; Kale, Sushrut; Heinz, Michael G.
2010-01-01
Auditory-nerve fibers demonstrate dynamic response properties in that they adapt to rapid changes in sound level, both at the onset and offset of a sound. These dynamic response properties affect temporal coding of stimulus modulations that are perceptually relevant for many sounds such as speech and music. Temporal dynamics have been well characterized in auditory-nerve fibers from normal-hearing animals, but little is known about the effects of sensorineural hearing loss on these dynamics. This study examined the effects of noise-induced hearing loss on the temporal dynamics in auditory-nerve fiber responses from anesthetized chinchillas. Post-stimulus time histograms were computed from responses to 50-ms tones presented at characteristic frequency and 30 dB above fiber threshold. Several response metrics related to temporal dynamics were computed from post-stimulus-time histograms and were compared between normal-hearing and noise-exposed animals. Results indicate that noise-exposed auditory-nerve fibers show significantly reduced response latency, increased onset response and percent adaptation, faster adaptation after onset, and slower recovery after offset. The decrease in response latency only occurred in noise-exposed fibers with significantly reduced frequency selectivity. These changes in temporal dynamics have important implications for temporal envelope coding in hearing-impaired ears, as well as for the design of dynamic compression algorithms for hearing aids. PMID:20696230
Grados, Marco A; Vasa, Roma A; Riddle, Mark A; Slomine, Beth S; Salorio, Cynthia; Christensen, James; Gerring, Joan
2008-01-01
Traumatic brain injury (TBI) constitutes a major source of psychiatric morbidity and disability. This study examines new onset of obsessions and compulsions (OCS) within 1 year of severe pediatric TBI. Eighty children and adolescents ages 6-18 years with severe TBI were interviewed by a child psychiatrist using the Diagnostic Interview for Children and Adolescents-Revised to diagnose OCS and comorbidities. A brain magnetic resonance imaging used a 1.5 T scanner 3 months after injury with a T1-weighted spoiled gradient-recalled-echo sequence to provide high spatial resolution and T1- and T2(*)-contrast sensitivity. Race, sex, socioeconomic status, psychosocial adversity, and injury severity were used to predict new onset OCS. Psychiatric comorbidities and brain lesion volumes in orbitofrontal, mesial prefrontal, temporal lobe, basal ganglia, and thalamus were examined in relation to new onset OCS. Twenty-one children (21/72, 29.2%) had OCS after TBI. Most common were worries about disease, cleanliness, and inappropriate actions as well as excessive cleaning, doing things a certain way and ordering. Anxiety disorders, mania, dysthymia, depressive symptoms, and posttraumatic stress disorder were significantly associated with new onset OCS. Injury severity was not associated with new onset OCS. Greater psychosocial adversity (P=0.009), and being female (P=0.005) were associated with OCS while mesial prefrontal and temporal lobe lesions were associated with new onset obsessions (P<0.05). OCS are common after severe pediatric TBI and are associated with greater comorbidities. New onset obsessions are associated with female sex, psychosocial adversity, and mesial prefrontal and temporal lesions. Published 2007 Wiley-Liss, Inc.
Ballmaier, Martina; Kumar, Anand; Thompson, Paul M; Narr, Katherine L; Lavretsky, Helen; Estanol, Laverne; Deluca, Heather; Toga, Arthur W
2004-11-01
The authors used magnetic resonance imaging and an image analysis technique known as cortical pattern matching to map cortical gray matter deficits in elderly depressed patients with an illness onset after age 60 (late-onset depression). Seventeen patients with late-onset depression (11 women and six men; mean age=75.24, SD=8.52) and 17 group-matched comparison subjects (11 women and six men; mean age=73.88, SD=7.61) were included. Detailed spatial analyses of gray matter were conducted across the entire cortex by measuring local proportions of gray matter at thousands of homologous cortical surface locations in each subject, and these patterns were matched across subjects by using elastic transformations to align sulcal topography. To visualize regional changes, statistical differences were mapped at each cortical surface location in three dimensions. The late-onset depression group exhibited significant gray matter deficits in the right lateral temporal cortex and the right parietal cortex, where decreases were most pronounced in sensorimotor regions. The statistical maps also showed gray matter deficits in the same regions of the left hemisphere that approached significance after permutation testing. No significant group differences were detected in frontal cortices or any other anatomical region. Regionally specific decreases of gray matter occur in late-onset depression, supporting the hypothesis that this subset of elderly patients with major depression presents with certain unique neuroanatomical abnormalities that may differ from patients with an earlier onset of illness.
Interictal 18FDG PET findings in temporal lobe epilepsy with déjà vu.
Adachi, N; Koutroumanidis, M; Elwes, R D; Polkey, C E; Binnie, C D; Reynolds, E H; Barrington, S F; Maisey, M N; Panayiotopoulos, C P
1999-01-01
The authors studied the functional anatomy of the déjà vu (DV) experience in nonlesional temporal lobe epilepsy (TLE), using interictal fluorine-18 fluorodeoxyglucose PET in 14 patients with and 17 patients without DV. Several clinical conditions, such as age at PET study, side of ictal onset zone, and dominance for language, were no different between the two groups. The patients with DV showed significant relative reductions in glucose metabolism in the mesial temporal structures and the parietal cortex. The findings demonstrate that ictal DV is of no lateralizing value. They further suggest that temporal lobe dysfunction is necessary but not sufficient for the generation of DV. Extensive association cortical areas may be involved as part of the network that integrates this distinct experience.
The Role of the Right Posterior Parietal Cortex in Temporal Order Judgment
ERIC Educational Resources Information Center
Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min
2009-01-01
Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the…
Sakamoto, Koji; Onimaru, Koh; Munakata, Keijiro; Suda, Natsuno; Tamura, Mika; Ochi, Haruki; Tanaka, Mikiko
2009-01-01
We explored the molecular mechanisms of morphological transformations of vertebrate paired fin/limb evolution by comparative gene expression profiling and functional analyses. In this study, we focused on the temporal differences of the onset of Sonic hedgehog (Shh) expression in paired appendages among different vertebrates. In limb buds of chick and mouse, Shh expression is activated as soon as there is a morphological bud, concomitant with Hoxd10 expression. In dogfish (Scyliorhinus canicula), however, we found that Shh was transcribed late in fin development, concomitant with Hoxd13 expression. We utilized zebrafish as a model to determine whether quantitative changes in hox expression alter the timing of shh expression in pectoral fins of zebrafish embryos. We found that the temporal shift of Shh activity altered the size of endoskeletal elements in paired fins of zebrafish and dogfish. Thus, a threshold level of hox expression determines the onset of shh expression, and the subsequent heterochronic shift of Shh activity can affect the size of the fin endoskeleton. This process may have facilitated major morphological changes in paired appendages during vertebrate limb evolution.
Tervaniemi, M; Schröger, E; Näätänen, R
1997-05-23
Neuronal mechanisms involved in the processing of complex sounds with asynchronous onsets were studied in reading subjects. The sound onset asynchrony (SOA) between the leading partial and the remaining complex tone was varied between 0 and 360 ms. Infrequently occurring deviant sounds (in which one out of 10 harmonics was different in pitch relative to the frequently occurring standard sound) elicited the mismatch negativity (MMN), a change-specific cortical event-related potential (ERP) component. This indicates that the pitch of standard stimuli had been pre-attentively coded by sensory-memory traces. Moreover, when the complex-tone onset fell within temporal integration window initiated by the leading-partial onset, the deviants elicited the N2b component. This indexes that involuntary attention switch towards the sound change occurred. In summary, the present results support the existence of pre-perceptual integration mechanism of 100-200 ms duration and emphasize its importance in switching attention towards the stimulus change.
Temporal differentiation of pH-dependent capacitive current from dopamine.
Yoshimi, Kenji; Weitemier, Adam
2014-09-02
Voltammetric recording of dopamine (DA) with fast-scan cyclic voltammetry (FSCV) on carbon fiber microelectrodes have been widely used, because of its high sensitivity to dopamine. However, since an electric double layer on a carbon fiber surface in a physiological ionic solution behaves as a capacitor, fast voltage manipulation in FSCV induces large capacitive current. The faradic current from oxidation/reduction of target chemicals must be extracted from this large background current. It is known that ionic shifts, including H(+), influence this capacitance, and pH shift can cause confounding influences on the FSCV recordings within a wide range of voltage. Besides FSCV with a triangular waveform, we have been using rectangular pulse voltammetry (RPV) for dopamine detection in the brain. In this method, the onset of a single pulse causes a large capacitive current, but unlike FSCV, the capacitive current is restricted to a narrow temporal window of just after pulse onset (<5 ms). In contrast, the peak of faradic current from dopamine oxidation occurs after a delay of more than a few milliseconds. Taking advantage of the temporal difference, we show that RPV could distinguish dopamine from pH shifts clearly and easily. In addition, the early onset current was useful to evaluate pH shifts. The narrow voltage window of our RPV pulse allowed a clear differentiation of dopamine and serotonin (5-HT), as we have shown previously. Additional recording with RPV, alongside FSCV, would improve identification of chemicals such as dopamine, pH, and 5-HT.
Wachter, N J; Mentzel, M; Häderer, C; Krischak, G D; Gülke, J
2018-02-01
Ulnar nerve injuries can cause deficient hand movement patterns. Their assessment is important for diagnosis and rehabilitation in hand surgery cases. The purpose of this study was to quantify the changes in temporal coordination of the finger joints during different power grips with an ulnar nerve block by means of a sensor glove. In 21 healthy subjects, the onset and end of the active flexion of the 14 finger joints when gripping objects of different diameters was recorded by a sensor glove. The measurement was repeated after an ulnar nerve block was applied in a standardized setting. The change in the temporal coordination of the metacarpophalangeal (MCP), proximal interphalangeal (PIP) and distal interphalangeal (DIP) joints with and without the nerve block was calculated within the same subject. In healthy subjects, the MCP joints started their movement prior to the PIP joints in the middle and ring finger, whereas this occurred in the reverse order at the index and little finger. The DIP joint onset was significantly delayed (P<0.01). With the ulnar nerve block, this coordination shifted towards simultaneous onset of all joints, independent of the grip diameter. The thumb and index finger were affected the least. With an ulnar nerve block, the PIP joints completed their movement prior to the MCP joints when gripping small objects (G1 and G2), whereas the order was reversed with larger objects (G3 and G4). The alterations with ulnar nerve block affected mainly the little finger when gripping small objects. With larger diameter objects, all fingers had a significant delay at the end of the PIP joint movement relative to the MCP and DIP joints, and the PIP and DIP joint sequence was reversed (P<0.01). Based on the significant changes in temporal coordination of finger flexion during different power grips, there are biomechanical effects of loss of function of the intrinsic muscles caused by an ulnar nerve block on the fine motor skills of the hand. This can be important for the diagnosis and rehabilitation of ulnar nerve lesions of the hand. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.
Temporal Lobe Epilepsy Semiology
Blair, Robert D. G.
2012-01-01
Epilepsy represents a multifaceted group of disorders divided into two broad categories, partial and generalized, based on the seizure onset zone. The identification of the neuroanatomic site of seizure onset depends on delineation of seizure semiology by a careful history together with video-EEG, and a variety of neuroimaging technologies such as MRI, fMRI, FDG-PET, MEG, or invasive intracranial EEG recording. Temporal lobe epilepsy (TLE) is the commonest form of focal epilepsy and represents almost 2/3 of cases of intractable epilepsy managed surgically. A history of febrile seizures (especially complex febrile seizures) is common in TLE and is frequently associated with mesial temporal sclerosis (the commonest form of TLE). Seizure auras occur in many TLE patients and often exhibit features that are relatively specific for TLE but few are of lateralizing value. Automatisms, however, often have lateralizing significance. Careful study of seizure semiology remains invaluable in addressing the search for the seizure onset zone. PMID:22957241
Composing lexical versus functional adjectives: Evidence for uniformity in the left temporal lobe.
Zhang, Linmin; Pylkkänen, Liina
2018-04-24
Featural information (e.g., color or shape) allows interlocutors to focus their attention on the specific items under discussion from the vast set of possibilities in the environment. Intriguingly, when they are used to modify and restrict nouns, adjectives can either carry featural information themselves (e.g., green car) or retrieve featural information from the context (e.g., somebody points at a car and claims that she has the same car or a different car). Do the processing of same/different car and green car share neural correlates? For the composition of nouns with feature-carrying adjectives, prior work revealed early compositional effects (roughly 200 ms after noun onset) in the left anterior temporal lobe. However, although we know that such effects do not extend to cases of numeral quantification, which add no conceptual features to the noun (e.g., two boats), we do not know whether they extend to functional adjectives that themselves introduce no features, but instead reference features in the context. To address this question, we measured magnetoencephalography (MEG) during the processing of five types of noun phrases (NPs): same NPs (e.g., same star), different NPs (e.g., different star), color NPs (e.g., green star), comparative NPs (e.g., larger star), and another NPs (e.g., another star). Our main finding was that between 185 to 240 ms after noun onset, same and different NPs patterned with the color NPs in their elicited left temporal lobe activity, and same NPs even trended toward higher amplitudes than the color NPs. This shows that the mechanism driving combinatory effects in the left temporal cortex does not require the input words to directly name conceptual features, as long as the words reference featural information in the context, and that overlapping neural correlates underlie the composition of featural information from both linguistic and nonlinguistic sources.
Inoue, Y; Mihara, T; Matsuda, K; Tottori, T; Otsubo, T; Yagi, K
2000-02-01
The diagnostic and prognostic significance of the absence of simple partial seizures (SPS) immediately preceding complex partial seizures (CPS) was examined in patients with temporal lobe epilepsy. The status of self-reported SPS in 193 patients with temporal lobe epilepsy who had surgical therapy more than 2 years ago was reviewed. Before surgery, 37 patients never experienced SPS before CPS (Group A), 156 patients either always or occasionally had SPS before CPS (Group B). The frequency of mesial temporal sclerosis (MTS) was lower and the age at onset of epilepsy was higher in Group A. The seizure focus was in the language-dominant temporal lobe in 73% of the cases in Group A, compared with 40% in Group B. The surgical outcome did not differ between the two groups. The findings suggest that temporal lobe seizures without preceding SPS tend to originate in the language-dominant temporal lobe that contains a pathologic etiology other than MTS, especially in the lateral temporal lobe. The surgical outcome in patients without SPS is similar to that in patients with SPS.
Spatio-Temporal Brain Mapping of Motion-Onset VEPs Combined with fMRI and Retinotopic Maps
Pitzalis, Sabrina; Strappini, Francesca; De Gasperis, Marco; Bultrini, Alessandro; Di Russo, Francesco
2012-01-01
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR). PMID:22558222
Suchy, Y; Chelune, G
2001-08-01
Changes in self-reported mood assessed by the Beck Depression Inventory (BDI) were examined in a sample of 60 left-hemisphere speech-dominant patients who underwent epilepsy surgery (15 right frontal, 15 left frontal, 15 right temporal, 15 left temporal). Temporal lobectomy patients were matched to frontal lobectomy patients by presurgical BDI scores, premorbid K-BIT composite IQ, sex, age, and years since seizure onset. Overall, self-reported mood improved following surgery, with men showing a greater improvement than women. There were no differences among the four groups in terms of pre-surgical and post-surgical reported mood. However, frontal patients showed more extreme changes in mood in either direction than temporal patients. Additionally, while temporal patients showed gains in Composite IQ, no such gains were observed in frontal patients. Changes in mood in frontal patients were not related to postsurgical seizure outcome or time since surgery, but were related to changes in Composite IQ.
Tang, Xiaoyu; Li, Chunlin; Li, Qi; Gao, Yulin; Yang, Weiping; Yang, Jingjing; Ishikawa, Soushirou; Wu, Jinglong
2013-10-11
Utilizing the high temporal resolution of event-related potentials (ERPs), we examined how visual spatial or temporal cues modulated the auditory stimulus processing. The visual spatial cue (VSC) induces orienting of attention to spatial locations; the visual temporal cue (VTC) induces orienting of attention to temporal intervals. Participants were instructed to respond to auditory targets. Behavioral responses to auditory stimuli following VSC were faster and more accurate than those following VTC. VSC and VTC had the same effect on the auditory N1 (150-170 ms after stimulus onset). The mean amplitude of the auditory P1 (90-110 ms) in VSC condition was larger than that in VTC condition, and the mean amplitude of late positivity (300-420 ms) in VTC condition was larger than that in VSC condition. These findings suggest that modulation of auditory stimulus processing by visually induced spatial or temporal orienting of attention were different, but partially overlapping. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
McCrea, Christopher R; Morris, Richard J
2005-09-01
This study was designed to examine the temporal acoustic differences between male trained singers and nonsingers during speaking and singing across voiced and voiceless English stop consonants. Recordings were made of 5 trained singers and 5 nonsingers, and acoustically analyzed for voice onset time (VOT). A mixed analysis of variance showed that the male trained singers had significantly longer mean VOT than did the nonsingers during voiceless stop production. Sung productions of voiceless stops had significantly longer mean VOTs than did the spoken productions. No significant differences were observed for the voiced stops, nor were any interactions observed. These results indicated that vocal training and phonatory task have a significant influence on VOT.
Senkowski, Daniel; Saint-Amour, Dave; Kelly, Simon P; Foxe, John J
2007-07-01
In everyday life, we continuously and effortlessly integrate the multiple sensory inputs from objects in motion. For instance, the sound and the visual percept of vehicles in traffic provide us with complementary information about the location and motion of vehicles. Here, we used high-density electrical mapping and local auto-regressive average (LAURA) source estimation to study the integration of multisensory objects in motion as reflected in event-related potentials (ERPs). A randomized stream of naturalistic multisensory-audiovisual (AV), unisensory-auditory (A), and unisensory-visual (V) "splash" clips (i.e., a drop falling and hitting a water surface) was presented among non-naturalistic abstract motion stimuli. The visual clip onset preceded the "splash" onset by 100 ms for multisensory stimuli. For naturalistic objects early multisensory integration effects beginning 120-140 ms after sound onset were observed over posterior scalp, with distributed sources localized to occipital cortex, temporal lobule, insular, and medial frontal gyrus (MFG). These effects, together with longer latency interactions (210-250 and 300-350 ms) found in a widespread network of occipital, temporal, and frontal areas, suggest that naturalistic objects in motion are processed at multiple stages of multisensory integration. The pattern of integration effects differed considerably for non-naturalistic stimuli. Unlike naturalistic objects, no early interactions were found for non-naturalistic objects. The earliest integration effects for non-naturalistic stimuli were observed 210-250 ms after sound onset including large portions of the inferior parietal cortex (IPC). As such, there were clear differences in the cortical networks activated by multisensory motion stimuli as a consequence of the semantic relatedness (or lack thereof) of the constituent sensory elements.
NASA Astrophysics Data System (ADS)
Zheng, Z.; Zhu, W.
2016-12-01
Plant phenology is strongly controlled by climate and has become a sensitive bio-indicator to study the plant response to climate change. Since the high altitude, permafrost geography and harsh physical environment of the Tibetan Plateau (TP), the phenology shift in the TP was thought to be more sensitive than many other regions. However, the study of phenology in the TP was greatly limited by the lack of ground-observed phenological data. In this study, we collected the phonological records of first leaf date (FLD) and the first flowering date (FFD) of two herbaceous species (Plantago asiatica and Taraxacum mongolicum) both from 14 stations across the TP during 2000-2011 and analyzed the spatio-temporal variations of spring phenology. The results showed that the onset dates of FLD and FFD exhibited strong dependence on latitude, longitude and altitude because the onset dates of spring phenology occurred earlier at warmer locations. The sensitivities of spring phenology temperature varied among stations and earlier phenological events showed more negative temperature sensitivity except for the FFD of Taraxacum mongolicum. But the relationship between spring phenology and precipitation was not clear. Though the diverse trends of spring phenology of Plantago asiatica and Taraxacum mongolicum were found, the differences between the onset dates of FLD of the two species tended to increase (P < 0.05). However, the differences between the onset dates of FFD of the two species showed a reducing tendency (P < 0.01). These findings can help us to better understand the responses of plants to climate change in alpine ecosystem and provide information for phenology modelling.
Fauser, Susanne; Schulze-Bonhage, Andreas
2006-01-01
Hippocampal sclerosis is often associated with macroscopic or microscopic dysplasia in the temporal neocortex (TN). The relevance of such a dual pathology with regard to epileptogenesis is unclear. This study investigates the role of both pathologies in the generation of ictal and interictal activity. Ictal (113 seizures) and interictal data from invasive EEG recordings with simultaneous depth electrodes in the hippocampus and subdural electrodes over the TN were analysed retrospectively in 12 patients with variable degrees of hippocampal sclerosis and different types of histologically confirmed temporal cortical dysplasia [all male, age at epilepsy onset <1-29 years (mean 9.6 years), age when invasive recordings were performed 6-50 years (mean 28.2 years)]. Of the seizures 41.3% arose from the amygdala/hippocampus complex (AHC), 34.7% from the TN, 22% were simultaneously recorded from AHC and TN (indeterminate seizure onset), and 2% from other regions. In three patients, seizure onset was recorded only from the AHC. In patients with severe hippocampal sclerosis only 12% of the seizures arose from the TN, whereas in patients with mild hippocampal sclerosis 58% arose from the TN. The type of cortical dysplasia, however, did not predict seizure onset in the AHC or TN. Propagation time from the TN to the AHC tended to be shorter (mean 7.4 s) than vice versa (mean 13.7 s). The most common initial ictal patterns in the AHC were rhythmic beta activity (<25 Hz) and repetitive sharp waves, and in the TN were fast activity (>25 Hz) and repetitive sharp waves. The interictal patterns over the TN were similar to those seen over extratemporal focal cortical dysplasias. Simultaneous recordings from the hippocampus and the TN strongly suggest that dysplastic tissue in the TN is often epileptogenic. The quantitative contribution of the hippocampus to seizure generation corresponded with the degree of hippocampal pathology, whereas different subtypes of cortical dysplasia did not affect its relative contribution to seizure generation and even mild forms of dysplasia were epileptogenic.
Data mining neocortical high-frequency oscillations in epilepsy and controls
Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H.; Marsh, Richard; Litt, Brian; Worrell, Gregory A.
2011-01-01
Transient high-frequency (100–500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100–250 Hz) and fast ripple (250–500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100–500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value. PMID:21903727
Data mining neocortical high-frequency oscillations in epilepsy and controls.
Blanco, Justin A; Stead, Matt; Krieger, Abba; Stacey, William; Maus, Douglas; Marsh, Eric; Viventi, Jonathan; Lee, Kendall H; Marsh, Richard; Litt, Brian; Worrell, Gregory A
2011-10-01
Transient high-frequency (100-500 Hz) oscillations of the local field potential have been studied extensively in human mesial temporal lobe. Previous studies report that both ripple (100-250 Hz) and fast ripple (250-500 Hz) oscillations are increased in the seizure-onset zone of patients with mesial temporal lobe epilepsy. Comparatively little is known, however, about their spatial distribution with respect to seizure-onset zone in neocortical epilepsy, or their prevalence in normal brain. We present a quantitative analysis of high-frequency oscillations and their rates of occurrence in a group of nine patients with neocortical epilepsy and two control patients with no history of seizures. Oscillations were automatically detected and classified using an unsupervised approach in a data set of unprecedented volume in epilepsy research, over 12 terabytes of continuous long-term micro- and macro-electrode intracranial recordings, without human preprocessing, enabling selection-bias-free estimates of oscillation rates. There are three main results: (i) a cluster of ripple frequency oscillations with median spectral centroid = 137 Hz is increased in the seizure-onset zone more frequently than a cluster of fast ripple frequency oscillations (median spectral centroid = 305 Hz); (ii) we found no difference in the rates of high frequency oscillations in control neocortex and the non-seizure-onset zone neocortex of patients with epilepsy, despite the possibility of different underlying mechanisms of generation; and (iii) while previous studies have demonstrated that oscillations recorded by parenchyma-penetrating micro-electrodes have higher peak 100-500 Hz frequencies than penetrating macro-electrodes, this was not found for the epipial electrodes used here to record from the neocortical surface. We conclude that the relative rate of ripple frequency oscillations is a potential biomarker for epileptic neocortex, but that larger prospective studies correlating high-frequency oscillations rates with seizure-onset zone, resected tissue and surgical outcome are required to determine the true predictive value.
Long term outcome of temporal lobe epilepsy surgery: analyses of 140 consecutive patients
Jutila, L; Immonen, A; Mervaala, E; Partanen, J; Partanen, K; Puranen, M; Kalviainen, R; Alafuzoff, I; Hurskainen, H; Vapalahti, M; Ylinen, A
2002-01-01
Objective: To analyse the long term results of temporal lobe epilepsy surgery in a national epilepsy surgery centre for adults, and to evaluate preoperative factors predicting a good postoperative outcome on long term follow up. Methods: Longitudinal follow up of 140 consecutive adult patients operated on for drug resistant temporal lobe epilepsy. Results: 46% of patients with unilateral temporal lobe epilepsy became seizure-free, 10% had only postoperative auras, and 15% had rare seizures on follow up for (mean (SD)) 5.4 (2.6) years, range 0.25 to 10.5 years. The best outcome was after introduction of a standardised magnetic resonance (MR) imaging protocol (1993–99): in unilateral temporal lobe epilepsy, 52% of patients became seizure-free, 7% had only postoperative auras, and 17% had rare seizures (median follow up 3.8 years, range 0.25 to 6.5 years); in palliative cases (incomplete removal of focus), a reduction in seizures of at least 80% was achieved in 71% of cases (median follow up 3.1 years, range 1.1 to 6.8 years). Most seizure relapses (86%) occurred within one year of the operation, and outcome at one year did not differ from the long term outcome. Unilateral hippocampal atrophy with or without temporal cortical atrophy on qualitative MR imaging (p < 0.001, odds ratio (OR) 5.2, 95% confidence interval (CI) 2.0 to 13.7), other unitemporal structural lesions on qualitative MR imaging (p ≤ 0.001, OR 6.9, 95% CI 2.2 to 21.5), onset of epilepsy before the age of five years (p < 0.05, OR 2.9, 95% CI 1.2 to 7.2), and focal seizures with ictal impairment of consciousness and focal ictal EEG as a predominant seizure type (p < 0.05, OR 3.4, 95% CI 1.2 to 9.1) predicted Engel I–II outcome. Hippocampal volume reduction of at least 1 SD from the mean of controls on the side of the seizure onset (p < 0.05, OR 3.1, 95% CI 1.1 to 9.2) also predicted Engel I–II outcome. Conclusions: Outcome at one year postoperatively is highly predictive of long term outcome after temporal lobe epilepsy surgery. Unitemporal MR imaging abnormalities, early onset of epilepsy, and seizure type predominance are factors associated with good postoperative outcome. PMID:12397139
Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E
2013-01-01
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.
Nonlinear times series analysis of epileptic human electroencephalogram (EEG)
NASA Astrophysics Data System (ADS)
Li, Dingzhou
The problem of seizure anticipation in patients with epilepsy has attracted significant attention in the past few years. In this paper we discuss two approaches, using methods of nonlinear time series analysis applied to scalp electrode recordings, which is able to distinguish between epochs temporally distant from and just prior to, the onset of a seizure in patients with temporal lobe epilepsy. First we describe a method involving a comparison of recordings taken from electrodes adjacent to and remote from the site of the seizure focus. In particular, we define a nonlinear quantity which we call marginal predictability. This quantity is computed using data from remote and from adjacent electrodes. We find that the difference between the marginal predictabilities computed for the remote and adjacent electrodes decreases several tens of minutes prior to seizure onset, compared to its value interictally. We also show that these difl'crcnc es of marginal predictability intervals are independent of the behavior state of the patient. Next we examine the please coherence between different electrodes both in the long-range and the short-range. When time is distant from seizure onsets ("interictally"), epileptic patients have lower long-range phase coherence in the delta (1-4Hz) and beta (18-30Hz) frequency band compared to nonepileptic subjects. When seizures approach (''preictally"), we observe an increase in phase coherence in the beta band. However, interictally there is no difference in short-range phase coherence between this cohort of patients and non-epileptic subjects. Preictally short-range phase coherence also increases in the alpha (10-13Hz) and the beta band. Next we apply the quantity marginal predictability on the phase difference time series. Such marginal predictabilities are lower in the patients than in the non-epileptic subjects. However, when seizure approaches, the former moves asymptotically towards the latter.
Casciato, Sara; Picardi, Angelo; D'Aniello, Alfredo; De Risi, Marco; Grillea, Giovanni; Quarato, Pier Paolo; Mascia, Addolorata; Grammaldo, Liliana G; Meldolesi, Giulio Nicolo'; Morace, Roberta; Esposito, Vincenzo; Di Gennaro, Giancarlo
2017-05-01
To assess the clinical significance of temporal pole abnormalities (temporopolar blurring, TB, and temporopolar atrophy, TA) detected by using 3 Tesla MRI in the preoperative workup in patients with temporal lobe epilepsy due to hippocampal sclerosis (TLE-HS) who underwent surgery. We studied 78 consecutive patients with TLE-HS who underwent surgery and were followed up for at least 2 years. Based on findings of pre-surgical 3 Tesla MRI, patients were subdivided in subgroups according to the presence of TB or TA. Subgroups were compared on demographic, clinical, neuropsychological data and seizure outcome. TB was found in 39 (50%) patients, while TA was found in 32 (41%) patients, always ipsilateral to HS, with a considerable degree of overlap (69%) between TB and TA (p=0.01). Patients with temporopolar abnormalities did not significantly differ from those without TB or TA with regard to sex, age, age of epilepsy onset, duration of epilepsy, history of febrile convulsions or birth complications, side of surgery, seizure frequency at surgery, presence of GTCSs, and, in particular, seizure outcome. On the other hand, TB patients show a less frequent family history of epilepsy (p<.05) while age at epilepsy onset showed a trend to be lower in the TB group (p=.09). Patients with temporopolar atrophy did not significantly differ from those without TA on any variable, except for age at epilepsy onset, which was significantly lower for the TA group (p<.05). History of birth complications and longer duration of epilepsy also showed a trend to be associated with TA (p=.08). Multivariate analysis corroborated the association between temporopolar abnormalities and absence of family history of epilepsy and history of birth complications. High-field 3 T MRI in the preoperative workup for epilepsy surgery confirms that temporopolar abnormalities are frequent findings in TLE-HS patients and may be helpful to lateralize the epileptogenic zone. Their presence did not influence seizure outcome. Copyright © 2017 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
The role of the right posterior parietal cortex in temporal order judgment.
Woo, Sung-Ho; Kim, Ki-Hyun; Lee, Kyoung-Min
2009-03-01
Perceived order of two consecutive stimuli may not correspond to the order of their physical onsets. Such a disagreement presumably results from a difference in the speed of stimulus processing toward central decision mechanisms. Since previous evidence suggests that the right posterior parietal cortex (PPC) plays a role in modulating the processing speed of a visual target, we applied single-pulse TMS over the region in 14 normal subjects, while they judged the temporal order of two consecutive visual stimuli. Stimulus-onset-asynchrony (SOA) randomly varied between -100 and 100 ms in 20-ms steps (with a positive SOA when a target appeared on the right hemi-field before the other on the left), and a point of subjective simultaneity was measured for individual subjects. TMS stimulation was time-locked at 50, 100, 150, and 200 ms after the onset of the first stimulus, and results in trials with TMS on right PPC were compared with those in trials without TMS. TMS over the right PPC delayed the detection of a visual target in the contralateral, i.e., left hemi-field by 24 (+/-7 SE) ms and 16 (+/-4 SE) ms, when the stimulation was given at 50 and 100 ms after the first target onset. In contrast, TMS on the left PPC was not effective. These results show that the right PPC is important in a timely detection of a target appearing on the left visual field, especially in competition with another target simultaneously appearing in the opposite field.
Earlier tachycardia onset in right than left mesial temporal lobe seizures.
Kato, Kazuhiro; Jin, Kazutaka; Itabashi, Hisashi; Iwasaki, Masaki; Kakisaka, Yosuke; Aoki, Masashi; Nakasato, Nobukazu
2014-10-07
To clarify whether the presence and timing of peri-ictal heart rate (HR) change is a seizure lateralizing sign in patients with mesial temporal lobe epilepsy (mTLE). Long-term video EEGs were retrospectively reviewed in 21 patients, 7 men and 14 women aged 13 to 67 years, diagnosed as mTLE with MRI lesions in the mesial temporal structures (hippocampal sclerosis in 20 cases, amygdala hypertrophy in 1 case). Seventy-seven partial seizures without secondary generalization were extracted. Peri-ictal HR change was compared between 29 right seizures (9 patients) and 48 left seizures (12 patients). HR abruptly increased in all 29 right seizures and 42 of 48 left seizures. Onset time of HR increase in relation to ictal EEG onset was significantly earlier in right seizures than in left seizures (mean ± SD, -11.5 ± 14.8 vs 9.2 ± 21.7 seconds; p < 0.0001). Time of maximum HR was also significantly earlier in right seizures than in left seizures (36.0 ± 18.1 vs 58.0 ± 28.7 seconds; p < 0.0001). Maximum HR changes from baseline showed no significant difference between right and left seizures (47.5 ± 19.1 vs 40.8 ± 20.0/min). Significantly earlier tachycardia in right than left mTLE seizures supports previous hypotheses that the right cerebral hemisphere is dominant in the sympathetic network. No HR change, or delayed tachycardia possibly due to seizure propagation to the right hemisphere, may be a useful lateralizing sign of left mTLE seizures. © 2014 American Academy of Neurology.
NASA Astrophysics Data System (ADS)
Vyhnalek, Brian; Zurcher, Ulrich; O'Dwyer, Rebecca; Kaufman, Miron
2009-10-01
A wide range of heart rate irregularities have been reported in small studies of patients with temporal lobe epilepsy [TLE]. We hypothesize that patients with TLE display cardiac dysautonomia in either a subclinical or clinical manner. In a small study, we have retrospectively identified (2003-8) two groups of patients from the epilepsy monitoring unit [EMU] at the Cleveland Clinic. No patients were diagnosed with cardiovascular morbidities. The control group consisted of patients with confirmed pseudoseizures and the experimental group had confirmed right temporal lobe epilepsy through a seizure free outcome after temporal lobectomy. We quantified the heart rate variability using the approximate entropy [ApEn]. We found similar values of the ApEn in all three states of consciousness (awake, sleep, and proceeding seizure onset). In the TLE group, there is some evidence for greater variability in the awake than in either the sleep or proceeding seizure onset. Here we present results for mathematically-generated time series: the heart rate fluctuations ξ follow the γ statistics i.e., p(ξ)=γ-1(k) ξ^k exp(-ξ). This probability function has well-known properties and its Shannon entropy can be expressed in terms of the γ-function. The parameter k allows us to generate a family of heart rate time series with different statistics. The ApEn calculated for the generated time series for different values of k mimic the properties found for the TLE and pseudoseizure group. Our results suggest that the ApEn is an effective tool to probe differences in statistics of heart rate fluctuations.
Cai, Stephen S; von Coelln, Rainer; Kouo, Theresa J
2016-12-01
Imaging findings of adult-onset mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) syndrome is poorly documented. The authors present a 48-year-old woman with subacute onset of word-finding difficulties and right arm stiffness. Magnetic resonance imaging performed 2 weeks prior revealed left temporal lobe diffusion and fluid-attenuated inversion recovery hyperintensity predominantly involving the cortex. The apparent diffusion coefficient map showed preserved signal in the temporal cortex. Subsequent magnetic resonance imagings demonstrated a new diffusion signal abnormality extending to the left parietal cortex and occipital cortex with resolving diffusion hyperintensity in the temporal lobe. MR spectroscopy showed scattered areas of lactate deposition. Diagnosis of MELAS syndrome was confirmed by genetic analysis. Fluctuating, migratory stroke-like lesions with a predilection for the parietal, temporal, and occipital cortex that do not conform to a vascular territory and a lactate spike at 1.3 ppm on MR spectroscopy are characteristic of MELAS syndrome. Preserved signal intensity on apparent diffusion coefficient is useful to distinguish MELAS syndrome from ischemic infarction where the signal is typically reduced.
Cadotte, Alex J.; DeMarse, Thomas B.; Mareci, Thomas H.; Parekh, Mansi; Talathi, Sachin S.; Hwang, Dong-Uk; Ditto, William L.; Ding, Mingzhou; Carney, Paul R.
2010-01-01
An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gryus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures. PMID:20304005
Cadotte, Alex J; DeMarse, Thomas B; Mareci, Thomas H; Parekh, Mansi B; Talathi, Sachin S; Hwang, Dong-Uk; Ditto, William L; Ding, Mingzhou; Carney, Paul R
2010-05-30
An understanding of the in vivo spatial emergence of abnormal brain activity during spontaneous seizure onset is critical to future early seizure detection and closed-loop seizure prevention therapies. In this study, we use Granger causality (GC) to determine the strength and direction of relationships between local field potentials (LFPs) recorded from bilateral microelectrode arrays in an intermittent spontaneous seizure model of chronic temporal lobe epilepsy before, during, and after Racine grade partial onset generalized seizures. Our results indicate distinct patterns of directional GC relationships within the hippocampus, specifically from the CA1 subfield to the dentate gyrus, prior to and during seizure onset. Our results suggest sequential and hierarchical temporal relationships between the CA1 and dentate gyrus within and across hippocampal hemispheres during seizure. Additionally, our analysis suggests a reversal in the direction of GC relationships during seizure, from an abnormal pattern to more anatomically expected pattern. This reversal correlates well with the observed behavioral transition from tonic to clonic seizure in time-locked video. These findings highlight the utility of GC to reveal dynamic directional temporal relationships between multichannel LFP recordings from multiple brain regions during unprovoked spontaneous seizures. (c) 2010 Elsevier B.V. All rights reserved.
Using temporal mining to examine the development of lymphedema in breast cancer survivors.
Green, Jason M; Paladugu, Sowjanya; Shuyu, Xu; Stewart, Bob R; Shyu, Chi-Ren; Armer, Jane M
2013-01-01
Secondary lymphedema is a lifetime risk for breast cancer survivors and can severely affect quality of life. Early detection and treatment are crucial for successful lymphedema management. Limb volume measurements can be utilized not only to diagnose lymphedema but also to track progression of limb volume changes before lymphedema, which has the potential to provide insight into the development of this condition. This study aims to identify commonly occurring patterns in limb volume changes in breast cancer survivors before the development of lymphedema and to determine if there were differences in these patterns between certain patient subgroups. Furthermore, pattern differences were studied between patients who developed lymphedema quickly and those whose onset was delayed. A temporal data mining technique was used to identify and compare common patterns in limb volume measurements in patient subgroups of study participants (n = 232). Patterns were filtered initially by support and confidence values, and then t tests were used to determine statistical significance of the remaining patterns. Higher body mass index and the presence of postoperative swelling are supported as risk factors for lymphedema. In addition, a difference in trajectory to the lymphedema state was observed. The results have potential to guide clinical guidelines for assessment of latent and early-onset lymphedema.
Symptom profile of major depressive disorder in women with eating disorders.
Fernandez-Aranda, Fernando; Pinheiro, Andrea Poyastro; Tozzi, Federica; Thornton, Laura M; Fichter, Manfred M; Halmi, Katherine A; Kaplan, Allan S; Klump, Kelly L; Strober, Michael; Woodside, D Blake; Crow, Scott; Mitchell, James; Rotondo, Alessandro; Keel, Pamela; Plotnicov, Katherine H; Berrettini, Wade H; Kaye, Walter H; Crawford, Steven F; Johnson, Craig; Brandt, Harry; La Via, Maria; Bulik, Cynthia M
2007-01-01
Based on the well-documented association between eating disorders (EDs) and affective disorders, the patterns of comorbidity of EDs and major depressive disorder (MDD) were investigated. The temporal relation between EDs and MDD onset was analyzed to determine differences in the course and nature of MDD when experienced prior to versus after the onset of the ED. Lifetime MDD and depressive symptoms were assessed in 1371 women with a history of ED. The prevalence of MDD was first explored across ED subtypes, and ages of onset of MDD and EDs were compared. Depressive symptoms were examined in individuals who developed MDD before and after ED onset. The lifetime prevalence of MDD was 72.9%. Among those with lifetime MDD (n =963), 34.5% reported MDD onset before the onset of ED. Those who experienced MDD first reported greater psychomotor agitation (OR =1.53; 95%CI =1.14-2.06), and thoughts of own death (but not suicide attempts or ideation; OR =1.73; 95%CI =1.31-2.30). Among individuals who had MDD before ED, 26.5% had the MDD onset during the year before the onset of ED; 67% of individuals had the onset of both disorders within the same 3 year window. Clinicians treating individuals with new-onset ED or MDD should remain vigilant for the emergence of additional psychopathology, especially during the initial 3 year window following the onset of the first disorder.
Schlottmann, Anne; Cole, Katy; Watts, Rhianna; White, Marina
2013-01-01
Humans, even babies, perceive causality when one shape moves briefly and linearly after another. Motion timing is crucial in this and causal impressions disappear with short delays between motions. However, the role of temporal information is more complex: it is both a cue to causality and a factor that constrains processing. It affects ability to distinguish causality from non-causality, and social from mechanical causality. Here we study both issues with 3- to 7-year-olds and adults who saw two computer-animated squares and chose if a picture of mechanical, social or non-causality fit each event best. Prior work fit with the standard view that early in development, the distinction between the social and physical domains depends mainly on whether or not the agents make contact, and that this reflects concern with domain-specific motion onset, in particular, whether the motion is self-initiated or not. The present experiments challenge both parts of this position. In Experiments 1 and 2, we showed that not just spatial, but also animacy and temporal information affect how children distinguish between physical and social causality. In Experiments 3 and 4 we showed that children do not seem to use spatio-temporal information in perceptual causality to make inferences about self- or other-initiated motion onset. Overall, spatial contact may be developmentally primary in domain-specific perceptual causality in that it is processed easily and is dominant over competing cues, but it is not the only cue used early on and it is not used to infer motion onset. Instead, domain-specific causal impressions may be automatic reactions to specific perceptual configurations, with a complex role for temporal information. PMID:23874308
Independent component analysis for onset detection in piano trills
NASA Astrophysics Data System (ADS)
Brown, Judith C.; Todd, Jeremy G.; Smaragdis, Paris
2002-05-01
The detection of onsets in piano music is difficult due to the presence of many notes simultaneously and their long decay times from pedaling. This is even more difficult for trills where the rapid note changes make it difficult to observe a decrease in amplitude for individual notes in either the temporal wave form or the time dependent Fourier components. Occasionally one note of the trill has a much lower amplitude than the other making an unambiguous determination of its onset virtually impossible. We have analyzed a number of trills from CD's of performances by Horowitz, Ashkenazy, and Goode, choosing the same trill and different performances where possible. The Fourier transform was calculated as a function of time, and the magnitude coefficients served as input for a calculation using the method of independent component analysis. In most cases this gave a more definitive determination of the onset times, as can be demonstrated graphically. For comparison identical calculations have been carried out on recordings of midi generated performances on a Yamaha Disclavier piano.
Lynch, Niamh E; Stevenson, Nathan J; Livingstone, Vicki; Mathieson, Sean; Murphy, Brendan P; Rennie, Janet M; Boylan, Geraldine B
2015-12-01
The characteristics of electrographic seizures in newborns with hypoxic-ischaemic encephalopathy (HIE) treated with therapeutic hypothermia (TH) are poorly described. This retrospective, observational study provides reference data on the characteristics of seizures and their evolution over time in newborns with HIE receiving whole-body TH. The cohort under analysis included 23 infants with HIE and seizures defined by multi-channel EEG recordings. Clinical presentation, details of TH and antiepileptic drugs used were recorded. Time from first to last-recorded electrographic seizure (seizure period) was calculated. Temporal characteristics of seizures - total burden, duration, number, burden in minutes per hour, distribution of burden over time (temporal evolution), time from seizure onset to maximum seizure burden (Tmsb), T1, and time from Tmsb to seizure offset, T2 - were analysed. The median age at electrographic seizure onset was 13.1h (IQR: 11.4 to 22.0). Tmsb was reached at a median age of 19.4 hours (IQR: 12.2 to 29.7). Median seizure period was 16.5h (IQR: 7.0 to 49.7), median number of seizures per hour was 1.9 (IQR: 1.0 to 3.3). The seizure burden was 4.0 min/h (IQR: 2.0 to 7.0). There was no consistent pattern in the temporal evolution of seizures in neonates treated with TH. The skewness was neither positive nor negative (p-value=0.15), there was no difference between the duration of T1 and T2 (p-value=0.09) and no difference in the seizure burden between T1 and T2 (p=0.09). There was an association between Tmsb and Phenobarbital (PB) administration (r=0.76, p-value<0.001). There is no consistent temporal evolution of seizure burden in neonates treated with TH. Seizures are diffuse, and their characteristics are variable. Copyright © 2015. Published by Elsevier Ltd.
Walla, P; Hufnagl, B; Lindinger, G; Imhof, H; Deecke, L; Lang, W
2001-03-01
Using a 143-channel whole-head magnetoencephalograph (MEG) we recorded the temporal changes of brain activity from 26 healthy young subjects (14 females) related to shallow perceptual and deep semantic word encoding. During subsequent recognition tests, the subjects had to recognize the previously encoded words which were interspersed with new words. The resulting mean memory performances across all subjects clearly mirrored the different levels of encoding. The grand averaged event-related fields (ERFs) associated with perceptual and semantic word encoding differed significantly between 200 and 550 ms after stimulus onset mainly over left superior temporal and left superior parietal sensors. Semantic encoding elicited higher brain activity than perceptual encoding. Source localization procedures revealed that neural populations of the left temporal and temporoparietal brain areas showed different activity strengths across the whole group of subjects depending on depth of word encoding. We suggest that the higher brain activity associated with deep encoding as compared to shallow encoding was due to the involvement of more neural systems during the processing of visually presented words. Deep encoding required more energy than shallow encoding but for all that led to a better memory performance. Copyright 2001 Academic Press.
Mathai, Jijo Pottackal; Appu, Sabarish
2015-01-01
Auditory neuropathy spectrum disorder (ANSD) is a form of sensorineural hearing loss, causing severe deficits in speech perception. The perceptual problems of individuals with ANSD were attributed to their temporal processing impairment rather than to reduced audibility. This rendered their rehabilitation difficult using hearing aids. Although hearing aids can restore audibility, compression circuits in a hearing aid might distort the temporal modulations of speech, causing poor aided performance. Therefore, hearing aid settings that preserve the temporal modulations of speech might be an effective way to improve speech perception in ANSD. The purpose of the study was to investigate the perception of hearing aid-processed speech in individuals with late-onset ANSD. A repeated measures design was used to study the effect of various compression time settings on speech perception and perceived quality. Seventeen individuals with late-onset ANSD within the age range of 20-35 yr participated in the study. The word recognition scores (WRSs) and quality judgment of phonemically balanced words, processed using four different compression settings of a hearing aid (slow, medium, fast, and linear), were evaluated. The modulation spectra of hearing aid-processed stimuli were estimated to probe the effect of amplification on the temporal envelope of speech. Repeated measures analysis of variance and post hoc Bonferroni's pairwise comparisons were used to analyze the word recognition performance and quality judgment. The comparison between unprocessed and all four hearing aid-processed stimuli showed significantly higher perception using the former stimuli. Even though perception of words processed using slow compression time settings of the hearing aids were significantly higher than the fast one, their difference was only 4%. In addition, there were no significant differences in perception between any other hearing aid-processed stimuli. Analysis of the temporal envelope of hearing aid-processed stimuli revealed minimal changes in the temporal envelope across the four hearing aid settings. In terms of quality, the highest number of individuals preferred stimuli processed using slow compression time settings. Individuals who preferred medium ones followed this. However, none of the individuals preferred fast compression time settings. Analysis of quality judgment showed that slow, medium, and linear settings presented significantly higher preference scores than the fast compression setting. Individuals with ANSD showed no marked difference in perception of speech that was processed using the four different hearing aid settings. However, significantly higher preference, in terms of quality, was found for stimuli processed using slow, medium, and linear settings over the fast one. Therefore, whenever hearing aids are recommended for ANSD, those having slow compression time settings or linear amplification may be chosen over the fast (syllabic compression) one. In addition, WRSs obtained using hearing aid-processed stimuli were remarkably poorer than unprocessed stimuli. This shows that processing of speech through hearing aids might have caused a large reduction of performance in individuals with ANSD. However, further evaluation is needed using individually programmed hearing aids rather than hearing aid-processed stimuli. American Academy of Audiology.
Brinkmann, Leonie; Bruchmann, Maximilian; Becker, Michael P I; Tupak, Sara; Herrmann, Martin J; Straube, Thomas
2017-01-01
Abstract Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD. PMID:28981839
No Prior Entry for Threat-Related Faces: Evidence from Temporal Order Judgments
Schettino, Antonio; Loeys, Tom; Pourtois, Gilles
2013-01-01
Previous research showed that threat-related faces, due to their intrinsic motivational relevance, capture attention more readily than neutral faces. Here we used a standard temporal order judgment (TOJ) task to assess whether negative (either angry or fearful) emotional faces, when competing with neutral faces for attention selection, may lead to a prior entry effect and hence be perceived as appearing first, especially when uncertainty is high regarding the order of the two onsets. We did not find evidence for this conjecture across five different experiments, despite the fact that participants were invariably influenced by asynchronies in the respective onsets of the two competing faces in the pair, and could reliably identify the emotion in the faces. Importantly, by systematically varying task demands across experiments, we could rule out confounds related to suboptimal stimulus presentation or inappropriate task demands. These findings challenge the notion of an early automatic capture of attention by (negative) emotion. Future studies are needed to investigate whether the lack of systematic bias of attention by emotion is imputed to the primacy of a non-emotional cue to resolve the TOJ task, which in turn prevents negative emotion to exert an early bottom-up influence on the guidance of spatial and temporal attention. PMID:23646126
Do working memory-driven attention shifts speed up visual awareness?
Pan, Yi; Cheng, Qiu-Ping
2011-11-01
Previous research has shown that content representations in working memory (WM) can bias attention in favor of matching stimuli in the scene. Using a visual prior-entry procedure, we here investigate whether such WM-driven attention shifts can speed up the conscious awareness of memory-matching relative to memory-mismatching stimuli. Participants were asked to hold a color cue in WM and to subsequently perform a temporal order judgment (TOJ) task by reporting either of two different-colored circles (presented to the left and right of fixation with a variable temporal interval) as having the first onset. One of the two TOJ circles could match the memory cue in color. We found that awareness of the temporal order of the circle onsets was not affected by the contents of WM, even when participants were explicitly informed that one of the TOJ circles would always match the WM contents. The null effect of WM on TOJs was not due to an inability of the memory-matching item to capture attention, since response times to the target in a follow-up experiment were improved when it appeared at the location of the memory-matching item. The present findings suggest that WM-driven attention shifts cannot accelerate phenomenal awareness of matching stimuli in the visual field.
Temporal lobe epilepsy: origin and significance of simple and complex auras.
Taylor, D C; Lochery, M
1987-01-01
The aura experience of 88 patients with temporal lobe epilepsy was recorded, classified and analysed. Despite the great richness of the 215 experiences described, correlations with left or right brain, nature of lesion, age of onset, etc. were only apparent when a classification into three aura groups was used. "Simple primitive" auras as sole auras were more likely with early onset epilepsy, in lower IQ patients, in males, from the right temporal lobe, and with mesial temporal sclerosis. Exclusively "intellectual" auras were confined to a group of high IQ males. The number of aura experiences described per person correlated with Verbal IQ for males but not females, but also varied with side, sex, and nature of lesion. The results are discussed in terms of the necessary conditions for aura and their relevance and in relationship to the results of brain stimulation studies by Penfield and others. PMID:3612148
Multicenter Study of Brain Volume Abnormalities in Children and Adolescent-Onset Psychosis
Reig, Santiago; Parellada, Mara; Castro-Fornieles, Josefina; Janssen, Joost; Moreno, Dolores; Baeza, Inmaculada; Bargalló, Nuria; González-Pinto, Ana; Graell, Montserrat; Ortuño, Felipe; Otero, Soraya; Arango, Celso; Desco, Manuel
2011-01-01
The goal of the study is to determine the extent of structural brain abnormalities in a multicenter sample of children and adolescents with a recent-onset first episode of psychosis (FEP), compared with a sample of healthy controls. Total brain and lobar volumes and those of gray matter (GM), white matter, and cerebrospinal fluid (CSF) were measured in 92 patients with a FEP and in 94 controls, matched for age, gender, and years of education. Male patients (n = 64) showed several significant differences when compared with controls (n = 61). GM volume in male patients was reduced in the whole brain and in frontal and parietal lobes compared with controls. Total CSF volume and frontal, temporal, and right parietal CSF volumes were also increased in male patients. Within patients, those with a further diagnosis of “schizophrenia” or “other psychosis” showed a pattern similar to the group of all patients relative to controls. However, bipolar patients showed fewer differences relative to controls. In female patients, only the schizophrenia group showed differences relative to controls, in frontal CSF. GM deficit in male patients with a first episode correlated with negative symptoms. Our study suggests that at least part of the GM deficit in children and adolescent-onset schizophrenia and in other psychosis occurs before onset of the first positive symptoms and that, contrary to what has been shown in children-onset schizophrenia, frontal GM deficits are probably present from the first appearance of positive symptoms in children and adolescents. PMID:20478821
Significant differences in ion and electron guiding through highly insulating capillaries
NASA Astrophysics Data System (ADS)
Stolterfoht, N.; Tanis, J.
2018-04-01
Outstanding phenomena of capillary guiding are discussed in accordance with a recent review in the field. Experiments concerning highly charged ions of a few keV energy guided through insulating nanocapillaries are shown. Studies of the temporal evolution of ion transmission are presented. Attention is focused on oscillatory structures in the ion emission and the independence of the ion guiding on the beam intensity. A few experiments of electron guiding are presented showing a significantly different temporal evolution of the transmitted intensity. The onset of the electron transmission is very sudden accompanied by a considerable energy loss within the capillary. To achieve more insight into the different guiding mechanisms, theoretical aspects of the capillary guiding are analyzed. A scenario is offered to explain the abrupt rise of transmitted electrons. Altogether, these studies show that ion and electron guiding are accomplished through different manifestations of the charge build up that underlies both.
Temporal structure of neuronal population oscillations with empirical model decomposition
NASA Astrophysics Data System (ADS)
Li, Xiaoli
2006-08-01
Frequency analysis of neuronal oscillation is very important for understanding the neural information processing and mechanism of disorder in the brain. This Letter addresses a new method to analyze the neuronal population oscillations with empirical mode decomposition (EMD). Following EMD of neuronal oscillation, a series of intrinsic mode functions (IMFs) are obtained, then Hilbert transform of IMFs can be used to extract the instantaneous time frequency structure of neuronal oscillation. The method is applied to analyze the neuronal oscillation in the hippocampus of epileptic rats in vivo, the results show the neuronal oscillations have different descriptions during the pre-ictal, seizure onset and ictal periods of the epileptic EEG at the different frequency band. This new method is very helpful to provide a view for the temporal structure of neural oscillation.
Beal, Deryk S; Gracco, Vincent L; Brettschneider, Jane; Kroll, Robert M; De Nil, Luc F
2013-09-01
It is well documented that neuroanatomical differences exist between adults who stutter and their fluently speaking peers. Specifically, adults who stutter have been found to have more grey matter volume (GMV) in speech relevant regions including inferior frontal gyrus, insula and superior temporal gyrus (Beal et al., 2007; Song et al., 2007). Despite stuttering having its onset in childhood only one study has investigated the neuroanatomical differences between children who do and do not stutter. Chang et al. (2008) reported children who stutter had less GMV in the bilateral inferior frontal gyri and middle temporal gyrus relative to fluently speaking children. Thus it appears that children who stutter present with unique neuroanatomical abnormalities as compared to those of adults who stutter. In order to better understand the neuroanatomical correlates of stuttering earlier in its development, near the time of onset, we used voxel-based morphometry to examine volumetric differences between 11 children who stutter and 11 fluent children. Children who stutter had less GMV in the bilateral inferior frontal gyri and left putamen but more GMV in right Rolandic operculum and superior temporal gyrus relative to fluent children. Children who stutter also had less white matter volume bilaterally in the forceps minor of the corpus callosum. We discuss our findings of widespread anatomic abnormalities throughout the cortical network for speech motor control within the context of the speech motor skill limitations identified in people who stutter (Namasivayam and van Lieshout, 2008; Smits-Bandstra et al., 2006). Copyright © 2012 Elsevier Ltd. All rights reserved.
Piai, Vitória; Rommers, Joost; Knight, Robert T
2017-09-09
Different frequency bands in the electroencephalogram are postulated to support distinct language functions. Studies have suggested that alpha-beta power decreases may index word-retrieval processes. In context-driven word retrieval, participants hear lead-in sentences that either constrain the final word ('He locked the door with the') or not ('She walked in here with the'). The last word is shown as a picture to be named. Previous studies have consistently found alpha-beta power decreases prior to picture onset for constrained relative to unconstrained sentences, localised to the left lateral-temporal and lateral-frontal lobes. However, the relative contribution of temporal versus frontal areas to alpha-beta power decreases is unknown. We recorded the electroencephalogram from patients with stroke lesions encompassing the left lateral-temporal and inferior-parietal regions or left-lateral frontal lobe and from matched controls. Individual participant analyses revealed a behavioural sentence context facilitation effect in all participants, except for in the two patients with extensive lesions to temporal and inferior parietal lobes. We replicated the alpha-beta power decreases prior to picture onset in all participants, except for in the two same patients with extensive posterior lesions. Thus, whereas posterior lesions eliminated the behavioural and oscillatory context effect, frontal lesions did not. Hierarchical clustering analyses of all patients' lesion profiles, and behavioural and electrophysiological effects identified those two patients as having a unique combination of lesion distribution and context effects. These results indicate a critical role for the left lateral-temporal and inferior parietal lobes, but not frontal cortex, in generating the alpha-beta power decreases underlying context-driven word production. © 2017 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Belz, Steven M; Robinson, Gary S; Casali, John G
2004-01-01
This on-road field investigation employed, for the first time, a completely automated trigger-based data collection system capable of evaluating driver performance in an extended-duration real-world commercial motor vehicle environment. The study examined the use of self-assessment of fatigue (Karolinska Sleepiness Scale) and temporal separation (minimum time to collision, minimum headway, and mean headway) as indicators of driver fatigue. Without exception, the correlation analyses for both the self-rating of alertness and temporal separation yielded models low in associative ability; neither metric was found to be a valid indicator of driver fatigue. In addition, based upon the data collected for this research, preliminary evidence suggests that driver fatigue onset within a real-world driving environment does not appear to follow the standard progression of events associated with the onset of fatigue within a simulated driving environment. Application of this research includes the development of an on-board driver performance/fatigue monitoring system that could potentially assist drivers in identifying the onset of fatigue.
de Curtis, Marco; Gnatkovsky, Vadym; Gotman, Jean; Köhling, Rüdiger; Lévesque, Maxime; Manseau, Frédéric; Shiri, Zahra; Williams, Sylvain
2016-01-01
Low-voltage fast (LVF) and hypersynchronous (HYP) patterns are the seizure-onset patterns most frequently observed in intracranial EEG recordings from mesial temporal lobe epilepsy (MTLE) patients. Both patterns also occur in models of MTLE in vivo and in vitro, and these studies have highlighted the predominant involvement of distinct neuronal network/neurotransmitter receptor signaling in each of them. First, LVF-onset seizures in epileptic rodents can originate from several limbic structures, frequently spread, and are associated with high-frequency oscillations in the ripple band (80–200 Hz), whereas HYP onset seizures initiate in the hippocampus and tend to remain focal with predominant fast ripples (250–500 Hz). Second, in vitro intracellular recordings from principal cells in limbic areas indicate that pharmacologically induced seizure-like discharges with LVF onset are initiated by a synchronous inhibitory event or by a hyperpolarizing inhibitory postsynaptic potential barrage; in contrast, HYP onset is associated with a progressive impairment of inhibition and concomitant unrestrained enhancement of excitation. Finally, in vitro optogenetic experiments show that, under comparable experimental conditions (i.e., 4-aminopyridine application), the initiation of LVF- or HYP-onset seizures depends on the preponderant involvement of interneuronal or principal cell networks, respectively. Overall, these data may provide insight to delineate better therapeutic targets in the treatment of patients presenting with MTLE and, perhaps, with other epileptic disorders as well. PMID:27075542
Temporal evolution of the spatial covariability of rainfall in South America
NASA Astrophysics Data System (ADS)
Ciemer, Catrin; Boers, Niklas; Barbosa, Henrique M. J.; Kurths, Jürgen; Rammig, Anja
2017-10-01
The climate of South America exhibits pronounced differences between rainy and dry seasons, associated with specific synoptic features such as the establishment of the South Atlantic convergence zone. Here, we analyze the spatiotemporal correlation structure and in particular teleconnections of daily rainfall associated with these features by means of evolving complex networks. A modification of Pearson's correlation coefficient is introduced to handle the intricate statistical properties of daily rainfall. On this basis, spatial correlation networks are constructed, and new appropriate network measures are introduced in order to analyze the temporal evolution of the networks' characteristics. We particularly focus on the identification of coherent areas of similar rainfall patterns and previously unknown teleconnection structures between remote areas. We show that the monsoon onset is characterized by an abrupt transition from erratic to organized regional connectivity that prevails during the monsoon season, while only the onset times themselves exhibit anomalous large-scale organization of teleconnections. Furthermore, we reveal that the two mega-droughts in the Amazon basin were already announced in the previous year by an anomalous behavior of the connectivity structure.
Gelastic seizures with dancing arising from the anterior prefrontal cortex.
Neilson, John; Snyder, Tom; Pugh, Jeff; Wheatley, Matt; Tang-Wai, Richard
2014-06-01
This case report provides insight into the function of the anterior prefrontal cortex (aPFC), specifically Brodmann Area 10 (BA10), and its interconnectivity. We present a 10-year-old patient with lesional epilepsy and ictal onset, localised to BA10 in the aPFC. Thirty-four seizures were recorded. All seizures involved a demonstration of elation with laughter that was associated with a variety of different patterns of complex motor behaviour that included performing specific celebratory movements and acting out a Michael Jackson dance move. Electrographically, the seizures were all stereotyped and arose from the right frontal region, followed by a distinct left temporal ictal rhythm that corresponded with the onset of the behaviours. The lesion in the right aPFC was identified as a mixed lesion with both dysembryoplastic neuroepithelial tumour cells and type II cortical dysplasia. The electrographic analysis and unique seizure semiology suggest a connection between the aPFC and the contralateral temporal lobe. This neural pathway appears to be involved in the activation of previously formed procedural memories, creating an intensely positive emotional experience.
Krieg, Sandro M; Tarapore, Phiroz E; Picht, Thomas; Tanigawa, Noriko; Houde, John; Sollmann, Nico; Meyer, Bernhard; Vajkoczy, Peter; Berger, Mitchel S; Ringel, Florian; Nagarajan, Srikantan
2014-10-15
Within the primary motor cortex, navigated transcranial magnetic stimulation (nTMS) has been shown to yield maps strongly correlated with those generated by direct cortical stimulation (DCS). However, the stimulation parameters for repetitive nTMS (rTMS)-based language mapping are still being refined. For this purpose, the present study compares two rTMS protocols, which differ in the timing of pulse train onset relative to picture presentation onset during object naming. Results were the correlated with DCS language mapping during awake surgery. Thirty-two patients with left-sided perisylvian tumors were examined by rTMS prior to awake surgery. Twenty patients underwent rTMS pulse trains starting at 300 ms after picture presentation onset (delayed TMS), whereas another 12 patients received rTMS pulse trains starting at the picture presentation onset (ONSET TMS). These rTMS results were then evaluated for correlation with intraoperative DCS results as gold standard in terms of differential consistencies in receiver operating characteristics (ROC) statistics. Logistic regression analysis by protocols and brain regions were conducted. Within and around Broca's area, there was no difference in sensitivity (onset TMS: 100%, delayed TMS: 100%), negative predictive value (NPV) (onset TMS: 100%, delayed TMS: 100%), and positive predictive value (PPV) (onset TMS: 55%, delayed TMS: 54%) between the two protocols compared to DCS. However, specificity differed significantly (onset TMS: 67%, delayed TMS: 28%). In contrast, for posterior language regions, such as supramarginal gyrus, angular gyrus, and posterior superior temporal gyrus, early pulse train onset stimulation showed greater specificity (onset TMS: 92%, delayed TMS: 20%), NPV (onset TMS: 92%, delayed TMS: 57%) and PPV (onset TMS: 75%, delayed TMS: 30%) with comparable sensitivity (onset TMS: 75%, delayed TMS: 70%). Logistic regression analysis also confirmed the greater fit of the predictions by rTMS that had the pulse train onset coincident with the picture presentation onset when compared to the delayed stimulation. Analyses of differential disruption patterns of mapped cortical regions were further able to distinguish clusters of cortical regions standardly associated with semantic and pre-vocalization phonological networks proposed in various models of word production. Repetitive nTMS predictions by both protocols correlate well with DCS outcomes especially in Broca's region, particularly with regard to TMS negative predictions. With this study, we have demonstrated that rTMS stimulation onset coincident with picture presentation onset improves the accuracy of preoperative language maps, particularly within posterior language areas. Moreover, immediate and delayed pulse train onsets may have complementary disruption patterns that could differentially capture cortical regions causally necessary for semantic and pre-vocalization phonological networks. Published by Elsevier Inc.
Panagiotidi, Maria; Overton, Paul G; Stafford, Tom
2017-11-01
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD. Copyright © 2017 Elsevier B.V. All rights reserved.
Sleepless in Town – Drivers of the Temporal Shift in Dawn Song in Urban European Blackbirds
Nordt, Anja; Klenke, Reinhard
2013-01-01
Organisms living in urban environments are exposed to different environmental conditions compared to their rural conspecifics. Especially anthropogenic noise and artificial night light are closely linked to urbanization and pose new challenges to urban species. Songbirds are particularly affected by these factors, because they rely on the spread of acoustic information and adjust their behaviour to the rhythm of night and day, e.g. time their dawn song according to changing light intensities. Our aim was to clarify the specific contributions of artificial night light and traffic noise on the timing of dawn song of urban European Blackbirds (Turdus merula). We investigated the onset of blackbird dawn song along a steep urban gradient ranging from an urban forest to the city centre of Leipzig, Germany. This gradient of anthropogenic noise and artificial night light was reflected in the timing of dawn song. In the city centre, blackbirds started their dawn song up to 5 hours earlier compared to those in semi-natural habitats. We found traffic noise to be the driving factor of the shift of dawn song into true night, although it was not completely separable from the effects of ambient night light. We additionally included meteorological conditions into the analysis and found an effect on the song onset. Cloudy and cold weather delayed the onset, but cloud cover was assumed to reflect night light emissions, thus, amplified sky luminance and increased the effect of artificial night light. Beside these temporal effects, we also found differences in the spatial autocorrelation of dawn song onset showing a much higher variability in noisy city areas than in rural parks and forests. These findings indicate that urban hazards such as ambient noise and light pollution show a manifold interference with naturally evolved cycles and have significant effects on the activity patterns of urban blackbirds. PMID:23940759
Wu, Mingquan; Yang, Chenghai; Song, Xiaoyu; Hoffmann, Wesley Clint; Huang, Wenjiang; Niu, Zheng; Wang, Changyao; Li, Wang; Yu, Bo
2018-01-31
To better understand the progression of cotton root rot within the season, time series monitoring is required. In this study, an improved spatial and temporal data fusion approach (ISTDFA) was employed to combine 250-m Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized Different Vegetation Index (NDVI) and 10-m Sentinetl-2 NDVI data to generate a synthetic Sentinel-2 NDVI time series for monitoring this disease. Then, the phenology of healthy cotton and infected cotton was modeled using a logistic model. Finally, several phenology parameters, including the onset day of greenness minimum (OGM), growing season length (GLS), onset of greenness increase (OGI), max NDVI value, and integral area of the phenology curve, were calculated. The results showed that ISTDFA could be used to combine time series MODIS and Sentinel-2 NDVI data with a correlation coefficient of 0.893. The logistic model could describe the phenology curves with R-squared values from 0.791 to 0.969. Moreover, the phenology curve of infected cotton showed a significant difference from that of healthy cotton. The max NDVI value, OGM, GSL and the integral area of the phenology curve for infected cotton were reduced by 0.045, 30 days, 22 days, and 18.54%, respectively, compared with those for healthy cotton.
Scott, Kate M.; Alonso, Jordi; de Jonge, Peter; Viana, Maria Carmen; Liu, Zhaorui; O’Neill, Siobhan; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Stein, Dan J.; Angermeyer, Matthias; Benjet, Corina; de Girolamo, Giovanni; Firuleasa, Ingrid-Laura; Hu, Chiyi; Kiejna, Andrzej; Kovess-Masfety, Viviane; Levinson, Daphna; Nakane, Yoshibumi; Piazza, Marina; Posada-Villa, José A.; Khalaf, Mohammad Salih; Lim, Carmen C. W.; Kessler, Ronald C.
2013-01-01
Objective Recent research demonstrating concurrent associations between mental disorders and peptic ulcers has renewed interest in links between psychological factors and ulcers. However, little is known about associations between temporally prior mental disorders and subsequent ulcer onset. Nor has the potentially confounding role of childhood adversities been explored. The objective of this study was to examine associations between a wide range of temporally prior DSM-IV mental disorders and subsequent onset of ulcer, without and with adjustment for mental disorder comorbidity and childhood adversities. Methods Face-to-face household surveys conducted in 19 countries (n=52,095; person years=2,096,486).The Composite International Diagnostic Interview retrospectively assessed lifetime prevalence and age at onset of 16 DSM-IV mental disorders. Peptic ulcer onset was assessed in the same interview by self-report of physician’s diagnosis and year of diagnosis. Survival analyses estimated associations between first onset of mental disorders and subsequent ulcer onset. Results After comorbidity and sociodemographic adjustment, depression, social phobia, specific phobia, post-traumatic stress disorder, intermittent explosive disorder, alcohol and drug abuse disorders were significantly associated with ulcer onset (ORs 1.3-1.6). Increasing number of lifetime mental disorders was associated with ulcer onset in a dose-response fashion. These associations were only slightly attenuated by adjustment for childhood adversities. Conclusions A wide range of mental disorders were linked with the self-report of subsequent peptic ulcer onset. These associations require confirmation in prospective designs, but are suggestive of a role for mental disorders in contributing to ulcer vulnerability, possibly through abnormalities in the physiological stress response associated with mental disorders. PMID:23915767
Association between mental disorders and subsequent adult onset asthma.
Alonso, Jordi; de Jonge, Peter; Lim, Carmen C W; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Liu, Zhaorui; O'Neill, Siobhan; Stein, Dan J; Viana, Maria Carmen; Al-Hamzawi, Ali Obaid; Angermeyer, Matthias C; Borges, Guilherme; Ciutan, Marius; de Girolamo, Giovanni; Fiestas, Fabian; Haro, Josep Maria; Hu, Chiyi; Kessler, Ronald C; Lépine, Jean Pierre; Levinson, Daphna; Nakamura, Yosikazu; Posada-Villa, Jose; Wojtyniak, Bogdan J; Scott, Kate M
2014-12-01
Associations between asthma and anxiety and mood disorders are well established, but little is known about their temporal sequence. We examined associations between a wide range of DSM-IV mental disorders with adult onset of asthma and whether observed associations remain after mental comorbidity adjustments. During face-to-face household surveys in community-dwelling adults (n = 52,095) of 19 countries, the WHO Composite International Diagnostic Interview retrospectively assessed lifetime prevalence and age at onset of 16 DSM-IV mental disorders. Asthma was assessed by self-report of physician's diagnosis together with age of onset. Survival analyses estimated associations between first onset of mental disorders and subsequent adult onset asthma, without and with comorbidity adjustment. 1860 adult onset (21 years+) asthma cases were identified, representing a total of 2,096,486 person-years of follow up. After adjustment for comorbid mental disorders several mental disorders were associated with subsequent adult asthma onset: bipolar (OR = 1.8; 95%CI 1.3-2.5), panic (OR = 1.4; 95%CI 1.0-2.0), generalized anxiety (OR = 1.3; 95%CI 1.1-1.7), specific phobia (OR = 1.3; 95%CI 1.1-1.6); post-traumatic stress (OR = 1.5; 95%CI 1.1-1.9); binge eating (OR = 1.8; 95%CI 1.2-2.9) and alcohol abuse (OR = 1.5; 95%CI 1.1-2.0). Mental comorbidity linearly increased the association with adult asthma. The association with subsequent asthma was stronger for mental disorders with an early onset (before age 21). A wide range of temporally prior mental disorders are significantly associated with subsequent onset of asthma in adulthood. The extent to which asthma can be avoided or improved among those with early mental disorders deserves study. Copyright © 2014 Elsevier Ltd. All rights reserved.
Mismatch Negativity in Recent-Onset and Chronic Schizophrenia: A Current Source Density Analysis
Fulham, W. Ross; Michie, Patricia T.; Ward, Philip B.; Rasser, Paul E.; Todd, Juanita; Johnston, Patrick J.; Thompson, Paul M.; Schall, Ulrich
2014-01-01
Mismatch negativity (MMN) is a component of the event-related potential elicited by deviant auditory stimuli. It is presumed to index pre-attentive monitoring of changes in the auditory environment. MMN amplitude is smaller in groups of individuals with schizophrenia compared to healthy controls. We compared duration-deviant MMN in 16 recent-onset and 19 chronic schizophrenia patients versus age- and sex-matched controls. Reduced frontal MMN was found in both patient groups, involved reduced hemispheric asymmetry, and was correlated with Global Assessment of Functioning (GAF) and negative symptom ratings. A cortically-constrained LORETA analysis, incorporating anatomical data from each individual's MRI, was performed to generate a current source density model of the MMN response over time. This model suggested MMN generation within a temporal, parietal and frontal network, which was right hemisphere dominant only in controls. An exploratory analysis revealed reduced CSD in patients in superior and middle temporal cortex, inferior and superior parietal cortex, precuneus, anterior cingulate, and superior and middle frontal cortex. A region of interest (ROI) analysis was performed. For the early phase of the MMN, patients had reduced bilateral temporal and parietal response and no lateralisation in frontal ROIs. For late MMN, patients had reduced bilateral parietal response and no lateralisation in temporal ROIs. In patients, correlations revealed a link between GAF and the MMN response in parietal cortex. In controls, the frontal response onset was 17 ms later than the temporal and parietal response. In patients, onset latency of the MMN response was delayed in secondary, but not primary, auditory cortex. However amplitude reductions were observed in both primary and secondary auditory cortex. These latency delays may indicate relatively intact information processing upstream of the primary auditory cortex, but impaired primary auditory cortex or cortico-cortical or thalamo-cortical communication with higher auditory cortices as a core deficit in schizophrenia. PMID:24949859
Helmstaedter, C; Brosch, T; Kurthen, M; Elger, C E
2004-07-01
Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language dominance-dependent late, i.e. adult age, plasticity for verbal memory when epilepsy surgery is performed in these patients. Pre- and 1-year postoperative memory performance was evaluated in 169 patients (94 males and 75 females) who underwent left temporal lobe surgery and who had WADA testing of hemispheric language dominance prior to surgery. Verbal memory and figural memory were assessed by list-learning paradigms. According to the Bonn intracarotid amobarbital test (IAT) protocol, patients were categorized into left dominant or atypically dominant (right, incomplete left or right, and bilateral dominant) groups. Results were controlled for the hypothesized sex differences. Thirty-four percent of men and 47% of women displayed patterns of atypical language dominance. Atypical dominance was related to an early onset of epilepsy. Men showed a larger time window for development of atypical dominance but, differently from women, the pattern of atypical dominance was more strictly determined by the age at onset of epilepsy. Atypically dominant women showed better verbal memory than typically dominant women or men. After surgery, right dominant patients had better verbal memory outcome than patients with bilateral or left language dominance who showed significant memory loss. No effect of sex on verbal memory change was found. Figural memory deteriorated in men and improved in women, when they were not left dominant. Seizure outcome had no effect on performance changes. It was concluded that better preserved verbal memory in atypically dominant women before surgery indicates greater benefit from atypical dominance in women than men with regard to the initial damage associated with left hemisphere epilepsy. Later in life, when epilepsy surgery causes additional damage, no such sex difference is observed, indicating that the women's advantage over men is fixed to an early time window in life. Postoperative changes in figural memory suggest dynamics in crowding and suppression patterns. Whether this reflects late plasticity and compensation needs further demonstration. For clinical practice, it is important to note that incomplete right hemisphere and bilateral language dominance do not protect against verbal memory loss after left-sided temporal lobe surgery. Copyright 2004 Guarantors of Brain
Purely temporal figure-ground segregation.
Kandil, F I; Fahle, M
2001-05-01
Visual figure-ground segregation is achieved by exploiting differences in features such as luminance, colour, motion or presentation time between a figure and its surround. Here we determine the shortest delay times required for figure-ground segregation based on purely temporal features. Previous studies usually employed stimulus onset asynchronies between figure- and ground-containing possible artefacts based on apparent motion cues or on luminance differences. Our stimuli systematically avoid these artefacts by constantly showing 20 x 20 'colons' that flip by 90 degrees around their midpoints at constant time intervals. Colons constituting the background flip in-phase whereas those constituting the target flip with a phase delay. We tested the impact of frequency modulation and phase reduction on target detection. Younger subjects performed well above chance even at temporal delays as short as 13 ms, whilst older subjects required up to three times longer delays in some conditions. Figure-ground segregation can rely on purely temporal delays down to around 10 ms even in the absence of luminance and motion artefacts, indicating a temporal precision of cortical information processing almost an order of magnitude lower than the one required for some models of feature binding in the visual cortex [e.g. Singer, W. (1999), Curr. Opin. Neurobiol., 9, 189-194]. Hence, in our experiment, observers are unable to use temporal stimulus features with the precision required for these models.
Atypical handedness in mesial temporal lobe epilepsy.
Doležalová, Irena; Schachter, Steven; Chrastina, Jan; Hemza, Jan; Hermanová, Markéta; Rektor, Ivan; Pažourková, Marta; Brázdil, Milan
2017-07-01
The main aim of our study was to investigate the handedness of patients with mesial temporal lobe epilepsy (MTLE). We also sought to identify clinical variables that correlated with left-handedness in this population. Handedness (laterality quotient) was assessed in 73 consecutive patients with MTLE associated with unilateral hippocampal sclerosis (HS) using the Edinburgh Handedness Inventory. Associations between right- and left-handedness and clinical variables were investigated. We found that 54 (74.0%) patients were right-handed, and 19 (26%) patients were left-handed. There were 15 (36.6%) left-handed patients with left-sided seizure onset compared to 4 (12.5%) left-handed patients with right-sided seizure onset (p=0.030). Among patients with left-sided MTLE, age at epilepsy onset was significantly correlated with handedness (8years of age [median; min-max 0.5-17] in left-handers versus 15years of age [median; min-max 3-30] in right-handers (p<0.001). Left-sided MTLE is associated with atypical handedness, especially when seizure onset occurs during an active period of brain development, suggesting a bi-hemispheric neuroplastic process for establishing motor dominance in patients with early-onset left-sided MTLE. Copyright © 2017 Elsevier Inc. All rights reserved.
Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K; Petkov, Christopher I
2015-01-06
When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face-voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions.
Kim, Dong Wook; Sunwoo, Jun-Sang; Lee, Sang Kun
2016-10-01
Vertigo and dizziness are common neurological complaints that have long been associated with epilepsy. However, studies of patients with epileptic vertigo or dizziness with concurrent EEG monitoring are scarce. We performed the present study to investigate the incidence and localizing value of vertigo and dizziness in patients with epilepsy who had confirmation of EEG changes via video-EEG monitoring. Data of aura and clinical seizure episodes of 831 consecutive patients who underwent video-EEG monitoring were analyzed retrospectively. Out of 831 patients, 40 patients (4.8%) experienced vertigo or dizziness as aura (mean age, 32.8±11.8years), all of whom had partial seizures. Eight had mesial temporal, 20 had lateral temporal, four had frontal, one had parietal, and seven had occipital lobe onset seizures. An intracranial EEG with cortical stimulation study was performed in seven patients, and the area of stimulation-induced vertigo or dizziness coincided with the ictal onset area in only one patient. Our study showed that vertigo or dizziness is a common aura in patients with epilepsy, and that the temporal lobe is the most frequent ictal onset area in these patients. However, it can be suggested that the symptomatogenic area in patients with epileptic vertigo and dizziness may not coincide with the ictal onset area. Copyright © 2016 Elsevier B.V. All rights reserved.
Remission Status and Cortical Thickness in Childhood-Onset Schizophrenia
ERIC Educational Resources Information Center
Greenstein, Deanna K.; Wolfe, Sarah; Gochman, Peter; Rapoport, Judith L.; Gogtay, Nitin
2008-01-01
Magnetic resonance imaging was used to study the relation between cortical brain thickness during admission and remission 3 months later in 56 individuals with childhood-onset schizophrenia. Findings revealed that at the time of discharge patients had thicker regional cortex in frontal, temporal and parietal regions thereby indicating that these…
Armbrecht, Anne-Simone; Wöhrmann, Anne; Gibbons, Henning; Stahl, Jutta
2010-09-01
The present electrophysiological study investigated the temporal development of response conflict and the effects of diverging conflict sources on error(-related) negativity (Ne). Eighteen participants performed a combined stop-signal flanker task, which was comprised of two different conflict sources: a left-right and a go-stop response conflict. It is assumed that the Ne reflects the activity of a conflict monitoring system and thus increases according to (i) the number of conflict sources and (ii) the temporal development of the conflict activity. No increase of the Ne amplitude after double errors (comprising two conflict sources) as compared to hand- and stop-errors (comprising one conflict source) was found, whereas a higher Ne amplitude was observed after a delayed stop-signal onset. The results suggest that the Ne is not sensitive to an increase in the number of conflict sources, but to the temporal dynamics of a go-stop response conflict. Copyright (c) 2010 Elsevier B.V. All rights reserved.
Determination of Spring Onset and Growing Season Duration using Satellite Measurements
NASA Technical Reports Server (NTRS)
Min, Q.; Lin, Bing
2006-01-01
An integrated approach to retrieve microwave emissivity difference vegetation index (EDVI) over land regions has been developed from combined multi-platform/multi-sensor satellite measurements, including SSM/I measurements. A possible relationship of the remotely sensed EDVI and the leaf physiology of canopy is exploited at the Harvard Forest site for two growing seasons. This study finds that the EDVI is sensitive to leaf development through vegetation water content of the crown layer of the forest canopy, and has demonstrated that the spring onset and growing season duration can be determined accurately from the time series of satellite estimated EDVI within uncertainties about 3 and 7 days for spring onsets and growing season duration, respectively, compared to in-situ observations. The leaf growing stage may also be quantitatively monitored by a normalized EDVI. Since EDVI retrievals from satellite are generally possible during both daytime and nighttime under non-rain conditions, the EDVI technique studied here may provide higher temporal resolution observations for monitoring the onset of spring and the duration of growing season compared to currently operational satellite methods.
Adams, Christopher; Adams, Natalie E; Traub, Roger D; Whittington, Miles A
2015-01-01
Temporal lobe epilepsy is the most common form of partial-onset epilepsy and accounts for the majority of adult epilepsy cases in most countries. A critical role for the hippocampus (and to some extent amygdala) in the pathology of these epilepsies is clear, with selective removal of these regions almost as effective as temporal lobectomy in reducing subsequent seizure risk. However, there is debate about whether hippocampus is 'victim' or 'perpetrator': The structure is ideally placed to 'broadcast' epileptiform activity to a great many other brain regions, but removal often leaves epileptiform events still occurring in cortex, particularly in adjacent areas, and recruitment of the hippocampus into seizure-like activity has been shown to be difficult in clinically-relevant models. Using a very simple model of acute epileptiform activity with known, single primary pathology (GABAA Receptor partial blockade), we track the onset and propagation of epileptiform events in hippocampus, parahippocampal areas and neocortex. In this model the hippocampus acts as a potential seizure focus for the majority of observed events. Events with hippocampal focus were far more readily propagated throughout parahippocampal areas and into neocortex than vice versa. The electrographic signature of events of hippocampal origin was significantly different to those of primary neocortical origin - a consequence of differential laminar activation. These data confirm the critical role of the hippocampus in epileptiform activity generation in the temporal lobe and suggest the morphology of non-invasive electrical recording of neocortical interictal events may be useful in confirming this role.
Adams, Christopher; Adams, Natalie E.; Traub, Roger D.; Whittington, Miles A.
2015-01-01
Temporal lobe epilepsy is the most common form of partial-onset epilepsy and accounts for the majority of adult epilepsy cases in most countries. A critical role for the hippocampus (and to some extent amygdala) in the pathology of these epilepsies is clear, with selective removal of these regions almost as effective as temporal lobectomy in reducing subsequent seizure risk. However, there is debate about whether hippocampus is ‘victim’ or ‘perpetrator’: The structure is ideally placed to ‘broadcast’ epileptiform activity to a great many other brain regions, but removal often leaves epileptiform events still occurring in cortex, particularly in adjacent areas, and recruitment of the hippocampus into seizure-like activity has been shown to be difficult in clinically-relevant models. Using a very simple model of acute epileptiform activity with known, single primary pathology (GABAA Receptor partial blockade), we track the onset and propagation of epileptiform events in hippocampus, parahippocampal areas and neocortex. In this model the hippocampus acts as a potential seizure focus for the majority of observed events. Events with hippocampal focus were far more readily propagated throughout parahippocampal areas and into neocortex than vice versa. The electrographic signature of events of hippocampal origin was significantly different to those of primary neocortical origin – a consequence of differential laminar activation. These data confirm the critical role of the hippocampus in epileptiform activity generation in the temporal lobe and suggest the morphology of non-invasive electrical recording of neocortical interictal events may be useful in confirming this role. PMID:25799020
NASA Astrophysics Data System (ADS)
Estrada, T.; Ascasíbar, E.; Blanco, E.; Cappa, A.; Castejón, F.; Hidalgo, C.; van Milligen, B. Ph.; Sánchez, E.
2015-06-01
The spatiotemporal evolution of the interaction between turbulence and flows has been studied close to the L-H transition threshold conditions in the edge of TJ-II plasmas. As in other devices the temporal dynamics of the interaction displays limit cycle oscillations (LCO) with a characteristic predator-prey relationship between flows and turbulence. At TJ-II, the turbulence-flow front is found to propagate radially outwards at the onset of the LCO and in some particular cases, after a short time interval without oscillations, a reversal in the front propagation velocity is observed. Associated to this velocity reversal, a change in the temporal ordering of the LCO is measured. However, the change in the temporal ordering is not related to an intrinsic change in the nature of the LCO. In all cases the turbulence increase leads the process and produces an increase in the E × B flow shear. Dedicated experiments have been carried out to investigate the physical mechanisms triggering the onset of the LCO. At TJ-II the LCO are preferentially observed close to the transition threshold conditions at specific magnetic configurations having a low order rational surface located at the inner side of the E × B flow shear location. The behaviour of different frequency modes has been analysed and interpreted in terms of a geodesic acoustic mode generated by the non-linear mode coupling of Alfvén eigenmodes that evolves towards a low frequency flow, plus a MHD mode linked to the low order rational surface, as precursors of the LCO.
Buff, Christine; Brinkmann, Leonie; Bruchmann, Maximilian; Becker, Michael P I; Tupak, Sara; Herrmann, Martin J; Straube, Thomas
2017-11-01
Sustained anticipatory anxiety is central to Generalized Anxiety Disorder (GAD). During anticipatory anxiety, phasic threat responding appears to be mediated by the amygdala, while sustained threat responding seems related to the bed nucleus of the stria terminalis (BNST). Although sustained anticipatory anxiety in GAD patients was proposed to be associated with BNST activity alterations, firm evidence is lacking. We aimed to explore temporal characteristics of BNST and amygdala activity during threat anticipation in GAD patients. Nineteen GAD patients and nineteen healthy controls (HC) underwent functional magnetic resonance imaging (fMRI) during a temporally unpredictable threat anticipation paradigm. We defined phasic and a systematic variation of sustained response models for blood oxygen level-dependent responses during threat anticipation, to disentangle temporally dissociable involvement of the BNST and the amygdala. GAD patients relative to HC responded with increased phasic amygdala activity to onset of threat anticipation and with elevated sustained BNST activity that was delayed relative to the onset of threat anticipation. Both the amygdala and the BNST displayed altered responses during threat anticipation in GAD patients, albeit with different time courses. The results for the BNST activation hint towards its role in sustained threat responding, and contribute to a deeper understanding of pathological sustained anticipatory anxiety in GAD. © The Author (2017). Published by Oxford University Press.
Temporal Integration Windows in Neural Processing and Perception Aligned to Saccadic Eye Movements.
Wutz, Andreas; Muschter, Evelyn; van Koningsbruggen, Martijn G; Weisz, Nathan; Melcher, David
2016-07-11
When processing dynamic input, the brain balances the opposing needs of temporal integration and sensitivity to change. We hypothesized that the visual system might resolve this challenge by aligning integration windows to the onset of newly arriving sensory samples. In a series of experiments, human participants observed the same sequence of two displays separated by a brief blank delay when performing either an integration or segregation task. First, using magneto-encephalography (MEG), we found a shift in the stimulus-evoked time courses by a 150-ms time window between task signals. After stimulus onset, multivariate pattern analysis (MVPA) decoding of task in occipital-parietal sources remained above chance for almost 1 s, and the task-decoding pattern interacted with task outcome. In the pre-stimulus period, the oscillatory phase in the theta frequency band was informative about both task processing and behavioral outcome for each task separately, suggesting that the post-stimulus effects were caused by a theta-band phase shift. Second, when aligning stimulus presentation to the onset of eye fixations, there was a similar phase shift in behavioral performance according to task demands. In both MEG and behavioral measures, task processing was optimal first for segregation and then integration, with opposite phase in the theta frequency range (3-5 Hz). The best fit to neurophysiological and behavioral data was given by a dampened 3-Hz oscillation from stimulus or eye fixation onset. The alignment of temporal integration windows to input changes found here may serve to actively organize the temporal processing of continuous sensory input. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Memarian, Negar; Kim, Sally; Dewar, Sandra; Engel, Jerome; Staba, Richard J
2015-09-01
This study sought to predict postsurgical seizure freedom from pre-operative diagnostic test results and clinical information using a rapid automated approach, based on supervised learning methods in patients with drug-resistant focal seizures suspected to begin in temporal lobe. We applied machine learning, specifically a combination of mutual information-based feature selection and supervised learning classifiers on multimodal data, to predict surgery outcome retrospectively in 20 presurgical patients (13 female; mean age±SD, in years 33±9.7 for females, and 35.3±9.4 for males) who were diagnosed with mesial temporal lobe epilepsy (MTLE) and subsequently underwent standard anteromesial temporal lobectomy. The main advantage of the present work over previous studies is the inclusion of the extent of ipsilateral neocortical gray matter atrophy and spatiotemporal properties of depth electrode-recorded seizures as training features for individual patient surgery planning. A maximum relevance minimum redundancy (mRMR) feature selector identified the following features as the most informative predictors of postsurgical seizure freedom in this study's sample of patients: family history of epilepsy, ictal EEG onset pattern (positive correlation with seizure freedom), MRI-based gray matter thickness reduction in the hemisphere ipsilateral to seizure onset, proportion of seizures that first appeared in ipsilateral amygdala to total seizures, age, epilepsy duration, delay in the spread of ipsilateral ictal discharges from site of onset, gender, and number of electrode contacts at seizure onset (negative correlation with seizure freedom). Using these features in combination with a least square support vector machine (LS-SVM) classifier compared to other commonly used classifiers resulted in very high surgical outcome prediction accuracy (95%). Supervised machine learning using multimodal compared to unimodal data accurately predicted postsurgical outcome in patients with atypical MTLE. Published by Elsevier Ltd.
Power, Brian D; Stefanis, Nikos C; Dragovic, Milan; Jablensky, Assen; Castle, David; Morgan, Vera
2014-01-01
Individuals with a psychotic disorder who had a premorbid history of amphetamine use (n=382) were analyzed in groups according to age of initiation to amphetamine (AIA) and mean number of years of duration of premorbid exposure to amphetamine (DPEA) was calculated. Univariate General Linear Models were used to test for group differences in age at onset of psychotic illness (AOI) and DPEA. Although a temporal direct relationship between AIA and AOI was detected (mean duration 5.3 years), our findings suggested this association was spurious and better explained by a later initiation to amphetamine than to cannabis (by 2-3 years). Copyright © 2013 Elsevier B.V. All rights reserved.
Etomidate accurately localizes the epileptic area in patients with temporal lobe epilepsy.
Pastor, Jesús; Wix, Rybel; Meilán, María Luisa; Martínez-Chacón, José Luís; de Dios, Eva; Domínguez-Gadea, Luis; Herrera-Peco, Iván; Sola, Rafael G
2010-04-01
A variety of drugs have been used to activate and identify the epileptogenic area in patients during presurgical evaluation. We have evaluated the safety and usefulness of etomidate in identifying the epileptic zone by measuring bioelectrical brain activity and cerebral blood flow (CBF). We studied 13 men and 9 women under presurgical evaluation for temporal lobe epilepsy. We applied etomidate (0.1 mg/kg) while patients were monitored by video-electroencephalography (VEEG) with foramen ovale electrodes. In a subset of 15 patients, we also measured CBF with single photon emission computed tomography (SPECT). (1) Etomidate induced seizures in 2 of 22 patients. (2) The main side-effects observed were myoclonus (14 of 20) and moderate pain (3 of 20). (3) No changes in capillary oxygen saturation, respiration, or heart rate were observed. (4) Irritative activity specifically increased in the temporal mesial and lateral areas. No spikes were observed in other areas, aside from those observed under baseline conditions. (5) Irritative activity induced by etomidate correctly lateralized the ictal onset zone in 19 of 20 patients. In addition, the two etomidate-induced seizures appeared in the same regions as spontaneous ones. (6) The kinetics of pharmacologically induced activity was higher in the region of the ictal-onset zone. (7) Etomidate increased the CBF in the basal ganglia and especially in the posterior hippocampus of the temporal mesial region contralateral to the ictal-onset zone. Etomidate activation is a safe, specific, and quick test that can be used to identify the epileptic region in patients evaluated as candidates for temporal lobe epilepsy surgery.
Baltieri, Danilo Antonio
2014-03-01
This study aims to explore the temporal relationship between age of onset of substance use and criminal activity in women convicted of violent crimes as well as to subdivide them into clinically significant groups to which tailored treatment can be guided. Of the 353 female inmates randomised for this study, 38 (10.8%) refused to participate and 182 (51.6%) met inclusion criteria. Data were obtained only from substance-abusing female inmates serving a sentence for robbery or homicide in a female penitentiary in Brazil. Participant information was gathered through face-to-face interviews during which alcohol and drug abuse, impulsiveness levels, depressive symptoms, and criminological aspects were investigated. . Age of first alcohol and drug use significantly preceded the age of onset of criminal activities in the overall sample. Onset ages of alcohol and drug use problems significantly preceded the beginning of criminal activities in women convicted of homicide only. Latent Class Analysis resulted in two groups: cluster 1 (n = 122; 67%), early-onset alcohol and drug users; and cluster 2 (n = 60; 33%), late-onset alcohol and drug users. Higher depression levels, higher incidence of committing robbery and less official history of recidivism were associated with cluster 1 inmates. The temporal relationship between the onset age of alcohol/drug use problems and age of the beginning of criminal activities can set apart women convicted of robbery from those convicted of homicide. Further, a distinctive therapeutic approach to early- and late-onset offenders may be valuable. © 2014 Australasian Professional Society on Alcohol and other Drugs.
Felix, Richard A; Magnusson, Anna K
2016-10-15
The superior paraolivary nucleus (SPON) is a prominent structure in the mammalian auditory brainstem with a proposed role in encoding transient broadband sounds such as vocalized utterances. Currently, the source of excitatory pathways that project to the SPON and how these inputs contribute to SPON function are poorly understood. To shed light on the nature of these inputs, we measured evoked excitatory postsynaptic currents (EPSCs) in the SPON originating from the intermediate acoustic stria and compared them with the properties of EPSCs in the lateral superior olive (LSO) originating from the ventral acoustic stria during auditory development from postnatal day 5 to 22 in mice. Before hearing onset, EPSCs in the SPON and LSO are very similar in size and kinetics. After the onset of hearing, SPON excitation is refined to extremely few (2:1) fibers, with each strengthened by an increase in release probability, yielding fast and strong EPSCs. LSO excitation is recruited from more fibers (5:1), resulting in strong EPSCs with a comparatively broader stimulus-response range after hearing onset. Evoked SPON excitation is comparatively weaker than evoked LSO excitation, likely due to a larger fraction of postsynaptic GluR2-containing Ca 2+ -impermeable AMPA receptors after hearing onset. Taken together, SPON excitation develops synaptic properties that are suited for transmitting single events with high temporal reliability and the strong, dynamic LSO excitation is compatible with high rate-level sensitivity. Thus, the excitatory input pathways to the SPON and LSO mature to support different decoding strategies of respective coarse temporal and sound intensity information at the brainstem level. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Siegel, J.; Gawelda, W.; Puerto, D.
2008-01-15
Phase transformations of crystalline Ge{sub 2}Sb{sub 2}Te{sub 5} films upon pulsed laser irradiation have been studied using in situ reflectivity measurements with temporal resolution. Two different configurations allowed point probing with nanosecond temporal resolution and imaging with subpicosecond temporal and micrometer spatial resolution. The role of the pulse duration and laser fluence on the dynamics of the phase change and the degree of amorphization is discussed. Several advantageous features of femtosecond compared to nanosecond laser-induced amorphization are identified. Moreover, a high-resolution study of the amorphization dynamics reveals the onset of amorphization at moderate fluences to occur within {approx}100 ps aftermore » arrival of the laser pulse. At high fluences, amorphization occurs after {approx}430 ps and the molten phase is characterized by an anomalously low reflectivity value, indicative of a state of extreme supercooling.« less
Soundscapes from a Tropical Eastern Pacific reef and a Caribbean Sea reef
NASA Astrophysics Data System (ADS)
Staaterman, E.; Rice, A. N.; Mann, D. A.; Paris, C. B.
2013-06-01
Underwater soundscapes vary due to the abiotic and biological components of the habitat. We quantitatively characterized the acoustic environments of two coral reef habitats, one in the Tropical Eastern Pacific (Panama) and one in the Caribbean (Florida Keys), over 2-day recording durations in July 2011. We examined the frequency distribution, temporal variability, and biological patterns of sound production and found clear differences. The Pacific reef exhibited clear biological patterns and high temporal variability, such as the onset of snapping shrimp noise at night, as well as a 400-Hz daytime band likely produced by damselfish. In contrast, the Caribbean reef had high sound levels in the lowest frequencies, but lacked clear temporal patterns. We suggest that acoustic measures are an important element to include in reef monitoring programs, as the acoustic environment plays an important role in the ecology of reef organisms at multiple life-history stages.
Listeners modulate temporally selective attention during natural speech processing
Astheimer, Lori B.; Sanders, Lisa D.
2009-01-01
Spatially selective attention allows for the preferential processing of relevant stimuli when more information than can be processed in detail is presented simultaneously at distinct locations. Temporally selective attention may serve a similar function during speech perception by allowing listeners to allocate attentional resources to time windows that contain highly relevant acoustic information. To test this hypothesis, event-related potentials were compared in response to attention probes presented in six conditions during a narrative: concurrently with word onsets, beginning 50 and 100 ms before and after word onsets, and at random control intervals. Times for probe presentation were selected such that the acoustic environments of the narrative were matched for all conditions. Linguistic attention probes presented at and immediately following word onsets elicited larger amplitude N1s than control probes over medial and anterior regions. These results indicate that native speakers selectively process sounds presented at specific times during normal speech perception. PMID:18395316
Iler, Amy M; Inouye, David W; Høye, Toke T; Miller-Rushing, Abraham J; Burkle, Laura A; Johnston, Eleanor B
2013-08-01
Variation in species' responses to abiotic phenological cues under climate change may cause changes in temporal overlap among interacting taxa, with potential demographic consequences. Here, we examine associations between the abiotic environment and plant-pollinator phenological synchrony using a long-term syrphid fly-flowering phenology dataset (1992-2011). Degree-days above freezing, precipitation, and timing of snow melt were investigated as predictors of phenology. Syrphids generally emerge after flowering onset and end their activity before the end of flowering. Neither flowering nor syrphid phenology has changed significantly over our 20-year record, consistent with a lack of directional change in climate variables over the same time frame. Instead we document interannual variability in the abiotic environment and phenology. Timing of snow melt was the best predictor of flowering onset and syrphid emergence. Snow melt and degree-days were the best predictors of the end of flowering, whereas degree-days and precipitation best predicted the end of the syrphid period. Flowering advanced at a faster rate than syrphids in response to both advancing snow melt and increasing temperature. Different rates of phenological advancements resulted in more days of temporal overlap between the flower-syrphid community in years of early snow melt because of extended activity periods. Phenological synchrony at the community level is therefore likely to be maintained for some time, even under advancing snow melt conditions that are evident over longer term records at our site. These results show that interacting taxa may respond to different phenological cues and to the same cues at different rates but still maintain phenological synchrony over a range of abiotic conditions. However, our results also indicate that some individual plant species may overlap with the syrphid community for fewer days under continued climate change. This highlights the role of interannual variation in these flower-syrphid interactions and shows that species-level responses can differ from community-level responses in nonintuitive ways. © 2013 John Wiley & Sons Ltd.
Treating autism by targeting the temporal lobes.
Chi, Richard P; Snyder, Allan W
2014-11-01
Compelling new findings suggest that an early core signature of autism is a deficient left anterior temporal lobe response to language and an atypical over-activation of the right anterior temporal lobe. Intriguingly, our recent results from an entirely different line of reasoning and experiments also show that applying cathodal stimulation (suppressing) at the left anterior temporal lobe together with anodal stimulation (facilitating) at the right anterior temporal lobe, by transcranial direct current stimulation (tDCS), can induce some autistic-like cognitive abilities in otherwise normal adults. If we could briefly induce autistic like cognitive abilities in healthy individuals, it follows that we might be able to mitigate some autistic traits by reversing the above stimulation protocol, in an attempt to restore the typical dominance of the left anterior temporal lobe. Accordingly, we hypothesize that at least some autistic traits can be mitigated, by applying anodal stimulation (facilitating) at the left anterior temporal lobe together with cathodal stimulation (suppressing) at the right anterior temporal lobe. Our hypothesis is supported by strong convergent evidence that autistic symptoms can emerge and later reverse due to the onset and subsequent recovery of various temporal lobe (predominantly the left) pathologies. It is also consistent with evidence that the temporal lobes (especially the left) are a conceptual hub, critical for extracting meaning from lower level sensory information to form a coherent representation, and that a deficit in the temporal lobes underlies autistic traits. Copyright © 2014 Elsevier Ltd. All rights reserved.
Sheng, Ke; Fang, Weidong; Zhu, Yingcheng; Shuai, Guangying; Zou, Dezhi; Su, Meilan; Han, Yu; Cheng, Oumei
2016-01-01
HIGHLIGHTS Eighteen EOPD, 21 LOPD and 37 age-matched normal control subjects participated in the resting state fMRI scans.Age at onset of PD modulates the distribution of cerebral regional homogeneity during resting state.Disproportionate putamen alterations are more prominent in PD patients with a younger age of onset. Objective: Early-onset Parkinson's disease (EOPD) is distinct from late-onset PD (LOPD) as it relates to the clinical profile and response to medication. The objective of current paper is to investigate whether characteristics of spontaneous brain activity in the resting state are associated with the age of disease onset. Methods: We assessed the correlation between neural activity and age-at-onset in a sample of 39 PD patients (18 EOPD and 21 LOPD) and 37 age-matched normal control subjects. Regional homogeneity (ReHo) approaches were employed using ANOVA with two factors: PD and age. Results: In the comparisons between LOPD and EOPD, EOPD revealed lower ReHo values in the right putamen and higher ReHo values in the left superior frontal gyrus. Compared with age-matched control subjects, EOPD exhibited lower ReHo values in the right putamen and higher ReHo values in the left inferior temporal gyrus; However, LOPD showed lower ReHo values in the right putamen and left insula. The ReHo values were negatively correlated with the UPDRS total scores in the right putamen in LOPD, but a correlation between the ReHo value and UPDRS score was not detected in EOPD. Conclusions: Our findings support the notion that age at onset is associated with the distribution of cerebral regional homogeneity in the resting state and suggest that disproportionate putamen alterations are more prominent in patients with a younger age of onset. PMID:27462265
Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine
2010-01-01
Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…
Automatic measurement of voice onset time using discriminative structured prediction.
Sonderegger, Morgan; Keshet, Joseph
2012-12-01
A discriminative large-margin algorithm for automatic measurement of voice onset time (VOT) is described, considered as a case of predicting structured output from speech. Manually labeled data are used to train a function that takes as input a speech segment of an arbitrary length containing a voiceless stop, and outputs its VOT. The function is explicitly trained to minimize the difference between predicted and manually measured VOT; it operates on a set of acoustic feature functions designed based on spectral and temporal cues used by human VOT annotators. The algorithm is applied to initial voiceless stops from four corpora, representing different types of speech. Using several evaluation methods, the algorithm's performance is near human intertranscriber reliability, and compares favorably with previous work. Furthermore, the algorithm's performance is minimally affected by training and testing on different corpora, and remains essentially constant as the amount of training data is reduced to 50-250 manually labeled examples, demonstrating the method's practical applicability to new datasets.
Cai, Ziyan; Feng, Zhouyan; Guo, Zheshan; Zhou, Wenjie; Wang, Zhaoxiang; Wei, Xuefeng
2017-01-01
Deep brain stimulation (DBS) has shown wide applications for treating various disorders in the central nervous system by using high frequency stimulation (HFS) sequences of electrical pulses. However, upon the onset of HFS sequences, the narrow pulses could induce synchronous firing of action potentials among large populations of neurons and cause a transient phase of “onset response” that is different from the subsequent steady state. To investigate the transient onset phase, the antidromically-evoked population spikes (APS) were used as an electrophysiological marker to evaluate the synchronous neuronal reactions to axonal HFS in the hippocampal CA1 region of anesthetized rats. New stimulation paradigms with time-varying intensity and frequency were developed to suppress the “onset responses”. Results show that HFS paradigms with ramp-up intensity at the onset phase could suppress large APS potentials. In addition, an intensity ramp with a slower ramp-up rate or with a higher pulse frequency had greater suppression on APS amplitudes. Therefore, to reach a desired pulse intensity rapidly, a stimulation paradigm combining elevated frequency and ramp-up intensity was used to shorten the transition phase of initial HFS without evoking large APS potentials. The results of the study provide important clues for certain transient side effects of DBS and for development of new adaptive stimulation paradigms. PMID:29066946
Spring onset variations and long-term trends from new hemispheric-scale products and remote sensing
NASA Astrophysics Data System (ADS)
Dye, D. G.; Li, X.; Ault, T.; Zurita-Milla, R.; Schwartz, M. D.
2015-12-01
Spring onset is commonly characterized by plant phenophase changes among a variety of biophysical transitions and has important implications for natural and man-managed ecosystems. Here, we present a new integrated analysis of variability in gridded Northern Hemisphere spring onset metrics. We developed a set of hemispheric temperature-based spring indices spanning 1920-2013. As these were derived solely from meteorological data, they are used as a benchmark for isolating the climate system's role in modulating spring "green up" estimated from the annual cycle of normalized difference vegetation index (NDVI). Spatial patterns of interannual variations, teleconnections, and long-term trends were also analyzed in all metrics. At mid-to-high latitudes, all indices exhibit larger variability at interannual to decadal time scales than at spatial scales of a few kilometers. Trends of spring onset vary across space and time. However, compared to long-term trend, interannual to decadal variability generally accounts for a larger portion of the total variance in spring onset timing. Therefore, spring onset trends identified from short existing records may be aliased by decadal climate variations due to their limited temporal depth, even when these records span the entire satellite era. Based on our findings, we also demonstrated that our indices have skill in representing ecosystem-level spring phenology and may have important implications in understanding relationships between phenology, atmosphere dynamics and climate variability.
Microencephaloceles: another dual pathology of intractable temporal lobe epilepsy in childhood.
Aquilina, Kristian; Clarke, Dave F; Wheless, James W; Boop, Frederick A
2010-04-01
Temporal lobe encephaloceles can be associated with temporal lobe epilepsy. The authors report on the case of an adolescent with multiple microencephaloceles, in the anterolateral middle fossa floor, identified at surgery (temporal lobectomy) for intractable partial-onset seizures of temporal origin. Magnetic resonance imaging revealed only hippocampal atrophy. Subdural electrodes demonstrated ictal activity arising primarily from the anterior and lateral temporal lobe, close to the microencephaloceles, spreading to the anterior and posterior mesial structures. Pathological examination revealed diffuse temporal gliosis involving the hippocampus, together with microdysgenesis of the amygdala. The literature on epilepsy secondary to encephaloceles is reviewed and the contribution of the microencephaloceles to the seizure disorder in this patient is discussed.
Perrodin, Catherine; Kayser, Christoph; Logothetis, Nikos K.; Petkov, Christopher I.
2015-01-01
When social animals communicate, the onset of informative content in one modality varies considerably relative to the other, such as when visual orofacial movements precede a vocalization. These naturally occurring asynchronies do not disrupt intelligibility or perceptual coherence. However, they occur on time scales where they likely affect integrative neuronal activity in ways that have remained unclear, especially for hierarchically downstream regions in which neurons exhibit temporally imprecise but highly selective responses to communication signals. To address this, we exploited naturally occurring face- and voice-onset asynchronies in primate vocalizations. Using these as stimuli we recorded cortical oscillations and neuronal spiking responses from functional MRI (fMRI)-localized voice-sensitive cortex in the anterior temporal lobe of macaques. We show that the onset of the visual face stimulus resets the phase of low-frequency oscillations, and that the face–voice asynchrony affects the prominence of two key types of neuronal multisensory responses: enhancement or suppression. Our findings show a three-way association between temporal delays in audiovisual communication signals, phase-resetting of ongoing oscillations, and the sign of multisensory responses. The results reveal how natural onset asynchronies in cross-sensory inputs regulate network oscillations and neuronal excitability in the voice-sensitive cortex of macaques, a suggested animal model for human voice areas. These findings also advance predictions on the impact of multisensory input on neuronal processes in face areas and other brain regions. PMID:25535356
Context-Dependent Piano Music Transcription With Convolutional Sparse Coding
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt
This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less
A pilot DTI analysis in patients with recent onset post-traumatic stress disorder
NASA Astrophysics Data System (ADS)
Liu, Yang; Li, Liang; Li, Baojuan; Zhang, Xi; Lu, Hongbing
2016-03-01
To explore the alteration in white matter between survivors with recent onset post-traumatic stress disorder (PTSD) and without PTSD, who survived from the same coal mine flood disaster, the diffusion tensor imaging (DTI) sequences were analyzed using DTI studio and statistical parametric mapping (SPM) packages in this paper. From DTI sequence, the fractional anisotropy (FA) value describes the degree of anisotropy of a diffusion process, while the apparent diffusion coefficient (ADC) value reflects the magnitude of water diffusion. The DTI analyses between PTSD and non-PTSD indicate lower FA values in the right caudate nucleus, right middle temporal gyrus, right fusiform gyrus, and right superior temporal gyrus, and higher ADC values in the right superior temporal gyrus and right corpus callosum of the subjects with PTSD. These results are partly in line with our previous volume and cortical thickness analyses, indicating the importance of multi-modality analysis for PTSD.
Context-Dependent Piano Music Transcription With Convolutional Sparse Coding
Cogliati, Andrea; Duan, Zhiyao; Wohlberg, Brendt
2016-08-04
This study presents a novel approach to automatic transcription of piano music in a context-dependent setting. This approach employs convolutional sparse coding to approximate the music waveform as the summation of piano note waveforms (dictionary elements) convolved with their temporal activations (onset transcription). The piano note waveforms are pre-recorded for the specific piano to be transcribed in the specific environment. During transcription, the note waveforms are fixed and their temporal activations are estimated and post-processed to obtain the pitch and onset transcription. This approach works in the time domain, models temporal evolution of piano notes, and estimates pitches and onsetsmore » simultaneously in the same framework. Finally, experiments show that it significantly outperforms a state-of-the-art music transcription method trained in the same context-dependent setting, in both transcription accuracy and time precision, in various scenarios including synthetic, anechoic, noisy, and reverberant environments.« less
Psychoses in epilepsy: A comparison of postictal and interictal psychoses.
Hilger, Eva; Zimprich, Friedrich; Pataraia, Ekaterina; Aull-Watschinger, Susanne; Jung, Rebekka; Baumgartner, Christoph; Bonelli, Silvia
2016-07-01
We retrospectively analyzed data of patients with epilepsy (n=1434) evaluated with prolonged EEG monitoring in order to estimate the prevalence of postictal psychosis (PP) and interictal psychosis (IP), to investigate a potential association of psychosis subtype with epilepsy type, and to assess differences between PP and IP. The overall prevalence of psychosis was 5.9% (N=85); prevalence of PP (N=53) and IP (N=32) was 3.7% and 2.2%, respectively. Of patients with psychosis, 97.6% had localization-related epilepsy (LRE). Prevalence of psychosis was highest (9.3%) in patients with temporal lobe epilepsy (TLE). When comparing PP with IP groups on demographic, clinical, and psychopathological variables, patients with IP were younger at occurrence of first psychosis (P=0.048), had a shorter interval between epilepsy onset and first psychosis (P=0.002), and more frequently exhibited schizophreniform traits (conceptual disorganization: P=0.008; negative symptoms: P=0.017) than those with PP. Postictal psychosis was significantly associated with a temporal seizure onset on ictal EEG (P=0.000) and a higher incidence of violent behavior during psychosis (P=0.047). To conclude, our results support the presumption of a preponderance of LRE in patients with psychosis and that of a specific association of TLE with psychosis, in particular with PP. Given the significant differences between groups, PP and IP may represent distinct clinical entities potentially with a different neurobiological background. Copyright © 2016 Elsevier Inc. All rights reserved.
Rhone, Ariane E; Nourski, Kirill V; Oya, Hiroyuki; Kawasaki, Hiroto; Howard, Matthew A; McMurray, Bob
In everyday conversation, viewing a talker's face can provide information about the timing and content of an upcoming speech signal, resulting in improved intelligibility. Using electrocorticography, we tested whether human auditory cortex in Heschl's gyrus (HG) and on superior temporal gyrus (STG) and motor cortex on precentral gyrus (PreC) were responsive to visual/gestural information prior to the onset of sound and whether early stages of auditory processing were sensitive to the visual content (speech syllable versus non-speech motion). Event-related band power (ERBP) in the high gamma band was content-specific prior to acoustic onset on STG and PreC, and ERBP in the beta band differed in all three areas. Following sound onset, we found with no evidence for content-specificity in HG, evidence for visual specificity in PreC, and specificity for both modalities in STG. These results support models of audio-visual processing in which sensory information is integrated in non-primary cortical areas.
Hartl, Brad A; Ma, Htet S W; Hansen, Katherine S; Perks, Julian; Kent, Michael S; Fragoso, Ruben C; Marcu, Laura
2017-07-01
To provide a comprehensive understanding of how the selection of radiation dose affects the temporal and spatial progression of radiation-induced necrosis in the rat model. Necrosis was induced with a single fraction of radiation exposure, at doses ranging between 20 and 60 Gy, to the right hemisphere of 8-week-old Fischer rats from a linear accelerator. The development and progression of necrosis in the rats was monitored and quantified every other week with T1- and T2-weighted gadolinium contrast-enhanced MRI studies. The time to onset of necrosis was found to be dose-dependent, but after the initial onset, the necrosis progression rate and total volume generated was constant across different doses ranging between 30 and 60 Gy. Radiation doses less than 30 Gy did not develop necrosis within 33 weeks after treatment, indicating a dose threshold existing between 20 and 30 Gy. The highest dose used in this study led to the shortest time to onset of radiation-induced necrosis, while producing comparable disease progression dynamics after the onset. Therefore, for the radiation-induced necrosis rat model using a linear accelerator, the most optimum results were generated from a dose of 60 Gy.
Speaking-rate-induced variability in F2 trajectories.
Tjaden, K; Weismer, G
1998-10-01
This study examined speaking-rate-induced spectral and temporal variability of F2 formant trajectories for target words produced in a carrier phrase at speaking rates ranging from fast to slow. F2 onset frequency measured at the first glottal pulse following the stop consonant release in target words was used to quantify the extent to which adjacent consonantal and vocalic gestures overlapped; F2 target frequency was operationally defined as the first occurrence of a frequency minimum or maximum following F2 onset frequency. Regression analyses indicated 70% of functions relating F2 onset and vowel duration were statistically significant. The strength of the effect was variable, however, and the direction of significant functions often differed from that predicted by a simple model of overlapping, sliding gestures. Results of a partial correlation analysis examining interrelationships among F2 onset, F2 target frequency, and vowel duration across the speaking rate range indicated that covariation of F2 target with vowel duration may obscure the relationship between F2 onset and vowel duration across rate. The results further suggested that a sliding based model of acoustic variability associated with speaking rate change only partially accounts for the present data, and that such a view accounts for some speakers' data better than others.
Bertelson, Paul; Aschersleben, Gisa
2003-10-01
In the well-known visual bias of auditory location (alias the ventriloquist effect), auditory and visual events presented in separate locations appear closer together, provided the presentations are synchronized. Here, we consider the possibility of the converse phenomenon: crossmodal attraction on the time dimension conditional on spatial proximity. Participants judged the order of occurrence of sound bursts and light flashes, respectively, separated in time by varying stimulus onset asynchronies (SOAs) and delivered either in the same or in different locations. Presentation was organized using randomly mixed psychophysical staircases, by which the SOA was reduced progressively until a point of uncertainty was reached. This point was reached at longer SOAs with the sounds in the same frontal location as the flashes than in different places, showing that apparent temporal separation is effectively longer in the first condition. Together with a similar one obtained recently in a case of tactile-visual discrepancy, this result supports a view in which timing and spatial layout of the inputs play to some extent inter-changeable roles in the pairing operation at the base of crossmodal interaction.
Boschloo, Lynn; Spijker, Annet T.; Hoencamp, Erik; Kupka, Ralph; Nolen, Willem A.; Schoevers, Robert A.; Penninx, Brenda W. J. H.
2014-01-01
Objective One third of patients with a major depressive episode also experience manic symptoms or, even, a (hypo)manic episode. Retrospective studies on the temporal sequencing of symptomatology suggest that the majority of these patients report depressive symptoms before the onset of manic symptoms. However, prospective studies are scarce and this study will, therefore, prospectively examine the onset of either manic symptoms or a (hypo)manic episode in patients with a major depressive disorder. In addition, we will consider the impact of a large set of potential risk factors on both outcomes. Methodology Four-year follow-up data were used to determine the onset of manic symptoms as well as a CIDI-based (hypo)manic episode in a large sample (n = 889, age: 18–65 years) of outpatients with a major depressive disorder and without manic symptoms at baseline. Baseline vulnerability (i.e., sociodemographics, family history of depression, childhood trauma, life-events) and clinical (i.e., isolated manic symptoms, depression characteristics, and psychiatric comorbidity) factors were considered as potential risk factors. Results In our sample of depressed patients, 15.9% developed manic symptoms and an additional 4.7% developed a (hypo)manic episode during four years. Baseline isolated manic symptoms and comorbid alcohol dependence predicted both the onset of manic symptoms and a (hypo)manic episode. Low education only predicted the onset of manic symptoms, whereas male gender, childhood trauma and severity of depressive symptoms showed strong associations with, especially, the onset of (hypo)manic episodes. Conclusions A substantial proportion (20.6%) of patients with a major depressive disorder later developed manic symptoms or a (hypo)manic episode. Interestingly, some identified risk factors differed for the two outcomes, which may indicate that pathways leading to the onset of manic symptoms or a (hypo)manic episode might be different. Our findings indirectly support a clinical staging model. PMID:25259889
Boschloo, Lynn; Spijker, Annet T; Hoencamp, Erik; Kupka, Ralph; Nolen, Willem A; Schoevers, Robert A; Penninx, Brenda W J H
2014-01-01
One third of patients with a major depressive episode also experience manic symptoms or, even, a (hypo)manic episode. Retrospective studies on the temporal sequencing of symptomatology suggest that the majority of these patients report depressive symptoms before the onset of manic symptoms. However, prospective studies are scarce and this study will, therefore, prospectively examine the onset of either manic symptoms or a (hypo)manic episode in patients with a major depressive disorder. In addition, we will consider the impact of a large set of potential risk factors on both outcomes. Four-year follow-up data were used to determine the onset of manic symptoms as well as a CIDI-based (hypo)manic episode in a large sample (n = 889, age: 18-65 years) of outpatients with a major depressive disorder and without manic symptoms at baseline. Baseline vulnerability (i.e., sociodemographics, family history of depression, childhood trauma, life-events) and clinical (i.e., isolated manic symptoms, depression characteristics, and psychiatric comorbidity) factors were considered as potential risk factors. In our sample of depressed patients, 15.9% developed manic symptoms and an additional 4.7% developed a (hypo)manic episode during four years. Baseline isolated manic symptoms and comorbid alcohol dependence predicted both the onset of manic symptoms and a (hypo)manic episode. Low education only predicted the onset of manic symptoms, whereas male gender, childhood trauma and severity of depressive symptoms showed strong associations with, especially, the onset of (hypo)manic episodes. A substantial proportion (20.6%) of patients with a major depressive disorder later developed manic symptoms or a (hypo)manic episode. Interestingly, some identified risk factors differed for the two outcomes, which may indicate that pathways leading to the onset of manic symptoms or a (hypo)manic episode might be different. Our findings indirectly support a clinical staging model.
Kuba, Robert; Musilová, Klára; Vojvodič, Nikola; Tyrlíková, Ivana; Rektor, Ivan; Brázdil, Milan
2013-10-01
The main purpose of this retrospective analysis was to evaluate the incidence and lateralization value of rhythmic ictal nonclonic hand (RINCH) motions in patients with temporal lobe epilepsy (TLE), who were classified as Engel I at least 2 years after epilepsy surgery. We analyzed the distribution of ictal activity at the time of RINCH appearance in patients in whom RINCH motions were present during invasive EEG monitoring. A group of 120 patients was included in this study. In total, we reviewed 491 seizures: 277 seizures in patients with temporal lobe epilepsy (TLE) associated with hippocampal sclerosis (TLE-HS group) and 214 in TLE caused by other lesions (TLE-OTH group). We analyzed 29 patients (79 of the seizures) during invasive EEG monitoring. Fisher's exact test and binomial test were used for the statistical analysis. RINCH motions were observed in 24 out of 120 patients (20%) and in 48 out of 491 seizures (9.8%). There was no significant difference between the occurrence of RINCH motions in patients with TLE-HS and in patients with TLE-OTH, or between gender, right/left-sided TLE, and language dominant/nondominant TLE. RINCH motions were contralateral to the seizure onset in 83.3% of patients and 91.7% of seizures (p=0.0015; p<0.001, respectively). There were no differences in the lateralizing value of RINCH motions in patients with TLE-HS or TLE-OTH. We analyzed RINCH motions in 5 patients/7 seizures during invasive EEG. In all 7 seizures with RINCH motions, we observed the widespread activation of the temporal lobe (mesial and lateral, opercular and polar regions) contralateral to the side of RINCH motions. In all 7 seizures, we observed that at the time of RINCH motion onset, at least 1 explored region of the frontal lobe was affected by the ictal activity. In 3 seizures, we observed time-locked epileptic activation associated with the appearance of RINCH motions, i.e., in the orbitofrontal cortex in 2 seizures and in both the orbitofrontal cortex and anterior cingulate gyrus in 1 seizure. RINCH motions are a relatively frequent ictal sign in patients with TLE. They have a high lateralizing value in these patients, occurring contralateral to the ictal onset. RINCH motions usually occur after the spread of ictal activity beyond the temporal lobe, and their appearance is usually associated with the presence of ictal activity in various regions of the contralateral frontal lobe, mainly the orbitofrontal cortex and anterior cingulate gyrus. This is the first study analysing this phenomenon during invasive EEG recording. Copyright © 2013 Elsevier B.V. All rights reserved.
Depression and Parkinson disease: prevalence, temporal relationship, and determinants.
Yapici Eser, Hale; Bora, Hatice Ayşe; Kuruoğlu, Aslı
2017-04-18
Comorbidity of depression in Parkinson disease (PD) is a major factor that changes patients' quality of life. However, the neurobiological and sociodemographic risk factors for this comorbidity are not well studied. In this study, we aimed to define the prevalence, temporal relationship, and psychosocial and clinical determinants of depression comorbid with PD. Fifty-five PD patients were evaluated with SCID, a data form that assessed sociodemographic and PD-related variables, UPDRS III, HAM-D, HAM-A, MMSE, and the Apathy Evaluation Scale. Depression (lifetime: 45.5%, last month: 25.5%, before PD: 20%) was the most frequent psychiatric diagnosis. The major determinants of depression in the last month and depression before PD were early onset of PD and young age. Patients on pramipexole treatment were less likely to be diagnosed with depression in the last month. Other sociodemographic and PD-related variables were not significantly different for lifetime, last month, and pre-PD depression diagnosis compared to their counterparts. Depression is prevalent both before and after patient gets a PD diagnosis. Depression is not only the result of PD-related life changes but it is also a preceding factor that may decrease the age of PD onset.
Termination Patterns of Complex Partial Seizures: An Intracranial EEG Study
Afra, Pegah; Jouny, Christopher C.; Bergey, Gregory K.
2015-01-01
Purpose While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Methods Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). Results 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Conclusions Synchronous seizure termination is a common pattern for complex partial seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. PMID:26552555
Auditory temporal-order processing of vowel sequences by young and elderly listeners1
Fogerty, Daniel; Humes, Larry E.; Kewley-Port, Diane
2010-01-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18–31 years) and older (N=151; 60–88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners’ SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age. PMID:20370033
Alpha Oscillatory Dynamics Index Temporal Expectation Benefits in Working Memory.
Wilsch, Anna; Henry, Molly J; Herrmann, Björn; Maess, Burkhard; Obleser, Jonas
2015-07-01
Enhanced alpha power compared with a baseline can reflect states of increased cognitive load, for example, when listening to speech in noise. Can knowledge about "when" to listen (temporal expectations) potentially counteract cognitive load and concomitantly reduce alpha? The current magnetoencephalography (MEG) experiment induced cognitive load using an auditory delayed-matching-to-sample task with 2 syllables S1 and S2 presented in speech-shaped noise. Temporal expectation about the occurrence of S1 was manipulated in 3 different cue conditions: "Neutral" (uninformative about foreperiod), "early-cued" (short foreperiod), and "late-cued" (long foreperiod). Alpha power throughout the trial was highest when the cue was uninformative about the onset time of S1 (neutral) and lowest for the late-cued condition. This alpha-reducing effect of late compared with neutral cues was most evident during memory retention in noise and originated primarily in the right insula. Moreover, individual alpha effects during retention accounted best for observed individual performance differences between late-cued and neutral conditions, indicating a tradeoff between allocation of neural resources and the benefits drawn from temporal cues. Overall, the results indicate that temporal expectations can facilitate the encoding of speech in noise, and concomitantly reduce neural markers of cognitive load. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Auditory temporal-order processing of vowel sequences by young and elderly listeners.
Fogerty, Daniel; Humes, Larry E; Kewley-Port, Diane
2010-04-01
This project focused on the individual differences underlying observed variability in temporal processing among older listeners. Four measures of vowel temporal-order identification were completed by young (N=35; 18-31 years) and older (N=151; 60-88 years) listeners. Experiments used forced-choice, constant-stimuli methods to determine the smallest stimulus onset asynchrony (SOA) between brief (40 or 70 ms) vowels that enabled identification of a stimulus sequence. Four words (pit, pet, pot, and put) spoken by a male talker were processed to serve as vowel stimuli. All listeners identified the vowels in isolation with better than 90% accuracy. Vowel temporal-order tasks included the following: (1) monaural two-item identification, (2) monaural four-item identification, (3) dichotic two-item vowel identification, and (4) dichotic two-item ear identification. Results indicated that older listeners had more variability and performed poorer than young listeners on vowel-identification tasks, although a large overlap in distributions was observed. Both age groups performed similarly on the dichotic ear-identification task. For both groups, the monaural four-item and dichotic two-item tasks were significantly harder than the monaural two-item task. Older listeners' SOA thresholds improved with additional stimulus exposure and shorter dichotic stimulus durations. Individual differences of temporal-order performance among the older listeners demonstrated the influence of cognitive measures, but not audibility or age.
NASA Astrophysics Data System (ADS)
Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel
2016-04-01
The better understanding of temporal variability and regional distribution of surface melt on Antarctic sea ice is crucial for the understanding of atmosphere-ocean interactions and the determination of mass and energy budgets of sea ice. Since large regions of Antarctic sea ice are covered with snow during most of the year, observed inter-annual and regional variations of surface melt mainly represents melt processes in the snow. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study we combine two approaches for observing both surface and volume snowmelt by means of passive microwave satellite data. The former is achieved by measuring diurnal differences of the brightness temperature TB at 37 GHz, the latter by analyzing the ratio TB(19GHz)/TB(37GHz). Moreover, we use both melt onset proxies to divide the Antarctic sea ice cover into characteristic surface melt patterns from 1988/89 to 2014/15. Our results indicate four characteristic melt types. On average, 43% of the ice-covered ocean shows diurnal freeze-thaw cycles in the surface snow layer, resulting in temporary melt (Type A), less than 1% shows continuous snowmelt throughout the snowpack, resulting in strong melt over a period of several days (Type B), 19% shows Type A and B taking place consecutively (Type C), and for 37% no melt is observed at all (Type D). Continuous melt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 20 days after the onset of temporary melt. Considering the entire data set, snowmelt processes and onset do not show significant temporal trends. Instead, areas of increasing (decreasing) sea-ice extent have longer (shorter) periods of continuous snowmelt.
The potential of SMAP soil moisture data for analyzing droughts
NASA Astrophysics Data System (ADS)
Rajasekaran, E.; Das, N. N.; Entekhabi, D.; Yueh, S. H.
2017-12-01
Identification of the onset and the end of droughts are important for socioeconomic planning. Different datasets and tools are either available or being generated for drought analysis to recognize the status of drought. The aim of this study is to understand the potential of the SMAP soil moisture (SM) data for identification of onset, persistence and withdrawal of droughts over the Contiguous United States. We are using the SMAP-passive level 3 soil moisture observations and the United States Drought Monitor (http://droughtmonitor.unl.edu) data for understanding the relation between change in SM and drought severity. The daily observed SM data are temporally averaged to match the weekly drought monitor data and subsequently the weekly, monthly, 3 monthly and 6 monthly change in SM and drought severity were estimated. The analyses suggested that the change in SM and drought severity are correlated especially over the mid-west and west coast of USA at monthly and longer time scales. The spatial pattern of the SM change maps clearly indicated the regions that are moving between different levels of drought severity. Further, the time series of effective saturation [Se =(θ-θr)/(θs-θr)] indicated the temporal dynamics of drought conditions over California which is recovering from a long-term drought. Additional analyses are being carried out to develop statistics between drought severity and soil moisture level.
Di Gennaro, Giancarlo; D'Aniello, Alfredo; De Risi, Marco; Grillea, Giovanni; Quarato, Pier Paolo; Mascia, Addolorata; Grammaldo, Liliana G; Casciato, Sara; Morace, Roberta; Esposito, Vincenzo; Picardi, Angelo
2015-11-01
To assess the clinical significance of temporal pole abnormalities (temporopolar blurring, TB, and temporopolar atrophy, TA) in patients with temporal lobe epilepsy (TLE) and hippocampal sclerosis (HS) with a long post-surgical follow-up. We studied 60 consecutive patients with TLE-HS and 1.5 preoperative MRI scans who underwent surgery and were followed up for at least 5 years (mean follow-up 7.3 years). Based on findings of pre-surgical MRI, patients were classified according to the presence of TB or TA. Groups were compared on demographic, clinical, neuropsychological data, and seizure outcome. TB was found in 37 (62%) patients, while TA was found in 35 (58%) patients, always ipsilateral to HS, with a high degree of overlap (83%) between TB and TA (p<0.001). Patients with TB did not differ from those without TB with regard to history of febrile convulsions, GTCSs, age of epilepsy onset, side of surgery, seizure frequency, seizure outcome, and neuropsychological outcome. On the other hand, they were significantly older, had a longer duration of epilepsy, and displayed lower preoperative scores on several neuropsychological tests. Similar findings were observed for TA. Multivariate analysis corroborated the association between temporopolar abnormalities and age at onset, age at surgery (for TB only), and lower preoperative scores on some neuropsychological tests. Temporopolar abnormalities are frequent in patients with TLE-HS. Our data support the hypothesis that TB and TA are caused by seizure-related damages. These abnormalities did not influence seizure outcome, even after a long-term post-surgical follow-up. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Weighted and directed interactions in evolving large-scale epileptic brain networks
NASA Astrophysics Data System (ADS)
Dickten, Henning; Porz, Stephan; Elger, Christian E.; Lehnertz, Klaus
2016-10-01
Epilepsy can be regarded as a network phenomenon with functionally and/or structurally aberrant connections in the brain. Over the past years, concepts and methods from network theory substantially contributed to improve the characterization of structure and function of these epileptic networks and thus to advance understanding of the dynamical disease epilepsy. We extend this promising line of research and assess—with high spatial and temporal resolution and using complementary analysis approaches that capture different characteristics of the complex dynamics—both strength and direction of interactions in evolving large-scale epileptic brain networks of 35 patients that suffered from drug-resistant focal seizures with different anatomical onset locations. Despite this heterogeneity, we find that even during the seizure-free interval the seizure onset zone is a brain region that, when averaged over time, exerts strongest directed influences over other brain regions being part of a large-scale network. This crucial role, however, manifested by averaging on the population-sample level only - in more than one third of patients, strongest directed interactions can be observed between brain regions far off the seizure onset zone. This may guide new developments for individualized diagnosis, treatment and control.
The Temporal Dynamics of Spoken Word Recognition in Adverse Listening Conditions
ERIC Educational Resources Information Center
Brouwer, Susanne; Bradlow, Ann R.
2016-01-01
This study examined the temporal dynamics of spoken word recognition in noise and background speech. In two visual-world experiments, English participants listened to target words while looking at four pictures on the screen: a target (e.g. "candle"), an onset competitor (e.g. "candy"), a rhyme competitor (e.g.…
Attentional Modulation of Masked Repetition and Categorical Priming in Young and Older Adults
ERIC Educational Resources Information Center
Fabre, Ludovic; Lemaire, Patrick; Grainger, Jonathan
2007-01-01
Three experiments examined the effects of temporal attention and aging on masked repetition and categorical priming for numbers and words. Participants' temporal attention was manipulated by varying the stimulus onset asynchrony (i.e., constant or variable SOA). In Experiment 1, participants performed a parity judgment task and a lexical decision…
Association between mental disorders and subsequent adult onset asthma
Alonso, Jordi; de Jonge, Peter; Lim, Carmen C. W.; Aguilar-Gaxiola, Sergio; Bruffaerts, Ronny; Caldas-de-Almeida, Jose Miguel; Liu, Zhaorui; O'Neill, Siobhan; Stein, Dan J.; Viana, Maria Carmen; Al-Hamzawi, Ali Obaid; Angermeyer, Matthias C.; Borges, Guilherme; Ciutan, Marius; de Girolamo, Giovanni; Fiestas, Fabian; Haro, Josep Maria; Hu, Chiyi; Kessler, Ronald C.; Lépine, Jean Pierre; Levinson, Daphna; Nakamura, Yosikazu; Posada-Villa, Jose; Wojtyniak, Bogdan J; Scott, Kate M.
2016-01-01
Background and objectives Associations between asthma and anxiety and mood disorders are well established, but little is known about their temporal sequence. We examined associations between a wide range of DSM-IV mental disorders with adult onset of asthma and whether observed associations remain after mental comorbidity adjustments. Methods During face-to-face household surveys in community-dwelling adults (n = 52,095) of 19 countries, the WHO Composite International Diagnostic Interview retrospectively assessed lifetime prevalence and age at onset of 16 DSM-IV mental disorders. Asthma was assessed by self-report of physician’s diagnosis together with age of onset. Survival analyses estimated associations between first onset of mental disorders and subsequent adult onset asthma, without and with comorbidity adjustment. Results 1,860 adult onset (21 years+) asthma cases were identified, representing a total of 2,096,486 person-years of follow up. After adjustment for comorbid mental disorders several mental disorders were associated with subsequent adult asthma onset: bipolar (OR=1.8; 95%CI 1.3–2.4), panic (OR=1.4; 95%CI 1.0–2.0), generalized anxiety (OR=1.3; 95%CI 1.1–1.7), specific phobia (OR=1.4; 95%CI 1.2–1.6); post-traumatic stress (OR=1.5; 95%CI 1.1–2.0); binge eating (OR=1.9; 95%CI 1.2–2.9) and alcohol abuse (OR=1.5; 95%CI 1.2–2.0). Mental comorbidity linearly increased the association with adult asthma. The association with subsequent asthma was stronger for mental disorders with an early onset (before age 21). Conclusions A wide range of temporally prior mental disorders are significantly associated with subsequent onset of asthma in adulthood. The extent to which asthma can be avoided or improved among those with early mental disorders deserves study. PMID:25263276
Temporal parameters and time course of perceptual latency priming.
Scharlau, Ingrid; Neumann, Odmar
2003-06-01
Visual stimuli (primes) reduce the perceptual latency of a target appearing at the same location (perceptual latency priming, PLP). Three experiments assessed the time course of PLP by masked and, in Experiment 3, unmasked primes. Experiments 1 and 2 investigated the temporal parameters that determine the size of priming. Stimulus onset asynchrony was found to exert the main influence accompanied by a small effect of prime duration. Experiment 3 used a large range of priming onset asynchronies. We suggest to explain PLP by the Asynchronous Updating Model which relates it to the asynchrony of 2 central coding processes, preattentive coding of basic visual features and attentional orienting as a prerequisite for perceptual judgments and conscious perception.
Bilingualism, dementia, cognitive and neural reserve.
Perani, Daniela; Abutalebi, Jubin
2015-12-01
We discuss the role of bilingualism as a source of cognitive reserve and we propose the putative neural mechanisms through which lifelong bilingualism leads to a neural reserve that delays the onset of dementia. Recent findings highlight that the use of more than one language affects the human brain in terms of anatomo-structural changes. It is noteworthy that recent evidence from different places and cultures throughout the world points to a significant delay of dementia onset in bilingual/multilingual individuals. This delay has been reported not only for Alzheimer's dementia and its prodromal mild cognitive impairment phase, but also for other dementias such as vascular and fronto-temporal dementia, and was found to be independent of literacy, education and immigrant status. Lifelong bilingualism represents a powerful cognitive reserve delaying the onset of dementia by approximately 4 years. As to the causal mechanism, because speaking more than one language heavily relies upon executive control and attention, brain systems handling these functions are more developed in bilinguals resulting in increases of gray and white matter densities that may help protect from dementia onset. These neurocognitive benefits are even more prominent when second language proficiency and exposure are kept high throughout life.
Jones, S J; Longe, O; Vaz Pato, M
1998-03-01
Examination of the cortical auditory evoked potentials to complex tones changing in pitch and timbre suggests a useful new method for investigating higher auditory processes, in particular those concerned with 'streaming' and auditory object formation. The main conclusions were: (i) the N1 evoked by a sudden change in pitch or timbre was more posteriorly distributed than the N1 at the onset of the tone, indicating at least partial segregation of the neuronal populations responsive to sound onset and spectral change; (ii) the T-complex was consistently larger over the right hemisphere, consistent with clinical and PET evidence for particular involvement of the right temporal lobe in the processing of timbral and musical material; (iii) responses to timbral change were relatively unaffected by increasing the rate of interspersed changes in pitch, suggesting a mechanism for detecting the onset of a new voice in a constantly modulated sound stream; (iv) responses to onset, offset and pitch change of complex tones were relatively unaffected by interfering tones when the latter were of a different timbre, suggesting these responses must be generated subsequent to auditory stream segregation.
Determinants of brain metabolism changes in mesial temporal lobe epilepsy.
Chassoux, Francine; Artiges, Eric; Semah, Franck; Desarnaud, Serge; Laurent, Agathe; Landre, Elisabeth; Gervais, Philippe; Devaux, Bertrand; Helal, Ourkia Badia
2016-06-01
To determine the main factors influencing metabolic changes in mesial temporal lobe epilepsy (MTLE) due to hippocampal sclerosis (HS). We prospectively studied 114 patients with MTLE (62 female; 60 left HS; 15- to 56-year-olds) with (18) F-fluorodeoxyglucose-positron emission tomography and correlated the results with the side of HS, structural atrophy, electroclinical features, gender, age at onset, epilepsy duration, and seizure frequency. Imaging processing was performed using statistical parametric mapping. Ipsilateral hypometabolism involved temporal (mesial structures, pole, and lateral cortex) and extratemporal areas including the insula, frontal lobe, perisylvian regions, and thalamus, more extensively in right HS (RHS). A relative increase of metabolism (hypermetabolism) was found in the nonepileptic temporal lobe and in posterior areas bilaterally. Voxel-based morphometry detected unilateral hippocampus atrophy and gray matter concentration decrease in both frontal lobes, more extensively in left HS (LHS). Regardless of the structural alterations, the topography of hypometabolism correlated strongly with the extent of epileptic networks (mesial, anterior-mesiolateral, widespread mesiolateral, and bitemporal according to the ictal spread), which were larger in RHS. Notably, widespread perisylvian and bitemporal hypometabolism was found only in RHS. Mirror hypermetabolism was grossly proportional to the hypometabolic areas, coinciding partly with the default mode network. Gender-related effect was significant mainly in the contralateral frontal lobe, in which metabolism was higher in female patients. Epilepsy duration correlated with the contralateral temporal metabolism, positively in LHS and negatively in RHS. Opposite results were found with age at onset. High seizure frequency correlated negatively with the contralateral metabolism in LHS. Epileptic networks, as assessed by electroclinical correlations, appear to be the main determinant of hypometabolism in MTLE. Compensatory mechanisms reflected by a relative hypermetabolism in the nonepileptic temporal lobe and in extratemporal areas seem more efficient in LHS and in female patients, whereas long duration, late onset of epilepsy, and high seizure frequency may reduce these adaptive changes. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Ictal semiology in hippocampal versus extrahippocampal temporal lobe epilepsy.
Gil-Nagel, A; Risinger, M W
1997-01-01
We have analysed retrospectively the clinical features and electroencephalograms in 35 patients with complex partial seizures of temporal lobe origin who were seizure-free after epilepsy surgery. Two groups were differentiated for statistical analysis: 16 patients had hippocampal temporal lobe seizures (HTS) and 19 patients had extrahippocampal temporal lobe seizures (ETS) associated with a small tumour of the lateral or inferior temporal cortex. All patients in the HTS group had ictal onset verified with intracranial recordings (depth or subdural electrodes). In the ETS group, extrahippocampal onset was verified with intracranial recordings in eight patients and assumed, because of failure of a previous amygdalohippocampectomy, in one patient. Historical information, ictal semiology and ictal EEG of typical seizures were analysed in each patient. The occurrence of early and late oral automatisms and dystonic posturing of an upper extremity was analysed separately. A prior history of febrile convulsions was obtained in 13 HTS patients (81.3%) but in none with ETS (P < 0.0001, Fisher's exact test). An epigastric aura preceded seizures in five patients with HTS (31.3%) and none with ETS (P = 0.0135, Fisher's exact test), while an aura with experiential content was recalled by nine patients with ETS (47.4%) and none with HTS (P = 0.0015), Fisher's exact test). Early oral automatisms occurred in 11 patients with HTS (68.8%) and in two with ETS (10.5%) (P = 0.0005, Fisher's exact test). Early motor involvement of the contralateral upper extremity without oral automatisms occurred in three patients with HTS (18.8%) and in 10 with ETS (52.6%) (P = 0.0298, Fisher's exact test). Arrest reaction, vocalization, speech, facial grimace, postictal cough, late oral automatisms and late motor involvement of the contralateral arm and hand occurred with similar frequency in both groups. These observations show that the early clinical features of HTS and ETS are different.
Samson, F; Zeffiro, T A; Doyon, J; Benali, H; Mottron, L
2015-09-01
A continuum of phenotypes makes up the autism spectrum (AS). In particular, individuals show large differences in language acquisition, ranging from precocious speech to severe speech onset delay. However, the neurological origin of this heterogeneity remains unknown. Here, we sought to determine whether AS individuals differing in speech acquisition show different cortical responses to auditory stimulation and morphometric brain differences. Whole-brain activity following exposure to non-social sounds was investigated. Individuals in the AS were classified according to the presence or absence of Speech Onset Delay (AS-SOD and AS-NoSOD, respectively) and were compared with IQ-matched typically developing individuals (TYP). AS-NoSOD participants displayed greater task-related activity than TYP in the inferior frontal gyrus and peri-auditory middle and superior temporal gyri, which are associated with language processing. Conversely, the AS-SOD group only showed enhanced activity in the vicinity of the auditory cortex. We detected no differences in brain structure between groups. This is the first study to demonstrate the existence of differences in functional brain activity between AS individuals divided according to their pattern of speech development. These findings support the Trigger-threshold-target model and indicate that the occurrence of speech onset delay in AS individuals depends on the location of cortical functional reallocation, which favors perception in AS-SOD and language in AS-NoSOD. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Winn, Matthew B; Won, Jong Ho; Moon, Il Joon
This study was conducted to measure auditory perception by cochlear implant users in the spectral and temporal domains, using tests of either categorization (using speech-based cues) or discrimination (using conventional psychoacoustic tests). The authors hypothesized that traditional nonlinguistic tests assessing spectral and temporal auditory resolution would correspond to speech-based measures assessing specific aspects of phonetic categorization assumed to depend on spectral and temporal auditory resolution. The authors further hypothesized that speech-based categorization performance would ultimately be a superior predictor of speech recognition performance, because of the fundamental nature of speech recognition as categorization. Nineteen cochlear implant listeners and 10 listeners with normal hearing participated in a suite of tasks that included spectral ripple discrimination, temporal modulation detection, and syllable categorization, which was split into a spectral cue-based task (targeting the /ba/-/da/ contrast) and a timing cue-based task (targeting the /b/-/p/ and /d/-/t/ contrasts). Speech sounds were manipulated to contain specific spectral or temporal modulations (formant transitions or voice onset time, respectively) that could be categorized. Categorization responses were quantified using logistic regression to assess perceptual sensitivity to acoustic phonetic cues. Word recognition testing was also conducted for cochlear implant listeners. Cochlear implant users were generally less successful at utilizing both spectral and temporal cues for categorization compared with listeners with normal hearing. For the cochlear implant listener group, spectral ripple discrimination was significantly correlated with the categorization of formant transitions; both were correlated with better word recognition. Temporal modulation detection using 100- and 10-Hz-modulated noise was not correlated either with the cochlear implant subjects' categorization of voice onset time or with word recognition. Word recognition was correlated more closely with categorization of the controlled speech cues than with performance on the psychophysical discrimination tasks. When evaluating people with cochlear implants, controlled speech-based stimuli are feasible to use in tests of auditory cue categorization, to complement traditional measures of auditory discrimination. Stimuli based on specific speech cues correspond to counterpart nonlinguistic measures of discrimination, but potentially show better correspondence with speech perception more generally. The ubiquity of the spectral (formant transition) and temporal (voice onset time) stimulus dimensions across languages highlights the potential to use this testing approach even in cases where English is not the native language.
Multisensory perceptual learning is dependent upon task difficulty.
De Niear, Matthew A; Koo, Bonhwang; Wallace, Mark T
2016-11-01
There has been a growing interest in developing behavioral tasks to enhance temporal acuity as recent findings have demonstrated changes in temporal processing in a number of clinical conditions. Prior research has demonstrated that perceptual training can enhance temporal acuity both within and across different sensory modalities. Although certain forms of unisensory perceptual learning have been shown to be dependent upon task difficulty, this relationship has not been explored for multisensory learning. The present study sought to determine the effects of task difficulty on multisensory perceptual learning. Prior to and following a single training session, participants completed a simultaneity judgment (SJ) task, which required them to judge whether a visual stimulus (flash) and auditory stimulus (beep) presented in synchrony or at various stimulus onset asynchronies (SOAs) occurred synchronously or asynchronously. During the training session, participants completed the same SJ task but received feedback regarding the accuracy of their responses. Participants were randomly assigned to one of three levels of difficulty during training: easy, moderate, and hard, which were distinguished based on the SOAs used during training. We report that only the most difficult (i.e., hard) training protocol enhanced temporal acuity. We conclude that perceptual training protocols for enhancing multisensory temporal acuity may be optimized by employing audiovisual stimuli for which it is difficult to discriminate temporal synchrony from asynchrony.
Musical Scales in Tone Sequences Improve Temporal Accuracy.
Li, Min S; Di Luca, Massimiliano
2018-01-01
Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.
Tracking Temporal Hazard in the Human Electroencephalogram Using a Forward Encoding Model
2018-01-01
Abstract Human observers automatically extract temporal contingencies from the environment and predict the onset of future events. Temporal predictions are modeled by the hazard function, which describes the instantaneous probability for an event to occur given it has not occurred yet. Here, we tackle the question of whether and how the human brain tracks continuous temporal hazard on a moment-to-moment basis, and how flexibly it adjusts to strictly implicit variations in the hazard function. We applied an encoding-model approach to human electroencephalographic data recorded during a pitch-discrimination task, in which we implicitly manipulated temporal predictability of the target tones by varying the interval between cue and target tone (i.e. the foreperiod). Critically, temporal predictability either was driven solely by the passage of time (resulting in a monotonic hazard function) or was modulated to increase at intermediate foreperiods (resulting in a modulated hazard function with a peak at the intermediate foreperiod). Forward-encoding models trained to predict the recorded EEG signal from different temporal hazard functions were able to distinguish between experimental conditions, showing that implicit variations of temporal hazard bear tractable signatures in the human electroencephalogram. Notably, this tracking signal was reconstructed best from the supplementary motor area, underlining this area’s link to cognitive processing of time. Our results underline the relevance of temporal hazard to cognitive processing and show that the predictive accuracy of the encoding-model approach can be utilized to track abstract time-resolved stimuli. PMID:29740594
Encoding of Spatio-Temporal Input Characteristics by a CA1 Pyramidal Neuron Model
Pissadaki, Eleftheria Kyriaki; Sidiropoulou, Kyriaki; Reczko, Martin; Poirazi, Panayiota
2010-01-01
The in vivo activity of CA1 pyramidal neurons alternates between regular spiking and bursting, but how these changes affect information processing remains unclear. Using a detailed CA1 pyramidal neuron model, we investigate how timing and spatial arrangement variations in synaptic inputs to the distal and proximal dendritic layers influence the information content of model responses. We find that the temporal delay between activation of the two layers acts as a switch between excitability modes: short delays induce bursting while long delays decrease firing. For long delays, the average firing frequency of the model response discriminates spatially clustered from diffused inputs to the distal dendritic tree. For short delays, the onset latency and inter-spike-interval succession of model responses can accurately classify input signals as temporally close or distant and spatially clustered or diffused across different stimulation protocols. These findings suggest that a CA1 pyramidal neuron may be capable of encoding and transmitting presynaptic spatiotemporal information about the activity of the entorhinal cortex-hippocampal network to higher brain regions via the selective use of either a temporal or a rate code. PMID:21187899
Morioka, T; Nishio, S; Hisada, K; Muraishi, M; Ishibashi, H; Mamiya, K; Ohfu, M; Fukui, M
1998-05-01
Two cases of intractable temporal lobe epilepsy associated with old intracerebral hemorrhage in the lateral temporal lobe were reported. Although preoperative magnetic resonance imaging (MRI) failed to reveal hippocampal atrophy with T2 hyperintensity, electrocorticographic (ECoG) recording with chronic invasive subdural electrodes indicated the mesial temporal lobe to be an ictal onset zone. After anterior temporal lobectomy involving the lesion and hippocampectomy, the patients became seizure-free. Hippocampal sclerosis, namely "dual pathology", was not noted on histological examination. Careful ECoG recording with chronic subdural electrodes is mandatory even when the preoperative MRI does not demonstrate the radiological hippocampal sclerosis.
Automatic temporal segment detection via bilateral long short-term memory recurrent neural networks
NASA Astrophysics Data System (ADS)
Sun, Bo; Cao, Siming; He, Jun; Yu, Lejun; Li, Liandong
2017-03-01
Constrained by the physiology, the temporal factors associated with human behavior, irrespective of facial movement or body gesture, are described by four phases: neutral, onset, apex, and offset. Although they may benefit related recognition tasks, it is not easy to accurately detect such temporal segments. An automatic temporal segment detection framework using bilateral long short-term memory recurrent neural networks (BLSTM-RNN) to learn high-level temporal-spatial features, which synthesizes the local and global temporal-spatial information more efficiently, is presented. The framework is evaluated in detail over the face and body database (FABO). The comparison shows that the proposed framework outperforms state-of-the-art methods for solving the problem of temporal segment detection.
Unraveling hidden order in the dynamics of developed and emerging markets.
Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel
2014-01-01
The characterization of asset price returns is an important subject in modern finance. Traditionally, the dynamics of stock returns are assumed to lack any temporal order. Here we present an analysis of the autocovariance of stock market indices and unravel temporal order in several major stock markets. We also demonstrate a fundamental difference between developed and emerging markets in the past decade - emerging markets are marked by positive order in contrast to developed markets whose dynamics are marked by weakly negative order. In addition, the reaction to financial crises was found to be reversed among developed and emerging markets, presenting large positive/negative autocovariance spikes following the onset of these crises. Notably, the Chinese market shows neutral or no order while being regarded as an emerging market. These findings show that despite the coupling between international markets and global trading, major differences exist between different markets, and demonstrate that the autocovariance of markets is correlated with their stability, as well as with their state of development.
Unraveling Hidden Order in the Dynamics of Developed and Emerging Markets
Berman, Yonatan; Shapira, Yoash; Ben-Jacob, Eshel
2014-01-01
The characterization of asset price returns is an important subject in modern finance. Traditionally, the dynamics of stock returns are assumed to lack any temporal order. Here we present an analysis of the autocovariance of stock market indices and unravel temporal order in several major stock markets. We also demonstrate a fundamental difference between developed and emerging markets in the past decade - emerging markets are marked by positive order in contrast to developed markets whose dynamics are marked by weakly negative order. In addition, the reaction to financial crises was found to be reversed among developed and emerging markets, presenting large positive/negative autocovariance spikes following the onset of these crises. Notably, the Chinese market shows neutral or no order while being regarded as an emerging market. These findings show that despite the coupling between international markets and global trading, major differences exist between different markets, and demonstrate that the autocovariance of markets is correlated with their stability, as well as with their state of development. PMID:25383630
Effect of Vowel Identity and Onset Asynchrony on Concurrent Vowel Identification
ERIC Educational Resources Information Center
Hedrick, Mark S.; Madix, Steven G.
2009-01-01
Purpose: The purpose of the current study was to determine the effects of vowel identity and temporal onset asynchrony on identification of vowels overlapped in time. Method: Fourteen listeners with normal hearing, with a mean age of 24 years, participated. The listeners were asked to identify both of a pair of 200-ms vowels (referred to as…
Baker, Christa A.
2014-01-01
A variety of synaptic mechanisms can contribute to single-neuron selectivity for temporal intervals in sensory stimuli. However, it remains unknown how these mechanisms interact to establish single-neuron sensitivity to temporal patterns of sensory stimulation in vivo. Here we address this question in a circuit that allows us to control the precise temporal patterns of synaptic input to interval-tuned neurons in behaviorally relevant ways. We obtained in vivo intracellular recordings under multiple levels of current clamp from midbrain neurons in the mormyrid weakly electric fish Brienomyrus brachyistius during stimulation with electrosensory pulse trains. To reveal the excitatory and inhibitory inputs onto interval-tuned neurons, we then estimated the synaptic conductances underlying responses. We found short-term depression in excitatory and inhibitory pathways onto all interval-tuned neurons. Short-interval selectivity was associated with excitation that depressed less than inhibition at short intervals, as well as temporally summating excitation. Long-interval selectivity was associated with long-lasting onset inhibition. We investigated tuning after separately nullifying the contributions of temporal summation and depression, and found the greatest diversity of interval selectivity among neurons when both mechanisms were at play. Furthermore, eliminating the effects of depression decreased sensitivity to directional changes in interval. These findings demonstrate that variation in depression and summation of excitation and inhibition helps to establish tuning to behaviorally relevant intervals in communication signals, and that depression contributes to neural coding of interval sequences. This work reveals for the first time how the interplay between short-term plasticity and temporal summation mediates the decoding of temporal sequences in awake, behaving animals. PMID:25339741
Characterization of the replication cycle of the Lymantria dispar nuclear polyhedrosis virus
Christopher I. Riegel; James M. Slavicek
1997-01-01
The life cycle of the Lymantria dispar nuclear polyhedrosis virus (LdMNPV) was characterized through analysis of budded virus (BV) release, the temporal formation of polyhedra, the temporal transcription pattern of representative early, late, and hyper-expressed late genes, and the onset of DNA replication in the Ld652Y cell line. Transcripts from...
Marrufo-Pérez, Miriam I; Eustaquio-Martín, Almudena; López-Bascuas, Luis E; Lopez-Poveda, Enrique A
2018-04-01
The amplitude modulations (AMs) in speech signals are useful cues for speech recognition. Several adaptation mechanisms may make the detection of AM in noisy backgrounds easier when the AM carrier is presented later rather than earlier in the noise. The aim of the present study was to characterize temporal adaptation to noise in AM detection. AM detection thresholds were measured for monaural (50 ms, 1.5 kHz) pure-tone carriers presented at the onset ('early' condition) and 300 ms after the onset ('late' condition) of ipsilateral, contralateral, and bilateral (diotic) broadband noise, as well as in quiet. Thresholds were 2-4 dB better in the late than in the early condition for the three noise lateralities. The temporal effect held for carriers at equal sensation levels, confirming that it was not due to overshoot on carrier audibility. The temporal effect was larger for broadband than for low-band contralateral noises. Many aspects in the results were consistent with the noise activating the medial olivocochlear reflex (MOCR) and enhancing AM depth in the peripheral auditory response. Other aspects, however, indicate that central masking and adaptation unrelated to the MOCR also affect both carrier-tone and AM detection and are involved in the temporal effects.
Figure-ground segregation can rely on differences in motion direction.
Kandil, Farid I; Fahle, Manfred
2004-12-01
If the elements within a figure move synchronously while those in the surround move at a different time, the figure is easily segregated from the surround and thus perceived. Lee and Blake (1999) [Visual form created solely from temporal structure. Science, 284, 1165-1168] demonstrated that this figure-ground separation may be based not only on time differences between motion onsets, but also on the differences between reversals of motion direction. However, Farid and Adelson (2001) [Synchrony does not promote grouping in temporally structured displays. Nature Neuroscience, 4, 875-876] argued that figure-ground segregation in the motion-reversal experiment might have been based on a contrast artefact and concluded that (a)synchrony as such was 'not responsible for the perception of form in these or earlier displays'. Here, we present experiments that avoid contrast artefacts but still produce figure-ground segregation based on purely temporal cues. Our results show that subjects can segregate figure from ground even though being unable to use motion reversals as such. Subjects detect the figure when either (i) motion stops (leading to contrast artefacts), or (ii) motion directions differ between figure and ground. Segregation requires minimum delays of about 15 ms. We argue that whatever the underlying cues and mechanisms, a second stage beyond motion detection is required to globally compare the outputs of local motion detectors and to segregate figure from ground. Since analogous changes take place in both figure and ground in rapid succession, this second stage has to detect the asynchrony with high temporal precision.
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the “extrapolated centre-of-mass”, remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement. PMID:24340080
Hussein, Tarek; Yiou, Eric; Larue, Jacques
2013-01-01
Although the effect of temporal pressure on spatio-temporal aspects of motor coordination and posture is well established in young adults, there is a clear lack of data on elderly subjects. This work examined the aging-related effects of temporal pressure on movement synchronization and dynamic stability. Sixteen young and eleven elderly subjects performed series of simultaneous rapid leg flexions in an erect posture paired with ipsilateral index-finger extensions, minimizing the difference between heel and finger movement onsets. This task was repeated ten times under two temporal conditions (self-initiated [SI] vs. reaction-time [RT]). Results showed that, first, temporal pressure modified movement synchronization; the finger extension preceded swing heel-off in RT, and inversely in SI. Synchronization error and associated standard deviation were significantly greater in elderly than in young adults in SI only, i.e. in the condition where proprioception is thought to be crucial for temporal coordination. Secondly, both groups developed a significantly shorter mediolateral (ML) anticipatory postural adjustment duration in RT (high temporal pressure) than in SI. In both groups, this shortening was compensated by an increase in the anticipatory peak of centre-of-gravity (CoG) acceleration towards the stance-leg so that ML dynamic stability at foot-off, quantified with the "extrapolated centre-of-mass", remained unchanged across temporal conditions. This increased CoG acceleration was associated with an increased anticipatory peak of ML centre-of-pressure shift towards the swing-leg in young adults only. This suggested that the ability to accelerate the CoG with the centre-of-pressure shift was degraded in elderly, probably due to weakness in the lower limb muscles. Dynamic stability at foot-off was also degraded in elderly, with a consequent increased risk of ML imbalance and falling. The present study provides new insights into the ability of elderly adults to deal with temporal pressure constraints in adapting whole-body coordination of postural and focal components of paired movement.
Temporal sequencing of nicotine dependence and major depressive disorder: A U.S. national study.
Martínez-Ortega, José M; Franco, Silvia; Rodríguez-Fernández, Jorge M; Gutiérrez-Rojas, Luis; Wang, Shuai; Gurpegui, Manuel
2017-04-01
Major Depressive Disorder (MDD) and Nicotine dependence (ND) often co-occur. However, little attention has been given to the temporal order between the two disorders. We compared the sociodemographic and clinical characteristics of individuals whose onset of ND preceded (ND-prior) or followed the onset of MDD (MDD-prior). Binary logistic regression models were computed to compare ND-prior (n=546) and MDD-prior (n=801) individuals from the National Epidemiologic Survey on Alcohol and Related Conditions (NESARC, n=43,093). We found that MDD-prior were more likely to have a history of suicide attempts and a family history of both depression and antisocial behavior, to have had psychiatric hospitalization, and to have an earlier age of onset of the first depressive episode; but a later age of onset for both daily smoking and ND. On average, MDD-prior individuals showed a significantly longer transition time from daily smoking to ND (15.6±0.6 vs. 6.9±0.4 years, P<0.001). In contrast, ND-prior subjects had a significantly greater proportion of withdrawal symptoms, and of lifetime alcohol use or alcohol use disorder. We conclude that the phenomenology and course of ND and MDD vary significantly, depending on which disorder had earlier onset. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Lagarde, Stanislas; Bonini, Francesca; McGonigal, Aileen; Chauvel, Patrick; Gavaret, Martine; Scavarda, Didier; Carron, Romain; Régis, Jean; Aubert, Sandrine; Villeneuve, Nathalie; Giusiano, Bernard; Figarella-Branger, Dominique; Trebuchon, Agnès; Bartolomei, Fabrice
2016-09-01
The study of intracerebral electroencephalography (EEG) seizure-onset patterns is crucial to accurately define the epileptogenic zone and guide successful surgical resection. It also raises important pathophysiologic issues concerning mechanisms of seizure generation. Until now, several seizure-onset patterns have been described using distinct recording methods (subdural, depth electrode), mostly in temporal lobe epilepsies or with heterogeneous neocortical lesions. We analyzed data from a cohort of 53 consecutive patients explored by stereoelectroencephalography (SEEG) and with pathologically confirmed malformation of cortical development (MCD; including focal cortical dysplasia [FCD] and neurodevelopmental tumors [NDTs]). We identified six seizure-onset patterns using visual and time-frequency analysis: low-voltage fast activity (LVFA); preictal spiking followed by LVFA; burst of polyspikes followed by LVFA; slow wave/DC shift followed by LVFA; theta/alpha sharp waves; and rhythmic spikes/spike-waves. We found a high prevalence of patterns that included LVFA (83%), indicating nevertheless that LVFA is not a constant characteristic of seizure onset. An association between seizure-onset patterns and histologic types was found (p = 001). The more prevalent patterns were as follows: (1) in FCD type I LVFA (23.1%) and slow wave/baseline shift followed by LVFA (15.4%); (2) in FCD type II burst of polyspikes followed by LVFA (31%), LVFA (27.6%), and preictal spiking followed by LVFA (27.6%); (3) in NDT, LVFA (54.5%). We found that a seizure-onset pattern that included LVFA was associated with favorable postsurgical outcome, but the completeness of the EZ resection was the sole independent predictive variable. Six different seizure-onset patterns can be described in FCD and NDT. Better postsurgical outcome is associated with patterns that incorporate LVFA. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
Newman, Daniel P; Loughnane, Gerard M; Kelly, Simon P; O'Connell, Redmond G; Bellgrove, Mark A
2017-03-22
Healthy subjects tend to exhibit a bias of visual attention whereby left hemifield stimuli are processed more quickly and accurately than stimuli appearing in the right hemifield. It has long been held that this phenomenon arises from the dominant role of the right cerebral hemisphere in regulating attention. However, methods that would enable more precise understanding of the mechanisms underpinning visuospatial bias have remained elusive. We sought to finely trace the temporal evolution of spatial biases by leveraging a novel bilateral dot motion detection paradigm. In combination with electroencephalography, this paradigm enables researchers to isolate discrete neural signals reflecting the key neural processes needed for making these detection decisions. These include signals for spatial attention, early target selection, evidence accumulation, and motor preparation. Using this method, we established that three key neural markers accounted for unique between-subject variation in visuospatial bias: hemispheric asymmetry in posterior α power measured before target onset, which is related to the distribution of preparatory attention across the visual field; asymmetry in the peak latency of the early N2c target-selection signal; and, finally, asymmetry in the onset time of the subsequent neural evidence-accumulation process with earlier onsets for left hemifield targets. Our development of a single paradigm to dissociate distinct processing components that track the temporal evolution of spatial biases not only advances our understanding of the neural mechanisms underpinning normal visuospatial attention bias, but may also in the future aid differential diagnoses in disorders of spatial attention. SIGNIFICANCE STATEMENT The significance of this research is twofold. First, it shows that individual differences in how humans direct their attention between left and right space reflects physiological differences in how early the brain starts to accumulate evidence for the existence of a visual target. Second, the novel methods developed here may have particular relevance to disorders of attention, such as unilateral spatial neglect. In the case of spatial neglect, pathological inattention to left space could have multiple underlying causes, including biased attention, impaired decision formation, or a motor deficit related to one side of space. Our development of a single paradigm to dissociate each of these components may aid in supporting more precise differential diagnosis in such heterogeneous disorders. Copyright © 2017 the authors 0270-6474/17/373378-08$15.00/0.
Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials.
Savic, Olivera; Savic, Andrej M; Kovic, Vanja
2017-01-01
We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280-460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520-600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation.
Putative mechanisms mediating tolerance for audiovisual stimulus onset asynchrony.
Bhat, Jyoti; Miller, Lee M; Pitt, Mark A; Shahin, Antoine J
2015-03-01
Audiovisual (AV) speech perception is robust to temporal asynchronies between visual and auditory stimuli. We investigated the neural mechanisms that facilitate tolerance for audiovisual stimulus onset asynchrony (AVOA) with EEG. Individuals were presented with AV words that were asynchronous in onsets of voice and mouth movement and judged whether they were synchronous or not. Behaviorally, individuals tolerated (perceived as synchronous) longer AVOAs when mouth movement preceded the speech (V-A) stimuli than when the speech preceded mouth movement (A-V). Neurophysiologically, the P1-N1-P2 auditory evoked potentials (AEPs), time-locked to sound onsets and known to arise in and surrounding the primary auditory cortex (PAC), were smaller for the in-sync than the out-of-sync percepts. Spectral power of oscillatory activity in the beta band (14-30 Hz) following the AEPs was larger during the in-sync than out-of-sync perception for both A-V and V-A conditions. However, alpha power (8-14 Hz), also following AEPs, was larger for the in-sync than out-of-sync percepts only in the V-A condition. These results demonstrate that AVOA tolerance is enhanced by inhibiting low-level auditory activity (e.g., AEPs representing generators in and surrounding PAC) that code for acoustic onsets. By reducing sensitivity to acoustic onsets, visual-to-auditory onset mapping is weakened, allowing for greater AVOA tolerance. In contrast, beta and alpha results suggest the involvement of higher-level neural processes that may code for language cues (phonetic, lexical), selective attention, and binding of AV percepts, allowing for wider neural windows of temporal integration, i.e., greater AVOA tolerance. Copyright © 2015 the American Physiological Society.
The social competence and behavioral problem substrate of new- and recent-onset childhood epilepsy.
Almane, Dace; Jones, Jana E; Jackson, Daren C; Seidenberg, Michael; Hermann, Bruce P
2014-02-01
This study examined patterns of syndrome-specific problems in behavior and competence in children with new- or recent-onset epilepsy compared with healthy controls. Research participants consisted of 205 children aged 8-18, including youth with recent-onset epilepsy (n=125, 64 localization-related epilepsy [LRE] and 61 idiopathic generalized epilepsy [IGE]) and healthy first-degree cousin controls (n=80). Parents completed the Child Behavior Checklist for children aged 6-18 (CBCL/6-18) from the Achenbach System of Empirically Based Assessment (ASEBA). Dependent variables included Total Competence, Total Problems, Total Internalizing, Total Externalizing, and Other Problems scales. Comparisons of children with LRE and IGE with healthy controls were examined followed by comparisons of healthy controls with those having specific epilepsy syndromes of LRE (BECTS, Frontal/Temporal Lobe, and Focal NOS) and IGE (Absence, Juvenile Myoclonic, and IGE NOS). Children with LRE and/or IGE differed significantly (p<0.05) from healthy controls, but did not differ from each other, across measures of behavior (Total Problems, Total Internalizing, Total Externalizing, and Other Problems including Thought and Attention Problems) or competence (Total Competence including School and Social). Similarly, children with specific syndromes of LRE and IGE differed significantly (p<0.05) from controls across measures of behavior (Total Problems, Total Internalizing, and Other Problems including Attention Problems) and competence (Total Competence including School). Only on the Thought Problems scale were there syndrome differences. In conclusion, children with recent-onset epilepsy present with significant behavioral problems and lower competence compared with controls, with little syndrome specificity whether defined broadly (LRE and IGE) or narrowly (specific syndromes of LRE and IGE). Copyright © 2013 Elsevier Inc. All rights reserved.
Development of Sensitivity to Audiovisual Temporal Asynchrony during Mid-Childhood
Kaganovich, Natalya
2015-01-01
Temporal proximity is one of the key factors determining whether events in different modalities are integrated into a unified percept. Sensitivity to audiovisual temporal asynchrony has been studied in adults in great detail. However, how such sensitivity matures during childhood is poorly understood. We examined perception of audiovisual temporal asynchrony in 7-8-year-olds, 10-11-year-olds, and adults by using a simultaneity judgment task (SJT). Additionally, we evaluated whether non-verbal intelligence, verbal ability, attention skills, or age influenced children's performance. On each trial, participants saw an explosion-shaped figure and heard a 2 kHz pure tone. These occurred at the following stimulus onset asynchronies (SOAs) - 0, 100, 200, 300, 400, and 500 ms. In half of all trials, the visual stimulus appeared first (VA condition) while in another half, the auditory stimulus appeared first (AV condition). Both groups of children were significantly more likely than adults to perceive asynchronous events as synchronous at all SOAs exceeding 100 ms, in both VA and AV conditions. Furthermore, only adults exhibited a significant shortening of RT at long SOAs compared to medium SOAs. Sensitivities to the VA and AV temporal asynchronies showed different developmental trajectories, with 10-11-year-olds outperforming 7-8-year-olds at the 300-500 ms SOAs, but only in the AV condition. Lastly, age was the only predictor of children's performance on the SJT. These results provide an important baseline against which children with developmental disorders associated with impaired audiovisual temporal function, such as autism, specific language impairment, and dyslexia may be compared. PMID:26569563
Influence of Temporal Expectations on Response Priming by Subliminal Faces
Guex, Raphael; Vuilleumier, Patrik
2016-01-01
Unconscious processes are often assumed immune from attention influence. Recent behavioral studies suggest however that the processing of subliminal information can be influenced by temporal attention. To examine the neural mechanisms underlying these effects, we used a stringent masking paradigm together with fMRI to investigate how temporal attention modulates the processing of unseen (masked) faces. Participants performed a gender decision task on a visible neutral target face, preceded by a masked prime face that could vary in gender (same or different than target) and emotion expression (neutral or fearful). We manipulated temporal attention by instructing participants to expect targets to appear either early or late during the stimulus sequence. Orienting temporal attention to subliminal primes influenced response priming by masked faces, even when gender was incongruent. In addition, gender-congruent primes facilitated responses regardless of attention while gender-incongruent primes reduced accuracy when attended. Emotion produced no differential effects. At the neural level, incongruent and temporally unexpected primes increased brain response in regions of the fronto-parietal attention network, reflecting greater recruitment of executive control and reorienting processes. Congruent and expected primes produced higher activations in fusiform cortex, presumably reflecting facilitation of perceptual processing. These results indicate that temporal attention can influence subliminal processing of face features, and thus facilitate information integration according to task-relevance regardless of conscious awareness. They also suggest that task-congruent information between prime and target may facilitate response priming even when temporal attention is not selectively oriented to the prime onset time. PMID:27764124
Influence of Temporal Expectations on Response Priming by Subliminal Faces.
Pichon, Swann; Guex, Raphael; Vuilleumier, Patrik
2016-01-01
Unconscious processes are often assumed immune from attention influence. Recent behavioral studies suggest however that the processing of subliminal information can be influenced by temporal attention. To examine the neural mechanisms underlying these effects, we used a stringent masking paradigm together with fMRI to investigate how temporal attention modulates the processing of unseen (masked) faces. Participants performed a gender decision task on a visible neutral target face, preceded by a masked prime face that could vary in gender (same or different than target) and emotion expression (neutral or fearful). We manipulated temporal attention by instructing participants to expect targets to appear either early or late during the stimulus sequence. Orienting temporal attention to subliminal primes influenced response priming by masked faces, even when gender was incongruent. In addition, gender-congruent primes facilitated responses regardless of attention while gender-incongruent primes reduced accuracy when attended. Emotion produced no differential effects. At the neural level, incongruent and temporally unexpected primes increased brain response in regions of the fronto-parietal attention network, reflecting greater recruitment of executive control and reorienting processes. Congruent and expected primes produced higher activations in fusiform cortex, presumably reflecting facilitation of perceptual processing. These results indicate that temporal attention can influence subliminal processing of face features, and thus facilitate information integration according to task-relevance regardless of conscious awareness. They also suggest that task-congruent information between prime and target may facilitate response priming even when temporal attention is not selectively oriented to the prime onset time.
Fuentes, Amanda; Smith, Mary Lou
2015-12-01
The objective of this study was to provide a better understanding of the verbal learning and memory (VLM) patterns that might differentiate children with frontal lobe epilepsy (FLE) from children with temporal lobe epilepsy (TLE) and to examine the impact of variables thought to influence outcomes (seizure laterality, age at seizure onset, age at assessment, epilepsy duration, number of antiepileptic drugs). Retrospective analyses were carried out for children with intractable unilateral TLE (n=100) and FLE (n=27) who completed standardized measures of VLM entailing lists of single words or lists of word pairs. Mean intelligent quotients and VLM scores on single words fell within the average range for both groups, whereas scores fell within the low average to borderline range on word pairs. No significant overall differences in VLM were found between the group with TLE and the group with FLE. Older age at assessment and older age at seizure onset were generally associated with better VLM in both groups but were related to better performance in a number of indices in the group with TLE and only fewer intrusions in the group with FLE. The VLM profiles of children with TLE and FLE are generally similar. Older age at assessment and older age at seizure onset have a favorable impact on both groups but are related to better encoding, retrieval, and monitoring processes for the group with TLE and improved memory monitoring (i.e., as indicated by fewer intrusions) in the group with FLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Kuroda, Tsuyoshi; Tomimatsu, Erika; Grondin, Simon; Miyazaki, Makoto
2016-11-01
We investigated how perceived duration of empty time intervals would be modulated by the length of sounds marking those intervals. Three sounds were successively presented in Experiment 1. Each sound was short (S) or long (L), and the temporal position of the middle sound's onset was varied. The lengthening of each sound resulted in delayed perception of the onset; thus, the middle sound's onset had to be presented earlier in the SLS than in the LSL sequence so that participants perceived the three sounds as presented at equal interonset intervals. In Experiment 2, a short sound and a long sound were alternated repeatedly, and the relative duration of the SL interval to the LS interval was varied. This repeated sequence was perceived as consisting of equal interonset intervals when the onsets of all sounds were aligned at physically equal intervals. If the same onset delay as in the preceding experiment had occurred, participants should have perceived equality between the interonset intervals in the repeated sequence when the SL interval was physically shortened relative to the LS interval. The effects of sound length seemed to be canceled out when the presentation of intervals was repeated. Finally, the perceived duration of the interonset intervals in the repeated sequence was not influenced by whether the participant's native language was French or Japanese, or by how the repeated sequence was perceptually segmented into rhythmic groups.
Coggan, David D; Baker, Daniel H; Andrews, Timothy J
2016-01-01
Brain-imaging studies have found distinct spatial and temporal patterns of response to different object categories across the brain. However, the extent to which these categorical patterns of response reflect higher-level semantic or lower-level visual properties of the stimulus remains unclear. To address this question, we measured patterns of EEG response to intact and scrambled images in the human brain. Our rationale for using scrambled images is that they have many of the visual properties found in intact images, but do not convey any semantic information. Images from different object categories (bottle, face, house) were briefly presented (400 ms) in an event-related design. A multivariate pattern analysis revealed categorical patterns of response to intact images emerged ∼80-100 ms after stimulus onset and were still evident when the stimulus was no longer present (∼800 ms). Next, we measured the patterns of response to scrambled images. Categorical patterns of response to scrambled images also emerged ∼80-100 ms after stimulus onset. However, in contrast to the intact images, distinct patterns of response to scrambled images were mostly evident while the stimulus was present (∼400 ms). Moreover, scrambled images were able to account only for all the variance in the intact images at early stages of processing. This direct manipulation of visual and semantic content provides new insights into the temporal dynamics of object perception and the extent to which different stages of processing are dependent on lower-level or higher-level properties of the image.
NASA Astrophysics Data System (ADS)
Semmens, Kathryn Alese
Snow accumulation and melt are dynamic features of the cryosphere indicative of a changing climate. Spring melt and refreeze timing are of particular importance due to the influence on subsequent hydrological and ecological processes, including peak runoff and green-up. To investigate the spatial and temporal variability of melt timing across a sub-arctic region (the Yukon River Basin (YRB), Alaska/Canada) dominated by snow and lacking substantial ground instrumentation, passive microwave remote sensing was utilized to provide daily brightness temperatures (Tb) regardless of clouds and darkness. Algorithms to derive the timing of melt onset and the end of melt-refreeze, a critical transition period where the snowpack melts during the day and refreezes at night, were based on thresholds for Tb and diurnal amplitude variations (day and night difference). Tb data from the Special Sensor Microwave Imager (1988 to 2011) was used for analyzing YRB terrestrial snowmelt timing and for characterizing melt regime patterns for icefields in Alaska and Patagonia. Tb data from the Advanced Microwave Scanning Radiometer for EOS (2003 to 2010) was used for determining the occurrence of early melt events (before melt onset) associated with fog or rain on snow, for investigating the correlation between melt timing and forest fires, and for driving a flux-based snowmelt runoff model. From the SSM/I analysis: the melt-refreeze period lengthened for the majority of the YRB with later end of melt-refreeze and earlier melt onset; and positive Tb anomalies were found in recent years from glacier melt dynamics. From the AMSR-E analysis: early melt events throughout the YRB were most often associated with warm air intrusions and reflect a consistent spatial distribution; years and areas of earlier melt onset and refreeze had more forest fire occurrences suggesting melt timing's effects extend to later seasons; and satellite derived melt timing served as an effective input for model simulation of discharge in remote, ungauged snow-dominated basins. The melt detection methodology and results present a new perspective on the changing cryosphere, provide an understanding of melt's influence on other earth system processes, and develop a baseline from which to assess and evaluate future change. The temporal and spatial variability conveyed through the regional context of this research may be useful to communities in climate change adaptation planning.
ERIC Educational Resources Information Center
Cellard, Caroline; Tremblay, Sebastien; Lehoux, Catherine; Roy, Marc-Andre
2007-01-01
Memory impairment is a core feature in schizophrenia (SZ). The aim of this study was to investigate short-term memory (STM) and its sensitivity to distraction with visual-spatial material. This study comprised 23 recent-onset SZ patients and 23 healthy controls. The degree of disruption upon recall from interleaving irrelevant items within a…
Dankner, Yarden; Shalev, Lilach; Carrasco, Marisa; Yuval-Greenberg, Shlomit
2017-07-01
Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.
Crossmodal binding rivalry: A "race" for integration between unequal sensory inputs.
Kostaki, Maria; Vatakis, Argiro
2016-10-01
Exposure to multiple but unequal (in number) sensory inputs often leads to illusory percepts, which may be the product of a conflict between those inputs. To test this conflict, we utilized the classic sound induced visual fission and fusion illusions under various temporal configurations and timing presentations. This conflict between unequal numbers of sensory inputs (i.e., crossmodal binding rivalry) depends on the binding of the first audiovisual pair and its temporal proximity to the upcoming unisensory stimulus. We, therefore, expected that tight coupling of the first audiovisual pair would lead to higher rivalry with the upcoming unisensory stimulus and, thus, weaker illusory percepts. Loose coupling, on the other hand, would lead to lower rivalry and higher illusory percepts. Our data showed the emergence of two different participant groups, those with low discrimination performance and strong illusion reports (particularly for fusion) and those with the exact opposite pattern, thus extending previous findings on the effect of visual acuity in the strength of the illusion. Most importantly, our data revealed differential illusory strength across different temporal configurations for the fission illusion, while for the fusion illusion these effects were only noted for the largest stimulus onset asynchronies tested. These findings support that the optimal integration theory for the double flash illusion should be expanded so as to also take into account the multisensory temporal interactions of the stimuli presented (i.e., temporal sequence and configuration). Copyright © 2016 Elsevier Ltd. All rights reserved.
Classification of epilepsy types through global network analysis of scalp electroencephalograms
NASA Astrophysics Data System (ADS)
Lee, Uncheol; Kim, Seunghwan; Jung, Ki-Young
2006-04-01
Epilepsy is a dynamic disease in which self-organization and emergent structures occur dynamically at multiple levels of neuronal integration. Therefore, the transient relationship within multichannel electroencephalograms (EEGs) is crucial for understanding epileptic processes. In this paper, we show that the global relationship within multichannel EEGs provides us with more useful information in classifying two different epilepsy types than pairwise relationships such as cross correlation. To demonstrate this, we determine the global network structure within channels of the scalp EEG based on the minimum spanning tree method. The topological dissimilarity of the network structures from different types of temporal lobe epilepsy is described in the form of the divergence rate and is computed for 11 patients with left (LTLE) and right temporal lobe epilepsy (RTLE). We find that patients with LTLE and RTLE exhibit different large scale network structures, which emerge at the epoch immediately before the seizure onset, not in the preceding epochs. Our results suggest that patients with the two different epilepsy types display distinct large scale dynamical networks with characteristic epileptic network structures.
Developmental differences in the neural mechanisms of facial emotion labeling
Adleman, Nancy E.; Kim, Pilyoung; Oakes, Allison H.; Hsu, Derek; Reynolds, Richard C.; Chen, Gang; Pine, Daniel S.; Brotman, Melissa A.; Leibenluft, Ellen
2016-01-01
Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several ‘ventral stream’ brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. PMID:26245836
Tegethoff, Marion; Stalujanis, Esther; Belardi, Angelo; Meinlschmidt, Gunther
2016-01-01
Background The objective was to estimate temporal associations between mental disorders and physical diseases in adolescents with mental-physical comorbidities. Methods This article bases upon weighted data (N = 6483) from the National Comorbidity Survey Adolescent Supplement (participant age: 13–18 years), a nationally representative United States cohort. Onset of Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition lifetime mental disorders was assessed with the fully structured World Health Organization Composite International Diagnostic Interview, complemented by parent report. Onset of lifetime medical conditions and doctor-diagnosed diseases was assessed by self-report. Results The most substantial temporal associations with onset of mental disorders preceding onset of physical diseases included those between affective disorders and arthritis (hazard ratio (HR) = 3.36, 95%-confidence interval (CI) = 1.95 to 5.77) and diseases of the digestive system (HR = 3.39, CI = 2.30 to 5.00), between anxiety disorders and skin diseases (HR = 1.53, CI = 1.21 to 1.94), and between substance use disorders and seasonal allergies (HR = 0.33, CI = 0.17 to 0.63). The most substantial temporal associations with physical diseases preceding mental disorders included those between heart diseases and anxiety disorders (HR = 1.89, CI = 1.41 to 2.52), epilepsy and eating disorders (HR = 6.27, CI = 1.58 to 24.96), and heart diseases and any mental disorder (HR = 1.39, CI = 1.11 to 1.74). Conclusions Findings suggest that mental disorders are antecedent risk factors of certain physical diseases in early life, but also vice versa. Our results expand the relevance of mental disorders beyond mental to physical health care, and vice versa, supporting the concept of a more integrated mental-physical health care approach, and open new starting points for early disease prevention and better treatments, with relevance for various medical disciplines. PMID:27768751
NASA Technical Reports Server (NTRS)
Pallavicini, R.; Vaiana, G. S.; Kahler, S. W.; Krieger, A. S.
1975-01-01
Morphological and quantitative analyses are presented of a 1B solar flare that was observed with high spatial and temporal resolution by the S-054 grazing-incidence X-ray telescope aboard Skylab. It is found that the flare had the configuration of a compact region with a characteristic size of the order of 30 arcsec at the intensity peak, the interior of the region appeared to be highly structured and to consist of temporally changing complex loop systems, brightening over an extended part of the active region preceded the flare onset, and the impulsive phase was marked by rapid brightening in the loop structures. The X-ray photographs also indicate that the X-ray emission was centered over the neutral line of the longitudinal magnetic field, loop systems formed at successively increasing heights during the decay phase, and different regions of the flare had distinctly different light curves. The flux profiles for the different regions are shown to suggest continued heating during the decay phase. It is concluded that flare models should be based on a multiplicity of volumes ordered in loops of successively larger scale lengths and heights rather than on a single point of energy release and deposition.
NASA Astrophysics Data System (ADS)
Arndt, Stefanie; Willmes, Sascha; Dierking, Wolfgang; Nicolaus, Marcel
2016-08-01
An improved understanding of the temporal variability and the spatial distribution of snowmelt on Antarctic sea ice is crucial to better quantify atmosphere-ice-ocean interactions, in particular sea-ice mass and energy budgets. It is therefore important to understand the mechanisms that drive snowmelt, both at different times of the year and in different regions around Antarctica. In this study, we combine diurnal brightness temperature differences (dTB(37 GHz)) and ratios (TB(19 GHz)/TB(37 GHz)) to detect and classify snowmelt processes. We distinguish temporary snowmelt from continuous snowmelt to characterize dominant melt patterns for different Antarctic sea-ice regions from 1988/1989 to 2014/2015. Our results indicate four characteristic melt types. On average, 38.9 ± 6.0% of all detected melt events are diurnal freeze-thaw cycles in the surface snow layer, characteristic of temporary melt (Type A). Less than 2% reveal immediate continuous snowmelt throughout the snowpack, i.e., strong melt over a period of several days (Type B). In 11.7 ± 4.0%, Type A and B take place consecutively (Type C), and for 47.8 ± 6.8% no surface melt is observed at all (Type D). Continuous snowmelt is primarily observed in the outflow of the Weddell Gyre and in the northern Ross Sea, usually 17 days after the onset of temporary melt. Comparisons with Snow Buoy data suggest that also the onset of continuous snowmelt does not translate into changes in snow depth for a longer period but might rather affect the internal stratigraphy and density structure of the snowpack. Considering the entire data set, the timing of snowmelt processes does not show significant temporal trends.
ERIC Educational Resources Information Center
Helmstaedter, C.; Brosch, T.; Kurthen, M.; Elger, C. E.
2004-01-01
Recent findings raised evidence that in early-onset left temporal lobe epilepsy, women show greater functional plasticity for verbal memory than men. In particular, women with lesion- or epilepsy-driven atypical language dominance show an advantage over men. The question asked in this study was whether there is evidence of sex- and language…
The timing of anterior temporal lobe involvement in semantic processing.
Jackson, Rebecca L; Lambon Ralph, Matthew A; Pobric, Gorana
2015-07-01
Despite indications that regions within the anterior temporal lobe (ATL) might make a crucial contribution to pan-modal semantic representation, to date there have been no investigations of when during semantic processing the ATL plays a critical role. To test the timing of the ATL involvement in semantic processing, we studied the effect of double-pulse TMS on behavioral responses in semantic and difficulty-matched control tasks. Chronometric TMS was delivered over the left ATL (10 mm from the tip of the temporal pole along the middle temporal gyrus). During each trial, two pulses of TMS (40 msec apart) were delivered either at baseline (before stimulus presentation) or at one of the experimental time points 100, 250, 400, and 800 msec poststimulus onset. A significant disruption to performance was identified from 400 msec on the semantic task but not on the control assessment. Our results not only reinforce the key role of the left ATL in semantic representation but also indicate that its contribution is especially important around 400 msec poststimulus onset. Together, these facts suggest that the ATL may be one of the neural sources of the N400 ERP component.
Temporal prediction errors modulate task-switching performance
Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
Forecasting the magnitude and onset of El Niño based on climate network
NASA Astrophysics Data System (ADS)
Meng, Jun; Fan, Jingfang; Ashkenazy, Yosef; Bunde, Armin; Havlin, Shlomo
2018-04-01
El Niño is probably the most influential climate phenomenon on inter-annual time scales. It affects the global climate system and is associated with natural disasters; it has serious consequences in many aspects of human life. However, the forecasting of the onset and in particular the magnitude of El Niño are still not accurate enough, at least more than half a year ahead. Here, we introduce a new forecasting index based on climate network links representing the similarity of low frequency temporal temperature anomaly variations between different sites in the Niño 3.4 region. We find that significant upward trends in our index forecast the onset of El Niño approximately 1 year ahead, and the highest peak since the end of last El Niño in our index forecasts the magnitude of the following event. We study the forecasting capability of the proposed index on several datasets, including, ERA-Interim, NCEP Reanalysis I, PCMDI-AMIP 1.1.3 and ERSST.v5.
NASA Astrophysics Data System (ADS)
Kurt, Victoria; Yushkov, Boris
Understanding of the association of the magnetic field evolution in the corona and the temporal evolution of electromagnetic emissions produced by the accelerated particles during a solar flare can provide information about the nature of the energy-release process and its location. Recent high-spatial-resolution observations in HXR, UV and radio emissions allow one to study in detail a structure of two-ribbon flare site. According to these observations, the flare process can be divided into two different intervals with different temporal evolution of morphological structure: loop contraction during impulsive phase and subsequent loop expansion. On the other hand, the appearance of high-energy protons (with energy >300 MeV - an energy threshold of the pion production) in the solar atmosphere can be revealed from an emerging pion-decay component of high-energy gamma-ray emission. The present work is based on comparison of measurements of high-energy gamma-rays performed with the SONG detector onboard the CORONAS-F mission and reported observations of magnetic field evolution, such as HXR foot points (FP) separation and flare shear temporal behavior, or motion of UV/radio loops. We reliably identified the pion-decay component of gamma-ray emission in the course of five events attended with suitable spatial observations, namely, 2001 August 25, 2002 August 24, 2003 October 28, 2003 October 29, and 2005 January 20, and determined its onset time. We found that in these events the pion-decay emission occurred when the distance between conjugated foot-points of flare loops ceased to decrease and began to increase, i.e. changed from shrinkage to expansion. This result leads to the conclusion that the most efficient proton acceleration up to >300 MeV coincided in time with the radical reconfiguration of the magnetic field in the flare site. Earlier we found that the pion-decay emission onset in the 2003 October 28 flare was close to the time of maximum change rate of the magnetic flux calculated by Miklenic et al. (2009).
Temporal distortion in the perception of actions and events.
Yabe, Yoshiko; Dave, Hemangi; Goodale, Melvyn A
2017-01-01
In everyday life, actions and sensory events occur in complex sequences, with events triggering actions that in turn give rise to additional events and so on. Earlier work has shown that a sensory event that is triggered by a voluntary action is perceived to have occurred earlier in time than an identical event that is not triggered by an action. In other words, events that are believed to be caused by our actions are drawn forward in time towards our actions. Similarly, when a sensory event triggers an action, that event is again drawn in time towards the action and is thus perceived to have occurred later than it really did. This alteration in time perception serves to bind together events and actions that are causally linked. It is not clear, however, whether or not the perceived timing of a sensory event embedded within a longer series of actions and sensory events is also temporally bound to the actions in that sequence. In the current study, we measured the temporal binding in sequences consisting of two simple dyads of event-action and action-event in a series of manual action tasks: an event-action-event triad (Experiment 1) and an action-event-action triad (Experiment 2). Auditory tones either triggered an action or were presented 250ms after an action was performed. To reduce the influence of sensory events other than the tone, such as a noise associated with pressing a key on a keyboard, we used an optical sensor to detect hand movements where no contact was made with a surface. In Experiment 1, there appeared to be no change in the perceived onset of an auditory tone when the onset of that tone followed a hand movement and then the tone triggered a second hand movement. It was as if the temporal binding between the action and the tone and then the tone and the subsequent action summed algebraically and cancelled each other out. In Experiment 2, both the perceived onset of an initial tone which triggered an action and the perceived onset of a second tone which was presented 250ms after the action were temporally bound to the action. Taken together, the present study suggests that the temporal binding between our actions and sensory events occur separately in each dyad within a longer sequence of actions and events. Copyright © 2016 Elsevier B.V. All rights reserved.
Termination patterns of complex partial seizures: An intracranial EEG study.
Afra, Pegah; Jouny, Christopher C; Bergey, Gregory K
2015-11-01
While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. Synchronous seizure termination is a common pattern for complex partials seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
McComb, Sara; Kennedy, Deanna; Perryman, Rebecca; Warner, Norman; Letsky, Michael
2010-04-01
Our objective is to capture temporal patterns in mental model convergence processes and differences in these patterns between distributed teams using an electronic collaboration space and face-to-face teams with no interface. Distributed teams, as sociotechnical systems, collaborate via technology to work on their task. The way in which they process information to inform their mental models may be examined via team communication and may unfold differently than it does in face-to-face teams. We conducted our analysis on 32 three-member teams working on a planning task. Half of the teams worked as distributed teams in an electronic collaboration space, and the other half worked face-to-face without an interface. Using event history analysis, we found temporal interdependencies among the initial convergence points of the multiple mental models we examined. Furthermore, the timing of mental model convergence and the onset of task work discussions were related to team performance. Differences existed in the temporal patterns of convergence and task work discussions across conditions. Distributed teams interacting via an electronic interface and face-to-face teams with no interface converged on multiple mental models, but their communication patterns differed. In particular, distributed teams with an electronic interface required less overall communication, converged on all mental models later in their life cycles, and exhibited more linear cognitive processes than did face-to-face teams interacting verbally. Managers need unique strategies for facilitating communication and mental model convergence depending on teams' degrees of collocation and access to an interface, which in turn will enhance team performance.
Object representation in the human auditory system
Winkler, István; van Zuijen, Titia L.; Sussman, Elyse; Horváth, János; Näätänen, Risto
2010-01-01
One important principle of object processing is exclusive allocation. Any part of the sensory input, including the border between two objects, can only belong to one object at a time. We tested whether tones forming a spectro-temporal border between two sound patterns can belong to both patterns at the same time. Sequences were composed of low-, intermediate- and high-pitched tones. Tones were delivered with short onset-to-onset intervals causing the high and low tones to automatically form separate low and high sound streams. The intermediate-pitch tones could be perceived as part of either one or the other stream, but not both streams at the same time. Thus these tones formed a pitch ’border’ between the two streams. The tones were presented in a fixed, cyclically repeating order. Linking the intermediate-pitch tones with the high or the low tones resulted in the perception of two different repeating tonal patterns. Participants were instructed to maintain perception of one of the two tone patterns throughout the stimulus sequences. Occasional changes violated either the selected or the alternative tone pattern, but not both at the same time. We found that only violations of the selected pattern elicited the mismatch negativity event-related potential, indicating that only this pattern was represented in the auditory system. This result suggests that individual sounds are processed as part of only one auditory pattern at a time. Thus tones forming a spectro-temporal border are exclusively assigned to one sound object at any given time, as are spatio-temporal borders in vision. PMID:16836636
Happiness in action: the impact of positive affect on the time of the conscious intention to act
Rigoni, Davide; Demanet, Jelle; Sartori, Giuseppe
2015-01-01
The temporal relationship between our conscious intentions to act and the action itself has been widely investigated. Previous research consistently shows that the motor intention enters awareness a few 100 ms before movement onset. As research in other domains has shown that most behavior is affected by the emotional state people are in, it is remarkable that the role of emotional states on intention awareness has never been investigated. Here we tested the hypothesis that positive and negative affects have opposite effects on the temporal relationship between the conscious intention to act and the action itself. A mood induction procedure that combined guided imagery and music listening was employed to induce positive, negative, or neutral affective states. After each mood induction session, participants were asked to execute voluntary self-paced movements and to report when they formed the intention to act. Exposure to pleasant material, as compared to exposure to unpleasant material, enhanced positive affect and dampened negative affect. Importantly, in the positive affect condition participants reported their intention to act earlier in time with respect to action onset, as compared to when they were in the negative or in the neutral affect conditions. Conversely the reported time of the intention to act when participants experienced negative affect did not differ significantly from the neutral condition. These findings suggest that the temporal relationship between the conscious intention to act and the action itself is malleable to changes in affective states and may indicate that positive affect enhances intentional awareness. PMID:26388812
Body Mass Index Development and Asthma Throughout Childhood
Ekström, Sandra; Magnusson, Jessica; Kull, Inger; Andersson, Niklas; Bottai, Matteo; Besharat Pour, Mohsen; Melén, Erik; Bergström, Anna
2017-01-01
Abstract Several studies have found an association between overweight and asthma, yet the temporal relationship between their onsets remains unclear. We investigated the development of body mass index (BMI) from birth to adolescence among 2,818 children with and without asthma from a Swedish birth cohort study, the BAMSE (a Swedish acronym for “children, allergy, milieu, Stockholm, epidemiology”) Project, during 1994–2013. Measured weight and height were available at 13 time points throughout childhood. Asthma phenotypes (transient, persistent, and late-onset) were defined by timing of onset and remission. Quantile regression was used to analyze percentiles of BMI, and generalized estimating equations were used to analyze the association between asthma phenotypes and the risk of high BMI. Among females, BMI development differed between children with and without asthma, with the highest BMI being seen among females with persistent asthma. The difference existed throughout childhood but increased with age. For example, females with persistent asthma had 2.33 times’ (95% confidence interval: 1.21, 4.49) greater odds of having a BMI above the 85th percentile at age ≥15 years than females without asthma. Among males, no clear associations between asthma and BMI were observed. In this study, persistent asthma was associated with high BMI throughout childhood among females, whereas no consistent association was observed among males. PMID:28838063
Ramsey, E.; Rangoonwala, A.
2008-01-01
We describe newly developed remote sensing tools to map the localized occurrences and regional distribution of the marsh dieback in coastal Louisiana (Fig. 1). As a final goal of our research and development, we identified what spectral features accompanied the onset of dieback and could be directly linked to the optical signal measured at the satellite. In order to accomplish our research goal, we carried out two interlinked objectives. First, we determined the spectral features within the hyperspectral spectra of the impacted plant that could be linked to the spectral return. This was accomplished by measuring the differences in leaf optical properties of impacted and non impacted marsh plants in such a way that the measured differences could be linked to the dieback onset and progression. The spectral analyses were constrained to selected wavelengths (bands of reflectance data) historically associated with changes in leaf composition and structure caused by changes in the plant biophysical environment. Second, we determined what changes in the canopy reflectance (canopy signal sensed at the satellite) could be linked to dieback onset and progression. Third, we transformed a suite of six Landsat Thematic Mapper images collected before, during, and in the final stages of dieback to maps of dieback occurrences. ??2008 IEEE.
Memory Performance and fMRI Signal in Presymptomatic Familial Alzheimer’s Disease
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Thompson, Paul M.; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2013-01-01
Rare autosomal dominant mutations result in familial Alzheimer’s disease (FAD) with a relatively consistent age of onset within families. This provides an estimate of years until disease onset (relative age) in mutation carriers. Increased AD risk has been associated with differences in functional magnetic resonance imaging (fMRI) activity during memory tasks, but most of these studies have focused on possession of apolipoprotein E allele 4 (APOE4), a risk factor, but not causative variant, of late-onset AD. Evaluation of fMRI activity in presymptomatic FAD mutation carriers versus noncarriers provides insight into preclinical changes in those who will certainly develop AD in a prescribed period of time. Adults from FAD mutation-carrying families (nine mutation carriers, eight noncarriers) underwent fMRI scanning while performing a memory task. We examined fMRI signal differences between carriers and noncarriers, and how signal related to fMRI task performance within mutation status group, controlling for relative age and education. Mutation noncarriers had greater retrieval period activity than carriers in several AD-relevant regions, including the left hippocampus. Better performing noncarriers showed greater encoding period activity including in the parahippocampal gyrus. Poorer performing carriers showed greater retrieval period signal, including in the frontal and temporal lobes, suggesting underlying pathological processes. PMID:22806961
Ren, Yanna; Yang, Weiping; Nakahashi, Kohei; Takahashi, Satoshi; Wu, Jinglong
2017-02-01
Although neuronal studies have shown that audiovisual integration is regulated by temporal factors, there is still little knowledge about the impact of temporal factors on audiovisual integration in older adults. To clarify how stimulus onset asynchrony (SOA) between auditory and visual stimuli modulates age-related audiovisual integration, 20 younger adults (21-24 years) and 20 older adults (61-80 years) were instructed to perform an auditory or visual stimuli discrimination experiment. The results showed that in younger adults, audiovisual integration was altered from an enhancement (AV, A ± 50 V) to a depression (A ± 150 V). In older adults, the alterative pattern was similar to that for younger adults with the expansion of SOA; however, older adults showed significantly delayed onset for the time-window-of-integration and peak latency in all conditions, which further demonstrated that audiovisual integration was delayed more severely with the expansion of SOA, especially in the peak latency for V-preceded-A conditions in older adults. Our study suggested that audiovisual facilitative integration occurs only within a certain SOA range (e.g., -50 to 50 ms) in both younger and older adults. Moreover, our results confirm that the response for older adults was slowed and provided empirical evidence that integration ability is much more sensitive to the temporal alignment of audiovisual stimuli in older adults.
Temporal dynamics of motor cortex excitability during perception of natural emotional scenes
Borgomaneri, Sara; Gazzola, Valeria
2014-01-01
Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized. PMID:23945998
Strategic allocation of attention reduces temporally predictable stimulus conflict
Appelbaum, L. Gregory; Boehler, Carsten N.; Won, Robert; Davis, Lauren; Woldorff, Marty G.
2013-01-01
Humans are able to continuously monitor environmental situations and adjust their behavioral strategies to optimize performance. Here we investigate the behavioral and brain adjustments that occur when conflicting stimulus elements are, or are not, temporally predictable. Event-related potentials (ERPs) were collected while manual-response variants of the Stroop task were performed in which the stimulus onset asynchronies (SOAs) between the relevant-color and irrelevant-word stimulus components were either randomly intermixed, or held constant, within each experimental run. Results indicated that the size of both the neural and behavioral effects of stimulus incongruency varied with the temporal arrangement of the stimulus components, such that the random-SOA arrangements produced the greatest incongruency effects at the earliest irrelevant-first SOA (−200 ms) and the constant-SOA arrangements produced the greatest effects with simultaneous presentation. These differences in conflict processing were accompanied by rapid (~150 ms) modulations of the sensory ERPs to the irrelevant distracter components when they occurred consistently first. These effects suggest that individuals are able to strategically allocate attention in time to mitigate the influence of a temporally predictable distracter. As these adjustments are instantiated by the subjects without instruction, they reveal a form of rapid strategic learning for dealing with temporally predictable stimulus incongruency. PMID:22360623
Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech
Leong, Victoria; Goswami, Usha
2015-01-01
When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72–82% (freely-read CDS) and 90–98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across languages. The S-AMPH model reveals a crucial developmental role for stress feet (AMs ~2 Hz). Stress feet underpin different linguistic rhythm typologies, and speech rhythm underpins language acquisition by infants in all languages. PMID:26641472
Acoustic-Emergent Phonology in the Amplitude Envelope of Child-Directed Speech.
Leong, Victoria; Goswami, Usha
2015-01-01
When acquiring language, young children may use acoustic spectro-temporal patterns in speech to derive phonological units in spoken language (e.g., prosodic stress patterns, syllables, phonemes). Children appear to learn acoustic-phonological mappings rapidly, without direct instruction, yet the underlying developmental mechanisms remain unclear. Across different languages, a relationship between amplitude envelope sensitivity and phonological development has been found, suggesting that children may make use of amplitude modulation (AM) patterns within the envelope to develop a phonological system. Here we present the Spectral Amplitude Modulation Phase Hierarchy (S-AMPH) model, a set of algorithms for deriving the dominant AM patterns in child-directed speech (CDS). Using Principal Components Analysis, we show that rhythmic CDS contains an AM hierarchy comprising 3 core modulation timescales. These timescales correspond to key phonological units: prosodic stress (Stress AM, ~2 Hz), syllables (Syllable AM, ~5 Hz) and onset-rime units (Phoneme AM, ~20 Hz). We argue that these AM patterns could in principle be used by naïve listeners to compute acoustic-phonological mappings without lexical knowledge. We then demonstrate that the modulation statistics within this AM hierarchy indeed parse the speech signal into a primitive hierarchically-organised phonological system comprising stress feet (proto-words), syllables and onset-rime units. We apply the S-AMPH model to two other CDS corpora, one spontaneous and one deliberately-timed. The model accurately identified 72-82% (freely-read CDS) and 90-98% (rhythmically-regular CDS) stress patterns, syllables and onset-rime units. This in-principle demonstration that primitive phonology can be extracted from speech AMs is termed Acoustic-Emergent Phonology (AEP) theory. AEP theory provides a set of methods for examining how early phonological development is shaped by the temporal modulation structure of speech across languages. The S-AMPH model reveals a crucial developmental role for stress feet (AMs ~2 Hz). Stress feet underpin different linguistic rhythm typologies, and speech rhythm underpins language acquisition by infants in all languages.
Rapid accumulation of inhibition accounts for saccades curved away from distractors.
Kehoe, Devin H; Fallah, Mazyar
2017-08-01
Saccades curved toward a distractor are accompanied by a burst of neuronal activation at the distractor locus in the intermediate layers of the superior colliculus (SCi) ~30 ms before the initiation of a saccade. Although saccades curve away from inactivated SCi loci, whether inhibition is restricted to a similar critical epoch for saccades curved away from a distractor remains unclear. We examined this possibility by modeling human saccade curvature as a function of the time between onset of a task irrelevant luminance- or color-modulated distractor and initiation of an impending saccade, referred to as saccade distractor onset asynchrony (SDOA). Our results demonstrated that 70 ms of luminance-modulated distractor processing or 90 ms of color-modulated distractor processing was required to modulate saccade trajectories. As these behavioral, feature-based differences were temporally consistent with the cortically mediated neurophysiological differences in visual onset latencies between luminance and color stimuli observed in the oculomotor and visual system, this method provides a noninvasive means to estimate the timing of peak activation in the oculomotor system. As such, we modeled SDOA functions separately for saccades curved toward and away from distractors and observed that a similar temporal process determined the magnitude of saccade curvatures in both contexts, suggesting that saccades deviate away from a distractor due to a rapid accumulation of inhibition in the critical epoch before saccade initiation. NEW & NOTEWORTHY In this research article, we propose a novel, noninvasive approach to behaviorally model the time course of competitive oculomotor processing. Our results highly resembled those from previously published neurophysiological experiments utilizing similar oculomotor processing contexts, thus validating our approach. Furthermore, this methodology provided new insights into the underlying neural mechanism subserving oculomotor processing given that we applied it to a context with which the neural mechanism is more contentious, and the results clearly favored one view. Copyright © 2017 the American Physiological Society.
Park, Jonghyeok; Kim, Hackjin; Sohn, Jeong-Woo; Choi, Jong-ryul; Kim, Sung-Phil
2018-01-01
Humans often attempt to predict what others prefer based on a narrow slice of experience, called thin-slicing. According to the theoretical bases for how humans can predict the preference of others, one tends to estimate the other's preference using a perceived difference between the other and self. Previous neuroimaging studies have revealed that the network of dorsal medial prefrontal cortex (dmPFC) and right temporoparietal junction (rTPJ) is related to the ability of predicting others' preference. However, it still remains unknown about the temporal patterns of neural activities for others' preference prediction through thin-slicing. To investigate such temporal aspects of neural activities, we investigated human electroencephalography (EEG) recorded during the task of predicting the preference of others while only a facial picture of others was provided. Twenty participants (all female, average age: 21.86) participated in the study. In each trial of the task, participants were shown a picture of either a target person or self for 3 s, followed by the presentation of a movie poster over which participants predicted the target person's preference as liking or disliking. The time-frequency EEG analysis was employed to analyze temporal changes in the amplitudes of brain oscillations. Participants could predict others' preference for movies with accuracy of 56.89 ± 3.16% and 10 out of 20 participants exhibited prediction accuracy higher than a chance level (95% interval). There was a significant difference in the power of the parietal alpha (10~13 Hz) oscillation 0.6~0.8 s after the onset of poster presentation between the cases when participants predicted others' preference and when they reported self-preference (p < 0.05). The power of brain oscillations at any frequency band and time period during the trial did not show a significant correlation with individual prediction accuracy. However, when we measured differences of the power between the trials of predicting other's preference and reporting self-preference, the right temporal beta oscillations 1.6~1.8 s after the onset of facial picture presentation exhibited a significant correlation with individual accuracy. Our results suggest that right temporoparietal beta oscillations may be correlated with one's ability to predict what others prefer with minimal information. PMID:29479312
Park, Jonghyeok; Kim, Hackjin; Sohn, Jeong-Woo; Choi, Jong-Ryul; Kim, Sung-Phil
2018-01-01
Humans often attempt to predict what others prefer based on a narrow slice of experience, called thin-slicing. According to the theoretical bases for how humans can predict the preference of others, one tends to estimate the other's preference using a perceived difference between the other and self. Previous neuroimaging studies have revealed that the network of dorsal medial prefrontal cortex (dmPFC) and right temporoparietal junction (rTPJ) is related to the ability of predicting others' preference. However, it still remains unknown about the temporal patterns of neural activities for others' preference prediction through thin-slicing. To investigate such temporal aspects of neural activities, we investigated human electroencephalography (EEG) recorded during the task of predicting the preference of others while only a facial picture of others was provided. Twenty participants (all female, average age: 21.86) participated in the study. In each trial of the task, participants were shown a picture of either a target person or self for 3 s, followed by the presentation of a movie poster over which participants predicted the target person's preference as liking or disliking. The time-frequency EEG analysis was employed to analyze temporal changes in the amplitudes of brain oscillations. Participants could predict others' preference for movies with accuracy of 56.89 ± 3.16% and 10 out of 20 participants exhibited prediction accuracy higher than a chance level (95% interval). There was a significant difference in the power of the parietal alpha (10~13 Hz) oscillation 0.6~0.8 s after the onset of poster presentation between the cases when participants predicted others' preference and when they reported self-preference ( p < 0.05). The power of brain oscillations at any frequency band and time period during the trial did not show a significant correlation with individual prediction accuracy. However, when we measured differences of the power between the trials of predicting other's preference and reporting self-preference, the right temporal beta oscillations 1.6~1.8 s after the onset of facial picture presentation exhibited a significant correlation with individual accuracy. Our results suggest that right temporoparietal beta oscillations may be correlated with one's ability to predict what others prefer with minimal information.
Neural Dynamics of Audiovisual Synchrony and Asynchrony Perception in 6-Month-Old Infants
Kopp, Franziska; Dietrich, Claudia
2013-01-01
Young infants are sensitive to multisensory temporal synchrony relations, but the neural dynamics of temporal interactions between vision and audition in infancy are not well understood. We investigated audiovisual synchrony and asynchrony perception in 6-month-old infants using event-related brain potentials (ERP). In a prior behavioral experiment (n = 45), infants were habituated to an audiovisual synchronous stimulus and tested for recovery of interest by presenting an asynchronous test stimulus in which the visual stream was delayed with respect to the auditory stream by 400 ms. Infants who behaviorally discriminated the change in temporal alignment were included in further analyses. In the EEG experiment (final sample: n = 15), synchronous and asynchronous stimuli (visual delay of 400 ms) were presented in random order. Results show latency shifts in the auditory ERP components N1 and P2 as well as the infant ERP component Nc. Latencies in the asynchronous condition were significantly longer than in the synchronous condition. After video onset but preceding the auditory onset, amplitude modulations propagating from posterior to anterior sites and related to the Pb component of infants’ ERP were observed. Results suggest temporal interactions between the two modalities. Specifically, they point to the significance of anticipatory visual motion for auditory processing, and indicate young infants’ predictive capacities for audiovisual temporal synchrony relations. PMID:23346071
Pizarro, Ricardo; Nair, Veena; Meier, Timothy; Holdsworth, Ryan; Tunnell, Evelyn; Rutecki, Paul; Sillay, Karl; Meyerand, Mary E; Prabhakaran, Vivek
2016-08-01
Seizure localization includes neuroimaging like electroencephalogram, and magnetic resonance imaging (MRI) with limited ability to characterize the epileptogenic network. Temporal clustering analysis (TCA) characterizes epileptogenic network congruent with interictal epileptiform discharges by clustering together voxels with transient signals. We generated epileptogenic areas for 12 of 13 epilepsy patients with TCA, congruent with different areas of seizure onset. Resting functional MRI (fMRI) scans are noninvasive, and can be acquired quickly, in patients with different levels of severity and function. Analyzing resting fMRI data using TCA is quick and can complement clinical methods to characterize the epileptogenic network.
Atypical language organization in temporal lobe epilepsy revealed by a passive semantic paradigm
2014-01-01
Background Mesial temporal lobe epilepsy (MTLE) is the most common type of focal epilepsy in adults and can be successfully cured by surgery. One of the main complications of this surgery however is a decline in language abilities. The magnitude of this decline is related to the degree of language lateralization to the left hemisphere. Most fMRI paradigms used to determine language dominance in epileptic populations have used active language tasks. Sometimes, these paradigms are too complex and may result in patient underperformance. Only a few studies have used purely passive tasks, such as listening to standard speech. Methods In the present study we characterized language lateralization in patients with MTLE using a rapid and passive semantic language task. We used functional magnetic resonance imaging (fMRI) to study 23 patients [12 with Left (LMTLE), 11 with Right mesial temporal lobe epilepsy (RMTLE)] and 19 healthy right-handed controls using a 6 minute long semantic task in which subjects passively listened to groups of sentences (SEN) and pseudo sentences (PSEN). A lateralization index (LI) was computed using a priori regions of interest of the temporal lobe. Results The LI for the significant contrasts produced activations for all participants in both temporal lobes. 81.8% of RMTLE patients and 79% of healthy individuals had a bilateral language representation for this particular task. However, 50% of LMTLE patients presented an atypical right hemispheric dominance in the LI. More importantly, the degree of right lateralization in LMTLE patients was correlated with the age of epilepsy onset. Conclusions The simple, rapid, non-collaboration dependent, passive task described in this study, produces a robust activation in the temporal lobe in both patients and controls and is capable of illustrating a pattern of atypical language organization for LMTLE patients. Furthermore, we observed that the atypical right-lateralization patterns in LMTLE patients was associated to earlier age at epilepsy onset. These results are in line with the idea that early onset of epileptic activity is associated to larger neuroplastic changes. PMID:24885511
Can a national dataset generate a nomogram for necrotizing enterocolitis onset?
Gordon, P V; Clark, R; Swanson, J R; Spitzer, A
2014-10-01
Mother's own milk and donor human milk use is increasing as a means of necrotizing enterocolitis (NEC) prevention. Early onset of enteral feeding has been associated with improvement of many outcomes but has not been shown to reduce the incidence of NEC. Better definition of the window of risk for NEC by gestational strata should improve resource management with respect to donor human milk and enhance our understanding of NEC timing and pathogenesis. Our objective was to establish a NEC dataset of sufficient size and quality, then build a generalizable model of NEC onset from the dataset across gestational strata. We used de-identified data from the Pediatrix national dataset and filtered out all diagnostic confounders that could be identified by either specific diagnoses or logical exclusions (example dual diagnoses), with a specific focus on NEC and spontaneous intestinal perforation (SIP) as the outcomes of interest. The median day of onset was plotted against the gestational age for each of these diagnoses and analyzed for similarities and differences in the day of diagnosis. Onset time of medical NEC was inversely proportional to gestation in a linear relationship across all gestational ages. We found the medical NEC dataset displayed characteristics most consistent with a homogeneous disease entity, whereas there was a skew towards early presentation in the youngest gestation groups of surgical NEC (suggesting probable SIP contamination). Our national dataset demonstrates that NEC onset occurs in an inverse stereotypic, linear relationship with gestational age at birth. Medical NEC is the most reliable sub-cohort for the purpose of determining the temporal window of NEC risk.
Grilli, Matthew D; Wank, Aubrey A; Verfaellie, Mieke
2018-02-01
Autobiographical memories are not stored in isolation but rather are organized into life chapters, higher-order knowledge structures that represent major themes conveying the arc of one's life. Neuropsychological studies have revealed that both episodic memory and some aspects of personal semantic memory are impaired in adults with medial temporal lobe (MTL) damage. However, whether such impairment compromises the retrieval and formation of life chapters is unknown. Therefore, we had 10 adults with MTL amnesia and 20 control participants narrate their life stories, and we extracted life chapters from these narratives using a novel scoring protocol. For the retrograde and anterograde time period separately, we evaluated the number of life chapters and assessed their quality, as indexed by measures of complexity and richness. Additionally, to investigate the idea that formation of life chapters occurs on a protracted time scale, we separated the amnesic participants into an early-life and a later-life onset subgroup. Results revealed that early-onset, but not later-onset, amnesic participants generated fewer retrograde life chapters than controls. The higher-order temporal relation among retrograde chapters, but not their thematic relation or the richness of individual life chapters, was impaired in both amnesic subgroups. The amnesic participants also generated fewer anterograde life chapters than controls, and the richness of their anterograde chapters was reduced in terms of content, but not self-reflection. Findings suggest that the organization of autobiographical content into life chapters is a protracted process that depends on the MTL, as does retrieval of higher order temporal relations among life chapters. Copyright © 2017 Elsevier Ltd. All rights reserved.
Comparing the temporal dynamics of thematic and taxonomic processing using event-related potentials
Savic, Olivera; Savic, Andrej M.; Kovic, Vanja
2017-01-01
We report the results of a study comparing the temporal dynamics of thematic and taxonomic knowledge activation in a picture-word priming paradigm using event-related potentials. Although we found no behavioral differences between thematic and taxonomic processing, ERP data revealed distinct patterns of N400 and P600 amplitude modulation for thematic and taxonomic priming. Thematically related target stimuli elicited less negativity than taxonomic targets between 280–460 ms after stimulus onset, suggesting easier semantic processing of thematic than taxonomic relationships. Moreover, P600 mean amplitude was significantly increased for taxonomic targets between 520–600 ms, consistent with a greater need for stimulus reevaluation in that condition. These results offer novel evidence in favor of a dissociation between thematic and taxonomic thinking in the early phases of conceptual evaluation. PMID:29236767
A dynamic neural field model of temporal order judgments.
Hecht, Lauren N; Spencer, John P; Vecera, Shaun P
2015-12-01
Temporal ordering of events is biased, or influenced, by perceptual organization-figure-ground organization-and by spatial attention. For example, within a region assigned figural status or at an attended location, onset events are processed earlier (Lester, Hecht, & Vecera, 2009; Shore, Spence, & Klein, 2001), and offset events are processed for longer durations (Hecht & Vecera, 2011; Rolke, Ulrich, & Bausenhart, 2006). Here, we present an extension of a dynamic field model of change detection (Johnson, Spencer, Luck, & Schöner, 2009; Johnson, Spencer, & Schöner, 2009) that accounts for both the onset and offset performance for figural and attended regions. The model posits that neural populations processing the figure are more active, resulting in a peak of activation that quickly builds toward a detection threshold when the onset of a target is presented. This same enhanced activation for some neural populations is maintained when a present target is removed, creating delays in the perception of the target's offset. We discuss the broader implications of this model, including insights regarding how neural activation can be generated in response to the disappearance of information. (c) 2015 APA, all rights reserved).
He, Shuman; Grose, John H; Teagle, Holly F B; Woodard, Jennifer; Park, Lisa R; Hatch, Debora R; Buchman, Craig A
2013-01-01
This study aimed (1) to investigate the feasibility of recording the electrically evoked auditory event-related potential (eERP), including the onset P1-N1-P2 complex and the electrically evoked auditory change complex (EACC) in response to temporal gaps, in children with auditory neuropathy spectrum disorder (ANSD); and (2) to evaluate the relationship between these measures and speech-perception abilities in these subjects. Fifteen ANSD children who are Cochlear Nucleus device users participated in this study. For each subject, the speech-processor microphone was bypassed and the eERPs were elicited by direct stimulation of one mid-array electrode (electrode 12). The stimulus was a train of biphasic current pulses 800 msec in duration. Two basic stimulation conditions were used to elicit the eERP. In the no-gap condition, the entire pulse train was delivered uninterrupted to electrode 12, and the onset P1-N1-P2 complex was measured relative to the stimulus onset. In the gapped condition, the stimulus consisted of two pulse train bursts, each being 400 msec in duration, presented sequentially on the same electrode and separated by one of five gaps (i.e., 5, 10, 20, 50, and 100 msec). Open-set speech-perception ability of these subjects with ANSD was assessed using the phonetically balanced kindergarten (PBK) word lists presented at 60 dB SPL, using monitored live voice in a sound booth. The eERPs were recorded from all subjects with ANSD who participated in this study. There were no significant differences in test-retest reliability, root mean square amplitude or P1 latency for the onset P1-N1-P2 complex between subjects with good (>70% correct on PBK words) and poorer speech-perception performance. In general, the EACC showed less mature morphological characteristics than the onset P1-N1-P2 response recorded from the same subject. There was a robust correlation between the PBK word scores and the EACC thresholds for gap detection. Subjects with poorer speech-perception performance showed larger EACC thresholds in this study. These results demonstrate the feasibility of recording eERPs from implanted children with ANSD, using direct electrical stimulation. Temporal-processing deficits, as demonstrated by large EACC thresholds for gap detection, might account in part for the poor speech-perception performances observed in a subgroup of implanted subjects with ANSD. This finding suggests that the EACC elicited by changes in temporal continuity (i.e., gap) holds promise as a predictor of speech-perception ability among implanted children with ANSD.
Neural Dynamics Underlying Target Detection in the Human Brain
Bansal, Arjun K.; Madhavan, Radhika; Agam, Yigal; Golby, Alexandra; Madsen, Joseph R.
2014-01-01
Sensory signals must be interpreted in the context of goals and tasks. To detect a target in an image, the brain compares input signals and goals to elicit the correct behavior. We examined how target detection modulates visual recognition signals by recording intracranial field potential responses from 776 electrodes in 10 epileptic human subjects. We observed reliable differences in the physiological responses to stimuli when a cued target was present versus absent. Goal-related modulation was particularly strong in the inferior temporal and fusiform gyri, two areas important for object recognition. Target modulation started after 250 ms post stimulus, considerably after the onset of visual recognition signals. While broadband signals exhibited increased or decreased power, gamma frequency power showed predominantly increases during target presence. These observations support models where task goals interact with sensory inputs via top-down signals that influence the highest echelons of visual processing after the onset of selective responses. PMID:24553944
Effects of vocal training and phonatory task on voice onset time.
McCrea, Christopher R; Morris, Richard J
2007-01-01
The purpose of this study was to examine the temporal-acoustic differences between trained singers and nonsingers during speech and singing tasks. Thirty male participants were separated into two groups of 15 according to level of vocal training (ie, trained or untrained). The participants spoke and sang carrier phrases containing English voiced and voiceless bilabial stops, and voice onset time (VOT) was measured for the stop consonant productions. Mixed analyses of variance revealed a significant main effect between speech and singing for /p/ and /b/, with VOT durations longer during speech than singing for /p/, and the opposite true for /b/. Furthermore, a significant phonatory task by vocal training interaction was observed for /p/ productions. The results indicated that the type of phonatory task influences VOT and that these influences are most obvious in trained singers secondary to the articulatory and phonatory adjustments learned during vocal training.
Dynamics of attentional deployment during saccadic programming.
Castet, Eric; Jeanjean, Sébastien; Montagnini, Anna; Laugier, Danièle; Masson, Guillaume S
2006-03-03
The dynamics of attentional deployment before saccade execution was studied with a dual-task paradigm. Observers made a horizontal saccade whose direction was indicated by a symbolic precue and had to discriminate the orientation of a Gabor patch displayed at different delays after the precue (but before saccade onset). The patch location relative to the saccadic target was indicated to observers before each block. Therefore, on each trial, observers were informed simultaneously about the respective absolute locations of the saccadic and perceptual targets. The main result is that orientational acuity improved over a period of 150-200 ms after the precue onset at the saccadic target location, where overall performance is best, and at distant locations. This effect is due to attentional factors rather than to an alerting effect. It is also dependent on the efficiency of the temporal masks displayed before and after the Gabor patches.
Phenology Atlas of Czechia in preparation - aim & content
NASA Astrophysics Data System (ADS)
Hajkova, L.; Nekovar, J.; Novak, M.; Richterova, D.
2009-09-01
The main task is to create Phenology Atlas of Czechia for the period 1991 - 2010 by using geographic information systems. The general outputs will be maps (average phenophase onset at different altitudes), graphs (evaluation of phenophase onset in time) and tables (statistical results) with text, picture and botanical specification. The publication will be divided into 6 main chapters (Introduction, Phenology in Czechia & Europe, Methodology of observation, Field crops & Fruit trees & Wild plants, Phenology regionalisation, Temporal and Spatial variability). The essantial emphasis will be enforced on wild plants especially allergology important plants and phenophases. CHMI phenological and meteorological data will be used as an input data. This publication will be allocated for general public, supposed size B4, 270 - 300 pages. The research project is proposed for 3 years (2009 - 2011). In the presentation will be given several examples of Atlas content (Norway Spruce and Birch phenophases from Transaction of CHMI Nr.50, 2007).
NASA Astrophysics Data System (ADS)
Mathbout, Shifa; Lopez-Bustins, Joan A.; Martin-Vide, Javier; Bech, Joan; Rodrigo, Fernando S.
2018-02-01
This paper analyses the observed spatiotemporal characteristics of drought phenomenon in Syria using the Standardised Precipitation Index (SPI) and the Standardised Precipitation Evapotranspiration Index (SPEI). Temporal variability of drought is calculated for various time scales (3, 6, 9, 12, and 24 months) for 20 weather stations over the 1961-2012 period. The spatial patterns of drought were identified by applying a Principal Component Analysis (PCA) to the SPI and SPEI values at different time scales. The results revealed three heterogeneous and spatially well-defined regions with different temporal evolution of droughts: 1) Northeastern (inland desert); 2) Southern (mountainous landscape); 3) Northwestern (Mediterranean coast). The evolutionary characteristics of drought during 1961-2012 were analysed including spatial and temporal variability of SPI and SPEI, the frequency distribution, and the drought duration. The results of the non-parametric Mann-Kendall test applied to the SPI and SPEI series indicate prevailing significant negative trends (drought) at all stations. Both drought indices have been correlated both on spatial and temporal scales and they are highly comparable, especially, over a 12 and 24 month accumulation period. We concluded that the temporal and spatial characteristics of the SPI and SPEI can be used for developing a drought intensity - areal extent - and frequency curve that assesses the variability of regional droughts in Syria. The analysis of both indices suggests that all three regions had a severe drought in the 1990s, which had never been observed before in the country. Furthermore, the 2007-2010 drought was the driest period in the instrumental record, happening just before the onset of the recent conflict in Syria.
Complex-ordered patterns in shaken convection.
Rogers, Jeffrey L; Pesch, Werner; Brausch, Oliver; Schatz, Michael F
2005-06-01
We report and analyze complex patterns observed in a combination of two standard pattern forming experiments. These exotic states are composed of two distinct spatial scales, each displaying a different temporal dependence. The system is a fluid layer experiencing forcing from both a vertical temperature difference and vertical time-periodic oscillations. Depending on the parameters these forcing mechanisms produce fluid motion with either a harmonic or a subharmonic temporal response. Over a parameter range where these mechanisms have comparable influence the spatial scales associated with both responses are found to coexist, resulting in complex, yet highly ordered patterns. Phase diagrams of this region are reported and criteria to define the patterns as quasiperiodic crystals or superlattices are presented. These complex patterns are found to satisfy four-mode (resonant tetrad) conditions. The qualitative difference between the present formation mechanism and the resonant triads ubiquitously used to explain complex-ordered patterns in other nonequilibrium systems is discussed. The only exception to quantitative agreement between our analysis based on Boussinesq equations and laboratory investigations is found to be the result of breaking spatial symmetry in a small parameter region near onset.
Impact of cloud timing on surface temperature and related hydroclimatic dynamics
NASA Astrophysics Data System (ADS)
Porporato, A. M.; Yin, J.
2015-12-01
Cloud feedbacks have long been identified as one of the largest source of uncertainty in climate change predictions. Differences in the spatial distribution of clouds and the related impact on surface temperature and climate dynamics have been recently emphasized in quasi-equilibrium General Circulation Models (GCM). However, much less attention has been paid to the temporal variation of cloud presence and thickness. Clouds in fact shade the solar radiation during the daytime, but also acts as greenhouse gas to reduce the emission of longwave radiation to the outer space anytime of the day. Thus it is logical to expect that even small differences in timing and thickness of clouds could result in very different predictions in GCMs. In this study, these two effects of cloud dynamics are analyzed by tracking the cloud impacts on longwave and shortwave radiation in a minimalist transient thermal balance model of the land surface. The marked changes in surface temperature due to alterations in the timing of onset of clouds demonstrate that capturing temporal variation of cloud at sub-daily scale should be a priority in cloud parameterization schemes in GCMs.
Rapacioli, Melina; Palma, Verónica; Flores, Vladimir
2016-01-01
The central nervous system areas displaying the highest structural and functional complexity correspond to the so called cortices, i.e., concentric alternating neuronal and fibrous layers. Corticogenesis, i.e., the development of the cortical organization, depends on the temporal-spatial organization of several developmental events: (a) the duration of the proliferative phase of the neuroepithelium, (b) the relative duration of symmetric (expansive) versus asymmetric (neuronogenic) sub phases, (c) the spatial organization of each kind of cell division, (e) the time of determination and cell cycle exit and (f) the time of onset of the post-mitotic neuronal migration and (g) the time of onset of the neuronal structural and functional differentiation. The first five events depend on molecular mechanisms that perform a fine tuning of the proliferative activity. Changes in any of them significantly influence the cortical size or volume (tangential expansion and radial thickness), morphology, architecture and also impact on neuritogenesis and synaptogenesis affecting the cortical wiring. This paper integrates information, obtained in several species, on the developmental roles of cell proliferation in the development of the optic tectum (OT) cortex, a multilayered associative area of the dorsal (alar) midbrain. The present review (1) compiles relevant information on the temporal and spatial organization of cell proliferation in different species (fish, amphibians, birds, and mammals), (2) revises the main molecular events involved in the isthmic organizer (IsO) determination and localization, (3) describes how the patterning installed by IsO is translated into spatially organized neural stem cell proliferation (i.e., by means of growth factors, receptors, transcription factors, signaling pathways, etc.) and (4) describes the morpho- and histogenetic effect of a spatially organized cell proliferation in the above mentioned species. A brief section on the OT evolution is also included. This section considers how the differential operation of cell proliferation could explain differences among species. PMID:27013978
Lesional mesial temporal lobe epilepsy and limited resections: prognostic factors and outcome
Clusmann, H; Kral, T; Fackeldey, E; Blumcke, I; Helmstaedter, C; von Oertzen, J; Urbach, H; Schramm, J
2004-01-01
Objectives: To evaluate the influence of clinical, investigational, surgical, and histopathological factors on postoperative seizure relief in patients with mesial temporal lobe epilepsy (MTLE) due to lesions other than ammonshornsclerosis (AHS). Methods: Of 738 patients operated for TLE, 78 patients underwent limited resections for lesional MTLE (1990–2000). Seventy four patients with a follow up of more than one year were included. The preoperative clinical, neuropsychological, electroencephalogram, and neuroimaging characteristics were prospectively collected in a database. The histopathological material was re-examined. Results: The mean follow up was 49 months. Fifty eight patients were classified as seizure free (78.4% Class I), and six as almost seizure free (8.1% Class II), grouped together as satisfactory seizure control (64 patients, 86.5%). Five patients (6.8%) were categorised in Classes III and IV, respectively. These were grouped as unsatisfactory seizure control (10 patients, 13.5%). Surgical procedures were: 32 amygdalohippocampectomies (AH), 17 partial anterior AH, 15 AH plus polar resection, seven AH plus basal resection, and three AH plus extended temporal lesionectomy. There was no mortality and 2.7% mild permanent morbidity. Seizure relief did neither differ significantly with these approaches, nor with different classes of pathological findings (43 developmental tumours, 12 glial tumours, 10 dysplasias, and nine others). Even operation of dysplasias resulted in 80% satisfactory seizure control. Seizure onset during childhood proved to be a negative predictor for seizure relief (p = 0.020). MRI revealed 73 suspected lesions (98.6%), one dysembryoplastic neuroepithelial tumour was missed, in four cases no structural abnormalities could be confirmed with histopathological exam. Additionally, multifactorial regression revealed the factors "seizure onset after 10 years of age", "presence of complex partial seizures", "absence of a neurological deficit", and a "correlating neuropsychological deficit" as predictive for satisfactory seizure control. Conclusions: "Preoperative tailoring" resulting in limit resections has proven to be safe and to provide a very good chance for satisfactory seizure relief in patients with lesional MTLE. PMID:15489392
Sone, Daichi; Sato, Noriko; Kimura, Yukio; Watanabe, Yutaka; Okazaki, Mitsutoshi; Matsuda, Hiroshi
2018-06-01
Although epilepsy in the elderly has attracted attention recently, there are few systematic studies of neuroimaging in such patients. In this study, we used structural MRI and diffusion tensor imaging (DTI) to investigate the morphological and microstructural features of the brain in late-onset temporal lobe epilepsy (TLE). We recruited patients with TLE and an age of onset > 50 years (late-TLE group) and age- and sex-matched healthy volunteers (control group). 3-Tesla MRI scans, including 3D T1-weighted images and 15-direction DTI, showed normal findings on visual assessment in both groups. We used Statistical Parametric Mapping 12 (SPM12) for gray and white matter structural normalization and comparison and used Tract-Based Spatial Statistics (TBSS) for fractional anisotropy and mean diffusivity comparisons of DTI. In both methods, p < 0.05 (family-wise error) was considered statistically significant. In total, 30 patients with late-onset TLE (mean ± SD age, 66.8 ± 8.4; mean ± SD age of onset, 63.0 ± 7.6 years) and 40 healthy controls (mean ± SD age, 66.6 ± 8.5 years) were enrolled. The late-onset TLE group showed significant gray matter volume increases in the bilateral amygdala and anterior hippocampus and significantly reduced mean diffusivity in the left temporofrontal lobe, internal capsule, and brainstem. No significant changes were evident in white matter volume or fractional anisotropy. Our findings may reflect some characteristics or mechanisms of cryptogenic TLE in the elderly, such as inflammatory processes.
Active visual search in non-stationary scenes: coping with temporal variability and uncertainty
NASA Astrophysics Data System (ADS)
Ušćumlić, Marija; Blankertz, Benjamin
2016-02-01
Objective. State-of-the-art experiments for studying neural processes underlying visual cognition often constrain sensory inputs (e.g., static images) and our behavior (e.g., fixed eye-gaze, long eye fixations), isolating or simplifying the interaction of neural processes. Motivated by the non-stationarity of our natural visual environment, we investigated the electroencephalography (EEG) correlates of visual recognition while participants overtly performed visual search in non-stationary scenes. We hypothesized that visual effects (such as those typically used in human-computer interfaces) may increase temporal uncertainty (with reference to fixation onset) of cognition-related EEG activity in an active search task and therefore require novel techniques for single-trial detection. Approach. We addressed fixation-related EEG activity in an active search task with respect to stimulus-appearance styles and dynamics. Alongside popping-up stimuli, our experimental study embraces two composite appearance styles based on fading-in, enlarging, and motion effects. Additionally, we explored whether the knowledge obtained in the pop-up experimental setting can be exploited to boost the EEG-based intention-decoding performance when facing transitional changes of visual content. Main results. The results confirmed our initial hypothesis that the dynamic of visual content can increase temporal uncertainty of the cognition-related EEG activity in active search with respect to fixation onset. This temporal uncertainty challenges the pivotal aim to keep the decoding performance constant irrespective of visual effects. Importantly, the proposed approach for EEG decoding based on knowledge transfer between the different experimental settings gave a promising performance. Significance. Our study demonstrates that the non-stationarity of visual scenes is an important factor in the evolution of cognitive processes, as well as in the dynamic of ocular behavior (i.e., dwell time and fixation duration) in an active search task. In addition, our method to improve single-trial detection performance in this adverse scenario is an important step in making brain-computer interfacing technology available for human-computer interaction applications.
Evaluation of Aged Garlic Extract Neuroprotective Effect in a Focal Model of Cerebral Ischemia
NASA Astrophysics Data System (ADS)
Aguilera, Penélope; Maldonado, Perla D.; Ortiz-Plata, Alma; Barrera, Diana; Chánez-Cárdenas, María Elena
2008-02-01
The oxidant species generated in cerebral ischemia have been implicated as important mediators of neuronal injury through damage to lipids, DNA, and proteins. Since ischemia as well as reperfusion insults generate oxidative stress, the administration of antioxidants may limit oxidative damage and ameliorate disease progression. The present work shows the transitory neuroprotective effect of the aged garlic extract (AGE) administration (a proposed antioxidant compound) in a middle cerebral artery occlusion (MCAO) model in rats and established its therapeutic window. To determine the optimal time of administration, animal received AGE (1.2 mL/kg) intraperitoneally 30 min before onset of reperfusion (-0.5 R), at the beginning of reperfusion (0R), or 1 h after onset of reperfusion (1R). Additional doses were administrated after 1, 2, or 3 h after onset of reperfusion. To establish the therapeutic window of AGE, the infarct area was determined for each treatment after different times of reperfusion. Results show that the administration of AGE at the onset of reperfusion reduced the infarct area by 70% (evaluated after 2 h reperfusion). The therapeutic window of AGE was determined. Repeated doses did not extend the temporal window of protection. A significant reduction in the nitrotyrosine level was observed in the brain tissue subjected to MCAO after AGE treatment at the onset of reperfusion. Data in the present work show that AGE exerts a transitory neuroprotective effect in response to ischemia/reperfusion-induced neuronal injury.
Wilson, Richard H; Sharrett, Kadie C
2017-01-01
Two previous experiments from our laboratory with 70 interrupted monosyllabic words demonstrated that recognition performance was influenced by the temporal location of the interruption pattern. The interruption pattern (10 interruptions/sec, 50% duty cycle) was always the same and referenced word onset; the only difference between the patterns was the temporal location of the on- and off-segments of the interruption cycle. In the first study, both young and older listeners obtained better recognition performances when the initial on-segment coincided with word onset than when the initial on-segment was delayed by 50 msec. The second experiment with 24 young listeners detailed recognition performance as the interruption pattern was incremented in 10-msec steps through the 0- to 90-msec onset range. Across the onset conditions, 95% of the functions were either flat or U-shaped. To define the effects that interruption pattern locations had on word recognition by older listeners with sensorineural hearing loss as the interruption pattern incremented, re: word onset, from 0 to 90 msec in 10-msec steps. A repeated-measures design with ten interruption patterns (onset conditions) and one uninterruption condition. Twenty-four older males (mean = 69.6 yr) with sensorineural hearing loss participated in two 1-hour sessions. The three-frequency pure-tone average was 24.0 dB HL and word recognition was ≥80% correct. Seventy consonant-vowel nucleus-consonant words formed the corpus of materials with 25 additional words used for practice. For each participant, the 700 interrupted stimuli (70 words by 10 onset conditions), the 70 words uninterrupted, and two practice lists each were randomized and recorded on compact disc in 33 tracks of 25 words each. The data were analyzed at the participant and word levels and compared to the results obtained earlier on 24 young listeners with normal hearing. The mean recognition performance on the 70 words uninterrupted was 91.0% with an overall mean performance on the ten interruption conditions of 63.2% (range: 57.9-69.3%), compared to 80.4% (range: 73.0-87.7%) obtained earlier on the young adults. The best performances were at the extremes of the onset conditions. Standard deviations ranged from 22.1% to 28.1% (24 participants) and from 9.2% to 12.8% (70 words). An arithmetic algorithm categorized the shapes of the psychometric functions across the ten onset conditions. With the older participants in the current study, 40% of the functions were flat, 41.4% were U-shaped, and 18.6% were inverted U-shaped, which compared favorably to the function shapes by the young listeners in the earlier study of 50.0%, 41.4%, and 8.6%, respectively. There were two words on which the older listeners had 40% better performances. Collectively, the data are orderly, but at the individual word or participant level, the data are somewhat volatile, which may reflect auditory processing differences between the participant groups. The diversity of recognition performances by the older listeners on the ten interruption conditions with each of the 70 words supports the notion that the term hearing loss is inclusive of processes well beyond the filtering produced by end-organ sensitivity deficits. American Academy of Audiology
Caravaglios, Giuseppe; Muscoso, Emma Gabriella; Di Maria, Giulia; Costanzo, Erminio
2015-03-01
There are several evidences indicating that an impairment in attention-executive functions is present in prodromal Alzheimer's disease and predict future global cognitive decline. In particular, the issue of temporal orienting of attention in patients with mild cognitive impairment (MCI) due to Alzheimer's disease has been overlooked. The present research aimed to explore whether subtle deficits of cortical activation are present in these patients early in the course of the disease. We studied the upper-alpha event-related synchronization/desynchronization phenomenon during a paradigm of temporal orientation of attention. MCI patients (n = 27) and healthy elderly controls (n = 15) performed a task in which periodically omitted tones had to be predicted and their virtual onset time had to be marked by pressing a button. Single-trial responses were measured, respectively, before and after the motor response. Then, upper-alpha responses were compared to upper-alpha power during eyes-closed resting state. The time course of the task was characterized by two different behavioral conditions: (1) a pre-event epoch, in which the subject awaited the virtual onset of the omitted tone, (2) a post-event epoch (after button pressing), in which the subject was in a post-motor response condition. The principal findings are: (1) during the waiting epoch, only healthy elderly had an upper-alpha ERD at the level of both temporal and posterior brain regions; (2) during the post-motor epoch, the aMCI patients had a weaker upper-alpha ERS on prefrontal regions; (3) only healthy elderly showed a laterality effect: (a) during the waiting epoch, the upper-alpha ERD was greater at the level of the right posterior-temporal lead; during the post-motor epoch, the upper alpha ERS was greater on the left prefrontal lead. The relevance of these findings is that the weaker upper-alpha response observed in aMCI patients is evident even if the accuracy of the behavioral performance (i.e., button pressing) is still spared. This abnormal upper-alpha response might represent an early biomarker of the attention-executive network impairment in MCI due to Alzheimer's disease.
Clinical usefulness of temporal artery biopsy.
Vilaseca, J; González, A; Cid, M C; Lopez-Vivancos, J; Ortega, A
1987-01-01
To assess the diagnostic usefulness of temporal artery biopsy in temporal arteritis (TA) and establish clinical features capable of predicting its positivity we have retrospectively studied the biopsy specimens and the clinical features of 103 patients who had undergone temporal artery biopsy. Temporal artery biopsy reached a positive predictive value of 90.2% with respect to the final diagnosis based on the criteria proposed by Ellis and Ralston and the clinical course. The simultaneous presence of recent onset headache, jaw claudication, and abnormalities of the temporal arteries on physical examination had a specificity of 94.8% with respect to the histological diagnosis and of 100% with respect to final diagnosis. The presence of any of these clinical features, though of little specificity (34.4%), had a sensitivity of 100% with respect to histological diagnosis, selecting a group of patients in whom temporal artery biopsy has more discriminative value. PMID:3592783
ERIC Educational Resources Information Center
Topolinski, Sascha; Reber, Rolf
2010-01-01
A temporal contiguity hypothesis for the experience of veracity is tested which states that a solution candidate to a cognitive problem is more likely to be experienced as correct the faster it succeeds the problem. Experiment 1 varied the onset time of the appearance of proposed solutions to anagrams (50 ms vs. 150 ms) and found for both correct…
Huang, Ying-Zu; Chang, Yao-Shun; Hsu, Miao-Ju; Wong, Alice M K; Chang, Ya-Ju
2015-01-01
Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).
Autonomic symptoms during childhood partial epileptic seizures.
Fogarasi, András; Janszky, József; Tuxhorn, Ingrid
2006-03-01
To analyze systematically the occurrence and age dependence as well as the localizing and lateralizing value of ictal autonomic symptoms (ASs) during childhood partial epilepsies and to compare our results with those of earlier adult studies. Five hundred fourteen video-recorded seizures of 100 consecutive children 12 years or younger with partial epilepsy and seizure-free postoperative outcome were retrospectively analyzed. Sixty patients produced at least one AS; 43 (70%) of 61 with temporal and 17 (44%) of 39 with extratemporal lobe epilepsy (p=0.012). Apnea/bradypnea occurred more frequently in younger children (p<0.01), whereas the presence of other ASs was neither age nor gender related. Postictal coughing (p<0.01) and epigastric aura (p<0.05) localized to the temporal lobe, whereas no ASs lateralized to the seizure-onset zone. Our study shows that ASs are common in childhood focal epilepsies, appearing in infants and young children, too. As in adults, childhood central autonomic networks might have a close connection to temporal lobe structures but do not lateralize the seizure-onset zone. To our knowledge, this is the first study comprehensively assessing ASs in childhood epilepsy.
Martinez del Castillo, Edurne; Longares, Luis A.; Gričar, Jožica; Prislan, Peter; Gil-Pelegrín, Eustaquio; Čufar, Katarina; de Luis, Martin
2016-01-01
Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48–75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris. PMID:27047534
Martinez Del Castillo, Edurne; Longares, Luis A; Gričar, Jožica; Prislan, Peter; Gil-Pelegrín, Eustaquio; Čufar, Katarina; de Luis, Martin
2016-01-01
Wood formation in European beech (Fagus sylvatica L.) and Scots pine (Pinus sylvestris L.) was intra-annually monitored to examine plastic responses of the xylem phenology according to altitude in one of the southernmost areas of their distribution range, i.e., in the Moncayo Natural Park, Spain. The monitoring was done from 2011 to 2013 at 1180 and 1580 m a.s.l., corresponding to the lower and upper limits of European beech forest in this region. Microcores containing phloem, cambium and xylem were collected biweekly from twenty-four trees from the beginning of March to the end of November to assess the different phases of wood formation. The samples were prepared for light microscopy to observe the following phenological phases: onset and end of cell production, onset and end of secondary wall formation in xylem cells and onset of cell maturation. The temporal dynamics of wood formation widely differed among years, altitudes and tree species. For Fagus sylvatica, the onset of cambial activity varied between the first week of May and the third week of June. Cambial activity then slowed down and stopped in summer, resulting in a length of growing season of 48-75 days. In contrast, the growing season for P. sylvestris started earlier and cambium remained active in autumn, leading to a period of activity varying from 139-170 days. The intra-annual wood-formation pattern is site and species-specific. Comparison with other studies shows a clear latitudinal trend in the duration of wood formation, positive for Fagus sylvatica and negative for P. sylvestris.
Edwards, Mark J; Dale, Russell C; Church, Andrew J; Trikouli, Eleni; Quinn, Niall P; Lees, Andrew J; Giovannoni, Gavin; Bhatia, Kailash P
2004-10-01
The onset of tics in adulthood is rare and, unlike the childhood variety, there is commonly a secondary environmental cause. We present four cases (1 man, 3 women) with an adult onset tic disorder (mean age of onset, 36 years; range, 27-42 years) associated with the presence of serum antibasal ganglia antibodies (ABGA). One patient had motor tics and unusual motor stereotypies, 2 had multiple motor and vocal tics, and the remaining patient had motor tics only. Concomitant psychiatric disturbance was noted in 3 cases. In 2 cases, there was a close temporal relationship between upper respiratory tract infection and the subsequent onset of tics. Imaging was possible in three cases and was normal in two but revealed a lesion involving the right caudate and lentiform nuclei in the other. We suggest that there might be a causal relationship between ABGA and the clinical syndrome in these cases and that ABGA should be considered as a possible etiology for adult-onset tics. (c) 2004 Movement Disorder Society.
Green leaf phenology at Landsat resolution: scaling from the plot to satellite
NASA Astrophysics Data System (ADS)
Fisher, J. I.; Mustard, J. F.; Vadeboncour, M.
2005-12-01
Despite the large number of in situ, plot-level phenological measurements and satellite-derived phenological studies, there has been little success to date in merging these records temporally or spatially. In particular, while most phenological patterns and trends derived from satellites appear realistic and coherent, they may not reflect spatial and temporal patterns at the plot level. An obvious explanation is the drastic scale difference from plot-level to most satellite observations. In this research, we bridge this scale gap through higher resolution satellite records (Landsat) and quantify the accuracy of satellite-derived metrics with direct field measurements. We compiled fifty-seven Landsat scenes from southern New England (P12 R51) from 1984 to 2002. Green vegetation areal abundance for each scene was derived from spectral mixture analysis and a single set of endmembers. The leaf area signal was fit with a logistic-growth simulating sigmoid curve to derive phenological markers (half-maximum leaf-onset and offset). Spring leaf-onset dates in homogenous stands of deciduous forests displayed significant and persistent local variability. The local variability was validated with multiple springtime ground observations (r2 = 0.91). The highest degree of verified small-scale variation occurred where contiguous forests displayed leaf-onset gradients of 10-14 days over short distances (<500 m). These dramatic gradients, of a similar magnitude to differences in leaf-onset from MD to MA, occur in of low-relief (<40 m) upland regions. The patterns suggest that microclimates resulting from springtime cold-air drainage may be influential in governing the start of leaf growth. These microclimates may be of crucial importance in interpreting in situ records and interpolating phenology from satellite data. Regional patterns from the Landsat analyses suggest topographic, coastal, and land-use controls on phenology. For example, our results indicate that deciduous forests in the Providence, RI metropolitan area leaf out 5-7 days earlier than comparable rural areas. In preliminary work, we validated the Landsat-derived metrics with similar analyses of MODIS and AVHRR, and demonstrate that aggregating diverse local phenologies into coarse grids may convolute interpretations. Despite these complications, the platform-independent curve-fit methodology may be extended across platforms and field data. The methodologically consistent approach, in tandem with Landsat data, allows us to effectively scale between plot and satellite phenological observations.
Sunwoo, Mun Kyung; Yun, Hyuk Jin; Song, Sook K.; Ham, Ji Hyun; Hong, Jin Yong; Lee, Ji E.; Lee, Hye S.; Sohn, Young H.; Lee, Jong-Min; Lee, Phil Hyu
2014-01-01
Multiple system atrophy (MSA) is an adult-onset, sporadic neurodegenerative disease. Because the prognosis of MSA is fatal, neuroprotective or regenerative strategies may be invaluable in MSA treatment. Previously, we obtained clinical and imaging evidence that mesenchymal stem cell (MSC) treatment could have a neuroprotective role in MSA patients. In the present study, we evaluated the effects of MSC therapy on longitudinal changes in subcortical deep gray matter volumes and cortical thickness and their association with cognitive performance. Clinical and imaging data were obtained from our previous randomized trial of autologous MSC in MSA patients. During 1-year follow-up, we assessed longitudinal differences in automatic segmentation-based subcortical deep gray matter volumes and vertex-wise cortical thickness between placebo (n = 15) and MSC groups (n = 11). Next, we performed correlation analysis between the changes in cortical thickness and changes in the Korean version of the Montreal Cognitive Assessment (MoCA) scores and cognitive performance of each cognitive subdomain using a multiple, comparison correction. There were no significant differences in age at baseline, age at disease onset, gender ratio, disease duration, clinical severity, MoCA score, or education level between the groups. The automated subcortical volumetric analysis revealed that the changes in subcortical deep gray matter volumes of the caudate, putamen, and thalamus did not differ significantly between the groups. The areas of cortical thinning over time in the placebo group were more extensive, including the frontal, temporal, and parietal areas, whereas these areas in the MSC group were less extensive. Correlation analysis indicated that declines in MoCA scores and phonemic fluency during the follow-up period were significantly correlated with cortical thinning of the frontal and posterior temporal areas and anterior temporal areas in MSA patients, respectively. In contrast, no significant correlations were observed in the MSC group. These results suggest that MSC treatment in patients with MSA may modulate cortical thinning over time and related cognitive performance, inferring a future therapeutic candidate for cognitive disorders. PMID:24982631
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lieshout, P.; Renier, W.; Eling, P.
1990-02-01
This case study concerns an 18-year-old bilingual girl who suffered a radiation lesion in the left (dominant) thalamic and temporal region when she was 4 years old. Language and memory assessment revealed deficits in auditory short-term memory, auditory word comprehension, nonword repetition, syntactic processing, word fluency, and confrontation naming tasks. Both languages (English and Dutch) were found to be affected in a similar manner, despite the fact that one language (English) was acquired before and the other (Dutch) after the period of lesion onset. Most of the deficits appear to be related to verbal (short-term) memory dysfunction. Several hypotheses ofmore » subcortical involvement in memory processes are discussed with reference to existing theories in this area.« less
Toyota, Tomoko; Akamatsu, Naoki; Tsuji, Sadatoshi; Nishizawa, Shigeru
2014-06-01
Recently, some reports have indicated that limbic encephalitis associated with anti-voltage-gated potassium channel complex antibodies (VGKC-Ab) is a cause of adult-onset mesial temporal lobe epilepsy (MTLE). We report a 53-year-old woman who had her first epileptic seizure at the age of 50 years old. Examination by 3-Tesla brain MRI revealed left hippocampal high signal intensity and swelling on fluid-attenuated inversion recovery (FLAIR) and T2-weighted imaging at 2 months after her first seizure. The patient received intravenous methylprednisolone and carbamazepine 300 mg/day. One month later, MRI revealed improvement of her left hippocampal abnormalities. Thereafter, she had no seizures, however, three years after her first seizure, EEG revealed a seizure pattern in the left temporal region. Brain MRI revealed left hippocampal high signal intensity and brain fluorodeoxyglucose positron emission tomography revealed hypermetabolism. Her serum VGKC-Ab levels were 118 pM(normal < 100 pM). Intravenous methylprednisolone therapy was reinitiated. Two months later, her hippocampal abnormalities had improved and 3 months later her VGKC-Ab levels decreased to 4.4 pM. Remission of the epileptic seizures was also observed. This MTLE in the middle age was considered as limbic encephalitis associated with anti- VGKC-Ab. In cases of unexplained adult-onset MTLE, limbic encephalitis associated with anti-VGKC-Ab, which responds well to immunotherapy, should be considered in the differential diagnosis.
Temporal properties of responses to sound in the ventral nucleus of the lateral lemniscus.
Recio-Spinoso, Alberto; Joris, Philip X
2014-02-01
Besides the rapid fluctuations in pressure that constitute the "fine structure" of a sound stimulus, slower fluctuations in the sound's envelope represent an important temporal feature. At various stages in the auditory system, neurons exhibit tuning to envelope frequency and have been described as modulation filters. We examine such tuning in the ventral nucleus of the lateral lemniscus (VNLL) of the pentobarbital-anesthetized cat. The VNLL is a large but poorly accessible auditory structure that provides a massive inhibitory input to the inferior colliculus. We test whether envelope filtering effectively applies to the envelope spectrum when multiple envelope components are simultaneously present. We find two broad classes of response with often complementary properties. The firing rate of onset neurons is tuned to a band of modulation frequencies, over which they also synchronize strongly to the envelope waveform. Although most sustained neurons show little firing rate dependence on modulation frequency, some of them are weakly tuned. The latter neurons are usually band-pass or low-pass tuned in synchronization, and a reverse-correlation approach demonstrates that their modulation tuning is preserved to nonperiodic, noisy envelope modulations of a tonal carrier. Modulation tuning to this type of stimulus is weaker for onset neurons. In response to broadband noise, sustained and onset neurons tend to filter out envelope components over a frequency range consistent with their modulation tuning to periodically modulated tones. The results support a role for VNLL in providing temporal reference signals to the auditory midbrain.
Matsubara, Teppei; Ayuzawa, Satoshi; Aoki, Tsukasa; Fujiomto, Ayataka; Osuka, Satoru; Matsumura, Akira
2013-01-01
Patients with a porencephalic cyst frequently develop intractable temporal lobe epilepsy (TLE). We report a surgically-treated male patient with intractable mesial TLE (mTLE) secondary to a porencephalic cyst. Although magnetic resonance imaging showed no hippocampal abnormalities, long-term video-electrocorticography revealed seizure onset discharges in the hippocampus. Temporal lobectomy brought an end to the patient's seizures. Hippocampal sclerosis was histopathologically confirmed (dual pathology). Careful evaluation of hippocampal epileptogenicity is required, and temporal lobectomy, which is less invasive than hemispherectomy, can be a treatment of choice for patients with mTLE secondary to a porencephalic cyst. PMID:25667851
A precedence effect resolves phantom sound source illusions in the parasitoid fly Ormia ochracea
Lee, Norman; Elias, Damian O.; Mason, Andrew C.
2009-01-01
Localizing individual sound sources under reverberant environmental conditions can be a challenge when the original source and its acoustic reflections arrive at the ears simultaneously from different paths that convey ambiguous directional information. The acoustic parasitoid fly Ormia ochracea (Diptera: Tachinidae) relies on a pair of ears exquisitely sensitive to sound direction to localize the 5-kHz tone pulsatile calling song of their host crickets. In nature, flies are expected to encounter a complex sound field with multiple sources and their reflections from acoustic clutter potentially masking temporal information relevant to source recognition and localization. In field experiments, O. ochracea were lured onto a test arena and subjected to small random acoustic asymmetries between 2 simultaneous sources. Most flies successfully localize a single source but some localize a ‘phantom’ source that is a summed effect of both source locations. Such misdirected phonotaxis can be elicited reliably in laboratory experiments that present symmetric acoustic stimulation. By varying onset delay between 2 sources, we test whether hyperacute directional hearing in O. ochracea can function to exploit small time differences to determine source location. Selective localization depends on both the relative timing and location of competing sources. Flies preferred phonotaxis to a forward source. With small onset disparities within a 10-ms temporal window of attention, flies selectively localize the leading source while the lagging source has minimal influence on orientation. These results demonstrate the precedence effect as a mechanism to overcome phantom source illusions that arise from acoustic reflections or competing sources. PMID:19332794
Characterization of atypical language activation patterns in focal epilepsy.
Berl, Madison M; Zimmaro, Lauren A; Khan, Omar I; Dustin, Irene; Ritzl, Eva; Duke, Elizabeth S; Sepeta, Leigh N; Sato, Susumu; Theodore, William H; Gaillard, William D
2014-01-01
Functional magnetic resonance imaging is sensitive to the variation in language network patterns. Large populations are needed to rigorously assess atypical patterns, which, even in neurological populations, are a minority. We studied 220 patients with focal epilepsy and 118 healthy volunteers who performed an auditory description decision task. We compared a data-driven hierarchical clustering approach to the commonly used a priori laterality index (LI) threshold (LI < 0.20 as atypical) to classify language patterns within frontal and temporal regions of interest. We explored (n = 128) whether IQ varied with different language activation patterns. The rate of atypical language among healthy volunteers (2.5%) and patients (24.5%) agreed with previous studies; however, we found 6 patterns of atypical language: a symmetrically bilateral, 2 unilaterally crossed, and 3 right dominant patterns. There was high agreement between classification methods, yet the cluster analysis revealed novel correlations with clinical features. Beyond the established association of left-handedness, early seizure onset, and vascular pathology with atypical language, cluster analysis identified an association of handedness with frontal lateralization, early seizure onset with temporal lateralization, and left hemisphere focus with a unilateral right pattern. Intelligence quotient was not significantly different among patterns. Language dominance is a continuum; however, our results demonstrate meaningful thresholds in classifying laterality. Atypical language patterns are less frequent but more variable than typical language patterns, posing challenges for accurate presurgical planning. Language dominance should be assessed on a regional rather than hemispheric basis, and clinical characteristics should inform evaluation of atypical language dominance. Reorganization of language is not uniformly detrimental to language functioning. © 2014 American Neurological Association.
Source localization of temporal lobe epilepsy using PCA-LORETA analysis on ictal EEG recordings.
Stern, Yaki; Neufeld, Miriam Y; Kipervasser, Svetlana; Zilberstein, Amir; Fried, Itzhak; Teicher, Mina; Adi-Japha, Esther
2009-04-01
Localizing the source of an epileptic seizure using noninvasive EEG suffers from inaccuracies produced by other generators not related to the epileptic source. The authors isolated the ictal epileptic activity, and applied a source localization algorithm to identify its estimated location. Ten ictal EEG scalp recordings from five different patients were analyzed. The patients were known to have temporal lobe epilepsy with a single epileptic focus that had a concordant MRI lesion. The patients had become seizure-free following partial temporal lobectomy. A midinterval (approximately 5 seconds) period of ictal activity was used for Principal Component Analysis starting at ictal onset. The level of epileptic activity at each electrode (i.e., the eigenvector of the component that manifest epileptic characteristic), was used as an input for low-resolution tomography analysis for EEG inverse solution (Zilberstain et al., 2004). The algorithm accurately and robustly identified the epileptic focus in these patients. Principal component analysis and source localization methods can be used in the future to monitor the progression of an epileptic seizure and its expansion to other areas.
Temporally flexible feedback signal to foveal cortex for peripheral object recognition
Fan, Xiaoxu; Wang, Lan; Shao, Hanyu; Kersten, Daniel; He, Sheng
2016-01-01
Recent studies have shown that information from peripherally presented images is present in the human foveal retinotopic cortex, presumably because of feedback signals. We investigated this potential feedback signal by presenting noise in fovea at different object–noise stimulus onset asynchronies (SOAs), whereas subjects performed a discrimination task on peripheral objects. Results revealed a selective impairment of performance when foveal noise was presented at 250-ms SOA, but only for tasks that required comparing objects’ spatial details, suggesting a task- and stimulus-dependent foveal processing mechanism. Critically, the temporal window of foveal processing was shifted when mental rotation was required for the peripheral objects, indicating that the foveal retinotopic processing is not automatically engaged at a fixed time following peripheral stimulation; rather, it occurs at a stage when detailed information is required. Moreover, fMRI measurements using multivoxel pattern analysis showed that both image and object category-relevant information of peripheral objects was represented in the foveal cortex. Taken together, our results support the hypothesis of a temporally flexible feedback signal to the foveal retinotopic cortex when discriminating objects in the visual periphery. PMID:27671651
Gamba, Marco; Torti, Valeria; Estienne, Vittoria; Randrianarison, Rose M.; Valente, Daria; Rovara, Paolo; Bonadonna, Giovanna; Friard, Olivier; Giacoma, Cristina
2016-01-01
A crucial, common feature of speech and music is that they show non-random structures over time. It is an open question which of the other species share rhythmic abilities with humans, but in most cases the lack of knowledge about their behavioral displays prevents further studies. Indris are the only lemurs who sing. They produce loud howling cries that can be heard at several kilometers, in which all members of a group usually sing. We tested whether overlapping and turn-taking during the songs followed a precise pattern by analysing the temporal structure of the individuals' contribution to the song. We found that both dominants (males and females) and non-dominants influenced the onset timing one another. We have found that the dominant male and the dominant female in a group overlapped each other more frequently than they did with the non-dominants. We then focused on the temporal and frequency structure of particular phrases occurring during the song. Our results show that males and females have dimorphic inter-onset intervals during the phrases. Moreover, median frequencies of the unit emitted in the phrases also differ between the sexes, with males showing higher frequencies when compared to females. We have not found an effect of age on the temporal and spectral structure of the phrases. These results indicate that singing in indris has a high behavioral flexibility and varies according to social and individual factors. The flexible spectral structure of the phrases given during the song may underlie perceptual abilities that are relatively unknown in other non-human primates, such as the ability to recognize particular pitch patterns. PMID:27378834
Ilomäki, Risto; Hakko, Helinä; Timonen, Markku; Lappalainen, Jaakko; Mäkikyrö, Taru; Räsänen, Pirkko
2004-09-06
To investigate the age of onset of phobic disorders in relation to later development of substance dependence in a sample of adolescent psychiatric patients. Clinical sample of 238 adolescents (age 12-17) admitted to psychiatric inpatient hospitalization between April 2001 and July 2003. Psychiatric diagnoses and onset ages obtained from the schedule for affective disorders and schizophrenia for school aged children-present and lifetime (K-SADS-PL). Logistic regression analyses revealed that adolescents with phobic disorders had a 4.9-fold risk for comorbid substance dependence compared to those without phobia. The mean onset age was 11.4 and 14.4 years for phobias and comorbid substance dependence, respectively. Boys (13.7 years) had a statistically significantly lower onset age for substance dependence than girls (15.4 years). Over one-half of the adolescents with phobic disorders had developed substance dependence within three years after the onset of phobia. We found that phobias might influence the development of secondary substance dependence within a few years from the onset of phobia already in adolescence.
Developmental differences in the neural mechanisms of facial emotion labeling.
Wiggins, Jillian Lee; Adleman, Nancy E; Kim, Pilyoung; Oakes, Allison H; Hsu, Derek; Reynolds, Richard C; Chen, Gang; Pine, Daniel S; Brotman, Melissa A; Leibenluft, Ellen
2016-01-01
Adolescence is a time of increased risk for the onset of psychological disorders associated with deficits in face emotion labeling. We used functional magnetic resonance imaging (fMRI) to examine age-related differences in brain activation while adolescents and adults labeled the emotion on fearful, happy and angry faces of varying intensities [0% (i.e. neutral), 50%, 75%, 100%]. Adolescents and adults did not differ on accuracy to label emotions. In the superior temporal sulcus, ventrolateral prefrontal cortex and middle temporal gyrus, adults show an inverted-U-shaped response to increasing intensities of fearful faces and a U-shaped response to increasing intensities of happy faces, whereas adolescents show the opposite patterns. In addition, adults, but not adolescents, show greater inferior occipital gyrus activation to negative (angry, fearful) vs positive (happy) emotions. In sum, when subjects classify subtly varying facial emotions, developmental differences manifest in several 'ventral stream' brain regions. Charting the typical developmental course of the brain mechanisms of socioemotional processes, such as facial emotion labeling, is an important focus for developmental psychopathology research. Published by Oxford University Press 2015. This work is written by US Government employees and is in the public domain in the US.
NASA Technical Reports Server (NTRS)
Blum, A. S.; Ives, J. R.; Goldberger, A. L.; Al-Aweel, I. C.; Krishnamurthy, K. B.; Drislane, F. W.; Schomer, D. L.
2000-01-01
PURPOSE: The occurrence of hypoxemia in adults with partial seizures has not been systematically explored. Our aim was to study in detail the temporal dynamics of this specific type of ictal-associated hypoxemia. METHODS: During long-term video/EEG monitoring (LTM), patients underwent monitoring of oxygen saturation using a digital Spo2 (pulse oximeter) transducer. Six patients (nine seizures) were identified with oxygen desaturations after the onset of partial seizure activity. RESULTS: Complex partial seizures originated from both left and right temporal lobes. Mean seizure duration (+/-SD) was 73 +/- 18 s. Mean Spo2 desaturation duration was 76 +/- 19 s. The onset of oxygen desaturation followed seizure onset with a mean delay of 43 +/- 16 s. Mean (+/-SD) Spo2 nadir was 83 +/- 5% (range, 77-91%), occurring an average of 35 +/- 12 s after the onset of the desaturation. One seizure was associated with prolonged and recurrent Spo2 desaturations. CONCLUSIONS: Partial seizures may be associated with prominent oxygen desaturations. The comparable duration of each seizure and its subsequent desaturation suggests a close mechanistic (possibly causal) relation. Spo2 monitoring provides an added means for seizure detection that may increase LTM yield. These observations also raise the possibility that ictal ventilatory dysfunction could play a role in certain cases of sudden unexpected death in epilepsy in adults with partial seizures.
The bi-directional associations between psychotic experiences and DSM-IV mental disorders
McGrath, John J.; Saha, Sukanta; Al-Hamzawi, Ali; Andrade, Laura; Benjet, Corina; Bromet, Evelyn J.; Browne, Mark Oakley; Caldas de Almeida, Jose M.; Chiu, Wai Tat; Demyttenaere, Koen; Fayyad, John; Florescu, Silvia; de Girolamo, Giovanni; Gureje, Oye; Haro, Josep Maria; Have, Margreet ten; Hu, Chiyi; Kovess-Masfety, Viviane; Lim, Carmen C. W.; Navarro-Mateu, Fernando; Sampson, Nancy; Posada-Villa, José; Kendler, Kenneth; Kessler, Ronald C.
2016-01-01
Objective While it is now recognized that psychotic experiences (PEs) are associated with an increased risk of later mental disorders, we lack a detailed understanding of the reciprocal time-lagged relationships between first onsets of PEs and mental disorders. Methods The WHO World Mental Health (WMH) surveys assessed lifetime prevalence and age-of-onset of PEs and 21 common DSM-IV mental disorders among 31,261 adult respondents from 18 countries. Results Temporally primary PEs were significantly associated with subsequent first onset of 8 of the 21 mental disorders (major depressive disorder, bipolar disorder, generalized anxiety disorder, social phobia, post-traumatic stress disorder, adult separation anxiety disorder, bulimia nervosa, alcohol abuse), with ORs (95%CI) ranging from 1.3 (1.2–1.5; major depressive disorder) to 2.0 (1.5–2.6; bipolar disorder). In contrast, 18 of 21 primary mental disorders were significantly associated with subsequent first onset of PEs, with ORs (95% CI) ranging from 1.5 (1.0–2.1; childhood separation anxiety disorder) to 2.8 (1.0–7.8; anorexia nervosa). Conclusions While temporally primary PEs are associated with an elevated risk of several subsequent mental disorders, we found that most mental disorder are associated with an elevated risk of subsequent PEs. Further investigation of the underlying factors accounting for these time-order relationships might shed light on the etiology of PEs. PMID:26988628
Utility of stereoelectroencephalography in preoperative assessment of temporal lobe epilepsy.
Binnie, C D; Elwes, R D; Polkey, C E; Volans, A
1994-01-01
Of 269 consecutive patients entered into a preoperative assessment programme for possible surgical treatment of epilepsy, 33 had intracranial recording (SEEG) with combined subdural and depth electrodes for the purpose of localising a suspected temporal site of seizure onset. The findings in these patients are analysed with particular reference to: 1) the criteria of selection for SEEG and their validity; 2) information on SEEG compared with that obtained by less invasive means, including foramen ovale telemetry; 3) information on the use of intracerebral electrodes compared with subdural placements; 4) possible predictors of failure of localisation by SEEG and of surgical outcome. It was concluded that SEEG had usefully contributed to the management of 69% of the patients in whom it was used, establishing a previously unidentified site of seizure onset in 33%, correcting an erroneous localisation in 15%, and establishing inoperability in 21% of patients. No predictors of failure of SEEG or of surgery emerged; thus there was no evidence of unnecessary use of this procedure. Five patients were found with incorrect lateralisation of seizure onset on foramen ovale recording (of a total of 192 foramen ovale telemetries). Localisation of the ictal onset zone either by the distribution of inter-ictal discharges or by the initial ictal changes at subdural electrodes was unreliable, confirming the need for ictal, depth recordings. PMID:8301306
NASA Astrophysics Data System (ADS)
Tongwane, Mphethe Isaac; Moeletsi, Mokhele Edmond
2015-05-01
Intra-seasonal rainfall distribution was identified as a priority gap that needs to be addressed for southern Africa to cope with agro-meteorological risks. The region in the northwest of Lesotho is appropriate for crop cultivation due to its relatively favourable climatic conditions and soils. High rainfall variability is often blamed for poor agricultural production in this region. This study aims to determine the onset of rains, cessation of rains and rainy season duration using historical climate data. Temporal variability of these rainy season characteristics was also investigated. The earliest and latest onset dates of the rainy season are during the last week of October at Butha-Buthe and the third week of November at Mapoteng, respectively. Cessation of the season is predominantly in the first week of April making the season approximately 137-163 days long depending on the location. Average seasonal rainfall ranged from 474 mm at Mapoteng to 668 mm at Butha-Buthe. Onset and cessation of the rainfall season vary by 4-7 weeks and 1 week, respectively. Mean coefficient of variation of seasonal rainfall is 39 %, but monthly variations are higher. These variations make annual crop management and planning difficult each year. Trends show a decrease in the rainfall amounts but improvements in both the temporal distribution of annual rainfall, onset and cessation dates.
Category-Specific Naming and Recognition Deficits in Temporal Lobe Epilepsy Surgical Patients
Drane, Daniel L.; Ojemann, George A.; Aylward, Elizabeth; Ojemann, Jeffrey G.; Johnson, L. Clark; Silbergeld, Daniel L.; Miller, John W.; Tranel, Daniel
2008-01-01
Objective Based upon Damasio's “Convergence Zone” model of semantic memory, we predicted that epilepsy surgical patients with anterior temporal lobe (TL) seizure onset would exhibit a pattern of category-specific naming and recognition deficits not observed in patients with seizures arising elsewhere. Methods We assessed epilepsy patients with unilateral seizure onset of anterior TL or other origin (n = 22), pre- or postoperatively, using a set of category-specific items and a conventional measure of visual naming (Boston Naming Test: BNT). Results Category-specific naming deficits were exhibited by patients with dominant anterior TL seizure onset/resection for famous faces and animals, while category-specific recognition deficits for these same categories were exhibited by patients with nondominant anterior TL onset/resection. Patients with other seizure onset did not exhibit category-specific deficits. Naming and recognition deficits were frequently not detected by the BNT, which samples only a limited range of stimuli. Interpretation Consistent with the “convergence zone” framework, results suggest that the nondominant anterior TL plays a major role in binding sensory information into conceptual percepts for certain stimuli, while dominant TL regions function to provide a link to verbal labels for these percepts. Although observed category-specific deficits were striking, they were often missed by the BNT, suggesting that they are more prevalent than recognized in both pre- and postsurgical epilepsy patients. Systematic investigation of these deficits could lead to more refined models of semantic memory, aid in the localization of seizures, and contribute to modifications in surgical technique and patient selection in epilepsy surgery to improve neurocognitive outcome. PMID:18206185
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin
2012-01-01
Objective Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to “normalize” by age 17 years. Here we present a replication with nonoverlapping groups of healthy full siblings and healthy controls. Method Using an automated measure and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in nonpsychotic full siblings (n = 43, 68 scans; ages 5 through 26 years) of patients with COS, contrasting them with age-, gender-, and scan interval–matched healthy controls (n = 86, 136 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. Results As in our previous study, young nonpsychotic siblings (<17 years) showed significant GM deficits in bilateral prefrontal and left temporal cortices and, in addition, smaller deficits in the parietal and right inferior temporal cortices. These deficits in nonpsychotic siblings normalized with age with minimal abnormalities remaining by age 17. Conclusions Our results support previous findings showing nonpsychotic siblings of COS probands to have early GM deficits that ameliorate with time. At early ages, prefrontal and/or temporal loss may serve as a familial/trait marker for COS. Late adolescence appears to be a critical period for greatest localization of deficits in probands or normalization in nonpsychotic siblings. PMID:21703497
Teige, Catarina; Mollo, Giovanna; Millman, Rebecca; Savill, Nicola; Smallwood, Jonathan; Cornelissen, Piers L; Jefferies, Elizabeth
2018-06-01
Distinct neural processes are thought to support the retrieval of semantic information that is (i) coherent with strongly-encoded aspects of knowledge, and (ii) non-dominant yet relevant for the current task or context. While the brain regions that support readily coherent and more controlled patterns of semantic retrieval are relatively well-characterised, the temporal dynamics of these processes are not well-understood. This study used magnetoencephalography (MEG) and dual-pulse chronometric transcranial magnetic stimulation (cTMS) in two separate experiments to examine temporal dynamics during the retrieval of strong and weak associations. MEG results revealed a dissociation within left temporal cortex: anterior temporal lobe (ATL) showed greater oscillatory response for strong than weak associations, while posterior middle temporal gyrus (pMTG) showed the reverse pattern. Left inferior frontal gyrus (IFG), a site associated with semantic control and retrieval, showed both patterns at different time points. In the cTMS experiment, stimulation of ATL at ∼150 msec disrupted the efficient retrieval of strong associations, indicating a necessary role for ATL in coherent conceptual activations. Stimulation of pMTG at the onset of the second word disrupted the retrieval of weak associations, suggesting this site may maintain information about semantic context from the first word, allowing efficient engagement of semantic control. Together these studies provide converging evidence for a functional dissociation within the temporal lobe, across both tasks and time. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Association of anti-RNA polymerase III autoantibodies and cancer in scleroderma
2014-01-01
Introduction We assessed the profile and frequency of malignancy subtypes in a large single-centre UK cohort for patients with scleroderma (systemic sclerosis; SSc). We evaluated the cancer risk among SSc patients with different antibody reactivities and explored the temporal association of cancer with the duration between SSc onset and cancer diagnosis. Methods We conducted a retrospective study of a well-characterised cohort of SSc patients attending a large tertiary referral centre, with clinical data collected from our clinical database and by review of patient records. We evaluated development of all cancers in this cohort, and comparison was assessed with the SSc cohort without cancer. The effect of demographics and clinical details, including antibody reactivities, were explored to find associations relevant to the risk for development of cancer in SSc patients. Results Among 2,177 patients with SSc, 7.1% had a history of cancer, 26% were positive for anticentromere antibodies (ACAs), 18.2% were positive for anti-Scl-70 antibodies and 26.6% were positive for anti-RNA polymerase III (anti-RNAP) antibody. The major malignancy cancer subtypes were breast (42.2%), haematological (12.3%), gastrointestinal (11.0%) and gynaecological (11.0%). The frequency of cancers among patients with RNAP (14.2%) was significantly increased compared with those with anti-Scl-70 antibodies (6.3%) and ACAs (6.8%) (P < 0.0001 and P < 0.001, respectively). Among the patients, who were diagnosed with cancer within 36 months of the clinical onset of SSc, there were more patients with RNAP (55.3%) than those with other autoantibody specificities (ACA = 23.5%, P < 0.008; and anti-Scl-70 antibodies = 13.6%, P < 0.002, respectively). Breast cancers were temporally associated with onset of SSc among patients with anti-RNAP, and SSc patients with anti-RNAP had a twofold increased hazard ratio for cancers compared to patients with ACAs (P < 0.0001). Conclusions Our study independently confirms, in what is to the best of our knowledge the largest population examined to date, that there is an association with cancer among SSc patients with anti-RNAP antibodies in close temporal relationship to onset of SSc, which supports the paraneoplastic phenomenon in this subset of SSc cases. An index of cautious suspicion should be maintained in these cases, and investigations for underlying malignancy should be considered when clinically appropriate. PMID:24524733
Temporal dynamics of motor cortex excitability during perception of natural emotional scenes.
Borgomaneri, Sara; Gazzola, Valeria; Avenanti, Alessio
2014-10-01
Although it is widely assumed that emotions prime the body for action, the effects of visual perception of natural emotional scenes on the temporal dynamics of the human motor system have scarcely been investigated. Here, we used single-pulse transcranial magnetic stimulation (TMS) to assess motor excitability during observation and categorization of positive, neutral and negative pictures from the International Affective Picture System database. Motor-evoked potentials (MEPs) from TMS of the left motor cortex were recorded from hand muscles, at 150 and 300 ms after picture onset. In the early temporal condition we found an increase in hand motor excitability that was specific for the perception of negative pictures. This early negative bias was predicted by interindividual differences in the disposition to experience aversive feelings (personal distress) in interpersonal emotional contexts. In the later temporal condition, we found that MEPs were similarly increased for both positive and negative pictures, suggesting an increased reactivity to emotionally arousing scenes. By highlighting the temporal course of motor excitability during perception of emotional pictures, our study provides direct neurophysiological support for the evolutionary notions that emotion perception is closely linked to action systems and that emotionally negative events require motor reactions to be more urgently mobilized. © The Author (2013). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.
Baumgarten, Thomas J; Schnitzler, Alfons; Lange, Joachim
2016-03-01
Recent studies have demonstrated that prestimulus alpha-band activity substantially influences perception of near-threshold stimuli. Here, we studied the influence of prestimulus alpha power fluctuations on temporal perceptual discrimination of suprathreshold tactile stimuli and subjects' confidence regarding their perceptual decisions. We investigated how prestimulus alpha-band power influences poststimulus decision-making variables. We presented electrical stimuli with different stimulus onset asynchronies (SOAs) to human subjects, and determined the SOA for which temporal perceptual discrimination varied on a trial-by-trial basis between perceiving 1 or 2 stimuli, prior to recording brain activity with magnetoencephalography. We found that low prestimulus alpha power in contralateral somatosensory and occipital areas predicts the veridical temporal perceptual discrimination of 2 stimuli. Additionally, prestimulus alpha power was negatively correlated with confidence ratings in correctly perceived trials, but positively correlated for incorrectly perceived trials. Finally, poststimulus event-related fields (ERFs) were modulated by prestimulus alpha power and reflect the result of a decisional process rather than physical stimulus parameters around ∼150 ms. These findings provide new insights into the link between spontaneous prestimulus alpha power fluctuations, temporal perceptual discrimination, decision making, and decisional confidence. The results suggest that prestimulus alpha power modulates perception and decisions on a continuous scale, as reflected in confidence ratings. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Body Mass Index Development and Asthma Throughout Childhood.
Ekström, Sandra; Magnusson, Jessica; Kull, Inger; Andersson, Niklas; Bottai, Matteo; Besharat Pour, Mohsen; Melén, Erik; Bergström, Anna
2017-07-15
Several studies have found an association between overweight and asthma, yet the temporal relationship between their onsets remains unclear. We investigated the development of body mass index (BMI) from birth to adolescence among 2,818 children with and without asthma from a Swedish birth cohort study, the BAMSE (a Swedish acronym for "children, allergy, milieu, Stockholm, epidemiology") Project, during 1994-2013. Measured weight and height were available at 13 time points throughout childhood. Asthma phenotypes (transient, persistent, and late-onset) were defined by timing of onset and remission. Quantile regression was used to analyze percentiles of BMI, and generalized estimating equations were used to analyze the association between asthma phenotypes and the risk of high BMI. Among females, BMI development differed between children with and without asthma, with the highest BMI being seen among females with persistent asthma. The difference existed throughout childhood but increased with age. For example, females with persistent asthma had 2.33 times' (95% confidence interval: 1.21, 4.49) greater odds of having a BMI above the 85th percentile at age ≥15 years than females without asthma. Among males, no clear associations between asthma and BMI were observed. In this study, persistent asthma was associated with high BMI throughout childhood among females, whereas no consistent association was observed among males. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health.
Diurnal oscillation of SBE expression in sorghum endosperm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Chuanxin; Mutisya, J.; Rosenquist, S.
2009-01-15
Spatial and temporal expression patterns of the sorghum SBEI, SBEIIA and SBEIIB genes, encoding, respectively, starch branching enzyme (SBE) I, IIA and IIB, in the developing endosperm of sorghum (Sorghum bicolor) were studied. Full-length genomic and cDNA clones for sorghum was cloned and the SBEIIA cDNA was used together with gene-specific probes for sorghum SBEIIB and SBEI. In contrast to sorghum SBEIIB, which was expressed primarily in endosperm and embryo, SBEIIA was expressed also in vegetative tissues. All three genes shared a similar temporal expression profile during endosperm development, with a maximum activity at 15-24 days after pollination. This ismore » different from barley and maize where SBEI gene activity showed a significantly later onset compared to that of SBEIIA and SBEIIB. Expression of the three SBE genes in the sorghum endosperm exhibited a diurnal rhythm during a 24-h cycle.« less
Proper name retrieval in temporal lobe epilepsy: naming of famous faces and landmarks.
Benke, Thomas; Kuen, Eva; Schwarz, Michael; Walser, Gerald
2013-05-01
The objective of this study was to further explore proper name (PN) retrieval and conceptual knowledge in patients with left and right temporal lobe epilepsy (69 patients with LTLE and 62 patients with RTLE) using a refined assessment procedure. Based on the performance of a large group of age- and education-matched normals, a new test of famous faces and famous landmarks was designed. Recognition, naming, and semantic knowledge were assessed consecutively, allowing for a better characterization of deficient levels in the naming system. Impairment in PN retrieval was common in the cohort with TLE. Furthermore, side of seizure onset impaired stages of name retrieval differently: LTLE impaired the lexico-phonological processing, whereas RTLE mainly impaired the perceptual-semantic stage of object recognition. In addition to deficient PN retrieval, patients with TLE had reduced conceptual knowledge regarding famous persons and landmarks. Copyright © 2013 Elsevier Inc. All rights reserved.
Differential temporal dynamics during visual imagery and perception.
Dijkstra, Nadine; Mostert, Pim; Lange, Floris P de; Bosch, Sander; van Gerven, Marcel Aj
2018-05-29
Visual perception and imagery rely on similar representations in the visual cortex. During perception, visual activity is characterized by distinct processing stages, but the temporal dynamics underlying imagery remain unclear. Here, we investigated the dynamics of visual imagery in human participants using magnetoencephalography. Firstly, we show that, compared to perception, imagery decoding becomes significant later and representations at the start of imagery already overlap with later time points. This suggests that during imagery, the entire visual representation is activated at once or that there are large differences in the timing of imagery between trials. Secondly, we found consistent overlap between imagery and perceptual processing around 160 ms and from 300 ms after stimulus onset. This indicates that the N170 gets reactivated during imagery and that imagery does not rely on early perceptual representations. Together, these results provide important insights for our understanding of the neural mechanisms of visual imagery. © 2018, Dijkstra et al.
Spatio-temporal dynamics of the mirror neuron system during social intentions.
Cacioppo, Stephanie; Bolmont, Mylene; Monteleone, George
2017-10-27
Previous research has shown that specific goals and intentions influence a person's allocation of social attention. From a neural viewpoint, a growing body of evidence suggests that the inferior fronto-parietal network, including the mirror neuron system, plays a role in the planning and the understanding of motor intentions. However, it is unclear whether and when the mirror neuron system plays a role in social intentions. Combining a behavioral task with electrical neuroimaging in 22 healthy male participants, the current study investigates whether the temporal brain dynamic of the mirror neuron system differs during two types of social intentions i.e., lust vs. romantic intentions. Our results showed that 62% of the stimuli evoking lustful intentions also evoked romantic intentions, and both intentions were sustained by similar activations of the inferior frontal gyrus and the inferior parietal lobule/angular gyrus for the first 432 ms after stimulus onset. Intentions to not love or not lust, on the other hand, were characterized by earlier differential activations of the inferior fronto-parietal network i.e., as early as 244 ms after stimulus onset. These results suggest that the mirror neuron system may not only code for the motor correlates of intentions, but also for the social meaning of intentions and its valence at both early/automatic and later/more elaborative stages of information processing.
Neural and cognitive face-selective markers: An integrative review.
Yovel, Galit
2016-03-01
Faces elicit robust and selective neural responses in the primate brain. These neural responses have been investigated with functional MRI and EEG in numerous studies, which have reported face-selective activations in the occipital-temporal cortex and an electrophysiological face-selective response that peaks 170 ms after stimulus onset at occipital-temporal sites. Evidence for face-selective processes has also been consistently reported in cognitive studies, which investigated the face inversion effect, the composite face effect and the left visual field (LVF) superiority. These cognitive effects indicate that the perceptual representation that we generate for faces differs from the representation that is generated for inverted faces or non-face objects. In this review, I will show that the fMRI and ERP face-selective responses are strongly associated with these three well-established behavioral face-selective measures. I will further review studies that examined the relationship between fMRI and EEG face-selective measures suggesting that they are strongly linked. Taken together these studies imply that a holistic representation of a face is generated at 170 ms after stimulus onset over the right hemisphere. These findings, which reveal a strong link between the various and complementary cognitive and neural measures of face processing, allow to characterize where, when and how faces are represented during the first 200 ms of face processing. Copyright © 2015 Elsevier Ltd. All rights reserved.
Amygdala enlargement: temporal lobe epilepsy subtype or nonspecific finding?
Reyes, Anny; Thesen, Thomas; Kuzniecky, Ruben; Devinsky, Orrin; McDonald, Carrie R.; Jackson, Graeme D.; Vaughan, David N.; Blackmon, Karen
2018-01-01
Objective Amygdala enlargement (AE) is observed in patients with temporal lobe epilepsy (TLE), which has led to the suggestion that it represents a distinct TLE subtype; however, it is unclear whether AE is found at similar rates in other epilepsy syndromes or in healthy controls, which would limit its value as a marker for focal epileptogenicity. Methods We compared rates of AE, defined quantitatively from high-resolution T1-weighted MRI, in a large multi-site sample of 136 patients with nonlesional localization related epilepsy (LRE), including TLE and extratemporal (exTLE) focal epilepsy, 34 patients with idiopathic generalized epilepsy (IGE), and 233 healthy controls (HCs). Results AE was found in all groups including HCs; however, the rate of AE was higher in LRE (18.4%) than in IGE (5.9%) and HCs (6.4%). Patients with unilateral LRE were further evaluated to compare rates of concordant ipsilateral AE in TLE and exTLE, with the hypothesis that rates of ipsilateral AE would be higher in TLE. Although ipsilateral AE was higher in TLE (19.4%) than exTLE (10.5%), this difference was not significant. Furthermore, among the 25 patients with unilateral LRE and AE, 13 (52%) had either bilateral AE or AE contralateral to seizure onset. Conclusion Results suggest that AE, as defined with MRI volumetry, may represent an associated feature of nonlesional localization related epilepsy with limited seizure onset localization value. PMID:28284051
Jokeit, H; Ebner, A; Holthausen, H; Markowitsch, H J; Moch, A; Pannek, H; Schulz, R; Tuxhorn, I
1997-08-01
Prognostic variables for individual memory outcome after left anterior temporal lobectomy (ATL) were studied in 27 patients with refractory temporal lobe epilepsy. The difference between pre- and postoperative performance in the delayed recall of two prose passages (Story A and B) from the Wechsler Memory Scale served as measure of postoperative memory change. Fifteen independent clinical, neuropsychological, and electrophysiological variables were submitted to a multiple linear regression analysis. Preoperative immediate and delayed recall of story content and right hemisphere Wada memory performance for pictorial and verbal items explained very well postoperative memory changes in recall of Story B. Delayed recall of Story B, but not of Story A, had high concurrent validity to other measures of memory. Patients who became seizure-free did not differ in memory change from patients who continued to have seizures after ATL. The variables age at epilepsy onset and probable age at temporal lobe damage provided complementary information for individual prediction but with less effectiveness than Wada test data. Our model confirmed that good preoperative memory functioning and impaired right hemispheric Wada memory performance for pictorial items predict a high risk of memory loss after left ATL. The analyses demonstrate that the combination of independent measures delivers more information than Wada test performance or any other variable alone. The suggested function can be used routinely to estimate the individual severity of verbal episodic memory impairment that might occur after left-sided ATL and offers a rational basis for the counseling of patients.
Relationship of new-onset systemic hypertension and normal pressure hydrocephalus.
Mysiw, W J; Jackson, R D
1990-01-01
Communicating normal pressure hydrocephalus (NPH) is an important remote complication of traumatic brain injury (TBI). The diagnosis of this hydrocephalus depends largely on clinical signs and symptoms, including cognitive deterioration, gait changes and incontinence. However, many of these signs are also seen during post-traumatic amnesia, making early recognition of this syndrome difficult. A case study of one man post-TBI, who presented with new-onset hypertension as a sign of NPH, prompted a retrospective chart review of all patients admitted over a 2-year period with a diagnosis of NPH. Ninety per cent of patients had one or more of the classic triad of NPH and 25% of patients had symptoms suggestive of raised intracranial pressure (unexplained nausea, headache and visual disturbance). Mean systolic and diastolic blood pressures among the 20 subjects for six consecutive days pre-operatively compared with those for days 8-14 and 15-21 post-operatively showed no significant differences; a subgroup of five patients (25%), however, demonstrated a significant change in blood pressure temporally related to shunting. We suggest that demonstration of new-onset systemic hypertension may also be a clinical sign suggestive of NPH useful in the evaluation of the TBI patient.
Guedj, Eric; Aubert, Sandrine; McGonigal, Aileen; Mundler, Olivier; Bartolomei, Fabrice
2010-06-01
To contribute to the identification of brain regions involved in déjà-vu, we studied the metabolic pattern of cortical involvement in patients with seizures of temporal lobe origin presenting with or without déjà-vu. Using voxel-based analysis of 18FDG-PET brain scans, we compared glucose metabolic rate of 8 patients with déjà-vu, 8 patients without déjà-vu, and 20 age-matched healthy subjects. Patients were selected after comprehensive non-invasive presurgical evaluation, including normal brain MRI and surface electroclinical features compatible with unilateral temporal lobe epilepsy (TLE). Patients with and without déjà-vu did not differ in terms of age, gender, epilepsy lateralization, epilepsy onset, epilepsy duration, and other subjective ictal manifestations. TLE patients with déjà-vu exhibited ipsilateral hypometabolism of superior temporal gyrus and of parahippocampal region, in the vicinity of perirhinal/entorhinal cortex, in comparison either to healthy subjects or to TLE patients without déjà-vu (p<0.05 FDR-corrected). By contrast, no difference was found between patient subgroups for hypometabolism of hippocampus and amygdala. At an individual-level, in comparison to healthy subjects, hypometabolism of both parahippocampal region and superior temporal gyrus was present in 7/8 patients with déjà-vu. Hippocampal metabolism was spared in 3 of these 7 patients. These findings argue for metabolic dysfunction of a medial-lateral temporal network in patients with déjà-vu and normal brain MRI. Within the medial temporal lobe, specific involvement of the parahippocampal region, often in the absence of hippocampal impairment, suggests that the feeling of familiarity during seizures greatly depends on alteration of the recognition memory system. Copyright 2010 Elsevier Ltd. All rights reserved.
Fauser, Susanne; Huppertz, Hans-Juergen; Bast, Thomas; Strobl, Karl; Pantazis, Georgios; Altenmueller, Dirk-Matthias; Feil, Bertram; Rona, Sabine; Kurth, Christoph; Rating, Dietz; Korinthenberg, Rudolf; Steinhoff, Bernhard J; Volk, Benedikt; Schulze-Bonhage, Andreas
2006-07-01
Focal cortical dysplasias (FCDs) are increasingly diagnosed as a cause of symptomatic focal epilepsy in paediatric and adult patients. However, little is known about the clinical characteristics of epilepsy in these patients. In order to elucidate the clinical characteristics of their epilepsy, 120 pharmacoresistant patients including children and adults with histologically proven FCD were studied retrospectively. Age at seizure onset was analysed in the total group and compared between subgroups with different localization and different histological subtypes of FCD. The role of febrile seizures with respect to dual pathology was investigated. Seizure semiology was analysed focusing on initial seizure type and change of seizure semiology during the course of disease. Finally, transient responsiveness to antiepileptic drug therapy was studied. In the majority of patients, epilepsy began in the first 5 years of life. However, onset of epilepsy could also occur in the second or third decade until the age of 60. Age at epilepsy onset was not significantly different between temporal, extratemporal and multilobar localization of FCD. Patients without cytoarchitectural abnormalities (mild malformations of cortical development, FCD 1a according to Palmini) had significantly later epilepsy onset (P= 0.001) compared with patients with cytoarchitectural abnormalities (FCD 1b, 2a and 2b according to Palmini). In patients with additional hippocampal sclerosis (dual pathology) febrile seizures were significantly more frequently reported (P = 0.02) than in patients without dual pathology. Moreover, patients with dual pathology and febrile seizures significantly more frequently presented with severe hippocampal sclerosis (Wyler Grade 3-4) as compared with patients with dual pathology in the absence of febrile seizures (P = 0.03). First observed seizures were mainly tonic or generalized tonic-clonic. A change of seizure semiology seemed to be age-dependent and occurred between the age of >1 and 14 years. About 15.8% of the patients presented with status epilepticus during the course of disease. About 17% of the patients showed transient responsiveness (> or =1 year seizure freedom) to antiepileptic drug therapy either after initial therapy (50%) or later in the course of epilepsy (50%). Patients with FCD represent a heterogeneous group. Different age at epilepsy onset and transient responsiveness to antiepileptic drugs in approximately 17% of patients may reflect different dynamics in epileptogenicity of the underlying FCD. Dual pathology may be associated with different pathomechanisms in patients with and without febrile seizures.
Oscillatory cortical network involved in auditory verbal hallucinations in schizophrenia.
van Lutterveld, Remko; Hillebrand, Arjan; Diederen, Kelly M J; Daalman, Kirstin; Kahn, René S; Stam, Cornelis J; Sommer, Iris E C
2012-01-01
Auditory verbal hallucinations (AVH), a prominent symptom of schizophrenia, are often highly distressing for patients. Better understanding of the pathogenesis of hallucinations could increase therapeutic options. Magnetoencephalography (MEG) provides direct measures of neuronal activity and has an excellent temporal resolution, offering a unique opportunity to study AVH pathophysiology. Twelve patients (10 paranoid schizophrenia, 2 psychosis not otherwise specified) indicated the presence of AVH by button-press while lying in a MEG scanner. As a control condition, patients performed a self-paced button-press task. AVH-state and non-AVH state were contrasted in a region-of-interest (ROI) approach. In addition, the two seconds before AVH onset were contrasted with the two seconds after AVH onset to elucidate a possible triggering mechanism. AVH correlated with a decrease in beta-band power in the left temporal cortex. A decrease in alpha-band power was observed in the right inferior frontal gyrus. AVH onset was related to a decrease in theta-band power in the right hippocampus. These results suggest that AVH are triggered by a short aberration in the theta band in a memory-related structure, followed by activity in language areas accompanying the experience of AVH itself.
Fritz, Jonathan; Elhilali, Mounya; Shamma, Shihab
2005-08-01
Listening is an active process in which attentive focus on salient acoustic features in auditory tasks can influence receptive field properties of cortical neurons. Recent studies showing rapid task-related changes in neuronal spectrotemporal receptive fields (STRFs) in primary auditory cortex of the behaving ferret are reviewed in the context of current research on cortical plasticity. Ferrets were trained on spectral tasks, including tone detection and two-tone discrimination, and on temporal tasks, including gap detection and click-rate discrimination. STRF changes could be measured on-line during task performance and occurred within minutes of task onset. During spectral tasks, there were specific spectral changes (enhanced response to tonal target frequency in tone detection and discrimination, suppressed response to tonal reference frequency in tone discrimination). However, only in the temporal tasks, the STRF was changed along the temporal dimension by sharpening temporal dynamics. In ferrets trained on multiple tasks, distinctive and task-specific STRF changes could be observed in the same cortical neurons in successive behavioral sessions. These results suggest that rapid task-related plasticity is an ongoing process that occurs at a network and single unit level as the animal switches between different tasks and dynamically adapts cortical STRFs in response to changing acoustic demands.
Temporal masking functions for listeners with real and simulated hearing loss
Desloge, Joseph G.; Reed, Charlotte M.; Braida, Louis D.; Perez, Zachary D.; Delhorne, Lorraine A.
2011-01-01
A functional simulation of hearing loss was evaluated in its ability to reproduce the temporal masking functions for eight listeners with mild to severe sensorineural hearing loss. Each audiometric loss was simulated in a group of age-matched normal-hearing listeners through a combination of spectrally-shaped masking noise and multi-band expansion. Temporal-masking functions were obtained in both groups of listeners using a forward-masking paradigm in which the level of a 110-ms masker required to just mask a 10-ms fixed-level probe (5-10 dB SL) was measured as a function of the time delay between the masker offset and probe onset. At each of four probe frequencies (500, 1000, 2000, and 4000 Hz), temporal-masking functions were obtained using maskers that were 0.55, 1.0, and 1.15 times the probe frequency. The slopes and y-intercepts of the masking functions were not significantly different for listeners with real and simulated hearing loss. The y-intercepts were positively correlated with level of hearing loss while the slopes were negatively correlated. The ratio of the slopes obtained with the low-frequency maskers relative to the on-frequency maskers was similar for both groups of listeners and indicated a smaller compressive effect than that observed in normal-hearing listeners. PMID:21877806
Göttlich, Martin; Heldmann, Marcus; Göbel, Anna; Dirk, Anna-Luise; Brabant, Georg; Münte, Thomas F
2015-06-01
Adult onset hyperthyroidism may impact on different cognitive domains, including attention and concentration, memory, perceptual function, language and executive function. Previous PET studies implicated changed functionality of limbic regions, the temporal and frontal lobes in hyperthyroidism, whereas it is unknown whether cognitive effects of hyperthyroidism may be due to changed brain connectivity. This study aimed to investigate the effect of experimentally induced short-term hyperthyroidism thyrotoxicosis on resting-state functional connectivity using functional magnetic resonance imaging. Twenty-nine healthy male right-handed subjects were examined twice, once prior and once after 8 weeks of oral administration of 250 μg levothyroxine per day. Resting-state fMRI was subjected to graph-theory based analysis methods to investigate whole-brain intrinsic functional connectivity. Despite a lack of subjective changes noticed by the subjects significant thyrotoxicosis was confirmed in all subjects. This induced a significant increase in resting-state functional connectivity specifically in the rostral temporal lobes (0.05 FDR corrected at the cluster level), which is caused by an increased connectivity to the cognitive control network. The increased connectivity between temporal poles and the cognitive control network shown here under experimental conditions supports an important function of thyroid hormones in the regulation of paralimbic structures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Exome sequencing identifies SUCO mutations in mesial temporal lobe epilepsy.
Sha, Zhiqiang; Sha, Longze; Li, Wenting; Dou, Wanchen; Shen, Yan; Wu, Liwen; Xu, Qi
2015-03-30
Mesial temporal lobe epilepsy (mTLE) is the main type and most common medically intractable form of epilepsy. Severity of disease-based stratified samples may help identify new disease-associated mutant genes. We analyzed mRNA expression profiles from patient hippocampal tissue. Three of the seven patients had severe mTLE with generalized-onset convulsions and consciousness loss that occurred over many years. We found that compared with other groups, patients with severe mTLE were classified into a distinct group. Whole-exome sequencing and Sanger sequencing validation in all seven patients identified three novel SUN domain-containing ossification factor (SUCO) mutations in severely affected patients. Furthermore, SUCO knock down significantly reduced dendritic length in vitro. Our results indicate that mTLE defects may affect neuronal development, and suggest that neurons have abnormal development due to lack of SUCO, which may be a generalized-onset epilepsy-related gene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Williams, Christopher J; Thomas, Rhys H; Pickersgill, Trevor P; Lyons, Marion; Lowe, Gwen; Stiff, Rhianwen E; Moore, Catherine; Jones, Rachel; Howe, Robin; Brunt, Huw; Ashman, Anna; Mason, Brendan W
2016-01-01
We report a cluster of atypical Guillain-Barré syndrome in 10 adults temporally related to a cluster of four children with acute flaccid paralysis, over a 3-month period in South Wales, United Kingdom. All adult cases were male, aged between 24 and 77 years. Seven had prominent facial diplegia at onset. Available electrophysiological studies showed axonal involvement in five adults. Seven reported various forms of respiratory disease before onset of neurological symptoms. The ages of children ranged from one to 13 years, three of the four were two years old or younger. Enterovirus testing is available for three children; two had evidence of enterovirus D68 infection in stool or respiratory samples. We describe the clinical features, epidemiology and state of current investigations for these unusual clusters of illness.
Temporal and Spatial Development of dB/dt During Substorms
NASA Astrophysics Data System (ADS)
Weygand, J. M.; Chu, X.
2017-12-01
Ground induced currents (GICs) due to space weather are a threat to high voltage power transmission systems. However, knowledge of ground conductivity is the largest source of errors in the determination of GICs. A good proxy for GICs is dB/dt obtained from the Bx and By components of the magnetic field fluctuations. It is known that dB/dt values associated with magnetic storms can reach dangerous levels for power transmission systems. On the other hand, it is not uncommon for dB/dt values associated with substorms to exceed critical thresholds of 1.5 nT/s [Pulkkinen et al., 2011; 2013] and 5 nT/s [Molinski et al., 2000] and the temporal and spatial changes of the dB/dt associated with substorms, unlike storms, are not well understood. Using two dimensional maps of dB/dt over North America and Greenland derived from the spherical elementary currents [Weygand et al., 2011], we investigate the temporal and spatial change of dB/dt for both a single substorm event and a two dimensional superposed epoch analysis of many substorms. Both the single event and the statistical analysis show a sudden increase of dB/dt at substorm onset followed by an expansion poleward, westward, and eastward after the onset during the expansion phase. This temporal and spatial development of the dB/dt resembles the temporal and spatial change of the auroral emissions. Substorm values of dB/dt peak shortly after the auroral onset time and in at least one event exceeded 6.5 nT/s for a non-storm time substorm. In many of our 24 cases the area that exceeds the Pulkkinen et al. [2011; 2013] threshold of 1.5 nT/s over several million square kilometers and after about 30 minutes the dB/dt values fall below the threshold level. These results address one of goals of the Space Weather Action Plan, which are to establish benchmarks for space weather events and improve modeling and prediction of their impacts on infrastructure.
Is 'burned-out hippocampus' syndrome a distinct electro-clinical variant of MTLE-HS syndrome?
Nair, Pradeep P; Menon, Ramshekhar N; Radhakrishnan, Ashalatha; Cherian, Ajit; Abraham, Mathew; Vilanilam, George; Kesavadas, C; Thomas, Bejoy; Alexander, Aley; Thomas, Sanjeev V
2017-04-01
To study the clinical, electrophysiological and imaging characteristics of patients with unilateral mesial temporal lobe epilepsy (MTLE) with contralateral ictal onset on scalp EEG, viz. 'burned-out hippocampus' syndrome (MTLE-BHS). MTLE-BHS was defined as TLE with unilateral hippocampal sclerosis (HS) without any dual pathology on MRI and contralateral ictal onset on scalp EEG, unlike in classical hippocampal sclerosis (HS). Consecutive "MTLE-BHS" patients evaluated at our Centre for Comprehensive Epilepsy Care from January 2005 to July 2014 were studied. Twenty-five cases of classic MTLE-HS operated during the same period were also analyzed for comparison. Seventeen patients were diagnosed to have MTLE-BHS. Mean age of seizure onset was 9.5±7.7years and the mean duration of epilepsy was18.2±7.3years. Epigastric aura was more common in MTLE-HS and fear, secondary generalized seizures and temporal polar changes on MRI were more prevalent in the MTLE-BHS subgroup. In the latter group, five (29%) exhibited seizure semiology and 2 (12%) had interictal discharges discordant to the side of MTS. Eight (47%) patients in the MTLE-BHS sub-group had normal medial temporal volume on Scheltens scale. Eight patients among MTLE-BHS underwent surgery (4 following intracranial monitoring that localized to the side of HS) with Engel class I outcome at 1year follow-up in 6 and Engel class II outcome in 2. Attenuation of ipsilateral fast ictal rhythms on scalp EEG as well as neocortical changes are likely to be deterministic factors for MTLE-BHS as opposed to the severity of hippocampal atrophy. Considering good post-operative outcomes, intracranial monitoring for surgical selection is not mandatory in MTLE-BHS despite discordant semiology and ictal onset, in the presence of inter-ictal, functional imaging and neuropsychology data concordant to the side of HS. Copyright © 2017 Elsevier Inc. All rights reserved.
Clinical characteristics and treatment responses in new-onset epilepsy in the elderly.
Tanaka, Akihiro; Akamatsu, Naoki; Shouzaki, Taisaku; Toyota, Tomoko; Yamano, Mitsuhiko; Nakagawa, Masanori; Tsuji, Sadatoshi
2013-11-01
Epidemiologic studies have shown that the incidence of epilepsy is the highest in the elderly population. Because the elderly constitutes the most rapidly growing population, epilepsy in this group is an important health issue worldwide. To identify the characteristics of epilepsy in the elderly, we reviewed our experience at a tertiary referral center in Japan. We searched all electronic medical records of the past 6 years at the epilepsy clinic of the hospital affiliated to our University-affiliated hospital. We defined an elderly person as an individual aged 65 years and above. All patients underwent history and physical examinations, 3T magnetic resonance imaging and/or computer tomography, and electroencephalogram (EEG). The diagnosis of epilepsy, age of onset, etiology, and antiepileptic medication were recorded. We identified 70 patients who developed epilepsy after the age of 65 years. The mean age of seizure onset was 73.1 years and 52.9% patients were males. Complex partial seizures (CPS) without secondarily generalization (n=33, 47.1%) were most frequent. The most frequent diagnosis was temporal lobe epilepsy (n=50, 71.4%). Etiological diagnosis was possible in nearly 50% patients, including those with cerebrovascular disease. A clear cause of epilepsy was not found (i.e., non-lesional epilepsy) in 52.8% patients. Interictal EEG revealed focal epileptiform discharges in 72.9% (n=51) patients. Of the 54 patients who were followed more than 1 year, 42 patients (77.8%) were on antiepileptic monotherapy and 52 patients (96.3%) had been seizure-free for more than 1 year. The most frequent diagnosis in our cohort of elderly persons with new-onset epilepsy was temporal lobe epilepsy. Non-lesional temporal lobe epilepsy was not uncommon. Epileptogenecity was relatively low in elderly patients and they responded well to antiepileptic medication. Copyright © 2013 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Gales, Jordan M; Jehi, Lara; Nowacki, Amy; Prayson, Richard A
2017-05-01
Hippocampal sclerosis (HS) and focal cortical dysplasia (FCD) are among the most common neuropathological findings in those undergoing surgery for refractory mesial temporal lobe epilepsy. Existing data regarding differences among the most recent International League Against Epilepsy (ILAE) HS subtypes remain limited. This study sought to characterize the roles of HS subtype and coexistent FCD. Epilepsy surgery pathologic specimens in 307 cases of temporal lobe epilepsy with HS were reviewed (mean age±SD, 37±15years; 56% women). HS and coexistent FCD were classified according to ILAE guidelines. Medical records were reviewed for data on seizure recurrence and seizure burden (clinical follow-up mean duration ± SD, 5±4years). Cases of typical HS (ILAE type I) predominated (ILAE type Ia: 41%, Ib: 47%, II: 11%, and III: 0.7%]. The HS subtypes shared similar demographic and etiologic characteristics, as well as associated pathology and postoperative seizure outcomes. Individuals with type Ib HS were more likely to remain seizure free at long-term follow-up when compared with other subtypes, and they had a later age of seizure onset. Two hundred forty-three cases (79%) demonstrated FCD within the adjacent temporal lobe. Its presence was associated with a significantly decreased risk of seizure recurrence (P=.02). When present, FCD was predominantly type I (98%). HS subtype does not appear to affect epilepsy surgery outcomes despite some clinical differences between the subgroups. FCD is often observed in association with HS in mesial temporal lobe epilepsy; the finding of FCD was associated with better postoperative outcomes. Copyright © 2017 Elsevier Inc. All rights reserved.
Temporal dynamics underlying the modulation of social status on social attention.
Dalmaso, Mario; Galfano, Giovanni; Coricelli, Carol; Castelli, Luigi
2014-01-01
Fixating someone suddenly moving the eyes is known to trigger a corresponding shift of attention in the observer. This phenomenon, known as gaze-cueing effect, can be modulated as a function of the social status of the individual depicted in the cueing face. Here, in two experiments, we investigated the temporal dynamics underlying this modulation. To this end, a gaze-cueing paradigm was implemented in which centrally-placed faces depicting high- and low-status individuals suddenly shifted the eyes towards a location either spatially congruent or incongruent with that occupied by a subsequent target stimulus. Social status was manipulated by presenting fictive Curriculum Vitae before the experimental phase. In Experiment 1, in which two temporal intervals (50 ms vs. 900 ms) occurred between the direct-gaze face and the averted-gaze face onsets, a stronger gaze-cueing effect in response to high-status faces than low-status faces was observed, irrespective of the time participants were allowed for extracting social information. In Experiment 2, in which two temporal intervals (200 ms vs. 1000 ms) occurred between the averted-gaze face and target onset, a stronger gaze cueing for high-status faces was observed at the shorter interval only. Taken together, these results suggest that information regarding social status is extracted from faces rapidly (Experiment 1), and that the tendency to selectively attend to the locations gazed by high-status individuals may decay with time (Experiment 2).
The temporal evolution of explosive events and its implication on reconnection dynamics
NASA Astrophysics Data System (ADS)
Guo, L.; Liu, W.; De Pontieu, B.; Huang, Y. M.; Peter, H.; Bhattacharjee, A.
2017-12-01
Transition-region explosive events and other bursts seen in extreme UV light are characterized by broad spectral line profiles, and the more violent ones show a strong enhancement of emission. They are thought to be driven by magnetic reconnection, because of their characteristic spectral profiles often indicating strong Alfvénic flows, and because of the fact that they typically occur where magnetic flux concentrations of opposite polarity intersect. In this presentation, we will focus on the temporal evolution of transition-region explosive events. In particular, we will investigate fast onsets of these events and the rapid oscillations of intensity during these event. The fast onset refers to the beginning of an explosive event, where the intensities and the widths of its line profiles increase dramatically (often within less than 10 seconds) and the rapid oscillations of intensity refer to blinks of emission that usually last less than 10 seconds during the event. In order to interpret and understand underlying mechanisms of these observations, we conduct numerical simulation of an explosive event and calculate its spectra. We observe a similar temporal evolution in the synthetic Si IV spectra when the explosive event is driven by time-dependent reconnection—plasmoid instability. The qualitative agreement between observations and simulations suggests that the temporal evolution of Si IV spectra of explosive events are closely related to reconnection dynamics.
Linane, Avriel; Lagrange, Andre H; Fu, Cary; Abou-Khalil, Bassel
2016-01-01
We report clinical and electrographic features of generalized onset seizures with focal evolution (GOFE) and present arguments for the inclusion of this seizure type in the seizure classification. The adult and pediatric Epilepsy Monitoring Unit databases at Vanderbilt Medical Center and Children's Hospital were screened to identify generalized onset seizures with focal evolution. We reviewed medical records for epilepsy characteristics, epilepsy risk factors, MRI abnormalities, neurologic examination, antiepileptic medications before and after diagnosis, and response to medications. We also reviewed ictal and interictal EEG tracings, as well as video-recorded semiology. Ten patients were identified, 7 males and 3 females. All of the patients developed generalized epilepsy in childhood or adolescence (ages 3-15years). Generalized onset seizures with focal evolution developed years after onset in 9 patients, with a semiology concerning for focal seizures or nonepileptic events. Ictal discharges had a generalized onset on EEG, described as either generalized spike-and-wave and/or polyspike-and-wave discharges, or generalized fast activity. This electrographic activity then evolved to focal rhythmic activity most commonly localized to one temporal or frontal region; five patients had multiple seizures evolving to focal activity in different regions of both hemispheres. The predominant interictal epileptiform activity included generalized spike-and-wave and/or polyspike-and-wave discharges in all patients. Taking into consideration all clinical and EEG data, six patients were classified with genetic (idiopathic) generalized epilepsy, and four were classified with structural/metabolic (symptomatic) generalized epilepsy. All of the patients had modifications to their medications following discharge, with three becoming seizure-free and five responding with >50% reduction in seizure frequency. Generalized onset seizures may occasionally have focal evolution with semiology suggestive of focal seizures, leading to a misdiagnosis of focal onset. This unique seizure type may occur with genetic as well as structural/metabolic forms of epilepsy. The identification of this seizure type may help clinicians choose appropriate medications, avoiding narrow spectrum agents known to aggravate generalized onset seizures. Copyright © 2015 Elsevier Inc. All rights reserved.
Kessler, R.C.; Sampson, N.A.; Berglund, P.; Gruber, M.J.; Al-Hamzawi, A.; Andrade, L.; Bunting, B.; Demyttenaere, K.; Florescu, S.; de Girolamo, G.; Gureje, O.; He, Y.; Hu, C.; Huang, Y.; Karam, E.; Kovess-Masfety, V.; Lee, S; Levinson, D.; Mora, M.E. Medina; Moskalewicz, J.; Nakamura, Y.; Navarro-Mateu, F.; Oakley Browne, Mark A.; Piazza, M.; Posada-Villa, J.; Slade, T.; ten Have, M.; Torres, Y.; Vilagut, G.; Xavier, M.; Zarkov, Z.; Shahly, V.; Wilcox, M.A.
2016-01-01
AIMS To examine cross-national patterns and correlates of lifetime and 12-month comorbid DSM-IV anxiety disorders among people with lifetime and 12-month DSM-IV major depressive disorder (MDD). METHODS Nationally or regionally representative epidemiological interviews were administered to 74,045 adults in 27 surveys across 24 countries in the WHO World Mental Health (WMH) Surveys. DSM-IV MDD, a wide range of comorbid DSM-IV anxiety disorders, and a number of correlates were assessed with the WHO Composite International Diagnostic Interview (CIDI). RESULTS 45.7% of respondents with lifetime MDD (32.0–46.5% inter-quartile range [IQR] across surveys) had one of more lifetime anxiety disorders. A slightly higher proportion of respondents with 12-month MDD had lifetime anxiety disorders (51.7%, 37.8–54.0% IQR) and only slightly lower proportions of respondents with 12-month MDD had 12-month anxiety disorders (41.6%, 29.9–47.2% IQR). Two-thirds (68%) of respondents with lifetime comorbid anxiety disorders and MDD reported an earlier age-of-onset of their first anxiety disorder than their MDD, while 13.5% reported an earlier age-of-onset of MDD and the remaining 18.5% reported the same age-of-onset of both disorders. Women and previously married people had consistently elevated rates of lifetime and 12-month MDD as well as comorbid anxiety disorders. Consistently higher proportions of respondents with 12-month anxious than non-anxious MDD reported severe role impairment (64.4% vs. 46.0%; χ21=187.0, p<.001) and suicide ideation (19.5% vs. 8.9%; χ21=71.6, p<.001). Significantly more respondents with 12-month anxious than non-anxious MDD received treatment for their depression in the 12 months before interview, but this difference was more pronounced in high income countries (68.8% vs. 45.4%; χ21=108.8, p<.001) than low/middle income countries (30.3% vs. 20.6%; χ21=11.7, p<.001). CONCLUSIONS Patterns and correlates of comorbid DSM-IV anxiety disorders among people with DSM-IV MDD are similar across WMH countries. The narrow IQR of the proportion of respondents with temporally prior AOO of anxiety disorders than comorbid MDD (69.6–74.7%) is especially noteworthy. However, the fact that these proportions are not higher among respondents with 12-month than lifetime comorbidity means that temporal priority between lifetime anxiety disorders and MDD is not related to MDD persistence among people with anxious MDD. This, in turn, raises complex questions about the relative importance of temporally primary anxiety disorders as risk markers versus causal risk factors for subsequent MDD onset and persistence, including the possibility that anxiety disorders might primarily be risk markers for MDD onset and causal risk factors for MDD persistence. PMID:25720357
Chan, Yu Man; Pianta, Michael Julian; Bode, Stefan; McKendrick, Allison Maree
2017-07-01
Older adults have altered perception of the relative timing between auditory and visual stimuli, even when stimuli are scaled to equate detectability. To help understand why, this study investigated the neural correlates of audiovisual synchrony judgments in older adults using electroencephalography (EEG). Fourteen younger (18-32 year old) and 16 older (61-74 year old) adults performed an audiovisual synchrony judgment task on flash-pip stimuli while EEG was recorded. All participants were assessed to have healthy vision and hearing for their age. Observers responded to whether audiovisual pairs were perceived as synchronous or asynchronous via a button press. The results showed that the onset of predictive sensory information for synchrony judgments was not different between groups. Channels over auditory areas contributed more to this predictive sensory information than visual areas. The spatial-temporal profile of the EEG activity also indicates that older adults used different resources to maintain a similar level of performance in audiovisual synchrony judgments compared with younger adults. Copyright © 2017 Elsevier Inc. All rights reserved.
Increased fMRI signal with age in familial Alzheimer’s disease mutation carriers
Braskie, Meredith N.; Medina, Luis D.; Rodriguez-Agudelo, Yaneth; Geschwind, Daniel H.; Macias-Islas, Miguel Angel; Cummings, Jeffrey L.; Bookheimer, Susan Y.; Ringman, John M.
2010-01-01
Although many Alzheimer’s disease (AD) patients have a family history of the disease, it is rarely inherited in a predictable way. Functional magnetic resonance imaging (fMRI) studies of non-demented adults carrying familial AD mutations provide an opportunity to prospectively identify brain differences associated with early AD-related changes. We compared fMRI activity of 18 non-demented autosomal dominant AD mutation carriers with fMRI activity in 8 of their non-carrier relatives as they performed a novelty encoding task in which they viewed novel and repeated images. Because age of disease onset is relatively consistent within families, we also correlated fMRI activity with subjects’ distance from the median age of diagnosis for their family. Mutation carriers did not show significantly different voxelwise fMRI activity from non-carriers as a group. However, as they approached their family age of disease diagnosis, only mutation carriers showed increased fMRI activity in the fusiform and middle temporal gyri. This suggests that during novelty encoding, increased fMRI activity in the temporal lobe may relate to incipient AD processes. PMID:21129823
Ryvlin, P; Bouvard, S; Le Bars, D; De Lamérie, G; Grégoire, M C; Kahane, P; Froment, J C; Mauguière, F
1998-11-01
We assessed the clinical utility of [11C]flumazenil-PET (FMZ-PET) prospectively in 100 epileptic patients undergoing a pre-surgical evaluation, and defined the specific contribution of this neuro-imaging technique with respect to those of MRI and [18F]fluorodeoxyglucose-PET (FDG-PET). All patients benefited from a long term video-EEG monitoring, whereas an intracranial EEG investigation was performed in 40 cases. Most of our patients (73%) demonstrated a FMZ-PET abnormality; this hit rate was significantly higher in temporal lobe epilepsy (94%) than in other types of epilepsy (50%) (P < 0.001). Most FMZ-PET findings coexisted with a MRI abnormality (81%), including hippocampal atrophy (35%) and focal hypometabolism on FDG-PET (89%). The area of decreased FMZ binding was often smaller than that of glucose hypometabolism (48%) or larger than that of the MRI abnormality (28%). FMZ-PET did not prove superior to FDG-PET in assessing the extent of the ictal onset zone, as defined by intracranial EEG recordings. However, it provided useful data which were complementary to those of MRI and FDG-PET in three situations: (i) in temporal lobe epilepsy associated with MRI signs of hippocampal sclerosis, FMZ-PET abnormalities delineated the site of seizure onset precisely, whenever they were coextensive with FDG-PET abnormalities; (ii) in bi-temporal epilepsy, FMZ-PET helped to confirm the bilateral origin of seizures by showing a specific pattern of decreased FMZ binding in both temporal lobes in 33% of cases; (iii) in patients with a unilateral cryptogenic frontal lobe epilepsy, FMZ-PET provided further evidence of the side and site of seizure onset in 55% of cases. Thus, FMZ-PET deserves to be included in the pre-surgical evaluation of these specific categories of epileptic patients, representing approximately half of the population considered for epilepsy surgery.
Fractal structure enables temporal prediction in music.
Rankin, Summer K; Fink, Philip W; Large, Edward W
2014-10-01
1/f serial correlations and statistical self-similarity (fractal structure) have been measured in various dimensions of musical compositions. Musical performances also display 1/f properties in expressive tempo fluctuations, and listeners predict tempo changes when synchronizing. Here the authors show that the 1/f structure is sufficient for listeners to predict the onset times of upcoming musical events. These results reveal what information listeners use to anticipate events in complex, non-isochronous acoustic rhythms, and this will entail innovative models of temporal synchronization. This finding could improve therapies for Parkinson's and related disorders and inform deeper understanding of how endogenous neural rhythms anticipate events in complex, temporally structured communication signals.
Weng, P K; Wang, H W; Lin, J K; Su, W Y
1997-06-01
Angioedema is a rare but potentially lethal adverse effect when associated with upper airway obstruction. Sporadic cases of angioedema secondary to angiotensin converting enzyme inhibitors (ACEI) have been reported in the literature. The overall incidence is around 0.1% to 0.2%, and the time of onset is usually during the first week of ACEI therapy. Late-onset angioedema secondary to treatment with ACEIs is much more frequent than appreciated, and is largely unrecognized because of the absence of temporal correlation between ACEI therapy and the development of angioedema. Since angioedema may progress to upper airway obstruction, otolaryngologists must be aware of this association. Most importantly, late-onset angioedema should alert the clinician to discontinue the ACEI immediately to prevent further morbidity. This report presents an example of late-onset angioedema which was precipitated by taking a double dose of captopril incidentally. The case is discussed, and the literature, pathophysiology and treatment of angioedema are reviewed.
Prediction of Early Childhood Caries via Spatial-Temporal Variations of Oral Microbiota.
Teng, Fei; Yang, Fang; Huang, Shi; Bo, Cunpei; Xu, Zhenjiang Zech; Amir, Amnon; Knight, Rob; Ling, Junqi; Xu, Jian
2015-09-09
Microbiota-based prediction of chronic infections is promising yet not well established. Early childhood caries (ECC) is the most common infection in children. Here we simultaneously tracked microbiota development at plaque and saliva in 50 4-year-old preschoolers for 2 years; children either stayed healthy, transitioned into cariogenesis, or experienced caries exacerbation. Caries onset delayed microbiota development, which is otherwise correlated with aging in healthy children. Both plaque and saliva microbiota are more correlated with changes in ECC severity (dmfs) during onset than progression. By distinguishing between aging- and disease-associated taxa and exploiting the distinct microbiota dynamics between onset and progression, we developed a model, Microbial Indicators of Caries, to diagnose ECC from healthy samples with 70% accuracy and predict, with 81% accuracy, future ECC onsets for samples clinically perceived as healthy. Thus, caries onset in apparently healthy teeth can be predicted using microbiota, when appropriately de-trended for age. Copyright © 2015 Elsevier Inc. All rights reserved.
Decadal resolved leaf wax δD records of the Younger Dryas in central and eastern Europe
NASA Astrophysics Data System (ADS)
Aichner, Bernhard; Słowiński, Michał; Ott, Florian; Noryśkiewicz, Agnieszka M.; Wulf, Sabine; Brauer, Achim; Sachse, Dirk
2015-04-01
Annually laminated (varved) sediments with defined event-based age anchor points such as tephra layers enable the establishment of precise chronologies in lacustrine climate archives. This is especially useful to study subtle temporal differences in the consequences of mechanisms and feedbacks during abrupt climatic changes such as the Younger Dryas over larger spatial areas. To decipher the drivers of ecological changes across the Allerød/Younger Dryas transition in central Europe, we analyzed leaf wax biomarkers from Trzechowskie paleolake in northern Poland. Samples were taken in 10 years intervals across the onset of the Younger Dryas, with the Laacher See Tephra (12,880 yrs BP) as anchor point for age-calibration. Further, we applied compound specific hydrogen isotope analysis to infer past hydrological changes, in comparison to results from the well-dated Meerfelder Maar record located up 900 km to the southwest [1]. Between 12,750 and 12,600 yrs BP, ratios of terrestrial n-alkanes show a transition from a tree-dominated lake catchment (Pinus, Betula) to an environment mainly covered by Juniperus and grasses, which is in agreement with palynological data. δD values of n-alkanes indicate a rapid cooling and/or a change of moisture source together with a slight aridification between 12,680 and 12,600 yrs BP. This is synchronous to a rapid and strong aridification inferred for the beginning of the Younger Dryas at Meerfelder Maar (western Germany) [1] but ca. 170 yrs after the inferred onset of cooling at both Meerfelder Maar and the NGRIP ice core at 12,850 yrs BP. This highlights a different temporal succession and impact of hydrological and climatic changes in eastern compared to western Europe which could potentially be related to the stronger influence of the Fennoscandian icesheets and/or the Siberian High on atmospheric circulation patterns in the more continental climate influenced parts of eastern Europe. [1] Rach O, Brauer A, Wilkes H, Sachse D. Delayed hydrological response to Greenland cooling at the onset of the Younger Dryas in western Europe. Nat Geosci. Nature Publishing Group; 2014;7:109-112.
Pulsatile pipe flow transition: Flow waveform effects
NASA Astrophysics Data System (ADS)
Brindise, Melissa C.; Vlachos, Pavlos P.
2018-01-01
Although transition is known to exist in various hemodynamic environments, the mechanisms that govern this flow regime and their subsequent effects on biological parameters are not well understood. Previous studies have investigated transition in pulsatile pipe flow using non-physiological sinusoidal waveforms at various Womersley numbers but have produced conflicting results, and multiple input waveform shapes have yet to be explored. In this work, we investigate the effect of the input pulsatile waveform shape on the mechanisms that drive the onset and development of transition using particle image velocimetry, three pulsatile waveforms, and six mean Reynolds numbers. The turbulent kinetic energy budget including dissipation rate, production, and pressure diffusion was computed. The results show that the waveform with a longer deceleration phase duration induced the earliest onset of transition, while the waveform with a longer acceleration period delayed the onset of transition. In accord with the findings of prior studies, for all test cases, turbulence was observed to be produced at the wall and either dissipated or redistributed into the core flow by pressure waves, depending on the mean Reynolds number. Turbulent production increased with increasing temporal velocity gradients until an asymptotic limit was reached. The turbulence dissipation rate was shown to be independent of mean Reynolds number, but a relationship between the temporal gradients of the input velocity waveform and the rate of turbulence dissipation was found. In general, these results demonstrated that the shape of the input pulsatile waveform directly affected the onset and development of transition.
Yungher, Don A.; Morris, Tiffany R.; Dilda, Valentina; Shine, James M.; Naismith, Sharon L.; Lewis, Simon J. G.; Moore, Steven T.
2014-01-01
A cardinal feature of freezing of gait (FOG) is high frequency (3–8 Hz) oscillation of the legs, and this study aimed to quantify the temporal pattern of lower-body motion prior to and during FOG. Acceleration data was obtained from sensors attached to the back, thighs, shanks, and feet in 14 Parkinson's disease patients performing timed-up-and-go tasks, and clinical assessment of FOG was performed by two experienced raters from video. A total of 23 isolated FOG events, defined as occurring at least 5 s after gait initiation and with no preceding FOG, were identified from the clinical ratings. The corresponding accelerometer records were analyzed within a 4 s window centered at the clinical onset of freezing. FOG-related high-frequency oscillation (an increase in power in the 3–8 Hz band >3 SD from baseline) followed a distal to proximal onset pattern, appearing at the feet, shanks, thighs, and then back over a period of 250 ms. Peak power tended to decrease as the focus of oscillation moved from feet to back. There was a consistent delay (mean 872 ms) between the onset of high frequency oscillation at the feet and clinical onset of FOG. We infer that FOG is characterized by high frequency oscillation at the feet, which progresses proximally and is mechanically damped at the torso. PMID:25101189
Ward, Ryan D; Gallistel, C R; Jensen, Greg; Richards, Vanessa L; Fairhurst, Stephen; Balsam, Peter D
2012-07-01
In a conditioning protocol, the onset of the conditioned stimulus ([CS]) provides information about when to expect reinforcement (unconditioned stimulus [US]). There are two sources of information from the CS in a delay conditioning paradigm in which the CS-US interval is fixed. The first depends on the informativeness, the degree to which CS onset reduces the average expected time to onset of the next US. The second depends only on how precisely a subject can represent a fixed-duration interval (the temporal Weber fraction). In three experiments with mice, we tested the differential impact of these two sources of information on rate of acquisition of conditioned responding (CS-US associability). In Experiment 1, we showed that associability (the inverse of trials to acquisition) increased in proportion to informativeness. In Experiment 2, we showed that fixing the duration of the US-US interval or the CS-US interval or both had no effect on associability. In Experiment 3, we equated the increase in information produced by varying the C/T ratio with the increase produced by fixing the duration of the CS-US interval. Associability increased with increased informativeness, but, as in Experiment 2, fixing the CS-US duration had no effect on associability. These results are consistent with the view that CS-US associability depends on the increased rate of reward signaled by CS onset. The results also provide further evidence that conditioned responding is temporally controlled when it emerges.
CS Informativeness Governs CS-US Associability
Ward, Ryan D.; Gallistel, C. R.; Jensen, Greg; Richards, Vanessa L.; Fairhurst, Stephen; Balsam, Peter D
2012-01-01
In a conditioning protocol, the onset of the conditioned stimulus (CS) provides information about when to expect reinforcement (the US). There are two sources of information from the CS in a delay conditioning paradigm in which the CS-US interval is fixed. The first depends on the informativeness, the degree to which CS onset reduces the average expected time to onset of the next US. The second depends only on how precisely a subject can represent a fixed-duration interval (the temporal Weber fraction). In three experiments with mice, we tested the differential impact of these two sources of information on rate of acquisition of conditioned responding (CS-US associability). In Experiment 1, we show that associability (the inverse of trials to acquisition) increases in proportion to informativeness. In Experiment 2, we show that fixing the duration of the US-US interval or the CS-US interval or both has no effect on associability. In Experiment 3, we equated the increase in information produced by varying the C̅/T̅ ratio with the increase produced by fixing the duration of the CS-US interval. Associability increased with increased informativeness, but, as in Experiment 2, fixing the CS-US duration had no effect on associability. These results are consistent with the view that CS-US associability depends on the increased rate of reward signaled by CS onset. The results also provide further evidence that conditioned responding is temporally controlled when it emerges. PMID:22468633
Moreira-Filho, Carlos Alberto; Bando, Silvia Yumi; Bertonha, Fernanda Bernardi; Iamashita, Priscila; Silva, Filipi Nascimento; Costa, Luciano da Fontoura; Silva, Alexandre Valotta; Castro, Luiz Henrique Martins; Wen, Hung-Tzu
2015-01-01
Age at epilepsy onset has a broad impact on brain plasticity and epilepsy pathomechanisms. Prolonged febrile seizures in early childhood (FS) constitute an initial precipitating insult (IPI) commonly associated with mesial temporal lobe epilepsy (MTLE). FS-MTLE patients may have early disease onset, i.e. just after the IPI, in early childhood, or late-onset, ranging from mid-adolescence to early adult life. The mechanisms governing early (E) or late (L) disease onset are largely unknown. In order to unveil the molecular pathways underlying E and L subtypes of FS-MTLE we investigated global gene expression in hippocampal CA3 explants of FS-MTLE patients submitted to hippocampectomy. Gene coexpression networks (GCNs) were obtained for the E and L patient groups. A network-based approach for GCN analysis was employed allowing: i) the visualization and analysis of differentially expressed (DE) and complete (CO) - all valid GO annotated transcripts - GCNs for the E and L groups; ii) the study of interactions between all the system’s constituents based on community detection and coarse-grained community structure methods. We found that the E-DE communities with strongest connection weights harbor highly connected genes mainly related to neural excitability and febrile seizures, whereas in L-DE communities these genes are not only involved in network excitability but also playing roles in other epilepsy-related processes. Inversely, in E-CO the strongly connected communities are related to compensatory pathways (seizure inhibition, neuronal survival and responses to stress conditions) while in L-CO these communities harbor several genes related to pro-epileptic effects, seizure-related mechanisms and vulnerability to epilepsy. These results fit the concept, based on fMRI and behavioral studies, that early onset epilepsies, although impacting more severely the hippocampus, are associated to compensatory mechanisms, while in late MTLE development the brain is less able to generate adaptive mechanisms, what has implications for epilepsy management and drug discovery. PMID:26011637
Linear stability of compressible Taylor-Couette flow
NASA Technical Reports Server (NTRS)
Kao, Kai-Hsiung; Chow, Chuen-Yen
1992-01-01
A temporal stability analysis of compressible Taylor-Couette flow is presented. The viscous flow studied in this paper is contained between two concentric cylinders of infinite length, which are rotating with different angular velocities and are kept at different surface temperatures. The effects of differential rotation and temperature difference on the stability of Taylor-Couette flow are contrasted for a range of Mach numbers ranging from incompressible to Mach 3.0. The relative motion of the cylinders dramatically affects the characteristics of the Couette flow at the onset of instability. The flow is stabilized or destabilized depending upon the temperature ratio and speeds of the two cylinders. Independent of Mach number and temperature ratio, increasing Reynolds number generally promotes a destabilizing effect, indicating the inviscid nature of the Taylor-Couette flow.
NASA Astrophysics Data System (ADS)
Li, Baojuan; Liu, Jian; Liu, Yang; Lu, Hong-Bing; Yin, Hong
2013-03-01
The majority of studies on posttraumatic stress disorder (PTSD) so far have focused on delineating patterns of activations during cognitive processes. Recently, more and more researches have started to investigate functional connectivity in PTSD subjects using BOLD-fMRI. Functional connectivity analysis has been demonstrated as a powerful approach to identify biomarkers of different brain diseases. This study aimed to detect resting-state functional connectivity abnormities in patients with PTSD using arterial spin labeling (ASL) fMRI. As a completely non-invasive technique, ASL allows quantitative estimates of cerebral blood flow (CBF). Compared with BOLD-fMRI, ASL fMRI has many advantages, including less low-frequency signal drifts, superior functional localization, etc. In the current study, ASL images were collected from 10 survivors in mining disaster with recent onset PTSD and 10 survivors without PTSD. Decreased regional CBF in the right middle temporal gyrus, lingual gyrus, and postcentral gyrus was detected in the PTSD patients. Seed-based resting-state functional connectivity analysis was performed using an area in the right middle temporal gyrus as region of interest. Compared with the non-PTSD group, the PTSD subjects demonstrated increased functional connectivity between the right middle temporal gyrus and the right superior temporal gyrus, the left middle temporal gyrus. Meanwhile, decreased functional connectivity between the right middle temporal gyrus and the right postcentral gyrus, the right superior parietal lobule was also found in the PTSD patients. This is the first study which investigated resting-state functional connectivity in PTSD using ASL images. The results may provide new insight into the neural substrates of PTSD.
Styczynski, Ashley R; Malta, Juliane M A S; Krow-Lucal, Elisabeth R; Percio, Jadher; Nóbrega, Martha E; Vargas, Alexander; Lanzieri, Tatiana M; Leite, Priscila L; Staples, J Erin; Fischer, Marc X; Powers, Ann M; Chang, Gwong-Jen J; Burns, P L; Borland, Erin M; Ledermann, Jeremy P; Mossel, Eric C; Schonberger, Lawrence B; Belay, Ermias B; Salinas, Jorge L; Badaro, Roberto D; Sejvar, James J; Coelho, Giovanini E
2017-08-01
In mid-2015, Salvador, Brazil, reported an outbreak of Guillain-Barré syndrome (GBS), coinciding with the introduction and spread of Zika virus (ZIKV). We found that GBS incidence during April-July 2015 among those ≥12 years of age was 5.6 cases/100,000 population/year and increased markedly with increasing age to 14.7 among those ≥60 years of age. We conducted interviews with 41 case-patients and 85 neighborhood controls and found no differences in demographics or exposures prior to GBS-symptom onset. A higher proportion of case-patients (83%) compared to controls (21%) reported an antecedent illness (OR 18.1, CI 6.9-47.5), most commonly characterized by rash, headache, fever, and myalgias, within a median of 8 days prior to GBS onset. Our investigation confirmed an outbreak of GBS, particularly in older adults, that was strongly associated with Zika-like illness and geo-temporally associated with ZIKV transmission, suggesting that ZIKV may result in severe neurologic complications.
Audiovisual integration in depth: multisensory binding and gain as a function of distance.
Noel, Jean-Paul; Modi, Kahan; Wallace, Mark T; Van der Stoep, Nathan
2018-07-01
The integration of information across sensory modalities is dependent on the spatiotemporal characteristics of the stimuli that are paired. Despite large variation in the distance over which events occur in our environment, relatively little is known regarding how stimulus-observer distance affects multisensory integration. Prior work has suggested that exteroceptive stimuli are integrated over larger temporal intervals in near relative to far space, and that larger multisensory facilitations are evident in far relative to near space. Here, we sought to examine the interrelationship between these previously established distance-related features of multisensory processing. Participants performed an audiovisual simultaneity judgment and redundant target task in near and far space, while audiovisual stimuli were presented at a range of temporal delays (i.e., stimulus onset asynchronies). In line with the previous findings, temporal acuity was poorer in near relative to far space. Furthermore, reaction time to asynchronously presented audiovisual targets suggested a temporal window for fast detection-a range of stimuli asynchronies that was also larger in near as compared to far space. However, the range of reaction times over which multisensory response enhancement was observed was limited to a restricted range of relatively small (i.e., 150 ms) asynchronies, and did not differ significantly between near and far space. Furthermore, for synchronous presentations, these distance-related (i.e., near vs. far) modulations in temporal acuity and multisensory gain correlated negatively at an individual subject level. Thus, the findings support the conclusion that multisensory temporal binding and gain are asymmetrically modulated as a function of distance from the observer, and specifies that this relationship is specific for temporally synchronous audiovisual stimulus presentations.
Deutsch, Arielle R.; Slutske, Wendy S.; Lynskey, Michael T.; Bucholz, Kathleen K.; Madden, Pamela A. F.; Heath, Andrew C.; Martin, Nicholas G.
2017-01-01
The current study examined a stage-based alcohol use trajectory model to test for potential causal effects of earlier drinking milestones on later drinking milestones in a combined sample of two cohorts of Australian monozygotic and same-sex dizygotic twins (N = 7,398, age M = 30.46, SD = 2.61, 61% mal 56% monozygotic twins). Ages of drinking, drunkenness, regular drinking, tolerance, first nontolerance alcohol use disorder symptom, and alcohol use disorder symptom onsets were assessed retrospectively. Ages of milestone attainment (i.e., age-of-onset) and time between milestones (i.e., time-to-even were examined via frailty models within a multilevel discordant twin design. For age-of-onset models, earlier ages of onset of antecedent drinking milestones increased hazards for earlier ages of onset for more proximal subsequent drinking milestones. For the time-to-event models, however, earlier ag of onset for the “starting” milestone decreased risk for a shorter time period between the starting and the “ending” milestone. Earlier age of onset of intermediate milestones between starting and ending drinking milestones had the opposite effect, increasing risk for a shorter time period between the starti and ending milestones. These results are consistent with a causal effect of an earlier age of drinking milestone onset on temporally proximal subsequent drinking milestones. PMID:27417028
Visual Motion Processing Subserves Faster Visuomotor Reaction in Badminton Players.
Hülsdünker, Thorben; Strüder, Heiko K; Mierau, Andreas
2017-06-01
Athletes participating in ball or racquet sports have to respond to visual stimuli under critical time pressure. Previous studies used visual contrast stimuli to determine visual perception and visuomotor reaction in athletes and nonathletes; however, ball and racquet sports are characterized by motion rather than contrast visual cues. Because visual contrast and motion signals are processed in different cortical regions, this study aimed to determine differences in perception and processing of visual motion between athletes and nonathletes. Twenty-five skilled badminton players and 28 age-matched nonathletic controls participated in this study. Using a 64-channel EEG system, we investigated visual motion perception/processing in the motion-sensitive middle temporal (MT) cortical area in response to radial motion of different velocities. In a simple visuomotor reaction task, visuomotor transformation in Brodmann area 6 (BA6) and BA4 as well as muscular activation (EMG onset) and visuomotor reaction time (VMRT) were investigated. Stimulus- and response-locked potentials were determined to differentiate between perceptual and motor-related processes. As compared with nonathletes, athletes showed earlier EMG onset times (217 vs 178 ms, P < 0.001), accompanied by a faster VMRT (274 vs 243 ms, P < 0.001). Furthermore, athletes showed an earlier stimulus-locked peak activation of MT (200 vs 182 ms, P = 0.002) and BA6 (161 vs 137 ms, P = 0.009). Response-locked peak activation in MT was later in athletes (-7 vs 26 ms, P < 0.001), whereas no group differences were observed in BA6 and BA4. Multiple regression analyses with stimulus- and response-locked cortical potentials predicted EMG onset (r = 0.83) and VMRT (r = 0.77). The athletes' superior visuomotor performance in response to visual motion is primarily related to visual perception and, to a minor degree, to motor-related processes.
Zhang, Xiuming; Mormino, Elizabeth C; Sun, Nanbo; Sperling, Reisa A; Sabuncu, Mert R; Yeo, B T Thomas
2016-10-18
We used a data-driven Bayesian model to automatically identify distinct latent factors of overlapping atrophy patterns from voxelwise structural MRIs of late-onset Alzheimer's disease (AD) dementia patients. Our approach estimated the extent to which multiple distinct atrophy patterns were expressed within each participant rather than assuming that each participant expressed a single atrophy factor. The model revealed a temporal atrophy factor (medial temporal cortex, hippocampus, and amygdala), a subcortical atrophy factor (striatum, thalamus, and cerebellum), and a cortical atrophy factor (frontal, parietal, lateral temporal, and lateral occipital cortices). To explore the influence of each factor in early AD, atrophy factor compositions were inferred in beta-amyloid-positive (Aβ+) mild cognitively impaired (MCI) and cognitively normal (CN) participants. All three factors were associated with memory decline across the entire clinical spectrum, whereas the cortical factor was associated with executive function decline in Aβ+ MCI participants and AD dementia patients. Direct comparison between factors revealed that the temporal factor showed the strongest association with memory, whereas the cortical factor showed the strongest association with executive function. The subcortical factor was associated with the slowest decline for both memory and executive function compared with temporal and cortical factors. These results suggest that distinct patterns of atrophy influence decline across different cognitive domains. Quantification of this heterogeneity may enable the computation of individual-level predictions relevant for disease monitoring and customized therapies. Factor compositions of participants and code used in this article are publicly available for future research.
Temporal attractors for speech onsets
NASA Astrophysics Data System (ADS)
Port, Robert; Oglesbee, Eric
2003-10-01
When subjects say a single syllable like da in time with a metronome, what is the easiest relationship? Superimposed on the metronome pulse, of course. The second easiest way is probably to locate the syllable halfway between pulses. We tested these hypotheses by having subjects repeat da at both phase angles at a range of metronome rates. The vowel onset (or P-center) was automatically obtained for each token. In-phase targets were produced close to the metronome onset for rates as fast as 3 per second. Antiphase targets were accurate at slow rates (~2/s) but tended to slip to inphase timing with faster metronomes. These results resemble the findings of Haken et al. [Biol. Cybern. 51, 347-356 (1985)] for oscillatory finger motions. Results suggest a strong attractor for speech onsets at zero phase and a weaker attractor at phase 0.5 that may disappear as rate is increased.
Tohono O'odham Monsoon Climatology
NASA Astrophysics Data System (ADS)
Ackerman, G.
2006-12-01
The North American monsoon is a summertime weather phenomenon that develops over the southwestern North America. For thousands of years the Tohono O'odham people of this area have depended on the associated rainy season (Jukiabig Masad) to grow traditional crops using runoff agriculture. Today, the high incidence of Type II diabetes among native people has prompted many to return to their traditional agricultural diets. Local monsoon onset dates and the North American Regional Reanalysis dataset were used to develop a 24-year Tohono O'odham Nation (TON) monsoon and pre-monsoon climatology that can be used as a tool for planning runoff agriculture. Using monsoon composite datasets, temporal and spatial correlations between antecedent period meteorological variables, monsoon onset dates and total monsoon precipitation were examined to identify variables that could be useful in predicting the onset and intensity of the monsoon. The results suggest additional research is needed to identify variables related to monsoon onset and intensity.
Psychiatric disorders in candidates for surgery for epilepsy.
Manchanda, R; Schaefer, B; McLachlan, R S; Blume, W T; Wiebe, S; Girvin, J P; Parrent, A; Derry, P A
1996-01-01
OBJECTIVE--To provide a descriptive analysis of the prevalence and pattern of psychiatric morbidity among 300 consecutive epileptic patients refractive to treatment and admitted during a six year period for evaluation of their candidature for surgery. METHODS--Patients underwent detailed observation of their seizure and standardised psychiatric assessment. Patients were considered to be refractory to treatment if they continued to manifest seizures with an average frequency of at least once every month even with polytherapy using up to three different anti-convulsants for a period of at least two years. Of the 300 patients, 231 had a temporal lobe focus, 43 had a non-temporal lobe focus, and 26 patients had a generalised and multifocal seizure onset. RESULTS AND CONCLUSIONS--With the DSM-III-R criteria 142 (47.3%) patients emerged as psychiatric cases. A principal axis I diagnosis was made in 88 (29.3%), and an axis II diagnosis (personality disorder) in another 54 (18.0%) patients. The most common axis I diagnosis was anxiety disorders (10.7%). A schizophrenia-like psychosis was seen in 13 (4.3%). Most patients with personality disorders showed dependent and avoidant personality traits. There was a significantly higher psychotic subscore on the present state examination in the temporal than with the non-temporal group of patients. These findings were not significant when compared with patients with a generalised and multifocal seizure disorder. There were no significant findings between the different seizure focus groups on the neurotic subscores. The findings with regard to laterality of seizure focus and the neurotic or psychotic subscores were not significant. PMID:8676167
Human auditory steady state responses to binaural and monaural beats.
Schwarz, D W F; Taylor, P
2005-03-01
Binaural beat sensations depend upon a central combination of two different temporally encoded tones, separately presented to the two ears. We tested the feasibility to record an auditory steady state evoked response (ASSR) at the binaural beat frequency in order to find a measure for temporal coding of sound in the human EEG. We stimulated each ear with a distinct tone, both differing in frequency by 40Hz, to record a binaural beat ASSR. As control, we evoked a beat ASSR in response to both tones in the same ear. We band-pass filtered the EEG at 40Hz, averaged with respect to stimulus onset and compared ASSR amplitudes and phases, extracted from a sinusoidal non-linear regression fit to a 40Hz period average. A 40Hz binaural beat ASSR was evoked at a low mean stimulus frequency (400Hz) but became undetectable beyond 3kHz. Its amplitude was smaller than that of the acoustic beat ASSR, which was evoked at low and high frequencies. Both ASSR types had maxima at fronto-central leads and displayed a fronto-occipital phase delay of several ms. The dependence of the 40Hz binaural beat ASSR on stimuli at low, temporally coded tone frequencies suggests that it may objectively assess temporal sound coding ability. The phase shift across the electrode array is evidence for more than one origin of the 40Hz oscillations. The binaural beat ASSR is an evoked response, with novel diagnostic potential, to a signal that is not present in the stimulus, but generated within the brain.
Bruneau, Nicole; Bidet-Caulet, Aurélie; Roux, Sylvie; Bonnet-Brilhault, Frédérique; Gomot, Marie
2015-02-01
To investigate brain asymmetry of the temporal auditory evoked potentials (T-complex) in response to monaural stimulation in children compared to adults. Ten children (7 to 9 years) and ten young adults participated in the study. All were right-handed. The auditory stimuli used were tones (1100 Hz, 70 dB SPL, 50 ms duration) delivered monaurally (right, left ear) at four different levels of stimulus onset asynchrony (700-1100-1500-3000 ms). Latency and amplitude of responses were measured at left and right temporal sites according to the ear stimulated. Peaks of the three successive deflections (Na-Ta-Tb) of the T-complex were greater in amplitude and better defined in children than in adults. Amplitude measurements in children indicated that Na culminates on the left hemisphere whatever the ear stimulated whereas Ta and Tb culminate on the right hemisphere but for left ear stimuli only. Peak latency displayed different patterns of asymmetry. Na and Ta displayed shorter latencies for contralateral stimulation. The original finding was that Tb peak latency was the shortest at the left temporal site for right ear stimulation in children. Amplitude increased and/or peak latency decreased with increasing SOA, however no interaction effect was found with recording site or with ear stimulated. Our main original result indicates a right ear-left hemisphere timing advantage for Tb peak in children. The Tb peak would therefore be a good candidate as an electrophysiological marker of ear advantage effects during dichotic stimulation and of functional inter-hemisphere interactions and connectivity in children. Copyright © 2014. Published by Elsevier B.V.
Astefanoaei, Corina; Daye, Pierre M.; FitzGibbon, Edmond J.; Creanga, Dorina-Emilia; Rufa, Alessandra; Optican, Lance M.
2015-01-01
We move our eyes to explore the world, but visual areas determining where to look next (action) are different from those determining what we are seeing (perception). Whether, or how, action and perception are temporally coordinated is not known. The preparation time course of an action (e.g., a saccade) has been widely studied with the gap/overlap paradigm with temporal asynchronies (TA) between peripheral target onset and fixation point offset (gap, synchronous, or overlap). However, whether the subjects perceive the gap or overlap, and when they perceive it, has not been studied. We adapted the gap/overlap paradigm to study the temporal coupling of action and perception. Human subjects made saccades to targets with different TAs with respect to fixation point offset and reported whether they perceived the stimuli as separated by a gap or overlapped in time. Both saccadic and perceptual report reaction times changed in the same way as a function of TA. The TA dependencies of the time change for action and perception were very similar, suggesting a common neural substrate. Unexpectedly, in the perceptual task, subjects misperceived lights overlapping by less than ∼100 ms as separated in time (overlap seen as gap). We present an attention-perception model with a map of prominence in the superior colliculus that modulates the stimulus signal's effectiveness in the action and perception pathways. This common source of modulation determines how competition between stimuli is resolved, causes the TA dependence of action and perception to be the same, and causes the misperception. PMID:25632126
Temporal factors affecting somatosensory–auditory interactions in speech processing
Ito, Takayuki; Gracco, Vincent L.; Ostry, David J.
2014-01-01
Speech perception is known to rely on both auditory and visual information. However, sound-specific somatosensory input has been shown also to influence speech perceptual processing (Ito et al., 2009). In the present study, we addressed further the relationship between somatosensory information and speech perceptual processing by addressing the hypothesis that the temporal relationship between orofacial movement and sound processing contributes to somatosensory–auditory interaction in speech perception. We examined the changes in event-related potentials (ERPs) in response to multisensory synchronous (simultaneous) and asynchronous (90 ms lag and lead) somatosensory and auditory stimulation compared to individual unisensory auditory and somatosensory stimulation alone. We used a robotic device to apply facial skin somatosensory deformations that were similar in timing and duration to those experienced in speech production. Following synchronous multisensory stimulation the amplitude of the ERP was reliably different from the two unisensory potentials. More importantly, the magnitude of the ERP difference varied as a function of the relative timing of the somatosensory–auditory stimulation. Event-related activity change due to stimulus timing was seen between 160 and 220 ms following somatosensory onset, mostly around the parietal area. The results demonstrate a dynamic modulation of somatosensory–auditory convergence and suggest the contribution of somatosensory information for speech processing process is dependent on the specific temporal order of sensory inputs in speech production. PMID:25452733
NASA Astrophysics Data System (ADS)
Nystuen, Jeffrey A.; Amitai, Eyal
2003-04-01
The underwater sound generated by raindrop splashes on a water surface is loud and unique allowing detection, classification and quantification of rainfall. One of the advantages of the acoustic measurement is that the listening area, an effective catchment area, is proportional to the depth of the hydrophone and can be orders of magnitude greater than other in situ rain gauges. This feature allows high temporal resolution of the rainfall measurement. A series of rain events with extremely high rainfall rates, over 100 mm/hr, is examined acoustically. Rapid onset and cessation of rainfall intensity are detected within the convective cells of these storms with maximum 5-s resolution values exceeding 1000 mm/hr. The probability distribution functions (pdf) for rainfall rate occurrence and water volume using the longer temporal resolutions typical of other instruments do not include these extreme values. The variance of sound intensity within different acoustic frequency bands can be used as an aid to classify rainfall type. Objective acoustic classification algorithms are proposed. Within each rainfall classification the relationship between sound intensity and rainfall rate is nearly linear. The reflectivity factor, Z, also has a linear relationship with rainfall rate, R, for each rainfall classification.
Risk factors for spatial memory impairment in patients with temporal lobe epilepsy.
Amlerova, Jana; Laczo, Jan; Vlcek, Kamil; Javurkova, Alena; Andel, Ross; Marusic, Petr
2013-01-01
At present, the risk factors for world-centered (allocentric) navigation impairment in patients with temporal lobe epilepsy (TLE) are not known. There is some evidence on the importance of the right hippocampus but other clinical features have not been investigated yet. In this study, we used an experimental human equivalent to the Morris water maze to examine spatial navigation performance in patients with drug-refractory unilateral TLE. We included 47 left-hemisphere speech dominant patients (25 right sided; 22 left sided). The aim of our study was to identify clinical and demographic characteristics of TLE patients who performed poorly in allocentric spatial memory tests. Our results demonstrate that poor spatial navigation is significantly associated with younger age at epilepsy onset, longer disease duration, and lower intelligence level. Allocentric navigation in TLE patients was impaired irrespective of epilepsy lateralization. Good and poor navigators did not differ in their age, gender, or preoperative/postoperative status. This study provides evidence on risk factors that increase the likelihood of allocentric navigation impairment in TLE patients. The results indicate that not only temporal lobe dysfunction itself but also low general cognitive abilities may contribute to the navigation impairment. Copyright © 2012 Elsevier Inc. All rights reserved.
Temporal Properties of Liquid Crystal Displays: Implications for Vision Science Experiments
Elze, Tobias; Tanner, Thomas G.
2012-01-01
Liquid crystal displays (LCD) are currently replacing the previously dominant cathode ray tubes (CRT) in most vision science applications. While the properties of the CRT technology are widely known among vision scientists, the photometric and temporal properties of LCDs are unfamiliar to many practitioners. We provide the essential theory, present measurements to assess the temporal properties of different LCD panel types, and identify the main determinants of the photometric output. Our measurements demonstrate that the specifications of the manufacturers are insufficient for proper display selection and control for most purposes. Furthermore, we show how several novel display technologies developed to improve fast transitions or the appearance of moving objects may be accompanied by side–effects in some areas of vision research. Finally, we unveil a number of surprising technical deficiencies. The use of LCDs may cause problems in several areas in vision science. Aside from the well–known issue of motion blur, the main problems are the lack of reliable and precise onsets and offsets of displayed stimuli, several undesirable and uncontrolled components of the photometric output, and input lags which make LCDs problematic for real–time applications. As a result, LCDs require extensive individual measurements prior to applications in vision science. PMID:22984458
The emotional carryover effect in memory for words.
Schmidt, Stephen R; Schmidt, Constance R
2016-08-01
Emotional material rarely occurs in isolation; rather it is experienced in the spatial and temporal proximity of less emotional items. Some previous researchers have found that emotional stimuli impair memory for surrounding information, whereas others have reported evidence for memory facilitation. Researchers have not determined which types of emotional items or memory tests produce effects that carry over to surrounding items. Six experiments are reported that measured carryover from emotional words varying in arousal to temporally adjacent neutral words. Taboo, non-taboo emotional, and neutral words were compared using different stimulus onset asynchronies (SOAs), recognition and recall tests, and intentional and incidental memory instructions. Strong emotional memory effects were obtained in all six experiments. However, emotional items influenced memory for temporally adjacent words under limited conditions. Words following taboo words were more poorly remembered than words following neutral words when relatively short SOAs were employed. Words preceding taboo words were affected only when recall tests and relatively short retention intervals were used. These results suggest that increased attention to the emotional items sometimes produces emotional carryover effects; however, retrieval processes also contribute to retrograde amnesia and may extend the conditions under which anterograde amnesia is observed.
Huijgen, Josefien; Dellacherie, Delphine; Tillmann, Barbara; Clément, Sylvain; Bigand, Emmanuel; Dupont, Sophie; Samson, Séverine
2015-10-01
Previous research has indicated that the medial temporal lobe (MTL), and more specifically the perirhinal cortex, plays a role in the feeling of familiarity for non-musical stimuli. Here, we examined contribution of the MTL to the feeling of familiarity for music by testing patients with unilateral MTL lesions. We used a gating paradigm: segments of familiar and unfamiliar musical excerpts were played with increasing durations (250, 500, 1000, 2000, 4000 ms and complete excerpts), and participants provided familiarity judgments for each segment. Based on the hypothesis that patients might need longer segments than healthy controls (HC) to identify excerpts as familiar, we examined the onset of the emergence of familiarity in HC, patients with a right MTL resection (RTR), and patients with a left MTL resection (LTR). In contrast to our hypothesis, we found that the feeling of familiarity was relatively spared in patients with a right or left MTL lesion, even for short excerpts. All participants were able to differentiate familiar from unfamiliar excerpts as early as 500 ms, although the difference between familiar and unfamiliar judgements was greater in HC than in patients. These findings suggest that a unilateral MTL lesion does not impair the emergence of the feeling of familiarity. We also assessed whether the dynamics of the musical excerpt (linked to the type and amount of information contained in the excerpts) modulated the onset of the feeling of familiarity in the three groups. The difference between familiar and unfamiliar judgements was greater for high than for low-dynamic excerpts for HC and RTR patients, but not for LTR patients. This indicates that the LTR group did not benefit in the same way from dynamics. Overall, our results imply that the recognition of previously well-learned musical excerpts does not depend on the integrity of either right or the left MTL structures. Patients with a unilateral MTL resection may compensate for the effects of unilateral damage by using the intact contralateral temporal lobe. Moreover, we suggest that remote semantic memory for music might depend more strongly on neocortical structures rather than the MTL. Copyright © 2015. Published by Elsevier Ltd.
Late onset GM2 gangliosidosis mimicking spinal muscular atrophy.
Jamrozik, Z; Lugowska, A; Gołębiowski, M; Królicki, L; Mączewska, J; Kuźma-Kozakiewicz, M
2013-09-25
A case of late onset GM2 gangliosidodis with spinal muscular atrophy phenotype followed by cerebellar and extrapyramidal symptoms is presented. Genetic analysis revealed compound heterozygous mutation in exon 10 of the HEXA gene. Patient has normal intelligence and emotional reactivity. Neuroimaging tests of the brain showed only cerebellar atrophy consistent with MR spectroscopy (MRS) abnormalities. (18)F-fluorodeoxyglucose positron emission tomography (18)F-FDG PET/CT of the brain revealed glucose hypometabolism in cerebellum and in temporal and occipital lobes bilaterally. © 2013 Elsevier B.V. All rights reserved.
Chiò, Adriano; Herrero Hernandez, Elena; Mora, Gabriele; Valentini, Consuelo; Discalzi, Gianluigi; Pira, Enrico
2004-09-01
A 34-years-old floor-layer developed optic neuropathy and motor neuron disease after being accidentally exposed to a solvent mixture containing methanol and other substances. Optic neuropathy is a complication of methanol poisoning, but the onset of a motor neuron disorder resembling amyotrophic lateral sclerosis after the exposure to these substances has not been previously described. The temporal onset of the clinical symptoms, biological plausibility, young age of the patient and absence of neurological disorders in the family history raises suspicion of a possible causative relationship.
Quasiperiodic waves at the onset of zero-Prandtl-number convection with rotation.
Kumar, Krishna; Chaudhuri, Sanjay; Das, Alaka
2002-02-01
We show the possibility of temporally quasiperiodic waves at the onset of thermal convection in a thin horizontal layer of slowly rotating zero-Prandtl-number Boussinesq fluid confined between stress-free conducting boundaries. Two independent frequencies emerge due to an interaction between straight rolls and waves along these rolls in the presence of Coriolis force, if the Taylor number is raised above a critical value. Constructing a dynamical system for the hydrodynamical problem, the competition between the interacting instabilities is analyzed. The forward bifurcation from the conductive state is self-tuned.
Ewell, Laura A.; Liang, Liang; Armstrong, Caren; Soltész, Ivan; Leutgeb, Stefan
2015-01-01
Neural dynamics preceding seizures are of interest because they may shed light on mechanisms of seizure generation and could be predictive. In healthy animals, hippocampal network activity is shaped by behavioral brain state and, in epilepsy, seizures selectively emerge during specific brain states. To determine the degree to which changes in network dynamics before seizure are pathological or reflect ongoing fluctuations in brain state, dorsal hippocampal neurons were recorded during spontaneous seizures in a rat model of temporal lobe epilepsy. Seizures emerged from all brain states, but with a greater likelihood after REM sleep, potentially due to an observed increase in baseline excitability during periods of REM compared with other brains states also characterized by sustained theta oscillations. When comparing the firing patterns of the same neurons across brain states associated with and without seizures, activity dynamics before seizures followed patterns typical of the ongoing brain state, or brain state transitions, and did not differ until the onset of the electrographic seizure. Next, we tested whether disparate activity patterns during distinct brain states would influence the effectiveness of optogenetic curtailment of hippocampal seizures in a mouse model of temporal lobe epilepsy. Optogenetic curtailment was significantly more effective for seizures preceded by non-theta states compared with seizures that emerged from theta states. Our results indicate that consideration of behavioral brain state preceding a seizure is important for the appropriate interpretation of network dynamics leading up to a seizure and for designing effective seizure intervention. SIGNIFICANCE STATEMENT Hippocampal single-unit activity is strongly shaped by behavioral brain state, yet this relationship has been largely ignored when studying activity dynamics before spontaneous seizures in medial temporal lobe epilepsy. In light of the increased attention on using single-unit activity for the prediction of seizure onset and closed-loop seizure intervention, we show a need for monitoring brain state to interpret correctly whether changes in neural activity before seizure onset is pathological or normal. Moreover, we also find that the brain state preceding a seizure determines the success of therapeutic interventions to curtail seizure duration. Together, these findings suggest that seizure prediction and intervention will be more successful if tailored for the specific brain states from which seizures emerge. PMID:26609157
Temporal Dynamics of Proactive and Reactive Motor Inhibition
Liebrand, Matthias; Pein, Inga; Tzvi, Elinor; Krämer, Ulrike M.
2017-01-01
Proactive motor inhibition refers to endogenous preparatory mechanisms facilitating action inhibition, whereas reactive motor inhibition is considered to be a sudden stopping process triggered by external signals. Previous studies were inconclusive about the temporal dynamics of involved neurocognitive processes during proactive and reactive motor control. Using electroencephalography (EEG), we investigated the time-course of proactive and reactive inhibition, measuring event-related oscillations and event-related potentials (ERPs). Participants performed in a cued go/nogo paradigm with cues indicating whether the motor response might or might not have to be inhibited. Based on the dual mechanisms of control (DMC) framework by Braver, we investigated the role of attentional effects, motor preparation in the sensorimotor cortex and prefrontal cognitive control mechanisms, separating effects before and after target onset. In the cue-target interval, proactive motor inhibition was associated with increased attention, reflected in reduced visual alpha power and an increased contingent negative variation (CNV). At the same time, motor inhibition was modulated by reduced sensorimotor beta power. After target onset, proactive inhibition resulted in an increased N1, indicating allocation of attention towards relevant stimuli, increased prefrontal beta power and a modulation of sensorimotor mu activity. As in previous studies, reactive stopping of motor actions was associated with increased prefrontal beta power and increased sensorimotor beta activity. The results stress the relevance of attentional mechanisms for proactive inhibition and speak for different neurocognitive mechanisms being involved in the early preparation for and in later implementation of motor inhibition. PMID:28496405
Amygdala enlargement: Temporal lobe epilepsy subtype or nonspecific finding?
Reyes, Anny; Thesen, Thomas; Kuzniecky, Ruben; Devinsky, Orrin; McDonald, Carrie R; Jackson, Graeme D; Vaughan, David N; Blackmon, Karen
2017-05-01
Amygdala enlargement (AE) is observed in patients with temporal lobe epilepsy (TLE), which has led to the suggestion that it represents a distinct TLE subtype; however, it is unclear whether AE is found at similar rates in other epilepsy syndromes or in healthy controls, which would limit its value as a marker for focal epileptogenicity. We compared rates of AE, defined quantitatively from high-resolution T1-weighted MRI, in a large multi-site sample of 136 patients with nonlesional localization related epilepsy (LRE), including TLE and extratemporal (exTLE) focal epilepsy, 34 patients with idiopathic generalized epilepsy (IGE), and 233 healthy controls (HCs). AE was found in all groups including HCs; however, the rate of AE was higher in LRE (18.4%) than in IGE (5.9%) and HCs (6.4%). Patients with unilateral LRE were further evaluated to compare rates of concordant ipsilateral AE in TLE and exTLE, with the hypothesis that rates of ipsilateral AE would be higher in TLE. Although ipsilateral AE was higher in TLE (19.4%) than exTLE (10.5%), this difference was not significant. Furthermore, among the 25 patients with unilateral LRE and AE, 13 (52%) had either bilateral AE or AE contralateral to seizure onset. Results suggest that AE, as defined with MRI volumetry, may represent an associated feature of nonlesional localization related epilepsy with limited seizure onset localization value. Copyright © 2017 Elsevier B.V. All rights reserved.
Dopamine controls the neural dynamics of memory signals and retrieval accuracy.
Apitz, Thore; Bunzeck, Nico
2013-11-01
The human brain is capable of differentiating between new and already stored information rapidly to allow optimal behavior and decision-making. Although the neural mechanisms of novelty discrimination were often described as temporally constant (ie, with specific latencies), recent electrophysiological studies have demonstrated that the onset of neural novelty signals (ie, differences in event-related responses to new and old items) can be accelerated by reward motivation. While the precise physiological mechanisms underlying this acceleration remain unclear, the involvement of the neurotransmitter dopamine in both novelty and reward processing suggests that enhanced dopamine levels in the context of reward prospect may have a role. To investigate this hypothesis, we used magnetoencephalography (MEG) in combination with an old/new recognition memory task in which correct discrimination between old and new items was rewarded. Importantly, before the task, human subjects received either 150 mg of the dopamine precursor levodopa or placebo. For the placebo group, old/new signals peaked at ∼100 ms after stimulus onset over left temporal/occipital sensors. In contrast, after levodopa administration earliest old/new effects only emerged after ∼400 ms and retrieval accuracy was reduced as expressed in lower d' values. As such, our results point towards a previously unreported role of dopamine in controlling the chronometry of neural processes underlying the distinction between old and new information. They also suggest that this relationship follows a nonlinear function whereby slightly enhanced dopamine levels accelerate neural/cognitive processes and excessive dopamine levels impair them.
Training in Temporal Information Processing Ameliorates Phonetic Identification.
Szymaszek, Aneta; Dacewicz, Anna; Urban, Paulina; Szelag, Elzbieta
2018-01-01
Many studies revealed a link between temporal information processing (TIP) in a millisecond range and speech perception. Previous studies indicated a dysfunction in TIP accompanied by deficient phonemic hearing in children with specific language impairment (SLI). In this study we concentrate in SLI on phonetic identification, using the voice-onset-time (VOT) phenomenon in which TIP is built-in. VOT is crucial for speech perception, as stop consonants (like /t/ vs. /d/) may be distinguished by an acoustic difference in time between the onsets of the consonant (stop release burst) and the following vibration of vocal folds (voicing). In healthy subjects two categories (voiced and unvoiced) are determined using VOT task. The present study aimed at verifying whether children with SLI indicate a similar pattern of phonetic identification as their healthy peers and whether the intervention based on TIP results in improved performance on the VOT task. Children aged from 5 to 8 years ( n = 47) were assigned into two groups: normal children without any language disability (NC, n = 20), and children with SLI ( n = 27). In the latter group participants were randomly classified into two treatment subgroups, i.e., experimental temporal training (EG, n = 14) and control non-temporal training (CG, n = 13). The analyzed indicators of phonetic identification were: (1) the boundary location (α) determined as the VOT value corresponding to 50% voicing/unvoicing distinctions; (2) ranges of voiced/unvoiced categories; (3) the slope of identification curve (β) reflecting the identification correctness; (4) percent of voiced distinctions within the applied VOT spectrum. The results indicated similar α values and similar ranges of voiced/unvoiced categories between SLI and NC. However, β in SLI was significantly higher than that in NC. After the intervention, the significant improvement of β was observed only in EG. They achieved the level of performance comparable to that observed in NC. The training-related improvement in CG was non-significant. Furthermore, only in EG the β values in post-test correlated with measures of TIP as well as with phonemic hearing obtained in our previous studies. These findings provide another evidence that TIP is omnipresent in language communication and reflected not only in phonemic hearing but also in phonetic identification.
Wang, Dong-Yuan Debbie; Richard, F Dan; Ray, Brittany
2016-01-01
The stimulus-response correspondence (SRC) effect refers to advantages in performance when stimulus and response correspond in dimensions or features, even if the common features are irrelevant to the task. Previous research indicated that the SRC effect depends on the temporal course of stimulus information processing. The current study investigated how the temporal overlap between relevant and irrelevant stimulus processing influences the SRC effect. In this experiment, the irrelevant stimulus (a previously associated tone) preceded the relevant stimulus (a coloured rectangle). The irrelevant and relevant stimuli onset asynchrony was varied to manipulate the temporal overlap between the irrelevant and relevant stimuli processing. Results indicated that the SRC effect size varied as a quadratic function of the temporal overlap between the relevant stimulus and irrelevant stimulus. This finding extends previous experimental observations that the SRC effect size varies in an increasing or decreasing function with reaction time. The current study demonstrated a quadratic function between effect size and the temporal overlap.
The perception of syllable affiliation of singleton stops in repetitive speech.
de Jong, Kenneth J; Lim, Byung-Jin; Nagao, Kyoko
2004-01-01
Stetson (1951) noted that repeating singleton coda consonants at fast speech rates makes them be perceived as onset consonants affiliated with a following vowel. The current study documents the perception of rate-induced resyllabification, as well as what temporal properties give rise to the perception of syllable affiliation. Stimuli were extracted from a previous study of repeated stop + vowel and vowel + stop syllables (de Jong, 2001a, 2001b). Forced-choice identification tasks show that slow repetitions are clearly distinguished. As speakers increase rate, they reach a point after which listeners disagree as to the affiliation of the stop. This pattern is found for voiced and voiceless consonants using different stimulus extraction techniques. Acoustic models of the identifications indicate that the sudden shift in syllabification occurs with the loss of an acoustic hiatus between successive syllables. Acoustic models of the fast rate identifications indicate various other qualities, such as consonant voicing, affect the probability that the consonants will be perceived as onsets. These results indicate a model of syllabic affiliation where specific juncture-marking aspects of the signal dominate parsing, and in their absence other differences provide additional, weaker cues to syllabic affiliation.
Schweizer, Tom A; Ware, Jenna; Fischer, Corinne E; Craik, Fergus I M; Bialystok, Ellen
2012-09-01
Much of the research on delaying the onset of symptoms of Alzheimer's disease (AD) has focused on pharmacotherapy, but environmental factors have also been acknowledged to play a significant role. Bilingualism may be one factor contributing to 'cognitive reserve' (CR) and therefore to a delay in symptom onset. If bilingualism is protective, then the brains of bilinguals should show greater atrophy in relevant areas, since their enhanced CR enables them to function at a higher level than would be predicted from their level of disease. We analyzed a number of linear measurements of brain atrophy from the computed tomography (CT) scans of monolingual and bilingual patients diagnosed with probable AD who were matched on level of cognitive performance and years of education. Bilingual patients with AD exhibited substantially greater amounts of brain atrophy than monolingual patients in areas traditionally used to distinguish AD patients from healthy controls, specifically, the radial width of the temporal horn and the temporal horn ratio. Other measures of brain atrophy were comparable for the two groups. Bilingualism appears to contribute to increased CR, thereby delaying the onset of AD and requiring the presence of greater amounts of neuropathology before the disease is manifest. Copyright © 2011 Elsevier Srl. All rights reserved.
Lundström, Johan N.; Gordon, Amy R.; Alden, Eva C.; Boesveldt, Sanne; Albrecht, Jessica
2010-01-01
Many human olfactory experiments call for fast and stable stimulus-rise times as well as exact and stable stimulus-onset times. Due to these temporal demands, an olfactometer is often needed. However, an olfactometer is a piece of equipment that either comes with a high price tag or requires a high degree of technical expertise to build and/or to run. Here, we detail the construction of an olfactometer that is constructed almost exclusively with “off-the-shelf” parts, requires little technical knowledge to build, has relatively low price tags, and is controlled by E-Prime, a turnkey-ready and easily-programmable software commonly used in psychological experiments. The olfactometer can present either solid or liquid odor sources, and it exhibits a fast stimulus-rise time and a fast and stable stimulus-onset time. We provide a detailed description of the olfactometer construction, a list of its individual parts and prices, as well as potential modifications to the design. In addition, we present odor onset and concentration curves as measured with a photoionization detector, together with corresponding GC/MS analyses of signal-intensity drop (5.9%) over a longer period of use. Finally, we present data from behavioral and psychophysiological recordings demonstrating that the olfactometer is suitable for use during event-related EEG experiments. PMID:20688109
Merki-Feld, Gabriele S; Epple, Gina; Caveng, Nina; Imthurn, Bruno; Seifert, Burkhardt; Sandor, Peter; Gantenbein, Andreas R
2017-08-25
Menstrually related migraine (MRM) in the hormone-free interval (HFI) of combined hormonal contraceptives (CHC) are according to the ICHD definition also estrogen withdrawal migraines (EWH). MRMs are less responsive to acute medication. Therefore short-term prevention, initiated 1-2 days before onset of the anticipated bleeding and continued for 6 days, is recommended. Such a long prophylactic triptan use might increase the risk for medication overuse headache in women suffering in addition from non-menstrual migraines. In CHC users onset of hormone decline is predictable. It is however unknown, whether the EWHs are rather associated with onset of hormone withdrawal or onset of bleeding. Improved understanding of this relation might contribute to better define and shorten the time interval for prevention. For this observational diary-based pilot study we collected data from daily conducted headache diaries of CHC users with MRM in at least two of three cycles, visiting our clinic from 2009 to 2015. We analyzed frequency of migraines for each hormone free day, onset of migraine, onset of bleeding and the relation of migraine to onset of bleeding in the 7-day period following estrogen withdrawal. We identified in addition the onset of migraine attacks lasting more than 1 day (episodes). Forty patient charts met the inclusion criteria, what allowed us to analyze 103 cycles. The mean number of migraine days in the HFI was 2.2 ± 1.6. Migraine started typically on days 1-5 and bleeding on days 3-5. In relation to first day of bleeding, migraines started on days -1 to 4. Almost half of the migraine attacks lasted longer than 24 h, despite the use of rescue medication. MRM in CHC users starts on bleeding days -1 to 4, what differs from findings in the natural cycle. Referring to the HFI interval migraine started mostly on days 1-5. According to these data, it seems to be reasonable to initiate short-term prevention at the last day of pill use or the first day of the HFI and continue for 5 days.
Threshold of the precedence effect in noise
Freyman, Richard L.; Griffin, Amanda M.; Zurek, Patrick M.
2014-01-01
Three effects that show a temporal asymmetry in the influence of interaural cues were studied through the addition of masking noise: (1) The transient precedence effect—the perceptual dominance of a leading transient over a similar lagging transient; (2) the ongoing precedence effect—lead dominance with lead and lag components that extend in time; and (3) the onset capture effect—determination by an onset transient of the lateral position of an otherwise ambiguous extended trailing sound. These three effects were evoked with noise-burst stimuli and were compared in the presence of masking noise. Using a diotic noise masker, detection thresholds for stimuli with lead/lag interaural delays of 0/500 μs were compared to those with 500/0 μs delays. None of the three effects showed a masking difference between those conditions, suggesting that none of the effects is operative at masked threshold. A task requiring the discrimination between stimuli with 500/0 and 0/500 μs interaural delays was used to determine the threshold for each effect in noise. The results showed similar thresholds in noise (10–13 dB SL) for the transient and ongoing precedence effects, but a much higher threshold (33 dB SL) for onset capture of an ambiguous trailing sound. PMID:24815272
Intracranial EEG in predicting surgical outcome in frontal lobe epilepsy.
Holtkamp, Martin; Sharan, Ashwini; Sperling, Michael R
2012-10-01
Surgery in frontal lobe epilepsy (FLE) has a worse prognosis regarding seizure freedom than anterior lobectomy in temporal lobe epilepsy. The current study aimed to assess whether intracranial interictal and ictal EEG findings in addition to clinical and scalp EEG data help to predict outcome in a series of patients who needed invasive recording for FLE surgery. Patients with FLE who had resective surgery after chronic intracranial EEG recording were included. Outcome predictors were compared in patients with seizure freedom (group 1) and those with recurrent seizures (group 2) at 19-24 months after surgery. Twenty-five patients (16 female) were included in this study. Mean age of patients at epilepsy surgery was 32.3 ± 15.6 years (range 12-70); mean duration of epilepsy was 16.9 ± 13.4 years (range 1-48). In each outcome group, magnetic resonance imaging revealed frontal lobe lesions in three patients. Fifteen patients (60%) were seizure-free (Engel class 1), 10 patients (40%) continued to have seizures (two were class II, three were class III, and five were class IV). Lack of seizure freedom was seen more often in patients with epilepsy surgery on the left frontal lobe (group 1, 13%; group 2, 70%; p = 0.009) and on the dominant (27%; 70%; p = 0.049) hemisphere as well as in patients without aura (29%; 80%; p = 0.036), whereas sex, age at surgery, duration of epilepsy, and presence of an MRI lesion in the frontal lobe or extrafrontal structures were not different between groups. Electroencephalographic characteristics associated with lack of seizure freedom included presence of interictal epileptiform discharges in scalp recordings (31%; 90%; p = 0.01). Detailed analysis of intracranial EEG revealed widespread (>2 cm) (13%; 70%; p = 0.01) in contrast to focal seizure onset as well as shorter latency to onset of seizure spread (5.8 ± 6.1 s; 1.5 ± 2.3 s; p = 0.016) and to ictal involvement of brain structures beyond the frontal lobe (23.5 ± 22.4 s; 5.8 ± 5.4 s; p = 0.025) in patients without seizure freedom. The distribution of ictal onset patterns was similar in both groups, and fast rhythmic activity in the beta to gamma range was found in 57% of seizure-free patients compared to 70% of patients with recurrent seizures. Analysis of the temporal relation between first clinical alterations and EEG seizure onset did not reveal significant differences between both groups of patients. In multivariate analysis, resection in the left hemisphere (odds ratio [OR] 12.197 95% confidence interval [95% CI] 1.33-111.832; p = 0.027) and onset of seizure spread (odds ratio [OR] 0.733, 95% CI 0.549-0.978, p = 0.035) were independent predictors of ongoing seizures. Widespread epileptogenicity as indicated by rapid onset of spread of ictal activity likely explains lack of seizure freedom following frontal resective surgery. The negative prognostic effect of surgery on the left hemisphere is less clear. Future study is needed to determine if neuronal network properties in this hemisphere point to intrinsic interhemispheric differences or if neurosurgeons are restrained by proximity to eloquent cortex. Wiley Periodicals, Inc. © 2012 International League Against Epilepsy.
A neural model of the temporal dynamics of figure-ground segregation in motion perception.
Raudies, Florian; Neumann, Heiko
2010-03-01
How does the visual system manage to segment a visual scene into surfaces and objects and manage to attend to a target object? Based on psychological and physiological investigations, it has been proposed that the perceptual organization and segmentation of a scene is achieved by the processing at different levels of the visual cortical hierarchy. According to this, motion onset detection, motion-defined shape segregation, and target selection are accomplished by processes which bind together simple features into fragments of increasingly complex configurations at different levels in the processing hierarchy. As an alternative to this hierarchical processing hypothesis, it has been proposed that the processing stages for feature detection and segregation are reflected in different temporal episodes in the response patterns of individual neurons. Such temporal epochs have been observed in the activation pattern of neurons as low as in area V1. Here, we present a neural network model of motion detection, figure-ground segregation and attentive selection which explains these response patterns in an unifying framework. Based on known principles of functional architecture of the visual cortex, we propose that initial motion and motion boundaries are detected at different and hierarchically organized stages in the dorsal pathway. Visual shapes that are defined by boundaries, which were generated from juxtaposed opponent motions, are represented at different stages in the ventral pathway. Model areas in the different pathways interact through feedforward and modulating feedback, while mutual interactions enable the communication between motion and form representations. Selective attention is devoted to shape representations by sending modulating feedback signals from higher levels (working memory) to intermediate levels to enhance their responses. Areas in the motion and form pathway are coupled through top-down feedback with V1 cells at the bottom end of the hierarchy. We propose that the different temporal episodes in the response pattern of V1 cells, as recorded in recent experiments, reflect the strength of modulating feedback signals. This feedback results from the consolidated shape representations from coherent motion patterns and the attentive modulation of responses along the cortical hierarchy. The model makes testable predictions concerning the duration and delay of the temporal episodes of V1 cell responses as well as their response variations that were caused by modulating feedback signals. Copyright 2009 Elsevier Ltd. All rights reserved.
Scalp EEG Ictal Gamma and Beta Activity during Infantile Spasms: Evidence of Focality
Nariai, Hiroki; Beal, Jules; Galanopoulou, Aristea S.; Mowrey, Wenzhu B.; Bickel, Stephan; Sogawa, Yoshimi; Jehle, Rana; Shinnar, Shlomo; Moshé, Solomon L.
2017-01-01
Objective We investigated temporal and spatial characteristics of ictal gamma and beta activity on scalp EEG during spasms in patients with West syndrome (WS) to evaluate potential focal cortical onset. Methods A total of 1033 spasms from 34 patients with WS of various etiologies were analyzed in video-EEG using time-frequency analysis. Ictal gamma (35–90 Hz) and beta (15–30 Hz) activities were correlated with visual symmetry of spasms, objective EMG (electromyography) analysis, and etiology of WS. Results Prior to the ictal motor manifestation, focal ictal gamma activity emerged from one hemisphere (71%, 24/34) or from midline (26%, 9/34), and was rarely simultaneously bilateral (3%, 1/34). Focal ictal beta activity emerged from either one hemisphere (68%, 23/34) or from midline (32%, 11/34). Onsets of focal ictal gamma and beta activity were most commonly observed around the parietal areas. Focal ictal gamma activity propagated faster than ictal beta activity to adjacent electrodes (median: 65 vs. 170 ms, p<0.01), and to contralateral hemisphere (median: 100 vs. 170 ms, p=0.01). Asymmetric peak amplitude of ictal gamma activity in the centroparietal areas (C3-P3 vs. C4-P4) correlated with asymmetric semiology. On the other hand, the majority of visually symmetric spasms showed asymmetry in peak amplitude and interhemispheric onset latency difference in both ictal gamma and beta activity. Significance Spasms may be a seizure with focal electrographic onset regardless of visual symmetry. Asymmetric involvement of ictal gamma activity to the centroparietal areas may determine the motor manifestations in WS. Scalp EEG ictal gamma and beta activity may be useful to demonstrate localized seizure onset in infants with WS. PMID:28397999
Chipaux, Mathilde; Szurhaj, William; Vercueil, Laurent; Milh, Mathieu; Villeneuve, Nathalie; Cances, Claude; Auvin, Stéphane; Chassagnon, Serge; Napuri, Sylvia; Allaire, Catherine; Derambure, Philippe; Marchal, Cécile; Caubel, Isabelle; Ricard-Mousnier, Brigitte; N'Guyen The Tich, Sylvie; Pinard, Jean-Marc; Bahi-Buisson, Nadia; de Baracé, Claire; Kahane, Philippe; Gautier, Agnès; Hamelin, Sophie; Coste-Zeitoun, Delphine; Rosenberg, Sarah-Dominique; Clerson, Pierre; Nabbout, Rima; Kuchenbuch, Mathieu; Picot, Marie-Christine; Kaminska, Anna
2016-05-01
To obtain perspective on epilepsy in patients referred to tertiary centers in France, and describe etiology, epilepsy syndromes, and identify factors of drug resistance and comorbidities. We performed a cross-sectional analysis of the characteristics of 5,794 pediatric and adult patients with epilepsy included in a collaborative database in France between 2007 and 2013. Comparisons between groups used Student's t-test or Fisher's exact test for binary or categorical variables. Factors associated with drug resistance and intellectual disability were evaluated in multi-adjusted logistic regression models. Mean age at inclusion was 17.9 years; children accounted for 67%. Epilepsy was unclassified in 20% of patients, and etiology was unknown in 65%, including those with idiopathic epilepsies. Etiologies differed significantly in adult- when compared to pediatric-onset epilepsy; however, among focal structural epilepsies, mesial temporal lobe epilepsy with hippocampal sclerosis began as often in the pediatric as in adult age range. Drug resistance concerned 53% of 4,210 patients evaluable for seizure control and was highest in progressive myoclonic epilepsy (89%), metabolic diseases (84%), focal cortical dysplasia (70%), other cortical malformations (69%), and mesial temporal lobe epilepsy with hippocampal sclerosis (67%). Fifty-nine percent of patients with focal structural epilepsy and 69% with epileptic encephalopathies were drug resistant; however, 40-50% of patients with West syndrome and epileptic encephalopathy with continuous spike-and-waves during sleep were seizure-free. Ages at onset in infancy and in young adults shared the highest risk of drug resistance. Epilepsy onset in infancy comprised the highest risk of intellectual disability, whereas specific cognitive impairment affected 36% of children with idiopathic focal epilepsy. Our study provides a snapshot on epilepsy in patients referred to tertiary centers and discloses needs for diagnosis and treatment. Large databases help identify patients with rare conditions that could benefit from specific prospective studies. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.
NASA Astrophysics Data System (ADS)
Rubolini, Diego; Ambrosini, Roberto; Caffi, Mario; Brichetti, Pierandrea; Armiraglio, Stefano; Saino, Nicola
2007-08-01
Climate change is affecting the phenology of seasonal events in Europe and the Northern Hemisphere, as shown by several studies of birds’ timing of migration and reproduction. Here, we analyse the long-term (1982-2006) trends of first arrival dates of four long-distance migratory birds [swift ( Apus apus), nightingale ( Luscinia megarhynchos), barn swallow ( Hirundo rustica), and house martin ( Delichon urbicum)] and first egg laying dates of two migrant (swift, barn swallow) and two resident species [starling ( Sturnus vulgaris), Italian sparrow ( Passer italiae)] at a study site in northern Italy. We also addressed the effects of local weather (temperature and precipitation) and a climate index (the North Atlantic Oscillation, NAO) on the interannual variability of phenological events. We found that the swift and the barn swallow significantly advanced both arrival and laying dates, whereas all other species did not show any significant temporal trend in either arrival or laying date. The earlier arrival of swifts was explained by increasing local temperatures in April, whereas this was not the case for arrival dates of swallows and first egg laying dates of both species. In addition, arrival dates of house martins were earlier following high NAO winters, while nightingale arrival was earlier when local spring rainfall was greater. Finally, Italian sparrow onset of reproduction was anticipated by greater spring rainfall, but delayed by high spring NAO anomalies, and swift’s onset of reproduction was anticipated by abundant rainfall prior to reproduction. There were no significant temporal trends in the interval between onset of laying and arrival in either the swift or the barn swallow. Our findings therefore indicate that birds may show idiosyncratic responses to climate variability at different spatial scales, though some species may be adjusting their calendar to rapidly changing climatic conditions.
Jacobs, Julia; Banks, Sarah; Zelmann, Rina; Zijlmans, Maeike; Jones-Gotman, Marilyn; Gotman, Jean
2016-09-01
High-frequency oscillations (HFOs, 80-500Hz) are newly-described EEG markers of epileptogenicity. The proportion of physiological and pathological HFOs is unclear, as frequency analysis is insufficient for separating the two types of events. For instance, ripples (80-250Hz) also occur physiologically during memory consolidation processes in medial temporal lobe structures. We investigated the correlation between HFO rates and memory performance. Patients investigated with bilateral medial temporal electrodes and an intellectual capacity allowing for memory testing were included. High-frequency oscillations were visually marked, and rates of HFOs were calculated for each channel during slow-wave sleep. Patients underwent three verbal and three nonverbal memory tests. They were grouped into severe impairment, some impairment, mostly intact, or intact for verbal and nonverbal memory. We calculated a Pearson correlation between HFO rates in the hippocampi and the memory category and compared HFO rates in each hippocampus with the corresponding (verbal - left, nonverbal - right) memory result using Wilcoxon rank-sum test. Twenty patients were included; ten had bilateral, five had unilateral, and five had no memory impairment. Unilateral memory impairment was verbal in one patient and nonverbal in four. There was no correlation between HFO rates and memory performance in seizure onset areas. There was, however, a significant negative correlation between the overall memory performance and ripple rates (r=-0.50, p=0.03) outside the seizure onset zone. Our results suggest that the majority of spontaneous hippocampal ripples, as defined in the present study, may reflect pathological activity, taking into account the association with memory impairment. The absence of negative correlation between memory performance and HFO rates in seizure onset areas could be explained by HFO rates in the SOZ being generally so high that differences between areas with remaining and impaired memory function cannot be seen. Copyright © 2016 Elsevier Inc. All rights reserved.
Lack of association between measles virus vaccine and autism with enteropathy: a case-control study.
Hornig, Mady; Briese, Thomas; Buie, Timothy; Bauman, Margaret L; Lauwers, Gregory; Siemetzki, Ulrike; Hummel, Kimberly; Rota, Paul A; Bellini, William J; O'Leary, John J; Sheils, Orla; Alden, Errol; Pickering, Larry; Lipkin, W Ian
2008-09-04
The presence of measles virus (MV) RNA in bowel tissue from children with autism spectrum disorders (ASD) and gastrointestinal (GI) disturbances was reported in 1998. Subsequent investigations found no associations between MV exposure and ASD but did not test for the presence of MV RNA in bowel or focus on children with ASD and GI disturbances. Failure to replicate the original study design may contribute to continued public concern with respect to the safety of the measles, mumps, and rubella (MMR) vaccine. The objective of this case-control study was to determine whether children with GI disturbances and autism are more likely than children with GI disturbances alone to have MV RNA and/or inflammation in bowel tissues and if autism and/or GI episode onset relate temporally to receipt of MMR. The sample was an age-matched group of US children undergoing clinically-indicated ileocolonoscopy. Ileal and cecal tissues from 25 children with autism and GI disturbances and 13 children with GI disturbances alone (controls) were evaluated by real-time reverse transcription (RT)-PCR for presence of MV RNA in three laboratories blinded to diagnosis, including one wherein the original findings suggesting a link between MV and ASD were reported. The temporal order of onset of GI episodes and autism relative to timing of MMR administration was examined. We found no differences between case and control groups in the presence of MV RNA in ileum and cecum. Results were consistent across the three laboratory sites. GI symptom and autism onset were unrelated to MMR timing. Eighty-eight percent of ASD cases had behavioral regression. This study provides strong evidence against association of autism with persistent MV RNA in the GI tract or MMR exposure. Autism with GI disturbances is associated with elevated rates of regression in language or other skills and may represent an endophenotype distinct from other ASD.
de Barros, Amanda Cristian Serafim; Furlan, Ana Eliza Romano; Marques, Lucia Helena Neves; de Araújo Filho, Gerardo Maria
2018-05-01
The objective of this study was to investigate the psychological aspects and psychiatric disorders (PDs) in patients dually diagnosed with refractory temporal lobe epilepsy and mesial temporal sclerosis (TLE-MTS) with psychogenic nonepileptic seizures (PNES) treated in a tertiary center in order to find any gender differences in psychiatric, clinical, and sociodemographic characteristics. Psychiatric assessment was performed through the Diagnostic and Statistical Manual for Psychiatric Disorders - 5th edition (DSM-5). The Brazilian versions of the Medical Outcomes Study 36 (SF-36), Toronto Alexithymia Scale (TAS-20), Hamilton Depression Scale (HAM-D), Hamilton Anxiety Scale (HAM-A), and Ways of Coping Checklist (WCC) were applied. Of the 47 patients enrolled (25 females; 53.2%), females were significantly more likely to have a history of previous psychiatric treatment (P=0.02), family history of epilepsy (P=0.01), and family history of PD (P=0.03). They also presented earlier onset of PNES (P=0.01) and higher PNES duration (P=0.02) compared with males. Major depressive disorder (MDD) was the most frequent PD (24; 51.0%). Females presented more psychiatric diagnoses (P<0.001), more diagnoses of MDD (P<0.001), and posttraumatic stress disorder (PTSD) (P<0.001). Several differences regarding quality of life, levels of alexithymia, anxiety/depressive symptoms, and coping strategies were observed between groups. There are significant gender differences in psychiatric, clinical, and sociodemographic aspects in a group of patients with TLE-MTS and PNES, as well as in quality of life, levels of alexithymia, anxiety/depressive symptoms, and coping strategies. These gender differences suggest that specific approaches might be adopted depending on the patient's gender and, consequently, their distinct psychological/psychiatric profile. Copyright © 2018 Elsevier Inc. All rights reserved.
Hinchliffe, Doug J; Meredith, William R; Yeater, Kathleen M; Kim, Hee Jin; Woodward, Andrew W; Chen, Z Jeffrey; Triplett, Barbara A
2010-05-01
Gene expression profiles of developing cotton (Gossypium hirsutum L.) fibers from two near-isogenic lines (NILs) that differ in fiber-bundle strength, short-fiber content, and in fewer than two genetic loci were compared using an oligonucleotide microarray. Fiber gene expression was compared at five time points spanning fiber elongation and secondary cell wall (SCW) biosynthesis. Fiber samples were collected from field plots in a randomized, complete block design, with three spatially distinct biological replications for each NIL at each time point. Microarray hybridizations were performed in a loop experimental design that allowed comparisons of fiber gene expression profiles as a function of time between the two NILs. Overall, developmental expression patterns revealed by the microarray experiment agreed with previously reported cotton fiber gene expression patterns for specific genes. Additionally, genes expressed coordinately with the onset of SCW biosynthesis in cotton fiber correlated with gene expression patterns of other SCW-producing plant tissues. Functional classification and enrichment analysis of differentially expressed genes between the two NILs revealed that genes associated with SCW biosynthesis were significantly up-regulated in fibers of the high-fiber quality line at the transition stage of cotton fiber development. For independent corroboration of the microarray results, 15 genes were selected for quantitative reverse transcription PCR analysis of fiber gene expression. These analyses, conducted over multiple field years, confirmed the temporal difference in fiber gene expression between the two NILs. We hypothesize that the loci conferring temporal differences in fiber gene expression between the NILs are important regulatory sequences that offer the potential for more targeted manipulation of cotton fiber quality.
Urakawa, Tomokazu; Ogata, Katsuya; Kimura, Takahiro; Kume, Yuko; Tobimatsu, Shozo
2015-01-01
Disambiguation of a noisy visual scene with prior knowledge is an indispensable task of the visual system. To adequately adapt to a dynamically changing visual environment full of noisy visual scenes, the implementation of knowledge-mediated disambiguation in the brain is imperative and essential for proceeding as fast as possible under the limited capacity of visual image processing. However, the temporal profile of the disambiguation process has not yet been fully elucidated in the brain. The present study attempted to determine how quickly knowledge-mediated disambiguation began to proceed along visual areas after the onset of a two-tone ambiguous image using magnetoencephalography with high temporal resolution. Using the predictive coding framework, we focused on activity reduction for the two-tone ambiguous image as an index of the implementation of disambiguation. Source analysis revealed that a significant activity reduction was observed in the lateral occipital area at approximately 120 ms after the onset of the ambiguous image, but not in preceding activity (about 115 ms) in the cuneus when participants perceptually disambiguated the ambiguous image with prior knowledge. These results suggested that knowledge-mediated disambiguation may be implemented as early as approximately 120 ms following an ambiguous visual scene, at least in the lateral occipital area, and provided an insight into the temporal profile of the disambiguation process of a noisy visual scene with prior knowledge. © 2014 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Moustafa, Ahmed A.; Wufong, Ella; Servatius, Richard J.; Pang, Kevin C. H.; Gluck, Mark A.; Myers, Catherine E.
2013-01-01
A recurrent-network model provides a unified account of the hippocampal region in mediating the representation of temporal information in classical eyeblink conditioning. Much empirical research is consistent with a general conclusion that delay conditioning (in which the conditioned stimulus CS and unconditioned stimulus US overlap and co-terminate) is independent of the hippocampal system, while trace conditioning (in which the CS terminates before US onset) depends on the hippocampus. However, recent studies show that, under some circumstances, delay conditioning can be hippocampal-dependent and trace conditioning can be spared following hippocampal lesion. Here, we present an extension of our prior trial-level models of hippocampal function and stimulus representation that can explain these findings within a unified framework. Specifically, the current model includes adaptive recurrent collateral connections that aid in the representation of intra-trial temporal information. With this model, as in our prior models, we argue that the hippocampus is not specialized for conditioned response timing, but rather is a general-purpose system that learns to predict the next state of all stimuli given the current state of variables encoded by activity in recurrent collaterals. As such, the model correctly predicts that hippocampal involvement in classical conditioning should be critical not only when there is an intervening trace interval, but also when there is a long delay between CS onset and US onset. Our model simulates empirical data from many variants of classical conditioning, including delay and trace paradigms in which the length of the CS, the inter-stimulus interval, or the trace interval is varied. Finally, we discuss model limitations, future directions, and several novel empirical predictions of this temporal processing model of hippocampal function and learning. PMID:23178699
Varatharajah, Yogatheesan; Berry, Brent; Cimbalnik, Jan; Kremen, Vaclav; Van Gompel, Jamie; Stead, Matt; Brinkmann, Benjamin; Iyer, Ravishankar; Worrell, Gregory
2018-08-01
An ability to map seizure-generating brain tissue, i.e. the seizure onset zone (SOZ), without recording actual seizures could reduce the duration of invasive EEG monitoring for patients with drug-resistant epilepsy. A widely-adopted practice in the literature is to compare the incidence (events/time) of putative pathological electrophysiological biomarkers associated with epileptic brain tissue with the SOZ determined from spontaneous seizures recorded with intracranial EEG, primarily using a single biomarker. Clinical translation of the previous efforts suffers from their inability to generalize across multiple patients because of (a) the inter-patient variability and (b) the temporal variability in the epileptogenic activity. Here, we report an artificial intelligence-based approach for combining multiple interictal electrophysiological biomarkers and their temporal characteristics as a way of accounting for the above barriers and show that it can reliably identify seizure onset zones in a study cohort of 82 patients who underwent evaluation for drug-resistant epilepsy. Our investigation provides evidence that utilizing the complementary information provided by multiple electrophysiological biomarkers and their temporal characteristics can significantly improve the localization potential compared to previously published single-biomarker incidence-based approaches, resulting in an average area under ROC curve (AUC) value of 0.73 in a cohort of 82 patients. Our results also suggest that recording durations between 90 min and 2 h are sufficient to localize SOZs with accuracies that may prove clinically relevant. The successful validation of our approach on a large cohort of 82 patients warrants future investigation on the feasibility of utilizing intra-operative EEG monitoring and artificial intelligence to localize epileptogenic brain tissue. Broadly, our study demonstrates the use of artificial intelligence coupled with careful feature engineering in augmenting clinical decision making.
Toller, Gianina; Adhimoolam, Babu; Grunwald, Thomas; Huppertz, Hans-Jürgen; König, Kristina; Jokeit, Hennric
2015-01-01
Nonvisual spatial navigation functional magnetic resonance imaging (fMRI) may help clinicians determine memory lateralization in blind individuals with refractory mesial temporal lobe epilepsy (MTLE). We report on an exceptional case of a congenitally blind woman with late-onset left MTLE undergoing presurgical memory fMRI. To activate mesial temporal structures despite the lack of visual memory, the patient was requested to recall familiar routes using nonvisual multisensory and verbal cues. Our findings demonstrate the diagnostic value of a nonvisual fMRI task to lateralize MTLE despite congenital blindness and may therefore contribute to the risk assessment for postsurgical amnesia in rare cases with refractory MTLE and accompanying congenital blindness.
NASA Astrophysics Data System (ADS)
Chen, Chuan-Jie; Li, Shou-Zhe; Zhang, Jialiang; Liu, Dongping
2018-01-01
A pulse-modulated argon surface wave plasma generated at atmospheric pressure is characterized by means of temporally resolved optical emission spectroscopy (OES). The temporal evolution of the gas temperature, the electron temperature and density, the radiative species of atomic Ar, and the molecular band of OH(A) and N2(C) are investigated experimentally by altering the instantaneous power, pulse repetitive frequency, and duty ratio. We focused on the physical phenomena occurring at the onset of the time-on period and after the power interruption at the start of the time-off period. Meanwhile, the results are discussed qualitatively for an in-depth insight of its dynamic evolution.
Audiovisual Temporal Processing and Synchrony Perception in the Rat.
Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L
2016-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.
Audiovisual Temporal Processing and Synchrony Perception in the Rat
Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.
2017-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580
Riehle, Alexa; Wirtssohn, Sarah; Grün, Sonja; Brochier, Thomas
2013-01-01
Grasping an object involves shaping the hand and fingers in relation to the object’s physical properties. Following object contact, it also requires a fine adjustment of grasp forces for secure manipulation. Earlier studies suggest that the control of hand shaping and grasp force involve partially segregated motor cortical networks. However, it is still unclear how information originating from these networks is processed and integrated. We addressed this issue by analyzing massively parallel signals from population measures (local field potentials, LFPs) and single neuron spiking activities recorded simultaneously during a delayed reach-to-grasp task, by using a 100-electrode array chronically implanted in monkey motor cortex. Motor cortical LFPs exhibit a large multi-component movement-related potential (MRP) around movement onset. Here, we show that the peak amplitude of each MRP component and its latency with respect to movement onset vary along the cortical surface covered by the array. Using a comparative mapping approach, we suggest that the spatio-temporal structure of the MRP reflects the complex physical properties of the reach-to-grasp movement. In addition, we explored how the spatio-temporal structure of the MRP relates to two other measures of neuronal activity: the temporal profile of single neuron spiking activity at each electrode site and the somatosensory receptive field properties of single neuron activities. We observe that the spatial representations of LFP and spiking activities overlap extensively and relate to the spatial distribution of proximal and distal representations of the upper limb. Altogether, these data show that, in motor cortex, a precise spatio-temporal pattern of activation is involved for the control of reach-to-grasp movements and provide some new insight about the functional organization of motor cortex during reaching and object manipulation. PMID:23543888
Meyer, Georg F; Harrison, Neil R; Wuerger, Sophie M
2013-08-01
An extensive network of cortical areas is involved in multisensory object and action recognition. This network draws on inferior frontal, posterior temporal, and parietal areas; activity is modulated by familiarity and the semantic congruency of auditory and visual component signals even if semantic incongruences are created by combining visual and auditory signals representing very different signal categories, such as speech and whole body actions. Here we present results from a high-density ERP study designed to examine the time-course and source location of responses to semantically congruent and incongruent audiovisual speech and body actions to explore whether the network involved in action recognition consists of a hierarchy of sequentially activated processing modules or a network of simultaneously active processing sites. We report two main results:1) There are no significant early differences in the processing of congruent and incongruent audiovisual action sequences. The earliest difference between congruent and incongruent audiovisual stimuli occurs between 240 and 280 ms after stimulus onset in the left temporal region. Between 340 and 420 ms, semantic congruence modulates responses in central and right frontal areas. Late differences (after 460 ms) occur bilaterally in frontal areas.2) Source localisation (dipole modelling and LORETA) reveals that an extended network encompassing inferior frontal, temporal, parasaggital, and superior parietal sites are simultaneously active between 180 and 420 ms to process auditory–visual action sequences. Early activation (before 120 ms) can be explained by activity in mainly sensory cortices. . The simultaneous activation of an extended network between 180 and 420 ms is consistent with models that posit parallel processing of complex action sequences in frontal, temporal and parietal areas rather than models that postulate hierarchical processing in a sequence of brain regions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Van Assche, Lies; Morrens, Manuel; Luyten, Patrick; Van de Ven, Luc; Vandenbulcke, Mathieu
2017-12-01
The current review discusses neuropsychological profiles and the longitudinal course of cognitive dysfunction in Late Onset Schizophrenia (LOS) and Very-late-onset schizophrenia-like psychosis (VLOSLP), and attempts to clarify its neurobiological underpinnings. A systematic literature search resulted in 29 publications describing original research on the neuropsychology of LOS/VLOSLP and 46 studies focussing on neurobiology. Although mildly progressive cognitive impairment is usually present, only a subgroup of LOS/VLOSLP develops dementia during a 10-year follow-up succeeding the onset of psychosis. This coincides with the absence of neuropathological evidence for neurodegeneration in many cases. Cognitive deterioration is characterized by deficits in (working) memory, language, psychomotor speed and executive functioning. Underlying neurobiological changes encompass white matter pathology, increased ventricle-to-brain ratio (VBR) with coinciding atrophy and hypo-metabolism of frontal, temporal and subcortical areas. Multiple changes in neurobiology and cognition contributing to LOS/VLOSLP may reflect stress-related accelerated brain aging rather than neurodegenerative pathology. Their involvement in the onset of illness, however, might be inversely proportional to pre-existing (psychosocial and/or genetic) vulnerability to psychosis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Episodic and semantic memory in children with mesial temporal sclerosis.
Rzezak, Patricia; Guimarães, Catarina; Fuentes, Daniel; Guerreiro, Marilisa M; Valente, Kette Dualibi Ramos
2011-07-01
The aim of this study was to analyze semantic and episodic memory deficits in children with mesial temporal sclerosis (MTS) and their correlation with clinical epilepsy variables. For this purpose, 19 consecutive children and adolescents with MTS (8 to 16 years old) were evaluated and their performance on five episodic memory tests (short- and long-term memory and learning) and four semantic memory tests was compared with that of 28 healthy volunteers. Patients performed worse on tests of immediate and delayed verbal episodic memory, visual episodic memory, verbal and visual learning, mental scanning for semantic clues, object naming, word definition, and repetition of sentences. Clinical variables such as early age at seizure onset, severity of epilepsy, and polytherapy impaired distinct types of memory. These data confirm that children with MTS have episodic memory deficits and add new information on semantic memory. The data also demonstrate that clinical variables contribute differently to episodic and semantic memory performance. Copyright © 2011 Elsevier Inc. All rights reserved.
Franken, Tom P; Joris, Philip X; Smith, Philip H
2018-06-14
The brainstem's lateral superior olive (LSO) is thought to be crucial for localizing high-frequency sounds by coding interaural sound level differences (ILD). Its neurons weigh contralateral inhibition against ipsilateral excitation, making their firing rate a function of the azimuthal position of a sound source. Since the very first in vivo recordings, LSO principal neurons have been reported to give sustained and temporally integrating 'chopper' responses to sustained sounds. Neurons with transient responses were observed but largely ignored and even considered a sign of pathology. Using the Mongolian gerbil as a model system, we have obtained the first in vivo patch clamp recordings from labeled LSO neurons and find that principal LSO neurons, the most numerous projection neurons of this nucleus, only respond at sound onset and show fast membrane features suggesting an importance for timing. These results provide a new framework to interpret previously puzzling features of this circuit. © 2018, Franken et al.
Systematic review: relationships between sleep and gastro-oesophageal reflux.
Dent, J; Holloway, R H; Eastwood, P R
2013-10-01
Gastro-oesophageal reflux disease (GERD) adversely impacts on sleep, but the mechanism remains unclear. To review the literature concerning gastro-oesophageal reflux during the sleep period, with particular reference to the sleep/awake state at reflux onset. Studies identified by systematic literature searches were assessed. Overall patterns of reflux during the sleep period show consistently that oesophageal acid clearance is slower, and reflux frequency and oesophageal acid exposure are higher in patients with GERD than in healthy individuals. Of the 17 mechanistic studies identified by the searches, 15 reported that a minority of reflux episodes occurred during stable sleep, but the prevailing sleep state at the onset of reflux in these studies remains unclear owing to insufficient temporal resolution of recording or analysis methods. Two studies, in healthy individuals and patients with GERD, analysed sleep and pH with adequate resolution for temporal alignment of sleep state and the onset of reflux: all 232 sleep period reflux episodes evaluated occurred during arousals from sleep lasting less than 15 s or during longer duration awakenings. Six mechanistic studies found that transient lower oesophageal sphincter relaxations were the most common mechanism of sleep period reflux. Contrary to the prevailing view, subjective impairment of sleep in GERD is unlikely to be due to the occurrence of reflux during stable sleep, but could result from slow clearance of acid reflux that occurs during arousals or awakenings from sleep. Definitive studies are needed on the sleep/awake state at reflux onset across the full GERD spectrum. © 2013 John Wiley & Sons Ltd.
Annotation: PANDAS--A Model for Human Autoimmune Disease
ERIC Educational Resources Information Center
Swedo, Susan E.; Grant, Paul J.
2005-01-01
Background: Pediatric Autoimmune Neuropsychiatric Disorders Associated with Streptococcus infections (PANDAS) is a recently recognized syndrome in which pre-adolescent children have abrupt onsets of tics and/or obsessive-compulsive symptoms, a recurring and remitting course of illness temporally related to streptococcal infections, and associated…
Gallistel, C R; Tucci, Valter; Nolan, Patrick M; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro
2014-03-05
We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability.
Gallistel, C. R.; Tucci, Valter; Nolan, Patrick M.; Schachner, Melitta; Jakovcevski, Igor; Kheifets, Aaron; Barboza, Luendro
2014-01-01
We used a fully automated system for the behavioural measurement of physiologically meaningful properties of basic mechanisms of cognition to test two strains of heterozygous mutant mice, Bfc (batface) and L1, and their wild-type littermate controls. Both of the target genes are involved in the establishment and maintenance of synapses. We find that the Bfc heterozygotes show reduced precision in their representation of interval duration, whereas the L1 heterozygotes show increased precision. These effects are functionally specific, because many other measures made on the same mice are unaffected, namely: the accuracy of matching temporal investment ratios to income ratios in a matching protocol, the rate of instrumental and classical conditioning, the latency to initiate a cued instrumental response, the trials on task and the impulsivity in a switch paradigm, the accuracy with which mice adjust timed switches to changes in the temporal constraints, the days to acquisition, and mean onset time and onset variability in the circadian anticipation of food availability. PMID:24446498
Long-term retrograde amnesia...the crucial role of the hippocampus.
Cipolotti, L; Shallice, T; Chan, D; Fox, N; Scahill, R; Harrison, G; Stevens, J; Rudge, P
2001-01-01
For patients with hippocampal pathology, disagreement exists in the literature over whether retrograde amnesia is temporally limited or very extensive depending on whether the anatomical damage is restricted to this structure or also involves additional temporal cortex. We report a comprehensive assessment of retrograde and anterograde memory functions of a severely global amnesic patient (VC). We found that he presented with a remarkably extensive and basically ungraded retrograde amnesia. This impairment profoundly affected four decades preceding the onset of his amnesia and encompassed both non personal and personal facts and events. VC also presented with a severe anterograde amnesia and a deficit in the acquisition of new semantic knowledge in the post-morbid period. Detailed MRI volumetric measurements revealed gross abnormalities in both hippocampi which were markedly shrunken. Of relevance to the debate on retrograde amnesia were the observations that the volumes of both entorhinal cortices and the remainder of both temporal lobes were normal. These data suggest that the hippocampus is critical not only for the efficient encoding and hence normal recall of new information but also for the recall of episodic information acquired before the onset of amnesia. Our results are compatible with the view that retrograde amnesia is both extensive and ungraded when the damage is limited to the hippocampus.
Brain Structure and Organization Five Decades After Childhood Onset Epilepsy
Garcia-Ramos, Camille; Bobholz, Sam; Dabbs, Kevin; Hermann, Bruce; Joutsa, Juho; Rinne, Juha O.; Karrasch, Mira; Prabhakaran, Vivek; Shinnar, Shlomo; Sillanpää, Matti
2017-01-01
The purpose of this project was to characterize brain structure and organization in persons with active and remitted childhood onset epilepsy 50 years after diagnosis compared to healthy controls. Participants from a population-based investigation of uncomplicated childhood onset epilepsy were followed up 5 decades later. Forty-one participants had a history of childhood onset epilepsy (mean age of onset= 5.2 yrs, current chronological age= 56.0 yrs) and were compared to 48 population-based controls (mean age= 55.9 yrs). Of the epilepsy participants, 8 had persisting active epilepsy and in 33 the epilepsy had remitted. All participants underwent 3T MRI with subsequent vertex analysis of cortical volume, thickness, surface area and gyral complexity. In addition, cortical and subcortical volumes, including regions of the frontal, parietal, temporal, and occipital lobes, and subcortical structures including amygdala, thalamus, and hippocampus, were analyzed using graph theory techniques. There were modest group differences in traditional vertex-based analyses of cortical volume, thickness, surface area and gyral index, as well as across volumes of subcortical structures, after correction for multiple comparisons. Graph theory analyses revealed suboptimal topological structural organization with enhanced network segregation and reduced global integration in the epilepsy participants compared to controls, these patterns significantly more extreme in the active epilepsy group. Furthermore, both groups with epilepsy presented a greater number of higher Z-score regions in betweenness centrality (BC) than lower Z-score regions compared to controls. Also, contrary to the group with remitted epilepsy, patients with active epilepsy presented most of their high BC Z-score regions in subcortical areas including the amygdala, thalamus, hippocampus, pallidum and accumbens. Overall, this population-based investigation of long term outcome (5 decades) of childhood onset epilepsy reveals persisting abnormalities, especially when examined by graph theoretical measurements, and provides new insights into the very long term outcomes of active and remitted epilepsy. PMID:28370719
Prichard, George; Weiller, Cornelius; Fritsch, Brita; Reis, Janine
2014-01-01
Noninvasive electrical brain stimulation (NEBS) with transcranial direct current (tDCS) or random noise stimulation (tRNS) applied to the primary motor cortex (M1) can augment motor learning. We tested whether different types of stimulation alter particular aspects of learning a tracing task over three consecutive days, namely skill acquisition (online/within session effects) or consolidation (offline/between session effects). Motor training on a tracing task over three consecutive days was combined with different types and montages of stimulation (tDCS, tRNS). Unilateral M1 stimulation using tRNS as well as unilateral and bilateral M1 tDCS all enhanced motor skill learning compared to sham stimulation. In all groups, this appeared to be driven by online effects without an additional offline effect. Unilateral tDCS resulted in large skill gains immediately following the onset of stimulation, while tRNS exerted more gradual effects. Control stimulation of the right temporal lobe did not enhance skill learning relative to sham. The mechanisms of action of tDCS and tRNS are likely different. Hence, the time course of skill improvement within sessions could point to specific and temporally distinct interactions with the physiological process of motor skill learning. Exploring the parameters of NEBS on different tasks and in patients with brain injury will allow us to maximize the benefits of NEBS for neurorehabilitation. Copyright © 2014 Elsevier Inc. All rights reserved.
Halonen, Jaana I; Virtanen, Marianna; Leineweber, Constanze; Rod, Naja H; Westerlund, Hugo; Magnusson Hanson, Linda L
2018-03-27
Existing evidence of an association between effort-reward imbalance (ERI) at work and musculoskeletal pain is limited, preventing reliable conclusions about the magnitude and direction of the relation. In a large longitudinal study, we examined whether the onset of ERI is associated with subsequent onset of musculoskeletal pain among those free of pain at baseline, and vice versa, whether onset of pain leads to onset of ERI. Data were from the Swedish Longitudinal Occupational Survey of Health (SLOSH) study. We used responses from 3 consecutive study phases to examine whether exposure onset between the first and second phases predicts onset of the outcome in the third phase (N = 4079). Effort-reward imbalance was assessed with a short form of the ERI model. Having neck-shoulder and low back pain affecting life to some degree in the past 3 months was also assessed in all study phases. As covariates, we included age, sex, marital status, occupational status, and physically strenuous work. In the adjusted models, onset of ERI was associated with onset of neck-shoulder pain (relative risk [RR] 1.51, 95% confidence interval [CI] 1.21-1.89) and low back pain (RR 1.21, 95% CI 0.97-1.50). The opposite was also observed, as onset of neck-shoulder pain increased the risk of subsequent onset of ERI (RR 1.36, 95% CI 1.05-1.74). Our findings suggest that when accounting for the temporal order, the associations between ERI and musculoskeletal pain that affects life are bidirectional, implying that interventions to both ERI and pain may be worthwhile to prevent a vicious cycle.
The role of unique color changes and singletons in attention capture.
von Mühlenen, Adrian; Conci, Markus
2016-10-01
Previous studies have shown that a sudden color change is typically less salient in capturing attention than the onset of a new object. Von Mühlenen, Rempel, and Enns (Psychological Science 16: 979-986, 2005) showed that a color change can capture attention as effectively as the onset of a new object given that it occurs during a period of temporal calm, where no other display changes happen. The current study presents a series of experiments that further investigate the conditions under which a change in color captures attention, by disentangling the change signal from the onset of a singleton. The results show that the item changing color receives attentional priority irrespective of whether this change goes along with the appearance of a singleton or not.
Early onset of bilateral brachial plexopathy during mantle radiotherapy for Hodgkin's disease.
Churn, M; Clough, V; Slater, A
2000-01-01
We report a case of brachial plexus neuropathy occurring in a 50-year-old man treated with standard mantle radiotherapy for early-stage Hodgkin's disease. A dose of 35 Gy in 20 fractions was given to the mantle field, following by a boost to the right side of the neck (8 Gy in four fractions). The onset of symptoms was early in the course of treatment and a gradual and almost full recovery was observed over 3 years after completion ofradiotherapy. The diagnosis was supported by electromyography. The temporal relationship of the radiotherapy and the onset of the brachial plexus neuropathy suggests a cause and effect, but this association is rarely reported after mantle radiotherapy. We review the aetiology of this condition and postulate possible mechanisms in this patient.
Karageorgiou, Elissaios; Koutlas, Ioannis G; Alonso, Aurelio A; Leuthold, Arthur C; Lewis, Scott M; Georgopoulos, Apostolos P
2008-08-01
We used magnetoencephalography (MEG) in 10 healthy human subjects to study cortical responses to tactile stimuli applied to the fingertips of digits 2-5 of the right hand. Each stimulus lasted 50 ms and was produced by air-driven elastic membranes. Four-hundred stimuli were delivered on each finger in three temporal patterns (conditions). In the "Discrete" condition, stimuli were applied to each finger repetitively with an interstimulus interval (ISI) of 1-2 s. In the "Continuous" condition, stimuli were applied to the fingers sequentially as four-stimulus trains with zero ISI and 1-2 s intervening between trains. Finally, in the "Gap" condition, stimuli were applied as in the Continuous condition but with an ISI of 50 ms. A sensation of tactile motion across fingers (digit 2 --> digit 5) was reported by all subjects in the Continuous and Gap conditions. Cortical responses were extracted as single equivalent current dipoles over a period of 1 s following stimulus onset. In all three conditions, initial responses in left primary somatosensory cortex (SI) were observed ~20 to 50 ms after stimulus onset and were followed by additional left SI responses and bilateral responses in the secondary somatosensory cortex (SII). In addition, in the Continuous and Gap conditions, there was an activation of the precentral gyrus, the temporal aspects of which depended on the temporal relation of the administered stimuli, as follows. An ISI of 0 ms led to activation of the precentral gyrus shortly after the second stimulation, whereas an ISI of 50 ms led to activation of the precentral gyrus after the third stimulation. The current findings support results from previous studies on temporal activity patterns in SI and SII, verify the participation of the precentral gyrus during tactile motion perception and, in addition, reveal aspects of integration of sequential sensory stimulations over nonadjacent areas as well as temporal activity patterns in the postcentral and precentral gyri.
Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J.; Duffy, Frank H.; Pearl, Phillip L.; Treves, S. Ted
2016-01-01
Objective Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Methods Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age = 11 years, (25th, 75th) quartiles = (6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Results Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p = 0.02) but not MRI findings (p = 0.33), epilepsy etiology (p ≥ 0.27) or seizure duration (p = 0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Significance Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to ≤ 25 s, although the origin of seizure onset (specifically temporal versus frontal) also significantly impacts the localization. PMID:27918961
Stamoulis, Catherine; Verma, Nishant; Kaulas, Himanshu; Halford, Jonathan J; Duffy, Frank H; Pearl, Phillip L; Treves, S Ted
2017-01-01
Ictal SPECT is promising for accurate non-invasive localization of the epileptogenic brain tissue in focal epilepsies. However, high quality ictal scans require meticulous attention to the seizure onset. In a relatively large cohort of pediatric patients, this study investigated the impact of the timing of radiotracer injection, MRI findings and seizure characteristics on ictal SPECT localizations, and the relationship between concordance of ictal SPECT, scalp EEG and resected area with seizure freedom following epilepsy surgery. Scalp EEG and ictal SPECT studies from 95 patients (48 males and 47 females, median age=11years, (25th, 75th) quartiles=(6.0, 14.75) years) with pharmacoresistant focal epilepsy and no prior epilepsy surgery were reviewed. The ictal SPECT result was examined as a function of the radiotracer injection delay, seizure duration, epilepsy etiology, cerebral lobe of seizure onset identified by EEG and MRI findings. Thirty two patients who later underwent epilepsy surgery had postoperative seizure freedom data at <1, 6 and 12 months. Sixty patients (63.2%) had positive SPECT localizations - 51 with a hyperperfused region that was concordant with the cerebral lobe of seizure origin identified by EEG and 9 with discordant localizations. Of these, 35 patients (58.3%) had temporal and 25 (41.7%) had extratemporal seizures. The ictal SPECT result was significantly correlated with the injection delay (p<0.01) and cerebral lobe of seizure onset (specifically frontal versus temporal; p=0.02) but not MRI findings (p=0.33), epilepsy etiology (p≥0.27) or seizure duration (p=0.20). Concordance of SPECT, scalp EEG and resected area was significantly correlated with seizure freedom at 6 months after surgery (p=0.04). Ictal SPECT holds promise as a powerful source imaging tool for presurgical planning in pediatric epilepsies. To optimize the SPECT result the radiotracer injection delay should be minimized to≤25s, although the origin of seizure onset (specifically temporal versus frontal) also significantly impacts the localization. Copyright © 2016 Elsevier B.V. All rights reserved.
Wang, Chunxia; Fu, Kailiang; Liu, Huaijun; Xing, Fei; Zhang, Songyun
2014-08-15
Voxel-based morphometry has been used in the study of alterations in brain structure in type 1 diabetes mellitus patients. These changes are associated with clinical indices. The age at onset, pathogenesis, and treatment of type 1 diabetes mellitus are different from those for type 2 diabetes mellitus. Thus, type 1 and type 2 diabetes mellitus may have different impacts on brain structure. Only a few studies of the alterations in brain structure in type 2 diabetes mellitus patients using voxel-based morphometry have been conducted, with inconsistent results. We detected subtle changes in the brain structure of 23 cases of type 2 diabetes mellitus, and demonstrated that there was no significant difference between the total volume of gray and white matter of the brain of type 2 diabetes mellitus patients and that in controls. Regional atrophy of gray matter mainly occurred in the right temporal and left occipital cortex, while regional atrophy of white matter involved the right temporal lobe and the right cerebellar hemisphere. The ankle-brachial index in patients with type 2 diabetes mellitus strongly correlated with the volume of brain regions in the default mode network. The ankle-brachial index, followed by the level of glycosylated hemoglobin, most strongly correlated with the volume of gray matter in the right temporal lobe. These data suggest that voxel-based morphometry could detect small structural changes in patients with type 2 diabetes mellitus. Early macrovascular atherosclerosis may play a crucial role in subtle brain atrophy in type 2 diabetes mellitus patients, with chronic hyperglycemia playing a lesser role.
A hierarchical, retinotopic proto-organization of the primate visual system at birth
Arcaro, Michael J; Livingstone, Margaret S
2017-01-01
The adult primate visual system comprises a series of hierarchically organized areas. Each cortical area contains a topographic map of visual space, with different areas extracting different kinds of information from the retinal input. Here we asked to what extent the newborn visual system resembles the adult organization. We find that hierarchical, topographic organization is present at birth and therefore constitutes a proto-organization for the entire primate visual system. Even within inferior temporal cortex, this proto-organization was already present, prior to the emergence of category selectivity (e.g., faces or scenes). We propose that this topographic organization provides the scaffolding for the subsequent development of visual cortex that commences at the onset of visual experience DOI: http://dx.doi.org/10.7554/eLife.26196.001 PMID:28671063
Graziano, Martin; Sigman, Mariano
2008-05-23
When a stimulus is presented, its sensory trace decays rapidly, lasting for approximately 1000 ms. This brief and labile memory, referred as iconic memory, serves as a buffer before information is transferred to working memory and executive control. Here we explored the effect of different factors--geometric, spatial, and experience--with respect to the access and the maintenance of information in iconic memory and the progressive distortion of this memory. We studied performance in a partial report paradigm, a design wherein recall of only part of a stimulus array is required. Subjects had to report the identity of a letter in a location that was cued in a variable delay after the stimulus onset. Performance decayed exponentially with time, and we studied the different parameters (time constant, zero-delay value, and decay amplitude) as a function of the different factors. We observed that experience (determined by letter frequency) affected the access to iconic memory but not the temporal decay constant. On the contrary, spatial position affected the temporal course of delay. The entropy of the error distribution increased with time reflecting a progressive morphological distortion of the iconic buffer. We discuss our results on the context of a model of information access to executive control and how it is affected by learning and attention.
Topiramate and its effect on fMRI of language in patients with right or left temporal lobe epilepsy.
Szaflarski, Jerzy P; Allendorfer, Jane B
2012-05-01
Topiramate (TPM) is well recognized for its negative effects on cognition, language performance and lateralization results on the intracarotid amobarbital procedure (IAP). But, the effects of TPM on functional MRI (fMRI) of language and the fMRI signals are less clear. Functional MRI is increasingly used for presurgical evaluation of epilepsy patients in place of IAP for language lateralization. Thus, the goal of this study was to assess the effects of TPM on fMRI signals. In this study, we included 8 patients with right temporal lobe epilepsy (RTLE) and 8 with left temporal lobe epilepsy (LTLE) taking TPM (+TPM). Matched to them for age, handedness and side of seizure onset were 8 patients with RTLE and 8 with LTLE not taking TPM (-TPM). Matched for age and handedness to the patients with TLE were 32 healthy controls. The fMRI paradigm involved semantic decision/tone decision task (in-scanner behavioral data were collected). All epilepsy patients received a standard neuropsychological language battery. One sample t-tests were performed within each group to assess task-specific activations. Functional MRI data random-effects analysis was performed to determine significant group activation differences and to assess the effect of TPM dose on task activation. Direct group comparisons of fMRI, language and demographic data between patients with R/L TLE +TPM vs. -TPM and the analysis of the effects of TPM on blood oxygenation level-dependent (BOLD) signal were performed. Groups were matched for age, handedness and, within the R/L TLE groups, for the age of epilepsy onset/duration and the number of AEDs/TPM dose. The in-scanner language performance of patients was worse when compared to healthy controls - all p<0.044. While all groups showed fMRI activation typical for this task, regression analyses comparing L/R TLE +TPM vs. -TPM showed significant fMRI signal differences between groups (increases in left cingulate gyrus and decreases in left superior temporal gyrus in the patients with LTLE +TPM; increases in the right BA 10 and left visual cortex and decreases in the left BA 47 in +TPM RTLE). Further, TPM dose showed positive relationship with activation in the basal ganglia and negative associations with activation in anterior cingulate and posterior visual cortex. Thus, TPM appears to have a different effect on fMRI language distribution in patients with R/L TLE and a dose-dependent effect on fMRI signals. These findings may, in part, explain the negative effects of TPM on cognition and language performance and support the notion that TPM may affect the results of language fMRI lateralization/localization. Copyright © 2012 Elsevier Inc. All rights reserved.
By the sound of it. An ERP investigation of human action sound processing in 7-month-old infants
Geangu, Elena; Quadrelli, Ermanno; Lewis, James W.; Macchi Cassia, Viola; Turati, Chiara
2015-01-01
Recent evidence suggests that human adults perceive human action sounds as a distinct category from human vocalizations, environmental, and mechanical sounds, activating different neural networks (Engel et al., 2009; Lewis et al., 2011). Yet, little is known about the development of such specialization. Using event-related potentials (ERP), this study investigated neural correlates of 7-month-olds’ processing of human action (HA) sounds in comparison to human vocalizations (HV), environmental (ENV), and mechanical (MEC) sounds. Relative to the other categories, HA sounds led to increased positive amplitudes between 470 and 570 ms post-stimulus onset at left anterior temporal locations, while HV led to increased negative amplitudes at the more posterior temporal locations in both hemispheres. Collectively, human produced sounds (HA + HV) led to significantly different response profiles compared to non-living sound sources (ENV + MEC) at parietal and frontal locations in both hemispheres. Overall, by 7 months of age human action sounds are being differentially processed in the brain, consistent with a dichotomy for processing living versus non-living things. This provides novel evidence regarding the typical categorical processing of socially relevant sounds. PMID:25732377
Selective Attention in Pigeon Temporal Discrimination.
Subramaniam, Shrinidhi; Kyonka, Elizabeth
2017-07-27
Cues can vary in how informative they are about when specific outcomes, such as food availability, will occur. This study was an experimental investigation of the functional relation between cue informativeness and temporal discrimination in a peak-interval (PI) procedure. Each session consisted of fixed-interval (FI) 2-s and 4-s schedules of food and occasional, 12-s PI trials during which pecks had no programmed consequences. Across conditions, the phi (ϕ) correlation between key light color and FI schedule value was manipulated. Red and green key lights signaled the onset of either or both FI schedules. Different colors were either predictive (ϕ = 1), moderately predictive (ϕ = 0.2-0.8), or not predictive (ϕ = 0) of a specific FI schedule. This study tested the hypothesis that temporal discrimination is a function of the momentary conditional probability of food; that is, pigeons peck the most at either 2 s or 4 s when ϕ = 1 and peck at both intervals when ϕ < 1. Response distributions were bimodal Gaussian curves; distributions from red- and green-key PI trials converged when ϕ ≤ 0.6. Peak times estimated by summed Gaussian functions, averaged across conditions and pigeons, were 1.85 s and 3.87 s, however, pigeons did not always maximize the momentary probability of food. When key light color was highly correlated with FI schedules (ϕ ≥ 0.6), estimates of peak times indicated that temporal discrimination accuracy was reduced at the unlikely interval, but not the likely interval. The mechanism of this reduced temporal discrimination accuracy could be interpreted as an attentional process.
Vrshek-Schallhorn, Suzanne; Stroud, Catherine B.; Mineka, Susan; Hammen, Constance; Zinbarg, Richard; Wolitzky-Taylor, Kate; Craske, Michelle G.
2016-01-01
Few studies comprehensively evaluate which types of life stress are most strongly associated with depressive episode onsets, over and above other forms of stress, and comparisons between acute and chronic stress are particularly lacking. Past research implicates major (moderate to severe) stressful life events (SLEs), and to a lesser extent, interpersonal forms of stress; research conflicts on whether dependent or independent SLEs are more potent, but theory favors dependent SLEs. The present study used five years of annual diagnostic and life stress interviews of chronic stress and SLEs from two separate samples (Sample 1 N = 432; Sample 2 N = 146) transitioning into emerging adulthood; one sample also collected early adversity interviews. Multivariate analyses simultaneously examined multiple forms of life stress to test hypotheses that all major SLEs, then particularly interpersonal forms of stress, and then dependent SLEs would contribute unique variance to major depressive episode (MDE) onsets. Person-month survival analysis consistently implicated chronic interpersonal stress and major interpersonal SLEs as statistically unique predictors of risk for MDE onset. In addition, follow-up analyses demonstrated temporal precedence for chronic stress; tested differences by gender; showed that recent chronic stress mediates the relationship between adolescent adversity and later MDE onsets; and revealed interactions of several forms of stress with socioeconomic status (SES). Specifically, as SES declined, there was an increasing role for non-interpersonal chronic stress and non-interpersonal major SLEs, coupled with a decreasing role for interpersonal chronic stress. Implications for future etiological research were discussed. PMID:26301973
Torok, Michelle; Darke, Shane; Shand, Fiona; Kaye, Sharlene
2016-09-01
Violence is a major burden of harm among injecting drug users (IDU), however, the liability to violent offending is not well understood. The current study aimed to better understand differences in the liability to violence by determining whether IDU could be disaggregated into distinct violent offending classes, and determining the correlates of class membership. A total of 300 IDU from Sydney, Australia were administered a structured interview examining the prevalence and severity of drug use and violent offending histories, as well as early life risk factors (maltreatment, childhood mental disorder, trait personality). IDU were disaggregated into four distinct latent classes, comprising a non-violent class (24%), an adolescent-onset persistent class (33%), an adult-onset transient class (24%) and an early-onset, chronic class (19%). Pairwise and group comparisons of classes on predispositional and substance use risks showed that the EARLY class had the poorest psychosocial risk profile, while the NON class had the most favourable. Multinomial logistic regression revealed that higher trait impulsivity and aggression scores, having a history of conduct disorder, frequent childhood abuse, and more problematic alcohol use, were independently associated with more temporally stable and severe violent offending. The model explained 67% of variance in class membership (χ(2)=207.7, df=51, p<0.001). IDU can be meaningfully disaggregated into distinct violent offending classes using developmental criteria. The age of onset of violence was indicative of class membership insomuch as that the extent of early life risk exposure was differentially associated with greater long-term liability to violence and drug use. Copyright © 2016 Elsevier Ltd. All rights reserved.
Neuromotor control of gluteal muscles in runners with achilles tendinopathy.
Franettovich Smith, Melinda M; Honeywill, Conor; Wyndow, Narelle; Crossley, Kay M; Creaby, Mark W
2014-03-01
The purpose of this study was to compare the neuromotor control of the gluteus medius (GMED) and gluteus maximus (GMAX) muscles in runners with Achilles tendinopathy to that of healthy controls. Fourteen male runners with Achilles tendinopathy and 19 healthy male runners (control) ran overground while EMG of GMED and GMAX was recorded. Three temporal variables were identified via visual inspection of EMG data: (i) onset of muscle activity (onset), (ii) offset of muscle activity (offset), and (iii) duration of muscle activity (duration). A multivariate analysis of covariance with between-subject factor of group (Achilles tendinopathy, control) and variables of onset, offset, and duration was performed for each muscle. Age, weight, and height were included as covariates, and α level was set at 0.05. The Achilles tendinopathy group demonstrated a delay in the activation of the GMED relative to heel strike (P < 0.001) and a shorter duration of activation (P < 0.001) compared to that of the control group. GMED offset time relative to heel strike was not different between the groups (P = 0.063). For GMAX, the Achilles tendinopathy group demonstrated a delay in its onset (P = 0.008), a shorter duration of activation (P = 0.002), and earlier offset (P < 0.001) compared to the control group. This study provides preliminary evidence of altered neuromotor control of the GMED and GMAX muscles in male runners with Achilles tendinopathy. Although further prospective studies are required to discern the causal nature of this relationship, this study highlights the importance of considering neuromotor control of the gluteal muscles in the assessment and management of patients with Achilles tendinopathy.
Impaired perceived timing of falls in the elderly.
Lupo, Julian; Barnett-Cowan, Michael
2018-01-01
Falls are the leading cause of injury-related deaths and hospitalizations, with older adults at an increased risk. As humans age, physical changes and health conditions make falls more likely. While we know how the body reflexively responds to prevent injury during a fall, we know little about how people perceive the fall itself. We previously found that young adults required a fall to precede a comparison sound stimulus by approximately 44ms to perceive the two events as simultaneous. This may relate to common anecdotal reports suggesting that humans often describe distortions in their perception of time - time seems to slow down during a fall - with very little recollection of how and when the fall began. Here we examine whether fall perception changes with age. Young (19-25y) and older (61-72y) healthy adults made temporal order judgments identifying whether the onset of their fall or the onset of a comparison sound came first to measure the point of subjective simultaneity. Results show that fall perception is nearly twice as slow for older adults, where perturbation onset has to precede sound onset by ∼88ms to appear coincident, compared to younger adults (∼44ms). We suggest that such age-related differences in fall perception may relate to increased fall rates in older adults. We conclude that a better understanding of how younger versus older adults perceive falls may identify important factors for innovative fall prevention strategies and rehabilitative training exercises to improve fall awareness. Copyright © 2017 Elsevier B.V. All rights reserved.
Camargo, Anyela V; Mott, Richard; Gardner, Keith A; Mackay, Ian J; Corke, Fiona; Doonan, John H; Kim, Jan T; Bentley, Alison R
2016-01-01
The appropriate timing of developmental transitions is critical for adapting many crops to their local climatic conditions. Therefore, understanding the genetic basis of different aspects of phenology could be useful in highlighting mechanisms underpinning adaptation, with implications in breeding for climate change. For bread wheat ( Triticum aestivum ), the transition from vegetative to reproductive growth, the start and rate of leaf senescence and the relative timing of different stages of flowering and grain filling all contribute to plant performance. In this study we screened under Smart house conditions a large, multi-founder "NIAB elite MAGIC" wheat population, to evaluate the genetic elements that influence the timing of developmental stages in European elite varieties. This panel of recombinant inbred lines was derived from eight parents that are or recently have been grown commercially in the UK and Northern Europe. We undertook a detailed temporal phenotypic analysis under Smart house conditions of the population and its parents, to try to identify known or novel Quantitative Trait Loci associated with variation in the timing of key phenological stages in senescence. This analysis resulted in the detection of QTL interactions with novel traits such the time between "half of ear emergence above flag leaf ligule" and the onset of senescence at the flag leaf as well as traits associated with plant morphology such as stem height. In addition, strong correlations between several traits and the onset of senescence of the flag leaf were identified. This work establishes the value of systematically phenotyping genetically unstructured populations to reveal the genetic architecture underlying morphological variation in commercial wheat.
The Epidemiology of Suicide-Related Outcomes in Mexico
ERIC Educational Resources Information Center
Borges, Guilherme; Nock, Matthew K.; Medina-Mora, Maria Elena; Benjet, Corina; Lara, Carmen; Chiu, Wai Tat; Kessler, Ronald C.
2007-01-01
Nationally representative data from the Mexican National Comorbidity Survey are presented on the lifetime prevalence and age-of-onset (AOO) distributions of suicide ideation, plan and attempt and on temporally prior demographic and "DSM-IV" psychiatric risk factors. Lifetime ideation was reported by 8.1% of respondents, while 3.2%…
Vierck, C J; Cannon, R L; Fry, G; Maixner, W; Whitsel, B L
1997-08-01
Temporal summation of sensory intensity was investigated in normal subjects using novel methods of thermal stimulation. A Peltier thermode was heated and then applied in a series of brief (700 ms) contacts to different sites on the glabrous skin of either hand. Repetitive contacts on the thenar or hypothenar eminence, at interstimulus intervals (ISIs) of 3 s, progressively increased the perceived intensity of a thermal sensation that followed each contact at an onset latency > 2 s. Temporal summation of these delayed (late) sensations was proportional to thermode temperature over a range of 45-53 degrees C, progressing from a nonpainful level (warmth) to painful sensations that could be rated as very strong after 10 contacts. Short-latency pain sensations rarely were evoked by such stimuli and never attained levels substantially above pain threshold for the sequences and temperatures presented. Temporal summation produced by brief contacts was greater in rate and amount than increases in sensory intensity resulting from repetitive ramping to the same temperature by a thermode in constant contact with the skin. Variation of the interval between contacts revealed a dependence of sensory intensity on interstimulus interval that is similar to physiological demonstrations of windup, where increasing frequencies of spike train activity are evoked from spinal neurons by repetitive activation of unmyelinated nociceptors. However, substantial summation at repetition rates of > or = 0.33 Hz was observed for temperatures that produced only late sensations of warmth when presented at frequencies < 0.16 Hz. Measurements of subepidermal skin temperature from anesthetized monkeys revealed different time courses for storage and dissipation of heat by the skin than for temporal summation and decay of sensory intensity for the human subjects. For example, negligible heat loss occurred during a 6-s interval between two trials of 10 contacts at 0.33 Hz, but ratings of sensory magnitude decreased from very strong levels of pain to sensations of warmth during the same interval. Evidence that temporal summation of sensory intensity during series of brief contacts relies on central integration, rather than a sensitization of peripheral receptors, was obtained using two approaches. In the first, a moderate degree of temporal summation was observed during alternating stimulation of adjacent but nonoverlapping skin sites at 0.33 Hz. Second, temporal summation was significantly attenuated by prior administration of dextromethorphan, a N-methyl-D-aspartate receptor antagonist.
Kubota, Bruno Yukio; Coan, Ana Carolina; Yasuda, Clarissa Lin; Cendes, Fernando
2015-05-01
Increased MRI T2 signal is commonly present not only in the hippocampus but also in other temporal structures of patients with temporal lobe epilepsy (TLE), and it is associated with histological abnormalities related to the epileptogenic lesion. This study aimed to verify the distribution of T2 increased signal in temporal lobe structures and its correlations with clinical characteristics of TLE patients with (TLE-HS) or without (TLE-NL) MRI signs of hippocampal sclerosis. We selected 203 consecutive patients: 124 with TLE-HS and 79 with TLE-NL. Healthy controls (N=59) were used as a comparison group/comparative group. T2 multiecho images obtained via a 3-T MRI were evaluated with in-house software. T2 signal decays were computed from five original echoes in regions of interest in the hippocampus, amygdala, and white matter of the anterior temporal lobe. Values higher than 2 standard deviations from the mean of controls were considered as abnormal. T2 signal increase was observed in the hippocampus in 78% of patients with TLE-HS and in 17% of patients with TLE-NL; in the amygdala in 13% of patients with TLE-HS and in 14% of patients with TLE-NL; and in the temporal lobe white matter in 22% of patients with TLE-HS and in 8% of patients with TLE-NL. Group analysis demonstrated a significant difference in the distribution of the T2 relaxation times of the hippocampus (ANOVA, p<0.0001), amygdala (p=0.003), and temporal lobe white matter (p<0.0001) ipsilateral to the epileptogenic zone for patients with TLE-HS compared with controls but only for the amygdala (p=0.029) and temporal lobe white matter (ANOVA, p=0.025) for patients with TLE-NL compared with controls. The average signal from the hippocampus ipsilateral to the epileptogenic zone was significantly higher in patients with no family history of epilepsy (two-sample T-test, p=0.005). Increased T2 signal occurs in different temporal structures of patients with TLE-HS and in patients with TLE-NL. The hippocampal hyperintense signal is more pronounced in patients without family history of epilepsy and is influenced by earlier seizure onset. These changes in T2 signal may be associated with structural abnormalities related to the epileptogenic zone or to the nature of the initial precipitating injury in patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Asynchronous vegetation phenology enhances winter body condition of a large mobile herbivore.
Searle, Kate R; Rice, Mindy B; Anderson, Charles R; Bishop, Chad; Hobbs, N T
2015-10-01
Understanding how spatial and temporal heterogeneity influence ecological processes forms a central challenge in ecology. Individual responses to heterogeneity shape population dynamics, therefore understanding these responses is central to sustainable population management. Emerging evidence has shown that herbivores track heterogeneity in nutritional quality of vegetation by responding to phenological differences in plants. We quantified the benefits mule deer (Odocoileus hemionus) accrue from accessing habitats with asynchronous plant phenology in northwest Colorado over 3 years. Our analysis examined both the direct physiological and indirect environmental effects of weather and vegetation phenology on mule deer winter body condition. We identified several important effects of annual weather patterns and topographical variables on vegetation phenology in the home ranges of mule deer. Crucially, temporal patterns of vegetation phenology were linked with differences in body condition, with deer tending to show poorer body condition in areas with less asynchronous vegetation green-up and later vegetation onset. The direct physiological effect of previous winter precipitation on mule deer body condition was much less important than the indirect effect mediated by vegetation phenology. Additionally, the influence of vegetation phenology on body fat was much stronger than that of overall vegetation productivity. In summary, changing annual weather patterns, particularly in relation to seasonal precipitation, have the potential to alter body condition of this important ungulate species during the critical winter period. This finding highlights the importance of maintaining large contiguous areas of spatially and temporally variable resources to allow animals to compensate behaviourally for changing climate-driven resource patterns.
MRI-negative PET-positive temporal lobe epilepsy: a distinct surgically remediable syndrome.
Carne, R P; O'Brien, T J; Kilpatrick, C J; MacGregor, L R; Hicks, R J; Murphy, M A; Bowden, S C; Kaye, A H; Cook, M J
2004-10-01
Most patients with non-lesional temporal lobe epilepsy (NLTLE) will have the findings of hippocampal sclerosis (HS) on a high resolution MRI. However, a significant minority of patients with NLTLE and electroclinically well-lateralized temporal lobe seizures have no evidence of HS on MRI. Many of these patients have concordant hypometabolism on fluorodeoxyglucose-PET ([18F]FDG-PET). The pathophysiological basis of this latter group remains uncertain. We aimed to determine whether NLTLE without HS on MRI represents a variant of or a different clinicopathological syndrome from that of NLTLE with HS on MRI. The clinical, EEG, [18F]FDG-PET, histopathological and surgical outcomes of 30 consecutive NLTLE patients with well-lateralized EEG but without HS on MRI (HS-ve TLE) were compared with 30 consecutive age- and sex-matched NLTLE patients with well-lateralized EEG with HS on MRI (HS+ve TLE). Both the HS+ve TLE group and the HS-ve TLE patients had a high degree of [18F]FDG-PET concordant lateralization (26 out of 30 HS-ve TLE versus 27 out of 27 HS+ve TLE). HS-ve TLE patients had more widespread hypometabolism on [18F]FDG-PET by blinded visual analysis [odds ratio (OR = + infinity (2.51, -), P = 0.001]. The HS-ve TLE group less frequently had a history of febrile convulsions [OR = 0.077 (0.002-0.512), P = 0.002], more commonly had a delta rhythm at ictal onset [OR = 3.67 (0.97-20.47), P = 0.057], and less frequently had histopathological evidence of HS [OR = 0 (0-0.85), P = 0.031]. There was no significant difference in surgical outcome despite half of those without HS having a hippocampal-sparing procedure. Based on the findings outlined, HS-ve PET-positive TLE may be a surgically remediable syndrome distinct from HS+ve TLE, with a pathophysiological basis that primarily involves lateral temporal neocortical rather than mesial temporal structures.
Hematogenous Renal Cell Carcinoma Metastasis in the Postoperative Temporal Bone
Konishi, Masaya; Suzuki, Kensuke; Iwai, Hiroshi
2017-01-01
Metastatic renal cell carcinoma (RCC) involving the temporal bone is a rare entity. It is usually asymptomatic and misdiagnosis as acute otitis media, mastoiditis, and Ramsay-Hunt syndrome in early onset is not uncommon. We report a case of RCC metastasis to the postoperative temporal bone in the middle of molecular targeted therapy. A 60-year-old man presented left facial palsy with severe retro-auricular pain and he also underwent left middle ear surgery for cholesteatoma more than 30 years before and had been aware of discontinuous otorrhea; therefore, initially we speculated that facial palsy was derived from recurrent cholesteatoma or Ramsay-Hunt syndrome. Exploratory tympanotomy revealed RCC metastasis and postoperative MR indicated hematogenous metastasis. To the best of our knowledge, no report was obtained on temporal bone metastasis in the middle of chemotherapy or hematogenous metastasis in the postoperative middle ear. Metastasis in the temporal bone is still a possible pathological condition despite the development of present cancer therapy. Besides, this case indicates that hematogenous metastasis can occur in the postoperative state of the temporal bone. PMID:28611633
Measuring Snow Liquid Water Content with Low-Cost GPS Receivers
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-01-01
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements. PMID:25384007
Measuring snow liquid water content with low-cost GPS receivers.
Koch, Franziska; Prasch, Monika; Schmid, Lino; Schweizer, Jürg; Mauser, Wolfram
2014-11-06
The amount of liquid water in snow characterizes the wetness of a snowpack. Its temporal evolution plays an important role for wet-snow avalanche prediction, as well as the onset of meltwater release and water availability estimations within a river basin. However, it is still a challenge and a not yet satisfyingly solved issue to measure the liquid water content (LWC) in snow with conventional in situ and remote sensing techniques. We propose a new approach based on the attenuation of microwave radiation in the L-band emitted by the satellites of the Global Positioning System (GPS). For this purpose, we performed a continuous low-cost GPS measurement experiment at the Weissfluhjoch test site in Switzerland, during the snow melt period in 2013. As a measure of signal strength, we analyzed the carrier-to-noise power density ratio (C/N0) and developed a procedure to normalize these data. The bulk volumetric LWC was determined based on assumptions for attenuation, reflection and refraction of radiation in wet snow. The onset of melt, as well as daily melt-freeze cycles were clearly detected. The temporal evolution of the LWC was closely related to the meteorological and snow-hydrological data. Due to its non-destructive setup, its cost-efficiency and global availability, this approach has the potential to be implemented in distributed sensor networks for avalanche prediction or basin-wide melt onset measurements.
Felix II, Richard A.; Gourévitch, Boris; Gómez-Álvarez, Marcelo; Leijon, Sara C. M.; Saldaña, Enrique; Magnusson, Anna K.
2017-01-01
Auditory streaming enables perception and interpretation of complex acoustic environments that contain competing sound sources. At early stages of central processing, sounds are segregated into separate streams representing attributes that later merge into acoustic objects. Streaming of temporal cues is critical for perceiving vocal communication, such as human speech, but our understanding of circuits that underlie this process is lacking, particularly at subcortical levels. The superior paraolivary nucleus (SPON), a prominent group of inhibitory neurons in the mammalian brainstem, has been implicated in processing temporal information needed for the segmentation of ongoing complex sounds into discrete events. The SPON requires temporally precise and robust excitatory input(s) to convey information about the steep rise in sound amplitude that marks the onset of voiced sound elements. Unfortunately, the sources of excitation to the SPON and the impact of these inputs on the behavior of SPON neurons have yet to be resolved. Using anatomical tract tracing and immunohistochemistry, we identified octopus cells in the contralateral cochlear nucleus (CN) as the primary source of excitatory input to the SPON. Cluster analysis of miniature excitatory events also indicated that the majority of SPON neurons receive one type of excitatory input. Precise octopus cell-driven onset spiking coupled with transient offset spiking make SPON responses well-suited to signal transitions in sound energy contained in vocalizations. Targets of octopus cell projections, including the SPON, are strongly implicated in the processing of temporal sound features, which suggests a common pathway that conveys information critical for perception of complex natural sounds. PMID:28620283
Stability of Synchronization Clusters and Seizurability in Temporal Lobe Epilepsy
Palmigiano, Agostina; Pastor, Jesús; García de Sola, Rafael; Ortega, Guillermo J.
2012-01-01
Purpose Identification of critical areas in presurgical evaluations of patients with temporal lobe epilepsy is the most important step prior to resection. According to the “epileptic focus model”, localization of seizure onset zones is the main task to be accomplished. Nevertheless, a significant minority of epileptic patients continue to experience seizures after surgery (even when the focus is correctly located), an observation that is difficult to explain under this approach. However, if attention is shifted from a specific cortical location toward the network properties themselves, then the epileptic network model does allow us to explain unsuccessful surgical outcomes. Methods The intraoperative electrocorticography records of 20 patients with temporal lobe epilepsy were analyzed in search of interictal synchronization clusters. Synchronization was analyzed, and the stability of highly synchronized areas was quantified. Surrogate data were constructed and used to statistically validate the results. Our results show the existence of highly localized and stable synchronization areas in both the lateral and the mesial areas of the temporal lobe ipsilateral to the clinical seizures. Synchronization areas seem to play a central role in the capacity of the epileptic network to generate clinical seizures. Resection of stable synchronization areas is associated with elimination of seizures; nonresection of synchronization clusters is associated with the persistence of seizures after surgery. Discussion We suggest that synchronization clusters and their stability play a central role in the epileptic network, favoring seizure onset and propagation. We further speculate that the stability distribution of these synchronization areas would differentiate normal from pathologic cases. PMID:22844524
Emotional modulation of experimental pain: a source imaging study of laser evoked potentials
Stancak, Andrej; Fallon, Nicholas
2013-01-01
Negative emotions have been shown to augment experimental pain. As induced emotions alter brain activity, it is not clear whether pain augmentation during noxious stimulation would be related to neural activation existing prior to onset of a noxious stimulus or alternatively, whether emotional stimuli would only alter neural activity during the period of nociceptive processing. We analyzed the spatio-temporal patterns of laser evoked potentials (LEPs) occurring prior to and during the period of cortical processing of noxious laser stimuli during passive viewing of negative, positive, or neutral emotional pictures. Independent component analysis (ICA) was applied to series of source activation volumes, reconstructed using local autoregressive average model (LAURA). Pain was the strongest when laser stimuli were associated with negative emotional pictures. Prior to laser stimulus and during the first 100 ms after onset of laser stimulus, activations were seen in the left and right medial temporal cortex, cerebellum, posterior cingulate, and rostral cingulate/prefrontal cortex. In all these regions, positive or neutral pictures showed stronger activations than negative pictures. During laser stimulation, activations in the right and left anterior insula, temporal cortex and right anterior and posterior parietal cortex were stronger during negative than neutral or positive emotional pictures. Results suggest that negative emotional stimuli increase activation in the left and right anterior insula and temporal cortex, and right posterior and anterior parietal cortex only during the period of nociceptive processing. The role of background brain activation in emotional modulation of pain appears to be only permissive, and consisting in attenuation of activation in structures maintaining the resting state of the brain. PMID:24062659
[Predictors of verbal memory decline following temporal lobe surgery].
de Vanssay-Maigne, A; Boutin, M; Baudoin-Chial, S
2008-05-01
Verbal memory decline can occur after temporal lobe surgery, especially when the left dominant hemisphere is involved. This potential functional risk must be evaluated before surgery. Among all factors that have been identified by several studies, the side of surgery (left dominant) and high baseline memory performance have been found to be predictive of verbal memory decline. Other factors such as etiology, sex, age at surgery, age at seizure onset, and duration may influence memory decline, but the results are not clear. Our purpose was to identify, in our population of patients and among all risk factors, those that may be predictive of verbal memory decline. Logistic regression was used to examine the effect of each factor on the postoperative verbal memory index (WMS-R) in 101 patients who underwent a right (n=49) or left (n=52) anterior temporal lobe resection. In the group as a whole, 22 % of the patients demonstrated verbal memory decline of more than one standard deviation. The verbal memory decline was significantly related to surgery on the left side and a high level of verbal memory performance. These factors were significant predictors of decline. The other factors (etiology, sex, age at surgery, age at seizure onset, and duration) were not found to be predictive of this decline. Our analysis demonstrates that the patients who are most at risk of undergoing verbal memory deterioration are those who undergo left-sided temporal resection and have good memory scores preoperatively. The contradictions found in the literature about the other factors could be explained by the diversity of the tests and criteria used to assess memory decline.
Clinical significance and developmental changes of auditory-language-related gamma activity
Kojima, Katsuaki; Brown, Erik C.; Rothermel, Robert; Carlson, Alanna; Fuerst, Darren; Matsuzaki, Naoyuki; Shah, Aashit; Atkinson, Marie; Basha, Maysaa; Mittal, Sandeep; Sood, Sandeep; Asano, Eishi
2012-01-01
OBJECTIVE We determined the clinical impact and developmental changes of auditory-language-related augmentation of gamma activity at 50–120 Hz recorded on electrocorticography (ECoG). METHODS We analyzed data from 77 epileptic patients ranging 4 – 56 years in age. We determined the effects of seizure-onset zone, electrode location, and patient-age upon gamma-augmentation elicited by an auditory-naming task. RESULTS Gamma-augmentation was less frequently elicited within seizure-onset sites compared to other sites. Regardless of age, gamma-augmentation most often involved the 80–100 Hz frequency band. Gamma-augmentation initially involved bilateral superior-temporal regions, followed by left-side dominant involvement in the middle-temporal, medial-temporal, inferior-frontal, dorsolateral-premotor, and medial-frontal regions and concluded with bilateral inferior-Rolandic involvement. Compared to younger patients, those older than 10 years had a larger proportion of left dorsolateral-premotor and right inferior-frontal sites showing gamma-augmentation. The incidence of a post-operative language deficit requiring speech therapy was predicted by the number of resected sites with gamma-augmentation in the superior-temporal, inferior-frontal, dorsolateral-premotor, and inferior-Rolandic regions of the left hemisphere assumed to contain essential language function (r2=0.59; p=0.001; odds ratio=6.04 [95% confidence-interval: 2.26 to 16.15]). CONCLUSIONS Auditory-language-related gamma-augmentation can provide additional information useful to localize the primary language areas. SIGNIFICANCE These results derived from a large sample of patients support the utility of auditory-language-related gamma-augmentation in presurgical evaluation. PMID:23141882
Verbal creativity in semantic variant primary progressive aphasia.
Wu, Teresa Q; Miller, Zachary A; Adhimoolam, Babu; Zackey, Diana D; Khan, Baber K; Ketelle, Robin; Rankin, Katherine P; Miller, Bruce L
2015-02-01
Emergence of visual and musical creativity in the setting of neurologic disease has been reported in patients with semantic variant primary progressive aphasia (svPPA), also called semantic dementia (SD). It is hypothesized that loss of left anterior frontotemporal function facilitates activity of the right posterior hemispheric structures, leading to de novo creativity observed in visual artistic representation. We describe creativity in the verbal domain, for the first time, in three patients with svPPA. Clinical presentations are carefully described in three svPPA patients exhibiting verbal creativity, including neuropsychology, neurologic exam, and structural magnetic resonance imaging (MRI). Voxel-based morphometry (VBM) was performed to quantify brain atrophy patterns in these patients against age-matched healthy controls. All three patients displayed new-onset creative writing behavior and produced extensive original work during the course of disease. Patient A developed interest in wordplay and generated a large volume of poetry. Patient B became fascinated with rhyming and punning. Patient C wrote and published a lifestyle guidebook. An overlap of their structural MR scans showed uniform sparing in the lateral portions of the language-dominant temporal lobe (superior and middle gyri) and atrophy in the medial temporal cortex (amygdala, limbic cortex). New-onset creativity in svPPA may represent a paradoxical functional facilitation. A similar drive for production is found in visually artistic and verbally creative patients. Mirroring the imaging findings in visually artistic patients, verbal preoccupation and creativity may be associated with medial atrophy in the language-dominant temporal lobe, but sparing of lateral dominant temporal and non-dominant posterior cortices.
Attractive faces temporally modulate visual attention
Nakamura, Koyo; Kawabata, Hideaki
2014-01-01
Facial attractiveness is an important biological and social signal on social interaction. Recent research has demonstrated that an attractive face captures greater spatial attention than an unattractive face does. Little is known, however, about the temporal characteristics of visual attention for facial attractiveness. In this study, we investigated the temporal modulation of visual attention induced by facial attractiveness by using a rapid serial visual presentation. Fourteen male faces and two female faces were successively presented for 160 ms, respectively, and participants were asked to identify two female faces embedded among a series of multiple male distractor faces. Identification of a second female target (T2) was impaired when a first target (T1) was attractive compared to neutral or unattractive faces, at 320 ms stimulus onset asynchrony (SOA); identification was improved when T1 was attractive compared to unattractive faces at 640 ms SOA. These findings suggest that the spontaneous appraisal of facial attractiveness modulates temporal attention. PMID:24994994
Atypical language representation in children with intractable temporal lobe epilepsy.
Maulisova, Alice; Korman, Brandon; Rey, Gustavo; Bernal, Byron; Duchowny, Michael; Niederlova, Marketa; Krsek, Pavel; Novak, Vilem
2016-05-01
This study evaluated language organization in children with intractable epilepsy caused by temporal lobe focal cortical dysplasia (FCD) alone or dual pathology (temporal lobe FCD and hippocampal sclerosis, HS). We analyzed clinical, neurological, fMRI, neuropsychological, and histopathologic data in 46 pediatric patients with temporal lobe lesions who underwent excisional epilepsy surgery. The frequency of atypical language representation was similar in both groups, but children with dual pathology were more likely to be left-handed. Atypical receptive language cortex correlated with lower intellectual capacity, verbal abstract conceptualization, receptive language abilities, verbal working memory, and a history of status epilepticus but did not correlate with higher seizure frequency or early seizure onset. Histopathologic substrate had only a minor influence on neuropsychological status. Greater verbal comprehension deficits were noted in children with atypical receptive language representation, a risk factor for cognitive morbidity. Copyright © 2016 Elsevier Inc. All rights reserved.
Neural dynamics of speech act comprehension: an MEG study of naming and requesting.
Egorova, Natalia; Pulvermüller, Friedemann; Shtyrov, Yury
2014-05-01
The neurobiological basis and temporal dynamics of communicative language processing pose important yet unresolved questions. It has previously been suggested that comprehension of the communicative function of an utterance, i.e. the so-called speech act, is supported by an ensemble of neural networks, comprising lexico-semantic, action and mirror neuron as well as theory of mind circuits, all activated in concert. It has also been demonstrated that recognition of the speech act type occurs extremely rapidly. These findings however, were obtained in experiments with insufficient spatio-temporal resolution, thus possibly concealing important facets of the neural dynamics of the speech act comprehension process. Here, we used magnetoencephalography to investigate the comprehension of Naming and Request actions performed with utterances controlled for physical features, psycholinguistic properties and the probability of occurrence in variable contexts. The results show that different communicative actions are underpinned by a dynamic neural network, which differentiates between speech act types very early after the speech act onset. Within 50-90 ms, Requests engaged mirror-neuron action-comprehension systems in sensorimotor cortex, possibly for processing action knowledge and intentions. Still, within the first 200 ms of stimulus onset (100-150 ms), Naming activated brain areas involved in referential semantic retrieval. Subsequently (200-300 ms), theory of mind and mentalising circuits were activated in medial prefrontal and temporo-parietal areas, possibly indexing processing of intentions and assumptions of both communication partners. This cascade of stages of processing information about actions and intentions, referential semantics, and theory of mind may underlie dynamic and interactive speech act comprehension.
Spatiotemporal dynamics of similarity-based neural representations of facial identity.
Vida, Mark D; Nestor, Adrian; Plaut, David C; Behrmann, Marlene
2017-01-10
Humans' remarkable ability to quickly and accurately discriminate among thousands of highly similar complex objects demands rapid and precise neural computations. To elucidate the process by which this is achieved, we used magnetoencephalography to measure spatiotemporal patterns of neural activity with high temporal resolution during visual discrimination among a large and carefully controlled set of faces. We also compared these neural data to lower level "image-based" and higher level "identity-based" model-based representations of our stimuli and to behavioral similarity judgments of our stimuli. Between ∼50 and 400 ms after stimulus onset, face-selective sources in right lateral occipital cortex and right fusiform gyrus and sources in a control region (left V1) yielded successful classification of facial identity. In all regions, early responses were more similar to the image-based representation than to the identity-based representation. In the face-selective regions only, responses were more similar to the identity-based representation at several time points after 200 ms. Behavioral responses were more similar to the identity-based representation than to the image-based representation, and their structure was predicted by responses in the face-selective regions. These results provide a temporally precise description of the transformation from low- to high-level representations of facial identity in human face-selective cortex and demonstrate that face-selective cortical regions represent multiple distinct types of information about face identity at different times over the first 500 ms after stimulus onset. These results have important implications for understanding the rapid emergence of fine-grained, high-level representations of object identity, a computation essential to human visual expertise.
Predictability of the European heat and cold waves
NASA Astrophysics Data System (ADS)
Lavaysse, Christophe; Naumann, Gustavo; Alfieri, Lorenzo; Salamon, Peter; Vogt, Jürgen
2018-06-01
Heat and cold waves may have considerable human and economic impacts in Europe. Recent events, like the heat waves observed in France in 2003 and Russia in 2010, illustrated the major consequences to be expected. Reliable Early Warning Systems for extreme temperatures would, therefore, be of high value for decision makers. However, they require a clear definition and robust forecasts of these events. This study analyzes the predictability of heat and cold waves over Europe, defined as at least three consecutive days of {T}_{min} and {T}_{max} above the quantile Q90 (under Q10), using the extended ensemble system of ECMWF. The results show significant predictability for events within a 2-week lead time, but with a strong decrease of the predictability during the first week of forecasts (from 80 to 40% of observed events correctly forecasted). The scores show a higher predictive skill for the cold waves (in winter) than for the heat waves (in summer). The uncertainties and the sensitivities of the predictability are discussed on the basis of tests conducted with different spatial and temporal resolutions. Results demonstrate the negligible effect of the temporal resolution (very few errors due to bad timing of the forecasts), and a better predictability of large-scale events. The onset and the end of the waves are slightly less predictable with an average of about 35% (30%) of observed heat (cold) waves onsets or ends correctly forecasted with a 5-day lead time. Finally, the forecasted intensities show a correlation of about 0.65 with those observed, revealing the challenge to predict this important characteristic.
Akhtar, Naveed; Salam, Abdul; Alboudi, Ayman; Kamran, Kainat; Ahmed, Arsalan; Khan, Rabia A.; Mirza, Mohsin K.; Inshasi, Jihad
2017-01-01
Objective and Methods. The outcome in late decompressive hemicraniectomy in malignant middle cerebral artery stroke and the optimal timings of surgery has not been addressed by the randomized trials and pooled analysis. Retrospective, multicenter, cross-sectional study to measure outcome following DHC under 48 or over 48 hours using the modified Rankin scale [mRS] and dichotomized as favorable ≤4 or unfavorable >4 at three months. Results. In total, 137 patients underwent DHC. Functional outcome analyzed as mRS 0–4 versus mRS 5-6 showed no difference in this split between early and late operated on patients [P = 0.140] and mortality [P = 0.975]. Multivariate analysis showed that age ≥ 55 years, MCA with additional infarction, septum pellucidum deviation ≥1 cm, and uncal herniation were independent predictors of poor functional outcome at three months. In the “best” multivariate model, second infarct growth rate [IGR2] >7.5 ml/hr, MCA with additional infarction, and patients with temporal lobe involvement were independently associated with surgery under 48 hours. Both first infarct growth rate [IGR1] and second infarct growth rate [IGR2] were nearly double [P < 0.001] in patients with early surgery [under 48 hours]. Conclusions. The outcome and mortality in malignant middle cerebral artery stroke patients operated on over 48 hours of stroke onset were comparable to those of patients operated on less than 48 hours after stroke onset. Our data identifies IGR, temporal lobe involvement, and middle cerebral artery with additional infarct as independent predictors for early surgery. PMID:28409051
Kamran, Saadat; Akhtar, Naveed; Salam, Abdul; Alboudi, Ayman; Kamran, Kainat; Ahmed, Arsalan; Khan, Rabia A; Mirza, Mohsin K; Inshasi, Jihad; Shuaib, Ashfaq
2017-01-01
Objective and Methods. The outcome in late decompressive hemicraniectomy in malignant middle cerebral artery stroke and the optimal timings of surgery has not been addressed by the randomized trials and pooled analysis. Retrospective, multicenter, cross-sectional study to measure outcome following DHC under 48 or over 48 hours using the modified Rankin scale [mRS] and dichotomized as favorable ≤4 or unfavorable >4 at three months. Results. In total, 137 patients underwent DHC. Functional outcome analyzed as mRS 0-4 versus mRS 5-6 showed no difference in this split between early and late operated on patients [ P = 0.140] and mortality [ P = 0.975]. Multivariate analysis showed that age ≥ 55 years, MCA with additional infarction, septum pellucidum deviation ≥1 cm, and uncal herniation were independent predictors of poor functional outcome at three months. In the "best" multivariate model, second infarct growth rate [IGR2] >7.5 ml/hr, MCA with additional infarction, and patients with temporal lobe involvement were independently associated with surgery under 48 hours. Both first infarct growth rate [IGR1] and second infarct growth rate [IGR2] were nearly double [ P < 0.001] in patients with early surgery [under 48 hours]. Conclusions. The outcome and mortality in malignant middle cerebral artery stroke patients operated on over 48 hours of stroke onset were comparable to those of patients operated on less than 48 hours after stroke onset. Our data identifies IGR, temporal lobe involvement, and middle cerebral artery with additional infarct as independent predictors for early surgery.
Hare, Todd; Rangel, Antonio
2013-01-01
Optimal decision-making often requires exercising self-control. A growing fMRI literature has implicated the dorsolateral prefrontal cortex (dlPFC) in successful self-control, but due to the limitations inherent in BOLD measures of brain activity, the neurocomputational role of this region has not been resolved. Here we exploit the high temporal resolution and whole-brain coverage of event-related potentials (ERPs) to test the hypothesis that dlPFC affects dietary self-control through two different mechanisms: attentional filtering and value modulation. Whereas attentional filtering of sensory input should occur early in the decision process, value modulation should occur later on, after the computation of stimulus values begins. Hungry human subjects were asked to make food choices while we measured neural activity using ERP in a natural condition, in which they responded freely and did not exhibit a tendency to regulate their diet, and in a self-control condition, in which they were given a financial incentive to lose weight. We then measured various neural markers associated with the attentional filtering and value modulation mechanisms across the decision period to test for changes in neural activity during the exercise of self-control. Consistent with the hypothesis, we found evidence for top-down attentional filtering early on in the decision period (150–200 ms poststimulus onset) as well as evidence for value modulation later in the process (450–650 ms poststimulus onset). We also found evidence that dlPFC plays a role in the deployment of both mechanisms. PMID:24285897
Variability of human corticospinal excitability tracks the state of action preparation.
Klein-Flügge, Miriam C; Nobbs, David; Pitcher, Julia B; Bestmann, Sven
2013-03-27
Task-evoked trial-by-trial variability is a ubiquitous property of neural responses, yet its functional role remains largely unclear. Recent work in nonhuman primates shows that the temporal structure of neural variability in several brain regions is task-related. For example, trial-by-trial variability in premotor cortex tracks motor preparation with increasingly consistent firing rates and thus a decline in variability before movement onset. However, whether noninvasive measures of the variability of population activity available from humans can similarly track the preparation of actions remains unknown. We tested this by using single-pulse transcranial magnetic stimulation (TMS) over primary motor cortex (M1) to measure corticospinal excitability (CSE) at different times during action preparation. First, we established the basic properties of intrinsic CSE variability at rest. Then, during the task, responses (left or right button presses) were either directly instructed (forced choice) or resulted from a value decision (choice). Before movement onset, we observed a temporally specific task-related decline in CSE variability contralateral to the responding hand. This decline was stronger in fast-response compared with slow-response trials, consistent with data in nonhuman primates. For the nonresponding hand, CSE variability also decreased, but only in choice trials, and earlier compared with the responding hand, possibly reflecting choice-specific suppression of unselected actions. These findings suggest that human CSE variability measured by TMS over M1 tracks the state of motor preparation, and may reflect the optimization of preparatory population activity. This provides novel avenues in humans to assess the dynamics of action preparation but also more complex processes, such as choice-to-action transformations.
Language impairment is reflected in auditory evoked fields.
Pihko, Elina; Kujala, Teija; Mickos, Annika; Alku, Paavo; Byring, Roger; Korkman, Marit
2008-05-01
Specific language impairment (SLI) is diagnosed when a child has problems in producing or understanding language despite having a normal IQ and there being no other obvious explanation. There can be several associated problems, and no single underlying cause has yet been identified. Some theories propose problems in auditory processing, specifically in the discrimination of sound frequency or rapid temporal frequency changes. We compared automatic cortical speech-sound processing and discrimination between a group of children with SLI and control children with normal language development (mean age: 6.6 years; range: 5-7 years). We measured auditory evoked magnetic fields using two sets of CV syllables, one with a changing consonant /da/ba/ga/ and another one with a changing vowel /su/so/sy/ in an oddball paradigm. The P1m responses for onsets of repetitive stimuli were weaker in the SLI group whereas no significant group differences were found in the mismatch responses. The results indicate that the SLI group, having weaker responses to the onsets of sounds, might have slightly depressed sensory encoding.
Malta, Juliane M. A. S.; Krow-Lucal, Elisabeth R.; Percio, Jadher; Nóbrega, Martha E.; Vargas, Alexander; Lanzieri, Tatiana M.; Leite, Priscila L.; Staples, J. Erin; Fischer, Marc X.; Powers, Ann M.; Chang, Gwong-Jen J.; Burns, P. L.; Borland, Erin M.; Ledermann, Jeremy P.; Mossel, Eric C.; Schonberger, Lawrence B.; Belay, Ermias B.; Salinas, Jorge L.; Badaro, Roberto D.; Sejvar, James J.; Coelho, Giovanini E.
2017-01-01
In mid-2015, Salvador, Brazil, reported an outbreak of Guillain-Barré syndrome (GBS), coinciding with the introduction and spread of Zika virus (ZIKV). We found that GBS incidence during April–July 2015 among those ≥12 years of age was 5.6 cases/100,000 population/year and increased markedly with increasing age to 14.7 among those ≥60 years of age. We conducted interviews with 41 case-patients and 85 neighborhood controls and found no differences in demographics or exposures prior to GBS-symptom onset. A higher proportion of case-patients (83%) compared to controls (21%) reported an antecedent illness (OR 18.1, CI 6.9–47.5), most commonly characterized by rash, headache, fever, and myalgias, within a median of 8 days prior to GBS onset. Our investigation confirmed an outbreak of GBS, particularly in older adults, that was strongly associated with Zika-like illness and geo-temporally associated with ZIKV transmission, suggesting that ZIKV may result in severe neurologic complications. PMID:28854206
Right Fronto-Temporal EEG can Differentiate the Affective Responses to Award-Winning Advertisements.
Wang, Regina W Y; Huarng, Shy-Peih; Chuang, Shang-Wen
2018-04-01
Affective engineering aims to improve service/product design by translating the customer's psychological feelings. Award-winning advertisements (AAs) were selected on the basis of the professional standards that consider creativity as a prerequisite. However, it is unknown if AA is related to satisfactory advertising performance among customers or only to the experts' viewpoints towards the advertisements. This issue in the field of affective engineering and design merits in-depth evaluation. We recruited 30 subjects and performed an electroencephalography (EEG) experiment while watching AAs and non-AAs (NAAs). The event-related potential (ERP) data showed that AAs evoked larger positive potentials 250-1400 [Formula: see text]ms after stimulus onset, particularly in the right fronto-temporal regions. The behavioral results were consistent with the professional recognition given to AAs by experts. The perceived levels of creativity and "product-like" quality were higher for the AAs than for the NAAs. Event-related spectral perturbation (ERSP) analysis further revealed statistically significant differences in the theta, alpha, beta, and gamma band activity in the right fronto-temporal regions between the AAs and NAAs. Our results confirm that EEG features from the time/frequency domains can differentiate affective responses to AAs at a neural circuit level, and provide scientific evidence to support the identification of AAs.
Tronstad, Christian; Kalvøy, Håvard; Grimnes, Sverre; Martinsen, Ørjan G
2013-11-01
The shapes of skin conductance (SC) and skin potential (SP) responses are often similar, but can also be very different due to an unexplained cause. Using a new method to measure SC and SP simultaneously at the same electrode, this difference was investigated in a new way by comparing their temporal peak differences. SC, SP, skin susceptance (SS), and transepidermal water loss (TEWL) were recorded from 40 participants during relaxation and stress. The SP response could peak anywhere between the onset of an SC response to some time after the peak of an SC response. This peak time difference was associated with the magnitude of the SCR, the hydration of the skin, and the filling of the sweat ducts. Interpretation of the results in light of existing biophysical theories suggests that this peak difference may indicate the hydraulic capacity state of the sweat ducts at the time of a response. Copyright © 2013 Society for Psychophysiological Research.
Hofer, Patrizia D; Wahl, Karina; Meyer, Andrea H; Miché, Marcel; Beesdo-Baum, Katja; Wong, Shiu F; Grisham, Jessica R; Wittchen, Hans-Ulrich; Lieb, Roselind
2018-04-01
Comorbidity of obsessive-compulsive disorder (OCD) with other mental disorders has been demonstrated repeatedly. Few longitudinal studies, however, have evaluated the temporal association of prior OCD and subsequent mental disorders across the age period of highest risk for first onset of mental disorders. We examined associations between prior OCD and a broad range of subsequent mental disorders and simulated proportions of new onsets of mental disorders that could potentially be attributed to prior OCD, assuming a causal relationship. Data from 3,021 14- to 24-year-old community subjects were prospectively collected for up to 10 years. DSM-IV OCD and other DSM-IV mental disorders were assessed with the Munich-Composite International Diagnostic Interview. We used adjusted time-dependent proportional hazard models to estimate the temporal associations of prior OCD with subsequent mental disorders. Prior OCD was associated with an increased risk of bipolar disorders (BIP; [hazard ratio, HR = 6.9, 95% confidence interval, CI, (2.8,17.3)], bulimia nervosa [HR = 6.8 (1.3,36.6)], dysthymia [HR = 4.4 (2.1,9.0)], generalized anxiety disorder (GAD; [HR = 3.4 (1.1,10.9)], and social phobia [HR = 2.9 (1.1,7.7)]). Of these outcome disorders, between 65 and 85% could be attributed to OCD in the exposed group, whereas between 1.5 and 7.7% could be attributed to OCD in the total sample. This study provides strong evidence that prior OCD is associated with an increased risk of subsequent onset of BIP, bulimia nervosa, dysthymia, GAD, and social phobia among adolescents and young adults. Future studies should evaluate if early treatment of OCD can prevent the onset of these subsequent mental disorders. © 2018 Wiley Periodicals, Inc.
Wamsley, Erin J.; Perry, Karen; Djonlagic, Ina; Babkes Reaven, Laura; Stickgold, Robert
2010-01-01
Study Objectives: Studies of neural activity in animals and humans suggest that experiences are “replayed” in cortical and hippocampal networks during NREM sleep. Here, we examine whether memory reactivation in sleeping humans might also be evident within reports of concomitant subjective experience (i.e., dreaming). Design: Participants were trained on an engaging visuomotor learning task across a period of one or more days, and sleep onset mentation was collected at variable intervals using the “Nightcap” home-monitoring device. Verbal reports of sleep onset mentation were obtained either at the beginning of the night, or following 2 h of initial sleep. Setting: Data were collected in participants' home environments, via the Nightcap monitoring system, and at The Center for Sleep and Cognition, Beth Israel Deaconess Medical Center, Boston MA. Participants: 43 healthy, medication-free college students (16 males, age 18-25 years). Interventions: N/A Measurements and Results: The learning task exerted a powerful, direct effect on verbal reports of mentation during light NREM sleep (stages 1 and 2). On post-training nights, a full 30% of all verbal reports were related to the task. The nature of this cognitive “replay” effect was altered with increasing durations of sleep, becoming more abstracted from the original experience as time into sleep increased. Conclusions: These observations are interpreted in light of memory consolidation theory, and demonstrate that introspective reports can provide a valuable window on cognitive processing in the sleeping brain. Citation: Wamsley EJ; Perry K; Djonlagic I; Babkes Reaven L; Stickgold R. Cognitive replay of visuomotor learning at sleep onset: temporal dynamics and relationship to task performance. SLEEP 2010;33(1):59-68. PMID:20120621
The spatial-temporal ambiguity in auroral modeling
NASA Technical Reports Server (NTRS)
Rees, M. H.; Roble, R. G.; Kopp, J.; Abreu, V. J.; Rusch, D. W.; Brace, L. H.; Brinton, H. C.; Hoffman, R. A.; Heelis, R. A.; Kayser, D. C.
1980-01-01
The paper examines the time-dependent models of the aurora which show that various ionospheric parameters respond to the onset of auroral ionization with different time histories. A pass of the Atmosphere Explorer C satellite over Poker Flat, Alaska, and ground based photometric and photographic observations have been used to resolve the time-space ambiguity of a specific auroral event. The density of the O(+), NO(+), O2(+), and N2(+) ions, the electron density, and the electron temperature observed at 280 km altitude in a 50 km wide segment of an auroral arc are predicted by the model if particle precipitation into the region commenced about 11 min prior to the overpass.
Lee, Tae-Ho; Telzer, Eva H
2016-08-01
Recent developmental brain imaging studies have demonstrated that negatively coupled prefrontal-limbic circuitry implicates the maturation of brain development in adolescents. Using resting-state functional magnetic resonance imaging (rs-fMRI) and independent component analysis (ICA), the present study examined functional network coupling between prefrontal and limbic systems and links to self-control and substance use onset in adolescents. Results suggest that negative network coupling (anti-correlated temporal dynamics) between the right fronto-parietal and limbic resting state networks is associated with greater self-control and later substance use onset in adolescents. These findings increase our understanding of the developmental importance of prefrontal-limbic circuitry for adolescent substance use at the resting-state network level. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Carecchio, Miryam; Picillo, Marina; Valletta, Lorella; Elia, Antonio E; Haack, Tobias B; Cozzolino, Autilia; Vitale, Annalisa; Garavaglia, Barbara; Iuso, Arcangela; Bagella, Caterina F; Pappatà, Sabina; Barone, Paolo; Prokisch, Holger; Romito, Luigi; Tiranti, Valeria
2017-07-01
Mutations in PSEN1 are responsible for familial Alzheimer's disease (FAD) inherited as autosomal dominant trait, but also de novo mutations have been rarely reported in sporadic early-onset dementia cases. Parkinsonism in FAD has been mainly described in advanced disease stages. We characterized a patient presenting with early-onset dystonia-parkinsonism later complicated by dementia and myoclonus. Brain MRI showed signs of iron accumulation in the basal ganglia mimicking neurodegeneration with brain iron accumulation (NBIA) as well as fronto-temporal atrophy. Whole exome sequencing revealed a novel PSEN1 mutation and segregation within the family demonstrated the mutation arose de novo.We suggest considering PSEN1 mutations in cases of dystonia-parkinsonism with positive DAT-Scan, later complicated by progressive cognitive decline and cortical myoclonus even without a dominant family history.
NASA Astrophysics Data System (ADS)
Szabó, Barbara; Lehoczky, Annamária; Filzmoser, Peter; Templ, Matthias; Szentkirályi, Ferenc; Pongrácz, Rita; Ortner, Thomas; Mert, Can; Czúcz, Bálint
2014-05-01
Phenological sensitivity of plants strongly depends on regional climate variability, moreover it is also influenced by large-scale atmospheric circulation patterns. Plants in different environmental conditions (determined by geographical latitude and longitude, altitude, continentality) may show diverse responses to climate change. The first results of an international cooperation aiming at the analysis of plant phenological data along a latitudinal gradient over 12 European countries (Macedonia, Bosnia and Herzegovina, Montenegro, Slovenia, Croatia, Hungary, Slovakia, Poland, Lithuania, Latvia, Estonia and Finland) are presented. The spatio-temporal changes in the flowering onset dates of common lilac (Syringa vulgaris L.) during the period of 1970-2000 were analysed. To characterise the environmental conditions driving the phenological responses, climatic variables (atmospheric pressure, air temperature, precipitation) obtained from a gridded observational dataset (E-OBS 9.0) and time series of the North Atlantic Oscillation (NAO) index were used. Preliminary results for this particular species found a gradual advance of mean flowering onsets along latitudes from 40° N to 65° N, at the rate of -0.12 to -0.32 day/year. Significant zonal differences were found in these rates, which can be explained by the sensitivity of flowering to climatic conditions while moving from Mediterranen to boreal regions of Europe. Thus our results were coherent with most observations in the literature, that higher latitudes can exhibit more pronounced responses, particularly in case of spring phenological events.
2012-01-01
Background The role of demographic factors, climatic conditions, school cycles, and connectivity patterns in shaping the spatio-temporal dynamics of pandemic influenza is not clearly understood. Here we analyzed the spatial, age and temporal evolution of the 2009 A/H1N1 influenza pandemic in Chile, a southern hemisphere country covering a long and narrow strip comprising latitudes 17°S to 56°S. Methods We analyzed the dissemination patterns of the 2009 A/H1N1 pandemic across 15 regions of Chile based on daily hospitalizations for severe acute respiratory disease and laboratory confirmed A/H1N1 influenza infection from 01-May to 31-December, 2009. We explored the association between timing of pandemic onset and peak pandemic activity and several geographical and demographic indicators, school vacations, climatic factors, and international passengers. We also estimated the reproduction number (R) based on the growth rate of the exponential pandemic phase by date of symptoms onset, estimated using maximum likelihood methods. Results While earlier pandemic onset was associated with larger population size, there was no association with connectivity, demographic, school or climatic factors. In contrast, there was a latitudinal gradient in peak pandemic timing, representing a 16-39-day lag in disease activity from the southern regions relative to the northernmost region (P < 0.001). Geographical differences in latitude of Chilean regions, maximum temperature and specific humidity explained 68.5% of the variability in peak timing (P = 0.01). In addition, there was a decreasing gradient in reproduction number from south to north Chile (P < 0.0001). The regional mean R estimates were 1.6-2.0, 1.3-1.5, and 1.2-1.3 for southern, central and northern regions, respectively, which were not affected by the winter vacation period. Conclusions There was a lag in the period of most intense 2009 pandemic influenza activity following a South to North traveling pattern across regions of Chile, significantly associated with geographical differences in minimum temperature and specific humidity. The latitudinal gradient in timing of pandemic activity was accompanied by a gradient in reproduction number (P < 0.0001). Intensified surveillance strategies in colder and drier southern regions could lead to earlier detection of pandemic influenza viruses and improved control outcomes. PMID:23148597
Gschwind, Tilo; Lafourcade, Carlos; Gfeller, Tim; Zaichuk, Mariana; Rambousek, Lukas; Knuesel, Irene; Fritschy, Jean-Marc
2018-06-04
Aberrant epileptic activity is detectable at early disease stages in Alzheimer's disease (AD) patients and in AD mouse models. Here, we investigated in young ArcticAβ mice whether AD-like pathology renders neuronal networks more susceptible to development of acquired epilepsy induced by unilateral intrahippocampal injection of kainic acid (IHK). In this temporal lobe epilepsy model, IHK induces a status epilepticus followed after two weeks by spontaneous recurrent seizures (SRS). ArcticAβ mice exhibited more severe status epilepticus and early onset of SRS. This hyperexcitable phenotype was characterized in CA1 neurons by decreased synaptic strength, increased kainic acid-induced LTP, and reduced frequency of spontaneous inhibitory currents. However, no difference in neurodegeneration, neuroinflammation, axonal reorganization or adult neurogenesis was observed in ArcticAβ mice compared to wildtype littermates following IHK-induced epileptogenesis. Neuropeptide Y (NPY) expression was reduced at baseline and its IHK-induced elevation in mossy fibers and granule cells was attenuated. However, although this alteration might underlie premature seizure onset, neutralization of soluble Aβ species by intracerebroventricular Aβ-specific antibody application mitigated the hyperexcitable phenotype of ArcticAβ mice and prevented early SRS onset. Therefore, development of seizures at early stages of AD is mediated primarily by Aβ species causing widespread changes in synaptic function. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Growth and splitting of neural sequences in songbird vocal development
Okubo, Tatsuo S.; Mackevicius, Emily L.; Payne, Hannah L.; Lynch, Galen F.; Fee, Michale S.
2015-01-01
Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871
Butler, Susan G; Stuart, Andrew; Castell, Donald; Russell, Gregory B; Koch, Kenneth; Kemp, Shannon
2009-02-01
The purpose of this study was to determine the effects of trial (i.e., Trial 1 vs. Trial 2); viscosity (i.e., saliva, thin, nectar-thick, honey-thick, and pudding-thick water); volume (i.e., 5 mL vs. 10 mL); age (i.e., young vs. older adults); and gender on pharyngeal (i.e., upper and lower) and upper esophageal sphincter (UES) pressures, durations, and onsets (i.e., onset of upper pharyngeal pressures relative to onsets of UES relaxations and onset of lower relative to upper pharyngeal pressures). Twenty-three young adults (M=30 years) and 21 older healthy adults (M=75 years) participated. Measurements were acquired with a 2.1-mm catheter during simultaneous manometric and endoscopic swallowing assessment. Participants contributed 18 swallows, affording a study total of 792 swallows for analyses. There was no significant effect of trial on any measurement of pressure, duration, and onset (ps=.63, .39, and .71, respectively). It was found that viscosity, volume, age, and gender affected pressure, duration, and onset measurements (e.g., onset of upper pharyngeal pressures relative to onsets of UES relaxations) but in varying degrees relative to the location in the pharynx or UES and the type of measurement (e.g., pressure, onset). Manometric measurements vary with respect to age, gender, and bolus variables and interactions of each. Consideration of these variables is paramount in understanding normal and pathological swallowing if manometry is to develop as a quantitative adjunct to videofluoroscopic and endoscopic swallowing tools.
Liu, Lingling; Zhang, Xiaoyang; Donnelly, Alison; Liu, Xinjie
2016-10-01
Land surface phenology has been widely used to evaluate the effects of climate change on terrestrial ecosystems in recent decades. Climate warming on the Tibetan Plateau (1960-2010, 0.2 °C/decade) has been found to be greater than the global average (1951-2012, 0.12 °C/decade), which has had a significant impact on the timing of spring greenup. However, the magnitude and direction of change in spring phenology and its response to warming temperature and precipitation are currently under scientific debate. In an attempt to explore this issue further, we detected the onset of greenup based on the time series of daily two-band enhanced vegetation index (EVI2) from the advanced very high resolution radiometer (AVHRR) long-term data record (LTDR; 1982-1999) and Moderate Resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG; 2000-2013) using hybrid piecewise logistic models. Further, we examined the temporal trend in greenup onset in both individual pixels and ecoregions across the entire Tibetan Plateau over the following periods: 1982-1999, 2000-2013, and 1982-2013. The interannual variation in greenup onset was linked to the mean temperature and cumulative precipitation in the preceding month, and total precipitation during winter and spring, respectively. Finally, we investigated the relationship between interannual variation in greenup onset dates and temperature and precipitation from 1982 to 2013 at different elevational zones for different ecoregions. The results revealed no significant trend in the onset of greenup from 1982 to 2013 in more than 86 % of the Tibetan Plateau. For each study period, statistically significant earlier greenup trends were observed mainly in the eastern meadow regions while later greenup trends mainly occurred in the southwestern steppe and meadow regions both with areal coverage of less than 8 %. Although spring phenology was negatively correlated with spring temperature and precipitation in the majority of pixels (>60 %), only 15 % and 10 % of these correlations were significant (P < 0.1), respectively. Climate variables had varying effects on the ecoregions with altitude. In the meadow ecoregion, greenup onset was significantly affected by both temperature and precipitation from 3500 to 4000 m altitude and by temperature alone from 4000 to 4500 m. In contrast, greenup onset across all elevational zones, in the steppe ecoregion, was not directly driven by either spring temperature or precipitation, which was likely impacted by soil moisture associated with warming temperature. These findings highlight the complex impacts of climate change on spring phenology in the Tibetan Plateau.
Trunk muscle activation during golf swing: Baseline and threshold.
Silva, Luís; Marta, Sérgio; Vaz, João; Fernandes, Orlando; Castro, Maria António; Pezarat-Correia, Pedro
2013-10-01
There is a lack of studies regarding EMG temporal analysis during dynamic and complex motor tasks, such as golf swing. The aim of this study is to analyze the EMG onset during the golf swing, by comparing two different threshold methods. Method A threshold was determined using the baseline activity recorded between two maximum voluntary contraction (MVC). Method B threshold was calculated using the mean EMG activity for 1000ms before the 500ms prior to the start of the Backswing. Two different clubs were also studied. Three-way repeated measures ANOVA was used to compare methods, muscles and clubs. Two-way mixed Intraclass Correlation Coefficient (ICC) with absolute agreement was used to determine the methods reliability. Club type usage showed no influence in onset detection. Rectus abdominis (RA) showed the higher agreement between methods. Erector spinae (ES), on the other hand, showed a very low agreement, that might be related to postural activity before the swing. External oblique (EO) is the first being activated, at 1295ms prior impact. There is a similar activation time between right and left muscles sides, although the right EO showed better agreement between methods than left side. Therefore, the algorithms usage is task- and muscle-dependent. Copyright © 2013 Elsevier Ltd. All rights reserved.
Saccadic eye movements do not disrupt the deployment of feature-based attention.
Kalogeropoulou, Zampeta; Rolfs, Martin
2017-07-01
The tight link of saccades to covert spatial attention has been firmly established, yet their relation to other forms of visual selection remains poorly understood. Here we studied the temporal dynamics of feature-based attention (FBA) during fixation and across saccades. Participants reported the orientation (on a continuous scale) of one of two sets of spatially interspersed Gabors (black or white). We tested performance at different intervals between the onset of a colored cue (black or white, indicating which stimulus was the most probable target; red: neutral condition) and the stimulus. FBA built up after cue onset: Benefits (errors for valid vs. neutral cues), costs (invalid vs. neutral), and the overall cueing effect (valid vs. invalid) increased with the cue-stimulus interval. Critically, we also tested visual performance at different intervals after a saccade, when FBA had been fully deployed before saccade initiation. Cueing effects were evident immediately after the saccade and were predicted most accurately and most precisely by fully deployed FBA, indicating that FBA was continuous throughout saccades. Finally, a decomposition of orientation reports into target reports and random guesses confirmed continuity of report precision and guess rates across the saccade. We discuss the role of FBA in perceptual continuity across saccades.
2011-01-01
Background Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Methods Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. Results State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Conclusions Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes. PMID:22142274
Goovaerts, Pierre; Xiao, Hong
2011-12-05
Although prostate cancer-related incidence and mortality have declined recently, striking racial/ethnic differences persist in the United States. Visualizing and modelling temporal trends of prostate cancer late-stage incidence, and how they vary according to geographic locations and race, should help explaining such disparities. Joinpoint regression is increasingly used to identify the timing and extent of changes in time series of health outcomes. Yet, most analyses of temporal trends are aspatial and conducted at the national level or for a single cancer registry. Time series (1981-2007) of annual proportions of prostate cancer late-stage cases were analyzed for non-Hispanic Whites and non-Hispanic Blacks in each county of Florida. Noise in the data was first filtered by binomial kriging and results were modelled using joinpoint regression. A similar analysis was also conducted at the state level and for groups of metropolitan and non-metropolitan counties. Significant racial differences were detected using tests of parallelism and coincidence of time trends. A new disparity statistic was introduced to measure spatial and temporal changes in the frequency of racial disparities. State-level percentage of late-stage diagnosis decreased 50% since 1981; a decline that accelerated in the 90's when Prostate Specific Antigen (PSA) screening was introduced. Analysis at the metropolitan and non-metropolitan levels revealed that the frequency of late-stage diagnosis increased recently in urban areas, and this trend was significant for white males. The annual rate of decrease in late-stage diagnosis and the onset years for significant declines varied greatly among counties and racial groups. Most counties with non-significant average annual percent change (AAPC) were located in the Florida Panhandle for white males, whereas they clustered in South-eastern Florida for black males. The new disparity statistic indicated that the spatial extent of racial disparities reached a peak in 1990 because of an early decline in frequency of late-stage diagnosis observed for black males. Analyzing temporal trends in cancer incidence and mortality rates outside a spatial framework is unsatisfactory, since it leads one to overlook significant geographical variation which can potentially generate new insights about the impact of various interventions. Differences observed among nested geographies in Florida show how the modifiable areal unit problem (MAUP) also impacts the analysis of temporal changes.
Zhang, Xiaoying; Luo, Qiong
2017-02-01
The aim of the present study was to investigate the clinical, biochemical and genetic mutation characteristics of two cases of late-onset glutaric aciduria type I (GA-I) in Uighur. The clinical data and glutaryl-CoA dehydrogenase (GCDH) genetic test results of two cases of late-onset GA-I in Uighur were collected and analyzed, and reviewed with relevant literature. One patient with late-onset GA-I primarily exhibited clinical intermittent headache, while the other patient was asymptomatic. The urinary organic acid analysis detected a large number of glutaric acid and 3-hydroxy glutaric acid, 3-hydroxy-propionic acid. One patient exhibited white matter degeneration in cranial magnetic resonance imaging (MRI) and the other patient showed no abnormality. The two patients both exhibited c. 1204C >T, p.R402W, heterozygous mutation, and c. 532G >A, p.G178R, heterozygous mutation. Besides central nervous system infectious diseases, patients with clinical headache, cranial MRI-suggested bilateral temporal lobe arachnoid cyst and abnormal signals in the basal ganglia should be highly suspected as late-onset GA-I. Early diagnosis and correct treatment are key to improve its prognosis.
Zhang, Xiaoying; Luo, Qiong
2017-01-01
The aim of the present study was to investigate the clinical, biochemical and genetic mutation characteristics of two cases of late-onset glutaric aciduria type I (GA-I) in Uighur. The clinical data and glutaryl-CoA dehydrogenase (GCDH) genetic test results of two cases of late-onset GA-I in Uighur were collected and analyzed, and reviewed with relevant literature. One patient with late-onset GA-I primarily exhibited clinical intermittent headache, while the other patient was asymptomatic. The urinary organic acid analysis detected a large number of glutaric acid and 3-hydroxy glutaric acid, 3-hydroxy-propionic acid. One patient exhibited white matter degeneration in cranial magnetic resonance imaging (MRI) and the other patient showed no abnormality. The two patients both exhibited c. 1204C >T, p.R402W, heterozygous mutation, and c. 532G >A, p.G178R, heterozygous mutation. Besides central nervous system infectious diseases, patients with clinical headache, cranial MRI-suggested bilateral temporal lobe arachnoid cyst and abnormal signals in the basal ganglia should be highly suspected as late-onset GA-I. Early diagnosis and correct treatment are key to improve its prognosis. PMID:28352331
Koll, Brian S; Ruiz, Rafael E; Calfee, David P; Jalon, Hillary S; Stricof, Rachel L; Adams, Audrey; Smith, Barbara A; Shin, Gina; Gase, Kathleen; Woods, Maria K; Sirtalan, Ismail
2014-01-01
The incidence, severity, and associated costs of Clostridium difficile (C. difficile) infection (CDI) have dramatically increased in hospitals over the past decade, indicating an urgent need for strategies to prevent transmission of C. difficile. This article describes a multifaceted collaborative approach to reduce hospital-onset CDI rates in 35 acute care hospitals in the New York metropolitan region. Hospitals participated in a comprehensive CDI reduction intervention and formed interdisciplinary teams to coordinate their efforts. Standardized clinical infection prevention and environmental cleaning protocols were implemented and monitored using checklists. Monthly data reports were provided to hospitals for facility-specific performance evaluation and comparison to aggregate data from all participants. Hospitals also participated in monthly teleconferences to review data and highlight successes, challenges, and strategies to reduce CDI. Incidence of hospital-onset CDI per 10,000 patient days was the primary outcome measure. Additionally, the incidence of nonhospital-associated, community-onset, hospital-associated, and recurrent CDIs were measured. The use of a collaborative model to implement a multifaceted infection prevention strategy was temporally associated with a significant reduction in hospital-onset CDI rates in participating New York metropolitan regional hospitals. © 2013 National Association for Healthcare Quality.
Measurements of fireball onset
NASA Astrophysics Data System (ADS)
Scheiner, Brett; Barnat, Edward V.; Baalrud, Scott D.; Hopkins, Matthew M.; Yee, Benjamin T.
2018-04-01
Laser-based measurements of the characteristic features of fireball onset and stabilization in response to a stepped voltage applied to an anode immersed in a low pressure (100 mTorr) helium afterglow are reported. These include spatial and temporal evolution of metastable species, electron density, and electric field magnitude as measured by planar laser induced fluorescence, laser-collision induced fluorescence, and laser-induced fluorescence-dip spectroscopy, respectively. These measurements are found to be in qualitative agreement with recent particle-in-cell simulations and theoretical models [Scheiner et al., Phys. Plasmas 24, 113520 (2017)]. The measurements validate the simulations and models in which fireball onset was predicted to follow from the trapping of electrons born from electron impact ionization within a potential well created by a buildup of ions in the sheath. The experimental measurements also demonstrate transient features following the onset that were not present in previous simulations. New simulation results are presented which demonstrate that these features are associated with the abruptness of the voltage step used to initiate fireball onset. An abrupt step in the anode bias causes rapid displacement of ions and an associated plasma potential response following the sheath and fireball expansion.
NASA Astrophysics Data System (ADS)
Miyashita, Y.; Ieda, A.; Machida, S.; Hiraki, Y.; Angelopoulos, V.; McFadden, J. P.; Auster, H. U.; Mende, S. B.; Donovan, E.; Larson, D. E.
2014-12-01
We have studied the relative timing of the processes in the near-Earth magnetotail and development of auroral onset arc at the beginning of the expansion phase, based on substorm events observed by the THEMIS spacecraft and ground-based all-sky imagers. The THEMIS all-sky imagers can observe auroras over a wide area with temporal and spacial resolutions higher than spacecraft-borne cameras. This enables us to investigate the timing of auroral development in more detail than before. A few min after the appearance and intensification of an auroral onset arc, it begins to form wave-like structure. Then auroral poleward expansion begins another few min later. THEMIS magnetotail observations clearly show that magnetic reconnection is initiated at X~-20 Re at least 1-2 min before the intensification of auroral onset arc. Then low-frequency waves are excited in the plasma sheet at X~-10 Re 2 min before dipolarization, which is simultaneous with the formation of auroral wave-like structure. Dipolarization begins at the same time as the auroral poleward expansion. These results suggest that near-Earth magnetic reconnection plays some role in the development of dipolarization and auroral onset arc.
Neuroinflammation is increased in the parietal cortex of atypical Alzheimer's disease.
Boon, Baayla D C; Hoozemans, Jeroen J M; Lopuhaä, Boaz; Eigenhuis, Kristel N; Scheltens, Philip; Kamphorst, Wouter; Rozemuller, Annemieke J M; Bouwman, Femke H
2018-05-29
While most patients with Alzheimer's disease (AD) present with memory complaints, 30% of patients with early disease onset present with non-amnestic symptoms. This atypical presentation is thought to be caused by a different spreading of neurofibrillary tangles (NFT) than originally proposed by Braak and Braak. Recent studies suggest a prominent role for neuroinflammation in the spreading of tau pathology. We aimed to explore whether an atypical spreading of pathology in AD is associated with an atypical distribution of neuroinflammation. Typical and atypical AD cases were selected based on both NFT distribution and amnestic or non-amnestic clinical presentation. Immunohistochemistry was performed on the temporal pole and superior parietal lobe of 10 typical and 9 atypical AD cases. The presence of amyloid-beta (N-terminal; IC16), pTau (AT8), reactive astrocytes (GFAP), microglia (Iba1, CD68, and HLA-DP/DQ/DR), and complement factors (C1q, C3d, C4b, and C5b-9) was quantified by image analysis. Differences in lobar distribution patterns of immunoreactivity were statistically assessed using a linear mixed model. We found a temporal dominant distribution for amyloid-beta, GFAP, and Iba1 in both typical and atypical AD. Distribution of pTau, CD68, HLA-DP/DQ/DR, C3d, and C4b differed between AD variants. Typical AD cases showed a temporal dominant distribution of these markers, whereas atypical AD cases showed a parietal dominant distribution. Interestingly, when quantifying for the number of amyloid-beta plaques instead of stained surface area, atypical AD cases differed in distribution pattern from typical AD cases. Remarkably, plaque morphology and localization of neuroinflammation within the plaques was different between the two phenotypes. Our data show a different localization of neuroinflammatory markers and amyloid-beta plaques between AD phenotypes. In addition, these markers reflect the atypical distribution of tau pathology in atypical AD, suggesting that neuroinflammation might be a crucial link between amyloid-beta deposits, tau pathology, and clinical symptoms.
Ohtsuka, K; Noda, H
1995-11-01
1. We previously described discharge properties of cerebellar output cells in the fastigial nucleus during ipsilateral and contralateral saccades. Fastigial cells exhibited unique responses depending on the direction of saccades and were involved in execution of accurate targeting saccades. Purkinje cells in the oculomotor vermis (lobules VIc and VII) are thought to modulate these discharges of fastigial cells. In this study we reexamine discharge properties of Purkinje cells on the basis of this hypothesis. 2. Initially we physiologically identified the right and left sides of the oculomotor vermis. Saccade-related discharges of 79 Purkinje cells were recorded from both sides of the vermis during visually guided saccades toward the sides ipsilateral and contralateral to the recording side in two trained macaque monkeys. To clarify the correlation of Purkinje cell discharge with burst activities in the fastigial nucleus during saccadic eye movements, we analyzed our data by employing methods used in the study of fastigial neurons. 3. Among the 79 cells, 56 (71%) showed burst discharges during saccades (saccadic burst cells). Of the 56 cells, 29 exhibited a peak of burst discharges in both the contralateral and ipsilateral directions (bidirectional cells). The remaining 27 saccadic burst cells showed a peak of burst discharges during either contralateral or ipsilateral saccades (unidirectional cells). Among the 79 cells, 14 (18%) exhibited a pause of discharges during contralateral saccades (pause cells). Among the 79 cells, 9 (11%) showed burst discharge during contralateral saccades followed by tonic discharge that was correlated with eye position (burst tonic cells). 4. The timing of bursts in bidirectional cells with respect to saccade onset was dependent on the direction of saccade. During ipsilateral saccades, Purkinje cells exhibited a long lead burst that built up gradually, peaked near the onset of the saccade, and terminated sharply near midsaccade. The mean lead time relative to saccade onset was 29.3 +/- 24.5 (SD) ms. During contralateral saccades, Purkinje cells exhibited a short lead/late burst that built up sharply, peaked near midsaccade, and terminated gradually after the end of the saccade. The mean lead time relative to saccade onset was 10.7 +/- 20.8 ms. The burst onset time during contralateral saccades and the burst offset time during ipsilateral saccades preceded the saccade offset time by about the same interval regardless of the saccade amplitude. 5. In pause cells the pause preceded saccade onset by 17.5 +/- 10.6 ms. The duration of the pause was not correlated with the duration of saccades. There was little trial-to-trial variability in the onset time of the pause with respect to the onset of saccades, whereas there was large trial-to-trial variability in the offset time of the pause with respect to the offset of saccades. In addition, the mean onset time of the pause for each cell had a relatively narrow distribution. 6. The burst lead time of burst tonic cells relative to saccade onset was 9.5 +/- 3.9 ms. The tonic discharge rate of burst tonic cells was a nonlinear function of eye position. The regression of each cell was fit to two lines. The regression coefficient ranged from 0.95 to 0.99 (mean = 0.97). 7. Axons of Purkinje cells in the oculomotor vermis are thought to project exclusively to saccadic burst cells in the fastigial oculomotor region (FOR), which is located in the caudal portion of the fastigial nucleus. Our previous studies indicated that FOR cells provide temporal signals for controlling targeting saccades. The present results suggest that Purkinje cells in the oculomotor vermis modify the temporal signals of FOR cells for saccades in different directions and amplitudes. The modification of FOR cell activity by Purkinje cells is thought to be essential for the function of the cerebellum in the control of saccadic eye movements.
ERIC Educational Resources Information Center
Sanabria, Daniel; Capizzi, Mariagrazia; Correa, Angel
2011-01-01
This study investigates whether a rhythm can orient attention to specific moments enhancing people's reaction times (RT). We used a modified version of the temporal orienting paradigm in which an auditory isochronous rhythm was presented prior to an auditory single target. The rhythm could have a fast pace (450 ms Inter-Onset-Interval or IOI) or a…
Stage Sequences of Adolescent Substance Use: A Prospective Longitudinal Approach.
ERIC Educational Resources Information Center
Collins, Linda M; And Others
Past research based primarily on cross-sectional data, has suggested a Guttman scale of substance use onset where marijuana use is preceded by alcohol use, and where sometimes tobacco is placed between alcohol and marijuana. Prospective longitudinal data is needed to determine whether the stages form a temporal sequence. A new statistical…
ERIC Educational Resources Information Center
Hughes, Elizabeth K.
2012-01-01
Background: Comorbid conditions are common in individuals with anorexia nervosa (AN) and can raise issues for diagnosis, prognosis, and treatment planning. Methods: First, reported prevalence rates for depression and anxiety in children and adolescents with AN were reviewed. Diagnostic issues and current understanding of the temporal onset and…
ERIC Educational Resources Information Center
Mossbridge, Julia A.; Scissors, Beth N.; Wright, Beverly A.
2008-01-01
Normal auditory perception relies on accurate judgments about the temporal relationships between sounds. Previously, we used a perceptual-learning paradigm to investigate the neural substrates of two such relative-timing judgments made at sound onset: detecting stimulus asynchrony and discriminating stimulus order. Here, we conducted parallel…
Zhou, Zhengfang; Wang, Jingying; Guo, Chaoshe; Chang, Weiting; Zhuang, Jian; Zhu, Ping; Li, Xue
2017-01-24
The embryonic process of forming a complex structure such as the heart remains poorly understood. Here, we show that Six2 marks a dynamic subset of second heart field progenitors. Six2-positive (Six2 + ) progenitors are rapidly recruited and assigned, and their descendants are allocated successively to regions of the heart from the right ventricle (RV) to the pulmonary trunk. Global ablation of Six2 + progenitors resulted in RV hypoplasia and pulmonary atresia. An early stage-specific ablation of a small subset of Six2 + progenitors did not cause any apparent structural defect at birth but rather resulted in adult-onset cardiac hypertrophy and dysfunction. Furthermore, Six2 expression depends in part on Shh signaling, and Shh deletion resulted in severe deficiency of Six2 + progenitors. Collectively, these findings unveil the chronological features of cardiogenesis, in which the mammalian heart is built sequentially by temporally distinct populations of cardiac progenitors, and provide insights into late-onset congenital heart disease. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Mukherjee, Shubhabrata; Russell, Joshua C; Carr, Daniel T; Burgess, Jeremy D; Allen, Mariet; Serie, Daniel J; Boehme, Kevin L; Kauwe, John S K; Naj, Adam C; Fardo, David W; Dickson, Dennis W; Montine, Thomas J; Ertekin-Taner, Nilufer; Kaeberlein, Matt R; Crane, Paul K
2017-10-01
We sought to determine whether a systems biology approach may identify novel late-onset Alzheimer's disease (LOAD) loci. We performed gene-wide association analyses and integrated results with human protein-protein interaction data using network analyses. We performed functional validation on novel genes using a transgenic Caenorhabditis elegans Aβ proteotoxicity model and evaluated novel genes using brain expression data from people with LOAD and other neurodegenerative conditions. We identified 13 novel candidate LOAD genes outside chromosome 19. Of those, RNA interference knockdowns of the C. elegans orthologs of UBC, NDUFS3, EGR1, and ATP5H were associated with Aβ toxicity, and NDUFS3, SLC25A11, ATP5H, and APP were differentially expressed in the temporal cortex. Network analyses identified novel LOAD candidate genes. We demonstrated a functional role for four of these in a C. elegans model and found enrichment of differentially expressed genes in the temporal cortex. Copyright © 2017 the Alzheimer's Association. Published by Elsevier Inc. All rights reserved.
Yang, Huan; Zimmerman, Aaron; Lehner, Luis
2015-02-27
We demonstrate that rapidly spinning black holes can display a new type of nonlinear parametric instability-which is triggered above a certain perturbation amplitude threshold-akin to the onset of turbulence, with possibly observable consequences. This instability transfers from higher temporal and azimuthal spatial frequencies to lower frequencies-a phenomenon reminiscent of the inverse cascade displayed by (2+1)-dimensional fluids. Our finding provides evidence for the onset of transitory turbulence in astrophysical black holes and predicts observable signatures in black hole binaries with high spins. Furthermore, it gives a gravitational description of this behavior which, through the fluid-gravity duality, can potentially shed new light on the remarkable phenomena of turbulence in fluids.
NASA Astrophysics Data System (ADS)
Itoh, Kosuke; Nakada, Tsutomu
2013-04-01
Deterministic nonlinear dynamical processes are ubiquitous in nature. Chaotic sounds generated by such processes may appear irregular and random in waveform, but these sounds are mathematically distinguished from random stochastic sounds in that they contain deterministic short-time predictability in their temporal fine structures. We show that the human brain distinguishes deterministic chaotic sounds from spectrally matched stochastic sounds in neural processing and perception. Deterministic chaotic sounds, even without being attended to, elicited greater cerebral cortical responses than the surrogate control sounds after about 150 ms in latency after sound onset. Listeners also clearly discriminated these sounds in perception. The results support the hypothesis that the human auditory system is sensitive to the subtle short-time predictability embedded in the temporal fine structure of sounds.
An experimental study of the fluid mechanics associated with porous walls
NASA Technical Reports Server (NTRS)
Ramachandran, N.; Heaman, J.; Smith, A.
1992-01-01
The fluid mechanics of air exiting from a porous material is investigated. The experiments are filter rating dependent, as porous walls with filter ratings differing by about three orders of magnitude are studied. The flow behavior is investigated for its spatial and temporal stability. The results from the investigation are related to jet behavior in at least one of the following categories: (1) jet coalescence effects with increasing flow rate; (2) jet field decay with increasing distance from the porous wall; (3) jet field temporal turbulence characteristics; and (4) single jet turbulence characteristics. The measurements show that coalescence effects cause jet development, and this development stage can be traced by measuring the pseudoturbulence (spatial velocity variations) at any flow rate. The pseudoturbulence variation with increasing mass flow reveals an initial increasing trend followed by a leveling trend, both of which are directly proportional to the filter rating. A critical velocity begins this leveling trend and represents the onset of fully developed jetting action in the flow field. A correlation is developed to predict the onset of fully developed jets in the flow emerging from a porous wall. The data further show that the fully developed jet dimensions are independent of the filter rating, thus providing a length scale for this type of flow field (1 mm). Individual jet characteristics provide another unifying trend with similar velocity decay behavior with distance; however, the respective turbulence magnitudes show vast differences between jets from the same sample. Measurements of the flow decay with distance from the porous wall show that the higher spatial frequency components of the jet field dissipate faster than the lower frequency components. Flow turbulence intensity measurements show an out of phase behavior with the velocity field and are generally found to increase as the distance from the wall is increased.
Association of Mental Disorders With Subsequent Chronic Physical Conditions
Scott, Kate M.; Lim, Carmen; Al-Hamzawi, Ali; Alonso, Jordi; Bruffaerts, Ronny; Caldas-de-Almeida, José Miguel; Florescu, Silvia; de Girolamo, Giovanni; Hu, Chiyi; de Jonge, Peter; Kawakami, Norito; Medina-Mora, Maria Elena; Moskalewicz, Jacek; Navarro-Mateu, Fernando; O’Neill, Siobhan; Piazza, Marina; Posada-Villa, José; Torres, Yolanda; Kessler, Ronald C.
2017-01-01
IMPORTANCE It is clear that mental disorders in treatment settings are associated with a higher incidence of chronic physical conditions, but whether this is true of mental disorders in the community, and how generalized (across a range of physical health outcomes) these associations are, is less clear. This information has important implications for mental health care and the primary prevention of chronic physical disease. OBJECTIVE To investigate associations of 16 temporally prior DSM-IV mental disorders with the subsequent onset or diagnosis of 10 chronic physical conditions. DESIGN, SETTING, AND PARTICIPANTS Eighteen face-to-face, cross-sectional household surveys of community-dwelling adults were conducted in 17 countries (47 609 individuals; 2 032 942 person-years) from January 1, 2001, to December 31, 2011. The Composite International Diagnostic Interview was used to retrospectively assess the lifetime prevalence and age at onset of DSM-IV–identified mental disorders. Data analysis was performed from January 3, 2012, to September 30, 2015. MAIN OUTCOMES AND MEASURES Lifetime history of physical conditions was ascertained via self-report of physician’s diagnosis and year of onset or diagnosis. Survival analyses estimated the associations of temporally prior first onset of mental disorders with subsequent onset or diagnosis of physical conditions. RESULTS Most associations between 16 mental disorders and subsequent onset or diagnosis of 10 physical conditions were statistically significant, with odds ratios (ORs) (95% CIs) ranging from 1.2 (1.0–1.5) to 3.6 (2.0–6.6). The associations were attenuated after adjustment for mental disorder comorbidity, but mood, anxiety, substance use, and impulse control disorders remained significantly associated with onset of between 7 and all 10 of the physical conditions (ORs [95% CIs] from 1.2 [1.1–1.3] to 2.0 [1.4–2.8]). An increasing number of mental disorders experienced over the life course was significantly associated with increasing odds of onset or diagnosis of all 10 types of physical conditions, with ORs (95% CIs) for 1 mental disorder ranging from 1.3 (1.1–1.6) to 1.8 (1.4–2.2) and ORs (95% CIs) for 5 or more mental disorders ranging from 1.9 (1.4–2.7) to 4.0 (2.5–6.5). In population-attributable risk estimates, specific mental disorders were associated with 1.5% to 13.3% of physical condition onsets. CONCLUSIONS AND RELEVANCE These findings suggest that mental disorders of all kinds are associated with an increased risk of onset of a wide range of chronic physical conditions. Current efforts to improve the physical health of individuals with mental disorders may be too narrowly focused on the small group with the most severe mental disorders. Interventions aimed at the primary prevention of chronic physical diseases should optimally be integrated into treatment of all mental disorders in primary and secondary care from early in the disorder course. PMID:26719969
Presurgical EEG-fMRI in a complex clinical case with seizure recurrence after epilepsy surgery
Zhang, Jing; Liu, Qingzhu; Mei, Shanshan; Zhang, Xiaoming; Wang, Xiaofei; Liu, Weifang; Chen, Hui; Xia, Hong; Zhou, Zhen; Li, Yunlin
2013-01-01
Epilepsy surgery has improved over the last decade, but non-seizure-free outcome remains at 10%–40% in temporal lobe epilepsy (TLE) and 40%–60% in extratemporal lobe epilepsy (ETLE). This paper reports a complex multifocal case. With a normal magnetic resonance imaging (MRI) result and nonlocalizing electroencephalography (EEG) findings (bilateral TLE and ETLE, with more interictal epileptiform discharges [IEDs] in the right frontal and temporal regions), a presurgical EEG-functional MRI (fMRI) was performed before the intraoperative intracranial EEG (icEEG) monitoring (icEEG with right hemispheric coverage). Our previous EEG-fMRI analysis results (IEDs in the left hemisphere alone) were contradictory to the EEG and icEEG findings (IEDs in the right frontal and temporal regions). Thus, the EEG-fMRI data were reanalyzed with newly identified IED onsets and different fMRI model options. The reanalyzed EEG-fMRI findings were largely concordant with those of EEG and icEEG, and the failure of our previous EEG-fMRI analysis may lie in the inaccurate identification of IEDs and wrong usage of model options. The right frontal and temporal regions were resected in surgery, and dual pathology (hippocampus sclerosis and focal cortical dysplasia in the extrahippocampal region) was found. The patient became seizure-free for 3 months, but his seizures restarted after antiepileptic drugs (AEDs) were stopped. The seizures were not well controlled after resuming AEDs. Postsurgical EEGs indicated that ictal spikes in the right frontal and temporal regions reduced, while those in the left hemisphere became prominent. This case suggested that (1) EEG-fMRI is valuable in presurgical evaluation, but requires caution; and (2) the intact seizure focus in the remaining brain may cause the non-seizure-free outcome. PMID:23926432
The Chronotron: A Neuron That Learns to Fire Temporally Precise Spike Patterns
Florian, Răzvan V.
2012-01-01
In many cases, neurons process information carried by the precise timings of spikes. Here we show how neurons can learn to generate specific temporally precise output spikes in response to input patterns of spikes having precise timings, thus processing and memorizing information that is entirely temporally coded, both as input and as output. We introduce two new supervised learning rules for spiking neurons with temporal coding of information (chronotrons), one that provides high memory capacity (E-learning), and one that has a higher biological plausibility (I-learning). With I-learning, the neuron learns to fire the target spike trains through synaptic changes that are proportional to the synaptic currents at the timings of real and target output spikes. We study these learning rules in computer simulations where we train integrate-and-fire neurons. Both learning rules allow neurons to fire at the desired timings, with sub-millisecond precision. We show how chronotrons can learn to classify their inputs, by firing identical, temporally precise spike trains for different inputs belonging to the same class. When the input is noisy, the classification also leads to noise reduction. We compute lower bounds for the memory capacity of chronotrons and explore the influence of various parameters on chronotrons' performance. The chronotrons can model neurons that encode information in the time of the first spike relative to the onset of salient stimuli or neurons in oscillatory networks that encode information in the phases of spikes relative to the background oscillation. Our results show that firing one spike per cycle optimizes memory capacity in neurons encoding information in the phase of firing relative to a background rhythm. PMID:22879876
Thalamocortical Connections and Executive Function in Pediatric Temporal and Frontal Lobe Epilepsy.
Law, N; Smith, M L; Widjaja, E
2018-06-07
Largely accepted in the literature is the role the interconnections between the thalamus and cortex play in generalized epilepsy. However, thalamocortical involvement is less understood in focal epilepsy in terms of the effect of seizures on thalamocortical circuitry in the developing brain and subsequent cognitive outcome. We investigated thalamocortical pathway microstructure in pediatric frontal lobe epilepsy and temporal lobe epilepsy and examined the associations between pathway microstructure and measures of executive function. We examined thalamocortical connections in 24 children with frontal lobe epilepsy, 17 patients with temporal lobe epilepsy, and 25 healthy children using DTI. We investigated several executive function measures in patients and controls, which were distilled into latent executive function components to compare among groups, and the associations between measures of thalamocortical microstructure and executive function. We found no differences in thalamocortical pathway microstructure between the groups, but aspects of executive function (mental flexibility/inhibition/shifting) were impaired in the frontal lobe epilepsy group compared with controls. In patients with frontal lobe epilepsy, younger age at seizure onset and a greater number of antiepileptic drugs were associated with DTI indices indicative of damaged/less developed thalamocortical pathways. In patients with temporal lobe epilepsy, poorer performance on all measures of executive function was associated with DTI indices reflective of damaged/less developed pathways. Our results give insight into vulnerable neural networks in pediatric focal epilepsy and suggest thalamocortical pathway damage as a potential mechanism of executive function impairment in temporal lobe epilepsy but not frontal lobe epilepsy. Identifying structure-function relations can help inform how we measure functional and cognitive/behavioral outcomes in these populations. © 2018 by American Journal of Neuroradiology.
Long-term consolidation of declarative memory: insight from temporal lobe epilepsy.
Tramoni, Eve; Felician, Olivier; Barbeau, Emmanuel J; Guedj, Eric; Guye, Maxime; Bartolomei, Fabrice; Ceccaldi, Mathieu
2011-03-01
Several experiments carried out with a subset of patients with temporal lobe epilepsy have demonstrated normal memory performance at standard delays of recall (i.e. minutes to hours) but impaired performance over longer delays (i.e. days or weeks), suggesting altered long-term consolidation mechanisms. These mechanisms were specifically investigated in a group of five adult-onset pharmaco-sensitive patients with temporal lobe epilepsy, exhibiting severe episodic memory complaints despite normal performance at standardized memory assessment. In a first experiment, the magnitude of autobiographical memory loss was evaluated using retrograde personal memory tasks based on verbal and visual cues. In both conditions, results showed an unusual U-shaped pattern of personal memory impairment, encompassing most of the patients' life, sparing however, periods of the childhood, early adulthood and past several weeks. This profile was suggestive of a long-term consolidation impairment of personal episodes, adequately consolidated over 'short-term' delays but gradually forgotten thereafter. Therefore, in a subsequent experiment, patients were submitted to a protocol specifically devised to investigate short and long-term consolidation of contextually-bound experiences (episodic memory) and context-free information (semantic knowledge and single-items). In the short term (1 h), performance at both contextually-free and contextually-bound memory tasks was intact. After a 6-week delay, however, contextually-bound memory performance was impaired while contextually-free memory performance remained preserved. This effect was independent of task difficulty and the modality of retrieval (recall and recognition). Neuroimaging studies revealed the presence of mild metabolic changes within medial temporal lobe structures. Taken together, these results show the existence of different consolidation systems within declarative memory. They suggest that mild medial temporal lobe dysfunction can impede the building and stabilization of episodic memories but leaves long-term semantic and single-items mnemonic traces intact.
Lambert, Anthony J; Wootton, Adrienne
2017-08-01
Different patterns of high density EEG activity were elicited by the same peripheral stimuli, in the context of Landmark Cueing and Perceptual Discrimination tasks. The C1 component of the visual event-related potential (ERP) at parietal - occipital electrode sites was larger in the Landmark Cueing task, and source localisation suggested greater activation in the superior parietal lobule (SPL) in this task, compared to the Perceptual Discrimination task, indicating stronger early recruitment of the dorsal visual stream. In the Perceptual Discrimination task, source localisation suggested widespread activation of the inferior temporal gyrus (ITG) and fusiform gyrus (FFG), structures associated with the ventral visual stream, during the early phase of the P1 ERP component. Moreover, during a later epoch (171-270ms after stimulus onset) increased temporal-occipital negativity, and stronger recruitment of ITG and FFG were observed in the Perceptual Discrimination task. These findings illuminate the contrasting functions of the dorsal and ventral visual streams, to support rapid shifts of attention in response to contextual landmarks, and conscious discrimination, respectively. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Fukushima, Takuma; To, Sho; Asano, Katsuaki; Fujita, Yutaka
2017-08-01
We numerically simulate the gamma-ray burst (GRB) afterglow emission with a one-zone time-dependent code. The temporal evolutions of the decelerating shocked shell and energy distributions of electrons and photons are consistently calculated. The photon spectrum and light curves for an observer are obtained taking into account the relativistic propagation of the shocked shell and the curvature of the emission surface. We find that the onset time of the afterglow is significantly earlier than the previous analytical estimate. The analytical formulae of the shock propagation and light curve for the radiative case are also different from our results. Our results show that even if the emission mechanism is switching from synchrotron to synchrotron self-Compton, the gamma-ray light curves can be a smooth power law, which agrees with the observed light curve and the late detection of a 32 GeV photon in GRB 130427A. The uncertainty of the model parameters obtained with the analytical formula is discussed, especially in connection with the closure relation between spectral index and decay index.
Episodic retrieval involves early and sustained effects of reactivating information from encoding.
Johnson, Jeffrey D; Price, Mason H; Leiker, Emily K
2015-02-01
Several fMRI studies have shown a correspondence between the brain regions activated during encoding and retrieval, consistent with the view that memory retrieval involves hippocampally-mediated reinstatement of cortical activity. With the limited temporal resolution of fMRI, the precise timing of such reactivation is unclear, calling into question the functional significance of these effects. Whereas reactivation influencing retrieval should emerge with neural correlates of retrieval success, that signifying post-retrieval monitoring would trail retrieval. The present study employed EEG to provide a temporal landmark of retrieval success from which we could investigate the sub-trial time course of reactivation. Pattern-classification analyses revealed that early-onsetting reactivation differentiated the outcome of recognition-memory judgments and was associated with individual differences in behavioral accuracy, while reactivation was also evident in a sustained form later in the trial. The EEG findings suggest that, whereas prior fMRI findings could be interpreted as reflecting the contribution of reinstatement to retrieval success, they could also indicate the maintenance of episodic information in service of post-retrieval evaluation. Copyright © 2014 Elsevier Inc. All rights reserved.
He, W-H; Shi, G R; Twitchett, R J; Zhang, Y; Zhang, K-X; Song, H-J; Yue, M-L; Wu, S-B; Wu, H-T; Yang, T-L; Xiao, Y-F
2015-03-01
Analysis of Permian-Triassic brachiopod diversity and body size changes from different water depths spanning the continental shelf to basinal facies in South China provides insights into the process of environmental deterioration. Comparison of the temporal changes of brachiopod diversity between deepwater and shallow-water facies demonstrates that deepwater brachiopods disappeared earlier than shallow-water brachiopods. This indicates that high environmental stress commenced first in deepwater settings and later extended to shallow waters. This environmental stress is attributed to major volcanic eruptions, which first led to formation of a stratified ocean and a chemocline in the outer shelf and deeper water environments, causing the disappearance of deep marine benthos including brachiopods. The chemocline then rapidly migrated upward and extended to shallow waters, causing widespread mass extinction of shallow marine benthos. We predict that the spatial and temporal patterns of earlier onset of disappearance/extinction and ecological crisis in deeper water ecosystems will be recorded during other episodes of rapid global warming. © 2014 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Lu, Pen-Li; Hsu, Shu-Shen; Tsai, Meng-Li; Jaw, Fu-Shan; Wang, An-Bang; Yen, Chen-Tung
2012-11-01
Pain is a natural alarm that aids the body in avoiding potential danger and can also present as an important indicator in clinics. Infrared laser-evoked potentials can be used as an objective index to evaluate nociception. In animal studies, a short-pulse laser is crucial because it completes the stimulation before escape behavior. The objective of the present study was to obtain the temporal and spatial temperature distributions in the skin caused by the irradiation of a short-pulse laser. A fast speed infrared camera was used to measure the surface temperature caused by a CO2 laser of different durations (25 and 35 ms) and power. The measured results were subsequently implemented with a three-layer finite element model to predict the subsurface temperature. We found that stratum corneum was crucial in the modeling of fast temperature response, and escape behaviors correlated with predictions of temperature at subsurface. Results indicated that the onset latency and duration of activated nociceptors must be carefully considered when interpreting physiological responses evoked by infrared irradiation.
Emiliano, Santarnecchi; Giampaolo, Vatti; Daniela, Marino; Nicola, Polizzotto; Alfonso, Cerase; Raffaele, Rocchi; Alessandro, Rossi
2012-09-01
Periventricular nodular heterotopia (PNH) is a rare malformation of cortical development often associated with drug resistant focal onset epilepsy. The link between nodules and neocortex have been demonstrated with depth electrodes investigations showing that seizures may arise from both structures. In the last years fMRI resting-state (fMRI-RS) have received a surge in interest due to its capability to track non-invasively physiological and pathological relevant differences in brain network organization. We performed a cerebro-cerebellar voxel-wise and region-of-interest resting state fMRI (RS-fMRI) functional connectivity analysis in a seizure-free epilepsy patient with a PNH in the right temporal horn. Our finding confirms a spontaneous synchronization between PNH and its surrounding cortex, specifically in the inferior temporal, fusiform and occipital gyrus. We also found a significant connectivity with bilateral cerebellum, more intense and widespread on the PNH cerebellar contralateral lobule. RS-fMRI confirmed its potential as a promising tool for non-invasive mapping of cortical and subcortical brain functional organization. Copyright © 2012 Elsevier B.V. All rights reserved.
Imaging DC MEG Fields Associated with Epileptic Onset
NASA Astrophysics Data System (ADS)
Weiland, B. J.; Bowyer, S. M.; Moran, J. E.; Jenrow, K.; Tepley, N.
2004-10-01
Magnetoencephalography (MEG) is a non-invasive brain imaging modality, with high spatial and temporal resolution, used to evaluate and quantify the magnetic fields associated with neuronal activity. Complex partial epileptic seizures are characterized by hypersynchronous neuronal activity believed to arise from a zone of epileptogenesis. This study investigated the characteristics of direct current (DC) MEG shifts arising at epileptic onset. MEG data were acquired with rats using a six-channel first order gradiometer system. Limbic status epilepticus was induced by IA (femoral) administration of kainic acid. DC-MEG shifts were observed at the onset of epileptic spike train activity and status epilepticus. Epilepsy is also being studied in patients undergoing presurgical mapping from the Comprehensive Epilepsy Center at Henry Ford Hospital using a whole head Neuromagnetometer. Preliminary data analysis shows that DC-MEG waveforms, qualitatively similar to those seen in the animal model, are evident prior to seizure activity in human subjects.
Schořálková, Tereza; Kratochvíl, Lukáš; Kubička, Lukáš
2017-03-01
In vertebrates, male-typical sexual behavior (MSB) is largely controlled by gonadal androgens, however, the mechanism of this control is believed to vary among species. During immediate activation MSB is tightly correlated with circulating levels of androgens, while the organization of MSB by a hormonal event at a specific developmental period, early in ontogeny or during puberty, has been postulated in other lineages. Here, we put forward an alternative concept of "temporal organization". Under temporal organization longer exposure to circulating androgens is needed for the onset of MSB, which can continue for a long time after the levels of these hormones drop. We tested this concept through long-term monitoring of MSB in females and castrated males of the leopard gecko (Eublepharis macularius) in response to experimental changes in testosterone levels. Several weeks of elevated testosterone levels were needed for the full expression of MSB in both treatment groups and MSB diminished only slowly and gradually after the supplementation of exogenous testosterone ended. Moreover, despite receiving the same application of the hormone both the progressive onset and the cessation of MSB were significantly slower in experimental females than in castrated males. We suggest that the concept of temporal organization of MSB can parsimoniously explain several earlier discrepancies and debatable conclusions on the apparent variability in the hormonal control of MSB in vertebrates, which were based on behavioral testing at a few subjectively selected time points. We conclude that long-term and continuous behavioral testing after hormonal manipulations is needed to understand the regulation of MSB in vertebrates. Copyright © 2016 Elsevier Inc. All rights reserved.
Recording temporal lobe epileptic activity with MEG in a light-weight magnetic shield.
Carrette, Evelien; Op de Beeck, Marc; Bourguignon, Mathieu; Boon, Paul; Vonck, Kristl; Legros, Benjamin; Goldman, Serge; Van Bogaert, Patrick; De Tiège, Xavier
2011-06-01
To assess the interictal epileptic discharges (IEDs) detection rate of magnetoencephalography (MEG) recordings performed in a new light-weight magnetic shielding (LMSR) concept in a large group of consecutive patients with presumed mesiotemporal lobe epilepsy (MTLE). Thirty-eight patients (23 women; age range: 6-63 years) with presumed MTLE were prospectively studied. MEG investigations were performed with the 306-channel Elekta Neuromag® MEG-system installed in a normal hospital environment into a LMSR (MaxShield, Elekta Oy). Equivalent current dipoles (ECD, g/% > 80%) corresponding to epileptic events were fitted to each patient's spherical head model at IEDs onset and peak and then superimposed on the patient's co-registered MRI. IEDs were observed in 26 out of 38 patients (68.4%). Temporal ECDs were mesial in 14 patients, anterior in 23 patients and posterior in 8 patients. Interestingly, in 6 patients, ECDs fitted at spike-onset were localized in the hippocampus while at the peak of the spike, they had an anterior temporal location. MEG using LMSR provides adequate signal to noise ratio (SNR) to allow reliable detection and localization of single epileptic abnormalities on continuous MEG data in 68% of patients with presumed MTLE. Moreover, mesial temporal epileptic sources were detected in 54% of patients with abnormal MEG. The SNR of MEG data acquired using the LMSR is therefore suitable for the non-invasive localization of epileptic foci in patients with MTLE. The use of LMSR, which are cheaper and smaller than conventional MSR, should facilitate the development of MEG in clinical environments. Copyright © 2011 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Wilner, J.; Smith, B.; Moore, T.; Campbell, S. W.; Slavin, B. V.; Hollander, J.; Wolf, J.
2015-12-01
The redistribution of winter accumulation from surface melt into firn or deeper layers (i.e. internal accumulation) remains a poorly understood component of glacier mass balance. Winter accumulation is usually quantified prior to summer melt, however the time window between accumulation and the onset of melt is minimal so this is not always possible. Studies which are initiated following the onset of summer melt either neglect sources of internal accumulation or attempt to estimate melt (and therefore winter accumulation uncertainty) through a variety of modeling methods. Here, we used ground-penetrating radar (GPR) repeat common midpoint (CMP) surveys with supporting common offset surveys, mass balance snow pits, and probing to estimate temporal changes in water content within the winter accumulation and firn layers of the southern Juneau Icefield, Alaska. In temperate glaciers, radio-wave velocity is primarily dependent on water content and snow or firn density. We assume density changes are temporally slow relative to water flow through the snow and firn pack, and therefore infer that changing radio-wave velocities measured by successive CMP surveys result from flux in surface melt through deeper layers. Preliminary CMP data yield radio-wave velocities of 0.15 to 0.2 m/ns in snowpack densities averaging 0.56 g cm-3, indicating partially to fully saturated snowpack (4-9% water content). Further spatial-temporal analysis of CMP surveys is being conducted. We recommend that repeat CMP surveys be conducted over a longer time frame to estimate stratigraphic water redistribution between the end of winter accumulation and maximum melt season. This information could be incorporated into surface energy balance models to further understanding of the influence of internal accumulation on glacier mass balance.