Mind the Gap: Two Dissociable Mechanisms of Temporal Processing in the Auditory System
Anderson, Lucy A.
2016-01-01
High temporal acuity of auditory processing underlies perception of speech and other rapidly varying sounds. A common measure of auditory temporal acuity in humans is the threshold for detection of brief gaps in noise. Gap-detection deficits, observed in developmental disorders, are considered evidence for “sluggish” auditory processing. Here we show, in a mouse model of gap-detection deficits, that auditory brain sensitivity to brief gaps in noise can be impaired even without a general loss of central auditory temporal acuity. Extracellular recordings in three different subdivisions of the auditory thalamus in anesthetized mice revealed a stimulus-specific, subdivision-specific deficit in thalamic sensitivity to brief gaps in noise in experimental animals relative to controls. Neural responses to brief gaps in noise were reduced, but responses to other rapidly changing stimuli unaffected, in lemniscal and nonlemniscal (but not polysensory) subdivisions of the medial geniculate body. Through experiments and modeling, we demonstrate that the observed deficits in thalamic sensitivity to brief gaps in noise arise from reduced neural population activity following noise offsets, but not onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive channels underlying auditory temporal processing, and suggest that gap-detection deficits can arise from specific impairment of the sound-offset-sensitive channel. SIGNIFICANCE STATEMENT The experimental and modeling results reported here suggest a new hypothesis regarding the mechanisms of temporal processing in the auditory system. Using a mouse model of auditory temporal processing deficits, we demonstrate the existence of specific abnormalities in auditory thalamic activity following sound offsets, but not sound onsets. These results reveal dissociable sound-onset-sensitive and sound-offset-sensitive mechanisms underlying auditory processing of temporally varying sounds. Furthermore, the findings suggest that auditory temporal processing deficits, such as impairments in gap-in-noise detection, could arise from reduced brain sensitivity to sound offsets alone. PMID:26865621
Temporal Processing Impairment in Children with Attention-Deficit-Hyperactivity Disorder
ERIC Educational Resources Information Center
Huang, Jia; Yang, Bin-rang; Zou, Xiao-bing; Jing, Jin; Pen, Gang; McAlonan, Grainne M.; Chan, Raymond C. K.
2012-01-01
The current study aimed to investigate temporal processing in Chinese children with Attention-Deficit-Hyperactivity Disorder(ADHD) using time production, time reproduction paradigm and duration discrimination tasks. A battery of tests specifically designed to measure temporal processing was administered to 94 children with ADHD and 100…
A Gap in Time: Extending our Knowledge of Temporal Processing Deficits in the HIV-1 Transgenic Rat.
McLaurin, Kristen A; Moran, Landhing M; Li, Hailong; Booze, Rosemarie M; Mactutus, Charles F
2017-03-01
Approximately 50 % of HIV-1 seropositive individuals develop HIV-1 associated neurocognitive disorders (HAND), which commonly include alterations in executive functions, such as inhibition, set shifting, and complex problem solving. Executive function deficits in HIV-1 are fairly well characterized, however, relatively few studies have explored the elemental dimensions of neurocognitive impairment in HIV-1. Deficits in temporal processing, caused by HIV-1, may underlie the symptoms of impairment in higher level cognitive processes. Translational measures of temporal processing, including cross-modal prepulse inhibition (PPI), gap-prepulse inhibition (gap-PPI), and gap threshold detection, were studied in mature (ovariectomized) female HIV-1 transgenic (Tg) rats, which express 7 of the 9 HIV-1 genes constitutively throughout development. Cross-modal PPI revealed a relative insensitivity to the manipulation of interstimulus interval (ISI) in HIV-1 Tg animals in comparison to control animals, extending previously reported temporal processing deficits in HIV-1 Tg rats to a more advanced age, suggesting the permanence of temporal processing deficits. In gap-PPI, HIV-1 Tg animals exhibited a relative insensitivity to the manipulation of ISI in comparison to control animals. In gap-threshold detection, HIV-1 Tg animals displayed a profound differential sensitivity to the manipulation of gap duration. Presence of the HIV-1 transgene was diagnosed with 91.1 % accuracy using gap threshold detection measures. Understanding the generality and permanence of temporal processing deficits in the HIV-1 Tg rat is vital to modeling neurocognitive deficits observed in HAND and provides a key target for the development of a diagnostic screening tool.
Pitting temporal against spatial integration in schizophrenic patients.
Herzog, Michael H; Brand, Andreas
2009-06-30
Schizophrenic patients show strong impairments in visual backward masking possibly caused by deficits on the early stages of visual processing. The underlying aberrant mechanisms are not clearly understood. Spatial as well as temporal processing deficits have been proposed. Here, by combining a spatial with a temporal integration paradigm, we show further evidence that temporal but not spatial processing is impaired in schizophrenic patients. Eleven schizophrenic patients and ten healthy controls were presented with sequences composed of Vernier stimuli. Patients needed significantly longer presentation times for sequentially presented Vernier stimuli to reach a performance level comparable to that of healthy controls (temporal integration deficit). When we added spatial contextual elements to some of the Vernier stimuli, performance changed in a complex but comparable manner in patients and controls (intact spatial integration). Hence, temporal but not spatial processing seems to be deficient in schizophrenia.
Auditory Temporal Processing as a Specific Deficit among Dyslexic Readers
ERIC Educational Resources Information Center
Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit
2012-01-01
The present study focuses on examining the hypothesis that auditory temporal perception deficit is a basic cause for reading disabilities among dyslexics. This hypothesis maintains that reading impairment is caused by a fundamental perceptual deficit in processing rapid auditory or visual stimuli. Since the auditory perception involves a number of…
Temporal Preparation and Inhibitory Deficit in Fibromyalgia Syndrome
ERIC Educational Resources Information Center
Correa, Angel; Miro, Elena; Martinez, M. Pilar; Sanchez, Ana I.; Lupianez, Juan
2011-01-01
Cognitive deficits in fibromyalgia may be specifically related to controlled processes, such as those measured by working memory or executive function tasks. This hypothesis was tested here by measuring controlled temporal preparation (temporal orienting) during a response inhibition (go no-go) task. Temporal orienting effects (faster reaction…
Sonuga-Barke, Edmund; Bitsakou, Paraskevi; Thompson, Margaret
2010-04-01
The dual pathway model explains neuro-psychological heterogeneity in Attention Deficit/Hyperactivity Disorder (ADHD) in terms of dissociable cognitive and motivational deficits each affecting some but not other patients. We explore whether deficits in temporal processing might constitute a third dissociable neuropsychological component of ADHD. Nine tasks designed to tap three domains (inhibitory control, delay aversion and temporal processing) were administered to ADHD probands (n=71; ages 6 to 17 years), their siblings (n=71; 65 unaffected by ADHD) and a group of non-ADHD controls (n=50). IQ and working memory were measured. Temporal processing, inhibitory control and delay-related deficits represented independent neuropsychological components. ADHD children differed from controls on all factors. For ADHD patients, the co-occurrence of inhibitory, temporal processing and delay-related deficits was no greater than expected by chance with substantial groups of patients showing only one problem. Domain-specific patterns of familial co-segregation provided evidence for the validity of neuropsychological subgroupings. The current results illustrate the neuropsychological heterogeneity in ADHD and initial support for a triple pathway model. The findings need to be replicated in larger samples.
De Winter, François-Laurent; Timmers, Dorien; de Gelder, Beatrice; Van Orshoven, Marc; Vieren, Marleen; Bouckaert, Miriam; Cypers, Gert; Caekebeke, Jo; Van de Vliet, Laura; Goffin, Karolien; Van Laere, Koen; Sunaert, Stefan; Vandenberghe, Rik; Vandenbulcke, Mathieu; Van den Stock, Jan
2016-01-01
Deficits in face processing have been described in the behavioral variant of fronto-temporal dementia (bvFTD), primarily regarding the recognition of facial expressions. Less is known about face shape and face identity processing. Here we used a hierarchical strategy targeting face shape and face identity recognition in bvFTD and matched healthy controls. Participants performed 3 psychophysical experiments targeting face shape detection (Experiment 1), unfamiliar face identity matching (Experiment 2), familiarity categorization and famous face-name matching (Experiment 3). The results revealed group differences only in Experiment 3, with a deficit in the bvFTD group for both familiarity categorization and famous face-name matching. Voxel-based morphometry regression analyses in the bvFTD group revealed an association between grey matter volume of the left ventral anterior temporal lobe and familiarity recognition, while face-name matching correlated with grey matter volume of the bilateral ventral anterior temporal lobes. Subsequently, we quantified familiarity-specific and name-specific recognition deficits as the sum of the celebrities of which respectively only the name or only the familiarity was accurately recognized. Both indices were associated with grey matter volume of the bilateral anterior temporal cortices. These findings extent previous results by documenting the involvement of the left anterior temporal lobe (ATL) in familiarity detection and the right ATL in name recognition deficits in fronto-temporal lobar degeneration.
A General Audiovisual Temporal Processing Deficit in Adult Readers With Dyslexia.
Francisco, Ana A; Jesse, Alexandra; Groen, Margriet A; McQueen, James M
2017-01-01
Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of audiovisual speech and nonspeech stimuli, their time window of audiovisual integration for speech (using incongruent /aCa/ syllables), and their audiovisual perception of phonetic categories. Adult readers with dyslexia showed less sensitivity to audiovisual simultaneity than typical readers for both speech and nonspeech events. We found no differences between readers with dyslexia and typical readers in the temporal window of integration for audiovisual speech or in the audiovisual perception of phonetic categories. The results suggest an audiovisual temporal deficit in dyslexia that is not specific to speech-related events. But the differences found for audiovisual temporal sensitivity did not translate into a deficit in audiovisual speech perception. Hence, there seems to be a hiatus between simultaneity judgment and perception, suggesting a multisensory system that uses different mechanisms across tasks. Alternatively, it is possible that the audiovisual deficit in dyslexia is only observable when explicit judgments about audiovisual simultaneity are required.
Brainstem Correlates of Temporal Auditory Processing in Children with Specific Language Impairment
ERIC Educational Resources Information Center
Basu, Madhavi; Krishnan, Ananthanarayan; Weber-Fox, Christine
2010-01-01
Deficits in identification and discrimination of sounds with short inter-stimulus intervals or short formant transitions in children with specific language impairment (SLI) have been taken to reflect an underlying temporal auditory processing deficit. Using the sustained frequency following response (FFR) and the onset auditory brainstem responses…
Temporal processing deficit leads to impaired multisensory binding in schizophrenia.
Zvyagintsev, Mikhail; Parisi, Carmen; Mathiak, Klaus
2017-09-01
Schizophrenia has been characterised by neurodevelopmental dysconnectivity resulting in cognitive and perceptual dysmetria. Hence patients with schizophrenia may be impaired to detect the temporal relationship between stimuli in different sensory modalities. However, only a few studies described deficit in perception of temporally asynchronous multisensory stimuli in schizophrenia. We examined the perceptual bias and the processing time of synchronous and delayed sounds in the streaming-bouncing illusion in 16 patients with schizophrenia and a matched control group of 18 participants. Equal for patients and controls, the synchronous sound biased the percept of two moving squares towards bouncing as opposed to the more frequent streaming percept in the condition without sound. In healthy controls, a delay of the sound presentation significantly reduced the bias and led to prolonged processing time whereas patients with schizophrenia did not differentiate between this condition and the condition with synchronous sound. Schizophrenia leads to a prolonged window of simultaneity for audiovisual stimuli. Therefore, temporal processing deficit in schizophrenia can lead to hyperintegration of temporally unmatched multisensory stimuli.
Auditory Temporal Processing and Working Memory: Two Independent Deficits for Dyslexia
ERIC Educational Resources Information Center
Fostick, Leah; Bar-El, Sharona; Ram-Tsur, Ronit
2012-01-01
Dyslexia is a neuro-cognitive disorder with a strong genetic basis, characterized by a difficulty in acquiring reading skills. Several hypotheses have been suggested in an attempt to explain the origin of dyslexia, among which some have suggested that dyslexic readers might have a deficit in auditory temporal processing, while others hypothesized…
The associations between multisensory temporal processing and symptoms of schizophrenia.
Stevenson, Ryan A; Park, Sohee; Cochran, Channing; McIntosh, Lindsey G; Noel, Jean-Paul; Barense, Morgan D; Ferber, Susanne; Wallace, Mark T
2017-01-01
Recent neurobiological accounts of schizophrenia have included an emphasis on changes in sensory processing. These sensory and perceptual deficits can have a cascading effect onto higher-level cognitive processes and clinical symptoms. One form of sensory dysfunction that has been consistently observed in schizophrenia is altered temporal processing. In this study, we investigated temporal processing within and across the auditory and visual modalities in individuals with schizophrenia (SCZ) and age-matched healthy controls. Individuals with SCZ showed auditory and visual temporal processing abnormalities, as well as multisensory temporal processing dysfunction that extended beyond that attributable to unisensory processing dysfunction. Most importantly, these multisensory temporal deficits were associated with the severity of hallucinations. This link between atypical multisensory temporal perception and clinical symptomatology suggests that clinical symptoms of schizophrenia may be at least partly a result of cascading effects from (multi)sensory disturbances. These results are discussed in terms of underlying neural bases and the possible implications for remediation. Copyright © 2016 Elsevier B.V. All rights reserved.
Reversal of age-related neural timing delays with training
Anderson, Samira; White-Schwoch, Travis; Parbery-Clark, Alexandra; Kraus, Nina
2013-01-01
Neural slowing is commonly noted in older adults, with consequences for sensory, motor, and cognitive domains. One of the deleterious effects of neural slowing is impairment of temporal resolution; older adults, therefore, have reduced ability to process the rapid events that characterize speech, especially in noisy environments. Although hearing aids provide increased audibility, they cannot compensate for deficits in auditory temporal processing. Auditory training may provide a strategy to address these deficits. To that end, we evaluated the effects of auditory-based cognitive training on the temporal precision of subcortical processing of speech in noise. After training, older adults exhibited faster neural timing and experienced gains in memory, speed of processing, and speech-in-noise perception, whereas a matched control group showed no changes. Training was also associated with decreased variability of brainstem response peaks, suggesting a decrease in temporal jitter in response to a speech signal. These results demonstrate that auditory-based cognitive training can partially restore age-related deficits in temporal processing in the brain; this plasticity in turn promotes better cognitive and perceptual skills. PMID:23401541
It's about time: revisiting temporal processing deficits in dyslexia.
Casini, Laurence; Pech-Georgel, Catherine; Ziegler, Johannes C
2018-03-01
Temporal processing in French children with dyslexia was evaluated in three tasks: a word identification task requiring implicit temporal processing, and two explicit temporal bisection tasks, one in the auditory and one in the visual modality. Normally developing children matched on chronological age and reading level served as a control group. Children with dyslexia exhibited robust deficits in temporal tasks whether they were explicit or implicit and whether they involved the auditory or the visual modality. First, they presented larger perceptual variability when performing temporal tasks, whereas they showed no such difficulties when performing the same task on a non-temporal dimension (intensity). This dissociation suggests that their difficulties were specific to temporal processing and could not be attributed to lapses of attention, reduced alertness, faulty anchoring, or overall noisy processing. In the framework of cognitive models of time perception, these data point to a dysfunction of the 'internal clock' of dyslexic children. These results are broadly compatible with the recent temporal sampling theory of dyslexia. © 2017 John Wiley & Sons Ltd.
Noordermeer, Siri D. S.; Luman, Marjolein; Buitelaar, Jan K.; Hartman, Catharina A.; Hoekstra, Pieter J.; Franke, Barbara; Faraone, Stephen V.; Heslenfeld, Dirk J.; Oosterlaan, Jaap
2016-01-01
Objective Oppositional Defiant Disorder (ODD) is highly prevalent in Attention-Deficit/Hyperactivity Disorder (ADHD) and may account for inconsistencies in findings on neurocognitive functioning in ADHD. Our aim was to assess cool and hot executive functioning (EF) and temporal processing in ADHD with and without comorbid ODD to elucidate the effects of comorbid ODD. Method ADHD-only (n = 82), ADHD + ODD (n = 82), and controls (n = 82), with mean age 16 years (SD = 3.1), matched for age, gender, IQ, and ADHD type (clinical groups) were assessed on cool EF (inhibition, working memory), hot EF (reinforcement processing, emotion recognition), and temporal processing (time production and reproduction). Results Individuals with ADHD + ODD showed abnormalities in inhibition, working memory, facial emotion recognition, and temporal processing, whereas individuals with ADHD-only were solely impaired in working memory and time production. Conclusion Findings suggest that ODD carries a substantial part of the EF deficits observed in ADHD and contrast with current theories of neurocognitive impairments in ADHD. PMID:26486602
Hartley, Douglas E H; Hill, Penny R; Moore, David R
2003-12-01
Claims have been made that language-impaired children have deficits processing rapidly presented or brief sensory information. These claims, known as the 'temporal processing hypothesis', are supported by demonstrations that language-impaired children have excess backward masking (BM). One explanation for these results is that BM is developmentally delayed in these children. However, little was known about how BM normally develops. Recently, we assessed BM in normally developing 6- and 8-year-old children and adults. Results showed that BM thresholds continue to improve over a comparatively protracted period (>10 years old). We also analysed reported deficits in BM in language-impaired and younger children, in terms of a model of temporal resolution. This analysis suggests that poor processing efficiency, rather than deficits in temporal resolution, can account for these results. This 'processing efficiency hypothesis' was recently tested in our laboratory. This experiment measured BM as a function of delays between the tone and the noise in children and adults. Results supported the processing efficiency hypothesis, and suggested that reduced processing efficiency alone could account for differences between adults and children. These findings provide a new perspective on the mechanisms underlying communication disorders, and imply that remediation strategies should be directed towards improving processing efficiency, not temporal resolution.
Can rhythmic auditory cuing remediate language-related deficits in Parkinson's disease?
Kotz, Sonja A; Gunter, Thomas C
2015-03-01
Neurodegenerative changes of the basal ganglia in idiopathic Parkinson's disease (IPD) lead to motor deficits as well as general cognitive decline. Given these impairments, the question arises as to whether motor and nonmotor deficits can be ameliorated similarly. We reason that a domain-general sensorimotor circuit involved in temporal processing may support the remediation of such deficits. Following findings that auditory cuing benefits gait kinematics, we explored whether reported language-processing deficits in IPD can also be remediated via auditory cuing. During continuous EEG measurement, an individual diagnosed with IPD heard two types of temporally predictable but metrically different auditory beat-based cues: a march, which metrically aligned with the speech accent structure, a waltz that did not metrically align, or no cue before listening to naturally spoken sentences that were either grammatically well formed or were semantically or syntactically incorrect. Results confirmed that only the cuing with a march led to improved computation of syntactic and semantic information. We infer that a marching rhythm may lead to a stronger engagement of the cerebello-thalamo-cortical circuit that compensates dysfunctional striato-cortical timing. Reinforcing temporal realignment, in turn, may lead to the timely processing of linguistic information embedded in the temporally variable speech signal. © 2014 New York Academy of Sciences.
A General Audiovisual Temporal Processing Deficit in Adult Readers with Dyslexia
ERIC Educational Resources Information Center
Francisco, Ana A.; Jesse, Alexandra; Groen, Margriet A.; McQueen, James M.
2017-01-01
Purpose: Because reading is an audiovisual process, reading impairment may reflect an audiovisual processing deficit. The aim of the present study was to test the existence and scope of such a deficit in adult readers with dyslexia. Method: We tested 39 typical readers and 51 adult readers with dyslexia on their sensitivity to the simultaneity of…
Visual and auditory perception in preschool children at risk for dyslexia.
Ortiz, Rosario; Estévez, Adelina; Muñetón, Mercedes; Domínguez, Carolina
2014-11-01
Recently, there has been renewed interest in perceptive problems of dyslexics. A polemic research issue in this area has been the nature of the perception deficit. Another issue is the causal role of this deficit in dyslexia. Most studies have been carried out in adult and child literates; consequently, the observed deficits may be the result rather than the cause of dyslexia. This study addresses these issues by examining visual and auditory perception in children at risk for dyslexia. We compared children from preschool with and without risk for dyslexia in auditory and visual temporal order judgment tasks and same-different discrimination tasks. Identical visual and auditory, linguistic and nonlinguistic stimuli were presented in both tasks. The results revealed that the visual as well as the auditory perception of children at risk for dyslexia is impaired. The comparison between groups in auditory and visual perception shows that the achievement of children at risk was lower than children without risk for dyslexia in the temporal tasks. There were no differences between groups in auditory discrimination tasks. The difficulties of children at risk in visual and auditory perceptive processing affected both linguistic and nonlinguistic stimuli. Our conclusions are that children at risk for dyslexia show auditory and visual perceptive deficits for linguistic and nonlinguistic stimuli. The auditory impairment may be explained by temporal processing problems and these problems are more serious for processing language than for processing other auditory stimuli. These visual and auditory perceptive deficits are not the consequence of failing to learn to read, thus, these findings support the theory of temporal processing deficit. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temporal order processing of syllables in the left parietal lobe.
Moser, Dana; Baker, Julie M; Sanchez, Carmen E; Rorden, Chris; Fridriksson, Julius
2009-10-07
Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere.
Temporal Order Processing of Syllables in the Left Parietal Lobe
Baker, Julie M.; Sanchez, Carmen E.; Rorden, Chris; Fridriksson, Julius
2009-01-01
Speech processing requires the temporal parsing of syllable order. Individuals suffering from posterior left hemisphere brain injury often exhibit temporal processing deficits as well as language deficits. Although the right posterior inferior parietal lobe has been implicated in temporal order judgments (TOJs) of visual information, there is limited evidence to support the role of the left inferior parietal lobe (IPL) in processing syllable order. The purpose of this study was to examine whether the left inferior parietal lobe is recruited during temporal order judgments of speech stimuli. Functional magnetic resonance imaging data were collected on 14 normal participants while they completed the following forced-choice tasks: (1) syllable order of multisyllabic pseudowords, (2) syllable identification of single syllables, and (3) gender identification of both multisyllabic and monosyllabic speech stimuli. Results revealed increased neural recruitment in the left inferior parietal lobe when participants made judgments about syllable order compared with both syllable identification and gender identification. These findings suggest that the left inferior parietal lobe plays an important role in processing syllable order and support the hypothesized role of this region as an interface between auditory speech and the articulatory code. Furthermore, a breakdown in this interface may explain some components of the speech deficits observed after posterior damage to the left hemisphere. PMID:19812331
[Auditory processing evaluation in children born preterm].
Gallo, Júlia; Dias, Karin Ziliotto; Pereira, Liliane Desgualdo; Azevedo, Marisa Frasson de; Sousa, Elaine Colombo
2011-01-01
To verify the performance of children born preterm on auditory processing evaluation, and to correlate the data with behavioral hearing assessment carried out at 12 months of age, comparing the results to those of auditory processing evaluation of children born full-term. Participants were 30 children with ages between 4 and 7 years, who were divided into two groups: Group 1 (children born preterm), and Group 2 (children born full-term). The auditory processing results of Group 1 were correlated to data obtained from the behavioral auditory evaluation carried out at 12 months of age. The results were compared between groups. Subjects in Group 1 presented at least one risk indicator for hearing loss at birth. In the behavioral auditory assessment carried out at 12 months of age, 38% of the children in Group 1 were at risk for central auditory processing deficits, and 93.75% presented auditory processing deficits on the evaluation. Significant differences were found between the groups for the temporal order test, the PSI test with ipsilateral competitive message, and the speech-in-noise test. The delay in sound localization ability was associated to temporal processing deficits. Children born preterm have worse performance in auditory processing evaluation than children born full-term. Delay in sound localization at 12 months is associated to deficits on the physiological mechanism of temporal processing in the auditory processing evaluation carried out between 4 and 7 years.
van der Stelt, O; van der Molen, M; Boudewijn Gunning, W; Kok, A
2001-10-01
In order to gain insight into the functional and macroanatomical loci of visual selective processing deficits that may be basic to attention-deficit hyperactivity disorder (ADHD), the present study examined multi-channel event-related potentials (ERPs) recorded from 7- to 11-year-old boys clinically diagnosed as having ADHD (n=24) and age-matched healthy control boys (n=24) while they performed a visual (color) selective attention task. The spatio-temporal dynamics of several ERP components related to attention to color were characterized using topographic profile analysis, topographic mapping of the ERP and associated scalp current density distributions, and spatio-temporal source potential modeling. Boys with ADHD showed a lower target hit rate, a higher false-alarm rate, and a lower perceptual sensitivity than controls. Also, whereas color attention induced in the ERPs from controls a characteristic early frontally maximal selection positivity (FSP), ADHD boys displayed little or no FSP. Similarly, ADHD boys manifested P3b amplitude decrements that were partially lateralized (i.e., maximal at left temporal scalp locations) as well as affected by maturation. These results indicate that ADHD boys suffer from deficits at both relatively early (sensory) and late (semantic) levels of visual selective information processing. The data also support the hypothesis that the visual selective processing deficits observed in the ADHD boys originate from deficits in the strength of activation of a neural network comprising prefrontal and occipito-temporal brain regions. This network seems to be actively engaged during attention to color and may contain the major intracerebral generating sources of the associated scalp-recorded ERP components.
Auditory processing efficiency deficits in children with developmental language impairments
NASA Astrophysics Data System (ADS)
Hartley, Douglas E. H.; Moore, David R.
2002-12-01
The ``temporal processing hypothesis'' suggests that individuals with specific language impairments (SLIs) and dyslexia have severe deficits in processing rapidly presented or brief sensory information, both within the auditory and visual domains. This hypothesis has been supported through evidence that language-impaired individuals have excess auditory backward masking. This paper presents an analysis of masking results from several studies in terms of a model of temporal resolution. Results from this modeling suggest that the masking results can be better explained by an ``auditory efficiency'' hypothesis. If impaired or immature listeners have a normal temporal window, but require a higher signal-to-noise level (poor processing efficiency), this hypothesis predicts the observed small deficits in the simultaneous masking task, and the much larger deficits in backward and forward masking tasks amongst those listeners. The difference in performance on these masking tasks is predictable from the compressive nonlinearity of the basilar membrane. The model also correctly predicts that backward masking (i) is more prone to training effects, (ii) has greater inter- and intrasubject variability, and (iii) increases less with masker level than do other masking tasks. These findings provide a new perspective on the mechanisms underlying communication disorders and auditory masking.
Visual temporal processing in dyslexia and the magnocellular deficit theory: the need for speed?
McLean, Gregor M T; Stuart, Geoffrey W; Coltheart, Veronika; Castles, Anne
2011-12-01
A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore temporal aspects of magnocellular functioning in 40 children with dyslexia and 42 age-matched controls (aged 7-11). The relationship between magnocellular temporal resolution and higher-level aspects of visual temporal processing including inspection time, single and dual-target (attentional blink) RSVP performance, go/no-go reaction time, and rapid naming was also assessed. The Dyslexia group exhibited significant deficits in magnocellular temporal resolution compared with controls, but the two groups did not differ in parvocellular temporal resolution. Despite the significant group differences, associations between magnocellular temporal resolution and reading ability were relatively weak, and links between low-level temporal resolution and reading ability did not appear specific to the magnocellular system. Factor analyses revealed that a collective Perceptual Speed factor, involving both low-level and higher-level visual temporal processing measures, accounted for unique variance in reading ability independently of phonological processing, rapid naming, and general ability.
Temporal Processing, Attention, and Learning Disorders
ERIC Educational Resources Information Center
Landerl, Karin; Willburger, Edith
2010-01-01
In a large sample (N = 439) of literacy impaired and unimpaired elementary school children the predictions of the temporal processing theory of dyslexia were tested while controlling for (sub)clininal attentional deficits. Visual and Auditory Temporal Order Judgement were administered as well as three subtests of a standardized attention test. The…
Temporal processing impairment in children with attention-deficit-hyperactivity disorder.
Huang, Jia; Yang, Bin-rang; Zou, Xiao-bing; Jing, Jin; Pen, Gang; McAlonan, Gráinne M; Chan, Raymond C K
2012-01-01
The current study aimed to investigate temporal processing in Chinese children with Attention-Deficit-Hyperactivity Disorder(ADHD) using time production, time reproduction paradigm and duration discrimination tasks. A battery of tests specifically designed to measure temporal processing was administered to 94 children with ADHD and 100 demographically matched healthy children. A multivariate analysis of variance (MANOVA) and a repeated measure MANOVA indicated that children with ADHD were impaired in time processing functions. The results of pairwise comparisons showed that the probands with a family history of ADHD performed significantly worse than those without family history in the time production tasks and the time reproduction task. Logistic regression analysis showed duration discrimination had a significant role in predicting whether the children were suffering from ADHD or not, while temporal processing had a significant role in predicting whether the ADHD children had a family history or not. This study provides further support for the existence of a generic temporal processing impairment in ADHD children and suggests that abnormalities in time processing and ADHD share some common genetic factors. Copyright © 2011 Elsevier Ltd. All rights reserved.
Congenital amusia: a cognitive disorder limited to resolved harmonics and with no peripheral basis.
Cousineau, Marion; Oxenham, Andrew J; Peretz, Isabelle
2015-01-01
Pitch plays a fundamental role in audition, from speech and music perception to auditory scene analysis. Congenital amusia is a neurogenetic disorder that appears to affect primarily pitch and melody perception. Pitch is normally conveyed by the spectro-temporal fine structure of low harmonics, but some pitch information is available in the temporal envelope produced by the interactions of higher harmonics. Using 10 amusic subjects and 10 matched controls, we tested the hypothesis that amusics suffer exclusively from impaired processing of spectro-temporal fine structure. We also tested whether the inability of amusics to process acoustic temporal fine structure extends beyond pitch by measuring sensitivity to interaural time differences, which also rely on temporal fine structure. Further tests were carried out on basic intensity and spectral resolution. As expected, pitch perception based on spectro-temporal fine structure was impaired in amusics; however, no significant deficits were observed in amusics' ability to perceive the pitch conveyed via temporal-envelope cues. Sensitivity to interaural time differences was also not significantly different between the amusic and control groups, ruling out deficits in the peripheral coding of temporal fine structure. Finally, no significant differences in intensity or spectral resolution were found between the amusic and control groups. The results demonstrate a pitch-specific deficit in fine spectro-temporal information processing in amusia that seems unrelated to temporal or spectral coding in the auditory periphery. These results are consistent with the view that there are distinct mechanisms dedicated to processing resolved and unresolved harmonics in the general population, the former being altered in congenital amusia while the latter is spared. Copyright © 2014 Elsevier Ltd. All rights reserved.
Temporal context and the organisational impairment of memory search in schizophrenia.
Polyn, Sean M; McCluey, Joshua D; Morton, Neal W; Woolard, Austin A; Luksik, Andrew S; Heckers, Stephan
2015-01-01
An influential theory of schizophrenic deficits in executive function suggests that patients have difficulty maintaining and utilising an internal contextual representation, whose function is to ensure that stimuli are processed in a task-appropriate manner. In basic research on episodic memory, retrieved-context theories propose that an internal contextual representation is critically involved in memory search, facilitating the retrieval of task-appropriate memories. This contextual machinery is thought to give rise to temporal organisation during free recall: the tendency for successive recall responses to correspond to items from nearby positions on the study list. If patients with schizophrenia have a generalised contextual deficit, then this leads to the prediction that these patients will exhibit reduced temporal organisation in free recall. Using a combination of classic and recently developed organisational measures, we characterised recall organisation in 75 patients with schizophrenia and 72 nondisordered control participants performing a multi-trial free-recall task. Patients with schizophrenia showed diminished temporal organisation, as well as diminished subjective organisation of their recall sequences relative to control participants. The two groups showed similar amounts of semantic organisation during recall. The observation of reduced temporal organisation in the patient group is consistent with the proposal that the memory deficit in schizophrenia can be characterised as a deficit in contextual processing.
Schuppert, M; Münte, T F; Wieringa, B M; Altenmüller, E
2000-03-01
Perceptual musical functions were investigated in patients suffering from unilateral cerebrovascular cortical lesions. Using MIDI (Musical Instrument Digital Interface) technique, a standardized short test battery was established that covers local (analytical) as well as global perceptual mechanisms. These represent the principal cognitive strategies in melodic and temporal musical information processing (local, interval and rhythm; global, contour and metre). Of the participating brain-damaged patients, a total of 69% presented with post-lesional impairments in music perception. Left-hemisphere-damaged patients showed significant deficits in the discrimination of local as well as global structures in both melodic and temporal information processing. Right-hemisphere-damaged patients also revealed an overall impairment of music perception, reaching significance in the temporal conditions. Detailed analysis outlined a hierarchical organization, with an initial right-hemisphere recognition of contour and metre followed by identification of interval and rhythm via left-hemisphere subsystems. Patterns of dissociated and associated melodic and temporal deficits indicate autonomous, yet partially integrated neural subsystems underlying the processing of melodic and temporal stimuli. In conclusion, these data contradict a strong hemispheric specificity for music perception, but indicate cross-hemisphere, fragmented neural substrates underlying local and global musical information processing in the melodic and temporal dimensions. Due to the diverse profiles of neuropsychological deficits revealed in earlier investigations as well as in this study, individual aspects of musicality and musical behaviour very likely contribute to the definite formation of these widely distributed neural networks.
Barlow, Sally; Fahey, Briana; Smith, Kimberley J; Passecker, Johannes; Della-Chiesa, Andrea; Hok, Vincent; Day, Jennifer S; Callaghan, Charlotte K; O'Mara, Shane M
2018-05-18
Patients receiving cytokine immunotherapy with IFN-α frequently present with neuropsychiatric consequences and cognitive impairments, including a profound depressive-like symptomatology. While the neurobiological substrates of the dysfunction that leads to adverse events in IFN-α-treated patients remains ill-defined, dysfunctions of the hippocampus and prefrontal cortex (PFC) are strong possibilities. To date, hippocampal deficits have been well-characterised; there does however remain a lack of insight into the nature of prefrontal participation. Here, we used a PFC-supported temporal order memory paradigm to examine if IFN-α treatment induced deficits in performance; additionally, we used an object recognition task to assess the integrity of the perirhinal cortex (PRH). Finally, the utility of exercise as an ameliorative strategy to recover temporal order deficits in rats was also explored. We found that IFN-α-treatment impaired temporal order memory discriminations, whereas recognition memory remained intact, reflecting a possible dissociation between recognition and temporal order memory processing. Further characterisation of temporal order memory impairments using a longitudinal design revealed that deficits persisted for 10 weeks following cessation of IFN-α-treatment. Finally, a 6 week forced exercise regime reversed IFN-α-induced deficits in temporal order memory. These data provide further insight into the circuitry involved in cognitive impairments arising from IFN-α-treatment. Here we suggest that PFC (or the hippocampo-prefrontal pathway) may be compromised whilst the function of the PRH is preserved. Deficits may persist after cessation of IFN-α-treatment which suggests that extended patient monitoring is required. Aerobic exercise may be restorative and could prove beneficial for patients treated with IFN-α. Copyright © 2018 Elsevier Inc. All rights reserved.
Visual event-related potentials to biological motion stimuli in autism spectrum disorders
Bletsch, Anke; Krick, Christoph; Siniatchkin, Michael; Jarczok, Tomasz A.; Freitag, Christine M.; Bender, Stephan
2014-01-01
Atypical visual processing of biological motion contributes to social impairments in autism spectrum disorders (ASD). However, the exact temporal sequence of deficits of cortical biological motion processing in ASD has not been studied to date. We used 64-channel electroencephalography to study event-related potentials associated with human motion perception in 17 children and adolescents with ASD and 21 typical controls. A spatio-temporal source analysis was performed to assess the brain structures involved in these processes. We expected altered activity already during early stimulus processing and reduced activity during subsequent biological motion specific processes in ASD. In response to both, random and biological motion, the P100 amplitude was decreased suggesting unspecific deficits in visual processing, and the occipito-temporal N200 showed atypical lateralization in ASD suggesting altered hemispheric specialization. A slow positive deflection after 400 ms, reflecting top-down processes, and human motion-specific dipole activation differed slightly between groups, with reduced and more diffuse activation in the ASD-group. The latter could be an indicator of a disrupted neuronal network for biological motion processing in ADS. Furthermore, early visual processing (P100) seems to be correlated to biological motion-specific activation. This emphasizes the relevance of early sensory processing for higher order processing deficits in ASD. PMID:23887808
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective
Gillebert, Céline R.; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T.; Orban, Guy A.
2015-01-01
Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. SIGNIFICANCE STATEMENT Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. PMID:26377458
Pulvermüller, Friedemann; Cooper-Pye, Elisa; Dine, Clare; Hauk, Olaf; Nestor, Peter J; Patterson, Karalyn
2010-09-01
It has been claimed that semantic dementia (SD), the temporal variant of fronto-temporal dementia, is characterized by an across-the-board deficit affecting all types of conceptual knowledge. We here confirm this generalized deficit but also report differential degrees of impairment in processing specific semantic word categories in a case series of SD patients (N = 11). Within the domain of words with strong visually grounded meaning, the patients' lexical decision accuracy was more impaired for color-related than for form-related words. Likewise, within the domain of action verbs, the patients' performance was worse for words referring to face movements and speech acts than for words semantically linked to actions performed with the hand and arm. Psycholinguistic properties were matched between the stimulus groups entering these contrasts; an explanation for the differential degrees of impairment must therefore involve semantic features of the words in the different conditions. Furthermore, this specific pattern of deficits cannot be captured by classic category distinctions such as nouns versus verbs or living versus nonliving things. Evidence from previous neuroimaging research indicates that color- and face/speech-related words, respectively, draw most heavily on anterior-temporal and inferior-frontal areas, the structures most affected in SD. Our account combines (a) the notion of an anterior-temporal amodal semantic "hub" to explain the profound across-the-board deficit in SD word processing, with (b) a semantic topography model of category-specific circuits whose cortical distributions reflect semantic features of the words and concepts represented.
Temporal Order Processing in Adult Dyslexics.
ERIC Educational Resources Information Center
Maxwell, David L.; And Others
This study investigated the premise that disordered temporal order perception in retarded readers can be seen in the serial processing of both nonverbal auditory and visual information, and examined whether such information processing deficits relate to level of reading ability. The adult subjects included 20 in the dyslexic group, 12 in the…
Temporal information processing in short- and long-term memory of patients with schizophrenia.
Landgraf, Steffen; Steingen, Joerg; Eppert, Yvonne; Niedermeyer, Ulrich; van der Meer, Elke; Krueger, Frank
2011-01-01
Cognitive deficits of patients with schizophrenia have been largely recognized as core symptoms of the disorder. One neglected factor that contributes to these deficits is the comprehension of time. In the present study, we assessed temporal information processing and manipulation from short- and long-term memory in 34 patients with chronic schizophrenia and 34 matched healthy controls. On the short-term memory temporal-order reconstruction task, an incidental or intentional learning strategy was deployed. Patients showed worse overall performance than healthy controls. The intentional learning strategy led to dissociable performance improvement in both groups. Whereas healthy controls improved on a performance measure (serial organization), patients improved on an error measure (inappropriate semantic clustering) when using the intentional instead of the incidental learning strategy. On the long-term memory script-generation task, routine and non-routine events of everyday activities (e.g., buying groceries) had to be generated in either chronological or inverted temporal order. Patients were slower than controls at generating events in the chronological routine condition only. They also committed more sequencing and boundary errors in the inverted conditions. The number of irrelevant events was higher in patients in the chronological, non-routine condition. These results suggest that patients with schizophrenia imprecisely access temporal information from short- and long-term memory. In short-term memory, processing of temporal information led to a reduction in errors rather than, as was the case in healthy controls, to an improvement in temporal-order recall. When accessing temporal information from long-term memory, patients were slower and committed more sequencing, boundary, and intrusion errors. Together, these results suggest that time information can be accessed and processed only imprecisely by patients who provide evidence for impaired time comprehension. This could contribute to symptomatic cognitive deficits and strategic inefficiency in schizophrenia.
Laurent, Agathe; Arzimanoglou, Alexis; Panagiotakaki, Eleni; Sfaello, Ignacio; Kahane, Philippe; Ryvlin, Philippe; Hirsch, Edouard; de Schonen, Scania
2014-12-01
A high rate of abnormal social behavioural traits or perceptual deficits is observed in children with unilateral temporal lobe epilepsy. In the present study, perception of auditory and visual social signals, carried by faces and voices, was evaluated in children or adolescents with temporal lobe epilepsy. We prospectively investigated a sample of 62 children with focal non-idiopathic epilepsy early in the course of the disorder. The present analysis included 39 children with a confirmed diagnosis of temporal lobe epilepsy. Control participants (72), distributed across 10 age groups, served as a control group. Our socio-perceptual evaluation protocol comprised three socio-visual tasks (face identity, facial emotion and gaze direction recognition), two socio-auditory tasks (voice identity and emotional prosody recognition), and three control tasks (lip reading, geometrical pattern and linguistic intonation recognition). All 39 patients also benefited from a neuropsychological examination. As a group, children with temporal lobe epilepsy performed at a significantly lower level compared to the control group with regards to recognition of facial identity, direction of eye gaze, and emotional facial expressions. We found no relationship between the type of visual deficit and age at first seizure, duration of epilepsy, or the epilepsy-affected cerebral hemisphere. Deficits in socio-perceptual tasks could be found independently of the presence of deficits in visual or auditory episodic memory, visual non-facial pattern processing (control tasks), or speech perception. A normal FSIQ did not exempt some of the patients from an underlying deficit in some of the socio-perceptual tasks. Temporal lobe epilepsy not only impairs development of emotion recognition, but can also impair development of perception of other socio-perceptual signals in children with or without intellectual deficiency. Prospective studies need to be designed to evaluate the results of appropriate re-education programs in children presenting with deficits in social cue processing.
Time perception impairs sensory-motor integration in Parkinson’s disease
2013-01-01
It is well known that perception and estimation of time are fundamental for the relationship between humans and their environment. However, this temporal information processing is inefficient in patients with Parkinson’ disease (PD), resulting in temporal judgment deficits. In general, the pathophysiology of PD has been described as a dysfunction in the basal ganglia, which is a multisensory integration station. Thus, a deficit in the sensorimotor integration process could explain many of the Parkinson symptoms, such as changes in time perception. This physiological distortion may be better understood if we analyze the neurobiological model of interval timing, expressed within the conceptual framework of a traditional information-processing model called “Scalar Expectancy Theory”. Therefore, in this review we discuss the pathophysiology and sensorimotor integration process in PD, the theories and neural basic mechanisms involved in temporal processing, and the main clinical findings about the impact of time perception in PD. PMID:24131660
ERIC Educational Resources Information Center
Conlon, Elizabeth G.; Wright, Craig M.; Norris, Karla; Chekaluk, Eugene
2011-01-01
The experiments conducted aimed to investigate whether reduced accuracy when counting stimuli presented in rapid temporal sequence in adults with dyslexia could be explained by a sensory processing deficit, a general slowing in processing speed or difficulties shifting attention between stimuli. To achieve these aims, the influence of the…
Laasonen, M; Service, E; Virsu, V
2001-12-01
We studied the temporal acuity of 16 developmentally dyslexic young adults in three perceptual modalities. The control group consisted of 16 age- and IQ-matched normal readers. Two methods were used. In the temporal order judgment (TOJ) method, the stimuli were spatially separate fingertip indentations in the tactile system, tone bursts of different pitches in audition, and light flashes in vision. Participants indicated which one of two stimuli appeared first. To test temporal processing acuity (TPA), the same 8-msec nonspeech stimuli were presented as two parallel sequences of three stimulus pulses. Participants indicated, without order judgments, whether the pulses of the two sequences were simultaneous or nonsimultaneous. The dyslexic readers were somewhat inferior to the normal readers in all six temporal acuity tasks on average. Thus, our results agreed with the existence of a pansensory temporal processing deficit associated with dyslexia in a language with shallow orthography (Finnish) and in well-educated adults. The dyslexic and normal readers' temporal acuities overlapped so much, however, that acuity deficits alone would not allow dyslexia diagnoses. It was irrelevant whether or not the acuity task required order judgments. The groups did not differ in the nontemporal aspects of our experiments. Correlations between temporal acuity and reading-related tasks suggested that temporal acuity is associated with phonological awareness.
Ford, Talitha C; Woods, Will; Crewther, David P
2017-01-01
Social Disorganisation (SD) is a shared autistic and schizotypal phenotype that is present in the subclinical population. Auditory processing deficits, particularly in mismatch negativity/field (MMN/F) have been reported across both spectrum disorders. This study investigates differences in MMN/F cortical spatio-temporal source activity between higher and lower quintiles of the SD spectrum. Sixteen low (9 female) and 19 high (9 female) SD subclinical adults (18-40years) underwent magnetoencephalography (MEG) during an MMF paradigm where standard tones (50ms) were interrupted by infrequent duration deviants (100ms). Spatio-temporal source cluster analysis with permutation testing revealed no difference between the groups in source activation to the standard tone. To the deviant tone however, there was significantly reduced right hemisphere fronto-temporal and insular cortex activation for the high SD group ( p = 0.038). The MMF, as a product of the cortical response to the deviant minus that to the standard, did not differ significantly between the high and low Social Disorganisation groups. These data demonstrate a deficit in right fronto-temporal processing of an auditory change for those with more of the shared SD phenotype, indicating that right fronto-temporal auditory processing may be associated with psychosocial functioning.
Early deficits in spatial memory and theta rhythm in experimental temporal lobe epilepsy.
Chauvière, Laetitia; Rafrafi, Nadia; Thinus-Blanc, Catherine; Bartolomei, Fabrice; Esclapez, Monique; Bernard, Christophe
2009-04-29
Patients with temporal lobe epilepsy (TLE), the most common form of epilepsy in adults, often display cognitive deficits. The time course and underlying mechanisms of cognitive decline remain unknown during epileptogenesis (the process leading to epilepsy). Using the rat pilocarpine model of TLE, we performed a longitudinal study to assess spatial and nonspatial cognitive performance during epileptogenesis. In parallel, we monitored interictal-like activity (ILA) in the hippocampal CA1 region, as well as theta oscillations, a brain rhythm central to numerous cognitive processes. Here, we report that spatial memory was altered soon after pilocarpine-induced status epilepticus, i.e., already during the seizure-free, latent period. Spatial deficits correlated with a decrease in the power of theta oscillations but not with the frequency of ILA. Spatial deficits persisted when animals had spontaneous seizures (chronic stage) without further modification. In contrast, nonspatial memory performances remained unaffected throughout. We conclude that the reorganization of hippocampal circuitry that immediately follows the initial insult can affect theta oscillation mechanisms, in turn, resulting in deficits in hippocampus-dependent memory tasks. These deficits may be dissociated from the process that leads to epilepsy itself but could instead constitute, as ILA, early markers in at-risk patients and/or provide beneficial therapeutic targets.
The Relationship between Auditory Temporal Processing, Phonemic Awareness, and Reading Disability.
ERIC Educational Resources Information Center
Bretherton, Lesley; Holmes, V. M.
2003-01-01
Investigated the relationship between auditory temporal processing of nonspeech sounds and phonological awareness ability in 8- to 12-year-olds with a reading disability, placed in groups based on performance on Tallal's tone-order judgment task. Found that a tone-order deficit did not relate to performance on order processing of speech sounds, to…
3D Shape Perception in Posterior Cortical Atrophy: A Visual Neuroscience Perspective.
Gillebert, Céline R; Schaeverbeke, Jolien; Bastin, Christine; Neyens, Veerle; Bruffaerts, Rose; De Weer, An-Sofie; Seghers, Alexandra; Sunaert, Stefan; Van Laere, Koen; Versijpt, Jan; Vandenbulcke, Mathieu; Salmon, Eric; Todd, James T; Orban, Guy A; Vandenberghe, Rik
2015-09-16
Posterior cortical atrophy (PCA) is a rare focal neurodegenerative syndrome characterized by progressive visuoperceptual and visuospatial deficits, most often due to atypical Alzheimer's disease (AD). We applied insights from basic visual neuroscience to analyze 3D shape perception in humans affected by PCA. Thirteen PCA patients and 30 matched healthy controls participated, together with two patient control groups with diffuse Lewy body dementia (DLBD) and an amnestic-dominant phenotype of AD, respectively. The hierarchical study design consisted of 3D shape processing for 4 cues (shading, motion, texture, and binocular disparity) with corresponding 2D and elementary feature extraction control conditions. PCA and DLBD exhibited severe 3D shape-processing deficits and AD to a lesser degree. In PCA, deficient 3D shape-from-shading was associated with volume loss in the right posterior inferior temporal cortex. This region coincided with a region of functional activation during 3D shape-from-shading in healthy controls. In PCA patients who performed the same fMRI paradigm, response amplitude during 3D shape-from-shading was reduced in this region. Gray matter volume in this region also correlated with 3D shape-from-shading in AD. 3D shape-from-disparity in PCA was associated with volume loss slightly more anteriorly in posterior inferior temporal cortex as well as in ventral premotor cortex. The findings in right posterior inferior temporal cortex and right premotor cortex are consistent with neurophysiologically based models of the functional anatomy of 3D shape processing. However, in DLBD, 3D shape deficits rely on mechanisms distinct from inferior temporal structural integrity. Posterior cortical atrophy (PCA) is a neurodegenerative syndrome characterized by progressive visuoperceptual dysfunction and most often an atypical presentation of Alzheimer's disease (AD) affecting the ventral and dorsal visual streams rather than the medial temporal system. We applied insights from fundamental visual neuroscience to analyze 3D shape perception in PCA. 3D shape-processing deficits were affected beyond what could be accounted for by lower-order processing deficits. For shading and disparity, this was related to volume loss in regions previously implicated in 3D shape processing in the intact human and nonhuman primate brain. Typical amnestic-dominant AD patients also exhibited 3D shape deficits. Advanced visual neuroscience provides insight into the pathogenesis of PCA that also bears relevance for vision in typical AD. Copyright © 2015 Gillebert, Schaeverbeke et al.
Ptok, M; Meisen, R
2008-01-01
The rapid auditory processing defi-cit theory holds that impaired reading/writing skills are not caused exclusively by a cognitive deficit specific to representation and processing of speech sounds but arise due to sensory, mainly auditory, deficits. To further explore this theory we compared different measures of auditory low level skills to writing skills in school children. prospective study. School children attending third and fourth grade. just noticeable differences for intensity and frequency (JNDI, JNDF), gap detection (GD) monaural and binaural temporal order judgement (TOJb and TOJm); grade in writing, language and mathematics. correlation analysis. No relevant correlation was found between any auditory low level processing variable and writing skills. These data do not support the rapid auditory processing deficit theory.
Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas
2015-01-01
Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. PMID:26707082
Evidence for Deficits in the Temporal Attention Span of Poor Readers
Visser, Troy A. W.
2014-01-01
Background While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their “temporal attention span” – that is, their ability to rapidly and accurately process sequences of consecutive target items. Methodology/Principal Findings Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Conclusions/Significance Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span. PMID:24651313
Evidence for deficits in the temporal attention span of poor readers.
Visser, Troy A W
2014-01-01
While poor reading is often associated with phonological deficits, many studies suggest that visual processing might also be impaired. In particular, recent research has indicated that poor readers show impaired spatial visual attention spans in partial and whole report tasks. Given the similarities between competition-based accounts for reduced visual attention span and similar explanations for impairments in sequential object processing, the present work examined whether poor readers show deficits in their "temporal attention span"--that is, their ability to rapidly and accurately process sequences of consecutive target items. Poor and normal readers monitored a sequential stream of visual items for two (TT condition) or three (TTT condition) consecutive target digits. Target identification was examined using both unconditional and conditional measures of accuracy in order to gauge the overall likelihood of identifying a target and the likelihood of identifying a target given successful identification of previous items. Compared to normal readers, poor readers showed small but consistent deficits in identification across targets whether unconditional or conditional accuracy was used. Additionally, in the TTT condition, final-target conditional accuracy was poorer than unconditional accuracy, particularly for poor readers, suggesting a substantial cost arising from processing the previous two targets that was not present in normal readers. Mirroring the differences found between poor and normal readers in spatial visual attention span, the present findings suggest two principal differences between the temporal attention spans of poor and normal readers. First, the consistent pattern of reduced performance across targets suggests increased competition amongst items within the same span for poor readers. Second, the steeper decline in final target performance amongst poor readers in the TTT condition suggests a reduction in the extent of their temporal attention span.
Intact Spectral but Abnormal Temporal Processing of Auditory Stimuli in Autism
ERIC Educational Resources Information Center
Groen, Wouter B.; van Orsouw, Linda; ter Huurne, Niels; Swinkels, Sophie; van der Gaag, Rutger-Jan; Buitelaar, Jan K.; Zwiers, Marcel P.
2009-01-01
The perceptual pattern in autism has been related to either a specific localized processing deficit or a pathway-independent, complexity-specific anomaly. We examined auditory perception in autism using an auditory disembedding task that required spectral and temporal integration. 23 children with high-functioning-autism and 23 matched controls…
Fundamental deficits of auditory perception in Wernicke's aphasia.
Robson, Holly; Grube, Manon; Lambon Ralph, Matthew A; Griffiths, Timothy D; Sage, Karen
2013-01-01
This work investigates the nature of the comprehension impairment in Wernicke's aphasia (WA), by examining the relationship between deficits in auditory processing of fundamental, non-verbal acoustic stimuli and auditory comprehension. WA, a condition resulting in severely disrupted auditory comprehension, primarily occurs following a cerebrovascular accident (CVA) to the left temporo-parietal cortex. Whilst damage to posterior superior temporal areas is associated with auditory linguistic comprehension impairments, functional-imaging indicates that these areas may not be specific to speech processing but part of a network for generic auditory analysis. We examined analysis of basic acoustic stimuli in WA participants (n = 10) using auditory stimuli reflective of theories of cortical auditory processing and of speech cues. Auditory spectral, temporal and spectro-temporal analysis was assessed using pure-tone frequency discrimination, frequency modulation (FM) detection and the detection of dynamic modulation (DM) in "moving ripple" stimuli. All tasks used criterion-free, adaptive measures of threshold to ensure reliable results at the individual level. Participants with WA showed normal frequency discrimination but significant impairments in FM and DM detection, relative to age- and hearing-matched controls at the group level (n = 10). At the individual level, there was considerable variation in performance, and thresholds for both FM and DM detection correlated significantly with auditory comprehension abilities in the WA participants. These results demonstrate the co-occurrence of a deficit in fundamental auditory processing of temporal and spectro-temporal non-verbal stimuli in WA, which may have a causal contribution to the auditory language comprehension impairment. Results are discussed in the context of traditional neuropsychology and current models of cortical auditory processing. Copyright © 2012 Elsevier Ltd. All rights reserved.
Temporal and Causal Reasoning in Deaf and Hearing Novice Readers
ERIC Educational Resources Information Center
Sullivan, Susan; Oakhill, Jane; Arfé, Barbara; Boureux, Magali
2014-01-01
Temporal and causal information in text are crucial in helping the reader form a coherent representation of a narrative. Deaf novice readers are generally poor at processing linguistic markers of causal/temporal information (i.e., connectives), but what is unclear is whether this is indicative of a more general deficit in reasoning about…
Moll, Kristina; Göbel, Silke M; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J
2016-01-01
High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD: processing speed, temporal processing, and working memory. Since attention problems frequently co-occur with learning disorders, the study examined whether these three factors, which are known to be associated with attention problems, account for the comorbidity between these disorders. The sample comprised 99 primary school children in four groups: children with RD, children with MD, children with both disorders (RD+MD), and typically developing children (TD controls). Measures of processing speed, temporal processing, and memory were analyzed in a series of ANCOVAs including attention ratings as covariate. All three risk factors were associated with poor attention. After controlling for attention, associations with RD and MD differed: Although deficits in verbal memory were associated with both RD and MD, reduced processing speed was related to RD, but not MD; and the association with RD was restricted to processing speed for familiar nameable symbols. In contrast, impairments in temporal processing and visuospatial memory were associated with MD, but not RD. © Hammill Institute on Disabilities 2014.
ERIC Educational Resources Information Center
Martin, Chris B.; Bowles, Ben; Mirsattari, Seyed M.; Kohler, Stefan
2011-01-01
Research has firmly established a link between recognition memory and the functional integrity of the medial temporal lobes (MTL). Dual-process models of MTL organization maintain that there is a division of labour within the MTL, with the hippocampus (HC) supporting recollective processes and perirhinal cortex (PRc) supporting familiarity…
ERIC Educational Resources Information Center
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquiere, Pol
2006-01-01
In this project, the hypothesis of an auditory temporal processing deficit in dyslexia was tested by examining auditory processing in relation to phonological skills in two contrasting groups of five-year-old preschool children, a familial high risk and a familial low risk group. Participants were individually matched for gender, age, non-verbal…
Auditory Backward Masking Deficits in Children with Reading Disabilities
ERIC Educational Resources Information Center
Montgomery, Christine R.; Morris, Robin D.; Sevcik, Rose A.; Clarkson, Marsha G.
2005-01-01
Studies evaluating temporal auditory processing among individuals with reading and other language deficits have yielded inconsistent findings due to methodological problems (Studdert-Kennedy & Mody, 1995) and sample differences. In the current study, seven auditory masking thresholds were measured in fifty-two 7- to 10-year-old children (26…
Griffis, Joseph C; Nenert, Rodolphe; Allendorfer, Jane B; Szaflarski, Jerzy P
2017-01-01
Damage to the white matter underlying the left posterior temporal lobe leads to deficits in multiple language functions. The posterior temporal white matter may correspond to a bottleneck where both dorsal and ventral language pathways are vulnerable to simultaneous damage. Damage to a second putative white matter bottleneck in the left deep prefrontal white matter involving projections associated with ventral language pathways and thalamo-cortical projections has recently been proposed as a source of semantic deficits after stroke. Here, we first used white matter atlases to identify the previously described white matter bottlenecks in the posterior temporal and deep prefrontal white matter. We then assessed the effects of damage to each region on measures of verbal fluency, picture naming, and auditory semantic decision-making in 43 chronic left hemispheric stroke patients. Damage to the posterior temporal bottleneck predicted deficits on all tasks, while damage to the anterior bottleneck only significantly predicted deficits in verbal fluency. Importantly, the effects of damage to the bottleneck regions were not attributable to lesion volume, lesion loads on the tracts traversing the bottlenecks, or damage to nearby cortical language areas. Multivariate lesion-symptom mapping revealed additional lesion predictors of deficits. Post-hoc fiber tracking of the peak white matter lesion predictors using a publicly available tractography atlas revealed evidence consistent with the results of the bottleneck analyses. Together, our results provide support for the proposal that spatially specific white matter damage affecting bottleneck regions, particularly in the posterior temporal lobe, contributes to chronic language deficits after left hemispheric stroke. This may reflect the simultaneous disruption of signaling in dorsal and ventral language processing streams.
Albouy, Philippe; Cousineau, Marion; Caclin, Anne; Tillmann, Barbara; Peretz, Isabelle
2016-01-06
Recent theories suggest that the basis of neurodevelopmental auditory disorders such as dyslexia or specific language impairment might be a low-level sensory dysfunction. In the present study we test this hypothesis in congenital amusia, a neurodevelopmental disorder characterized by severe deficits in the processing of pitch-based material. We manipulated the temporal characteristics of auditory stimuli and investigated the influence of the time given to encode pitch information on participants' performance in discrimination and short-term memory. Our results show that amusics' performance in such tasks scales with the duration available to encode acoustic information. This suggests that in auditory neuro-developmental disorders, abnormalities in early steps of the auditory processing can underlie the high-level deficits (here musical disabilities). Observing that the slowing down of temporal dynamics improves amusics' pitch abilities allows considering this approach as a potential tool for remediation in developmental auditory disorders.
Odour Identification in Frontotemporal Lobar Degeneration
Rami, Lorena; Loy, Clement T.; Hailstone, Julia; Warren, Jason D.
2008-01-01
Little information is available concerning olfactory processing in frontotemporal lobar degeneration (FTLD). We undertook a case-control study of olfactory processing in three male patients fulfilling clinical criteria for FTLD. Odour identification (semantic analysis) and odour discrimination (perceptual analysis) were investigated using tests adapted from the University of Pennsylvania Smell Identification Test. General neuropsychometry and structural volumetric brain magnetic resonance imaging (MRI) were also performed. The three patients with FTLD exhibited a disorder of olfactory processing with the characteristics of a predominantly semantic (odour identification) deficit. This olfactory deficit was more prominent in patients with greater involvement of the temporal lobes on MRI. Central deficits of odour identification may be more common in FTLD than previously recognised, and these deficits may assist in clinical characterisation. PMID:17380245
Bostock, Emmanuelle C S; Kirkby, Kenneth C; Garry, Michael I; Taylor, Bruce V M
2017-01-01
Bipolar disorder (BD) and temporal lobe epilepsy (TLE) overlap in domains including epidemiology, treatment response, shared neurotransmitter involvement and temporal lobe pathology. Comparison of cognitive function in both disorders may indicate temporal lobe mediated processes relevant to BD. This systematic review examines neuropsychological test profiles in euthymic bipolar disorder type I (BD-I) and pre-surgical TLE and compares experimental designs used. A search of PubMed, PsychINFO, and Scopus using Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines was conducted. Inclusion criteria were comparison group or pre- to post-surgical patients; reported neuropsychological tests; participants aged 18-60 years. Fifty six studies met criteria: 27 BD-I; 29 TLE. Deficits in BD-I compared to healthy controls (HC) were in executive function, attention span and verbal memory. Deficits in TLE compared to HC were in executive function and memory. In the pre- to post-surgical comparisons, verbal memory in left temporal lobe (LTL) and, less consistently, visuospatial memory in right temporal lobe (RTL) epilepsy declined following surgery. BD-I studies used comprehensive test batteries in well-defined euthymic patients compared to matched HC groups. TLE studies used convenience samples pre- to post-surgery, comparing LTL and RTL subgroups, few included comparisons to HC (5 studies). TLE studies typically examined a narrow range of known temporal lobe-mediated neuropsychological functions, particularly verbal and visuospatial memory. Both disorders exhibit deficits in executive function and verbal memory suggestive of both frontal and temporal lobe involvement. However, deficits in TLE are measured pre- to post-surgery and not controlled at baseline pre-surgery. Further research involving a head-to-head comparison of the two disorders on a broad range of neuropsychological tests is needed to clarify the nature and extent of cognitive deficits and potential overlaps.
Impaired spatial processing in a mouse model of fragile X syndrome.
Ghilan, Mohamed; Bettio, Luis E B; Noonan, Athena; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R
2018-05-17
Fragile X syndrome (FXS) is the most common form of inherited intellectual impairment. The Fmr1 -/y mouse model has been previously shown to have deficits in context discrimination tasks but not in the elevated plus-maze. To further characterize this FXS mouse model and determine whether hippocampal-mediated behaviours are affected in these mice, dentate gyrus (DG)-dependent spatial processing and Cornu ammonis 1 (CA1)-dependent temporal order discrimination tasks were evaluated. In agreement with previous findings of long-term potentiation deficits in the DG of this transgenic model of FXS, the results reported here demonstrate that Fmr1 -/y mice perform poorly in the DG-dependent metric change spatial processing task. However, Fmr1 -/y mice did not present deficits in the CA1-dependent temporal order discrimination task, and were able to remember the order in which objects were presented to them to the same extent as their wild-type littermate controls. These data suggest that the previously reported subregional-specific differences in hippocampal synaptic plasticity observed in the Fmr1 -/y mouse model may manifest as selective behavioural deficits in hippocampal-dependent tasks. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Kantrowitz, J T; Hoptman, M J; Leitman, D I; Silipo, G; Javitt, D C
2014-01-01
Intact sarcasm perception is a crucial component of social cognition and mentalizing (the ability to understand the mental state of oneself and others). In sarcasm, tone of voice is used to negate the literal meaning of an utterance. In particular, changes in pitch are used to distinguish between sincere and sarcastic utterances. Schizophrenia patients show well-replicated deficits in auditory function and functional connectivity (FC) within and between auditory cortical regions. In this study we investigated the contributions of auditory deficits to sarcasm perception in schizophrenia. Auditory measures including pitch processing, auditory emotion recognition (AER) and sarcasm detection were obtained from 76 patients with schizophrenia/schizo-affective disorder and 72 controls. Resting-state FC (rsFC) was obtained from a subsample and was analyzed using seeds placed in both auditory cortex and meta-analysis-defined core-mentalizing regions relative to auditory performance. Patients showed large effect-size deficits across auditory measures. Sarcasm deficits correlated significantly with general functioning and impaired pitch processing both across groups and within the patient group alone. Patients also showed reduced sensitivity to alterations in mean pitch and variability. For patients, sarcasm discrimination correlated exclusively with the level of rsFC within primary auditory regions whereas for controls, correlations were observed exclusively within core-mentalizing regions (the right posterior superior temporal gyrus, anterior superior temporal sulcus and insula, and left posterior medial temporal gyrus). These findings confirm the contribution of auditory deficits to theory of mind (ToM) impairments in schizophrenia, and demonstrate that FC within auditory, but not core-mentalizing, regions is rate limiting with respect to sarcasm detection in schizophrenia.
Mehta, Sonya; Inoue, Kayo; Rudrauf, David; Damasio, Hanna; Tranel, Daniel; Grabowski, Thomas
2016-02-01
Lesion-deficit studies support the hypothesis that the left anterior temporal lobe (ATL) plays a critical role in retrieving names of concrete entities. They further suggest that different regions of the left ATL process different conceptual categories. Here we test the specificity of these relationships and whether the anatomical segregation is related to the underlying organization of white matter connections. We reanalyzed data from a previous lesion study of naming and recognition across five categories of concrete entities. In voxelwise logistic regressions of lesion-deficit associations, we formally incorporated measures of disconnection of long-range association fiber tracts (FTs) and covaried for recognition and non-category-specific naming deficits. We also performed fiber tractwise analyses to assess whether damage to specific FTs was preferentially associated with category-selective naming deficits. Damage to the basolateral ATL was associated with naming deficits for both unique (famous faces) and non-unique entities, whereas the damage to the temporal pole was associated with naming deficits for unique entities only. This segregation pattern remained after accounting for comorbid recognition deficits or naming deficits in other categories. The tractwise analyses showed that damage to the uncinate fasciculus (UNC) was associated with naming impairments for unique entities, while damage to the inferior longitudinal fasciculus (ILF) was associated with naming impairments for non-unique entities. Covarying for FT transection in voxelwise analyses rendered the cortical association for unique entities more focal. These results are consistent with the partial segregation of brain system support for name retrieval of unique and non-unique entities at both the level of cortical components and underlying white matter fiber bundles. Our study reconciles theoretic accounts of the functional organization of the left ATL by revealing both category-related processing and semantic hub sectors. Copyright © 2015 Elsevier Ltd. All rights reserved.
ADHD and Delay Aversion: The Influence of Non-Temporal Stimulation on Choice for Delayed Rewards
ERIC Educational Resources Information Center
Antrop, Inge; Stock, Pieter; Verte, Sylvie; Wiersema, Jan Roelt; Baeyens, Dieter; Roeyers, Herbert
2006-01-01
Background: Delay aversion, the motivation to escape or avoid delay, results in preference for small immediate over large delayed rewards. Delay aversion has been proposed as one distinctive psychological process that may underlie the behavioural symptoms and cognitive deficits of attention deficit/hyperactivity disorder (ADHD). Furthermore, the…
Lesion localization of speech comprehension deficits in chronic aphasia
Binder, Jeffrey R.; Humphries, Colin; Gross, William L.; Book, Diane S.
2017-01-01
Objective: Voxel-based lesion-symptom mapping (VLSM) was used to localize impairments specific to multiword (phrase and sentence) spoken language comprehension. Methods: Participants were 51 right-handed patients with chronic left hemisphere stroke. They performed an auditory description naming (ADN) task requiring comprehension of a verbal description, an auditory sentence comprehension (ASC) task, and a picture naming (PN) task. Lesions were mapped using high-resolution MRI. VLSM analyses identified the lesion correlates of ADN and ASC impairment, first with no control measures, then adding PN impairment as a covariate to control for cognitive and language processes not specific to spoken language. Results: ADN and ASC deficits were associated with lesions in a distributed frontal-temporal parietal language network. When PN impairment was included as a covariate, both ADN and ASC deficits were specifically correlated with damage localized to the mid-to-posterior portion of the middle temporal gyrus (MTG). Conclusions: Damage to the mid-to-posterior MTG is associated with an inability to integrate multiword utterances during comprehension of spoken language. Impairment of this integration process likely underlies the speech comprehension deficits characteristic of Wernicke aphasia. PMID:28179469
Lesion localization of speech comprehension deficits in chronic aphasia.
Pillay, Sara B; Binder, Jeffrey R; Humphries, Colin; Gross, William L; Book, Diane S
2017-03-07
Voxel-based lesion-symptom mapping (VLSM) was used to localize impairments specific to multiword (phrase and sentence) spoken language comprehension. Participants were 51 right-handed patients with chronic left hemisphere stroke. They performed an auditory description naming (ADN) task requiring comprehension of a verbal description, an auditory sentence comprehension (ASC) task, and a picture naming (PN) task. Lesions were mapped using high-resolution MRI. VLSM analyses identified the lesion correlates of ADN and ASC impairment, first with no control measures, then adding PN impairment as a covariate to control for cognitive and language processes not specific to spoken language. ADN and ASC deficits were associated with lesions in a distributed frontal-temporal parietal language network. When PN impairment was included as a covariate, both ADN and ASC deficits were specifically correlated with damage localized to the mid-to-posterior portion of the middle temporal gyrus (MTG). Damage to the mid-to-posterior MTG is associated with an inability to integrate multiword utterances during comprehension of spoken language. Impairment of this integration process likely underlies the speech comprehension deficits characteristic of Wernicke aphasia. © 2017 American Academy of Neurology.
Emotion Modulation of Visual Attention: Categorical and Temporal Characteristics
Ciesielski, Bethany G.; Armstrong, Thomas; Zald, David H.; Olatunji, Bunmi O.
2010-01-01
Background Experimental research has shown that emotional stimuli can either enhance or impair attentional performance. However, the relative effects of specific emotional stimuli and the specific time course of these differential effects are unclear. Methodology/Principal Findings In the present study, participants (n = 50) searched for a single target within a rapid serial visual presentation of images. Irrelevant fear, disgust, erotic or neutral images preceded the target by two, four, six, or eight items. At lag 2, erotic images induced the greatest deficits in subsequent target processing compared to other images, consistent with a large emotional attentional blink. Fear and disgust images also produced a larger attentional blinks at lag 2 than neutral images. Erotic, fear, and disgust images continued to induce greater deficits than neutral images at lag 4 and 6. However, target processing deficits induced by erotic, fear, and disgust images at intermediate lags (lag 4 and 6) did not consistently differ from each other. In contrast to performance at lag 2, 4, and 6, enhancement in target processing for emotional stimuli was observed in comparison to neutral stimuli at lag 8. Conclusions/Significance These findings suggest that task-irrelevant emotion information, particularly erotica, impairs intentional allocation of attention at early temporal stages, but at later temporal stages, emotional stimuli can have an enhancing effect on directed attention. These data suggest that the effects of emotional stimuli on attention can be both positive and negative depending upon temporal factors. PMID:21079773
Wallace, Mark T.; Stevenson, Ryan A.
2014-01-01
Behavior, perception and cognition are strongly shaped by the synthesis of information across the different sensory modalities. Such multisensory integration often results in performance and perceptual benefits that reflect the additional information conferred by having cues from multiple senses providing redundant or complementary information. The spatial and temporal relationships of these cues provide powerful statistical information about how these cues should be integrated or “bound” in order to create a unified perceptual representation. Much recent work has examined the temporal factors that are integral in multisensory processing, with many focused on the construct of the multisensory temporal binding window – the epoch of time within which stimuli from different modalities is likely to be integrated and perceptually bound. Emerging evidence suggests that this temporal window is altered in a series of neurodevelopmental disorders, including autism, dyslexia and schizophrenia. In addition to their role in sensory processing, these deficits in multisensory temporal function may play an important role in the perceptual and cognitive weaknesses that characterize these clinical disorders. Within this context, focus on improving the acuity of multisensory temporal function may have important implications for the amelioration of the “higher-order” deficits that serve as the defining features of these disorders. PMID:25128432
The Association Between P3 Amplitude at Age 11 and Criminal Offending at Age 23
Gao, Yu; Raine, Adrian; Venables, Peter H.; Mednick, Sarnoff A.
2014-01-01
Reduced P3 amplitude to targets is an information-processing deficit associated with adult antisocial behavior and may reflect dysfunction of the temporal-parietal junction. This study aims to examine whether this deficit precedes criminal offending. From a birth cohort of 1,795 children, 73 individuals who become criminal offenders at age 23 and 123 noncriminal individuals were assessed on P3 amplitude. The two groups did not differ on gender, ethnicity, and social adversity. P3 amplitude was measured over the temporal-parietal junction during a visual continuous performance task at age 11, together with antisocial behavior. Criminal convictions were assessed at age 23. Reduced P3 amplitude at age 11 was associated with increased antisocial behavior at age 11. Criminal offenders showed significantly reduced P3 amplitudes to target stimuli compared to controls. Findings remained significant after controlling for antisocial behavior and hyperactivity at age 11 and alcoholism at age 23. P3 deficits at age 11 are associated with adult crime at age 23, suggesting that reduced P3 may be an early neurobiological marker for cognitive and affective processes subserved by the temporal-parietal junction that place a child at risk for adult crime. PMID:22963083
The association between p3 amplitude at age 11 and criminal offending at age 23.
Gao, Yu; Raine, Adrian; Venables, Peter H; Mednick, Sarnoff A
2013-01-01
Reduced P3 amplitude to targets is an information-processing deficit associated with adult antisocial behavior and may reflect dysfunction of the temporal-parietal junction. This study aims to examine whether this deficit precedes criminal offending. From a birth cohort of 1,795 children, 73 individuals who become criminal offenders at age 23 and 123 noncriminal individuals were assessed on P3 amplitude. The two groups did not differ on gender, ethnicity, and social adversity. P3 amplitude was measured over the temporal-parietal junction during a visual continuous performance task at age 11, together with antisocial behavior. Criminal convictions were assessed at age 23. Reduced P3 amplitude at age 11 was associated with increased antisocial behavior at age 11. Criminal offenders showed significantly reduced P3 amplitudes to target stimuli compared to controls. Findings remained significant after controlling for antisocial behavior and hyperactivity at age 11 and alcoholism at age 23. P3 deficits at age 11 are associated with adult crime at age 23, suggesting that reduced P3 may be an early neurobiological marker for cognitive and affective processes subserved by the temporal-parietal junction that place a child at risk for adult crime.
Levels of processing with free and cued recall and unilateral temporal lobe epilepsy.
Lespinet-Najib, Véronique; N'Kaoua, Bernard; Sauzéon, Hélène; Bresson, Christel; Rougier, Alain; Claverie, Bernard
2004-04-01
This study investigates the role of the temporal lobes in levels-of-processing tasks (phonetic and semantic encoding) according to the nature of recall tasks (free and cued recall). These tasks were administered to 48 patients with unilateral temporal epilepsy (right "RTLE"=24; left "LTLE"=24) and a normal group (n=24). The results indicated that LTLE patients were impaired for semantic processing (free and cued recall) and for phonetic processing (free and cued recall), while for RTLE patients deficits appeared in free recall with semantic processing. It is suggested that the left temporal lobe is involved in all aspects of verbal memory, and that the right temporal lobe is specialized in semantic processing. Moreover, our data seem to indicate that RTLE patients present a retrieval processing impairment (semantic condition), whereas the LTLE group is characterized by encoding difficulties in the phonetic and semantic condition.
An Acquired Deficit of Audiovisual Speech Processing
ERIC Educational Resources Information Center
Hamilton, Roy H.; Shenton, Jeffrey T.; Coslett, H. Branch
2006-01-01
We report a 53-year-old patient (AWF) who has an acquired deficit of audiovisual speech integration, characterized by a perceived temporal mismatch between speech sounds and the sight of moving lips. AWF was less accurate on an auditory digit span task with vision of a speaker's face as compared to a condition in which no visual information from…
Noise on, voicing off: Speech perception deficits in children with specific language impairment.
Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Lorenzi, Christian
2011-11-01
Speech perception of four phonetic categories (voicing, place, manner, and nasality) was investigated in children with specific language impairment (SLI) (n=20) and age-matched controls (n=19) in quiet and various noise conditions using an AXB two-alternative forced-choice paradigm. Children with SLI exhibited robust speech perception deficits in silence, stationary noise, and amplitude-modulated noise. Comparable deficits were obtained for fast, intermediate, and slow modulation rates, and this speaks against the various temporal processing accounts of SLI. Children with SLI exhibited normal "masking release" effects (i.e., better performance in fluctuating noise than in stationary noise), again suggesting relatively spared spectral and temporal auditory resolution. In terms of phonetic categories, voicing was more affected than place, manner, or nasality. The specific nature of this voicing deficit is hard to explain with general processing impairments in attention or memory. Finally, speech perception in noise correlated with an oral language component but not with either a memory or IQ component, and it accounted for unique variance beyond IQ and low-level auditory perception. In sum, poor speech perception seems to be one of the primary deficits in children with SLI that might explain poor phonological development, impaired word production, and poor word comprehension. Copyright © 2011 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Lieshout, P.; Renier, W.; Eling, P.
1990-02-01
This case study concerns an 18-year-old bilingual girl who suffered a radiation lesion in the left (dominant) thalamic and temporal region when she was 4 years old. Language and memory assessment revealed deficits in auditory short-term memory, auditory word comprehension, nonword repetition, syntactic processing, word fluency, and confrontation naming tasks. Both languages (English and Dutch) were found to be affected in a similar manner, despite the fact that one language (English) was acquired before and the other (Dutch) after the period of lesion onset. Most of the deficits appear to be related to verbal (short-term) memory dysfunction. Several hypotheses ofmore » subcortical involvement in memory processes are discussed with reference to existing theories in this area.« less
Dankner, Yarden; Shalev, Lilach; Carrasco, Marisa; Yuval-Greenberg, Shlomit
2017-07-01
Knowing when to expect important events to occur is critical for preparing context-appropriate behavior. However, anticipation is inherently complicated to assess because conventional measurements of behavior, such as accuracy and reaction time, are available only after the predicted event has occurred. Anticipatory processes, which occur prior to target onset, are typically measured only retrospectively by these methods. In this study, we utilized a novel approach for assessing temporal expectations through the dynamics of prestimulus saccades. Results showed that saccades of neurotypical participants were inhibited prior to the onset of stimuli that appeared at predictable compared with less predictable times. No such inhibition was found in most participants with attention-deficit/hyperactivity disorder (ADHD), and particularly not in those who experienced difficulties in sustaining attention over time. These findings suggest that individuals with ADHD, especially those with sustained-attention deficits, have diminished ability to benefit from temporal predictability, and this could account for some of their context-inappropriate behaviors.
ERIC Educational Resources Information Center
Hickok, G.; Okada, K.; Barr, W.; Pa, J.; Rogalsky, C.; Donnelly, K.; Barde, L.; Grant, A.
2008-01-01
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated…
Visual Temporal Processing in Dyslexia and the Magnocellular Deficit Theory: The Need for Speed?
ERIC Educational Resources Information Center
McLean, Gregor M. T.; Stuart, Geoffrey W.; Coltheart, Veronika; Castles, Anne
2011-01-01
A controversial question in reading research is whether dyslexia is associated with impairments in the magnocellular system and, if so, how these low-level visual impairments might affect reading acquisition. This study used a novel chromatic flicker perception task to specifically explore "temporal" aspects of magnocellular functioning…
Brenner, Laurie A; Shih, Vivian H; Colich, Natalie L; Sugar, Catherine A; Bearden, Carrie E; Dapretto, Mirella
2015-02-01
Impaired temporal processing has historically been viewed as a hallmark feature of attention deficit hyperactivity disorder. Recent evidence suggests temporal processing deficits may also be characteristic of autism spectrum disorder (ASD). However, little is known about the factors that impact temporal processing in children with ASD. The purpose of this study was to assess the effects of co-morbid attention problems, working memory (WM), age, and their interactions, on time reproduction in youth with and without ASD. Twenty-seven high-functioning individuals with ASD and 25 demographically comparable typically developing individuals (ages 9-17; 85% male) were assessed on measures of time reproduction, auditory WM, and inattention/hyperactivity. The time reproduction task required depression of a computer key to mimic interval durations of 4, 8, 12, 16, or 20 sec. Mixed effects regression analyses were used to model accuracy and variability of time reproduction as functions of diagnostic group, interval duration, age, WM, and inattention/hyperactivity. A significant group by age interaction was detected for accuracy, with the deficit in the ASD group being greater in younger children. There was a significant group by WM interaction for consistency, with the effects of poor WM on performance consistency being more pronounced in youth with ASD. All participants tended to underestimate longer interval durations and to be less consistent for shorter interval durations; these effects appeared more pronounced in those who were younger or who had poorer WM performance. Inattention/hyperactivity symptoms in the ASD group were not related to either accuracy or consistency. This study highlights the potential value of temporal processing as an intermediate trait of relevance to multiple neurodevelopmental disorders. © 2014 International Society for Autism Research, Wiley Periodicals, Inc.
Parthasarathy, Aravindakshan; Bartlett, Edward
2012-07-01
Auditory brainstem responses (ABRs), and envelope and frequency following responses (EFRs and FFRs) are widely used to study aberrant auditory processing in conditions such as aging. We have previously reported age-related deficits in auditory processing for rapid amplitude modulation (AM) frequencies using EFRs recorded from a single channel. However, sensitive testing of EFRs along a wide range of modulation frequencies is required to gain a more complete understanding of the auditory processing deficits. In this study, ABRs and EFRs were recorded simultaneously from two electrode configurations in young and old Fischer-344 rats, a common auditory aging model. Analysis shows that the two channels respond most sensitively to complementary AM frequencies. Channel 1, recorded from Fz to mastoid, responds better to faster AM frequencies in the 100-700 Hz range of frequencies, while Channel 2, recorded from the inter-aural line to the mastoid, responds better to slower AM frequencies in the 16-100 Hz range. Simultaneous recording of Channels 1 and 2 using AM stimuli with varying sound levels and modulation depths show that age-related deficits in temporal processing are not present at slower AM frequencies but only at more rapid ones, which would not have been apparent recording from either channel alone. Comparison of EFRs between un-anesthetized and isoflurane-anesthetized recordings in young animals, as well as comparison with previously published ABR waveforms, suggests that the generators of Channel 1 may emphasize more caudal brainstem structures while those of Channel 2 may emphasize more rostral auditory nuclei including the inferior colliculus and the forebrain, with the boundary of separation potentially along the cochlear nucleus/superior olivary complex. Simultaneous two-channel recording of EFRs help to give a more complete understanding of the properties of auditory temporal processing over a wide range of modulation frequencies which is useful in understanding neural representations of sound stimuli in normal, developmental or pathological conditions. Copyright © 2012 Elsevier B.V. All rights reserved.
Reduced embodied simulation in psychopathy.
Mier, Daniela; Haddad, Leila; Diers, Kersten; Dressing, Harald; Meyer-Lindenberg, Andreas; Kirsch, Peter
2014-08-01
Psychopathy is characterized by severe deficits in emotion processing and empathy. These emotional deficits might not only affect the feeling of own emotions, but also the understanding of others' emotional and mental states. The present study aims on identifying the neurobiological correlates of social-cognitive related alterations in psychopathy. We applied a social-cognitive paradigm for the investigation of face processing, emotion recognition, and affective Theory of Mind (ToM) to 11 imprisoned psychopaths and 18 healthy controls. Functional magnetic resonance imaging was used to measure task-related brain activation. While showing no overall behavioural deficit, psychopathy was associated with altered brain activation. Psychopaths had reduced fusiform activation related to face processing. Related to affective ToM, psychopaths had hypoactivation in amygdala, inferior prefrontal gyrus and superior temporal sulcus, areas associated with embodied simulation of emotions and intentions. Furthermore, psychopaths lacked connectivity between superior temporal sulcus and amygdala during affective ToM. These results replicate findings of alterations in basal face processing in psychopathy. In addition, they provide evidence for reduced embodied simulation in psychopathy in concert with a lack of communication between motor areas and amygdala which might provide the neural substrate of reduced feeling with others during social cognition.
Brain regions underlying word finding difficulties in temporal lobe epilepsy.
Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine
2009-10-01
Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance. This evidence has highlighted a role for the anterior part of the dominant temporal lobe in oral word production. These conclusions contrast with findings from activation studies involving healthy speakers or acute ischaemic stroke patients, where the region most directly related to word retrieval appears to be the posterior part of the left temporal lobe. To clarify the neural basis of word retrieval in temporal lobe epilepsy, we tested forty-three drug-resistant temporal lobe epilepsy patients (28 left, 15 right). Comprehensive neuropsychological and language assessments were performed. Single spoken word production was elicited with picture or definition stimuli. Detailed analysis allowed the distinction of impaired word retrieval from other possible causes of naming failure. Finally, the neural substrate of the deficit was assessed by correlating word retrieval performance and resting-state brain metabolism in 18 fluoro-2-deoxy-d-glucose-Positron Emission Tomography. Naming difficulties often resulted from genuine word retrieval failures (anomic states), both in picture and in definition tasks. Left temporal lobe epilepsy patients showed considerably worse performance than right temporal lobe epilepsy patients. Performance was poorer in the definition than in the picture task. Across patients and the left temporal lobe epilepsy subgroup, frequency of anomic state was negatively correlated with resting-state brain metabolism in left posterior and basal temporal regions (Brodmann's area 20-37-39). These results show the involvement of posterior temporal regions, within a larger antero-posterior-basal temporal network, in the specific process of word retrieval in temporal lobe epilepsy. A tentative explanation for these findings is that epilepsy induces functional deafferentation between anterior temporal structures devoted to semantic processing and neocortical posterior temporal structures devoted to lexical processing.
Slevc, L Robert; Shell, Alison R
2015-01-01
Auditory agnosia refers to impairments in sound perception and identification despite intact hearing, cognitive functioning, and language abilities (reading, writing, and speaking). Auditory agnosia can be general, affecting all types of sound perception, or can be (relatively) specific to a particular domain. Verbal auditory agnosia (also known as (pure) word deafness) refers to deficits specific to speech processing, environmental sound agnosia refers to difficulties confined to non-speech environmental sounds, and amusia refers to deficits confined to music. These deficits can be apperceptive, affecting basic perceptual processes, or associative, affecting the relation of a perceived auditory object to its meaning. This chapter discusses what is known about the behavioral symptoms and lesion correlates of these different types of auditory agnosia (focusing especially on verbal auditory agnosia), evidence for the role of a rapid temporal processing deficit in some aspects of auditory agnosia, and the few attempts to treat the perceptual deficits associated with auditory agnosia. A clear picture of auditory agnosia has been slow to emerge, hampered by the considerable heterogeneity in behavioral deficits, associated brain damage, and variable assessments across cases. Despite this lack of clarity, these striking deficits in complex sound processing continue to inform our understanding of auditory perception and cognition. © 2015 Elsevier B.V. All rights reserved.
The right hemisphere's contribution to discourse processing: A study in temporal lobe epilepsy.
Lomlomdjian, Carolina; Múnera, Claudia P; Low, Daniel M; Terpiluk, Verónica; Solís, Patricia; Abusamra, Valeria; Kochen, Silvia
2017-08-01
Discourse skills - in which the right hemisphere has an important role - enables verbal communication by selecting contextually relevant information and integrating it coherently to infer the correct meaning. However, language research in epilepsy has focused on single word analysis related mainly to left hemisphere processing. The purpose of this study was to investigate discourse abilities in patients with right lateralized medial temporal lobe epilepsy (RTLE) by comparing their performance to that of patients with left temporal lobe epilepsy (LTLE). 74 pharmacoresistant temporal lobe epilepsy (TLE) patients were evaluated: 34 with RTLE and 40 with LTLE. Subjects underwent a battery of tests that measure comprehension and production of conversational and narrative discourse. Disease related variables and general neuropsychological data were evaluated. The RTLE group presented deficits in interictal conversational and narrative discourse, with a disintegrated speech, lack of categorization and misinterpretation of social meaning. LTLE group, on the other hand, showed a tendency to lower performance in logical-temporal sequencing. RTLE patients showed discourse deficits which have been described in right hemisphere damaged patients due to other etiologies. Medial and anterior temporal lobe structures appear to link semantic, world knowledge, and social cognition associated areas to construct a contextually related coherent meaning. Copyright © 2017 Elsevier Inc. All rights reserved.
Linguistic and auditory temporal processing in children with specific language impairment.
Fortunato-Tavares, Talita; Rocha, Caroline Nunes; Andrade, Claudia Regina Furquim de; Befi-Lopes, Débora Maria; Schochat, Eliane; Hestvik, Arild; Schwartz, Richard G
2009-01-01
Several studies suggest the association of specific language impairment (SLI) to deficits in auditory processing. It has been evidenced that children with SLI present deficit in brief stimuli discrimination. Such deficit would lead to difficulties in developing phonological abilities necessary to map phonemes and to effectively and automatically code and decode words and sentences. However, the correlation between temporal processing (TP) and specific deficits in language disorders--such as syntactic comprehension abilities--has received little or no attention. To analyze the correlation between: TP (through the Frequency Pattern Test--FPT) and Syntactic Complexity Comprehension (through a Sentence Comprehension Task). Sixteen children with typical language development (8;9 +/- 1;1 years) and seven children with SLI (8;1 +/- 1;2 years) participated on the study. Accuracy of both groups decreased with the increase on syntactic complexity (both p < 0.01). On the between groups comparison, performance difference on the Test of Syntactic Complexity Comprehension (TSCC) was statistically significant (p = 0.02).As expected, children with SLI presented FPT performance outside reference values. On the SLI group, correlations between TSCC and FPT were positive and higher for high syntactic complexity (r = 0.97) than for low syntactic complexity (r = 0.51). Results suggest that FPT is positively correlated to syntactic complexity comprehension abilities.The low performance on FPT could serve as an additional indicator of deficits in complex linguistic processing. Future studies should consider, besides the increase of the sample, longitudinal studies that investigate the effect of frequency pattern auditory training on performance in high syntactic complexity comprehension tasks.
Short- and long-term rhythmic interventions: perspectives for language rehabilitation.
Schön, Daniele; Tillmann, Barbara
2015-03-01
This paper brings together different perspectives on the investigation and understanding of temporal processing and temporal expectations. We aim to bridge different temporal deficit hypotheses in dyslexia, dysphasia, or deafness in a larger framework, taking into account multiple nested temporal scales. We present data testing the hypothesis that temporal attention can be influenced by external rhythmic auditory stimulation (i.e., musical rhythm) and benefits subsequent language processing, including syntax processing and speech production. We also present data testing the hypothesis that phonological awareness can be influenced by several months of musical training and, more particularly, rhythmic training, which in turn improves reading skills. Together, our data support the hypothesis of a causal role of rhythm-based processing for language processing and acquisition. These results open new avenues for music-based remediation of language and hearing impairment. © 2015 New York Academy of Sciences.
Golden, Hannah L; Clark, Camilla N; Nicholas, Jennifer M; Cohen, Miriam H; Slattery, Catherine F; Paterson, Ross W; Foulkes, Alexander J M; Schott, Jonathan M; Mummery, Catherine J; Crutch, Sebastian J; Warren, Jason D
2017-01-01
Despite much recent interest in music and dementia, music perception has not been widely studied across dementia syndromes using an information processing approach. Here we addressed this issue in a cohort of 30 patients representing major dementia syndromes of typical Alzheimer's disease (AD, n = 16), logopenic aphasia (LPA, an Alzheimer variant syndrome; n = 5), and progressive nonfluent aphasia (PNFA; n = 9) in relation to 19 healthy age-matched individuals. We designed a novel neuropsychological battery to assess perception of musical patterns in the dimensions of pitch and temporal information (requiring detection of notes that deviated from the established pattern based on local or global sequence features) and musical scene analysis (requiring detection of a familiar tune within polyphonic harmony). Performance on these tests was referenced to generic auditory (timbral) deviance detection and recognition of familiar tunes and adjusted for general auditory working memory performance. Relative to healthy controls, patients with AD and LPA had group-level deficits of global pitch (melody contour) processing while patients with PNFA as a group had deficits of local (interval) as well as global pitch processing. There was substantial individual variation within syndromic groups. Taking working memory performance into account, no specific deficits of musical temporal processing, timbre processing, musical scene analysis, or tune recognition were identified. The findings suggest that particular aspects of music perception such as pitch pattern analysis may open a window on the processing of information streams in major dementia syndromes. The potential selectivity of musical deficits for particular dementia syndromes and particular dimensions of processing warrants further systematic investigation.
Jafari, Zahra; Esmaili, Mahdiye; Delbari, Ahmad; Mehrpour, Masoud; Mohajerani, Majid H
2016-06-01
There have been a few reports about the effects of chronic stroke on auditory temporal processing abilities and no reports regarding the effects of brain damage lateralization on these abilities. Our study was performed on 2 groups of chronic stroke patients to compare the effects of hemispheric lateralization of brain damage and of age on auditory temporal processing. Seventy persons with normal hearing, including 25 normal controls, 25 stroke patients with damage to the right brain, and 20 stroke patients with damage to the left brain, without aphasia and with an age range of 31-71 years were studied. A gap-in-noise (GIN) test and a duration pattern test (DPT) were conducted for each participant. Significant differences were found between the 3 groups for GIN threshold, overall GIN percent score, and DPT percent score in both ears (P ≤ .001). For all stroke patients, performance in both GIN and DPT was poorer in the ear contralateral to the damaged hemisphere, which was significant in DPT and in 2 measures of GIN (P ≤ .046). Advanced age had a negative relationship with temporal processing abilities for all 3 groups. In cases of confirmed left- or right-side stroke involving auditory cerebrum damage, poorer auditory temporal processing is associated with the ear contralateral to the damaged cerebral hemisphere. Replication of our results and the use of GIN and DPT tests for the early diagnosis of auditory processing deficits and for monitoring the effects of aural rehabilitation interventions are recommended. Copyright © 2016 National Stroke Association. Published by Elsevier Inc. All rights reserved.
Resolution of spatial and temporal visual attention in infants with fragile X syndrome.
Farzin, Faraz; Rivera, Susan M; Whitney, David
2011-11-01
Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder.
Resolution of spatial and temporal visual attention in infants with fragile X syndrome
Rivera, Susan M.; Whitney, David
2011-01-01
Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal–parietal networks of the brain. The goal of the current study was to examine whether reduced resolution of spatial and/or temporal visual attention may underlie perceptual deficits related to fragile X syndrome. Eye tracking was used to psychophysically measure the limits of spatial and temporal attention in infants with fragile X syndrome and age-matched neurotypically developing infants. Results from these experiments revealed that infants with fragile X syndrome experience drastically reduced resolution of temporal attention in a genetic dose-sensitive manner, but have a spatial resolution of attention that is not impaired. Coarse temporal attention could have significant knock-on effects for the development of perceptual, cognitive and motor abilities in individuals with the disorder. PMID:22075522
Neurally dissociable cognitive components of reading deficits in subacute stroke.
Boukrina, Olga; Barrett, A M; Alexander, Edward J; Yao, Bing; Graves, William W
2015-01-01
According to cognitive models of reading, words are processed by interacting orthographic (spelling), phonological (sound), and semantic (meaning) information. Despite extensive study of the neural basis of reading in healthy participants, little group data exist on patients with reading deficits from focal brain damage pointing to critical neural systems for reading. Here, we report on one such study. We have performed neuropsychological testing and magnetic resonance imaging on 11 patients with left-hemisphere stroke (<=5 weeks post-stroke). Patients completed tasks assessing cognitive components of reading such as semantics (matching picture or word choices to a target based on meaning), phonology (matching word choices to a target based on rhyming), and orthography (a two-alternative forced choice of the most plausible non-word). They also read aloud pseudowords and words with high or low levels of usage frequency, imageability, and spelling-sound consistency. As predicted by the cognitive model, when averaged across patients, the influence of semantics was most salient for low-frequency, low-consistency words, when phonological decoding is especially difficult. Qualitative subtraction analyses revealed lesion sites specific to phonological processing. These areas were consistent with those shown previously to activate for phonology in healthy participants, including supramarginal, posterior superior temporal, middle temporal, inferior frontal gyri, and underlying white matter. Notable divergence between this analysis and previous functional imaging is the association of lesions in the mid-fusiform gyrus and anterior temporal lobe with phonological reading deficits. This study represents progress toward identifying brain lesion-deficit relationships in the cognitive components of reading. Such correspondences are expected to help not only better understand the neural mechanisms of reading, but may also help tailor reading therapy to individual neurocognitive deficit profiles.
Ding, Junhua; Chen, Keliang; Zhang, Weibin; Li, Ming; Chen, Yan; Yang, Qing; Lv, Yingru; Guo, Qihao; Han, Zaizhu
2017-01-01
Semantic dementia (SD) is characterized by a selective decline in semantic processing. Although the neuropsychological pattern of this disease has been identified, its topological global alterations and symptom-relevant modules in the whole-brain anatomical network have not been fully elucidated. This study aims to explore the topological alteration of anatomical network in SD and reveal the modules associated with semantic deficits in this disease. We first constructed the whole-brain white-matter networks of 20 healthy controls and 19 patients with SD. Then, the network metrics of graph theory were compared between these two groups. Finally, we separated the network of SD patients into different modules and correlated the structural integrity of each module with the severity of the semantic deficits across patients. The network of the SD patients presented a significantly reduced global efficiency, indicating that the long-distance connections were damaged. The network was divided into the following four distinctive modules: the left temporal/occipital/parietal, frontal, right temporal/occipital, and frontal/parietal modules. The first two modules were associated with the semantic deficits of SD. These findings illustrate the skeleton of the neuroanatomical network of SD patients and highlight the key role of the left temporal/occipital/parietal module and the left frontal module in semantic processing.
Krause, Margaret B
2015-11-01
The aim of this review is to provide a background on the neurocognitive aspects of the reading process and review neuroscientific studies of individuals with developmental dyslexia, which provide evidence for amodal processing deficits. Hari, Renvall, and Tanskanen (2001) propose amodal sluggish attentional shifting (SAS) as a causal factor for temporal processing deficits in dyslexia. Undergirding this theory is the notion that when dyslexics are faced with rapid sequences of stimuli, their automatic attentional systems fail to disengage efficiently, which leads to difficulty when moving from one item to the next (Lallier et al., ). This results in atypical perception of rapid stimulus sequences. Until recently, the SAS theory, particularly the examination of amodal attentional deficits, was studied solely through the use of behavioural measures (Facoetti et al., ; Facoetti, Lorusso, Cattaneo, Galli, & Molteni, ). This paper examines evidence within the literature that provides a basis for further exploration of amodal SAS as an underlying deficit in developmental dyslexia. Copyright © 2015 John Wiley & Sons, Ltd.
Beneventi, Harald; Tønnessen, Finn Egil; Ersland, Lars
2009-01-01
Dyslexia is primarily associated with a phonological processing deficit. However, the clinical manifestation also includes a reduced verbal working memory (WM) span. It is unclear whether this WM impairment is caused by the phonological deficit or a distinct WM deficit. The main aim of this study was to investigate neuronal activation related to phonological storage and rehearsal of serial order in WM in a sample of 13-year-old dyslexic children compared with age-matched nondyslexic children. A sequential verbal WM task with two tasks was used. In the Letter Probe task, the probe consisted of a single letter and the judgment was for the presence or absence of that letter in the prior sequence of six letters. In the Sequence Probe (SP) task, the probe consisted of all six letters and the judgment was for a match of their serial order with the temporal order in the prior sequence. Group analyses as well as single-subject analysis were performed with the statistical parametric mapping software SPM2. In the Letter Probe task, the dyslexic readers showed reduced activation in the left precentral gyrus (BA6) compared to control group. In the Sequence Probe task, the dyslexic readers showed reduced activation in the prefrontal cortex and the superior parietal cortex (BA7) compared to the control subjects. Our findings suggest that a verbal WM impairment in dyslexia involves an extended neural network including the prefrontal cortex and the superior parietal cortex. Reduced activation in the left BA6 in both the Letter Probe and Sequence Probe tasks may be caused by a deficit in phonological processing. However, reduced bilateral activation in the BA7 in the Sequence Probe task only could indicate a distinct working memory deficit in dyslexia associated with temporal order processing.
Johannesen, Peter T.; Pérez-González, Patricia; Kalluri, Sridhar; Blanco, José L.
2016-01-01
The aim of this study was to assess the relative importance of cochlear mechanical dysfunction, temporal processing deficits, and age on the ability of hearing-impaired listeners to understand speech in noisy backgrounds. Sixty-eight listeners took part in the study. They were provided with linear, frequency-specific amplification to compensate for their audiometric losses, and intelligibility was assessed for speech-shaped noise (SSN) and a time-reversed two-talker masker (R2TM). Behavioral estimates of cochlear gain loss and residual compression were available from a previous study and were used as indicators of cochlear mechanical dysfunction. Temporal processing abilities were assessed using frequency modulation detection thresholds. Age, audiometric thresholds, and the difference between audiometric threshold and cochlear gain loss were also included in the analyses. Stepwise multiple linear regression models were used to assess the relative importance of the various factors for intelligibility. Results showed that (a) cochlear gain loss was unrelated to intelligibility, (b) residual cochlear compression was related to intelligibility in SSN but not in a R2TM, (c) temporal processing was strongly related to intelligibility in a R2TM and much less so in SSN, and (d) age per se impaired intelligibility. In summary, all factors affected intelligibility, but their relative importance varied across maskers. PMID:27604779
Relating binaural pitch perception to the individual listener's auditory profile.
Santurette, Sébastien; Dau, Torsten
2012-04-01
The ability of eight normal-hearing listeners and fourteen listeners with sensorineural hearing loss to detect and identify pitch contours was measured for binaural-pitch stimuli and salience-matched monaurally detectable pitches. In an effort to determine whether impaired binaural pitch perception was linked to a specific deficit, the auditory profiles of the individual listeners were characterized using measures of loudness perception, cognitive ability, binaural processing, temporal fine structure processing, and frequency selectivity, in addition to common audiometric measures. Two of the listeners were found not to perceive binaural pitch at all, despite a clear detection of monaural pitch. While both binaural and monaural pitches were detectable by all other listeners, identification scores were significantly lower for binaural than for monaural pitch. A total absence of binaural pitch sensation coexisted with a loss of a binaural signal-detection advantage in noise, without implying reduced cognitive function. Auditory filter bandwidths did not correlate with the difference in pitch identification scores between binaural and monaural pitches. However, subjects with impaired binaural pitch perception showed deficits in temporal fine structure processing. Whether the observed deficits stemmed from peripheral or central mechanisms could not be resolved here, but the present findings may be useful for hearing loss characterization.
Magnocellular-dorsal pathway and sub-lexical route in developmental dyslexia
Gori, Simone; Cecchini, Paolo; Bigoni, Anna; Molteni, Massimo; Facoetti, Andrea
2014-01-01
Although developmental dyslexia (DD) is frequently associate with a phonological deficit, the underlying neurobiological cause remains undetermined. Recently, a new model, called “temporal sampling framework” (TSF), provided an innovative prospect in the DD study. TSF suggests that deficits in syllabic perception at a specific temporal frequencies are the critical basis for the poor reading performance in DD. This approach was presented as a possible neurobiological substrate of the phonological deficit of DD but the TSF can also easily be applied to the visual modality deficits. The deficit in the magnocellular-dorsal (M-D) pathway - often found in individuals with DD - fits well with a temporal oscillatory deficit specifically related to this visual pathway. This study investigated the visual M-D and parvocellular-ventral (P-V) pathways in dyslexic and in chronological age and IQ-matched normally reading children by measuring temporal (frequency doubling illusion) and static stimuli sensitivity, respectively. A specific deficit in M-D temporal oscillation was found. Importantly, the M-D deficit was selectively shown in poor phonological decoders. M-D deficit appears to be frequent because 75% of poor pseudo-word readers were at least 1 SD below the mean of the controls. Finally, a replication study by using a new group of poor phonological decoders and reading level controls suggested a crucial role of M-D deficit in DD. These results showed that a M-D deficit might impair the sub-lexical mechanisms that are critical for reading development. The possible link between these findings and TSF is discussed. PMID:25009484
Schiller, P H; Chou, I
2000-01-01
This study examined the effects of anterior arcuate and dorsomedial frontal cortex lesions on the execution of saccadic eye movements made to paired and multiple targets in rhesus monkeys. Identical paired targets were presented with various temporal asynchronies to determine the temporal offset required to yield equal probability choices to either target. In the intact animal equal probability choices were typically obtained when the targets appeared simultaneously. After unilateral anterior arcuate lesions a major shift arose in the temporal offset required to obtain equal probability choices for paired targets that necessitated presenting the target in the hemifield contralateral to the lesion more than 100 ms prior to the target in the ipsilateral hemifield. This deficit was still pronounced 1 year after the lesion. Dorsomedial frontal cortex lesions produced much smaller but significant shifts in target selection that recovered more rapidly. Paired lesions produced deficits similar to those observed with anterior arcuate lesions alone. Major deficits were also observed on a multiple target temporal discrimination task after anterior arcuate but not after dorsomedial frontal cortex lesions. These results suggest that the frontal eye fields that reside in anterior bank of the arcuate sulcus play an important role in temporal processing and in target selection. Dorsomedial frontal cortex, that contains the medial eye fields, plays a much less important role in the execution of these tasks.
Cognitive neuropsychological analysis and neuroanatomic correlates in a case of acute anomia.
Raymer, A M; Foundas, A L; Maher, L M; Greenwald, M L; Morris, M; Rothi, L J; Heilman, K M
1997-06-01
We describe an analysis of lexical processing performed in a patient with the acute onset of an isolated anomia. Based on a model of lexical processing, we evaluated hypotheses as to the source of the naming deficit. We observed impairments in oral and written picture naming and oral naming to definition with relatively intact semantic processing across input modalities, suggesting that output from the semantic system was impaired. In contrast to previous reports, we propose that this pattern represents an impairment that arises late in semantic processing prior to accessing mode-specific verbal and graphemic output lexicons. These deficits were associated with a lesion in the posterior portion of the middle temporal gyrus or area 37, an area of supramodal association cortex that is uniquely suited as a substrate for the multimodal deficit in naming.
Perception of non-verbal auditory stimuli in Italian dyslexic children.
Cantiani, Chiara; Lorusso, Maria Luisa; Valnegri, Camilla; Molteni, Massimo
2010-01-01
Auditory temporal processing deficits have been proposed as the underlying cause of phonological difficulties in Developmental Dyslexia. The hypothesis was tested in a sample of 20 Italian dyslexic children aged 8-14, and 20 matched control children. Three tasks of auditory processing of non-verbal stimuli, involving discrimination and reproduction of sequences of rapidly presented short sounds were expressly created. Dyslexic subjects performed more poorly than control children, suggesting the presence of a deficit only partially influenced by the duration of the stimuli and of inter-stimulus intervals (ISIs).
Audiovisual speech integration in the superior temporal region is dysfunctional in dyslexia.
Ye, Zheng; Rüsseler, Jascha; Gerth, Ivonne; Münte, Thomas F
2017-07-25
Dyslexia is an impairment of reading and spelling that affects both children and adults even after many years of schooling. Dyslexic readers have deficits in the integration of auditory and visual inputs but the neural mechanisms of the deficits are still unclear. This fMRI study examined the neural processing of auditorily presented German numbers 0-9 and videos of lip movements of a German native speaker voicing numbers 0-9 in unimodal (auditory or visual) and bimodal (always congruent) conditions in dyslexic readers and their matched fluent readers. We confirmed results of previous studies that the superior temporal gyrus/sulcus plays a critical role in audiovisual speech integration: fluent readers showed greater superior temporal activations for combined audiovisual stimuli than auditory-/visual-only stimuli. Importantly, such an enhancement effect was absent in dyslexic readers. Moreover, the auditory network (bilateral superior temporal regions plus medial PFC) was dynamically modulated during audiovisual integration in fluent, but not in dyslexic readers. These results suggest that superior temporal dysfunction may underly poor audiovisual speech integration in readers with dyslexia. Copyright © 2017 IBRO. Published by Elsevier Ltd. All rights reserved.
Auditory Frequency Discrimination in Children with Dyslexia
ERIC Educational Resources Information Center
Halliday, Lorna F.; Bishop, Dorothy V. M.
2006-01-01
A popular hypothesis holds that developmental dyslexia is caused by phonological processing problems and is therefore linked to difficulties in the analysis of spoken as well as written language. It has been suggested that these phonological deficits might be attributable to low-level problems in processing the temporal fine structure of auditory…
Altered topology of neural circuits in congenital prosopagnosia.
Rosenthal, Gideon; Tanzer, Michal; Simony, Erez; Hasson, Uri; Behrmann, Marlene; Avidan, Galia
2017-08-21
Using a novel, fMRI-based inter-subject functional correlation (ISFC) approach, which isolates stimulus-locked inter-regional correlation patterns, we compared the cortical topology of the neural circuit for face processing in participants with an impairment in face recognition, congenital prosopagnosia (CP), and matched controls. Whereas the anterior temporal lobe served as the major network hub for face processing in controls, this was not the case for the CPs. Instead, this group evinced hyper-connectivity in posterior regions of the visual cortex, mostly associated with the lateral occipital and the inferior temporal cortices. Moreover, the extent of this hyper-connectivity was correlated with the face recognition deficit. These results offer new insights into the perturbed cortical topology in CP, which may serve as the underlying neural basis of the behavioral deficits typical of this disorder. The approach adopted here has the potential to uncover altered topologies in other neurodevelopmental disorders, as well.
Wiggs, Kelsey; Elmore, Alexis L; Nigg, Joel T; Nikolas, Molly A
2016-11-01
Etiological investigations of attention-deficit hyperactivity disorder (ADHD) and disruptive behavior problems support multiple causal pathways, including involvement of pre- and perinatal risk factors. Because these risks occur early in life, well before observable ADHD and externalizing symptoms emerge, the relation between risk and symptoms may be mediated by neurodevelopmental effects that manifest later in neuropsychological functioning. However, potential dissociable effects of pre/perinatal risk elements on ADHD and familial confounds must also be considered to test alternative hypotheses. 498 youth aged 6-17 years (55.0 % male) completed a multi-stage, multi-informant assessment including parent and teacher symptom reports of symptoms and parent ratings of pre/perinatal health risk indicators. Youth completed a neuropsychological testing battery. Multiple mediation models examined direct effects of pre- and perinatal health risk on ADHD and other disruptive behavior disorder symptoms and indirect effects via neuropsychological functioning. Parental ADHD symptoms and externalizing status was covaried to control for potential familial effects. Effects of prenatal substance exposure on inattention were mediated by memory span and temporal processing deficits. Further, effects of perinatal health risk on inattention, hyperactivity-impulsivity, and ODD were mediated by deficits in response variability and temporal processing. Further, maternal health risks during pregnancy appeared to exert direct rather than indirect effects on outcomes. Results suggest that after controlling for familial relatedness of ADHD between parent and child, early developmental health risks may influence ADHD via effects on neuropsychological processes underpinning the disorder.
Calderone, Daniel J.; Hoptman, Matthew J.; Martínez, Antígona; Nair-Collins, Sangeeta; Mauro, Cristina J.; Bar, Moshe; Javitt, Daniel C.; Butler, Pamela D.
2013-01-01
Patients with schizophrenia exhibit cognitive and sensory impairment, and object recognition deficits have been linked to sensory deficits. The “frame and fill” model of object recognition posits that low spatial frequency (LSF) information rapidly reaches the prefrontal cortex (PFC) and creates a general shape of an object that feeds back to the ventral temporal cortex to assist object recognition. Visual dysfunction findings in schizophrenia suggest a preferential loss of LSF information. This study used functional magnetic resonance imaging (fMRI) and resting state functional connectivity (RSFC) to investigate the contribution of visual deficits to impaired object “framing” circuitry in schizophrenia. Participants were shown object stimuli that were intact or contained only LSF or high spatial frequency (HSF) information. For controls, fMRI revealed preferential activation to LSF information in precuneus, superior temporal, and medial and dorsolateral PFC areas, whereas patients showed a preference for HSF information or no preference. RSFC revealed a lack of connectivity between early visual areas and PFC for patients. These results demonstrate impaired processing of LSF information during object recognition in schizophrenia, with patients instead displaying increased processing of HSF information. This is consistent with findings of a preference for local over global visual information in schizophrenia. PMID:22735157
Right anterior temporal lobe dysfunction underlies theory of mind impairments in semantic dementia.
Irish, Muireann; Hodges, John R; Piguet, Olivier
2014-04-01
Semantic dementia is a progressive neurodegenerative disorder characterized by the amodal and profound loss of semantic knowledge attributable to the degeneration of the left anterior temporal lobe. Although traditionally conceptualized as a language disorder, patients with semantic dementia display significant alterations in behaviour and socioemotional functioning. Recent evidence points to an impaired capacity for theory of mind in predominantly left-lateralized cases of semantic dementia; however, it remains unclear to what extent semantic impairments contribute to these deficits. Further the neuroanatomical signature of such disturbance remains unknown. Here, we sought to determine the neural correlates of theory of mind performance in patients with left predominant semantic dementia (n=11), in contrast with disease-matched cases with behavioural-variant frontotemporal dementia (n=10) and Alzheimer's disease (n=10), and healthy older individuals (n=14) as control participants. Participants completed a simple cartoons task, in which they were required to describe physical and theory of mind scenarios. Irrespective of subscale, patients with semantic dementia exhibited marked impairments relative to control subjects; however, only theory of mind deficits persisted when we covaried for semantic comprehension. Voxel-based morphometry analyses revealed that atrophy in right anterior temporal lobe structures, including the right temporal fusiform cortex, right inferior temporal gyrus, bilateral temporal poles and amygdalae, correlated significantly with theory of mind impairments in the semantic dementia group. Our results point to the marked disruption of cognitive functions beyond the language domain in semantic dementia, not exclusively attributable to semantic processing impairments. The significant involvement of right anterior temporal structures suggests that with disease evolution, the encroachment of pathology into the contralateral hemisphere heralds the onset of social cognitive deficits in this syndrome.
Revisiting place and temporal theories of pitch
2014-01-01
The nature of pitch and its neural coding have been studied for over a century. A popular debate has revolved around the question of whether pitch is coded via “place” cues in the cochlea, or via timing cues in the auditory nerve. In the most recent incarnation of this debate, the role of temporal fine structure has been emphasized in conveying important pitch and speech information, particularly because the lack of temporal fine structure coding in cochlear implants might explain some of the difficulties faced by cochlear implant users in perceiving music and pitch contours in speech. In addition, some studies have postulated that hearing-impaired listeners may have a specific deficit related to processing temporal fine structure. This article reviews some of the recent literature surrounding the debate, and argues that much of the recent evidence suggesting the importance of temporal fine structure processing can also be accounted for using spectral (place) or temporal-envelope cues. PMID:25364292
Dispaldro, Marco; Leonard, Laurence B.; Corradi, Nicola; Ruffino, Milena; Bronte, Tiziana; Facoetti, Andrea
2015-01-01
In order to become a proficient user of language, infants must detect temporal cues embedded within the noisy acoustic spectra of ongoing speech by efficient attentional engagement. According to the neuro-constructivist approach, a multi-sensory dysfunction of attentional engagement – hampering the temporal sampling of stimuli – might be responsible for language deficits typically shown in children with Specific Language Impairment (SLI). In the present study, the efficiency of visual attentional engagement was investigated in 22 children with SLI and 22 typically developing (TD) children by measuring attentional masking (AM). AM refers to impaired identification of the first of two sequentially presented masked objects (O1 and O2) in which the O1-O2 interval was manipulated. Lexical and grammatical comprehension abilities were also tested in both groups. Children with SLI showed a sluggish engagement of temporal attention, and individual differences in AM accounted for a significant percentage of unique variance in grammatical performance. Our results suggest that an attentional engagement deficit – probably linked to a dysfunction of the right fronto-parietal attentional network – might be a contributing factor in these children’s language impairments. PMID:23154040
Dispaldro, Marco; Leonard, Laurence B; Corradi, Nicola; Ruffino, Milena; Bronte, Tiziana; Facoetti, Andrea
2013-09-01
In order to become a proficient user of language, infants must detect temporal cues embedded within the noisy acoustic spectra of ongoing speech by efficient attentional engagement. According to the neuro-constructivist approach, a multi-sensory dysfunction of attentional engagement - hampering the temporal sampling of stimuli - might be responsible for language deficits typically shown in children with Specific Language Impairment (SLI). In the present study, the efficiency of visual attentional engagement was investigated in 22 children with SLI and 22 typically developing (TD) children by measuring attentional masking (AM). AM refers to impaired identification of the first of two sequentially presented masked objects (O1 and O2) in which the O1-O2 interval was manipulated. Lexical and grammatical comprehension abilities were also tested in both groups. Children with SLI showed a sluggish engagement of temporal attention, and individual differences in AM accounted for a significant percentage of unique variance in grammatical performance. Our results suggest that an attentional engagement deficit - probably linked to a dysfunction of the right fronto-parietal attentional network - might be a contributing factor in these children's language impairments. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Hill, P. R.; Hogben, J. H.; Bishop, D. M. V.
2005-01-01
It has been proposed that specific language impairment (SLI) is caused by an impairment of auditory processing, but it is unclear whether this problem affects temporal processing, frequency discrimination (FD), or both. Furthermore, there are few longitudinal studies in this area, making it hard to establish whether any deficit represents a…
ERIC Educational Resources Information Center
Moll, Kristina; Göbel, Silke M.; Gooch, Debbie; Landerl, Karin; Snowling, Margaret J.
2016-01-01
High comorbidity rates between reading disorder (RD) and mathematics disorder (MD) indicate that, although the cognitive core deficits underlying these disorders are distinct, additional domain-general risk factors might be shared between the disorders. Three domain-general cognitive abilities were investigated in children with RD and MD:…
Semantic Processing Impairment in Patients with Temporal Lobe Epilepsy
Jaimes-Bautista, Amanda G.; Rodríguez-Camacho, Mario; Martínez-Juárez, Iris E.; Rodríguez-Agudelo, Yaneth
2015-01-01
The impairment in episodic memory system is the best-known cognitive deficit in patients with temporal lobe epilepsy (TLE). Recent studies have shown evidence of semantic disorders, but they have been less studied than episodic memory. The semantic dysfunction in TLE has various cognitive manifestations, such as the presence of language disorders characterized by defects in naming, verbal fluency, or remote semantic information retrieval, which affects the ability of patients to interact with their surroundings. This paper is a review of recent research about the consequences of TLE on semantic processing, considering neuropsychological, electrophysiological, and neuroimaging findings, as well as the functional role of the hippocampus in semantic processing. The evidence from these studies shows disturbance of semantic memory in patients with TLE and supports the theory of declarative memory of the hippocampus. Functional neuroimaging studies show an inefficient compensatory functional reorganization of semantic networks and electrophysiological studies show a lack of N400 effect that could indicate that the deficit in semantic processing in patients with TLE could be due to a failure in the mechanisms of automatic access to lexicon. PMID:26257956
Displaced aggression predicts switching deficits in people with temporal lobe epilepsy.
Gul, Amara; Ahmad, Hira
2014-12-01
This study examined the relationship between task-switching abilities and displaced aggression in people with temporal lobe epilepsy (PWE). Participants (35 PWE and 35 healthy controls) performed emotion and gender classification switching tasks. People with temporal lobe epilepsy showed larger switch costs than controls. This result reflected task-switching deficits in PWE. People with temporal lobe epilepsy reported higher anger rumination, revenge planning, and behavioral displaced aggression compared with controls. Displaced aggression was a significant predictor of the task switch costs. It is suggested that displaced aggression is a significant marker of task-switching deficits. Copyright © 2014 Elsevier Inc. All rights reserved.
Irish, Muireann; Bunk, Steffie; Tu, Sicong; Kamminga, Jody; Hodges, John R; Hornberger, Michael; Piguet, Olivier
2016-01-29
Episodic memory impairment represents one of the hallmark clinical features of patients with Alzheimer's disease (AD) attributable to the degeneration of medial temporal and parietal regions of the brain. In contrast, a somewhat paradoxical profile of relatively intact episodic memory, particularly for non-verbal material, is observed in semantic dementia (SD), despite marked atrophy of the hippocampus. This retrospective study investigated the neural substrates of episodic memory retrieval in 20 patients with a diagnosis of SD and 21 disease-matched cases of AD and compared their performance to that of 35 age- and education-matched healthy older Controls. Participants completed the Rey Complex Figure and the memory subscale of the Addenbrooke's Cognitive Examination-Revised as indices of visual and verbal episodic recall, respectively. Relative to Controls, AD patients showed compromised memory performance on both visual and verbal memory tasks. In contrast, memory deficits in SD were modality-specific occurring exclusively on the verbal task. Controlling for semantic processing ameliorated these deficits in SD, while memory impairments persisted in AD. Voxel-based morphometry analyses revealed significant overlap in the neural correlates of verbal episodic memory in AD and SD with predominantly anteromedial regions, including the bilateral hippocampus, strongly implicated. Controlling for semantic processing negated this effect in SD, however, a distributed network of frontal, medial temporal, and parietal regions was implicated in AD. Our study corroborates the view that episodic memory deficits in SD arise very largely as a consequence of the conceptual loading of traditional tasks. We propose that the functional integrity of frontal and parietal regions enables new learning to occur in SD in the face of significant hippocampal and anteromedial temporal lobe pathology, underscoring the inherent complexity of the episodic memory circuitry. Copyright © 2015 Elsevier Ltd. All rights reserved.
Egashira, Kazuteru; Matsuo, Koji; Nakashima, Mami; Watanuki, Toshio; Harada, Kenichiro; Nakano, Masayuki; Matsubara, Toshio; Takahashi, Kanji; Watanabe, Yoshifumi
2015-03-01
Patients with schizophrenia (SZ) have deficits of facial emotion processing and cognitive inhibition, but the brain pathophysiology underlying these deficits and their interaction are not clearly understood. We tested brain activity during an emotional face go/no-go task that requires rapid executive control affected by emotional stimuli in patients with SZ using functional near-infrared spectroscopy (fNIRS). Twenty-five patients with SZ and 28 healthy control subjects were studied. We evaluated behavioral performance and used fNIRS to measure oxygenated hemoglobin concentration changes in fronto-temporal areas during the emotional go/no-go task with emotional and non-emotional blocks. Patients with SZ made more errors and had longer reaction times in both test blocks compared with healthy subjects. Significantly greater activation in the inferior, superior, middle, and orbital frontal regions were observed in healthy subjects during the emotional go/no-go block compared to the non-emotional go/no-go block, but this difference was not observed in patients with SZ. Relative to healthy subjects, patients with SZ showed less activation in the superior and orbital frontal and middle temporal regions during the emotional go/no-go block. Our results suggest that fronto-temporal dysfunction in patients with SZ is due to an interaction between abnormal processing of emotional facial expressions with negative valence and cognitive inhibition, especially during the rapid selection of rule-based associations that override automatic emotional response tendencies. They indicate that fronto-temporal dysfunction is involved in the pathophysiology of emotional-cognitive deficits in patients with SZ. Copyright © 2015 Elsevier B.V. All rights reserved.
A neuroanatomical model of space-based and object-centered processing in spatial neglect.
Pedrazzini, Elena; Schnider, Armin; Ptak, Radek
2017-11-01
Visual attention can be deployed in space-based or object-centered reference frames. Right-hemisphere damage may lead to distinct deficits of space- or object-based processing, and such dissociations are thought to underlie the heterogeneous nature of spatial neglect. Previous studies have suggested that object-centered processing deficits (such as in copying, reading or line bisection) result from damage to retro-rolandic regions while impaired spatial exploration reflects damage to more anterior regions. However, this evidence is based on small samples and heterogeneous tasks. Here, we tested a theoretical model of neglect that takes in account the space- and object-based processing and relates them to neuroanatomical predictors. One hundred and one right-hemisphere-damaged patients were examined with classic neuropsychological tests and structural brain imaging. Relations between neglect measures and damage to the temporal-parietal junction, intraparietal cortex, insula and middle frontal gyrus were examined with two structural equation models by assuming that object-centered processing (involved in line bisection and single-word reading) and space-based processing (involved in cancelation tasks) either represented a unique latent variable or two distinct variables. Of these two models the latter had better explanatory power. Damage to the intraparietal sulcus was a significant predictor of object-centered, but not space-based processing, while damage to the temporal-parietal junction predicted space-based, but not object-centered processing. Space-based processing and object-centered processing were strongly intercorrelated, indicating that they rely on similar, albeit partly dissociated processes. These findings indicate that object-centered and space-based deficits in neglect are partly independent and result from superior parietal and inferior parietal damage, respectively.
Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin
2012-01-01
Objective Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to “normalize” by age 17 years. Here we present a replication with nonoverlapping groups of healthy full siblings and healthy controls. Method Using an automated measure and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in nonpsychotic full siblings (n = 43, 68 scans; ages 5 through 26 years) of patients with COS, contrasting them with age-, gender-, and scan interval–matched healthy controls (n = 86, 136 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. Results As in our previous study, young nonpsychotic siblings (<17 years) showed significant GM deficits in bilateral prefrontal and left temporal cortices and, in addition, smaller deficits in the parietal and right inferior temporal cortices. These deficits in nonpsychotic siblings normalized with age with minimal abnormalities remaining by age 17. Conclusions Our results support previous findings showing nonpsychotic siblings of COS probands to have early GM deficits that ameliorate with time. At early ages, prefrontal and/or temporal loss may serve as a familial/trait marker for COS. Late adolescence appears to be a critical period for greatest localization of deficits in probands or normalization in nonpsychotic siblings. PMID:21703497
Semantic word category processing in semantic dementia and posterior cortical atrophy.
Shebani, Zubaida; Patterson, Karalyn; Nestor, Peter J; Diaz-de-Grenu, Lara Z; Dawson, Kate; Pulvermüller, Friedemann
2017-08-01
There is general agreement that perisylvian language cortex plays a major role in lexical and semantic processing; but the contribution of additional, more widespread, brain areas in the processing of different semantic word categories remains controversial. We investigated word processing in two groups of patients whose neurodegenerative diseases preferentially affect specific parts of the brain, to determine whether their performance would vary as a function of semantic categories proposed to recruit those brain regions. Cohorts with (i) Semantic Dementia (SD), who have anterior temporal-lobe atrophy, and (ii) Posterior Cortical Atrophy (PCA), who have predominantly parieto-occipital atrophy, performed a lexical decision test on words from five different lexico-semantic categories: colour (e.g., yellow), form (oval), number (seven), spatial prepositions (under) and function words (also). Sets of pseudo-word foils matched the target words in length and bi-/tri-gram frequency. Word-frequency was matched between the two visual word categories (colour and form) and across the three other categories (number, prepositions, and function words). Age-matched healthy individuals served as controls. Although broad word processing deficits were apparent in both patient groups, the deficit was strongest for colour words in SD and for spatial prepositions in PCA. The patterns of performance on the lexical decision task demonstrate (a) general lexicosemantic processing deficits in both groups, though more prominent in SD than in PCA, and (b) differential involvement of anterior-temporal and posterior-parietal cortex in the processing of specific semantic categories of words. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Could Specific Braille Reading Difficulties Result from Developmental Dyslexia?
ERIC Educational Resources Information Center
Veispak, Anneli; Ghesquiere, Pol
2010-01-01
A proportion of children with visual impairments have specific reading difficulties that cannot be easily explained. This article reviews the data on problems with braille reading and interprets them from the framework of the temporal-processing deficit theory of developmental dyslexia.
Integrative cortical dysfunction and pervasive motion perception deficit in fragile X syndrome.
Kogan, C S; Bertone, A; Cornish, K; Boutet, I; Der Kaloustian, V M; Andermann, E; Faubert, J; Chaudhuri, A
2004-11-09
Fragile X syndrome (FXS) is associated with neurologic deficits recently attributed to the magnocellular pathway of the lateral geniculate nucleus. To test the hypotheses that FXS individuals 1) have a pervasive visual motion perception impairment affecting neocortical circuits in the parietal lobe and 2) have deficits in integrative neocortical mechanisms necessary for perception of complex stimuli. Psychophysical tests of visual motion and form perception defined by either first-order (luminance) or second-order (texture) attributes were used to probe early and later occipito-temporal and occipito-parietal functioning. When compared to developmental- and age-matched controls, FXS individuals displayed severe impairments in first- and second-order motion perception. This deficit was accompanied by near normal perception for first-order form stimuli but not second-order form stimuli. Impaired visual motion processing for first- and second-order stimuli suggests that both early- and later-level neurologic function of the parietal lobe are affected in Fragile X syndrome (FXS). Furthermore, this deficit likely stems from abnormal input from the magnocellular compartment of the lateral geniculate nucleus. Impaired visual form and motion processing for complex visual stimuli with normal processing for simple (i.e., first-order) form stimuli suggests that FXS individuals have normal early form processing accompanied by a generalized impairment in neurologic mechanisms necessary for integrating all early visual input.
Mowszowski, Loren; Hermens, Daniel F; Diamond, Keri; Norrie, Louisa; Hickie, Ian B; Lewis, Simon J G; Naismith, Sharon L
2012-01-01
Mild cognitive impairment (MCI) refers to a transitory state between healthy aging and dementia. Biomarkers are needed to facilitate early identification of MCI and predict progression to dementia. One potential neurophysiological biomarker, mismatch negativity (MMN), is an event-related potential reflecting fundamental, pre-attentive cognitive processes. MMN is reduced in normal aging and dementia and in neuropsychiatric samples and is associated with verbal memory deficits and poor executive functioning. This study aimed to investigate auditory MMN and its relationship to neuropsychological performance in MCI. Twenty-eight MCI participants and fourteen controls, aged ≥50 years, underwent neurophysiological and neuropsychological assessment, and completed questionnaires pertaining to disability. Relative to controls, the MCI group demonstrated reduced temporal MMN amplitude (p < 0.01). Reduced right temporal MMN was significantly associated with poorer verbal learning (r = 0.496; p < 0.01) and reduced left temporal MMN was significantly associated with increased self-reported disability (r = -0.419; p < 0.05). These results indicate that patients with MCI exhibit altered pre-attentive information processing, which in turn is associated with memory and psychosocial deficits. These findings overall suggest that MMN may be a viable neurophysiological biomarker of underlying disease in this 'at risk' group.
2015-01-01
Several competing aetiologies of developmental dyslexia suggest that the problems with acquiring literacy skills are causally entailed by low-level auditory and/or speech perception processes. The purpose of this study is to evaluate the diverging claims about the specific deficient peceptual processes under conditions of strong inference. Theoretically relevant acoustic features were extracted from a set of artificial speech stimuli that lie on a /bAk/-/dAk/ continuum. The features were tested on their ability to enable a simple classifier (Quadratic Discriminant Analysis) to reproduce the observed classification performance of average and dyslexic readers in a speech perception experiment. The ‘classical’ features examined were based on component process accounts of developmental dyslexia such as the supposed deficit in Envelope Rise Time detection and the deficit in the detection of rapid changes in the distribution of energy in the frequency spectrum (formant transitions). Studies examining these temporal processing deficit hypotheses do not employ measures that quantify the temporal dynamics of stimuli. It is shown that measures based on quantification of the dynamics of complex, interaction-dominant systems (Recurrence Quantification Analysis and the multifractal spectrum) enable QDA to classify the stimuli almost identically as observed in dyslexic and average reading participants. It seems unlikely that participants used any of the features that are traditionally associated with accounts of (impaired) speech perception. The nature of the variables quantifying the temporal dynamics of the speech stimuli imply that the classification of speech stimuli cannot be regarded as a linear aggregate of component processes that each parse the acoustic signal independent of one another, as is assumed by the ‘classical’ aetiologies of developmental dyslexia. It is suggested that the results imply that the differences in speech perception performance between average and dyslexic readers represent a scaled continuum rather than being caused by a specific deficient component. PMID:25834769
Spatio-temporal processing of tactile stimuli in autistic children
Wada, Makoto; Suzuki, Mayuko; Takaki, Akiko; Miyao, Masutomo; Spence, Charles; Kansaku, Kenji
2014-01-01
Altered multisensory integration has been reported in autism; however, little is known concerning how the autistic brain processes spatio-temporal information concerning tactile stimuli. We report a study in which a crossed-hands illusion was investigated in autistic children. Neurotypical individuals often experience a subjective reversal of temporal order judgments when their hands are stimulated while crossed, and the illusion is known to be acquired in early childhood. However, under those conditions where the somatotopic representation is given priority over the actual spatial location of the hands, such reversals may not occur. Here, we showed that a significantly smaller illusory reversal was demonstrated in autistic children than in neurotypical children. Furthermore, in an additional experiment, the young boys who had higher Autism Spectrum Quotient (AQ) scores generally showed a smaller crossed hands deficit. These results suggest that rudimentary spatio-temporal processing of tactile stimuli exists in autistic children, and the altered processing may interfere with the development of an external frame of reference in real-life situations. PMID:25100146
Distinct frontal regions for processing sentence syntax and story grammar.
Sirigu, A; Cohen, L; Zalla, T; Pradat-Diehl, P; Van Eeckhout, P; Grafman, J; Agid, Y
1998-12-01
Time is a fundamental dimension of cognition. It is expressed in the sequential ordering of individual elements in a wide variety of activities such as language, motor control or in the broader domain of long range goal-directed actions. Several studies have shown the importance of the frontal lobes in sequencing information. The question addressed in this study is whether this brain region hosts a single supramodal sequence processor, or whether separate mechanisms are required for different kinds of temporally organised knowledge structures such as syntax and action knowledge. Here we show that so-called agrammatic patients, with lesions in Broca's area, ordered word groups correctly to form a logical sequence of actions but they were severely impaired when similar word groups had to be ordered as a syntactically well-formed sentence. The opposite performance was observed in patients with dorsolateral prefrontal lesions, that is, while their syntactic processing was intact at the sentence level, they demonstrated a pronounced deficit in producing temporally coherent sequences of actions. Anatomical reconstruction of lesions from brain scans revealed that the sentence and action grammar deficits involved distinct, non-overlapping sites within the frontal lobes. Finally, in a third group of patients whose lesions encompassed both Broca's area and the prefrontal cortex, the two types of deficits were found. We conclude that sequence processing is specific to knowledge domains and involves different networks within the frontal lobes.
Auditory post-processing in a passive listening task is deficient in Alzheimer's disease.
Bender, Stephan; Bluschke, Annet; Dippel, Gabriel; Rupp, André; Weisbrod, Matthias; Thomas, Christine
2014-01-01
To investigate whether automatic auditory post-processing is deficient in patients with Alzheimer's disease and is related to sensory gating. Event-related potentials were recorded during a passive listening task to examine the automatic transient storage of auditory information (short click pairs). Patients with Alzheimer's disease were compared to a healthy age-matched control group. A young healthy control group was included to assess effects of physiological aging. A bilateral frontal negativity in combination with deep temporal positivity occurring 500 ms after stimulus offset was reduced in patients with Alzheimer's disease, but was unaffected by physiological aging. Its amplitude correlated with short-term memory capacity, but was independent of sensory gating in healthy elderly controls. Source analysis revealed a dipole pair in the anterior temporal lobes. Results suggest that auditory post-processing is deficient in Alzheimer's disease, but is not typically related to sensory gating. The deficit could neither be explained by physiological aging nor by problems in earlier stages of auditory perception. Correlations with short-term memory capacity and executive control tasks suggested an association with memory encoding and/or overall cognitive control deficits. An auditory late negative wave could represent a marker of auditory working memory encoding deficits in Alzheimer's disease. Copyright © 2013 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
Effects of aging and divided attention on memory for items and their contexts.
Craik, Fergus I M; Luo, Lin; Sakuta, Yuiko
2010-12-01
It is commonly found that memory for context declines disproportionately with aging, arguably due to a general age-related deficit in associative memory processes. One possible mechanism for such deficits is an age-related reduction in available processing resources. In two experiments we compared the effects of aging to the effects of division of attention in younger adults on memory for items and context. Using a technique proposed by Craik (1989), linear functions relating memory performance for items and their contexts were derived for a Young Full Attention group, a Young Divided Attention group, and an Older Adult group. Results suggested that the Old group showed an additional deficit in associative memory that was not mimicked by divided attention. It is speculated that both divided attention and aging are associated with a loss of available processing resources that may reflect inefficient frontal lobe functioning, whereas the additional age-related decrement in associative memory may reflect inefficient processing in medial-temporal regions. (c) 2010 APA, all rights reserved).
Adaptability to Changes in Temporal Structure Is Fornix-Dependent
ERIC Educational Resources Information Center
Kwok, Sze Chai; Mitchell, Anna S.; Buckley, Mark J.
2015-01-01
Recognition memory deficits, even after short delays, are sometimes observed following hippocampal damage. One hypothesis links the hippocampus with processes in updating contextual memory representation. Here, we used fornix transection, which partially disconnects the hippocampal system, and compares the performance of fornix-transected monkeys…
Eye Tracking Dysfunction in Schizophrenia: Characterization and Pathophysiology
Sereno, Anne B.; Gooding, Diane C.; O’Driscoll, Gilllian A.
2011-01-01
Eye tracking dysfunction (ETD) is one of the most widely replicated behavioral deficits in schizophrenia and is over-represented in clinically unaffected first-degree relatives of schizophrenia patients. Here, we provide an overview of research relevant to the characterization and pathophysiology of this impairment. Deficits are most robust in the maintenance phase of pursuit, particularly during the tracking of predictable target movement. Impairments are also found in pursuit initiation and correlate with performance on tests of motion processing, implicating early sensory processing of motion signals. Taken together, the evidence suggests that ETD involves higher-order structures, including the frontal eye fields, which adjust the gain of the pursuit response to visual and anticipated target movement, as well as early parts of the pursuit pathway, including motion areas (the middle temporal area and the adjacent medial superior temporal area). Broader application of localizing behavioral paradigms in patient and family studies would be advantageous for refining the eye tracking phenotype for genetic studies. PMID:21312405
Radonovich, Krestin J; Mostofsky, Stewart H
2004-09-01
Clinicians, parents, and teachers alike have noted that individuals with ADHD often have difficulties with "time management," which has led some to suggest a primary deficit in time perception in ADHD. Previous studies have implicated the basal ganglia, cerebellum, and frontal lobes in time estimation and production, with each region purported to make different contributions to the processing and utilization of temporal information. Given the observed involvement of the frontal-subcortical networks in ADHD, we examined judgment of durations in children with ADHD (N = 27) and age- and gender-matched control subjects (N = 15). Two judgment tasks were administered: short duration (550 ms) and long duration (4 s). The two groups did not differ significantly in their judgments of short interval durations; however, subjects with ADHD performed more poorly when making judgments involving long intervals. The groups also did not differ on a judgment-of-pitch task, ruling out a generalized deficit in auditory discrimination. Selective impairment in making judgments involving long intervals is consistent with performance by patients with frontal lobe lesions and suggests that there is a deficiency in the utilization of temporal information in ADHD (possibly secondary to deficits in working memory and/or strategy utilization), rather than a problem involving a central timing mechanism.
Rhythms can overcome temporal orienting deficit after right frontal damage.
Triviño, Mónica; Arnedo, Marisa; Lupiáñez, Juan; Chirivella, Javier; Correa, Angel
2011-12-01
The main aim of this study was to test whether the use of rhythmic information to induce temporal expectations can overcome the deficit in controlled temporal preparation shown by patients with frontal damage (i.e. temporal orienting and foreperiod effects). Two tasks were administered to a group of 15 patients with a frontal brain lesion and a group of 15 matched control subjects: a Symbolic Cued Task where the predictive information regarding the time of target appearance was provided by a symbolic cue (short line-early vs. long line-late interval) and a Rhythm Cued Task where the predictive temporal information was provided by a rhythm (fast rhythm-early vs. slow rhythm-late interval). The results of the Symbolic Cued Task replicated both the temporal orienting deficit in right frontal patients and the absence of foreperiod effects in both right and left frontal patients, reported in our previous study (Triviño, Correa, Arnedo, & Lupiañez, 2010). However, in the Rhythm Cued Task, the right frontal group showed normal temporal orienting and foreperiod effects, while the left frontal group showed a significant deficit of both effects. These findings show that automatic temporal preparation, as induced by a rhythm, can help frontal patients to make effective use of implicit temporal information to respond at the optimum time. Our neuropsychological findings also provide a novel suggestion for a neural model, in which automatic temporal preparation is left-lateralized and controlled temporal preparation is right-lateralized in the frontal lobes. Copyright © 2011 Elsevier Ltd. All rights reserved.
Shao, Jing; Huang, Xunan
2017-01-01
Congenital amusia is a lifelong disorder of fine-grained pitch processing in music and speech. However, it remains unclear whether amusia is a pitch-specific deficit, or whether it affects frequency/spectral processing more broadly, such as the perception of formant frequency in vowels, apart from pitch. In this study, in order to illuminate the scope of the deficits, we compared the performance of 15 Cantonese-speaking amusics and 15 matched controls on the categorical perception of sound continua in four stimulus contexts: lexical tone, pure tone, vowel, and voice onset time (VOT). Whereas lexical tone, pure tone and vowel continua rely on frequency/spectral processing, the VOT continuum depends on duration/temporal processing. We found that the amusic participants performed similarly to controls in all stimulus contexts in the identification, in terms of the across-category boundary location and boundary width. However, the amusic participants performed systematically worse than controls in discriminating stimuli in those three contexts that depended on frequency/spectral processing (lexical tone, pure tone and vowel), whereas they performed normally when discriminating duration differences (VOT). These findings suggest that the deficit of amusia is probably not pitch specific, but affects frequency/spectral processing more broadly. Furthermore, there appeared to be differences in the impairment of frequency/spectral discrimination in speech and nonspeech contexts. The amusic participants exhibited less benefit in between-category discriminations than controls in speech contexts (lexical tone and vowel), suggesting reduced categorical perception; on the other hand, they performed inferiorly compared to controls across the board regardless of between- and within-category discriminations in nonspeech contexts (pure tone), suggesting impaired general auditory processing. These differences imply that the frequency/spectral-processing deficit might be manifested differentially in speech and nonspeech contexts in amusics—it is manifested as a deficit of higher-level phonological processing in speech sounds, and as a deficit of lower-level auditory processing in nonspeech sounds. PMID:28829808
Strategic retrieval, confabulations, and delusions: theory and data.
Gilboa, Asaf
2010-01-01
Based on Moscovitch and Winocur's "working with memory" framework, confabulation is described as a deficit in strategic retrieval processes. The present paper suggests that only a confluence of deficits on multiple memory-related processes leads to confabulation. These are divided into three categories. Core processes that are unique to confabulation and required for its evolution include: (1) an intuitive, rapid, preconscious "feeling of rightness" monitoring, (2) an elaborate conscious "editor" monitoring, and (3) control processes that mediate the decision whether to act upon a retrieved memory. The second category is deficits on constitutional processes which are required for confabulation to occur but are not unique to it. These include the formation of erroneous memory representation, (temporal) context confusion, and deficits in retrieval cue generation. Finally, associated Features of confabulations determine the content "flavour" and frequency of confabulation but are not required for their evolution. Some associated features are magnification of normal reconstructive memory processes such as reliance on generic/schematic representations, and positivity biases in memory, whereas others are abnormal such as perseveration or source memory deficits. Data on deficits in core processes in confabulation are presented. Next, the apparent correspondences between confabulation and delusion are discussed. Considering confabulation within a strategic memory framework may help elucidate both the commonalities and differences between the two symptoms. Delusions are affected by a convergence of abnormal perception and encoding of information, associated with aberrant cognitive schema structure and disordered belief monitoring. Whereas confabulation is primarily a disorder of retrieval, mnemonic aspects of delusions can be described as primarily a disorder of input and integration of information. It is suggested that delusions might share some of the associated features of confabulation but not its core and constitutional processes. Preliminary data in support of this view are presented.
Enlarged right superior temporal gyrus in children and adolescents with autism.
Jou, Roger J; Minshew, Nancy J; Keshavan, Matcheri S; Vitale, Matthew P; Hardan, Antonio Y
2010-11-11
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age=13.5±3.4years; full-scale IQ=103.6±13.4) and 19 healthy controls (mean age=13.7±3.0years; full-scale IQ=103.9±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes was significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. Copyright © 2010 Elsevier B.V. All rights reserved.
Enlarged Right Superior Temporal Gyrus in Children and Adolescents with Autism
Jou, Roger J.; Minshew, Nancy J.; Keshavan, Matcheri S.; Vitale, Matthew P.; Hardan, Antonio Y.
2010-01-01
The superior temporal gyrus has been implicated in language processing and social perception. Therefore, anatomical abnormalities of this structure may underlie some of the deficits observed in autism, a severe neurodevelopmental disorder characterized by impairments in social interaction and communication. In this study, volumes of the left and right superior temporal gyri were measured using magnetic resonance imaging obtained from 18 boys with high-functioning autism (mean age = 13.5 ±3.4 years; full-scale IQ = 103.6 ±13.4) and 19 healthy controls (mean age = 13.7 ±3.0 years; full-scale IQ = 103.9 ±10.5), group-matched on age, gender, and handedness. When compared to the control group, right superior temporal gyral volumes were significantly increased in the autism group after controlling for age and total brain volume. There was no significant difference in the volume of the left superior temporal gyrus. Post-hoc analysis revealed a significant increase of the right posterior superior temporal gyral volume in the autism group, before and after controlling for age and total brain volume. Examination of the symmetry index for the superior temporal gyral volumes did not yield statistically significant between-group differences. Findings from this preliminary investigation suggest the existence of volumetric alterations in the right superior temporal gyrus in children and adolescents with autism, providing support for a neuroanatomical basis of the social perceptual deficits characterizing this severe neurodevelopmental disorder. PMID:20833154
Neural correlates of semantic associations in patients with schizophrenia.
Sass, Katharina; Heim, Stefan; Sachs, Olga; Straube, Benjamin; Schneider, Frank; Habel, Ute; Kircher, Tilo
2014-03-01
Patients with schizophrenia have semantic processing disturbances leading to expressive language deficits (formal thought disorder). The underlying pathology has been related to alterations in the semantic network and its neural correlates. Moreover, crossmodal processing, an important aspect of communication, is impaired in schizophrenia. Here we investigated specific processing abnormalities in patients with schizophrenia with regard to modality and semantic distance in a semantic priming paradigm. Fourteen patients with schizophrenia and fourteen demographically matched controls made visual lexical decisions on successively presented word-pairs (SOA = 350 ms) with direct or indirect relations, unrelated word-pairs, and pseudoword-target stimuli during fMRI measurement. Stimuli were presented in a unimodal (visual) or crossmodal (auditory-visual) fashion. On the neural level, the effect of semantic relation indicated differences (patients > controls) within the right angular gyrus and precuneus. The effect of modality revealed differences (controls > patients) within the left superior frontal, middle temporal, inferior occipital, right angular gyri, and anterior cingulate cortex. Semantic distance (direct vs. indirect) induced distinct activations within the left middle temporal, fusiform gyrus, right precuneus, and thalamus with patients showing fewer differences between direct and indirect word-pairs. The results highlight aberrant priming-related brain responses in patients with schizophrenia. Enhanced activation for patients possibly reflects deficits in semantic processes that might be caused by a delayed and enhanced spread of activation within the semantic network. Modality-specific decreases of activation in patients might be related to impaired perceptual integration. Those deficits could induce and increase the prominent symptoms of schizophrenia like impaired speech processing.
Neurobehavioral Mechanisms of Temporal Processing Deficits In Parkinson’s Disease
2011-01-01
Foam padding was used to limit head motion. Auditory stimuli were delivered binaurally through a headphone that together with earplugs attenuated...core timer.’ Specifically, by the striatal beat frequency (SBF) model, Figure 5. Percent signal change in regions showing abnormal activation OFF
Neuropsychological deficits in temporal lobe epilepsy: A comprehensive review
Zhao, Fengqing; Kang, Hai; You, LIbo; Rastogi, Priyanka; Venkatesh, D.; Chandra, Mina
2014-01-01
Temporal lobe epilepsy (TLE) is the most prevalent form of complex partial seizures with temporal lobe origin of electrical abnormality. Studies have shown that recurrent seizures affect all aspects of cognitive functioning, including memory, language, praxis, executive functions, and social judgment, among several others. In this article, we will review these cognitive impairments along with their neuropathological correlates in a comprehensive manner. We will see that neuropsychological deficits are prevalent in TLE. Much of the effort has been laid on memory due to the notion that temporal lobe brain structures involved in TLE play a central role in consolidating information into memory. It seems that damage to the mesial structure of the temporal lobe, particularly the amygdale and hippocampus, has the main role in these memory difficulties and the neurobiological plausibility of the role of the temporal lobe in different aspects of memory. Here, we will cover the sub-domains of working memory and episodic memory deficits. This is we will further proceed to evaluate the evidences of executive function deficits in TLE and will see that set-shifting among other EFs is specifically affected in TLE as is social cognition. Finally, critical components of language related deficits are also found in the form of word-finding difficulties. To conclude, TLE affects several of cognitive function domains, but the etiopathogenesis of all these dysfunctions remain elusive. Further well-designed studies are needed for a better understanding of these disorders. PMID:25506156
How distributed processing produces false negatives in voxel-based lesion-deficit analyses.
Gajardo-Vidal, Andrea; Lorca-Puls, Diego L; Crinion, Jennifer T; White, Jitrachote; Seghier, Mohamed L; Leff, Alex P; Hope, Thomas M H; Ludersdorfer, Philipp; Green, David W; Bowman, Howard; Price, Cathy J
2018-07-01
In this study, we hypothesized that if the same deficit can be caused by damage to one or another part of a distributed neural system, then voxel-based analyses might miss critical lesion sites because preservation of each site will not be consistently associated with preserved function. The first part of our investigation used voxel-based multiple regression analyses of data from 359 right-handed stroke survivors to identify brain regions where lesion load is associated with picture naming abilities after factoring out variance related to object recognition, semantics and speech articulation so as to focus on deficits arising at the word retrieval level. A highly significant lesion-deficit relationship was identified in left temporal and frontal/premotor regions. Post-hoc analyses showed that damage to either of these sites caused the deficit of interest in less than half the affected patients (76/162 = 47%). After excluding all patients with damage to one or both of the identified regions, our second analysis revealed a new region, in the anterior part of the left putamen, which had not been previously detected because many patients had the deficit of interest after temporal or frontal damage that preserved the left putamen. The results illustrate how (i) false negative results arise when the same deficit can be caused by different lesion sites; (ii) some of the missed effects can be unveiled by adopting an iterative approach that systematically excludes patients with lesions to the areas identified in previous analyses, (iii) statistically significant voxel-based lesion-deficit mappings can be driven by a subset of patients; (iv) focal lesions to the identified regions are needed to determine whether the deficit of interest is the consequence of focal damage or much more extensive damage that includes the identified region; and, finally, (v) univariate voxel-based lesion-deficit mappings cannot, in isolation, be used to predict outcome in other patients. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
Tompkins, Connie A.; Meigh, Kimberly M.; Prat, Chantel S.
2015-01-01
Purpose This study examined right hemisphere (RH) neuroanatomical correlates of lexical–semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Method Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. Results A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Conclusion Beyond their scientific implications, these lesion–deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage. PMID:26425785
Yang, Ying; Tompkins, Connie A; Meigh, Kimberly M; Prat, Chantel S
2015-11-01
This study examined right hemisphere (RH) neuroanatomical correlates of lexical-semantic deficits that predict narrative comprehension in adults with RH brain damage. Coarse semantic coding and suppression deficits were related to lesions by voxel-based lesion symptom mapping. Participants were 20 adults with RH cerebrovascular accidents. Measures of coarse coding and suppression deficits were computed from lexical decision reaction times at short (175 ms) and long (1000 ms) prime-target intervals. Lesions were drawn on magnetic resonance imaging images and through normalization were registered on an age-matched brain template. Voxel-based lesion symptom mapping analysis was applied to build a general linear model at each voxel. Z score maps were generated for each deficit, and results were interpreted using automated anatomical labeling procedures. A deficit in coarse semantic activation was associated with lesions to the RH posterior middle temporal gyrus, dorsolateral prefrontal cortex, and lenticular nuclei. A maintenance deficit for coarsely coded representations involved the RH temporal pole and dorsolateral prefrontal cortex more medially. Ineffective suppression implicated lesions to the RH inferior frontal gyrus and subcortical regions, as hypothesized, along with the rostral temporal pole. Beyond their scientific implications, these lesion-deficit correspondences may help inform the clinical diagnosis and enhance decisions about candidacy for deficit-focused treatment to improve narrative comprehension in individuals with RH damage.
Barón, J; Mulero, P; Pedraza, M I; Gamazo, C; de la Cruz, C; Ruiz, M; Ayuso, M; Cebrián, M C; García-Talavera, P; Marco, J; Guerrero, A L
2016-06-01
Transient headache and neurological deficits with cerebrospinal fluid lymphocytosis (HaNDL) is characterised by migraine-like headache episodes accompanied by neurological deficits consisting of motor, sensory, or aphasic symptoms. Electroencephalogram (EEG) and single photon emission computed tomography (SPECT) may show focal abnormalities that correspond to the neurological deficits. We aim to evaluate the correlation between focal deficit topography and EEG or SPECT abnormalities in 5 new cases. We retrospectively reviewed patients attended in a tertiary hospital (January 2010-May 2014) and identified 5 patients (3 men, 2 women) with a mean age of 30.6 ± 7.7 (21-39) years. They presented 3.4 ± 2.6 episodes of headache (range, 2-8) of moderate to severe intensity and transient neurological deficits over a maximum of 5 weeks. Pleocytosis was detected in CSF in all cases (70 to 312 cells/mm3, 96.5-100% lymphocytes) with negative results from aetiological studies. At least one EEG was performed in 4 patients and SPECT in 3 patients. Patient 1: 8 episodes; 4 left hemisphere, 3 right hemisphere, and 1 brainstem; 2 EEGs showing left temporal and bilateral temporal slowing; normal SPECT. Patient 2: 2 episodes, left hemisphere and right hemisphere; SPECT showed decreased left temporal blood flow. Patient 3: 3 left hemisphere deficits; EEG with bilateral frontal and temporal slowing. Patient 4: 2 episodes with right parieto-occipital topography and right frontal slowing in EEG. Patient 5: 2 episodes, right hemisphere and left hemisphere, EEG with right temporal slowing; normal SPECT. The neurological deficits accompanying headache in HaNDL demonstrate marked clinical heterogeneity. SPECT abnormalities and most of all EEG abnormalities were not uncommon in our series and they did not always correlate to the topography of focal déficits. Copyright © 2014 Sociedad Española de Neurología. Published by Elsevier España, S.L.U. All rights reserved.
Intact figure-ground segmentation in schizophrenia.
Herzog, Michael H; Kopmann, Sabine; Brand, Andreas
2004-11-30
As revealed by backward masking studies, schizophrenic patients show strong impairments of early visual processing. However, the underlying temporal mechanisms are not yet well understood. To shed light on the exact timing of these deficits, we employed a paradigm in which two masks follow each other. We investigated 16 medicated schizophrenic patients and a matched group of 14 controls with a new backward masking technique, shine-through. In accordance with other masking studies, schizophrenic patients require a dramatically longer processing time to reach a predefined performance level compared with healthy subjects. However, patients are surprisingly sensitive to subtle differences in the timing of the two masks, revealing good temporal resolution. This good temporal resolution indicates intact and fast perceptual grouping and figure-ground segmentation in spite of high susceptibility to masking procedures in schizophrenia.
Amnesia, rehearsal, and temporal distinctiveness models of recall.
Brown, Gordon D A; Della Sala, Sergio; Foster, Jonathan K; Vousden, Janet I
2007-04-01
Classical amnesia involves selective memory impairment for temporally distant items in free recall (impaired primacy) together with relative preservation of memory for recency items. This abnormal serial position curve is traditionally taken as evidence for a distinction between different memory processes, with amnesia being associated with selectively impaired long-term memory. However recent accounts of normal serial position curves have emphasized the importance of rehearsal processes in giving rise to primacy effects and have suggested that a single temporal distinctiveness mechanism can account for both primacy and recency effects when rehearsal is considered. Here we explore the pattern of strategic rehearsal in a patient with very severe amnesia. When the patient's rehearsal pattern is taken into account, a temporal distinctiveness model can account for the serial position curve in both amnesic and control free recall. The results are taken as consistent with temporal distinctiveness models of free recall, and they motivate an emphasis on rehearsal patterns in understanding amnesic deficits in free recall.
Chemotherapy disrupts learning, neurogenesis and theta activity in the adult brain.
Nokia, Miriam S; Anderson, Megan L; Shors, Tracey J
2012-12-01
Chemotherapy, especially if prolonged, disrupts attention, working memory and speed of processing in humans. Most cancer drugs that cross the blood-brain barrier also decrease adult neurogenesis. Because new neurons are generated in the hippocampus, this decrease may contribute to the deficits in working memory and related thought processes. The neurophysiological mechanisms that underlie these deficits are generally unknown. A possible mediator is hippocampal oscillatory activity within the theta range (3-12 Hz). Theta activity predicts and promotes efficient learning in healthy animals and humans. Here, we hypothesised that chemotherapy disrupts learning via decreases in hippocampal adult neurogenesis and theta activity. Temozolomide was administered to adult male Sprague-Dawley rats in a cyclic manner for several weeks. Treatment was followed by training with different types of eyeblink classical conditioning, a form of associative learning. Chemotherapy reduced both neurogenesis and endogenous theta activity, as well as disrupted learning and related theta-band responses to the conditioned stimulus. The detrimental effects of temozolomide only occurred after several weeks of treatment, and only on a task that requires the association of events across a temporal gap and not during training with temporally overlapping stimuli. Chemotherapy did not disrupt the memory for previously learned associations, a memory independent of (new neurons in) the hippocampus. In conclusion, prolonged systemic chemotherapy is associated with a decrease in hippocampal adult neurogenesis and theta activity that may explain the selective deficits in processes of learning that describe the 'chemobrain'. © 2012 Federation of European Neuroscience Societies and Blackwell Publishing Ltd.
Phillips, D P; Farmer, M E
1990-11-15
This paper explores the nature of the processing disorder which underlies the speech discrimination deficit in the syndrome of acquired word deafness following from pathology to the primary auditory cortex. A critical examination of the evidence on this disorder revealed the following. First, the most profound forms of the condition are expressed not only in an isolation of the cerebral linguistic processor from auditory input, but in a failure of even the perceptual elaboration of the relevant sounds. Second, in agreement with earlier studies, we conclude that the perceptual dimension disturbed in word deafness is a temporal one. We argue, however, that it is not a generalized disorder of auditory temporal processing, but one which is largely restricted to the processing of sounds with temporal content in the milliseconds to tens-of-milliseconds time frame. The perceptual elaboration of sounds with temporal content outside that range, in either direction, may survive the disorder. Third, we present neurophysiological evidence that the primary auditory cortex has a special role in the representation of auditory events in that time frame, but not in the representation of auditory events with temporal grains outside that range.
Spatial and temporal order memory in Korsakoff patients.
Postma, Albert; Van Asselen, Marieke; Keuper, Olga; Wester, Arie J; Kessels, Roy P C
2006-05-01
This study directly compared how well Korsakoff patients can process spatial and temporal order information in memory under conditions that included presentation of only a single feature (i.e., temporal or spatial information), combined spatiotemporal presentation, and combined spatiotemporal order recall. Korsakoff patients were found to suffer comparable spatial and temporal order recall deficits. Of interest, recall of a single feature was the same when only spatial or temporal information was presented compared to conditions that included combined spatiotemporal, presentation and recall. In contrast, control participants performed worse when they have to recall both spatial and temporal order compared to when they have to recall only one of these features. These findings together indicate that spatial and temporal information are not automatically integrated. Korsakoff patients have profound problems in coding the feature at hand. Moreover, their lower recall of both features at the same time suggests that Korsakoff patients are impaired in binding different contextual attributes together in memory.
Ashley, Mark J; Ashley, Jessica; Kreber, Lisa
2012-01-01
Traumatic brain injury (TBI) results in disruption of information processing via damage to primary, secondary, and tertiary cortical regions, as well as, subcortical pathways supporting information flow within and between cortical structures. TBI predominantly affects the anterior frontal poles, anterior temporal poles, white matter tracts and medial temporal structures. Fundamental information processing skills such as attention, perceptual processing, categorization and cognitive distance are concentrated within these same regions and are frequently disrupted following injury. Information processing skills improve in accordance with the extent to which residual frontal and temporal neurons can be encouraged to recruit and bias neuronal networks or the degree to which the functional connectivity of neural networks can be re-established and result in re-emergence or regeneration of specific cognitive skills. Higher-order cognitive processes, i.e., memory, reasoning, problem solving and other executive functions, are dependent upon the integrity of attention, perceptual processing, categorization, and cognitive distance. A therapeutic construct for treatment of attention, perceptual processing, categorization and cognitive distance deficits is presented along with an interventional model for encouragement of re-emergence or regeneration of these fundamental information processing skills.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
Spatial and temporal aspects of navigation in two neurological patients.
van der Ham, Ineke J M; van Zandvoort, Martine J E; Meilinger, Tobias; Bosch, Sander E; Kant, Neeltje; Postma, Albert
2010-07-14
We present two cases (A.C. and W.J.) with navigation problems resulting from parieto-occipital right hemisphere damage. For both the cases, performance on the neuropsychological tests did not indicate specific impairments in spatial processing, despite severe subjective complaints of spatial disorientation. Various aspects of navigation were tested in a new virtual reality task, the Virtual Tübingen task. A double dissociation between spatial and temporal deficits was found; A.C. was impaired in route ordering, a temporal test, whereas W.J. was impaired in scene recognition and route continuation, which are spatial in nature. These findings offer important insights in the functional and neural architecture of navigation.
Anatomical Correlates of Non-Verbal Perception in Dementia Patients
Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih
2016-01-01
Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits. PMID:27630558
Anatomical Correlates of Non-Verbal Perception in Dementia Patients.
Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih
2016-01-01
Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer's dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits.
Age Differences in the Focus of Retrieval: Evidence from Dual-List Free Recall
Wahlheim, Christopher N.; Huff, Mark J.
2015-01-01
In the present experiment, we examined age differences in the focus of retrieval using a dual-list free recall paradigm. Younger and older adults studied two lists of unrelated words and recalled from the first list, the second list, or both lists. Older adults showed impaired use of control processes to recall items correctly from a target list and prevent intrusions. This pattern reflected a deficit in recollection verified using a process dissociation procedure. We examined the consequences of an age-related deficit in control processes on the focus of retrieval using measures of temporal organization. Evidence that older adults engaged a broader focus of retrieval than younger adults was shown clearly when participants were instructed to recall from both lists. First-recalled items originated from more distant positions across lists for older adults. We interpret older adults’ broader retrieval orientation as consistent with their impaired ability to elaborate cues to constrain retrieval. These findings show that age-related deficits in control processes impair context reinstatement and the subsequent focus of retrieval to target episodes. PMID:26322551
Age differences in the focus of retrieval: Evidence from dual-list free recall.
Wahlheim, Christopher N; Huff, Mark J
2015-12-01
In the present experiment, we examined age differences in the focus of retrieval using a dual-list free recall paradigm. Younger and older adults studied 2 lists of unrelated words and recalled from the first list, the second list, or both lists. Older adults showed impaired use of control processes to recall items correctly from a target list and prevent intrusions. This pattern reflected a deficit in recollection verified using a process dissociation procedure. We examined the consequences of an age-related deficit in control processes on the focus of retrieval using measures of temporal organization. Evidence that older adults engaged a broader focus of retrieval than younger adults was shown clearly when participants were instructed to recall from both lists. First-recalled items originated from more distant positions across lists for older adults. We interpret older adults' broader retrieval orientation as consistent with their impaired ability to elaborate cues to constrain retrieval. These findings show that age-related deficits in control processes impair context reinstatement and the subsequent focus of retrieval to target episodes. (c) 2015 APA, all rights reserved).
Functional and structural brain correlates of theory of mind and empathy deficits in schizophrenia.
Benedetti, Francesco; Bernasconi, Alessandro; Bosia, Marta; Cavallaro, Roberto; Dallaspezia, Sara; Falini, Andrea; Poletti, Sara; Radaelli, Daniele; Riccaboni, Roberta; Scotti, Giuseppe; Smeraldi, Enrico
2009-10-01
Patients affected by schizophrenia show deficits in social cognition, with abnormal performance on tasks targeting theory of mind (ToM) and empathy (Emp). Brain imaging studies suggested that ToM and Emp depend on the activation of brain networks mainly localized at the superior temporal lobe and temporo-parietal junction. Participants included 24 schizophrenia patients and 20 control subjects. We used brain blood oxygen level dependent fMRI to study the neural responses to tasks targeting ToM and Emp. We then studied voxel-based morphometry of grey matter in areas where diagnosis influenced functional activation to both tasks. Outcomes were analyzed in the context of the general linear model, with global grey matter volume as nuisance covariate for structural MRI. Patients showed worse performance on both tasks. We found significant effects of diagnosis on neural responses to the tasks in a wide cluster in right posterior superior temporal lobe (encompassing BA 22-42), in smaller clusters in left temporo-parietal junction and temporal pole (BA 38 and 39), and in a white matter region adjacent to medial prefrontal cortex (BA 10). A pattern of double dissociation of the effects of diagnosis and task on neural responses emerged. Among these areas, grey matter volume was found to be reduced in right superior temporal lobe regions of patients. Functional and structural abnormalities were observed in areas affected by the schizophrenic process early in the illness course, and known to be crucial for social cognition, suggesting a biological basis for social cognition deficits in schizophrenia.
Fitch, R. Holly; Alexander, Michelle L.; Threlkeld, Steven W.
2013-01-01
Most researchers in the field of neural plasticity are familiar with the “Kennard Principle,” which purports a positive relationship between age at brain injury and severity of subsequent deficits (plateauing in adulthood). As an example, a child with left hemispherectomy can recover seemingly normal language, while an adult with focal injury to sub-regions of left temporal and/or frontal cortex can suffer dramatic and permanent language loss. Here we present data regarding the impact of early brain injury in rat models as a function of type and timing, measuring long-term behavioral outcomes via auditory discrimination tasks varying in temporal demand. These tasks were created to model (in rodents) aspects of human sensory processing that may correlate—both developmentally and functionally—with typical and atypical language. We found that bilateral focal lesions to the cortical plate in rats during active neuronal migration led to worse auditory outcomes than comparable lesions induced after cortical migration was complete. Conversely, unilateral hypoxic-ischemic (HI) injuries (similar to those seen in premature infants and term infants with birth complications) led to permanent auditory processing deficits when induced at a neurodevelopmental point comparable to human “term,” but only transient deficits (undetectable in adulthood) when induced in a “preterm” window. Convergent evidence suggests that regardless of when or how disruption of early neural development occurs, the consequences may be particularly deleterious to rapid auditory processing (RAP) outcomes when they trigger developmental alterations that extend into subcortical structures (i.e., lower sensory processing stations). Collective findings hold implications for the study of behavioral outcomes following early brain injury as well as genetic/environmental disruption, and are relevant to our understanding of the neurologic risk factors underlying developmental language disability in human populations. PMID:24155699
Temporal processing dysfunction in schizophrenia.
Carroll, Christine A; Boggs, Jennifer; O'Donnell, Brian F; Shekhar, Anantha; Hetrick, William P
2008-07-01
Schizophrenia may be associated with a fundamental disturbance in the temporal coordination of information processing in the brain, leading to classic symptoms of schizophrenia such as thought disorder and disorganized and contextually inappropriate behavior. Despite the growing interest and centrality of time-dependent conceptualizations of the pathophysiology of schizophrenia, there remains a paucity of research directly examining overt timing performance in the disorder. Accordingly, the present study investigated timing in schizophrenia using a well-established task of time perception. Twenty-three individuals with schizophrenia and 22 non-psychiatric control participants completed a temporal bisection task, which required participants to make temporal judgments about auditory and visually presented durations ranging from 300 to 600 ms. Both schizophrenia and control groups displayed greater visual compared to auditory timing variability, with no difference between groups in the visual modality. However, individuals with schizophrenia exhibited less temporal precision than controls in the perception of auditory durations. These findings correlated with parameter estimates obtained from a quantitative model of time estimation, and provide evidence of a fundamental deficit in temporal auditory precision in schizophrenia.
Hearing shapes our perception of time: temporal discrimination of tactile stimuli in deaf people.
Bolognini, Nadia; Cecchetto, Carlo; Geraci, Carlo; Maravita, Angelo; Pascual-Leone, Alvaro; Papagno, Costanza
2012-02-01
Confronted with the loss of one type of sensory input, we compensate using information conveyed by other senses. However, losing one type of sensory information at specific developmental times may lead to deficits across all sensory modalities. We addressed the effect of auditory deprivation on the development of tactile abilities, taking into account changes occurring at the behavioral and cortical level. Congenitally deaf and hearing individuals performed two tactile tasks, the first requiring the discrimination of the temporal duration of touches and the second requiring the discrimination of their spatial length. Compared with hearing individuals, deaf individuals were impaired only in tactile temporal processing. To explore the neural substrate of this difference, we ran a TMS experiment. In deaf individuals, the auditory association cortex was involved in temporal and spatial tactile processing, with the same chronometry as the primary somatosensory cortex. In hearing participants, the involvement of auditory association cortex occurred at a later stage and selectively for temporal discrimination. The different chronometry in the recruitment of the auditory cortex in deaf individuals correlated with the tactile temporal impairment. Thus, early hearing experience seems to be crucial to develop an efficient temporal processing across modalities, suggesting that plasticity does not necessarily result in behavioral compensation.
Timing Precision and Rhythm in Developmental Dyslexia.
ERIC Educational Resources Information Center
Wolff, Peter H.
2002-01-01
Indicates that during a motor sequencing task, dyslexic students anticipated the signal of an isochronic pacing metronome by intervals that were two or three times as long as those of age matched normal readers or normal adults. Discusses the implications of the findings for temporal information processing deficits on one hand, and impaired…
Resolution of Spatial and Temporal Visual Attention in Infants with Fragile X Syndrome
ERIC Educational Resources Information Center
Farzin, Faraz; Rivera, Susan M.; Whitney, David
2011-01-01
Fragile X syndrome is the most common cause of inherited intellectual impairment and the most common single-gene cause of autism. Individuals with fragile X syndrome present with a neurobehavioural phenotype that includes selective deficits in spatiotemporal visual perception associated with neural processing in frontal-parietal networks of the…
Speech Perception Deficits in Poor Readers: Auditory Processing or Phonological Coding?
ERIC Educational Resources Information Center
Mody, Maria; And Others
1997-01-01
Forty second-graders, 20 good and 20 poor readers, completed a /ba/-/da/ temporal order judgment (TOJ) task. The groups did not differ in TOJ when /ba/ and /da/ were paired with more easily discriminated syllables. Poor readers' difficulties with /ba/-/da/ reflected perceptual confusion between phonetically similar syllables rather than difficulty…
Treatment of Proper Name Retrieval Deficits in an Individual with Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Minkina, Irene; Ojemann, Jeffrey G.; Grabowski, Thomas J.; Silkes, JoAnn P.; Phatak, Vaishali; Kendall, Diane L.
2013-01-01
Purpose: Studies investigating language deficits in individuals with left temporal-lobe epilepsy have consistently demonstrated impairments in proper name retrieval. The aim of this Phase I rehabilitation study was to investigate the effects of a linguistically distributed word retrieval treatment on proper name retrieval in an individual with…
ERIC Educational Resources Information Center
Greer, Margaret K.; And Others
1989-01-01
This case study illustrates the highly significant language difficulties, marked memory deficits, and propensity for physical aggression following temporal lobe damage brought about by herpes encephalitis, and presents the usefulness of a new diagnostic measure in delineating such a variable cognitive pattern. (Author)
ERIC Educational Resources Information Center
Mattai, Anand A.; Weisinger, Brian; Greenstein, Deanna; Stidd, Reva; Clasen, Liv; Miller, Rachel; Tossell, Julia W.; Rapoport, Judith L.; Gogtay, Nitin
2011-01-01
Objective: Cortical gray matter (GM) abnormalities in patients with childhood-onset schizophrenia (COS) progress during adolescence ultimately localizing to prefrontal and temporal cortices by early adult age. A previous study of 52 nonpsychotic siblings of COS probands had significant prefrontal and temporal GM deficits that appeared to…
Flavour identification in frontotemporal lobar degeneration.
Omar, Rohani; Mahoney, Colin J; Buckley, Aisling H; Warren, Jason D
2013-01-01
Deficits of flavour processing may be clinically important in frontotemporal lobar degeneration (FTLD). To examine flavour processing in FTLD. We studied flavour identification prospectively in 25 patients with FTLD (12 with behavioural variant frontotemporal dementia (bvFTD), eight with semantic variant primary progressive aphasia (svPPA), five with non-fluent variant primary progressive aphasia (nfvPPA)) and 17 healthy control subjects, using a new test based on cross-modal matching of flavours to words and pictures. All subjects completed a general neuropsychological assessment, and odour identification was also assessed using a modified University of Pennsylvania Smell Identification Test. Brain MRI volumes from the patient cohort were analysed using voxel-based morphometry to identify regional grey matter associations of flavour identification. Relative to the healthy control group, the bvFTD and svPPA subgroups showed significant (p<0.05) deficits of flavour identification and all three FTLD subgroups showed deficits of odour identification. Flavour identification performance did not differ significantly between the FTLD syndromic subgroups. Flavour identification performance in the combined FTLD cohort was significantly (p<0.05 after multiple comparisons correction) associated with grey matter volume in the left entorhinal cortex, hippocampus, parahippocampal gyrus and temporal pole. Certain FTLD syndromes are associated with impaired flavour identification and this is underpinned by grey matter atrophy in an anteromedial temporal lobe network. These findings may have implications for our understanding of abnormal eating behaviour in these diseases.
Agnosia for accents in primary progressive aphasia☆
Fletcher, Phillip D.; Downey, Laura E.; Agustus, Jennifer L.; Hailstone, Julia C.; Tyndall, Marina H.; Cifelli, Alberto; Schott, Jonathan M.; Warrington, Elizabeth K.; Warren, Jason D.
2013-01-01
As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the fractionation of brain mechanisms for complex sound analysis, and for the stratification of progressive aphasia syndromes according to the signature of nonverbal auditory deficits they produce. PMID:23721780
Agnosia for accents in primary progressive aphasia.
Fletcher, Phillip D; Downey, Laura E; Agustus, Jennifer L; Hailstone, Julia C; Tyndall, Marina H; Cifelli, Alberto; Schott, Jonathan M; Warrington, Elizabeth K; Warren, Jason D
2013-08-01
As an example of complex auditory signal processing, the analysis of accented speech is potentially vulnerable in the progressive aphasias. However, the brain basis of accent processing and the effects of neurodegenerative disease on this processing are not well understood. Here we undertook a detailed neuropsychological study of a patient, AA with progressive nonfluent aphasia, in whom agnosia for accents was a prominent clinical feature. We designed a battery to assess AA's ability to process accents in relation to other complex auditory signals. AA's performance was compared with a cohort of 12 healthy age and gender matched control participants and with a second patient, PA, who had semantic dementia with phonagnosia and prosopagnosia but no reported difficulties with accent processing. Relative to healthy controls, the patients showed distinct profiles of accent agnosia. AA showed markedly impaired ability to distinguish change in an individual's accent despite being able to discriminate phonemes and voices (apperceptive accent agnosia); and in addition, a severe deficit of accent identification. In contrast, PA was able to perceive changes in accents, phonemes and voices normally, but showed a relatively mild deficit of accent identification (associative accent agnosia). Both patients showed deficits of voice and environmental sound identification, however PA showed an additional deficit of face identification whereas AA was able to identify (though not name) faces normally. These profiles suggest that AA has conjoint (or interacting) deficits involving both apperceptive and semantic processing of accents, while PA has a primary semantic (associative) deficit affecting accents along with other kinds of auditory objects and extending beyond the auditory modality. Brain MRI revealed left peri-Sylvian atrophy in case AA and relatively focal asymmetric (predominantly right sided) temporal lobe atrophy in case PA. These cases provide further evidence for the fractionation of brain mechanisms for complex sound analysis, and for the stratification of progressive aphasia syndromes according to the signature of nonverbal auditory deficits they produce. Copyright © 2013 The Authors. Published by Elsevier Ltd.. All rights reserved.
Source Memory in Korsakoff Syndrome: Disentangling the Mechanisms of Temporal Confusion.
Brion, Mélanie; de Timary, Philippe; Pitel, Anne-Lise; Maurage, Pierre
2017-03-01
Korsakoff syndrome (KS), most frequently resulting from alcohol dependence (ALC), is characterized by severe anterograde amnesia. It has been suggested that these deficits may extend to other memory components, and notably source memory deficits involved in the disorientation and temporal confusion frequently observed in KS. However, the extent of this source memory impairment in KS and its usefulness for the differential diagnosis between ALC and KS remain unexplored. Nineteen patients with KS were compared with 19 alcohol-dependent individuals and 19 controls in a source memory test exploring temporal context confusions ("continuous recognition task"). Episodic memory and psychopathological comorbidities were controlled for. While no source memory deficit was observed in ALC, KS was associated with a significant presence of temporal context confusion, even when the influence of comorbidities was taken into account. This source memory impairment did not appear to be related to performances on episodic memory or executive functions. Patients with KS displayed source memory deficits, as indexed by temporal context confusions. The absence of a relationship with episodic memory performances seems to indicate that source memory impairment is not a mere by-product of amnesia. As ALC was associated with preserved source memory, the presence of temporal context confusion may serve as a complementary tool for the differential diagnosis between ALC and KS. Copyright © 2017 by the Research Society on Alcoholism.
Law, Jeremy M.; Vandermosten, Maaike; Ghesquière, Pol; Wouters, Jan
2017-01-01
Purpose: This longitudinal study examines measures of temporal auditory processing in pre-reading children with a family risk of dyslexia. Specifically, it attempts to ascertain whether pre-reading auditory processing, speech perception, and phonological awareness (PA) reliably predict later literacy achievement. Additionally, this study retrospectively examines the presence of pre-reading auditory processing, speech perception, and PA impairments in children later found to be literacy impaired. Method: Forty-four pre-reading children with and without a family risk of dyslexia were assessed at three time points (kindergarten, first, and second grade). Auditory processing measures of rise time (RT) discrimination and frequency modulation (FM) along with speech perception, PA, and various literacy tasks were assessed. Results: Kindergarten RT uniquely contributed to growth in literacy in grades one and two, even after controlling for letter knowledge and PA. Highly significant concurrent and predictive correlations were observed with kindergarten RT significantly predicting first grade PA. Retrospective analysis demonstrated atypical performance in RT and PA at all three time points in children who later developed literacy impairments. Conclusions: Although significant, kindergarten auditory processing contributions to later literacy growth lack the power to be considered as a single-cause predictor; thus results support temporal processing deficits' contribution within a multiple deficit model of dyslexia. PMID:28223953
Distinct neural substrates for semantic knowledge and naming in the temporoparietal network.
Gesierich, Benno; Jovicich, Jorge; Riello, Marianna; Adriani, Michela; Monti, Alessia; Brentari, Valentina; Robinson, Simon D; Wilson, Stephen M; Fairhall, Scott L; Gorno-Tempini, Maria Luisa
2012-10-01
Patients with anterior temporal lobe (ATL) lesions show semantic and lexical retrieval deficits, and the differential role of this area in the 2 processes is debated. Functional neuroimaging in healthy individuals has not clarified the matter because semantic and lexical processes usually occur simultaneously and automatically. Furthermore, the ATL is a region challenging for functional magnetic resonance imaging (fMRI) due to susceptibility artifacts, especially at high fields. In this study, we established an optimized ATL-sensitive fMRI acquisition protocol at 4 T and applied an event-related paradigm to study the identification (i.e., association of semantic biographical information) of celebrities, with and without the ability to retrieve their proper names. While semantic processing reliably activated the ATL, only more posterior areas in the left temporal and temporal-parietal junction were significantly modulated by covert lexical retrieval. These results suggest that within a temporoparietal network, the ATL is relatively more important for semantic processing, and posterior language regions are relatively more important for lexical retrieval.
Drane, Daniel L.; Loring, David W.; Voets, Natalie L.; Price, Michele; Ojemann, Jeffrey G.; Willie, Jon T.; Saindane, Amit M.; Phatak, Vaishali; Ivanisevic, Mirjana; Millis, Scott; Helmers, Sandra L.; Miller, John W.; Meador, Kimford J.; Gross, Robert E.
2015-01-01
SUMMARY OBJECTIVES Temporal lobe epilepsy (TLE) patients experience significant deficits in category-related object recognition and naming following standard surgical approaches. These deficits may result from a decoupling of core processing modules (e.g., language, visual processing, semantic memory), due to “collateral damage” to temporal regions outside the hippocampus following open surgical approaches. We predicted stereotactic laser amygdalohippocampotomy (SLAH) would minimize such deficits because it preserves white matter pathways and neocortical regions critical for these cognitive processes. METHODS Tests of naming and recognition of common nouns (Boston Naming Test) and famous persons were compared with nonparametric analyses using exact tests between a group of nineteen patients with medically-intractable mesial TLE undergoing SLAH (10 dominant, 9 nondominant), and a comparable series of TLE patients undergoing standard surgical approaches (n=39) using a prospective, non-randomized, non-blinded, parallel group design. RESULTS Performance declines were significantly greater for the dominant TLE patients undergoing open resection versus SLAH for naming famous faces and common nouns (F=24.3, p<.0001, η2=.57, & F=11.2, p<.001, η2=.39, respectively), and for the nondominant TLE patients undergoing open resection versus SLAH for recognizing famous faces (F=3.9, p<.02, η2=.19). When examined on an individual subject basis, no SLAH patients experienced any performance declines on these measures. In contrast, 32 of the 39 undergoing standard surgical approaches declined on one or more measures for both object types (p<.001, Fisher’s exact test). Twenty-one of 22 left (dominant) TLE patients declined on one or both naming tasks after open resection, while 11 of 17 right (non-dominant) TLE patients declined on face recognition. SIGNIFICANCE Preliminary results suggest 1) naming and recognition functions can be spared in TLE patients undergoing SLAH, and 2) the hippocampus does not appear to be an essential component of neural networks underlying name retrieval or recognition of common objects or famous faces. PMID:25489630
Aging affects the interaction between attentional control and source memory: an fMRI study.
Dulas, Michael R; Duarte, Audrey
2014-12-01
Age-related source memory impairments may be due, at least in part, to deficits in executive processes mediated by the PFC at both study and test. Behavioral work suggests that providing environmental support at encoding, such as directing attention toward item-source associations, may improve source memory and reduce age-related deficits in the recruitment of these executive processes. The present fMRI study investigated the effects of directed attention and aging on source memory encoding and retrieval. At study, participants were shown pictures of objects. They were either asked to attend to the objects and their color (source) or to their size. At test, participants determined if objects were seen before, and if so, whether they were the same color as previously. Behavioral results showed that direction of attention improved source memory for both groups; however, age-related deficits persisted. fMRI results revealed that, across groups, direction of attention facilitated medial temporal lobe-mediated contextual binding processes during study and attenuated right PFC postretrieval monitoring effects at test. However, persistent age-related source memory deficits may be related to increased recruitment of medial anterior PFC during encoding, indicative of self-referential processing, as well as underrecruitment of lateral anterior PFC-mediated relational processes. Taken together, this study suggests that, even when supported, older adults may fail to selectively encode goal-relevant contextual details supporting source memory performance.
Neural bases of orthographic long-term memory and working memory in dysgraphia
Purcell, Jeremy; Hillis, Argye E.; Capasso, Rita; Miceli, Gabriele
2016-01-01
Spelling a word involves the retrieval of information about the word’s letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. PMID:26685156
Network Alterations Supporting Word Retrieval in Patients with Medial Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Protzner, Andrea B.; McAndrews, Mary Pat
2011-01-01
Although the hippocampus is not considered a key structure in semantic memory, patients with medial-temporal lobe epilepsy (mTLE) have deficits in semantic access on some word retrieval tasks. We hypothesized that these deficits reflect the negative impact of focal epilepsy on remote cerebral structures. Thus, we expected that the networks that…
The level of audiovisual print-speech integration deficits in dyslexia.
Kronschnabel, Jens; Brem, Silvia; Maurer, Urs; Brandeis, Daniel
2014-09-01
The classical phonological deficit account of dyslexia is increasingly linked to impairments in grapho-phonological conversion, and to dysfunctions in superior temporal regions associated with audiovisual integration. The present study investigates mechanisms of audiovisual integration in typical and impaired readers at the critical developmental stage of adolescence. Congruent and incongruent audiovisual as well as unimodal (visual only and auditory only) material was presented. Audiovisual presentations were single letters and three-letter (consonant-vowel-consonant) stimuli accompanied by matching or mismatching speech sounds. Three-letter stimuli exhibited fast phonetic transitions as in real-life language processing and reading. Congruency effects, i.e. different brain responses to congruent and incongruent stimuli were taken as an indicator of audiovisual integration at a phonetic level (grapho-phonological conversion). Comparisons of unimodal and audiovisual stimuli revealed basic, more sensory aspects of audiovisual integration. By means of these two criteria of audiovisual integration, the generalizability of audiovisual deficits in dyslexia was tested. Moreover, it was expected that the more naturalistic three-letter stimuli are superior to single letters in revealing group differences. Electrophysiological and hemodynamic (EEG and fMRI) data were acquired simultaneously in a simple target detection task. Applying the same statistical models to event-related EEG potentials and fMRI responses allowed comparing the effects detected by the two techniques at a descriptive level. Group differences in congruency effects (congruent against incongruent) were observed in regions involved in grapho-phonological processing, including the left inferior frontal and angular gyri and the inferotemporal cortex. Importantly, such differences also emerged in superior temporal key regions. Three-letter stimuli revealed stronger group differences than single letters. No significant differences in basic measures of audiovisual integration emerged. Convergence of hemodynamic and electrophysiological signals appeared to be limited and mainly occurred for highly significant and large effects in visual cortices. The findings suggest efficient superior temporal tuning to audiovisual congruency in controls. In impaired readers, however, grapho-phonological conversion is effortful and inefficient, although basic audiovisual mechanisms seem intact. This unprecedented demonstration of audiovisual deficits in adolescent dyslexics provides critical evidence that the phonological deficit might be explained by impaired audiovisual integration at a phonetic level, especially for naturalistic and word-like stimulation. Copyright © 2014 Elsevier Ltd. All rights reserved.
Effects of decompressive surgery on prognosis and cognitive deficits in herpes simplex encephalitis.
Midi, Ipek; Tuncer, Nese; Midi, Ahmet; Mollahasanoglu, Aynur; Konya, Deniz; Sav, Aydin
2007-01-01
Herpes simplex encephalitis (HSE) is a serious viral infection with a high rate of mortality. The most commonly seen complications are behavioral changes, seizures and memory deficits. We report the case of a 37-year-old man with HSE in the right temporal lobe and a severe midline shift who was treated with acyclovir. The patient underwent anterior temporal lobe resection. Although HSE can cause permanent cognitive deficits, in this case, early surgical intervention minimized any deficit, as determined by detailed neuropsychological examination. Surgical decompression is indicated as early as possible in severe cases. This case report emphasizes the effect of surgical decompression for HSE on cognitive function, which has rarely been mentioned before.
ERIC Educational Resources Information Center
Heath, Steve M.; Hogben, John H.
2004-01-01
Background: Claims that children with reading and oral language deficits have impaired perception of sequential sounds are usually based on psychophysical measures of auditory temporal processing (ATP) designed to characterise group performance. If we are to use these measures (e.g., the Tallal, 1980, Repetition Test) as the basis for intervention…
ERIC Educational Resources Information Center
Spinelli, Simona; Vasa, Roma A.; Joel, Suresh; Nelson, Tess E.; Pekar, James J.; Mostofsky, Stewart H.
2011-01-01
Background: Error processing is reflected, behaviorally, by slower reaction times (RT) on trials immediately following an error (post-error). Children with attention-deficit hyperactivity disorder (ADHD) fail to show RT slowing and demonstrate increased intra-subject variability (ISV) on post-error trials. The neural correlates of these behavioral…
ERIC Educational Resources Information Center
Jenstad, Lorienne M.; Souza, Pamela E.
2007-01-01
Purpose: When understanding speech in complex listening situations, older adults with hearing loss face the double challenge of cochlear hearing loss and deficits of the aging auditory system. Wide-dynamic range compression (WDRC) is used in hearing aids as remediation for the loss of audibility associated with hearing loss. WDRC processing has…
ERIC Educational Resources Information Center
Strong, Gemma K.; Torgerson, Carole J.; Torgerson, David; Hulme, Charles
2011-01-01
Background: Fast ForWord is a suite of computer-based language intervention programs designed to improve children's reading and oral language skills. The programs are based on the hypothesis that oral language difficulties often arise from a rapid auditory temporal processing deficit that compromises the development of phonological…
ERIC Educational Resources Information Center
Rovet, Joanne F.
This study contrasts the performance of a 17-year-old female subject with Turner's syndrome before and after developing left temporal lobe seizures, as a means of identifying the mechanism responsible for the Turner's syndrome spatial impairment. The results revealed a deficit in spatial processing before onset of the seizure disorder. Results…
van Zuijen, Titia L; Plakas, Anna; Maassen, Ben A M; Been, Pieter; Maurits, Natasha M; Krikhaar, Evelien; van Driel, Joram; van der Leij, Aryan
2012-10-18
Dyslexia is heritable and associated with auditory processing deficits. We investigate whether temporal auditory processing is compromised in young children at-risk for dyslexia and whether it is associated with later language and reading skills. We recorded EEG from 17 months-old children with or without familial risk for dyslexia to investigate whether their auditory system was able to detect a temporal change in a tone pattern. The children were followed longitudinally and performed an intelligence- and language development test at ages 4 and 4.5 years. Literacy related skills were measured at the beginning of second grade, and word- and pseudo-word reading fluency were measured at the end of second grade. The EEG responses showed that control children could detect the temporal change as indicated by a mismatch response (MMR). The MMR was not observed in at-risk children. Furthermore, the fronto-central MMR amplitude correlated with preliterate language comprehension and with later word reading fluency, but not with phonological awareness. We conclude that temporal auditory processing differentiates young children at risk for dyslexia from controls and is a precursor of preliterate language comprehension and reading fluency. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Attentional blink in young people with high-functioning autism and Asperger's disorder.
Rinehart, Nicole; Tonge, Bruce; Brereton, Avril; Bradshaw, John
2010-01-01
The aim of the study was to examine the temporal characteristics of information processing in individuals with high-functioning autism and Asperger's disorder using a rapid serial visual presentation paradigm. The results clearly showed that such people demonstrate an attentional blink of similar magnitude to comparison groups. This supports the proposition that the social processing difficulties experienced by these individuals are not underpinned by a basic temporal-cognitive processing deficit, which is consistent with Minshew's complex information processing theory. This is the second study to show that automatic inhibitory processes are intact in both autism and Asperger's disorder, which appears to distinguish these disorders from some other frontostriatal disorders. The finding that individuals with autism were generally poorer than the comparison group at detecting black Xs, while being as good in responding to white letters, was accounted for in the context of a potential dual-task processing difficulty or visual search superiority.
Lexical-semantic processing in the semantic priming paradigm in aphasic patients.
Salles, Jerusa Fumagalli de; Holderbaum, Candice Steffen; Parente, Maria Alice Mattos Pimenta; Mansur, Letícia Lessa; Ansaldo, Ana Inès
2012-09-01
There is evidence that the explicit lexical-semantic processing deficits which characterize aphasia may be observed in the absence of implicit semantic impairment. The aim of this article was to critically review the international literature on lexical-semantic processing in aphasia, as tested through the semantic priming paradigm. Specifically, this review focused on aphasia and lexical-semantic processing, the methodological strengths and weaknesses of the semantic paradigms used, and recent evidence from neuroimaging studies on lexical-semantic processing. Furthermore, evidence on dissociations between implicit and explicit lexical-semantic processing reported in the literature will be discussed and interpreted by referring to functional neuroimaging evidence from healthy populations. There is evidence that semantic priming effects can be found both in fluent and in non-fluent aphasias, and that these effects are related to an extensive network which includes the temporal lobe, the pre-frontal cortex, the left frontal gyrus, the left temporal gyrus and the cingulated cortex.
Puppets, robots, critics, and actors within a taxonomy of attention for developmental disorders
DENNIS, MAUREEN; SINOPOLI, KATIA J.; FLETCHER, JACK M.; SCHACHAR, RUSSELL
2008-01-01
This review proposes a new taxonomy of automatic and controlled attention. The taxonomy distinguishes among the role of the attendee (puppet and robot, critic and actor), the attention process (stimulus orienting vs. response control), and the attention operation (activation vs. inhibition vs. adjustment), and identifies cognitive phenotypes by which attention is overtly expressed. We apply the taxonomy to four childhood attention disorders: attention deficit hyperactivity disorder, spina bifida meningomyelocele, traumatic brain injury, and acute lymphoblastic leukemia. Variations in attention are related to specific brain regions that support normal attention processes when intact, and produce disordered attention when impaired. The taxonomy explains group differences in behavioral inattention, hyperactivity, and impulsiveness, as well as medication response. We also discuss issues relevant to theories of the cognitive and neural architecture of attention: functional dissociations within and between automatic and controlled attention; the relative importance of type of brain damage and developmental timing to attention profile; cognitive-energetic models of attention and white matter damage; temporal processing deficits, attention deficits and cerebellar damage; and the issue of cognitive phenotypes as candidate endophenotypes. PMID:18764966
Mirrored and rotated stimuli are not the same: A neuropsychological and lesion mapping study.
Martinaud, Olivier; Mirlink, Nicolas; Bioux, Sandrine; Bliaux, Evangéline; Champmartin, Cécile; Pouliquen, Dorothée; Cruypeninck, Yohann; Hannequin, Didier; Gérardin, Emmanuel
2016-05-01
Agnosia for mirrored stimuli is a rare clinical deficit. Only eight patients have been reported in the literature so far and little is known about the neural substrates of this agnosia. Using a previously developed experimental test designed to assess this agnosia, namely the Mirror and Orientation Agnosia Test (MOAT), as well as voxel-lesion symptom mapping (VLSM), we tested the hypothesis that focal brain-injured patients with right parietal damage would be impaired in the discrimination between the canonical view of a visual object and its mirrored and rotated images. Thirty-four consecutively recruited patients with a stroke involving the right or left parietal lobe have been included: twenty patients (59%) had a deficit on at least one of the six conditions of the MOAT, fourteen patients (41%) had a deficit on the mirror condition, twelve patients (35%) had a deficit on at least one the four rotated conditions and one had a truly selective agnosia for mirrored stimuli. A lesion analysis showed that discrimination of mirrored stimuli was correlated to the mesial part of the posterior superior temporal gyrus and the lateral part of the inferior parietal lobule, while discrimination of rotated stimuli was correlated to the lateral part of the posterior superior temporal gyrus and the mesial part of the inferior parietal lobule, with only a small overlap between the two. These data suggest that the right visual 'dorsal' pathway is essential for accurate perception of mirrored and rotated stimuli, with a selective cognitive process and anatomical network underlying our ability to discriminate between mirrored images, different from the process of discriminating between rotated images. Copyright © 2016 Elsevier Ltd. All rights reserved.
Impey, Danielle; Baddeley, Ashley; Nelson, Renee; Labelle, Alain; Knott, Verner
2017-11-01
Cognitive impairment has been proposed to be the core feature of schizophrenia (Sz). Transcranial direct current stimulation (tDCS) is a non-invasive form of brain stimulation which can improve cognitive function in healthy participants and in psychiatric patients with cognitive deficits. tDCS has been shown to improve cognition and hallucination symptoms in Sz, a disorder also associated with marked sensory processing deficits. Recent findings in healthy controls demonstrate that anodal tDCS increases auditory deviance detection, as measured by the brain-based event-related potential, mismatch negativity (MMN), which is a putative biomarker of Sz that has been proposed as a target for treatment of Sz cognition. This pilot study conducted a randomized, double-blind assessment of the effects of pre- and post-tDCS on MMN-indexed auditory discrimination in 12 Sz patients, moderated by auditory hallucination (AH) presence, as well as working memory performance. Assessments were conducted in three sessions involving temporal and frontal lobe anodal stimulation (to transiently excite local brain activity), and one control session involving 'sham' stimulation (meaning with the device turned off, i.e., no stimulation). Results demonstrated a trend for pitch MMN amplitude to increase with anodal temporal tDCS, which was significant in a subgroup of Sz individuals with AHs. Anodal frontal tDCS significantly increased WM performance on the 2-back task, which was found to positively correlate with MMN-tDCS effects. The findings contribute to our understanding of tDCS effects for sensory processing deficits and working memory performance in Sz and may have implications for psychiatric disorders with sensory deficits.
High-level, but not low-level, motion perception is impaired in patients with schizophrenia.
Kandil, Farid I; Pedersen, Anya; Wehnes, Jana; Ohrmann, Patricia
2013-01-01
Smooth pursuit eye movements are compromised in patients with schizophrenia and their first-degree relatives. Although research has demonstrated that the motor components of smooth pursuit eye movements are intact, motion perception has been shown to be impaired. In particular, studies have consistently revealed deficits in performance on tasks specific to the high-order motion area V5 (middle temporal area, MT) in patients with schizophrenia. In contrast, data from low-level motion detectors in the primary visual cortex (V1) have been inconsistent. To differentiate between low-level and high-level visual motion processing, we applied a temporal-order judgment task for motion events and a motion-defined figure-ground segregation task using patients with schizophrenia and healthy controls. Successful judgments in both tasks rely on the same low-level motion detectors in the V1; however, the first task is further processed in the higher-order motion area MT in the magnocellular (dorsal) pathway, whereas the second task requires subsequent computations in the parvocellular (ventral) pathway in visual area V4 and the inferotemporal cortex (IT). These latter structures are supposed to be intact in schizophrenia. Patients with schizophrenia revealed a significantly impaired temporal resolution on the motion-based temporal-order judgment task but only mild impairment in the motion-based segregation task. These results imply that low-level motion detection in V1 is not, or is only slightly, compromised; furthermore, our data restrain the locus of the well-known deficit in motion detection to areas beyond the primary visual cortex.
ERIC Educational Resources Information Center
Leopold, Daniel R.; Christopher, Micaela E.; Burns, G. Leonard; Becker, Stephen P.; Olson, Richard K.; Willcutt, Erik G.
2016-01-01
Background: Although multiple cross-sectional studies have shown symptoms of sluggish cognitive tempo (SCT) and attention-deficit/hyperactivity disorder (ADHD) to be statistically distinct, studies have yet to examine the temporal stability and measurement invariance of SCT in a longitudinal sample. To date, only six studies have assessed SCT…
Postictal aphasia and paresis: a clinical and intracerebral EEG study.
Adam, C; Adam, C; Rouleau, I; Saint-Hilaire, J M
2000-02-01
We examined the lateralizing value of postictal language and motor deficits and studied their underlying mechanisms. The total sample consisted of 35 patients (26 temporals, 8 frontals, 1 parietal) with a good postsurgical outcome (Engel's class I and II). Postictal examination was blindly reviewed on videotapes. In 15 cases (29 seizures), postictal language manifestations were analyzed in relation with the diffusion of the epileptic discharge recorded by intracerebral EEG. Language dominance was determined by the intracarotid amobarbital test. Postictal aphasia was observed only when (1) seizure originated in the dominant hemisphere and (2) ictal activity spread to language areas (Wernicke and/or Broca areas). When the epileptic focus was in the nondominant hemisphere, no postictal aphasia was observed even if there was secondary generalization of ictal activity affecting the language areas of the dominant hemisphere. Postictal motor deficits also had a strong lateralizing value even when seizures were secondarily generalized. Postictal aphasia in temporal epilepsies and postical motor deficits in temporal and extra temporal epilepsies provided excellent lateralizing information. Postictal deficits appear to be the result of inhibitory mechanisms induced by previous ictal activity of the structures related to these functions.
Nonverbal auditory agnosia with lesion to Wernicke's area.
Saygin, Ayse Pinar; Leech, Robert; Dick, Frederic
2010-01-01
We report the case of patient M, who suffered unilateral left posterior temporal and parietal damage, brain regions typically associated with language processing. Language function largely recovered since the infarct, with no measurable speech comprehension impairments. However, the patient exhibited a severe impairment in nonverbal auditory comprehension. We carried out extensive audiological and behavioral testing in order to characterize M's unusual neuropsychological profile. We also examined the patient's and controls' neural responses to verbal and nonverbal auditory stimuli using functional magnetic resonance imaging (fMRI). We verified that the patient exhibited persistent and severe auditory agnosia for nonverbal sounds in the absence of verbal comprehension deficits or peripheral hearing problems. Acoustical analyses suggested that his residual processing of a minority of environmental sounds might rely on his speech processing abilities. In the patient's brain, contralateral (right) temporal cortex as well as perilesional (left) anterior temporal cortex were strongly responsive to verbal, but not to nonverbal sounds, a pattern that stands in marked contrast to the controls' data. This substantial reorganization of auditory processing likely supported the recovery of M's speech processing.
[Learning difficulties in mathematics in children with attention deficit hyperactivity disorder].
Miranda-Casas, A; Meliá-de Alba, A; Marco-Taverner, R; Roselló, B; Mulas, F
2006-02-13
Attention deficit hyperactivity disorder (ADHD) and learning difficulties are two diagnostic categories of great social importance and impact, and which are associated in around 25-35% of cases. One explanation offered by researchers to account for this overlap is a deficit in executive functioning (EF). 1) To compare EF and applied mathematical knowledge in children with ADHD, difficulties in learning mathematics (DLM) or ADHD + DLM, and to identify the deficiencies they experience. 2) To verify whether the phenotype hypothesis is fulfilled in the case of the ADHD + DLM condition. The study involved a quasi-experimental 2 x 2 design, with a sample made up of 78 participants (6-13 years old) who were divided into four groups: ADHD (n = 33), DLM (n = 15), ADHD + DLM (n = 15) and a control group (n = 15). Tests aimed at evaluating different cognitive processes as well as applied mathematical knowledge were administered: inhibitory control (go/no go); verbal working (backward digit-recall and counting memory task) and temporal-visual-spatial memory; short-term memory (direct digit-recall); attention (CPT); calculation speed (Canals) and real-life problems. Taking the variables age, gender and intelligence quotient as covariables, results showed that the three groups with problems displayed a deficit of attention and in working memory; the DLM group stood out from the other owing to the presence of a specific deficiency affecting the ability to recall temporal-visual-spatial information. In contrast, deficits in inhibitory control were seen to be specific to ADHD. Finally, findings did not support the phenotype hypothesis, and it was therefore an accumulative profile.
Wilson, Stephen M.; DeMarco, Andrew T.; Henry, Maya L.; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L.; Gorno-Tempini, Maria Luisa
2014-01-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA, also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the anterior temporal lobes is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA, in order to determine which regions normally involved in syntactic processing are damaged in semantic PPA, and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural and functional MRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, while anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the anterior temporal lobes, but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left anterior temporal lobe did show abnormal functionality in semantic PPA patients, however this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the anterior temporal lobe in sentence processing is less likely to relate to syntactic structure-building, and more likely to relate to higher level processes such as combinatorial semantic processing. PMID:24345172
Temporal and speech processing skills in normal hearing individuals exposed to occupational noise.
Kumar, U Ajith; Ameenudin, Syed; Sangamanatha, A V
2012-01-01
Prolonged exposure to high levels of occupational noise can cause damage to hair cells in the cochlea and result in permanent noise-induced cochlear hearing loss. Consequences of cochlear hearing loss on speech perception and psychophysical abilities have been well documented. Primary goal of this research was to explore temporal processing and speech perception Skills in individuals who are exposed to occupational noise of more than 80 dBA and not yet incurred clinically significant threshold shifts. Contribution of temporal processing skills to speech perception in adverse listening situation was also evaluated. A total of 118 participants took part in this research. Participants comprised three groups of train drivers in the age range of 30-40 (n= 13), 41 50 ( = 13), 41-50 (n = 9), and 51-60 (n = 6) years and their non-noise-exposed counterparts (n = 30 in each age group). Participants of all the groups including the train drivers had hearing sensitivity within 25 dB HL in the octave frequencies between 250 and 8 kHz. Temporal processing was evaluated using gap detection, modulation detection, and duration pattern tests. Speech recognition was tested in presence multi-talker babble at -5dB SNR. Differences between experimental and control groups were analyzed using ANOVA and independent sample t-tests. Results showed a trend of reduced temporal processing skills in individuals with noise exposure. These deficits were observed despite normal peripheral hearing sensitivity. Speech recognition scores in the presence of noise were also significantly poor in noise-exposed group. Furthermore, poor temporal processing skills partially accounted for the speech recognition difficulties exhibited by the noise-exposed individuals. These results suggest that noise can cause significant distortions in the processing of suprathreshold temporal cues which may add to difficulties in hearing in adverse listening conditions.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD.
Nobusako, Satoshi; Sakai, Ayami; Tsujimoto, Taeko; Shuto, Takashi; Nishi, Yuki; Asano, Daiki; Furukawa, Emi; Zama, Takuro; Osumi, Michihiro; Shimada, Sotaro; Morioka, Shu; Nakai, Akio
2018-01-01
The neurological basis of developmental coordination disorder (DCD) is thought to be deficits in the internal model and mirror-neuron system (MNS) in the parietal lobe and cerebellum. However, it is not clear if the visuo-motor temporal integration in the internal model and automatic-imitation function in the MNS differs between children with DCD and those with typical development (TD). The current study aimed to investigate these differences. Using the manual dexterity test of the Movement Assessment Battery for Children (second edition), the participants were either assigned to the probable DCD (pDCD) group or TD group. The former was comprised of 29 children with clumsy manual dexterity, while the latter consisted of 42 children with normal manual dexterity. Visuo-motor temporal integration ability and automatic-imitation function were measured using the delayed visual feedback detection task and motor interference task, respectively. Further, the current study investigated whether autism-spectrum disorder (ASD) traits, attention-deficit hyperactivity disorder (ADHD) traits, and depressive symptoms differed among the two groups, since these symptoms are frequent comorbidities of DCD. In addition, correlation and multiple regression analyses were performed to extract factors affecting clumsy manual dexterity. In the results, the delay-detection threshold (DDT) and steepness of the delay-detection probability curve, which indicated visuo-motor temporal integration ability, were significantly prolonged and decreased, respectively, in children with pDCD. The interference effect, which indicated automatic-imitation function, was also significantly reduced in this group. These results highlighted that children with clumsy manual dexterity have deficits in visuo-motor temporal integration and automatic-imitation function. There was a significant correlation between manual dexterity, and measures of visuo-motor temporal integration, and ASD traits and ADHD traits and ASD. Multiple regression analysis revealed that the DDT, which indicated visuo-motor temporal integration, was the greatest predictor of poor manual dexterity. The current results supported and provided further evidence for the internal model deficit hypothesis. Further, they suggested a neurorehabilitation technique that improved visuo-motor temporal integration could be therapeutically effective for children with DCD. PMID:29556211
Sihvonen, Aleksi J; Särkämö, Teppo; Ripollés, Pablo; Leo, Vera; Saunavaara, Jani; Parkkola, Riitta; Rodríguez-Fornells, Antoni; Soinila, Seppo
2017-09-12
Brain damage causing acquired amusia disrupts the functional music processing system, creating a unique opportunity to investigate the critical neural architectures of musical processing in the brain. In this longitudinal fMRI study of stroke patients (N = 41) with a 6-month follow-up, we used natural vocal music (sung with lyrics) and instrumental music stimuli to uncover brain activation and functional network connectivity changes associated with acquired amusia and its recovery. In the acute stage, amusic patients exhibited decreased activation in right superior temporal areas compared to non-amusic patients during instrumental music listening. During the follow-up, the activation deficits expanded to comprise a wide-spread bilateral frontal, temporal, and parietal network. The amusics showed less activation deficits to vocal music, suggesting preserved processing of singing in the amusic brain. Compared to non-recovered amusics, recovered amusics showed increased activation to instrumental music in bilateral frontoparietal areas at 3 months and in right middle and inferior frontal areas at 6 months. Amusia recovery was also associated with increased functional connectivity in right and left frontoparietal attention networks to instrumental music. Overall, our findings reveal the dynamic nature of deficient activation and connectivity patterns in acquired amusia and highlight the role of dorsal networks in amusia recovery.
Impaired temporal, not just spatial, resolution in amblyopia.
Spang, Karoline; Fahle, Manfred
2009-11-01
In amblyopia, neuronal deficits deteriorate spatial vision including visual acuity, possibly because of a lack of use-dependent fine-tuning of afferents to the visual cortex during infancy; but temporal processing may deteriorate as well. Temporal, rather than spatial, resolution was investigated in patients with amblyopia by means of a task based on time-defined figure-ground segregation. Patients had to indicate the quadrant of the visual field where a purely time-defined square appeared. The results showed a clear decrease in temporal resolution of patients' amblyopic eyes compared with the dominant eyes in this task. The extent of this decrease in figure-ground segregation based on time of motion onset only loosely correlated with the decrease in spatial resolution and spanned a smaller range than did the spatial loss. Control experiments with artificially induced blur in normal observers confirmed that the decrease in temporal resolution was not simply due to the acuity loss. Amblyopia not only decreases spatial resolution, but also temporal factors such as time-based figure-ground segregation, even at high stimulus contrasts. This finding suggests that the realm of neuronal processes that may be disturbed in amblyopia is larger than originally thought.
Goghari, Vina M; Macdonald, Angus W; Sponheim, Scott R
2011-11-01
Temporal lobe abnormalities and emotion recognition deficits are prominent features of schizophrenia and appear related to the diathesis of the disorder. This study investigated whether temporal lobe structural abnormalities were associated with facial emotion recognition deficits in schizophrenia and related to genetic liability for the disorder. Twenty-seven schizophrenia patients, 23 biological family members, and 36 controls participated. Several temporal lobe regions (fusiform, superior temporal, middle temporal, amygdala, and hippocampus) previously associated with face recognition in normative samples and found to be abnormal in schizophrenia were evaluated using volumetric analyses. Participants completed a facial emotion recognition task and an age recognition control task under time-limited and self-paced conditions. Temporal lobe volumes were tested for associations with task performance. Group status explained 23% of the variance in temporal lobe volume. Left fusiform gray matter volume was decreased by 11% in patients and 7% in relatives compared with controls. Schizophrenia patients additionally exhibited smaller hippocampal and middle temporal volumes. Patients were unable to improve facial emotion recognition performance with unlimited time to make a judgment but were able to improve age recognition performance. Patients additionally showed a relationship between reduced temporal lobe gray matter and poor facial emotion recognition. For the middle temporal lobe region, the relationship between greater volume and better task performance was specific to facial emotion recognition and not age recognition. Because schizophrenia patients exhibited a specific deficit in emotion recognition not attributable to a generalized impairment in face perception, impaired emotion recognition may serve as a target for interventions.
Implicit representations of space after bilateral parietal lobe damage.
Kim, M S; Robertson, L C
2001-11-15
There is substantial evidence that the primate cortex is grossly divided into two functional streams, an occipital-parietal-frontal pathway that processes "where" and an occipital-temporal-frontal pathway that processes "what" (Ungerleider and Mishkin, 1982). In humans, bilateral occipital-parietal damage results in severe spatial deficits and a neuropsychological disorder known as Balint's syndrome in which a single object can be perceived (simultanagnosia) but its location is unknown (Balint, 1995). The data reported here demonstrate that spatial information for visual features that cannot be explicitly located is represented normally below the level of spatial awareness even with large occipital-parietal lesions. They also demonstrate that parietal damage does not affect preattentive spatial coding of feature locations or complex spatial relationships between parts of a stimulus despite explicit spatial deficits and simultanagnosia.
Effects of Decompressive Surgery on Prognosis and Cognitive Deficits in Herpes Simplex Encephalitis
Midi, Ipek; Tuncer, Nese; Midi, Ahmet; Mollahasanoglu, Aynur; Konya, Deniz; Sav, Aydın
2007-01-01
Herpes simplex encephalitis (HSE) is a serious viral infection with a high rate of mortality. The most commonly seen complications are behavioral changes, seizures and memory deficits. We report the case of a 37-year-old man with HSE in the right temporal lobe and a severe midline shift who was treated with acyclovir. The patient underwent anterior temporal lobe resection. Although HSE can cause permanent cognitive deficits, in this case, early surgical intervention minimized any deficit, as determined by detailed neuropsychological examination. Surgical decompression is indicated as early as possible in severe cases. This case report emphasizes the effect of surgical decompression for HSE on cognitive function, which has rarely been mentioned before. PMID:18430984
Toller, Gianina; Adhimoolam, Babu; Rankin, Katherine P; Huppertz, Hans-Jürgen; Kurthen, Martin; Jokeit, Hennric
2015-11-01
Refractory mesial temporal lobe epilepsy (MTLE) is the most frequent focal epilepsy and is often accompanied by deficits in social cognition including emotion recognition, theory of mind, and empathy. Consistent with the neuronal networks that are crucial for normal social-cognitive processing, these impairments have been associated with functional changes in fronto-temporal regions. However, although atrophy in unilateral MTLE also affects regions of the temporal and frontal lobes that underlie social cognition, little is known about the structural correlates of social-cognitive deficits in refractory MTLE. In the present study, a psychometrically validated empathy questionnaire was combined with whole-brain voxel-based morphometry (VBM) to investigate the relationship between self-reported affective and cognitive empathy and gray matter volume in 55 subjects (13 patients with right MTLE, 9 patients with left MTLE, and 33 healthy controls). Consistent with the brain regions underlying social cognition, our results show that lower affective and cognitive empathy was associated with smaller volume in predominantly right fronto-limbic regions, including the right hippocampus, parahippocampal gyrus, thalamus, fusiform gyrus, inferior temporal gyrus, dorsomedial and dorsolateral prefrontal cortices, and in the bilateral midbrain. The only region that was associated with both affective and cognitive empathy was the right mesial temporal lobe. These findings indicate that patients with right MTLE are at increased risk for reduced empathy towards others' internal states and they shed new light on the structural correlates of impaired social cognition frequently accompanying refractory MTLE. In line with previous evidence from patients with neurodegenerative disease and stroke, the present study suggests that empathy depends upon the integrity of right fronto-limbic and brainstem regions and highlights the importance of the right mesial temporal lobe and midbrain structures for human empathy. Copyright © 2015 Elsevier Ltd. All rights reserved.
Altered brain activity for phonological manipulation in dyslexic Japanese children.
Kita, Yosuke; Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi
2013-12-01
Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children.
Altered brain activity for phonological manipulation in dyslexic Japanese children
Yamamoto, Hisako; Oba, Kentaro; Terasawa, Yuri; Moriguchi, Yoshiya; Uchiyama, Hitoshi; Seki, Ayumi; Koeda, Tatsuya; Inagaki, Masumi
2013-01-01
Because of unique linguistic characteristics, the prevalence rate of developmental dyslexia is relatively low in the Japanese language. Paradoxically, Japanese children have serious difficulty analysing phonological processes when they have dyslexia. Neurobiological deficits in Japanese dyslexia remain unclear and need to be identified, and may lead to better understanding of the commonality and diversity in the disorder among different linguistic systems. The present study investigated brain activity that underlies deficits in phonological awareness in Japanese dyslexic children using functional magnetic resonance imaging. We developed and conducted a phonological manipulation task to extract phonological processing skills and to minimize the influence of auditory working memory on healthy adults, typically developing children, and dyslexic children. Current experiments revealed that several brain regions participated in manipulating the phonological information including left inferior and middle frontal gyrus, left superior temporal gyrus, and bilateral basal ganglia. Moreover, dyslexic children showed altered activity in two brain regions. They showed hyperactivity in the basal ganglia compared with the two other groups, which reflects inefficient phonological processing. Hypoactivity in the left superior temporal gyrus was also found, suggesting difficulty in composing and processing phonological information. The altered brain activity shares similarity with those of dyslexic children in countries speaking alphabetical languages, but disparity also occurs between these two populations. These are initial findings concerning the neurobiological impairments in dyslexic Japanese children. PMID:24052613
El Haj, Mohamad; Omigie, Diana; Moroni, Christine
2014-07-01
A wealth of empirical evidence suggests that directing attention to temporal processing increases perceived duration, whereas drawing attention away from it has the opposite effect. Our work investigates this phenomenon by comparing perceived duration during a high attentional and a low attentional task in Alzheimer's Disease (AD) patients since these participants tend to show attentional deficits. In the high attentional task, AD patients and older adults were asked to perform the interference condition of the Stroop test for 15s while in the low attentional task, they had to fixate on a cross for the same length of time. In both conditions, participants were not aware they would be questioned about timing until the end of the task when they had to reproduce the duration of the previously-viewed stimulus. AD patients under-reproduced the duration of previously-exposed stimulus in the high attentional relative to the low attentional task, and the same pattern was observed in older adults. Due to their attentional deficits, AD patients might be overwhelmed by the demand of the high attentional task, leaving very few, if any, attentional resources for temporal processing. Copyright © 2014 Elsevier Inc. All rights reserved.
Intentionality as a link between the neuropsychology and the symptoms of schizophrenia.
Kaiser, Stefan; Weisbrod, Matthias
2007-01-01
Cognitive deficits are an important feature of schizophrenia, particularly in the areas of working memory and executive function. However, their relationship to other clinical dimensions of the illness has remained elusive. We suggest that a phenomenological exploration of disordered intentionality in schizophrenia symptoms might provide us with a framework for understanding the role of cognitive deficits. We propose an understanding of intentionality as having a layered structure, which facilitates a mapping onto neuropsychological concepts. A disturbance of basic intentional processes can explain some of the 'positive' symptoms of schizophrenia. We focus on the temporal aspect of intentionality, which will be related to recent conceptions of prefrontal cortical function as the temporal organization of thought and behavior. A compensation of these basic disturbances leads to a 'minimization of change', which can explain some of the 'negative' symptoms. The compensatory strategies are thought to rely on the higher-order executive functions of the prefrontal cortex. These are also disturbed in schizophrenia, which often renders the process of compensation ineffective, leading to a fragmentation of thought and behavior. Thus the concept of intentionality might help us relate different aspects of prefrontal dysfunction to specific schizophrenic symptom clusters. (c) 2007 S. Karger AG, Basel.
Cognitive impairment and memory loss associated with histoplasmosis: a case study.
Loughan, Ashlee R; Perna, Robert; Hertza, Jeremy
2014-01-01
Histoplasmosis is a rare disease caused by inhalation of the fungus Histoplasma capsulatum. It can spread via cerebral circulation to the central nervous system as a manifestation of a disseminated infection; particularly in patients with immune suppression, which can result in isolated ring-enhancing lesions and inflammation in the brain. Of the reported disseminated histoplasmosis cases (approximately 1 in 2000 per year), only 5-20% have evidence of central nervous system involvement. This paper reviews a single case study of a 57-year-old female diagnosed with disseminated CNS histoplasmosis. Patient's complaints included reduced short-term memory, word-finding problems, and difficulty organizing, making decisions, getting lost while driving, recalling names, retaining information while reading, and slowed processing speed. There was also a history of mild depression and anxiety. Direct testing revealed deficits in multiple cognitive domains including complex attention, processing speed, semantic fluency, visual scanning, motor speed, set-shifting, naming, nonverbal memory, and verbal memory. Neuropsychological deficits suggest cortical and subcortical brain dysfunction, including anterior, temporal, and mesial-temporal regions. This case illustrates the need for neuropsychologists to understand histoplasmosis, the related pathophysiology, and the neuropsychological impact; particularly with the potential for delayed progression.
Zhang-Hooks, Ying-Xin; Roos, Hannah
2017-01-01
Hearing loss leads to a host of cellular and synaptic changes in auditory brain areas that are thought to give rise to auditory perception deficits such as temporal processing impairments, hyperacusis, and tinnitus. However, little is known about possible changes in synaptic circuit connectivity that may underlie these hearing deficits. Here, we show that mild hearing loss as a result of brief noise exposure leads to a pronounced reorganization of local excitatory and inhibitory circuits in the mouse inferior colliculus. The exact nature of these reorganizations correlated with the presence or absence of the animals' impairments in detecting brief sound gaps, a commonly used behavioral sign for tinnitus in animal models. Mice with gap detection deficits (GDDs) showed a shift in the balance of synaptic excitation and inhibition that was present in both glutamatergic and GABAergic neurons, whereas mice without GDDs showed stable excitation–inhibition balances. Acoustic enrichment (AE) with moderate intensity, pulsed white noise immediately after noise trauma prevented both circuit reorganization and GDDs, raising the possibility of using AE immediately after cochlear damage to prevent or alleviate the emergence of central auditory processing deficits. SIGNIFICANCE STATEMENT Noise overexposure is a major cause of central auditory processing disorders, including tinnitus, yet the changes in synaptic connectivity underlying these disorders remain poorly understood. Here, we find that brief noise overexposure leads to distinct reorganizations of excitatory and inhibitory synaptic inputs onto glutamatergic and GABAergic neurons and that the nature of these reorganizations correlates with animals' impairments in detecting brief sound gaps, which is often considered a sign of tinnitus. Acoustic enrichment immediately after noise trauma prevents circuit reorganizations and gap detection deficits, highlighting the potential for using sound therapy soon after cochlear damage to prevent the development of central processing deficits. PMID:28583912
Mind the gap: temporal discrimination and dystonia.
Sadnicka, A; Daum, C; Cordivari, C; Bhatia, K P; Rothwell, J C; Manohar, S; Edwards, M J
2017-06-01
One of the most widely studied perceptual measures of sensory dysfunction in dystonia is the temporal discrimination threshold (TDT) (the shortest interval at which subjects can perceive that there are two stimuli rather than one). However the elevated thresholds described may be due to a number of potential mechanisms as current paradigms test not only temporal discrimination but also extraneous sensory and decision-making parameters. In this study two paradigms designed to better quantify temporal processing are presented and a decision-making model is used to assess the influence of decision strategy. 22 patients with cervical dystonia and 22 age-matched controls completed two tasks (i) temporal resolution (a randomized, automated version of existing TDT paradigms) and (ii) interval discrimination (rating the length of two consecutive intervals). In the temporal resolution task patients had delayed (P = 0.021) and more variable (P = 0.013) response times but equivalent discrimination thresholds. Modelling these effects suggested this was due to an increased perceptual decision boundary in dystonia with patients requiring greater evidence before committing to decisions (P = 0.020). Patient performance on the interval discrimination task was normal. Our work suggests that previously observed abnormalities in TDT may not be due to a selective sensory deficit of temporal processing as decision-making itself is abnormal in cervical dystonia. © 2017 EAN.
Prenatal ethanol exposure impairs temporal ordering behaviours in young adult rats.
Patten, Anna R; Sawchuk, Scott; Wortman, Ryan C; Brocardo, Patricia S; Gil-Mohapel, Joana; Christie, Brian R
2016-02-15
Prenatal ethanol exposure (PNEE) causes significant deficits in functional (i.e., synaptic) plasticity in the dentate gyrus (DG) and cornu ammonis (CA) hippocampal sub-regions of young adult male rats. Previous research has shown that in the DG, these deficits are not apparent in age-matched PNEE females. This study aimed to expand these findings and determine if PNEE induces deficits in hippocampal-dependent behaviours in both male and female young adult rats (PND 60). The metric change behavioural test examines DG-dependent deficits by determining whether an animal can detect a metric change between two identical objects. The temporal order behavioural test is thought to rely in part on the CA sub-region of the hippocampus and determines whether an animal will spend more time exploring an object that it has not seen for a larger temporal window as compared to an object that it has seen more recently. Using the liquid diet model of FASD (where 6.6% (v/v) ethanol is provided through a liquid diet consumed ad libitum throughout the entire gestation), we found that PNEE causes a significant impairment in the temporal order task, while no deficits in the DG-dependent metric change task were observed. There were no significant differences between males and females for either task. These results indicate that behaviours relying partially on the CA-region may be more affected by PNEE than those that rely on the DG. Copyright © 2015 Elsevier B.V. All rights reserved.
Pillay, Sara B.; Humphries, Colin J.; Gross, William L.; Graves, William W.; Book, Diane S.
2016-01-01
Patients with surface dyslexia have disproportionate difficulty pronouncing irregularly spelled words (e.g. pint), suggesting impaired use of lexical-semantic information to mediate phonological retrieval. Patients with this deficit also make characteristic ‘regularization’ errors, in which an irregularly spelled word is mispronounced by incorrect application of regular spelling-sound correspondences (e.g. reading plaid as ‘played’), indicating over-reliance on sublexical grapheme–phoneme correspondences. We examined the neuroanatomical correlates of this specific error type in 45 patients with left hemisphere chronic stroke. Voxel-based lesion–symptom mapping showed a strong positive relationship between the rate of regularization errors and damage to the posterior half of the left middle temporal gyrus. Semantic deficits on tests of single-word comprehension were generally mild, and these deficits were not correlated with the rate of regularization errors. Furthermore, the deep occipital-temporal white matter locus associated with these mild semantic deficits was distinct from the lesion site associated with regularization errors. Thus, in contrast to patients with surface dyslexia and semantic impairment from anterior temporal lobe degeneration, surface errors in our patients were not related to a semantic deficit. We propose that these patients have an inability to link intact semantic representations with phonological representations. The data provide novel evidence for a post-semantic mechanism mediating the production of surface errors, and suggest that the posterior middle temporal gyrus may compute an intermediate representation linking semantics with phonology. PMID:26966139
Pu, Shenghong; Nakagome, Kazuyuki; Itakura, Masashi; Iwata, Masaaki; Nagata, Izumi; Kaneko, Koichi
2016-04-01
Schizophrenia-associated cognitive deficits are resistant to treatment and thus pose a lifelong burden. The Brief Assessment of Cognition in Schizophrenia (BACS) provides reliable and valid assessments across cognitive domains. However, because the prefrontal functional abnormalities specifically associated with the level of cognitive deficits in schizophrenia have not been examined, we explored this relationship. Patients with schizophrenia (N=87) and matched healthy controls (N=50) participated in the study. Using near-infrared spectroscopy (NIRS), we measured the hemodynamic responses in the prefrontal and superior temporal cortical surface areas during a working memory task. Correlation analyses revealed a relationship between the hemodynamics and the BACS composite and domain scores. Hemodynamic responses of the left dorsolateral prefrontal cortex (DLPFC) and left frontopolar cortex (FPC) in the higher-level-of-cognitive-function schizophrenia group were weaker than the responses of the controls but similar to those of the lower-level-of-cognitive-function schizophrenia group. However, hemodynamic responses in the right DLPFC, bilateral ventrolateral PFC (VLPFC), and right temporal regions decreased with increasing cognitive deficits. In addition, the hemodynamic response correlated positively with the level of cognitive function (BACS composite scores) in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions in schizophrenia. The correlation was driven by all BACS domains. Our results suggest that the linked functional deficits in the right DLPFC, bilateral VLPFC, right FPC, and bilateral temporal regions may be related to BACS-measured cognitive impairments in schizophrenia and show that linking the neurocognitive deficits and brain abnormalities can increase our understanding of schizophrenia pathophysiology. Copyright © 2015 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Vaidya, Chandan J.; Stollstorff, Melanie
2008-01-01
Cognitive neuroscience studies of Attention Deficit Hyperactivity Disorder (ADHD) suggest multiple loci of pathology with respect to both cognitive domains and neural circuitry. Cognitive deficits extend beyond executive functioning to include spatial, temporal, and lower-level "nonexecutive" functions. Atypical functional anatomy extends beyond…
ERIC Educational Resources Information Center
Williams, Jonathan
2008-01-01
The dopamine transfer deficit model of attention deficit hyperactivity disorder (ADHD) is compared and contrasted with the existing dynamic developmental theory and the extended temporal difference (TD) model. The first two both identify learning deficits as a key problem in ADHD, but this mechanism would seem at least as likely to cause other…
Dysfunctional visual word form processing in progressive alexia
Rising, Kindle; Stib, Matthew T.; Rapcsak, Steven Z.; Beeson, Pélagie M.
2013-01-01
Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the ‘visual word form area’. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy. PMID:23471694
Dysfunctional visual word form processing in progressive alexia.
Wilson, Stephen M; Rising, Kindle; Stib, Matthew T; Rapcsak, Steven Z; Beeson, Pélagie M
2013-04-01
Progressive alexia is an acquired reading deficit caused by degeneration of brain regions that are essential for written word processing. Functional imaging studies have shown that early processing of the visual word form depends on a hierarchical posterior-to-anterior processing stream in occipito-temporal cortex, whereby successive areas code increasingly larger and more complex perceptual attributes of the letter string. A region located in the left lateral occipito-temporal sulcus and adjacent fusiform gyrus shows maximal selectivity for words and has been dubbed the 'visual word form area'. We studied two patients with progressive alexia in order to determine whether their reading deficits were associated with structural and/or functional abnormalities in this visual word form system. Voxel-based morphometry showed left-lateralized occipito-temporal atrophy in both patients, very mild in one, but moderate to severe in the other. The two patients, along with 10 control subjects, were scanned with functional magnetic resonance imaging as they viewed rapidly presented words, false font strings, or a fixation crosshair. This paradigm was optimized to reliably map brain regions involved in orthographic processing in individual subjects. All 10 control subjects showed a posterior-to-anterior gradient of selectivity for words, and all 10 showed a functionally defined visual word form area in the left hemisphere that was activated for words relative to false font strings. In contrast, neither of the two patients with progressive alexia showed any evidence for a selectivity gradient or for word-specific activation of the visual word form area. The patient with mild atrophy showed normal responses to both words and false font strings in the posterior part of the visual word form system, but a failure to develop selectivity for words in the more anterior part of the system. In contrast, the patient with moderate to severe atrophy showed minimal activation of any part of the visual word form system for either words or false font strings. Our results suggest that progressive alexia is associated with a dysfunctional visual word form system, with or without substantial cortical atrophy. Furthermore, these findings demonstrate that functional MRI has the potential to reveal the neural bases of cognitive deficits in neurodegenerative patients at very early stages, in some cases before the development of extensive atrophy.
Temporal plasticity in auditory cortex improves neural discrimination of speech sounds
Engineer, Crystal T.; Shetake, Jai A.; Engineer, Navzer D.; Vrana, Will A.; Wolf, Jordan T.; Kilgard, Michael P.
2017-01-01
Background Many individuals with language learning impairments exhibit temporal processing deficits and degraded neural responses to speech sounds. Auditory training can improve both the neural and behavioral deficits, though significant deficits remain. Recent evidence suggests that vagus nerve stimulation (VNS) paired with rehabilitative therapies enhances both cortical plasticity and recovery of normal function. Objective/Hypothesis We predicted that pairing VNS with rapid tone trains would enhance the primary auditory cortex (A1) response to unpaired novel speech sounds. Methods VNS was paired with tone trains 300 times per day for 20 days in adult rats. Responses to isolated speech sounds, compressed speech sounds, word sequences, and compressed word sequences were recorded in A1 following the completion of VNS-tone train pairing. Results Pairing VNS with rapid tone trains resulted in stronger, faster, and more discriminable A1 responses to speech sounds presented at conversational rates. Conclusion This study extends previous findings by documenting that VNS paired with rapid tone trains altered the neural response to novel unpaired speech sounds. Future studies are necessary to determine whether pairing VNS with appropriate auditory stimuli could potentially be used to improve both neural responses to speech sounds and speech perception in individuals with receptive language disorders. PMID:28131520
Impaired Driving Performance as Evidence of a Magnocellular Deficit in Dyslexia and Visual Stress.
Fisher, Carri; Chekaluk, Eugene; Irwin, Julia
2015-11-01
High comorbidity and an overlap in symptomology have been demonstrated between dyslexia and visual stress. Several researchers have hypothesized an underlying or causal influence that may account for this relationship. The magnocellular theory of dyslexia proposes that a deficit in visuo-temporal processing can explain symptomology for both disorders. If the magnocellular theory holds true, individuals who experience symptomology for these disorders should show impairment on a visuo-temporal task, such as driving. Eighteen male participants formed the sample for this study. Self-report measures assessed dyslexia and visual stress symptomology as well as participant IQ. Participants completed a drive simulation in which errors in response to road signs were measured. Bivariate correlations revealed significant associations between scores on measures of dyslexia and visual stress. Results also demonstrated that self-reported symptomology predicts magnocellular impairment as measured by performance on a driving task. Results from this study suggest that a magnocellular deficit offers a likely explanation for individuals who report high symptomology across both conditions. While conclusions about the impact of these disorders on driving performance should not be derived from this research alone, this study provides a platform for the development of future research, utilizing a clinical population and on-road driving assessment techniques. Copyright © 2015 John Wiley & Sons, Ltd.
Lateralized Temporal Order Judgement in Dyslexia
ERIC Educational Resources Information Center
Liddle, Elizabeth B.; Jackson, Georgina M.; Rorden, Chris; Jackson, Stephen R.
2009-01-01
Temporal and spatial attentional deficits in dyslexia were investigated using a lateralized visual temporal order judgment (TOJ) paradigm that allowed both sensitivity to temporal order and spatial attentional bias to be measured. Findings indicate that adult participants with a positive screen for dyslexia were significantly less sensitive to the…
Improving Temporal Cognition by Enhancing Motivation
Avlar, Billur; Kahn, Julia B.; Jensen, Greg; Kandel, Eric R.; Simpson, Eleanor H.; Balsam, Peter D.
2015-01-01
Increasing motivation can positively impact cognitive performance. Here we employed a cognitive timing task that allows us to detect changes in cognitive performance that are not influenced by general activity or arousal factors such as the speed or persistence of responding. This approach allowed us to manipulate motivation using three different methods; molecular/genetic, behavioral and pharmacological. Increased striatal D2Rs resulted in deficits in temporal discrimination. Switching off the transgene improved motivation in earlier studies, and here partially rescued the temporal discrimination deficit. To manipulate motivation behaviorally, we altered reward magnitude and found that increasing reward magnitude improved timing in control mice and partially rescued timing in the transgenic mice. Lastly, we manipulated motivation pharmacologically using a functionally selective 5-HT2C receptor ligand, SB242084, which we previously found to increase incentive motivation. SB242084 improved temporal discrimination in both control and transgenic mice. Thus, while there is a general intuitive belief that motivation can affect cognition, we here provide a direct demonstration that enhancing motivation, in a variety of ways, can be an effective strategy for enhancing temporal cognition. Understanding the interaction of motivation and cognition is of clinical significance since many psychiatric disorders are characterized by deficits in both domains. PMID:26371378
Liu, Li; Wang, Wenjing; You, Wenping; Li, Yi; Awati, Neha; Zhao, Xu; Booth, James R; Peng, Danling
2012-07-01
Dyslexia in alphabetic languages has been extensively investigated and suggests a central deficit in orthography to phonology mapping in the left hemisphere. Compared to dyslexia in alphabetic languages, the central deficit for Chinese dyslexia is still unclear. Because of the logographic nature of Chinese characters, some have suggested that Chinese dyslexia should have larger deficits in the semantic system. To investigate this, Chinese children with reading disability (RD) were compared to typically developing (TD) children using functional magnetic resonance imaging (fMRI) on a rhyming judgment task and on a semantic association judgment task. RD children showed less activation for both tasks in right visual (BA18, 19) and left occipito-temporal cortex (BA 37), suggesting a deficit in visuo-orthographic processing. RD children also showed less activation for both tasks in left inferior frontal gyrus (BA44), which additionally showed significant correlations with activation of bilateral visuo-orthographic regions in the RD group, suggesting that the abnormalities in frontal cortex and in posterior visuo-orthographic regions may reflect a deficit in the connection between brain regions. Analyses failed to reveal larger differences between groups for the semantic compared to the rhyming task, suggesting that Chinese dyslexia is similarly impaired in the access to phonology and to semantics from the visual orthography. Copyright © 2012 Elsevier Ltd. All rights reserved.
Right Temporoparietal Gray Matter Predicts Accuracy of Social Perception in the Autism Spectrum
ERIC Educational Resources Information Center
David, Nicole; Schultz, Johannes; Milne, Elizabeth; Schunke, Odette; Schöttle, Daniel; Münchau, Alexander; Siegel, Markus; Vogeley, Kai; Engel, Andreas K.
2014-01-01
Individuals with an autism spectrum disorder (ASD) show hallmark deficits in social perception. These difficulties might also reflect fundamental deficits in integrating visual signals. We contrasted predictions of a social perception and a spatial-temporal integration deficit account. Participants with ASD and matched controls performed two…
Cortical brain development in nonpsychotic siblings of patients with childhood-onset schizophrenia.
Gogtay, Nitin; Greenstein, Deanna; Lenane, Marge; Clasen, Liv; Sharp, Wendy; Gochman, Pete; Butler, Philip; Evans, Alan; Rapoport, Judith
2007-07-01
Cortical gray matter (GM) loss is marked and progressive in childhood-onset schizophrenia (COS) during adolescence but becomes more circumscribed by early adulthood. Nonpsychotic siblings of COS probands could help evaluate whether the cortical GM abnormalities are familial/trait markers. To map cortical development in nonpsychotic siblings of COS probands. Using an automated measurement and prospectively acquired anatomical brain magnetic resonance images, we mapped cortical GM thickness in healthy full siblings (n = 52, 113 scans; age 8 through 28 years) of patients with COS, contrasting them with age-, sex-, and scan interval-matched healthy controls (n = 52, 108 scans). The false-discovery rate procedure was used to control for type I errors due to multiple comparisons. An ongoing COS study at the National Institute of Mental Health. Fifty-two healthy full siblings of patients with COS, aged 8 through 28 years, and 52 healthy controls. Longitudinal trajectories of cortical GM development in healthy siblings of patients with COS compared with matched healthy controls and exploratory measure of the relationship between developmental GM trajectories and the overall functioning as defined by the Global Assessment Scale (GAS) score. Younger, healthy siblings of patients with COS showed significant GM deficits in the left prefrontal and bilateral temporal cortices and smaller deficits in the right prefrontal and inferior parietal cortices compared with the controls. These cortical deficits in siblings disappeared by age 20 years and the process of deficit reduction correlated with overall functioning (GAS scores) at the last scan. Prefrontal and temporal GM loss in COS appears to be a familial/trait marker. Amelioration of regional GM deficits in healthy siblings was associated with higher global functioning (GAS scores), suggesting a relationship between brain plasticity and functional outcome for these nonpsychotic, nonspectrum siblings.
van Rooij, Daan; Hoekstra, Pieter J; Mennes, Maarten; von Rhein, Daniel; Thissen, Andrieke J A M; Heslenfeld, Dirk; Zwiers, Marcel P; Faraone, Stephen V; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Buitelaar, Jan K; Hartman, Catharina A
2015-07-01
Dysfunctional response inhibition is a key executive function impairment in attention deficit hyperactivity disorder (ADHD). Still, behavioral response inhibition measures do not consistently differentiate affected from unaffected individuals. The authors therefore investigated neural correlates of response inhibition and the familial nature of these neural correlates. Functional MRI measurements of neural activation during the stop-signal task and behavioral measures of response inhibition were obtained in adolescents and young adults with ADHD (N=185), their unaffected siblings (N=111), and healthy comparison subjects (N=124). Stop-signal task reaction times were longer and error rates were higher in participants with ADHD, but not in their unaffected siblings, while reaction time variability was higher in both groups than in comparison subjects. Relative to comparison subjects, participants with ADHD and unaffected siblings had neural hypoactivation in frontal-striatal and frontal-parietal networks, whereby activation in inferior frontal and temporal/parietal nodes in unaffected siblings was intermediate between levels of participants with ADHD and comparison subjects. Furthermore, neural activation in inferior frontal nodes correlated with stop-signal reaction times, and activation in both inferior frontal and temporal/parietal nodes correlated with ADHD severity. Neural activation alterations in ADHD are more robust than behavioral response inhibition deficits and explain variance in response inhibition and ADHD severity. Although only affected participants with ADHD have deficient response inhibition, hypoactivation in inferior frontal and temporal-parietal nodes in unaffected siblings supports the familial nature of the underlying neural process. Activation deficits in these nodes may be useful as endophenotypes that extend beyond the affected individuals in the family.
Nestor, Paul G; Onitsuka, Toshiaki; Gurrera, Ronald J; Niznikiewicz, Margaret; Frumin, Melissa; Shenton, Martha E; McCarley, Robert W
2007-03-01
We sought to identify the functional correlates of reduced magnetic resonance imaging (MRI) volumes of the superior temporal gyrus (STG) and the fusiform gyrus (FG) in patients with chronic schizophrenia. MRI volumes, positive/negative symptoms, and neuropsychological tests of facial memory and executive functioning were examined within the same subjects. The results indicated two distinct, dissociable brain structure-function relationships: (1) reduced left STG volume-positive symptoms-executive deficits; (2) reduced left FG-negative symptoms-facial memory deficits. STG and FG volume reductions may each make distinct contributions to symptoms and cognitive deficits of schizophrenia.
Drane, Daniel L; Loring, David W; Voets, Natalie L; Price, Michele; Ojemann, Jeffrey G; Willie, Jon T; Saindane, Amit M; Phatak, Vaishali; Ivanisevic, Mirjana; Millis, Scott; Helmers, Sandra L; Miller, John W; Meador, Kimford J; Gross, Robert E
2015-01-01
Patients with temporal lobe epilepsy (TLE) experience significant deficits in category-related object recognition and naming following standard surgical approaches. These deficits may result from a decoupling of core processing modules (e.g., language, visual processing, and semantic memory), due to "collateral damage" to temporal regions outside the hippocampus following open surgical approaches. We predicted that stereotactic laser amygdalohippocampotomy (SLAH) would minimize such deficits because it preserves white matter pathways and neocortical regions that are critical for these cognitive processes. Tests of naming and recognition of common nouns (Boston Naming Test) and famous persons were compared with nonparametric analyses using exact tests between a group of 19 patients with medically intractable mesial TLE undergoing SLAH (10 dominant, 9 nondominant), and a comparable series of TLE patients undergoing standard surgical approaches (n=39) using a prospective, nonrandomized, nonblinded, parallel-group design. Performance declines were significantly greater for the patients with dominant TLE who were undergoing open resection versus SLAH for naming famous faces and common nouns (F=24.3, p<0.0001, η2=0.57, and F=11.2, p<0.001, η2=0.39, respectively), and for the patients with nondominant TLE undergoing open resection versus SLAH for recognizing famous faces (F=3.9, p<0.02, η2=0.19). When examined on an individual subject basis, no SLAH patients experienced any performance declines on these measures. In contrast, 32 of the 39 patients undergoing standard surgical approaches declined on one or more measures for both object types (p<0.001, Fisher's exact test). Twenty-one of 22 left (dominant) TLE patients declined on one or both naming tasks after open resection, while 11 of 17 right (nondominant) TLE patients declined on face recognition. Preliminary results suggest (1) naming and recognition functions can be spared in TLE patients undergoing SLAH, and (2) the hippocampus does not appear to be an essential component of neural networks underlying name retrieval or recognition of common objects or famous faces. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.
Flaugnacco, Elena; Lopez, Luisa; Terribili, Chiara; Montico, Marcella; Zoia, Stefania; Schön, Daniele
2015-01-01
There is some evidence for a role of music training in boosting phonological awareness, word segmentation, working memory, as well as reading abilities in children with typical development. Poor performance in tasks requiring temporal processing, rhythm perception and sensorimotor synchronization seems to be a crucial factor underlying dyslexia in children. Interestingly, children with dyslexia show deficits in temporal processing, both in language and in music. Within this framework, we test the hypothesis that music training, by improving temporal processing and rhythm abilities, improves phonological awareness and reading skills in children with dyslexia. The study is a prospective, multicenter, open randomized controlled trial, consisting of test, rehabilitation and re-test (ID NCT02316873). After rehabilitation, the music group (N = 24) performed better than the control group (N = 22) in tasks assessing rhythmic abilities, phonological awareness and reading skills. This is the first randomized control trial testing the effect of music training in enhancing phonological and reading abilities in children with dyslexia. The findings show that music training can modify reading and phonological abilities even when these skills are severely impaired. Through the enhancement of temporal processing and rhythmic skills, music might become an important tool in both remediation and early intervention programs. Trial Registration ClinicalTrials.gov NCT02316873 PMID:26407242
Flaugnacco, Elena; Lopez, Luisa; Terribili, Chiara; Montico, Marcella; Zoia, Stefania; Schön, Daniele
2015-01-01
There is some evidence for a role of music training in boosting phonological awareness, word segmentation, working memory, as well as reading abilities in children with typical development. Poor performance in tasks requiring temporal processing, rhythm perception and sensorimotor synchronization seems to be a crucial factor underlying dyslexia in children. Interestingly, children with dyslexia show deficits in temporal processing, both in language and in music. Within this framework, we test the hypothesis that music training, by improving temporal processing and rhythm abilities, improves phonological awareness and reading skills in children with dyslexia. The study is a prospective, multicenter, open randomized controlled trial, consisting of test, rehabilitation and re-test (ID NCT02316873). After rehabilitation, the music group (N = 24) performed better than the control group (N = 22) in tasks assessing rhythmic abilities, phonological awareness and reading skills. This is the first randomized control trial testing the effect of music training in enhancing phonological and reading abilities in children with dyslexia. The findings show that music training can modify reading and phonological abilities even when these skills are severely impaired. Through the enhancement of temporal processing and rhythmic skills, music might become an important tool in both remediation and early intervention programs.Trial Registration: ClinicalTrials.gov NCT02316873
Relationship between slow visual processing and reading speed in people with macular degeneration
Cheong, Allen MY; Legge, Gordon E; Lawrence, Mary G; Cheung, Sing-Hang; Ruff, Mary A
2007-01-01
Purpose People with macular degeneration (MD) often read slowly even with adequate magnification to compensate for acuity loss. Oculomotor deficits may affect reading in MD, but cannot fully explain the substantial reduction in reading speed. Central-field loss (CFL) is often a consequence of macular degeneration, necessitating the use of peripheral vision for reading. We hypothesized that slower temporal processing of visual patterns in peripheral vision is a factor contributing to slow reading performance in MD patients. Methods Fifteen subjects with MD, including 12 with CFL, and five age-matched control subjects were recruited. Maximum reading speed and critical print size were measured with RSVP (Rapid Serial Visual Presentation). Temporal processing speed was studied by measuring letter-recognition accuracy for strings of three randomly selected letters centered at fixation for a range of exposure times. Temporal threshold was defined as the exposure time yielding 80% recognition accuracy for the central letter. Results Temporal thresholds for the MD subjects ranged from 159 to 5881 ms, much longer than values for age-matched controls in central vision (13 ms, p<0.01). The mean temporal threshold for the 11 MD subjects who used eccentric fixation (1555.8 ± 1708.4 ms) was much longer than the mean temporal threshold (97.0 ms ± 34.2 ms, p<0.01) for the age-matched controls at 10° in the lower visual field. Individual temporal thresholds accounted for 30% of the variance in reading speed (p<0.05). Conclusion The significant association between increased temporal threshold for letter recognition and reduced reading speed is consistent with the hypothesis that slower visual processing of letter recognition is one of the factors limiting reading speed in MD subjects. PMID:17881032
Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Mandelli, Maria Luisa; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2014-05-01
Neuroimaging and neuropsychological studies have implicated the anterior temporal lobe (ATL) in sentence-level processing, with syntactic structure-building and/or combinatorial semantic processing suggested as possible roles. A potential challenge to the view that the ATL is involved in syntactic aspects of sentence processing comes from the clinical syndrome of semantic variant primary progressive aphasia (semantic PPA; also known as semantic dementia). In semantic PPA, bilateral neurodegeneration of the ATLs is associated with profound lexical semantic deficits, yet syntax is strikingly spared. The goal of this study was to investigate the neural correlates of syntactic processing in semantic PPA to determine which regions normally involved in syntactic processing are damaged in semantic PPA and whether spared syntactic processing depends on preserved functionality of intact regions, preserved functionality of atrophic regions, or compensatory functional reorganization. We scanned 20 individuals with semantic PPA and 24 age-matched controls using structural MRI and fMRI. Participants performed a sentence comprehension task that emphasized syntactic processing and minimized lexical semantic demands. We found that, in controls, left inferior frontal and left posterior temporal regions were modulated by syntactic processing, whereas anterior temporal regions were not significantly modulated. In the semantic PPA group, atrophy was most severe in the ATLs but extended to the posterior temporal regions involved in syntactic processing. Functional activity for syntactic processing was broadly similar in patients and controls; in particular, whole-brain analyses revealed no significant differences between patients and controls in the regions modulated by syntactic processing. The atrophic left ATL did show abnormal functionality in semantic PPA patients; however, this took the unexpected form of a failure to deactivate. Taken together, our findings indicate that spared syntactic processing in semantic PPA depends on preserved functionality of structurally intact left frontal regions and moderately atrophic left posterior temporal regions, but no functional reorganization was apparent as a consequence of anterior temporal atrophy and dysfunction. These results suggest that the role of the ATL in sentence processing is less likely to relate to syntactic structure-building and more likely to relate to higher-level processes such as combinatorial semantic processing.
Albouy, Philippe; Mattout, Jérémie; Bouet, Romain; Maby, Emmanuel; Sanchez, Gaëtan; Aguera, Pierre-Emmanuel; Daligault, Sébastien; Delpuech, Claude; Bertrand, Olivier; Caclin, Anne; Tillmann, Barbara
2013-05-01
Congenital amusia is a lifelong disorder of music perception and production. The present study investigated the cerebral bases of impaired pitch perception and memory in congenital amusia using behavioural measures, magnetoencephalography and voxel-based morphometry. Congenital amusics and matched control subjects performed two melodic tasks (a melodic contour task and an easier transposition task); they had to indicate whether sequences of six tones (presented in pairs) were the same or different. Behavioural data indicated that in comparison with control participants, amusics' short-term memory was impaired for the melodic contour task, but not for the transposition task. The major finding was that pitch processing and short-term memory deficits can be traced down to amusics' early brain responses during encoding of the melodic information. Temporal and frontal generators of the N100m evoked by each note of the melody were abnormally recruited in the amusic brain. Dynamic causal modelling of the N100m further revealed decreased intrinsic connectivity in both auditory cortices, increased lateral connectivity between auditory cortices as well as a decreased right fronto-temporal backward connectivity in amusics relative to control subjects. Abnormal functioning of this fronto-temporal network was also shown during the retention interval and the retrieval of melodic information. In particular, induced gamma oscillations in right frontal areas were decreased in amusics during the retention interval. Using voxel-based morphometry, we confirmed morphological brain anomalies in terms of white and grey matter concentration in the right inferior frontal gyrus and the right superior temporal gyrus in the amusic brain. The convergence between functional and structural brain differences strengthens the hypothesis of abnormalities in the fronto-temporal pathway of the amusic brain. Our data provide first evidence of altered functioning of the auditory cortices during pitch perception and memory in congenital amusia. They further support the hypothesis that in neurodevelopmental disorders impacting high-level functions (here musical abilities), abnormalities in cerebral processing can be observed in early brain responses.
Neural bases of orthographic long-term memory and working memory in dysgraphia.
Rapp, Brenda; Purcell, Jeremy; Hillis, Argye E; Capasso, Rita; Miceli, Gabriele
2016-02-01
Spelling a word involves the retrieval of information about the word's letters and their order from long-term memory as well as the maintenance and processing of this information by working memory in preparation for serial production by the motor system. While it is known that brain lesions may selectively affect orthographic long-term memory and working memory processes, relatively little is known about the neurotopographic distribution of the substrates that support these cognitive processes, or the lesions that give rise to the distinct forms of dysgraphia that affect these cognitive processes. To examine these issues, this study uses a voxel-based mapping approach to analyse the lesion distribution of 27 individuals with dysgraphia subsequent to stroke, who were identified on the basis of their behavioural profiles alone, as suffering from deficits only affecting either orthographic long-term or working memory, as well as six other individuals with deficits affecting both sets of processes. The findings provide, for the first time, clear evidence of substrates that selectively support orthographic long-term and working memory processes, with orthographic long-term memory deficits centred in either the left posterior inferior frontal region or left ventral temporal cortex, and orthographic working memory deficits primarily arising from lesions of the left parietal cortex centred on the intraparietal sulcus. These findings also contribute to our understanding of the relationship between the neural instantiation of written language processes and spoken language, working memory and other cognitive skills. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Violante, Inês R; Ribeiro, Maria J; Cunha, Gil; Bernardino, Inês; Duarte, João V; Ramos, Fabiana; Saraiva, Jorge; Silva, Eduardo; Castelo-Branco, Miguel
2012-01-01
Neurofibromatosis type 1 (NF1) is one of the most common single gene disorders affecting the human nervous system with a high incidence of cognitive deficits, particularly visuospatial. Nevertheless, neurophysiological alterations in low-level visual processing that could be relevant to explain the cognitive phenotype are poorly understood. Here we used functional magnetic resonance imaging (fMRI) to study early cortical visual pathways in children and adults with NF1. We employed two distinct stimulus types differing in contrast and spatial and temporal frequencies to evoke relatively different activation of the magnocellular (M) and parvocellular (P) pathways. Hemodynamic responses were investigated in retinotopically-defined regions V1, V2 and V3 and then over the acquired cortical volume. Relative to matched control subjects, patients with NF1 showed deficient activation of the low-level visual cortex to both stimulus types. Importantly, this finding was observed for children and adults with NF1, indicating that low-level visual processing deficits do not ameliorate with age. Moreover, only during M-biased stimulation patients with NF1 failed to deactivate or even activated anterior and posterior midline regions of the default mode network. The observation that the magnocellular visual pathway is impaired in NF1 in early visual processing and is specifically associated with a deficient deactivation of the default mode network may provide a neural explanation for high-order cognitive deficits present in NF1, particularly visuospatial and attentional. A link between magnocellular and default mode network processing may generalize to neuropsychiatric disorders where such deficits have been separately identified.
Studer-Eichenberger, Esther; Studer-Eichenberger, Felix; Koenig, Thomas
2016-01-01
The objectives of the present study were to investigate temporal/spectral sound-feature processing in preschool children (4 to 7 years old) with peripheral hearing loss compared with age-matched controls. The results verified the presence of statistical learning, which was diminished in children with hearing impairments (HIs), and elucidated possible perceptual mediators of speech production. Perception and production of the syllables /ba/, /da/, /ta/, and /na/ were recorded in 13 children with normal hearing and 13 children with HI. Perception was assessed physiologically through event-related potentials (ERPs) recorded by EEG in a multifeature mismatch negativity paradigm and behaviorally through a discrimination task. Temporal and spectral features of the ERPs during speech perception were analyzed, and speech production was quantitatively evaluated using speech motor maximum performance tasks. Proximal to stimulus onset, children with HI displayed a difference in map topography, indicating diminished statistical learning. In later ERP components, children with HI exhibited reduced amplitudes in the N2 and early parts of the late disciminative negativity components specifically, which are associated with temporal and spectral control mechanisms. Abnormalities of speech perception were only subtly reflected in speech production, as the lone difference found in speech production studies was a mild delay in regulating speech intensity. In addition to previously reported deficits of sound-feature discriminations, the present study results reflect diminished statistical learning in children with HI, which plays an early and important, but so far neglected, role in phonological processing. Furthermore, the lack of corresponding behavioral abnormalities in speech production implies that impaired perceptual capacities do not necessarily translate into productive deficits.
Altered salience processing in attention deficit hyperactivity disorder.
Tegelbeckers, Jana; Bunzeck, Nico; Duzel, Emrah; Bonath, Björn; Flechtner, Hans-Henning; Krauel, Kerstin
2015-06-01
Attentional problems in patients with attention deficit hyperactivity disorder (ADHD) have often been linked with deficits in cognitive control. Whether these deficits are associated with increased sensitivity to external salient stimuli remains unclear. To address this issue, we acquired functional brain images (fMRI) in 38 boys with and without ADHD (age: 11-16 years). To differentiate the effects of item novelty, contextual rareness and task relevance, participants performed a visual oddball task including four stimulus categories: a frequent standard picture (62.5%), unique novel pictures (12.5%), one repeated rare picture (12.5%), and a target picture (12.5%) that required a specific motor response. As a main finding, we can show considerable overlap in novelty-related BOLD responses between both groups, but only healthy participants showed neural deactivation in temporal as well as frontal regions in response to novel pictures. Furthermore, only ADHD patients, but not healthy controls, engaged wide parts of the novelty network when processing the rare but familiar picture. Our results provide first evidence that ADHD patients show enhanced neural activity in response to novel but behaviorally irrelevant stimuli as well as reduced habituation to familiar items. These findings suggest an inefficient use of neuronal resources in children with ADHD that could be closely linked to increased distractibility. © 2015 Wiley Periodicals, Inc.
Lau, Johnny King L; Humphreys, Glyn W; Douis, Hassan; Balani, Alex; Bickerton, Wai-Ling; Rotshtein, Pia
2015-01-01
We report a lesion-symptom mapping analysis of visual speech production deficits in a large group (280) of stroke patients at the sub-acute stage (<120 days post-stroke). Performance on object naming was evaluated alongside three other tests of visual speech production, namely sentence production to a picture, sentence reading and nonword reading. A principal component analysis was performed on all these tests' scores and revealed a 'shared' component that loaded across all the visual speech production tasks and a 'unique' component that isolated object naming from the other three tasks. Regions for the shared component were observed in the left fronto-temporal cortices, fusiform gyrus and bilateral visual cortices. Lesions in these regions linked to both poor object naming and impairment in general visual-speech production. On the other hand, the unique naming component was potentially associated with the bilateral anterior temporal poles, hippocampus and cerebellar areas. This is in line with the models proposing that object naming relies on a left-lateralised language dominant system that interacts with a bilateral anterior temporal network. Neuropsychological deficits in object naming can reflect both the increased demands specific to the task and the more general difficulties in language processing.
Decision making under ambiguity and under risk in mesial temporal lobe epilepsy.
Delazer, Margarete; Zamarian, Laura; Bonatti, Elisabeth; Kuchukhidze, Giorgi; Koppelstätter, Florian; Bodner, Thomas; Benke, Thomas; Trinka, Eugen
2010-01-01
Decision making is essential in everyday life. Though the importance of the mesial temporal lobe in emotional processing and feedback learning is generally recognized, decision making in mesial temporal lobe epilepsy (mTLE) is almost unexplored so far. Twenty-eight consecutive epilepsy patients with drug resistant mTLE and fifty healthy controls performed decision tasks under initial ambiguity (participants have to learn by feedback to make advantageous decisions) and under risk (advantageous choices may be made by estimating risks and by rational strategies). A subgroup analysis compared the performance of patients affected by MRI-verified abnormalities of the hippocampus or amygdala. The effect of lesion side was also assessed. In decision under ambiguity, mTLE patients showed marked deficits and did not improve over the task. Patients with hippocampus abnormality and patients with amygdala abnormality showed comparable deficits. No difference was found between right and left TLE groups. In decision under risk, mTLE patients performed at the same level as controls. Results suggest that mTLE patients have difficulties in learning from feedback and in making decisions in uncertain, ambiguous situations. By contrast, they are able to make advantageous decisions when full information is given and risks, possible gains and losses are exactly defined.
Out of time: a possible link between mirror neurons, autism and electromagnetic radiation.
Thornton, Ian M
2006-01-01
Recent evidence suggests a link between autism and the human mirror neuron system. In this paper, I argue that temporal disruption from the environment may play an important role in the observed mirror neuron dysfunction, leading in turn to the pattern of deficits associated with autism. I suggest that the developing nervous system of an infant may be particularly prone to temporal noise that can interfere with the initial calibration of brain networks such as the mirror neuron system. The most likely source of temporal noise in the environment is artificially generated electromagnetic radiation. To date, there has been little evidence that electromagnetic radiation poses a direct biological hazard. It is clear, however, that time-varying electromagnetic waves have the potential to temporally modulate the nervous system, particularly when populations of neurons are required to act together. This modulation may be completely harmless for the fully developed nervous system of an adult. For an infant, this same temporal disruption might act to severely delay or disrupt vital calibration processes.
Voets, Natalie L; Menke, Ricarda A L; Jbabdi, Saad; Husain, Masud; Stacey, Richard; Carpenter, Katherine; Adcock, Jane E
2015-11-01
Short-term (STM) and long-term memory (LTM) have largely been considered as separate brain systems reflecting fronto-parietal and medial temporal lobe (MTL) functions, respectively. This functional dichotomy has been called into question by evidence of deficits on aspects of working memory in patients with MTL damage, suggesting a potentially direct hippocampal contribution to STM. As the hippocampus has direct anatomical connections with the thalamus, we tested the hypothesis that damage to thalamic nuclei regulating cortico-cortical interactions may contribute to STM deficits in patients with hippocampal dysfunction. We used diffusion-weighted magnetic resonance imaging-based tractography to identify anatomical subdivisions in patients with MTL epilepsy. From these, we measured resting-state functional connectivity with detailed cortical divisions of the frontal, temporal, and parietal lobes. Whereas thalamo-temporal functional connectivity reflected LTM performance, thalamo-prefrontal functional connectivity specifically predicted STM performance. Notably, patients with hippocampal volume loss showed thalamic volume loss, most prominent in the pulvinar region, not detected in patients with normal hippocampal volumes. Aberrant thalamo-cortical connectivity in the epileptic hemisphere was mirrored in a loss of behavioral association with STM performance specifically in patients with hippocampal atrophy. These findings identify thalamo-cortical disruption as a potential mechanism contributing to STM deficits in the context of MTL damage. © The Author 2015. Published by Oxford University Press.
Smith, Mary Lou; Bigel, Marla; Miller, Laurie A
2011-02-01
The mesial temporal lobes are important for learning arbitrary associations. It has previously been demonstrated that left mesial temporal structures are involved in learning word pairs, but it is not yet known whether comparable lesions in the right temporal lobe impair visually mediated associative learning. Patients who had undergone left (n=16) or right (n=18) temporal lobectomy for relief of intractable epilepsy and healthy controls (n=13) were administered two paired-associate learning tasks assessing their learning and memory of pairs of abstract designs or pairs of symbols in unique locations. Both patient groups had deficits in learning the designs, but only the right temporal group was impaired in recognition. For the symbol location task, differences were not found in learning, but again a recognition deficit was found for the right temporal group. The findings implicate the mesial temporal structures in relational learning. They support a material-specific effect for recognition but not for learning and recall of arbitrary visual and visual-spatial associative information. Copyright © 2010 Elsevier Inc. All rights reserved.
Binaural speech processing in individuals with auditory neuropathy.
Rance, G; Ryan, M M; Carew, P; Corben, L A; Yiu, E; Tan, J; Delatycki, M B
2012-12-13
Auditory neuropathy disrupts the neural representation of sound and may therefore impair processes contingent upon inter-aural integration. The aims of this study were to investigate binaural auditory processing in individuals with axonal (Friedreich ataxia) and demyelinating (Charcot-Marie-Tooth disease type 1A) auditory neuropathy and to evaluate the relationship between the degree of auditory deficit and overall clinical severity in patients with neuropathic disorders. Twenty-three subjects with genetically confirmed Friedreich ataxia and 12 subjects with Charcot-Marie-Tooth disease type 1A underwent psychophysical evaluation of basic auditory processing (intensity discrimination/temporal resolution) and binaural speech perception assessment using the Listening in Spatialized Noise test. Age, gender and hearing-level-matched controls were also tested. Speech perception in noise for individuals with auditory neuropathy was abnormal for each listening condition, but was particularly affected in circumstances where binaural processing might have improved perception through spatial segregation. Ability to use spatial cues was correlated with temporal resolution suggesting that the binaural-processing deficit was the result of disordered representation of timing cues in the left and right auditory nerves. Spatial processing was also related to overall disease severity (as measured by the Friedreich Ataxia Rating Scale and Charcot-Marie-Tooth Neuropathy Score) suggesting that the degree of neural dysfunction in the auditory system accurately reflects generalized neuropathic changes. Measures of binaural speech processing show promise for application in the neurology clinic. In individuals with auditory neuropathy due to both axonal and demyelinating mechanisms the assessment provides a measure of functional hearing ability, a biomarker capable of tracking the natural history of progressive disease and a potential means of evaluating the effectiveness of interventions. Copyright © 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Boets, Bart; Wouters, Jan; van Wieringen, Astrid; Ghesquière, Pol
2007-04-09
This study investigates whether the core bottleneck of literacy-impairment should be situated at the phonological level or at a more basic sensory level, as postulated by supporters of the auditory temporal processing theory. Phonological ability, speech perception and low-level auditory processing were assessed in a group of 5-year-old pre-school children at high-family risk for dyslexia, compared to a group of well-matched low-risk control children. Based on family risk status and first grade literacy achievement children were categorized in groups and pre-school data were retrospectively reanalyzed. On average, children showing both increased family risk and literacy-impairment at the end of first grade, presented significant pre-school deficits in phonological awareness, rapid automatized naming, speech-in-noise perception and frequency modulation detection. The concurrent presence of these deficits before receiving any formal reading instruction, might suggest a causal relation with problematic literacy development. However, a closer inspection of the individual data indicates that the core of the literacy problem is situated at the level of higher-order phonological processing. Although auditory and speech perception problems are relatively over-represented in literacy-impaired subjects and might possibly aggravate the phonological and literacy problem, it is unlikely that they would be at the basis of these problems. At a neurobiological level, results are interpreted as evidence for dysfunctional processing along the auditory-to-articulation stream that is implied in phonological processing, in combination with a relatively intact or inconsistently impaired functioning of the auditory-to-meaning stream that subserves auditory processing and speech perception.
Why epilepsy challenges social life.
Steiger, Bettina K; Jokeit, Hennric
2017-01-01
Social bonds are at the center of our daily living and are an essential determinant of our quality of life. In people with epilepsy, numerous factors can impede cognitive and affective functions necessary for smooth social interactions. Psychological and psychiatric complications are common in epilepsy and may hinder the processing of social information. In addition, neuropsychological deficits such as slowed processing speed, memory loss or attentional difficulties may interfere with enjoyable reciprocity of social interactions. We consider societal, psychological, and neuropsychological aspects of social life with particular emphasis on socio-cognitive functions in temporal lobe epilepsy. Deficits in emotion recognition and theory of mind, two main aspects of social cognition, are frequently observed in individuals with mesial temporal lobe epilepsy. Results from behavioural studies targeting these functions will be presented with a focus on their relevance for patients' daily life. Furthermore, we will broach the issue of pitfalls in current diagnostic tools and potential directions for future research. By giving a broad overview of individual and interpersonal determinants of social functioning in epilepsy, we hope to provide a basis for future research to establish social cognition as a key component in the comprehensive assessment and care of those with epilepsy. Copyright © 2016 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.
Romani, Cristina; Tsouknida, Effie; Olson, Andrew
2015-01-01
We investigated order encoding in developmental dyslexia using a task that presented nonalphanumeric visual characters either simultaneously or sequentially—to tap spatial and temporal order encoding, respectively—and asked participants to reproduce their order. Dyslexic participants performed poorly in the sequential condition, but normally in the simultaneous condition, except for positions most susceptible to interference. These results are novel in demonstrating a selective difficulty with temporal order encoding in a dyslexic group. We also tested the associations between our order reconstruction tasks and: (a) lexical learning and phonological tasks; and (b) different reading and spelling tasks. Correlations were extensive when the whole group of participants was considered together. When dyslexics and controls were considered separately, different patterns of association emerged between orthographic tasks on the one side and tasks tapping order encoding, phonological processing, and written learning on the other. These results indicate that different skills support different aspects of orthographic processing and are impaired to different degrees in individuals with dyslexia. Therefore, developmental dyslexia is not caused by a single impairment, but by a family of deficits loosely related to difficulties with order. Understanding the contribution of these different deficits will be crucial to deepen our understanding of this disorder. PMID:25246235
Chételat, Gaël; Villemagne, Victor L; Pike, Kerryn E; Ellis, Kathryn A; Bourgeat, Pierrick; Jones, Gareth; O'Keefe, Graeme J; Salvado, Olivier; Szoeke, Cassandra; Martins, Ralph N; Ames, David; Masters, Colin L; Rowe, Christopher C
2011-03-01
The relationship between β-amyloid deposition and memory deficits in early Alzheimer's disease is unresolved, as past studies show conflicting findings. The present study aims to determine the relative contribution of regional β-amyloid deposition, hippocampal atrophy and white matter integrity to episodic memory deficits in non-demented older individuals harbouring one of the characteristic hallmarks of Alzheimer's disease, i.e. with β-amyloid pathology. Understanding these relationships is critical for effective therapeutic development. Brain magnetic resonance imaging and [(11)C]Pittsburgh Compound B-positron emission tomography scans were obtained in 136 non-demented individuals aged over 60 years, including 93 healthy elderly and 43 patients with mild cognitive impairment. Voxel-based correlations were computed between a memory composite score and grey matter volume, white matter volume and β-amyloid deposition imaging datasets. Hierarchical linear regression analyses were then performed using values extracted in regions of most significant correlations to determine the relative contribution of each modality to memory deficits. All analyses were conducted pooling all groups together as well as within separate subgroups of cognitively normal elderly, patients with mild cognitive impairment and individuals with high versus low neocortical β-amyloid. Brain areas of highest correlation with episodic memory deficits were the hippocampi for grey matter volume, the perforant path for white matter volume and the temporal neocortex for β-amyloid deposition. When considering these three variables together, only hippocampal volume and temporal β-amyloid deposition provided independent contributions to memory deficits. In contrast to global β-amyloid deposition, temporal β-amyloid deposition was still related to memory independently from hippocampal atrophy within subgroups of cognitively normal elderly, patients with mild cognitive impairment or cases with high neocortical β-amyloid. In the pre-dementia stage of Alzheimer's disease, subtle episodic memory impairment is related to β-amyloid deposition, especially in the temporal neocortex, and independently from hippocampal atrophy, suggesting that both factors should be independently targeted in therapeutic trials aimed at reducing cognitive decline.
Global processing takes time: A meta-analysis on local-global visual processing in ASD.
Van der Hallen, Ruth; Evers, Kris; Brewaeys, Katrien; Van den Noortgate, Wim; Wagemans, Johan
2015-05-01
What does an individual with autism spectrum disorder (ASD) perceive first: the forest or the trees? In spite of 30 years of research and influential theories like the weak central coherence (WCC) theory and the enhanced perceptual functioning (EPF) account, the interplay of local and global visual processing in ASD remains only partly understood. Research findings vary in indicating a local processing bias or a global processing deficit, and often contradict each other. We have applied a formal meta-analytic approach and combined 56 articles that tested about 1,000 ASD participants and used a wide range of stimuli and tasks to investigate local and global visual processing in ASD. Overall, results show no enhanced local visual processing nor a deficit in global visual processing. Detailed analysis reveals a difference in the temporal pattern of the local-global balance, that is, slow global processing in individuals with ASD. Whereas task-dependent interaction effects are obtained, gender, age, and IQ of either participant groups seem to have no direct influence on performance. Based on the overview of the literature, suggestions are made for future research. (c) 2015 APA, all rights reserved).
Visual memory transformations in dyslexia.
Barnes, James; Hinkley, Lisa; Masters, Stuart; Boubert, Laura
2007-06-01
Representational Momentum refers to observers' distortion of recognition memory for pictures that imply motion because of an automatic mental process which extrapolates along the implied trajectory of the picture. Neuroimaging evidence suggests that activity in the magnocellular visual pathway is necessary for representational momentum to occur. It has been proposed that individuals with dyslexia have a magnocellular deficit, so it was hypothesised that these individuals would show reduced or absent representational momentum. In this study, 30 adults with dyslexia and 30 age-matched controls were compared on two tasks, one linear and one rotation, which had previously elicited the representational momentum effect. Analysis indicated significant differences in the performance of the two groups, with the dyslexia group having a reduced susceptibility to representational momentum in both linear and rotational directions. The findings highlight that deficits in temporal spatial processing may contribute to the perceptual profile of dyslexia.
Harciarek, Michał; Cosentino, Stephanie
2015-01-01
Frontotemporal dementia (FTD) represents a spectrum of non-Alzheimer’s degenerative conditions associated with focal atrophy of the frontal and/or temporal lobes. Frontal and temporal regions of the brain have been shown to be strongly involved in executive function, social cognition and language processing and, thus, deficits in these domains are frequently seen in patients with FTD or may even be hallmarks of a specific FTD subtype ( i.e., relatively selective and progressive language impairment in primary progressive aphasia). In this review, we have attempted to delineate how language, executive function, and social cognition may contribute to the diagnosis of FTD syndromes, namely the behavioral variant FTD as well as the language variants of FTD including the three subtypes of primary progressive aphasia (PPA): non-fluent/agrammatic, semantic, and logopenic. This review also addresses the extent to which deficits in these cognitive areas contribute to the differential diagnosis of FTD versus AD. Finally, early clinical determinants of pathology are briefly discussed and contemporary challenges to the diagnosis of FTD are presented. PMID:23611348
Presynaptic serotonin 2A receptors modulate thalamocortical plasticity and associative learning
Barre, Alexander; Berthoux, Coralie; De Bundel, Dimitri; Valjent, Emmanuel; Bockaert, Joël; Marin, Philippe; Bécamel, Carine
2016-01-01
Higher-level cognitive processes strongly depend on a complex interplay between mediodorsal thalamus nuclei and the prefrontal cortex (PFC). Alteration of thalamofrontal connectivity has been involved in cognitive deficits of schizophrenia. Prefrontal serotonin (5-HT)2A receptors play an essential role in cortical network activity, but the mechanism underlying their modulation of glutamatergic transmission and plasticity at thalamocortical synapses remains largely unexplored. Here, we show that 5-HT2A receptor activation enhances NMDA transmission and gates the induction of temporal-dependent plasticity mediated by NMDA receptors at thalamocortical synapses in acute PFC slices. Expressing 5-HT2A receptors in the mediodorsal thalamus (presynaptic site) of 5-HT2A receptor-deficient mice, but not in the PFC (postsynaptic site), using a viral gene-delivery approach, rescued the otherwise absent potentiation of NMDA transmission, induction of temporal plasticity, and deficit in associative memory. These results provide, to our knowledge, the first physiological evidence of a role of presynaptic 5-HT2A receptors located at thalamocortical synapses in the control of thalamofrontal connectivity and the associated cognitive functions. PMID:26903620
Rocchetti, Jill; Isingrini, Elsa; Dal Bo, Gregory; Sagheby, Sara; Menegaux, Aurore; Tronche, François; Levesque, Daniel; Moquin, Luc; Gratton, Alain; Wong, Tak Pan; Rubinstein, Marcelo; Giros, Bruno
2015-03-15
Dysfunctional mesocorticolimbic dopamine signaling has been linked to alterations in motor and reward-based functions associated with psychiatric disorders. Converging evidence from patients with psychiatric disorders and use of antipsychotics suggests that imbalance of dopamine signaling deeply alters hippocampal functions. However, given the lack of full characterization of a functional mesohippocampal pathway, the precise role of dopamine transmission in memory deficits associated with these disorders and their dedicated therapies is unknown. In particular, the positive outcome of antipsychotic treatments, commonly antagonizing D2 dopamine receptors (D2Rs), on cognitive deficits and memory impairments remains questionable. Following pharmacologic and genetic manipulation of dopamine transmission, we performed anatomic, neurochemical, electrophysiologic, and behavioral investigations to uncover the role of D2Rs in hippocampal-dependent plasticity and learning. Naïve mice (n = 4-21) were used in the different procedures. Dopamine modulated both long-term potentiation and long-term depression in the temporal hippocampus as well as spatial and recognition learning and memory in mice through D2Rs. Although genetic deletion or pharmacologic blockade of D2Rs led to the loss of long-term potentiation expression, the specific genetic removal of presynaptic D2Rs impaired long-term depression and performances on spatial memory tasks. Presynaptic D2Rs in dopamine fibers of the temporal hippocampus tightly modulate long-term depression expression and play a major role in the regulation of hippocampal learning and memory. This direct role of mesohippocampal dopamine input as uncovered here adds a new dimension to dopamine involvement in the physiology underlying deficits associated with neuropsychiatric disorders. Copyright © 2015 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
van Rooij, Daan; Hoekstra, Pieter J.; Mennes, Maarten; von Rhein, Daniel; Thissen, Andrieke J.A.M.; Heslenfeld, Dirk; Zwiers, Marcel P.; Faraone, Stephen V.; Oosterlaan, Jaap; Franke, Barbara; Rommelse, Nanda; Buitelaar, Jan K.; Hartman, Catharina A.
2015-01-01
Objective Impaired response inhibition is a key executive function deficit of attention-deficit/hyperactivity disorder (ADHD). Still, behavioral response inhibition measures do not consistently differentiate individuals with ADHD from unaffected individuals. We therefore investigated the neural correlates of response inhibition as well as the familial nature of these neural correlates. Methods fMRI measurements of neural activation during the stop-signal task along with behavioral measures of response inhibition were obtained in adolescents and young adults with ADHD (N=185), their unaffected siblings (N=111), and healthy controls (N=124). Results Stop-signal reaction times were longer in participants with ADHD, but not in their unaffected siblings, while reaction time variability and error rates were higher in both groups than in controls. Neural hypoactivation was observed in frontal-striatal and frontal-parietal networks of participants with ADHD and unaffected siblings compared to controls, whereby activation in inferior frontal and temporal/parietal nodes in unaffected siblings was intermediate between that of participants with ADHD and controls. Furthermore, neural activation in inferior frontal nodes correlated with stop-signal reaction times, and activation in both inferior frontal and temporal/parietal nodes correlated with ADHD severity. Conclusions Neural activation alterations in ADHD are more robust than behavioral response inhibition deficits and explain variance in response inhibition and ADHD severity. Although only affected participants with ADHD have deficient response inhibition, hypoactivation in inferior frontal and temporal-parietal nodes in unaffected siblings support the familial nature of the underlying neural process. Hypoactivation in these nodes may be useful as endophenotypes that extend beyond the affected individuals in the family. PMID:25615565
Weiss, Peter H; Ubben, Simon D; Kaesberg, Stephanie; Kalbe, Elke; Kessler, Josef; Liebig, Thomas; Fink, Gereon R
2016-01-01
It is debated how language and praxis are co-represented in the left hemisphere (LH). As voxel-based lesion-symptom mapping in LH stroke patients with aphasia and/or apraxia may contribute to this debate, we here investigated the relationship between language and praxis deficits at the behavioral and lesion levels in 50 sub-acute stroke patients. We hypothesized that language and (meaningful) action are linked via semantic processing in Broca's region. Behaviorally, half of the patients suffered from co-morbid aphasia and apraxia. While 24% (n = 12) of all patients exhibited aphasia without apraxia, apraxia without aphasia was rare (n = 2, 4%). Left inferior frontal, insular, inferior parietal, and superior temporal lesions were specifically associated with deficits in naming, reading, writing, or auditory comprehension. In contrast, lesions affecting the left inferior frontal gyrus, premotor cortex, and the central region as well as the inferior parietal lobe were associated with apraxic deficits (i.e., pantomime, imitation of meaningful and meaningless gestures). Thus, contrary to the predictions of the embodied cognition theory, lesions to sensorimotor and premotor areas were associated with the severity of praxis but not language deficits. Lesions of Brodmann area (BA) 44 led to combined apraxic and aphasic deficits. Data suggest that BA 44 acts as an interface between language and (meaningful) action thereby supporting parcellation schemes (based on connectivity and receptor mapping) which revealed a BA 44 sub-area involved in semantic processing.
Brain organization underlying superior mathematical abilities in children with autism.
Iuculano, Teresa; Rosenberg-Lee, Miriam; Supekar, Kaustubh; Lynch, Charles J; Khouzam, Amirah; Phillips, Jennifer; Uddin, Lucina Q; Menon, Vinod
2014-02-01
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by social and communication deficits. While such deficits have been the focus of most research, recent evidence suggests that individuals with ASD may exhibit cognitive strengths in domains such as mathematics. Cognitive assessments and functional brain imaging were used to investigate mathematical abilities in 18 children with ASD and 18 age-, gender-, and IQ-matched typically developing (TD) children. Multivariate classification and regression analyses were used to investigate whether brain activity patterns during numerical problem solving were significantly different between the groups and predictive of individual mathematical abilities. Children with ASD showed better numerical problem solving abilities and relied on sophisticated decomposition strategies for single-digit addition problems more frequently than TD peers. Although children with ASD engaged similar brain areas as TD children, they showed different multivariate activation patterns related to arithmetic problem complexity in ventral temporal-occipital cortex, posterior parietal cortex, and medial temporal lobe. Furthermore, multivariate activation patterns in ventral temporal-occipital cortical areas typically associated with face processing predicted individual numerical problem solving abilities in children with ASD but not in TD children. Our study suggests that superior mathematical information processing in children with ASD is characterized by a unique pattern of brain organization and that cortical regions typically involved in perceptual expertise may be utilized in novel ways in ASD. Our findings of enhanced cognitive and neural resources for mathematics have critical implications for educational, professional, and social outcomes for individuals with this lifelong disorder. Copyright © 2014 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Teki, Sundeep; Barnes, Gareth R; Penny, William D; Iverson, Paul; Woodhead, Zoe V J; Griffiths, Timothy D; Leff, Alexander P
2013-06-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics' speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired.
Barnes, Gareth R.; Penny, William D.; Iverson, Paul; Woodhead, Zoe V. J.; Griffiths, Timothy D.; Leff, Alexander P.
2013-01-01
In this study, we used magnetoencephalography and a mismatch paradigm to investigate speech processing in stroke patients with auditory comprehension deficits and age-matched control subjects. We probed connectivity within and between the two temporal lobes in response to phonemic (different word) and acoustic (same word) oddballs using dynamic causal modelling. We found stronger modulation of self-connections as a function of phonemic differences for control subjects versus aphasics in left primary auditory cortex and bilateral superior temporal gyrus. The patients showed stronger modulation of connections from right primary auditory cortex to right superior temporal gyrus (feed-forward) and from left primary auditory cortex to right primary auditory cortex (interhemispheric). This differential connectivity can be explained on the basis of a predictive coding theory which suggests increased prediction error and decreased sensitivity to phonemic boundaries in the aphasics’ speech network in both hemispheres. Within the aphasics, we also found behavioural correlates with connection strengths: a negative correlation between phonemic perception and an inter-hemispheric connection (left superior temporal gyrus to right superior temporal gyrus), and positive correlation between semantic performance and a feedback connection (right superior temporal gyrus to right primary auditory cortex). Our results suggest that aphasics with impaired speech comprehension have less veridical speech representations in both temporal lobes, and rely more on the right hemisphere auditory regions, particularly right superior temporal gyrus, for processing speech. Despite this presumed compensatory shift in network connectivity, the patients remain significantly impaired. PMID:23715097
Gerlai, R; Adams, B; Fitch, T; Chaney, S; Baez, M
2002-08-01
mGluR8 is a G-protein coupled metabotropic glutamate receptor expressed in the mammalian brain. Members of the mGluR family have been shown to be modulators of neural plasticity and learning and memory. Here we analyze the consequences of a null mutation at the mGluR8 gene locus generated using homologous recombination in embryonic stem cells by comparing the learning performance of the mutants with that of wild type controls in the Morris water maze (MWM) and the context and cue dependent fear conditioning (CFC). Our results revealed robust performance deficits associated with the genetic background, the ICR outbred strain, in both mGluR8 null mutant and the wild type control mice. Mice of this strain origin suffered from impaired vision as compared to CD1 or C57BL/6 mice, a significant impediment in MWM, a visuo-spatial learning task. The CFC task, being less dependent on visual cues, allowed us to reveal subtle performance deficits in the mGluR8 mutants: novelty induced hyperactivity and temporally delayed and blunted responding to shocks and temporally delayed responding to contextual stimuli were detected. The role of mGluR8 as a presynaptic autoreceptor and its contribution to cognitive processes are hypothesized and the utility of gene targeting as compared to pharmacological methods is discussed.
Doré, Marie-Claire; Caza, Nicole; Gingras, Nathalie; Rouleau, Nancie
2007-11-01
Findings from the literature consistently revealed episodic memory deficits in adolescents with psychosis. However, the nature of the dysfunction remains unclear. Based on a cognitive neuropsychological approach, a theoretically driven paradigm was used to generate valid interpretations about the underlying memory processes impaired in these patients. A total of 16 inpatient adolescents with psychosis and 19 individually matched controls were assessed using an experimental task designed to measure memory for source and temporal context of studied words. Retrospective confidence judgements for source and temporal context responses were also assessed. On word recognition, patients had more difficulty than controls discriminating target words from neutral distractors. In addition, patients identified both source and temporal context features of recognised items less often than controls. Confidence judgements analyses revealed that the difference between the proportions of correct and incorrect responses made with high confidence was lower in patients than in controls. In addition, the proportion of high-confident responses that were errors was higher in patients compared to controls. These findings suggest impaired relational binding processes in adolescents with psychosis, resulting in a difficulty to create unified memory representations. Our findings on retrospective confidence data point to impaired monitoring of retrieved information that may also impair memory performance in these individuals.
Degenerative jargon aphasia: unusual progression of logopenic/phonological progressive aphasia?
Caffarra, Paolo; Gardini, Simona; Cappa, Stefano; Dieci, Francesca; Concari, Letizia; Barocco, Federica; Ghetti, Caterina; Ruffini, Livia; Prati, Guido Dalla Rosa
2013-01-01
Primary progressive aphasia (PPA) corresponds to the gradual degeneration of language which can occur as nonfluent/agrammatic PPA, semantic variant PPA or logopenic variant PPA. We describe the clinical evolution of a patient with PPA presenting jargon aphasia as a late feature. At the onset of the disease (ten years ago) the patient showed anomia and executive deficits, followed later on by phonemic paraphasias and neologisms, deficits in verbal short-term memory, naming, verbal and semantic fluency. At recent follow-up the patient developed an unintelligible jargon with both semantic and neologistic errors, as well as with severe deficit of comprehension which precluded any further neuropsychological assessment. Compared to healthy controls, FDG-PET showed a hypometabolism in the left angular and middle temporal gyri, precuneus, caudate, posterior cingulate, middle frontal gyrus, and bilaterally in the superior temporal and inferior frontal gyri. The clinical and neuroimaging profile seems to support the hypothesis that the patient developed a late feature of logopenic variant PPA characterized by jargonaphasia and associated with superior temporal and parietal dysfunction.
Chantiluke, Kaylita; Christakou, Anastasia; Murphy, Clodagh M; Giampietro, Vincent; Daly, Eileen M; Ecker, Christina; Brammer, Michael; Murphy, Declan G; Rubia, Katya
2014-08-30
Attention Deficit Hyperactivity Disorder (ADHD) and Autism Spectrum Disorder (ASD) are often comorbid and share cognitive abnormalities in temporal foresight. A key question is whether shared cognitive phenotypes are based on common or different underlying pathophysiologies and whether comorbid patients have additive neurofunctional deficits, resemble one of the disorders or have a different pathophysiology. We compared age- and IQ-matched boys with non-comorbid ADHD (18), non-comorbid ASD (15), comorbid ADHD and ASD (13) and healthy controls (18) using functional magnetic resonance imaging (fMRI) during a temporal discounting task. Only the ASD and the comorbid groups discounted delayed rewards more steeply. The fMRI data showed both shared and disorder-specific abnormalities in the three groups relative to controls in their brain-behaviour associations. The comorbid group showed both unique and more severe brain-discounting associations than controls and the non-comorbid patient groups in temporal discounting areas of ventromedial and lateral prefrontal cortex, ventral striatum and anterior cingulate, suggesting that comorbidity is neither an endophenocopy of the two pure disorders nor an additive pathology. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Grammatical categories in the brain: the role of morphological structure.
Longe, O; Randall, B; Stamatakis, E A; Tyler, L K
2007-08-01
The current study addresses the controversial issue of how different grammatical categories are neurally processed. Several lesion-deficit studies suggest that distinct neural substrates underlie the representation of nouns and verbs, with verb deficits associated with damage to left inferior frontal gyrus (LIFG) and noun deficits with damage to left temporal cortex. However, this view is not universally shared by neuropsychological and neuroimaging studies. We have suggested that these inconsistencies may reflect interactions between the morphological structure of nouns and verbs and the processing implications of this, rather than differences in their neural representations (Tyler et al. 2004). We tested this hypothesis using event-related functional magnetic resonance imaging, to scan subjects performing a valence judgment on unambiguous nouns and verbs, presented as stems ('snail, hear') and inflected forms ('snails, hears'). We predicted that activations for noun and verb stems would not differ, whereas inflected verbs would generate more activation in left frontotemporal areas than inflected nouns. Our findings supported this hypothesis, with greater activation of this network for inflected verbs compared with inflected nouns. These results support the claim that form class is not a first-order organizing principle underlying the representation of words but rather interacts with the processes that operate over lexical representations.
Lah, Suncica; Smith, Mary Lou
2014-01-01
Children with temporal lobe epilepsy are at risk for deficits in new learning (episodic memory) and literacy skills. Semantic memory deficits and double dissociations between episodic and semantic memory have recently been found in this patient population. In the current study we investigate whether impairments of these 2 distinct memory systems relate to literacy skills. 57 children with unilateral temporal lobe epilepsy completed tests of verbal memory (episodic and semantic) and literacy skills (reading and spelling accuracy, and reading comprehension). For the entire group, semantic memory explained over 30% of variance in each of the literacy domains. Episodic memory explained a significant, but rather small proportion (< 10%) of variance in reading and spelling accuracy, but not in reading comprehension. Moreover, when children with opposite patterns of specific memory impairments (intact semantic/impaired episodic, intact episodic/impaired semantic) were compared, significant reductions in literacy skills were evident only in children with semantic memory impairments, but not in children with episodic memory impairments relative to the norms and to children with temporal lobe epilepsy who had intact memory. Our study provides the first evidence for differential relations between episodic and semantic memory impairments and literacy skills in children with temporal lobe epilepsy. As such, it highlights the urgent need to consider semantic memory deficits in management of children with temporal lobe epilepsy and undertake further research into the nature of reading difficulties of children with semantic memory impairments.
On the right side? A longitudinal study of left- versus right-lateralized semantic dementia.
Kumfor, Fiona; Landin-Romero, Ramon; Devenney, Emma; Hutchings, Rosalind; Grasso, Roberto; Hodges, John R; Piguet, Olivier
2016-03-01
The typical presentation of semantic dementia is associated with marked, left predominant anterior temporal lobe atrophy and with changes in language. About 30% of individuals, however, present with predominant right anterior temporal lobe atrophy, usually accompanied by behavioural changes and prosopagnosia. Here, we aimed to establish whether these initially distinct clinical presentations evolve into a similar syndrome at the neural and behavioural level. Thirty-one patients who presented with predominant anterior temporal lobe atrophy were included. Based on imaging, patients were categorized as either predominant left (n = 22) or right (n = 9) semantic dementia. Thirty-three Alzheimer's disease patients and 25 healthy controls were included for comparison. Participants completed the Addenbrooke's Cognitive Examination, a Face and Emotion Processing Battery and the Cambridge Behavioural Inventory, and underwent magnetic resonance imaging annually. Longitudinal neuroimaging analyses showed greater right temporal pole atrophy in left semantic dementia than Alzheimer's disease, whereas right semantic dementia showed greater orbitofrontal and left temporal lobe atrophy than Alzheimer's disease. Importantly, direct comparisons between semantic dementia groups revealed that over time, left semantic dementia showed progressive thinning in the right temporal pole, whereas right semantic dementia showed thinning in the orbitofrontal cortex and anterior cingulate. Behaviourally, longitudinal analyses revealed that general cognition declined in all patients. In contrast, patients with left and right semantic dementia showed greater emotion recognition decline than Alzheimer's disease. In addition, left semantic dementia showed greater motivation loss than Alzheimer's disease. Correlational analyses revealed that emotion recognition was associated with right temporal pole, right medial orbitofrontal and right fusiform integrity, while changes in motivation were associated with right temporal pole cortical thinning. While left and right semantic dementia show distinct profiles at presentation, both phenotypes develop deficits in emotion recognition and behaviour. These findings highlight the pervasive socio-emotional deficits in frontotemporal dementia, even in patients with an initial language presentation. These changes reflect right anterior temporal and orbitofrontal cortex degeneration, underscoring the role of these regions in social cognition and behaviour. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Delays in auditory processing identified in preschool children with FASD
Stephen, Julia M.; Kodituwakku, Piyadasa W.; Kodituwakku, Elizabeth L.; Romero, Lucinda; Peters, Amanda M.; Sharadamma, Nirupama Muniswamy; Caprihan, Arvind; Coffman, Brian A.
2012-01-01
Background Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool aged children. Since sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Materials and Methods Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control children aged 3-6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multi-dipole spatio-temporal modeling technique (CSST – Ranken et al. 2002) to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. Results There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Discussion Auditory delay revealed by MEG in children with FASD may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. PMID:22458372
Delays in auditory processing identified in preschool children with FASD.
Stephen, Julia M; Kodituwakku, Piyadasa W; Kodituwakku, Elizabeth L; Romero, Lucinda; Peters, Amanda M; Sharadamma, Nirupama M; Caprihan, Arvind; Coffman, Brian A
2012-10-01
Both sensory and cognitive deficits have been associated with prenatal exposure to alcohol; however, very few studies have focused on sensory deficits in preschool-aged children. As sensory skills develop early, characterization of sensory deficits using novel imaging methods may reveal important neural markers of prenatal alcohol exposure. Participants in this study were 10 children with a fetal alcohol spectrum disorder (FASD) and 15 healthy control (HC) children aged 3 to 6 years. All participants had normal hearing as determined by clinical screens. We measured their neurophysiological responses to auditory stimuli (1,000 Hz, 72 dB tone) using magnetoencephalography (MEG). We used a multidipole spatio-temporal modeling technique to identify the location and timecourse of cortical activity in response to the auditory tones. The timing and amplitude of the left and right superior temporal gyrus sources associated with activation of left and right primary/secondary auditory cortices were compared across groups. There was a significant delay in M100 and M200 latencies for the FASD children relative to the HC children (p = 0.01), when including age as a covariate. The within-subjects effect of hemisphere was not significant. A comparable delay in M100 and M200 latencies was observed in children across the FASD subtypes. Auditory delay revealed by MEG in children with FASDs may prove to be a useful neural marker of information processing difficulties in young children with prenatal alcohol exposure. The fact that delayed auditory responses were observed across the FASD spectrum suggests that it may be a sensitive measure of alcohol-induced brain damage. Therefore, this measure in conjunction with other clinical tools may prove useful for early identification of alcohol affected children, particularly those without dysmorphia. Copyright © 2012 by the Research Society on Alcoholism.
Retrograde and anterograde memory following selective damage to the dorsolateral entorhinal cortex.
Gervais, Nicole J; Barrett-Bernstein, Meagan; Sutherland, Robert J; Mumby, Dave G
2014-12-01
Anatomical and electrophysiological evidence suggest the dorsolateral entorhinal cortex (DLEC) is involved in processing spatial information, but there is currently no consensus on whether its functions are necessary for normal spatial learning and memory. The present study examined the effects of excitotoxic lesions of the DLEC on retrograde and anterograde memory on two tests of allocentric spatial learning: a hidden fixed-platform watermaze task, and a novelty-preference-based dry-maze test. Deficits were observed on both tests when training occurred prior to but not following n-methyl d-aspartate (NMDA) lesions of DLEC, suggesting retrograde memory impairment in the absence of anterograde impairments for the same information. The retrograde memory impairments were temporally-graded; rats that received DLEC lesions 1-3 days following training displayed deficits, while those that received lesions 7-10 days following training performed like a control group that received sham surgery. The deficits were not attenuated by co-infusion of tetrodotoxin, suggesting they are not due to disruption of neural processing in structures efferent to the DLEC, such as the hippocampus. The present findings provide evidence that the DLEC is involved in the consolidation of allocentric spatial information. Copyright © 2014 Elsevier Inc. All rights reserved.
Associative episodic memory and recollective processes in childhood temporal lobe epilepsy.
Martins, Sylvie; Guillery-Girard, Bérengère; Clochon, Patrice; Bulteau, Christine; Hertz-Pannier, Lucie; Chiron, Catherine; Eustache, Francis; Jambaqué, Isabelle
2015-03-01
While the current literature on children suffering from temporal lobe epilepsy (CTLE) mostly focuses on material-related episodic memory deficits according to seizure-onset lateralization, the present study examined associative episodic memory according to the type of information to memorize (e.g., factual, spatial, and sequential) and further investigated subjective and objective recollection. Eleven children with left temporal lobe epilepsy (LTLE), 10 children with right temporal lobe epilepsy (RTLE), among whom 9 displayed hippocampal sclerosis (HS), and 42 healthy controls completed the WHAT-WHEN-WHERE protocol (Guillery-Girard et al., 2013). Group comparisons were first conducted according to the affected side and second according to the underlying pathology. Results showed associative memory impairments in patients irrespective of the affected side. Moreover, this study revealed that HS is particularly deleterious to associative and subjective recollection in CTLE. In addition, this study emphasizes the need for assessing episodic memory in childhood TLE beyond material specificity. Copyright © 2015 Elsevier Inc. All rights reserved.
Fornix and medial temporal lobe lesions lead to comparable deficits in complex visual perception.
Lech, Robert K; Koch, Benno; Schwarz, Michael; Suchan, Boris
2016-05-04
Recent research dealing with the structures of the medial temporal lobe (MTL) has shifted away from exclusively investigating memory-related processes and has repeatedly incorporated the investigation of complex visual perception. Several studies have demonstrated that higher level visual tasks can recruit structures like the hippocampus and perirhinal cortex in order to successfully perform complex visual discriminations, leading to a perceptual-mnemonic or representational view of the medial temporal lobe. The current study employed a complex visual discrimination paradigm in two patients suffering from brain lesions with differing locations and origin. Both patients, one with extensive medial temporal lobe lesions (VG) and one with a small lesion of the anterior fornix (HJK), were impaired in complex discriminations while showing otherwise mostly intact cognitive functions. The current data confirmed previous results while also extending the perceptual-mnemonic theory of the MTL to the main output structure of the hippocampus, the fornix. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Dermody, Nadene; Wong, Stephanie; Ahmed, Rebekah; Piguet, Olivier; Hodges, John R; Irish, Muireann
2016-05-30
Loss of empathy is a core presenting feature of the behavioral-variant of frontotemporal dementia (bvFTD), resulting in socioemotional difficulties and behavioral transgressions. In contrast, interpersonal functioning remains relatively intact in Alzheimer's disease (AD), despite marked cognitive decline. The neural substrates mediating these patterns of loss and sparing in social functioning remain unclear, yet are relevant for our understanding of the social brain. We investigated cognitive versus affective aspects of empathy using the Interpersonal Reactivity Index (IRI) in 25 AD and 24 bvFTD patients and contrasted their performance with 22 age- and education-matched controls. Cognitive empathy was comparably compromised in AD and bvFTD, whereas affective empathy was impaired exclusively in bvFTD. While controlling for overall cognitive dysfunction ameliorated perspective-taking deficits in AD, empathy loss persisted across cognitive and affective domains in bvFTD. Voxel-based morphometry analyses revealed divergent neural substrates of empathy loss in each patient group. Perspective-taking deficits correlated with predominantly left-sided temporoparietal atrophy in AD, whereas widespread bilateral frontoinsular, temporal, parietal, and occipital atrophy was implicated in bvFTD. Reduced empathic concern in bvFTD was associated with atrophy in the left orbitofrontal, inferior frontal, and insular cortices, and the bilateral mid-cingulate gyrus. Our findings suggest that social cognitive deficits in AD arise largely as a consequence of global cognitive dysfunction, rather than a loss of empathy per se. In contrast, loss of empathy in bvFTD reflects the deterioration of a distributed network of frontoinsular and temporal structures that appear crucial for monitoring and processing social information.
Deficit in visual temporal integration in autism spectrum disorders.
Nakano, Tamami; Ota, Haruhisa; Kato, Nobumasa; Kitazawa, Shigeru
2010-04-07
Individuals with autism spectrum disorders (ASD) are superior in processing local features. Frith and Happe conceptualize this cognitive bias as 'weak central coherence', implying that a local enhancement derives from a weakness in integrating local elements into a coherent whole. The suggested deficit has been challenged, however, because individuals with ASD were not found to be inferior to normal controls in holistic perception. In these opposing studies, however, subjects were encouraged to ignore local features and attend to the whole. Therefore, no one has directly tested whether individuals with ASD are able to integrate local elements over time into a whole image. Here, we report a weakness of individuals with ASD in naming familiar objects moved behind a narrow slit, which was worsened by the absence of local salient features. The results indicate that individuals with ASD have a clear deficit in integrating local visual information over time into a global whole, providing direct evidence for the weak central coherence hypothesis.
Music and language in degenerative disease of the brain.
Polk, M; Kertesz, A
1993-05-01
Music and language functions were studied in two musicians with degenerative disease. Both patients were tested on a standardized language battery and a series of music tasks. In the first case with left cortical atrophy and primary progressive aphasia, expressive music functions were spared with impaired reception of rhythm. The second case with posterior cortical atrophy, greater on the right, was nonaphasic, had spatial agraphia, a visuopractic deficit, and severe expressive music deficits, but intact rhythm repetition. The aphasic patient showed dissociations between music and language in fluency and content; continuous, organized, although reiterative music production was contrasted with nonfluent language. The nonaphasic patient showed the opposite pattern of deficits; unmusical production with impaired melody and rhythm organization that was contrasted with fluent, intelligible language. The double dissociation between language and music functions supports the existence of independent cognitive systems, one consistent with conventional left lateralization models of language, temporal sequence, and analytic music processing and another with a right lateralization model of implicit music cognition.
Effects of psilocybin on time perception and temporal control of behaviour in humans.
Wittmann, Marc; Carter, Olivia; Hasler, Felix; Cahn, B Rael; Grimberg, Ulrike; Spring, Philipp; Hell, Daniel; Flohr, Hans; Vollenweider, Franz X
2007-01-01
Hallucinogenic psilocybin is known to alter the subjective experience of time. However, there is no study that systematically investigated objective measures of time perception under psilocybin. Therefore, we studied dose-dependent effects of the serotonin (5-HT)2A/1A receptor agonist psilocybin (4-phosphoryloxy-N, N-dimethyltryptamine) on temporal processing, employing tasks of temporal reproduction, sensorimotor synchronization and tapping tempo. To control for cognitive and subjective changes, we assessed spatial working memory and conscious experience. Twelve healthy human volunteers were tested under placebo, medium (115 microg/kg), and high (250 microg/kg) dose conditions, in a double-blind experimental design. Psilocybin was found to significantly impair subjects' ability to (1) reproduce interval durations longer than 2.5 sec, (2) to synchronize to inter-beat intervals longer than 2 sec and (3) caused subjects to be slower in their preferred tapping rate. These objective effects on timing performance were accompanied by working-memory deficits and subjective changes in conscious state, namely increased reports of 'depersonalization' and 'derealization' phenomena including disturbances in subjective 'time sense.' Our study is the first to systematically assess the impact of psilocybin on timing performance on standardized measures of temporal processing. Results indicate that the serotonin system is selectively involved in duration processing of intervals longer than 2 to 3 seconds and in the voluntary control of the speed of movement. We speculate that psilocybin's selective disruption of longer intervals is likely to be a product of interactions with cognitive dimensions of temporal processing -presumably via 5-HT2A receptor stimulation.
Spatial and temporal processing in healthy aging: implications for perceptions of driving skills.
Conlon, Elizabeth; Herkes, Kathleen
2008-07-01
Sensitivity to the attributes of a stimulus (form or motion) and accuracy when detecting rapidly presented stimulus information were measured in older (N = 36) and younger (N = 37) groups. Before and after practice, the older group was significantly less sensitive to global motion (but not to form) and less accurate on a rapid sequencing task when detecting the individual elements presented in long but not short sequences. These effect sizes produced power for the different analyses that ranged between 0.5 and 1.00. The reduced sensitivity found among older individuals to temporal but not spatial stimuli, adds support to previous findings of a selective age-related deficit in temporal processing. Older women were significantly less sensitive than older men, younger men and younger women on the global motion task. Gender effects were evident when, in response to global motion stimuli, complex extraction and integration processes needed to be undertaken rapidly. Significant moderate correlations were found between age, global motion sensitivity and reports of perceptions of other vehicles and road signs when driving. These associations suggest that reduced motion sensitivity may produce functional difficulties for the older adults when judging speeds or estimating gaps in traffic while driving.
Churchill, Tyler H; Kan, Alan; Goupell, Matthew J; Litovsky, Ruth Y
2014-09-01
Most contemporary cochlear implant (CI) processing strategies discard acoustic temporal fine structure (TFS) information, and this may contribute to the observed deficits in bilateral CI listeners' ability to localize sounds when compared to normal hearing listeners. Additionally, for best speech envelope representation, most contemporary speech processing strategies use high-rate carriers (≥900 Hz) that exceed the limit for interaural pulse timing to provide useful binaural information. Many bilateral CI listeners are sensitive to interaural time differences (ITDs) in low-rate (<300 Hz) constant-amplitude pulse trains. This study explored the trade-off between superior speech temporal envelope representation with high-rate carriers and binaural pulse timing sensitivity with low-rate carriers. The effects of carrier pulse rate and pulse timing on ITD discrimination, ITD lateralization, and speech recognition in quiet were examined in eight bilateral CI listeners. Stimuli consisted of speech tokens processed at different electrical stimulation rates, and pulse timings that either preserved or did not preserve acoustic TFS cues. Results showed that CI listeners were able to use low-rate pulse timing cues derived from acoustic TFS when presented redundantly on multiple electrodes for ITD discrimination and lateralization of speech stimuli.
Functional Neuroimaging in Psychopathy.
Del Casale, Antonio; Kotzalidis, Georgios D; Rapinesi, Chiara; Di Pietro, Simone; Alessi, Maria Chiara; Di Cesare, Gianluigi; Criscuolo, Silvia; De Rossi, Pietro; Tatarelli, Roberto; Girardi, Paolo; Ferracuti, Stefano
2015-01-01
Psychopathy is associated with cognitive and affective deficits causing disruptive, harmful and selfish behaviour. These have considerable societal costs due to recurrent crime and property damage. A better understanding of the neurobiological bases of psychopathy could improve therapeutic interventions, reducing the related social costs. To analyse the major functional neural correlates of psychopathy, we reviewed functional neuroimaging studies conducted on persons with this condition. We searched the PubMed database for papers dealing with functional neuroimaging and psychopathy, with a specific focus on how neural functional changes may correlate with task performances and human behaviour. Psychopathy-related behavioural disorders consistently correlated with dysfunctions in brain areas of the orbitofrontal-limbic (emotional processing and somatic reaction to emotions; behavioural planning and responsibility taking), anterior cingulate-orbitofrontal (correct assignment of emotional valence to social stimuli; violent/aggressive behaviour and challenging attitude) and prefrontal-temporal-limbic (emotional stimuli processing/response) networks. Dysfunctional areas more consistently included the inferior frontal, orbitofrontal, dorsolateral prefrontal, ventromedial prefrontal, temporal (mainly the superior temporal sulcus) and cingulated cortices, the insula, amygdala, ventral striatum and other basal ganglia. Emotional processing and learning, and several social and affective decision-making functions are impaired in psychopathy, which correlates with specific changes in neural functions. © 2015 S. Karger AG, Basel.
Working and strategic memory deficits in schizophrenia
NASA Technical Reports Server (NTRS)
Stone, M.; Gabrieli, J. D.; Stebbins, G. T.; Sullivan, E. V.
1998-01-01
Working memory and its contribution to performance on strategic memory tests in schizophrenia were studied. Patients (n = 18) and control participants (n = 15), all men, received tests of immediate memory (forward digit span), working memory (listening, computation, and backward digit span), and long-term strategic (free recall, temporal order, and self-ordered pointing) and nonstrategic (recognition) memory. Schizophrenia patients performed worse on all tests. Education, verbal intelligence, and immediate memory capacity did not account for deficits in working memory in schizophrenia patients. Reduced working memory capacity accounted for group differences in strategic memory but not in recognition memory. Working memory impairment may be central to the profile of impaired cognitive performance in schizophrenia and is consistent with hypothesized frontal lobe dysfunction associated with this disease. Additional medial-temporal dysfunction may account for the recognition memory deficit.
Mehraei, Golbarg; Gallun, Frederick J; Leek, Marjorie R; Bernstein, Joshua G W
2014-07-01
Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4-32 Hz), spectral ripple density [0.5-4 cycles/octave (c/o)] and carrier center frequency (500-4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4-12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements.
Description of Mixed-Phase Clouds in Weather Forecast and Climate Models
2014-09-30
deficits, leading to freeze-up of both sea ice and the ocean surface. The surface albedo and processes impacting the energy content of the upper ocean...appear key to producing a temporal difference be- tween the freeze-up of the sea - ice surface and adjacent open water. While synoptic conditions, atmos...Leck, 2013: Cloud and boundary layer interactions over the Arctic sea - ice in late summer, Atmos. Chem. Phys. Discuss., 13, 13191-13244, doi
Hoover, Eric C; Souza, Pamela E; Gallun, Frederick J
2017-04-01
Auditory complaints following mild traumatic brain injury (MTBI) are common, but few studies have addressed the role of auditory temporal processing in speech recognition complaints. In this study, deficits understanding speech in a background of speech noise following MTBI were evaluated with the goal of comparing the relative contributions of auditory and nonauditory factors. A matched-groups design was used in which a group of listeners with a history of MTBI were compared to a group matched in age and pure-tone thresholds, as well as a control group of young listeners with normal hearing (YNH). Of the 33 listeners who participated in the study, 13 were included in the MTBI group (mean age = 46.7 yr), 11 in the Matched group (mean age = 49 yr), and 9 in the YNH group (mean age = 20.8 yr). Speech-in-noise deficits were evaluated using subjective measures as well as monaural word (Words-in-Noise test) and sentence (Quick Speech-in-Noise test) tasks, and a binaural spatial release task. Performance on these measures was compared to psychophysical tasks that evaluate monaural and binaural temporal fine-structure tasks and spectral resolution. Cognitive measures of attention, processing speed, and working memory were evaluated as possible causes of differences between MTBI and Matched groups that might contribute to speech-in-noise perception deficits. A high proportion of listeners in the MTBI group reported difficulty understanding speech in noise (84%) compared to the Matched group (9.1%), and listeners who reported difficulty were more likely to have abnormal results on objective measures of speech in noise. No significant group differences were found between the MTBI and Matched listeners on any of the measures reported, but the number of abnormal tests differed across groups. Regression analysis revealed that a combination of auditory and auditory processing factors contributed to monaural speech-in-noise scores, but the benefit of spatial separation was related to a combination of working memory and peripheral auditory factors across all listeners in the study. The results of this study are consistent with previous findings that a subset of listeners with MTBI has objective auditory deficits. Speech-in-noise performance was related to a combination of auditory and nonauditory factors, confirming the important role of audiology in MTBI rehabilitation. Further research is needed to evaluate the prevalence and causal relationship of auditory deficits following MTBI. American Academy of Audiology
A tapping device for recording and quantitative characterization of rhythmic/auditory sequences.
Piazza, Caterina; Cesareo, Ambra; Caccia, Martina; Reni, Gianluigi; Lorusso, Maria L
2017-07-01
The processing of auditory stimuli is essential for the correct perception of language and deficits in this ability are often related to the presence or development of language disorders. The motor imitation (e.g. tapping or beating) of rhythmic sequences can be a very sensitive correlate of deficits in auditory processing. Thus, the study of the tapping performance, with the investigation of both temporal and intensity information, might be very useful. The present work is aimed at the development and preliminary testing of a tapping device to be used for the imitation and/or the production of rhythmic sequences, allowing the recording of both tapping duration and intensity. The device is essentially made up of a Force Sensing Resistor and an Arduino UNO board. It was validated using different sampling frequencies (f s ) in a group of 10 young healthy adults investigating its efficacy in terms of touch and intensity detection by means of two testing procedures. Results demonstrated a good performance of the device when programmed with fs equal to 50 and 100Hz. Moreover, both temporal and intensity parameters were extracted, thus supporting the potential use of the device for the analysis of the imitation or production of rhythmic sequences. This work represents a first step for the development of a useful, low cost tool to support the diagnosis, training and rehabilitation of language disorders.
Payne, Alexander R; Plimmer, Beryl; McDaid, Andrew; Davies, T Claire
2017-05-01
The effects of cerebral palsy on movement planning for simple reaching tasks are not well understood. Movement planning is complex and entails many processes which could be affected. This study specifically sought to evaluate integrating task information, decoupling movements, and adjusting to altered mapping. For a reaching task, the asynchrony between the eye onset and the hand onset was measured across different movement planning conditions for participants with and without cerebral palsy. Previous research shows people without cerebral palsy vary this temporal coordination for different planning conditions. Our measurements show similar adaptations in temporal coordination for groups with and without cerebral palsy, to three of the four variations in planning condition tested. However, movement durations were still longer for the participants with cerebral palsy. Hence for simple goal-directed reaching, movement execution problems appear to limit activity more than movement planning deficits.
2013-01-01
Background Language comprehension requires decoding of complex, rapidly changing speech streams. Detecting changes of frequency modulation (FM) within speech is hypothesized as essential for accurate phoneme detection, and thus, for spoken word comprehension. Despite past demonstration of FM auditory evoked response (FMAER) utility in language disorder investigations, it is seldom utilized clinically. This report's purpose is to facilitate clinical use by explaining analytic pitfalls, demonstrating sites of cortical origin, and illustrating potential utility. Results FMAERs collected from children with language disorders, including Developmental Dysphasia, Landau-Kleffner syndrome (LKS), and autism spectrum disorder (ASD) and also normal controls - utilizing multi-channel reference-free recordings assisted by discrete source analysis - provided demonstratrions of cortical origin and examples of clinical utility. Recordings from inpatient epileptics with indwelling cortical electrodes provided direct assessment of FMAER origin. The FMAER is shown to normally arise from bilateral posterior superior temporal gyri and immediate temporal lobe surround. Childhood language disorders associated with prominent receptive deficits demonstrate absent left or bilateral FMAER temporal lobe responses. When receptive language is spared, the FMAER may remain present bilaterally. Analyses based upon mastoid or ear reference electrodes are shown to result in erroneous conclusions. Serial FMAER studies may dynamically track status of underlying language processing in LKS. FMAERs in ASD with language impairment may be normal or abnormal. Cortical FMAERs can locate language cortex when conventional cortical stimulation does not. Conclusion The FMAER measures the processing by the superior temporal gyri and adjacent cortex of rapid frequency modulation within an auditory stream. Clinical disorders associated with receptive deficits are shown to demonstrate absent left or bilateral responses. Serial FMAERs may be useful for tracking language change in LKS. Cortical FMAERs may augment invasive cortical language testing in epilepsy surgical patients. The FMAER may be normal in ASD and other language disorders when pathology spares the superior temporal gyrus and surround but presumably involves other brain regions. Ear/mastoid reference electrodes should be avoided and multichannel, reference free recordings utilized. Source analysis may assist in better understanding of complex FMAER findings. PMID:23351174
Electrolytic lesions of dorsal CA3 impair episodic-like memory in rats.
Li, Jay-Shake; Chao, Yuen-Shin
2008-02-01
Episodic memory is the ability to recollect one's past experiences occurring in an unique spatial and temporal context. In non-human animals, it is expressed in the ability to combine "what", "where" and "when" factors to form an integrated memory system. During the search for its neural substrates, the hippocampus has attracted a lot of attentions. Yet, it is not yet possible to induce a pure episodic-like memory deficit in animal studies without being confounded by impairments in the spatial cognition. Here, we present a lesion study evidencing direct links between the hippocampus CA3 region and the episodic-like memory in rats. In a spontaneous object exploration task, lesioned rats showed no interaction between the temporal and spatial elements in their memory associated with the objects. In separate tests carried out subsequently, the same animals still expressed abilities to process spatial, temporal, and object recognition memory. In conclusions, our results support the idea that the hippocampus CA3 has a particular status in the neural mechanism of the episodic-like memory system. It is responsible for combining information from different modules of cognitive processes.
Lambon Ralph, Matthew A; Ehsan, Sheeba; Baker, Gus A; Rogers, Timothy T
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients' accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants.
Ehsan, Sheeba; Baker, Gus A.; Rogers, Timothy T.
2012-01-01
Contemporary clinical and basic neuroscience studies have increasingly implicated the anterior temporal lobe regions, bilaterally, in the formation of coherent concepts. Mounting convergent evidence for the importance of the anterior temporal lobe in semantic memory is found in patients with bilateral anterior temporal lobe damage (e.g. semantic dementia), functional neuroimaging and repetitive transcranial magnetic stimulation studies. If this proposal is correct, then one might expect patients with anterior temporal lobe resection for long-standing temporal lobe epilepsy to be semantically impaired. Such patients, however, do not present clinically with striking comprehension deficits but with amnesia and variable anomia, leading some to conclude that semantic memory is intact in resection for temporal lobe epilepsy and thus casting doubt over the conclusions drawn from semantic dementia and linked basic neuroscience studies. Whilst there is a considerable neuropsychological literature on temporal lobe epilepsy, few studies have probed semantic memory directly, with mixed results, and none have undertaken the same type of systematic investigation of semantic processing that has been conducted with other patient groups. In this study, therefore, we investigated the semantic performance of 20 patients with resection for chronic temporal lobe epilepsy with a full battery of semantic assessments, including more sensitive measures of semantic processing. The results provide a bridge between the current clinical observations about resection for temporal lobe epilepsy and the expectations from semantic dementia and other neuroscience findings. Specifically, we found that on simple semantic tasks, the patients’ accuracy fell in the normal range, with the exception that some patients with left resection for temporal lobe epilepsy had measurable anomia. Once the semantic assessments were made more challenging, by probing specific-level concepts, lower frequency/more abstract items or measuring reaction times on semantic tasks versus those on difficulty-matched non-semantic assessments, evidence of a semantic impairment was found in all individuals. We conclude by describing a unified, computationally inspired framework for capturing the variable degrees of semantic impairment found across different patient groups (semantic dementia, temporal lobe epilepsy, glioma and stroke) as well as semantic processing in neurologically intact participants. PMID:22287382
MEDIAL TEMPORAL LOBE CONTRIBUTIONS TO FUTURE THINKING: EVIDENCE FROM NEUROIMAGING AND AMNESIA.
Verfaellie, Mieke; Race, Elizabeth; Keane, Margaret M
2012-09-01
Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL) in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics' cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory.
MEDIAL TEMPORAL LOBE CONTRIBUTIONS TO FUTURE THINKING: EVIDENCE FROM NEUROIMAGING AND AMNESIA
Verfaellie, Mieke; Race, Elizabeth; Keane, Margaret M.
2013-01-01
Following early amnesic case reports, there is now considerable evidence suggesting a link between remembering the past and envisioning the future. This link is evident in the overlap in neural substrates as well as cognitive processes involved in both kinds of tasks. While constructing a future narrative requires multiple processes, neuroimaging and lesion data converge on a critical role for the medial temporal lobes (MTL) in retrieving and recombining details from memory in the service of novel simulations. Deficient detail retrieval and recombination may lead to impairments not only in episodic, but also in semantic prospection. MTL contributions to scene construction and mental time travel may further compound impairments in amnesia on tasks that pose additional demands on these processes, but are unlikely to form the core deficit underlying amnesics’ cross-domain future thinking impairment. Future studies exploring the role of episodic memory in other forms of self-projection or future-oriented behaviour may elucidate further the adaptive role of memory. PMID:23447709
Poulin, Stéphane; Macoir, Joël; Paquet, Nancy; Fossard, Marion; Gagnon, Louis
2007-01-04
Foreign accent syndrome (FAS) is a rare speech disorder characterized by the appearance of a new accent, different from the speaker's native language and perceived as foreign by the speaker and the listener. In most of the reported cases, FAS follows stroke but has also been found following traumatic brain injury, cerebral haemorrhage and multiple sclerosis. In very few cases, FAS was reported in patients presenting with psychiatric disorders but the link between this condition and FAS was confirmed in only one case. In this report, we present the case of FG, a bipolar patient presenting with language disorders characterized by a foreign accent and agrammatism, initially categorized as being of psychogenic origin. The patient had an extensive neuropsychological and language evaluation as well as brain imaging exams. In addition to FAS and agrammatism, FG also showed a working memory deficit and executive dysfunction. Moreover, these clinical signs were related to altered cerebral activity on an FDG-PET scan that showed diffuse hypometabolism in the frontal, parietal and temporal lobes bilaterally as well as a focal deficit in the area of the anterior left temporal lobe. When compared to the MRI, these deficits were related to asymmetric atrophy, which was retrospectively seen in the left temporal and frontal opercular/insular region without a focal lesion. To our knowledge, FG is the first case of FAS imaged with an 18F-FDG-PET scan. The nature and type of neuropsychological and linguistic deficits, supported by neuroimaging data, exclude a neurotoxic or neurodegenerative origin for this patient's clinical manifestations. For similar reasons, a psychogenic etiology is also highly improbable. To account for the FAS and agrammatism in FG, various explanations have been ruled out. Because of the focal deficit seen on the brain imaging, involving the left insular and anterior temporal cortex, two brain regions frequently involved in aphasic syndrome but also in FAS, a cerebrovascular origin must be considered the best explanation to account for FG's language deficits.
Binney, Richard J.; Henry, Maya L.; Babiak, Miranda; Pressman, Peter S.; Santos-Santos, Miguel A.; Narvid, Jared; Mandelli, Maria Luisa; Strain, Paul J.; Miller, Bruce L.; Rankin, Katherine P.; Rosen, Howard J.; Gorno-Tempini, Maria Luisa
2016-01-01
Semantic variant primary progressive aphasia (svPPA) typically presents with left-hemisphere predominant rostral temporal lobe atrophy and the most significant complaints within the language domain. Less frequently, patients present with right-hemisphere predominant temporal atrophy coupled with marked impairments in processing of famous faces and emotions. Few studies have objectively compared these patient groups in both domains and therefore it is unclear to what extent the syndromes overlap. Clinically diagnosed svPPA patients were characterized as left- (n= 21) or right-predominant (n = 12) using imaging and compared along with 14 healthy controls. Regarding language, our primary focus was upon two hallmark features of svPPA; confrontation naming and surface dyslexia. Both groups exhibited naming deficits and surface dyslexia although the impairments were more severe in the left-predominant group. Familiarity judgments on famous faces and affect processing were more profoundly impaired in the right-predominant group. Our findings suggest that the two syndromes overlap significantly but that early cases at the tail ends of the continuum constitute a challenge for current clinical criteria. Correlational neuroimaging analyses implicated a mid portion of the left lateral temporal lobe in exception word reading impairments in line with proposals that this region is an interface between phonology and semantic knowledge. PMID:27389800
Material-Specific Lateralization of Working Memory in the Medial Temporal Lobe
ERIC Educational Resources Information Center
Wagner, Dylan D.; Sziklas, Viviane; Garver, Krista E.; Jones-Gotman, Marilyn
2009-01-01
Mnemonic deficits in patients with medial temporal lobe (MTL) damage arising from temporal lobe epilepsy (TLE) are traditionally constrained to long-term episodic memory, sparing short-term and working memory (WM). This view of WM as being independent of MTL structures has recently been challenged by a small number of patient and neuroimaging…
Cutini, Simone; Szűcs, Dénes; Mead, Natasha; Huss, Martina; Goswami, Usha
2016-12-01
Phase entrainment of neuronal oscillations is thought to play a central role in encoding speech. Children with developmental dyslexia show impaired phonological processing of speech, proposed theoretically to be related to atypical phase entrainment to slower temporal modulations in speech (<10Hz). While studies of children with dyslexia have found atypical phase entrainment in the delta band (~2Hz), some studies of adults with developmental dyslexia have shown impaired entrainment in the low gamma band (~35-50Hz). Meanwhile, studies of neurotypical adults suggest asymmetric temporal sensitivity in auditory cortex, with preferential processing of slower modulations by right auditory cortex, and faster modulations processed bilaterally. Here we compared neural entrainment to slow (2Hz) versus faster (40Hz) amplitude-modulated noise using fNIRS to study possible hemispheric asymmetry effects in children with developmental dyslexia. We predicted atypical right hemisphere responding to 2Hz modulations for the children with dyslexia in comparison to control children, but equivalent responding to 40Hz modulations in both hemispheres. Analyses of HbO concentration revealed a right-lateralised region focused on the supra-marginal gyrus that was more active in children with dyslexia than in control children for 2Hz stimulation. We discuss possible links to linguistic prosodic processing, and interpret the data with respect to a neural 'temporal sampling' framework for conceptualizing the phonological deficits that characterise children with developmental dyslexia across languages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Mercier, Manuel R; Schwartz, Sophie; Spinelli, Laurent; Michel, Christoph M; Blanke, Olaf
2017-03-01
The main model of visual processing in primates proposes an anatomo-functional distinction between the dorsal stream, specialized in spatio-temporal information, and the ventral stream, processing essentially form information. However, these two pathways also communicate to share much visual information. These dorso-ventral interactions have been studied using form-from-motion (FfM) stimuli, revealing that FfM perception first activates dorsal regions (e.g., MT+/V5), followed by successive activations of ventral regions (e.g., LOC). However, relatively little is known about the implications of focal brain damage of visual areas on these dorso-ventral interactions. In the present case report, we investigated the dynamics of dorsal and ventral activations related to FfM perception (using topographical ERP analysis and electrical source imaging) in a patient suffering from a deficit in FfM perception due to right extrastriate brain damage in the ventral stream. Despite the patient's FfM impairment, both successful (observed for the highest level of FfM signal) and absent/failed FfM perception evoked the same temporal sequence of three processing states observed previously in healthy subjects. During the first period, brain source localization revealed cortical activations along the dorsal stream, currently associated with preserved elementary motion processing. During the latter two periods, the patterns of activity differed from normal subjects: activations were observed in the ventral stream (as reported for normal subjects), but also in the dorsal pathway, with the strongest and most sustained activity localized in the parieto-occipital regions. On the other hand, absent/failed FfM perception was characterized by weaker brain activity, restricted to the more lateral regions. This study shows that in the present case report, successful FfM perception, while following the same temporal sequence of processing steps as in normal subjects, evoked different patterns of brain activity. By revealing a brain circuit involving the most rostral part of the dorsal pathway, this study provides further support for neuro-imaging studies and brain lesion investigations that have suggested the existence of different brain circuits associated with different profiles of interaction between the dorsal and the ventral streams.
Iannaccone, Reto; Hauser, Tobias U; Ball, Juliane; Brandeis, Daniel; Walitza, Susanne; Brem, Silvia
2015-10-01
Attention-deficit/hyperactivity disorder (ADHD) is a common disabling psychiatric disorder associated with consistent deficits in error processing, inhibition and regionally decreased grey matter volumes. The diagnosis is based on clinical presentation, interviews and questionnaires, which are to some degree subjective and would benefit from verification through biomarkers. Here, pattern recognition of multiple discriminative functional and structural brain patterns was applied to classify adolescents with ADHD and controls. Functional activation features in a Flanker/NoGo task probing error processing and inhibition along with structural magnetic resonance imaging data served to predict group membership using support vector machines (SVMs). The SVM pattern recognition algorithm correctly classified 77.78% of the subjects with a sensitivity and specificity of 77.78% based on error processing. Predictive regions for controls were mainly detected in core areas for error processing and attention such as the medial and dorsolateral frontal areas reflecting deficient processing in ADHD (Hart et al., in Hum Brain Mapp 35:3083-3094, 2014), and overlapped with decreased activations in patients in conventional group comparisons. Regions more predictive for ADHD patients were identified in the posterior cingulate, temporal and occipital cortex. Interestingly despite pronounced univariate group differences in inhibition-related activation and grey matter volumes the corresponding classifiers failed or only yielded a poor discrimination. The present study corroborates the potential of task-related brain activation for classification shown in previous studies. It remains to be clarified whether error processing, which performed best here, also contributes to the discrimination of useful dimensions and subtypes, different psychiatric disorders, and prediction of treatment success across studies and sites.
Rogalsky, Corianne; Love, Tracy; Driscoll, David; Anderson, Steven W.; Hickok, Gregory
2013-01-01
The discovery of mirror neurons in macaque has led to a resurrection of motor theories of speech perception. Although the majority of lesion and functional imaging studies have associated perception with the temporal lobes, it has also been proposed that the ‘human mirror system’, which prominently includes Broca’s area, is the neurophysiological substrate of speech perception. Although numerous studies have demonstrated a tight link between sensory and motor speech processes, few have directly assessed the critical prediction of mirror neuron theories of speech perception, namely that damage to the human mirror system should cause severe deficits in speech perception. The present study measured speech perception abilities of patients with lesions involving motor regions in the left posterior frontal lobe and/or inferior parietal lobule (i.e., the proposed human ‘mirror system’). Performance was at or near ceiling in patients with fronto-parietal lesions. It is only when the lesion encroaches on auditory regions in the temporal lobe that perceptual deficits are evident. This suggests that ‘mirror system’ damage does not disrupt speech perception, but rather that auditory systems are the primary substrate for speech perception. PMID:21207313
Research on spontaneous activity in adult anisometropic amblyopia with regional homogeneity
NASA Astrophysics Data System (ADS)
Huang, Yufeng; Zhou, Yifeng
2017-06-01
Amblyopia usually occurs in early childhood and results in monocular visual impairment. The functional magnetic resonance imaging (fMRI) studies have reflected functional anomaly in amblyopia. In resting-state fMRI study, spontaneous activity changes abnormally in anisometropic amblyopia could be revealed by the regional homogeneity (ReHo). Twenty two adult anisometropic amblyopes and Twenty one normal controls participated in this fMRI study. Two sample T test was carried out to analysis ReHo within the whole brain for the inter groups. Compare with normal group, our study found that the amblyopia’s ReHo mainly increased in the left frontal lobe, while decreased in the left cerebellum, the temporal lobe (left and right), and the left parietal lobe. And the ReHo values in middle and inferior temporal lobe, the prefrontal lobe, frontal lobe (positive) and parietal lobe and medial frontal gyrus (negative) could be correlated with the acuity deficit of amblyopia. The results increased in ReHo may indicate compensatory plasticity in higher vision information process, while the decreased in ReHo may reflect decreased ability in eye movement, spatial sense and visuo-motor coordination. The correlation revealed that the vision deficit may correspond to the spontaneous in certain brain area.
Varieties of semantic ‘access’ deficit in Wernicke’s aphasia and semantic aphasia
Robson, Holly; Lambon Ralph, Matthew A.; Jefferies, Elizabeth
2015-01-01
Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke’s aphasia, associated with poor auditory–verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic ‘access’ deficit, as opposed to the ‘storage’ deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of ‘access’ impairment—related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke’s aphasia). We used a case series design to compare patients with Wernicke’s aphasia and those with semantic aphasia on Warrington’s paradigmatic assessment of semantic ‘access’ deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic ‘blocking’ effects). Patients with Wernicke’s aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability—one that mapped onto classical ‘syndromes’ and one that did not—predicted aspects of the semantic ‘access’ deficit. Both semantic aphasia and Wernicke’s aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke’s aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially ‘beneficial’ effects of stimulus repetition: cases with Wernicke’s aphasia showed initial improvement with repetition of words and pictures, while in semantic aphasia, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the ‘harmful’ effects of repetition: the ability to reselect both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, patients with semantic aphasia and Wernicke’s aphasia have partially distinct impairment of semantic ‘access’ but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks. PMID:26454668
Varieties of semantic 'access' deficit in Wernicke's aphasia and semantic aphasia.
Thompson, Hannah E; Robson, Holly; Lambon Ralph, Matthew A; Jefferies, Elizabeth
2015-12-01
Comprehension deficits are common in stroke aphasia, including in cases with (i) semantic aphasia, characterized by poor executive control of semantic processing across verbal and non-verbal modalities; and (ii) Wernicke's aphasia, associated with poor auditory-verbal comprehension and repetition, plus fluent speech with jargon. However, the varieties of these comprehension problems, and their underlying causes, are not well understood. Both patient groups exhibit some type of semantic 'access' deficit, as opposed to the 'storage' deficits observed in semantic dementia. Nevertheless, existing descriptions suggest that these patients might have different varieties of 'access' impairment-related to difficulty resolving competition (in semantic aphasia) versus initial activation of concepts from sensory inputs (in Wernicke's aphasia). We used a case series design to compare patients with Wernicke's aphasia and those with semantic aphasia on Warrington's paradigmatic assessment of semantic 'access' deficits. In these verbal and non-verbal matching tasks, a small set of semantically-related items are repeatedly presented over several cycles so that the target on one trial becomes a distractor on another (building up interference and eliciting semantic 'blocking' effects). Patients with Wernicke's aphasia and semantic aphasia were distinguished according to lesion location in the temporal cortex, but in each group, some individuals had additional prefrontal damage. Both of these aspects of lesion variability-one that mapped onto classical 'syndromes' and one that did not-predicted aspects of the semantic 'access' deficit. Both semantic aphasia and Wernicke's aphasia cases showed multimodal semantic impairment, although as expected, the Wernicke's aphasia group showed greater deficits on auditory-verbal than picture judgements. Distribution of damage in the temporal lobe was crucial for predicting the initially 'beneficial' effects of stimulus repetition: cases with Wernicke's aphasia showed initial improvement with repetition of words and pictures, while in semantic aphasia, semantic access was initially good but declined in the face of competition from previous targets. Prefrontal damage predicted the 'harmful' effects of repetition: the ability to reselect both word and picture targets in the face of mounting competition was linked to left prefrontal damage in both groups. Therefore, patients with semantic aphasia and Wernicke's aphasia have partially distinct impairment of semantic 'access' but, across these syndromes, prefrontal lesions produce declining comprehension with repetition in both verbal and non-verbal tasks. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Ackermann; Mathiak
1999-11-01
Pure word deafness (auditory verbal agnosia) is characterized by an impairment of auditory comprehension, repetition of verbal material and writing to dictation whereas spontaneous speech production and reading largely remain unaffected. Sometimes, this syndrome is preceded by complete deafness (cortical deafness) of varying duration. Perception of vowels and suprasegmental features of verbal utterances (e.g., intonation contours) seems to be less disrupted than the processing of consonants and, therefore, might mediate residual auditory functions. Often, lip reading and/or slowing of speaking rate allow within some limits to compensate for speech comprehension deficits. Apart from a few exceptions, the available reports of pure word deafness documented a bilateral temporal lesion. In these instances, as a rule, identification of nonverbal (environmental) sounds, perception of music, temporal resolution of sequential auditory cues and/or spatial localization of acoustic events were compromised as well. The observed variable constellation of auditory signs and symptoms in central hearing disorders following bilateral temporal disorders, most probably, reflects the multitude of functional maps at the level of the auditory cortices subserving, as documented in a variety of non-human species, the encoding of specific stimulus parameters each. Thus, verbal/nonverbal auditory agnosia may be considered a paradigm of distorted "auditory scene analysis" (Bregman 1990) affecting both primitive and schema-based perceptual processes. It cannot be excluded, however, that disconnection of the Wernicke-area from auditory input (Geschwind 1965) and/or an impairment of suggested "phonetic module" (Liberman 1996) contribute to the observed deficits as well. Conceivably, these latter mechanisms underly the rare cases of pure word deafness following a lesion restricted to the dominant hemisphere. Only few instances of a rather isolated disruption of the discrimination/identification of nonverbal sound sources, in the presence of uncompromised speech comprehension, have been reported so far (nonverbal auditory agnosia). As a rule, unilateral right-sided damage has been found to be the relevant lesion.
Righi, Stefania; Galli, Luca; Paganini, Marco; Bertini, Elisabetta; Viggiano, Maria Pia; Piacentini, Silvia
2016-01-01
Huntington's disease (HD) primarily affects striatum and prefrontal dopaminergic circuits which are fundamental neural correlates of the timekeeping mechanism. The few studies on HD mainly investigated motor timing performance in second durations. The present work explored time perception in early-to-moderate symptomatic HD patients for seconds and milliseconds with the aim to clarify which component of the scalar expectancy theory (SET) is mainly responsible for HD timing defect. Eleven HD patients were compared to 11 controls employing two separate temporal bisection tasks in second and millisecond ranges. Our results revealed the same time perception deficits for seconds and milliseconds in HD patients. Time perception impairment in early-to-moderate stages of Huntington's disease is related to memory deficits. Furthermore, both the non-systematical defect of temporal sensitivity and the main impairment of timing performance in the extreme value of the psychophysical curves suggested an HD deficit in the memory component of the SET. This result was further confirmed by the significant correlations between time perception performance and long-term memory test scores. Our findings added important preliminary data for both a deeper comprehension of HD time-keeping deficits and possible implications on neuro-rehabilitation practices.
2017-01-01
Purpose Earlier, my colleagues and I showed that children with a history of specific language impairment (H-SLI) are significantly less able to detect audiovisual asynchrony compared with children with typical development (TD; Kaganovich & Schumaker, 2014). Here, I first replicate this finding in a new group of children with H-SLI and TD and then examine a relationship among audiovisual function, attention skills, and language in a combined pool of children. Method The stimuli were a pure tone and an explosion-shaped figure. Stimulus onset asynchrony (SOA) varied from 0–500 ms. Children pressed 1 button for perceived synchrony and another for asynchrony. I measured the number of synchronous perceptions at each SOA and calculated children's temporal binding windows. I, then, conducted multiple regressions to determine if audiovisual processing and attention can predict language skills. Results As in the earlier study, children with H-SLI perceived asynchrony significantly less frequently than children with TD at SOAs of 400–500 ms. Their temporal binding windows were also larger. Temporal precision and attention predicted 23%–37% of children's language ability. Conclusions Audiovisual temporal processing is impaired in children with H-SLI. The degree of this impairment is a predictor of language skills. Once understood, the mechanisms underlying this deficit may become a new focus for language remediation. PMID:28715546
Speech Evoked Auditory Brainstem Response in Stuttering
Tahaei, Ali Akbar; Ashayeri, Hassan; Pourbakht, Akram; Kamali, Mohammad
2014-01-01
Auditory processing deficits have been hypothesized as an underlying mechanism for stuttering. Previous studies have demonstrated abnormal responses in subjects with persistent developmental stuttering (PDS) at the higher level of the central auditory system using speech stimuli. Recently, the potential usefulness of speech evoked auditory brainstem responses in central auditory processing disorders has been emphasized. The current study used the speech evoked ABR to investigate the hypothesis that subjects with PDS have specific auditory perceptual dysfunction. Objectives. To determine whether brainstem responses to speech stimuli differ between PDS subjects and normal fluent speakers. Methods. Twenty-five subjects with PDS participated in this study. The speech-ABRs were elicited by the 5-formant synthesized syllable/da/, with duration of 40 ms. Results. There were significant group differences for the onset and offset transient peaks. Subjects with PDS had longer latencies for the onset and offset peaks relative to the control group. Conclusions. Subjects with PDS showed a deficient neural timing in the early stages of the auditory pathway consistent with temporal processing deficits and their abnormal timing may underlie to their disfluency. PMID:25215262
Letter-sound processing deficits in children with developmental dyslexia: An ERP study.
Moll, Kristina; Hasko, Sandra; Groth, Katharina; Bartling, Jürgen; Schulte-Körne, Gerd
2016-04-01
The time course during letter-sound processing was investigated in children with developmental dyslexia (DD) and typically developing (TD) children using electroencephalography. Thirty-eight children with DD and 25 TD children participated in a visual-auditory oddball paradigm. Event-related potentials (ERPs) elicited by standard and deviant stimuli in an early (100-190 ms) and late (560-750 ms) time window were analysed. In the early time window, ERPs elicited by the deviant stimulus were delayed and less left lateralized over fronto-temporal electrodes for children with DD compared to TD children. In the late time window, children with DD showed higher amplitudes extending more over right frontal electrodes. Longer latencies in the early time window and stronger right hemispheric activation in the late time window were associated with slower reading and naming speed. Additionally, stronger right hemispheric activation in the late time window correlated with poorer phonological awareness skills. Deficits in early stages of letter-sound processing influence later more explicit cognitive processes during letter-sound processing. Identifying the neurophysiological correlates of letter-sound processing and their relation to reading related skills provides insight into the degree of automaticity during letter-sound processing beyond behavioural measures of letter-sound-knowledge. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
ERIC Educational Resources Information Center
Shriver, A. S.; Canady, J.; Richman, L.; Andreasen, N. C.; Nopoulos, P.
2006-01-01
Background: In a previous study from our lab, adult males with non-syndromic cleft lip and/or palate (NSCLP) were shown to have significantly lower temporal lobe gray matter volume than matched controls. The current study was designed to begin a regional analysis of specific subregions of the temporal lobe. The superior temporal plane (STP) is a…
Szelag, Elzbieta; Lewandowska, Monika; Wolak, Tomasz; Seniow, Joanna; Poniatowska, Renata; Pöppel, Ernst; Szymaszek, Aneta
2014-03-15
Experimental studies have often reported close associations between rapid auditory processing and language competency. The present study was aimed at improving auditory comprehension in aphasic patients following specific training in the perception of temporal order (TO) of events. We tested 18 aphasic patients showing both comprehension and TO perception deficits. Auditory comprehension was assessed by the Token Test, phonemic awareness and Voice-Onset-Time Test. The TO perception was assessed using auditory Temporal-Order-Threshold, defined as the shortest interval between two consecutive stimuli, necessary to report correctly their before-after relation. Aphasic patients participated in eight 45-minute sessions of either specific temporal training (TT, n=11) aimed to improve sequencing abilities, or control non-temporal training (NT, n=7) focussed on volume discrimination. The TT yielded improved TO perception; moreover, a transfer of improvement was observed from the time domain to the language domain, which was untrained during the training. The NT did not improve either the TO perception or comprehension in any language test. These results are in agreement with previous literature studies which proved ameliorated language competency following the TT in language-learning-impaired or dyslexic children. Our results indicated for the first time such benefits also in aphasic patients. Copyright © 2013 Elsevier B.V. All rights reserved.
Koller, Kristin; Bultitude, Janet H.; Mullins, Paul; Ward, Robert; Mitchell, Anna S.; Bell, Andrew H.
2015-01-01
It has been suggested that some cortically blind patients can process the emotional valence of visual stimuli via a fast, subcortical pathway from the superior colliculus (SC) that reaches the amygdala via the pulvinar. We provide in vivo evidence for connectivity between the SC and the amygdala via the pulvinar in both humans and rhesus macaques. Probabilistic diffusion tensor imaging tractography revealed a streamlined path that passes dorsolaterally through the pulvinar before arcing rostrally to traverse above the temporal horn of the lateral ventricle and connect to the lateral amygdala. To obviate artifactual connectivity with crossing fibers of the stria terminalis, the stria was also dissected. The putative streamline between the SC and amygdala traverses above the temporal horn dorsal to the stria terminalis and is positioned medial to it in humans and lateral to it in monkeys. The topography of the streamline was examined in relation to lesion anatomy in five patients who had previously participated in behavioral experiments studying the processing of emotionally valenced visual stimuli. The pulvinar lesion interrupted the streamline in two patients who had exhibited contralesional processing deficits and spared the streamline in three patients who had no deficit. Although not definitive, this evidence supports the existence of a subcortical pathway linking the SC with the amygdala in primates. It also provides a necessary bridge between behavioral data obtained in future studies of neurological patients, and any forthcoming evidence from more invasive techniques, such as anatomical tracing studies and electrophysiological investigations only possible in nonhuman species. PMID:26224780
Alcoholism and dampened temporal limbic activation to emotional faces.
Marinkovic, Ksenija; Oscar-Berman, Marlene; Urban, Trinity; O'Reilly, Cara E; Howard, Julie A; Sawyer, Kayle; Harris, Gordon J
2009-11-01
Excessive chronic drinking is accompanied by a broad spectrum of emotional changes ranging from apathy and emotional flatness to deficits in comprehending emotional information, but their neural bases are poorly understood. Emotional abnormalities associated with alcoholism were examined with functional magnetic resonance imaging in abstinent long-term alcoholic men in comparison to healthy demographically matched controls. Participants were presented with emotionally valenced words and photographs of faces during deep (semantic) and shallow (perceptual) encoding tasks followed by recognition. Overall, faces evoked stronger activation than words, with the expected material-specific laterality (left hemisphere for words, and right for faces) and depth of processing effects. However, whereas control participants showed stronger activation in the amygdala and hippocampus when viewing faces with emotional (relative to neutral) expressions, the alcoholics responded in an undifferentiated manner to all facial expressions. In the alcoholic participants, amygdala activity was inversely correlated with an increase in lateral prefrontal activity as a function of their behavioral deficits. Prefrontal modulation of emotional function as a compensation for the blunted amygdala activity during a socially relevant face appraisal task is in agreement with a distributed network engagement during emotional face processing. Deficient activation of amygdala and hippocampus may underlie impaired processing of emotional faces associated with long-term alcoholism and may be a part of the wide array of behavioral problems including disinhibition, concurring with previously documented interpersonal difficulties in this population. Furthermore, the results suggest that alcoholics may rely on prefrontal rather than temporal limbic areas in order to compensate for reduced limbic responsivity and to maintain behavioral adequacy when faced with emotionally or socially challenging situations.
Cerami, Chiara; Dodich, Alessandra; Iannaccone, Sandro; Marcone, Alessandra; Lettieri, Giada; Crespi, Chiara; Gianolli, Luigi; Cappa, Stefano F.; Perani, Daniela
2015-01-01
The behavioural variant of frontotemporal dementia (bvFTD) is a rare disease mainly affecting the social brain. FDG-PET fronto-temporal hypometabolism is a supportive feature for the diagnosis. It may also provide specific functional metabolic signatures for altered socio-emotional processing. In this study, we evaluated the emotion recognition and attribution deficits and FDG-PET cerebral metabolic patterns at the group and individual levels in a sample of sporadic bvFTD patients, exploring the cognitive-functional correlations. Seventeen probable mild bvFTD patients (10 male and 7 female; age 67.8±9.9) were administered standardized and validated version of social cognition tasks assessing the recognition of basic emotions and the attribution of emotions and intentions (i.e., Ekman 60-Faces test-Ek60F and Story-based Empathy task-SET). FDG-PET was analysed using an optimized voxel-based SPM method at the single-subject and group levels. Severe deficits of emotion recognition and processing characterized the bvFTD condition. At the group level, metabolic dysfunction in the right amygdala, temporal pole, and middle cingulate cortex was highly correlated to the emotional recognition and attribution performances. At the single-subject level, however, heterogeneous impairments of social cognition tasks emerged, and different metabolic patterns, involving limbic structures and prefrontal cortices, were also observed. The derangement of a right limbic network is associated with altered socio-emotional processing in bvFTD patients, but different hypometabolic FDG-PET patterns and heterogeneous performances on social tasks at an individual level exist. PMID:26513651
Category-Specific Naming and Recognition Deficits in Temporal Lobe Epilepsy Surgical Patients
Drane, Daniel L.; Ojemann, George A.; Aylward, Elizabeth; Ojemann, Jeffrey G.; Johnson, L. Clark; Silbergeld, Daniel L.; Miller, John W.; Tranel, Daniel
2008-01-01
Objective Based upon Damasio's “Convergence Zone” model of semantic memory, we predicted that epilepsy surgical patients with anterior temporal lobe (TL) seizure onset would exhibit a pattern of category-specific naming and recognition deficits not observed in patients with seizures arising elsewhere. Methods We assessed epilepsy patients with unilateral seizure onset of anterior TL or other origin (n = 22), pre- or postoperatively, using a set of category-specific items and a conventional measure of visual naming (Boston Naming Test: BNT). Results Category-specific naming deficits were exhibited by patients with dominant anterior TL seizure onset/resection for famous faces and animals, while category-specific recognition deficits for these same categories were exhibited by patients with nondominant anterior TL onset/resection. Patients with other seizure onset did not exhibit category-specific deficits. Naming and recognition deficits were frequently not detected by the BNT, which samples only a limited range of stimuli. Interpretation Consistent with the “convergence zone” framework, results suggest that the nondominant anterior TL plays a major role in binding sensory information into conceptual percepts for certain stimuli, while dominant TL regions function to provide a link to verbal labels for these percepts. Although observed category-specific deficits were striking, they were often missed by the BNT, suggesting that they are more prevalent than recognized in both pre- and postsurgical epilepsy patients. Systematic investigation of these deficits could lead to more refined models of semantic memory, aid in the localization of seizures, and contribute to modifications in surgical technique and patient selection in epilepsy surgery to improve neurocognitive outcome. PMID:18206185
Franklin, Aimee V.; King, Margaret K.; Palomo, Valle; Martinez, Ana; McMahon, Lori L.; Jope, Richard S.
2013-01-01
Background Identifying feasible therapeutic interventions is crucial for ameliorating the intellectual disability and other afflictions of Fragile X Syndrome (FXS), the most common inherited cause of intellectual disability and autism. Hippocampal glycogen synthase kinase-3 (GSK3) is hyperactive in the mouse model of FXS (FX mice), and hyperactive GSK3 promotes locomotor hyperactivity and audiogenic seizure susceptibility in FX mice, raising the possibility that specific GSK3 inhibitors may improve cognitive processes. Methods We tested if specific GSK3 inhibitors improve deficits in N-methyl-D-aspartate receptor (NMDAR)-dependent long term potentiation (LTP) at medial perforant path synapses onto dentate granule cells (MPP-DGC) and dentate gyrus-dependent cognitive behavioral tasks. Results GSK3 inhibitors completely rescued deficits in LTP at MPP-DGC synapses in FX mice. Furthermore, synaptosomes from the dentate gyrus of FX mice displayed decreased inhibitory serine-phosphorylation of GSK3β compared with wild-type littermates. The potential therapeutic utility of GSK3 inhibitors was further tested on dentate gyrus-dependent congnitive behaviors. In vivo administration of GSK3 inhibitors completely reversed impairments in several cognitive tasks in FX mice, including novel object detection, coordinate and categorical spatial processing, and temporal ordering for visual objects. Conclusions These findings establish that synaptic plasticity and cognitive deficits in FX mice can be improved by intervention with inhibitors of GSK3, which may prove therapeutically beneficial in FXS. PMID:24041505
The effect of white matter hyperintensities on verbal memory: Mediation by temporal lobe atrophy.
Swardfager, Walter; Cogo-Moreira, Hugo; Masellis, Mario; Ramirez, Joel; Herrmann, Nathan; Edwards, Jodi D; Saleem, Mahwesh; Chan, Parco; Yu, Di; Nestor, Sean M; Scott, Christopher J M; Holmes, Melissa F; Sahlas, Demetrios J; Kiss, Alexander; Oh, Paul I; Strother, Stephen C; Gao, Fuqiang; Stefanovic, Bojana; Keith, Julia; Symons, Sean; Swartz, Richard H; Lanctôt, Krista L; Stuss, Donald T; Black, Sandra E
2018-02-20
To determine the relationship between white matter hyperintensities (WMH) presumed to indicate disease of the cerebral small vessels, temporal lobe atrophy, and verbal memory deficits in Alzheimer disease (AD) and other dementias. We recruited groups of participants with and without AD, including strata with extensive WMH and minimal WMH, into a cross-sectional proof-of-principle study (n = 118). A consecutive case series from a memory clinic was used as an independent validation sample (n = 702; Sunnybrook Dementia Study; NCT01800214). We assessed WMH volume and left temporal lobe atrophy (measured as the brain parenchymal fraction) using structural MRI and verbal memory using the California Verbal Learning Test. Using path modeling with an inferential bootstrapping procedure, we tested an indirect effect of WMH on verbal recall that depends sequentially on temporal lobe atrophy and verbal learning. In both samples, WMH predicted poorer verbal recall, specifically due to temporal lobe atrophy and poorer verbal learning (proof-of-principle -1.53, 95% bootstrap confidence interval [CI] -2.45 to -0.88; and confirmation -0.66, 95% CI [-0.95 to -0.41] words). This pathway was significant in subgroups with (-0.20, 95% CI [-0.38 to -0.07] words, n = 363) and without (-0.71, 95% CI [-1.12 to -0.37] words, n = 339) AD. Via the identical pathway, WMH contributed to deficits in recognition memory (-1.82%, 95% CI [-2.64% to -1.11%]), a sensitive and specific sign of AD. Across dementia syndromes, WMH contribute indirectly to verbal memory deficits considered pathognomonic of Alzheimer disease, specifically by contributing to temporal lobe atrophy. © 2018 American Academy of Neurology.
Pettit, Lewis D; Bastin, Mark E; Smith, Colin; Bak, Thomas H; Gillingwater, Thomas H; Abrahams, Sharon
2013-11-01
Cognitive impairment in amyotrophic lateral sclerosis is characterized by deficits on tests of executive function; however, the contribution of abnormal processing speed is unknown. Methods are confounded by tasks that depend on motor speed in patients with physical disability. Structural and functional magnetic resonance imaging studies have revealed multi-system cerebral involvement, with evidence of reduced white matter volume and integrity in predominant frontotemporal regions. The current study has two aims. First, to investigate whether cognitive impairments in amyotrophic lateral sclerosis are due to executive dysfunction or slowed processing speed using methodology that accommodates motor disability. This is achieved using a dual-task paradigm and tasks that manipulate stimulus presentation times and do not rely on response motor speed. Second, to identify relationships between specific cognitive impairments and the integrity of distinct white matter tracts. Thirty patients with amyotrophic lateral sclerosis and 30 age- and education-matched control subjects were administered an experimental dual-task procedure that combined a visual inspection time task and digit recall. In addition, measures of executive function (including letter fluency) and processing speed (visual inspection time and rapid serial letter identification) were administered. Integrity of white matter tracts was determined using region of interest analyses of diffusion tensor magnetic resonance imaging data. Patients with amyotrophic lateral sclerosis did not show impairments on tests of processing speed, but executive deficits were revealed once visual inspection time was combined with digit recall (dual-task) and in letter fluency. In addition to the corticospinal tracts, significant differences in fractional anisotropy and mean diffusivity were found between groups in a number of prefrontal and temporal white matter tracts including the anterior cingulate, anterior thalamic radiation, uncinate fasciculus and hippocampal portion of the cingulum bundles. Significant differences also emerged in the anterior corona radiata as well as in white matter underlying the superior, medial and inferior frontal gyri and the temporal gyri. Dual-task performance significantly correlated with fractional anisotropy measures in the middle frontal gyrus white matter and anterior corona radiata. Letter fluency indices significantly correlated with fractional anisotropy measures of the inferior frontal gyrus white matter and corpus callosum in addition to the corticospinal tracts and mean diffusivity measures in the white matter of the superior frontal gyrus. The current study demonstrates that cognitive impairment in amyotrophic lateral sclerosis is not due to generic slowing of processing speed. Moreover, different executive deficits are related to distinct prefrontal tract involvement in amyotrophic lateral sclerosis with dual-task impairment associating with dorsolateral prefrontal dysfunction and letter fluency showing greater dependence on inferolateral prefrontal dysfunction.
Alegret, Montserrat; Vinyes-Junqué, Georgina; Boada, Mercè; Martínez-Lage, Pablo; Cuberas, Gemma; Espinosa, Ana; Roca, Isabel; Hernández, Isabel; Valero, Sergi; Rosende-Roca, Maitée; Mauleón, Ana; Becker, James T.; Tárraga, Lluís
2012-01-01
Background Visuoperceptual processing is impaired early in the clinical course of Alzheimer’s disease (AD). The 15-Objects Test (15-OT) detects such subtle performance deficits in Mild Cognitive Impairment (MCI) and mild AD. Reduced brain perfusion in the temporal, parietal and prefrontal regions have been found in early AD and MCI patients. Objectives To confirm the role of the 15-OT in the diagnosis of MCI and AD, and to investigate the brain perfusion correlates of visuoperceptual dysfunction (15-OT) in subjects with MCI, AD and normal aging. Methods Forty-two AD, 42 MCI and 42 healthy elderly control (EC) subjects underwent a brain Single Photon Emission Tomography (SPECT) and separately completed the 15-OT. An analysis of variance compared 15-OT scores between groups. SPM5 was used to analyse the SPECT data. Results 15-OT performace was impaired in the MCI and AD patients. In terms of the SPECT scans, AD patients showed reduced perfusion in temporal-parietal regions, while the MCI subjects had decreased perfusion in the middle and posterior cingulate. When MCI and AD groups were compared, a significant brain perfusion reduction was found in temporo-parietal regions. In the whole sample, 15-OT performance was significantly correlated with the clinical dementia rating scores, and with the perfusion in the bilateral posterior cingulate and the right temporal pole, with no significant correlation in each separate group. Conclusion Our findings suggest that the 15-OT performance provides a useful gradation of impairment from normal aging to AD, and it seems to be related to perfusion in the bilateral posterior cingulate and the right temporal pole. PMID:20555146
Realmuto, Sabrina; Zummo, Leila; Cerami, Chiara; Agrò, Luigi; Dodich, Alessandra; Canessa, Nicola; Zizzo, Andrea; Fierro, Brigida; Daniele, Ornella
2015-06-01
Despite an extensive literature on cognitive impairments in focal and generalized epilepsy, only a few number of studies specifically explored social cognition disorders in epilepsy syndromes. The aim of our study was to investigate social cognition abilities in patients with temporal lobe epilepsy (TLE) and in patients with idiopathic generalized epilepsy (IGE). Thirty-nine patients (21 patients with TLE and 18 patients with IGE) and 21 matched healthy controls (HCs) were recruited. All subjects underwent a basic neuropsychological battery plus two experimental tasks evaluating emotion recognition from facial expression (Ekman-60-Faces test, Ek-60F) and mental state attribution (Story-based Empathy Task, SET). In particular, the latter is a newly developed task that assesses the ability to infer others' intentions (i.e., intention attribution - IA) and emotions (i.e., emotion attribution - EA) compared with a control condition of physical causality (i.e., causal inferences - CI). Compared with HCs, patients with TLE showed significantly lower performances on both social cognition tasks. In particular, all SET subconditions as well as the recognition of negative emotions were significantly impaired in patients with TLE vs. HCs. On the contrary, patients with IGE showed impairments on anger recognition only without any deficit at the SET task. Emotion recognition deficits occur in patients with epilepsy, possibly because of a global disruption of a pathway involving frontal, temporal, and limbic regions. Impairments of mental state attribution specifically characterize the neuropsychological profile of patients with TLE in the context of the in-depth temporal dysfunction typical of such patients. Impairments of socioemotional processing have to be considered as part of the neuropsychological assessment in both TLE and IGE in view of a correct management and for future therapeutic interventions. Copyright © 2015 Elsevier Inc. All rights reserved.
Neural correlates of "Theory of Mind" in very preterm born children.
Mossad, Sarah I; Smith, Mary Lou; Pang, Elizabeth W; Taylor, Margot J
2017-11-01
Very preterm (VPT) birth (<32 weeks' gestational age) has been implicated in social-cognitive deficits including Theory of Mind (ToM); the ability to attribute mental states to others and understand that those beliefs can differ from one's own or reality. The neural bases for ToM deficits in VPT born children have not been examined. We used magnetoencephalography (MEG) for its excellent spatial and temporal resolution to determine the neural underpinnings of ToM in 24 VPT and 24 full-term born (FT) children (7-13 years). VPT children performed more poorly on neuropsychological measures of ToM but not inhibition. In the MEG task, both FT children and VPT children recruited regions involved in false belief processing such as the rIFG (VPT: 275-350 ms, FT: 250-375 ms) and left inferior temporal gyrus (VPT: 375-450 ms, FT: 325-375 ms) and right fusiform gyrus (VPT: 150-200 ms, FT: 175-250 ms). The rIPL (included in the temporal-parietal junction) was recruited in FT children (475-575 ms) and the lTPJ in VPT children (500-575 ms). However, activations in all regions were reduced in the VPT compared to the FT group. We suggest that with increasing social-cognitive demands such as varying the type of scenarios in the standardized measure of ToM, reduced activations in the rIFG and TPJ in the VPT group may reflect the decreased performance. With access to both spatial and temporal information, we discuss the role of domain general and specific regions of the ToM network in both groups. Hum Brain Mapp 38:5577-5589, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Disordered high-frequency oscillation in face processing in schizophrenia patients
Liu, Miaomiao; Pei, Guangying; Peng, Yinuo; Wang, Changming; Yan, Tianyi; Wu, Jinglong
2018-01-01
Abstract Schizophrenia is a complex disorder characterized by marked social dysfunctions, but the neural mechanism underlying this deficit is unknown. To investigate whether face-specific perceptual processes are influenced in schizophrenia patients, both face detection and configural analysis were assessed in normal individuals and schizophrenia patients by recording electroencephalogram (EEG) data. Here, a face processing model was built based on the frequency oscillations, and the evoked power (theta, alpha, and beta bands) and the induced power (gamma bands) were recorded while the subjects passively viewed face and nonface images presented in upright and inverted orientations. The healthy adults showed a significant face-specific effect in the alpha, beta, and gamma bands, and an inversion effect was observed in the gamma band in the occipital lobe and right temporal lobe. Importantly, the schizophrenia patients showed face-specific deficits in the low-frequency beta and gamma bands, and the face inversion effect in the gamma band was absent from the occipital lobe. All these results revealed face-specific processing in patients due to the disorder of high-frequency EEG, providing additional evidence to enrich future studies investigating neural mechanisms and serving as a marked diagnostic basis. PMID:29419668
Panagiotidi, Maria; Overton, Paul G; Stafford, Tom
2017-11-01
Abnormalities in multimodal processing have been found in many developmental disorders such as autism and dyslexia. However, surprisingly little empirical work has been conducted to test the integrity of multisensory integration in Attention Deficit Hyperactivity Disorder (ADHD). The main aim of the present study was to examine links between symptoms of ADHD (as measured using a self-report scale in a healthy adult population) and the temporal aspects of multisensory processing. More specifically, a Simultaneity Judgement (SJ) and a Temporal Order Judgement (TOJ) task were used in participants with low and high levels of ADHD-like traits to measure the temporal integration window and Just-Noticeable Difference (JND) (respectively) between the timing of an auditory beep and a visual pattern presented over a broad range of stimulus onset asynchronies. The Point of Subjective Similarity (PSS) was also measured in both cases. In the SJ task, participants with high levels of ADHD-like traits considered significantly fewer stimuli to be simultaneous than participants with high levels of ADHD-like traits, and the former were found to have significantly smaller temporal windows of integration (although no difference was found in the PSS in the SJ or TOJ tasks, or the JND in the latter). This is the first study to identify an abnormal temporal integration window in individuals with ADHD-like traits. Perceived temporal misalignment of two or more modalities can lead to distractibility (e.g., when the stimulus components from different modalities occur separated by too large of a temporal gap). Hence, an abnormality in the perception of simultaneity could lead to the increased distractibility seen in ADHD. Copyright © 2017 Elsevier B.V. All rights reserved.
Age-Related Reversals in Neural Recruitment across Memory Retrieval Phases
Kensinger, Elizabeth A.
2017-01-01
Over the last several decades, neuroimaging research has identified age-related neural changes that occur during cognitive tasks. These changes are used to help researchers identify functional changes that contribute to age-related impairments in cognitive performance. One commonly reported example of such a change is an age-related decrease in the recruitment of posterior sensory regions coupled with an increased recruitment of prefrontal regions across multiple cognitive tasks. This shift is often described as a compensatory recruitment of prefrontal regions due to age-related sensory-processing deficits in posterior regions. However, age is not only associated with spatial shifts in recruitment, but also with temporal shifts, in which younger and older adults recruit the same neural region at different points in a task trial. The current study examines the possible contribution of temporal modifications in the often-reported posterior–anterior shift. Participants, ages 19–85, took part in a memory retrieval task with a protracted retrieval trial consisting of an initial memory search phase and a subsequent detail elaboration phase. Age-related neural patterns during search replicated prior reports of age-related decreases in posterior recruitment and increases in prefrontal recruitment. However, during the later elaboration phase, the same posterior regions were associated with age-related increases in activation. Further, ROI and functional connectivity results suggest that these posterior regions function similarly during search and elaboration. These results suggest that the often-reported posterior–anterior shift may not reflect the inability of older adults to engage in sensory processing, but rather a change in when they recruit this processing. SIGNIFICANCE STATEMENT The current study provides evidence that the often-reported posterior–anterior shift in aging may not reflect a global sensory-processing deficit, as has often been reported, but rather a temporal modification in this processing in which older adults engage the same neural regions during a detail elaboration phase that younger adults engage during memory search. In other words, older adults may ultimately be able to engage the same processes as younger adults during some cognitive tasks when given the time to do so. Future research should examine the generalizability of this effect and the importance of encouraging older adults to engage in these processes through task instruction or questions. PMID:28442537
Impaired short-term memory for pitch in congenital amusia.
Tillmann, Barbara; Lévêque, Yohana; Fornoni, Lesly; Albouy, Philippe; Caclin, Anne
2016-06-01
Congenital amusia is a neuro-developmental disorder of music perception and production. The hypothesis is that the musical deficits arise from altered pitch processing, with impairments in pitch discrimination (i.e., pitch change detection, pitch direction discrimination and identification) and short-term memory. The present review article focuses on the deficit of short-term memory for pitch. Overall, the data discussed here suggest impairments at each level of processing in short-term memory tasks; starting with the encoding of the pitch information and the creation of the adequate memory trace, the retention of the pitch traces over time as well as the recollection and comparison of the stored information with newly incoming information. These impairments have been related to altered brain responses in a distributed fronto-temporal network, associated with decreased connectivity between these structures, as well as in abnormalities in the connectivity between the two auditory cortices. In contrast, amusic participants׳ short-term memory abilities for verbal material are preserved. These findings show that short-term memory deficits in congenital amusia are specific to pitch, suggesting a pitch-memory system that is, at least partly, separated from verbal memory. This article is part of a Special Issue entitled SI: Auditory working memory. Copyright © 2015 Elsevier B.V. All rights reserved.
Subcortical encoding of speech cues in children with attention deficit hyperactivity disorder.
Jafari, Zahra; Malayeri, Saeed; Rostami, Reza
2015-02-01
There is little information about processing of nonspeech and speech stimuli at the subcortical level in individuals with attention deficit hyperactivity disorder (ADHD). The auditory brainstem response (ABR) provides information about the function of the auditory brainstem pathways. We aim to investigate the subcortical function in neural encoding of click and speech stimuli in children with ADHD. The subjects include 50 children with ADHD and 34 typically developing (TD) children between the ages of 8 and 12 years. Click ABR (cABR) and speech ABR (sABR) with 40 ms synthetic /da/ syllable stimulus were recorded. Latencies of cABR in waves of III and V and duration of V-Vn (P⩽0.027), and latencies of sABR in waves A, D, E, F and O and duration of V-A (P⩽0.034) were significantly longer in children with ADHD than in TD children. There were no apparent differences in components the sustained frequency following response (FFR). We conclude that children with ADHD have deficits in temporal neural encoding of both nonspeech and speech stimuli. There is a common dysfunction in the processing of click and speech stimuli at the brainstem level in children with suspected ADHD. Copyright © 2015. Published by Elsevier Ireland Ltd.
Mehraei, Golbarg; Gallun, Frederick J.; Leek, Marjorie R.; Bernstein, Joshua G. W.
2014-01-01
Poor speech understanding in noise by hearing-impaired (HI) listeners is only partly explained by elevated audiometric thresholds. Suprathreshold-processing impairments such as reduced temporal or spectral resolution or temporal fine-structure (TFS) processing ability might also contribute. Although speech contains dynamic combinations of temporal and spectral modulation and TFS content, these capabilities are often treated separately. Modulation-depth detection thresholds for spectrotemporal modulation (STM) applied to octave-band noise were measured for normal-hearing and HI listeners as a function of temporal modulation rate (4–32 Hz), spectral ripple density [0.5–4 cycles/octave (c/o)] and carrier center frequency (500–4000 Hz). STM sensitivity was worse than normal for HI listeners only for a low-frequency carrier (1000 Hz) at low temporal modulation rates (4–12 Hz) and a spectral ripple density of 2 c/o, and for a high-frequency carrier (4000 Hz) at a high spectral ripple density (4 c/o). STM sensitivity for the 4-Hz, 4-c/o condition for a 4000-Hz carrier and for the 4-Hz, 2-c/o condition for a 1000-Hz carrier were correlated with speech-recognition performance in noise after partialling out the audiogram-based speech-intelligibility index. Poor speech-reception and STM-detection performance for HI listeners may be related to a combination of reduced frequency selectivity and a TFS-processing deficit limiting the ability to track spectral-peak movements. PMID:24993215
Baez, Sandra; Pinasco, Clara; Roca, María; Ferrari, Jesica; Couto, Blas; García-Cordero, Indira; Ibañez, Agustín; Cruz, Francy; Reyes, Pablo; Matallana, Diana; Manes, Facundo; Cetcovich, Marcelo; Torralva, Teresa
2017-02-17
An early stage of behavioral variant frontotemporal dementia (bvFTD) often displays a mix of behavioral disturbances and personality changes hindering a differential diagnosis from elderly bipolar disorder (BD), making this process a big challenge. However, no studies have compared these pathologies from neuropsychological and neuroanatomical perspectives. The aim of the present study was to compare the executive functions (EF) and social cognition profiles as well as the structural neuroimaging of bvFTD and elderly patients with BD. First, we compared the executive and social cognition performances of 16 bvFTD patients, 13 BD patients and 22 healthy controls. Second, we compared grey matter volumes in both groups of patients and controls using voxel-based morphometry. Lastly, we examined the brain regions where atrophy might be associated with specific impairments in bvFTD and BD patients. Compared to controls, bvFTD patients showed deficits in working memory, abstraction capacity, inhibitory control, cognitive flexibility, verbal fluency and theory of mind (ToM). Patients with BD showed lower performance than controls in terms of abstraction capacity and verbal inhibitory control. In bvFTD patients, atrophy of frontal, temporal and insular cortices was related to EF deficits. Atrophy of the amygdala, the hippocampus, the parahippocampal gyrus, the putamen, the insula, the precuneus, the right temporo-parietal junction and superior temporal pole was associated to ToM impairments. No significant associations between atrophy and EF performance were observed in BD patients. BvFTD patients showed greater EF and ToM deficits than BD patients. Moreover, compared to BD, bvFTD patients exhibited a significant decrease in GM volume in frontal, temporal and parietal regions. Our results provide the first comparison of EF, social cognition and neuroanatomical profiles of bvFTD and elderly BD patients. These findings shed light on differential diagnosis of these disorders and may have important clinical implications. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Fostick, Leah
2017-01-01
Purpose: "The Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition" notes that attention-deficit/hyperactivity disorder (ADHD) diagnosed in childhood will persist into adulthood among at least some individuals. There is a paucity of evidence, however, regarding whether other difficulties that often accompany childhood…
ERIC Educational Resources Information Center
Chen, Mu-Hong; Su, Tung-Ping; Chen, Ying-Sheue; Hsu, Ju-Wei; Huang, Kai-Lin; Chang, Wen-Han; Chen, Tzeng-Ji; Bai, Ya-Mei
2013-01-01
Background: Previous cross-sectional studies have suggested an association between asthma and attention-deficit/hyperactivity disorder (ADHD), but the temporal relationship was not determined. Using a nationwide population-based prospective case-control cohort study (1:4, age-/gender-matched), we hypothesized that asthma in infanthood or early…
Dittmar, Helga; Bond, Rod
2010-11-01
This paper proposes a new model of consumer impulsivity, using type of good, a person's endorsement of materialistic values, and identity deficits as predictors. Traditional decision making and psychological accounts see impulsive behaviour as a general overweighing of short-term gratification (I want that dress now) relative to longer-term concerns, irrespective of consumer good. Our proposal is that consumers' impulsivity (a) differs according to type of good and (b) is linked systematically to a combination of materialistic values and high identity deficits. Beginning with Study 1, three experiments, using a temporal discounting paradigm, show consistently that discount rates are higher for goods that are seen as highly expressive of identity (e.g., clothes) than goods not expressive of identity (e.g., basic body care products). For materialistic consumers, identity deficits predict discount rates for identity-expressive goods (Study 2), and discount rates change for materialistic individuals when their identity deficits are made salient (Study 3). These findings support a conceptualization of consumer impulsivity as identity-seeking behaviour.
The use of the picture–word interference paradigm to examine naming abilities in aphasic individuals
Hashimoto, Naomi; Thompson, Cynthia K.
2015-01-01
Background Although naming deficits are well documented in aphasia, on-line measures of naming processes have been little investigated. The use of on-line measures may offer further insight into the nature of aphasic naming deficits that would otherwise be difficult to interpret when using off-line measures. Aims The temporal activation of semantic and phonological processes was tracked in older normal control and aphasic individuals using a picture–word interference paradigm. The purpose of the study was to examine how word interference results can augment and/or corroborate standard language testing in the aphasic group, as well as to examine temporal patterns of activation in the aphasic group when compared to a normal control group. Methods & Procedures A total of 20 older normal individuals and 11 aphasic individuals participated. Detailed measures of each aphasic individual's language and naming skills were obtained. A visual picture–word interference paradigm was used in which the words bore either a semantic, phonological, or no relationship to 25 pictures. These competitor words were presented at stimulus onset asynchronies of −300 ms, +300 ms, and 0 ms. Outcomes & Results Analyses of naming RTs in both groups revealed significant early semantic interference effects, mid-semantic interference effects, and mid-phonological facilitation effects. A matched control-aphasic group comparison revealed no differences in the temporal activation of effects during the course of naming. Partial support for this RT pattern was found in the aphasic naming error pattern. The aphasic group also demonstrated greater SIEs and PFEs compared to the matched control group, which indicated disruptions of the phonological processing stage. Analyses of behavioural performances of the aphasic group corroborated this finding. Conclusions The aphasic naming RTs results were unexpected given the results from the priming literature, which has supported the idea of slowed or reduced patterns of activation in aphasic individuals. However, analyses of naming RTs also confirmed the behavioural finding of a disruption surrounding phonological processes; thus, the analyses of naming latencies offers another potential means of pinpointing breakdowns of lexical access in individuals with aphasia. PMID:26166927
Central Auditory Processing of Temporal and Spectral-Variance Cues in Cochlear Implant Listeners
Pham, Carol Q.; Bremen, Peter; Shen, Weidong; Yang, Shi-Ming; Middlebrooks, John C.; Zeng, Fan-Gang; Mc Laughlin, Myles
2015-01-01
Cochlear implant (CI) listeners have difficulty understanding speech in complex listening environments. This deficit is thought to be largely due to peripheral encoding problems arising from current spread, which results in wide peripheral filters. In normal hearing (NH) listeners, central processing contributes to segregation of speech from competing sounds. We tested the hypothesis that basic central processing abilities are retained in post-lingually deaf CI listeners, but processing is hampered by degraded input from the periphery. In eight CI listeners, we measured auditory nerve compound action potentials to characterize peripheral filters. Then, we measured psychophysical detection thresholds in the presence of multi-electrode maskers placed either inside (peripheral masking) or outside (central masking) the peripheral filter. This was intended to distinguish peripheral from central contributions to signal detection. Introduction of temporal asynchrony between the signal and masker improved signal detection in both peripheral and central masking conditions for all CI listeners. Randomly varying components of the masker created spectral-variance cues, which seemed to benefit only two out of eight CI listeners. Contrastingly, the spectral-variance cues improved signal detection in all five NH listeners who listened to our CI simulation. Together these results indicate that widened peripheral filters significantly hamper central processing of spectral-variance cues but not of temporal cues in post-lingually deaf CI listeners. As indicated by two CI listeners in our study, however, post-lingually deaf CI listeners may retain some central processing abilities similar to NH listeners. PMID:26176553
Gao, Yujun; Zheng, Jinou; Li, Yaping; Guo, Danni; Wang, Mingli; Cui, Xiangxiang; Ye, Wei
2018-04-01
Patients with temporal lobe epilepsy (TLE) often suffer from alertness alterations. However, specific regions connected with alertness remain controversial, and whether these regions have structural impairment is also elusive. This study aimed to investigate the characteristics and neural mechanisms underlying the functions and structures of alertness network in patients with right-sided temporal lobe epilepsy (rTLE) by performing the attentional network test (ANT), resting-state functional magnetic resonance imaging (R-SfMRI), and diffusion tensor imaging (DTI).A total of 47 patients with rTLE and 34 healthy controls underwent ANT, R-SfMRI, and DTI scan. The seed-based functional connectivity (FC) method and deterministic tractography were used to analyze the data.Patients with rTLE had longer reaction times in the no-cue and double-cue conditions. However, no differences were noted in the alertness effect between the 2 groups. The patient group had lower FC compared with the control group in the right inferior parietal lobe (IPL), amygdala, and insula. Structural deficits were found in the right parahippocampal gyrus, superior temporal pole, insula, and amygdala in the patient group compared with the control group. Also significantly negative correlations were observed between abnormal fractional anisotropy (between the right insula and the superior temporal pole) and illness duration in the patients with rTLE.The findings of this study suggested abnormal intrinsic and phasic alertness, decreased FC, and structural deficits within the alerting network in the rTLE. This study provided new insights into the mechanisms of alertness alterations in rTLE.
Machts, Judith; Bittner, Verena; Kasper, Elisabeth; Schuster, Christina; Prudlo, Johannes; Abdulla, Susanne; Kollewe, Katja; Petri, Susanne; Dengler, Reinhard; Heinze, Hans-Jochen; Vielhaber, Stefan; Schoenfeld, Mircea A; Bittner, Daniel M
2014-06-30
Recent work suggests that ALS and frontotemporal dementia can occur together and share at least in part the same underlying pathophysiology. However, it is unclear at present whether memory deficits in ALS stem from a temporal lobe dysfunction, or are rather driven by frontal executive dysfunction. In this study we sought to investigate the nature of memory deficits by analyzing the neuropsychological performance of 40 ALS patients in comparison to 39 amnestic mild cognitive impairment (aMCI) patients and 40 healthy controls (HC). The neuropsychological battery tested for impairment in executive functions, as well as memory and visuo-spatial skills, the results of which were compared across study groups. In addition, we calculated composite scores for memory (learning, recall, recognition) and executive functions (verbal fluency, cognitive flexibility, working memory). We hypothesized that the nature of memory impairment in ALS will be different from those exhibited by aMCI patients. Patient groups exhibited significant differences in their type of memory deficit, with the ALS group showing impairment only in recognition, whereas aMCI patients showed short and delayed recall performance deficits as well as reduced short-term capacity. Regression analysis revealed a significant impact of executive function on memory performance exclusively for the ALS group, accounting for one fifth of their memory performance. Interestingly, merging all sub scores into a single memory and an executive function score obscured these differences. The presented results indicate that the interpretation of neuropsychological scores needs to take the distinct cognitive profiles in ALS and aMCI into consideration. Importantly, the observed memory deficits in ALS were distinctly different from those observed in aMCI and can be explained only to some extent in the context of comorbid (coexisting) executive dysfunction. These findings highlight the qualitative differences in temporal lobe dysfunction between ALS and aMCI patients, and support temporal lobe dysfunction as a mechanism underlying the distinct cognitive impairments observed in ALS.
Why do lesions in the rodent anterior thalamic nuclei cause such severe spatial deficits?
Aggleton, John P.; Nelson, Andrew J.D.
2015-01-01
Lesions of the rodent anterior thalamic nuclei cause severe deficits to multiple spatial learning tasks. Possible explanations for these effects are examined, with particular reference to T-maze alternation. Anterior thalamic lesions not only impair allocentric place learning but also disrupt other spatial processes, including direction learning, path integration, and relative length discriminations, as well as aspects of nonspatial learning, e.g., temporal discriminations. Working memory tasks, such as T-maze alternation, appear particularly sensitive as they combine an array of these spatial and nonspatial demands. This sensitivity partly reflects the different functions supported by individual anterior thalamic nuclei, though it is argued that anterior thalamic lesion effects also arise from covert pathology in sites distal to the thalamus, most critically in the retrosplenial cortex and hippocampus. This two-level account, involving both local and distal lesion effects, explains the range and severity of the spatial deficits following anterior thalamic lesions. These findings highlight how the anterior thalamic nuclei form a key component in a series of interdependent systems that support multiple spatial functions. PMID:25195980
Sela, Itamar
2014-01-01
Visual and auditory temporal processing and crossmodal integration are crucial factors in the word decoding process. The speed of processing (SOP) gap (Asynchrony) between these two modalities, which has been suggested as related to the dyslexia phenomenon, is the focus of the current study. Nineteen dyslexic and 17 non-impaired University adult readers were given stimuli in a reaction time (RT) procedure where participants were asked to identify whether the stimulus type was only visual, only auditory or crossmodally integrated. Accuracy, RT, and Event Related Potential (ERP) measures were obtained for each of the three conditions. An algorithm to measure the contribution of the temporal SOP of each modality to the crossmodal integration in each group of participants was developed. Results obtained using this model for the analysis of the current study data, indicated that in the crossmodal integration condition the presence of the auditory modality at the pre-response time frame (between 170 and 240 ms after stimulus presentation), increased processing speed in the visual modality among the non-impaired readers, but not in the dyslexic group. The differences between the temporal SOP of the modalities among the dyslexics and the non-impaired readers give additional support to the theory that an asynchrony between the visual and auditory modalities is a cause of dyslexia. PMID:24959125
Bo, Jin; Colbert, Alison; Lee, Chi-Mei; Schaffert, Jeffrey; Oswald, Kaitlin; Neill, Rebecca
2014-09-01
Children with Developmental Coordination Disorder (DCD) often experience difficulties in handwriting. The current study examined the relationships between three motor assessments and the spatial and temporal consistency of handwriting. Twelve children with probable DCD and 29 children from 7 to 12 years who were typically developing wrote the lowercase letters "e" and "l" in cursive and printed forms repetitively on a digitizing tablet. Three behavioral assessments, including the Beery-Buktenica Developmental Test of Visual-Motor Integration (VMI), the Minnesota Handwriting Assessment (MHA) and the Movement Assessment Battery for Children (MABC), were administered. Children with probable DCD had low scores on the VMI, MABC and MHA and showed high temporal, not spatial, variability in the letter-writing task. Their MABC scores related to temporal consistency in all handwriting conditions, and the Legibility scores in their MHA correlated with temporal consistency in cursive "e" and printed "l". It appears that children with probable DCD have prominent difficulties on the temporal aspect of handwriting. While the MHA is a good product-oriented assessment for measuring handwriting deficits, the MABC shows promise as a good assessment for capturing the temporal process of handwriting in children with DCD. Copyright © 2014 Elsevier Ltd. All rights reserved.
Structural correlates of cognitive deficit and elevated gamma noise power in schizophrenia.
Suazo, Vanessa; Díez, Álvaro; Montes, Carlos; Molina, Vicente
2014-03-01
The aim of this study was to assess the relation between cognition, gray matter (GM) volumes and gamma noise power (amount of background oscillatory activity in the gamma band) in schizophrenia. We explored the relation between cognitive performance and regional GM volumes using voxel-based morphometry (VBM), in order to discover if the association between gamma noise power (an electroencephalography measurement of background activity in the gamma band) and cognition is observed through structural deficits related to the disease. Noise power, magnetic resonance imaging and cognitive assessments were obtained in 17 drug-free paranoid patients with schizophrenia and 13 healthy controls. In comparison with controls, patients showed GM deficits at posterior cingulate (bilateral),left inferior parietal (supramarginal gyrus) and left inferior dorsolateral prefrontal regions. Patients exhibited a direct association between performance in working memory and right temporal (superior and inferior gyri) GM densities. They also displayed a negative association between right anterior cerebellum volume and gamma noise power at the frontal midline (Fz) site. A structural deficit in the cerebellum may be involved in gamma activity disorganization in schizophrenia. Temporal structural deficits may relate to cognitive dysfunction in this illness. © 2013 The Authors. Psychiatry and Clinical Neurosciences © 2013 Japanese Society of Psychiatry and Neurology.
Binney, Richard J; Henry, Maya L; Babiak, Miranda; Pressman, Peter S; Santos-Santos, Miguel A; Narvid, Jared; Mandelli, Maria Luisa; Strain, Paul J; Miller, Bruce L; Rankin, Katherine P; Rosen, Howard J; Gorno-Tempini, Maria Luisa
2016-09-01
Semantic variant primary progressive aphasia (svPPA) typically presents with left-hemisphere predominant rostral temporal lobe (rTL) atrophy and the most significant complaints within the language domain. Less frequently, patients present with right-hemisphere predominant temporal atrophy coupled with marked impairments in processing of famous faces and emotions. Few studies have objectively compared these patient groups in both domains and therefore it is unclear to what extent the syndromes overlap. Clinically diagnosed svPPA patients were characterized as left- (n = 21) or right-predominant (n = 12) using imaging and compared along with 14 healthy controls. Regarding language, our primary focus was upon two hallmark features of svPPA; confrontation naming and surface dyslexia. Both groups exhibited naming deficits and surface dyslexia although the impairments were more severe in the left-predominant group. Familiarity judgments on famous faces and affect processing were more profoundly impaired in the right-predominant group. Our findings suggest that the two syndromes overlap significantly but that early cases at the tail ends of the continuum constitute a challenge for current clinical criteria. Correlational neuroimaging analyses implicated a mid portion of the left lateral temporal lobe in exception word reading impairments in line with proposals that this region is an interface between phonology and semantic knowledge. Copyright © 2016 Elsevier Ltd. All rights reserved.
Song, Sunbin; Luby, Marie; Edwardson, Matthew A.; Brown, Tyler; Shah, Shreyansh; Cox, Robert W.; Saad, Ziad S.; Reynolds, Richard C.; Glen, Daniel R.; Cohen, Leonardo G.; Latour, Lawrence L.
2017-01-01
Introduction Interpretation of the extent of perfusion deficits in stroke MRI is highly dependent on the method used for analyzing the perfusion-weighted signal intensity time-series after gadolinium injection. In this study, we introduce a new model-free standardized method of temporal similarity perfusion (TSP) mapping for perfusion deficit detection and test its ability and reliability in acute ischemia. Materials and methods Forty patients with an ischemic stroke or transient ischemic attack were included. Two blinded readers compared real-time generated interactive maps and automatically generated TSP maps to traditional TTP/MTT maps for presence of perfusion deficits. Lesion volumes were compared for volumetric inter-rater reliability, spatial concordance between perfusion deficits and healthy tissue and contrast-to-noise ratio (CNR). Results Perfusion deficits were correctly detected in all patients with acute ischemia. Inter-rater reliability was higher for TSP when compared to TTP/MTT maps and there was a high similarity between the lesion volumes depicted on TSP and TTP/MTT (r(18) = 0.73). The Pearson's correlation between lesions calculated on TSP and traditional maps was high (r(18) = 0.73, p<0.0003), however the effective CNR was greater for TSP compared to TTP (352.3 vs 283.5, t(19) = 2.6, p<0.03.) and MTT (228.3, t(19) = 2.8, p<0.03). Discussion TSP maps provide a reliable and robust model-free method for accurate perfusion deficit detection and improve lesion delineation compared to traditional methods. This simple method is also computationally faster and more easily automated than model-based methods. This method can potentially improve the speed and accuracy in perfusion deficit detection for acute stroke treatment and clinical trial inclusion decision-making. PMID:28973000
Body-part-specific representations of semantic noun categories.
Carota, Francesca; Moseley, Rachel; Pulvermüller, Friedemann
2012-06-01
Word meaning processing in the brain involves ventrolateral temporal cortex, but a semantic contribution of the dorsal stream, especially frontocentral sensorimotor areas, has been controversial. We here examine brain activation during passive reading of object-related nouns from different semantic categories, notably animal, food, and tool words, matched for a range of psycholinguistic features. Results show ventral stream activation in temporal cortex along with category-specific activation patterns in both ventral and dorsal streams, including sensorimotor systems and adjacent pFC. Precentral activation reflected action-related semantic features of the word categories. Cortical regions implicated in mouth and face movements were sparked by food words, and hand area activation was seen for tool words, consistent with the actions implicated by the objects the words are used to speak about. Furthermore, tool words specifically activated the right cerebellum, and food words activated the left orbito-frontal and fusiform areas. We discuss our results in the context of category-specific semantic deficits in the processing of words and concepts, along with previous neuroimaging research, and conclude that specific dorsal and ventral areas in frontocentral and temporal cortex index visual and affective-emotional semantic attributes of object-related nouns and action-related affordances of their referent objects.
Region-specific reduction of auditory sensory gating in older adults.
Cheng, Chia-Hsiung; Baillet, Sylvain; Lin, Yung-Yang
2015-12-01
Aging has been associated with declines in sensory-perceptual processes. Sensory gating (SG), or repetition suppression, refers to the attenuation of neural activity in response to a second stimulus and is considered to be an automatic process to inhibit redundant sensory inputs. It is controversial whether SG deficits, as tested with an auditory paired-stimulus protocol, accompany normal aging in humans. To reconcile the debates arising from event-related potential studies, we recorded auditory neuromagnetic reactivity in 20 young and 19 elderly adult men and determined the neural activation by using minimum-norm estimate (MNE) source modeling. SG of M100 was calculated by the ratio of the response to the second stimulus over that to the first stimulus. MNE results revealed that fronto-temporo-parietal networks were implicated in the M100 SG. Compared to the younger participants, the elderly showed selectively increased SG ratios in the anterior superior temporal gyrus, anterior middle temporal gyrus, temporal pole and orbitofrontal cortex, suggesting an insufficient age-related gating to repetitive auditory stimulation. These findings also highlight the loss of frontal inhibition of the auditory cortex in normal aging. Copyright © 2015 Elsevier Inc. All rights reserved.
Musical deficits and cortical thickness in people with schizophrenia.
Fujito, Ryosuke; Minese, Masayoshi; Hatada, Sanae; Kamimura, Naoto; Morinobu, Shigeru; Lang, Donna J; Honer, William G; Sawada, Ken
2018-02-14
Investigation of acquired amusia caused by brain damage suggested that cortical lesions of the right hemisphere contributed to musical deficits. We previously reported reduced musical ability in schizophrenia; these deficits were correlated with clinical manifestations such as cognitive dysfunction and negative symptoms. However, the neural substrate underlying the musical disability in schizophrenia remains unclear. We investigated the relationship between musical deficits and cortical thickness in patients with schizophrenia using structural MRI. We recruited 24 patients (13 males; age mean=45.9years old), and 22 controls (14 males, age mean=43.5years old). Musical ability was assessed with the Montreal Battery for Evaluation of Amusia (MBEA), cognitive function with the Brief Assessment of Cognition in Schizophrenia (BACS) and clinical features of illness with the Positive and Negative Syndrome Scale (PANSS). MRI Images were acquired and processed using FreeSurfer. Surface-based analysis showed that thinner cortex in left temporal and inferior frontal region was associated with lower musical ability in schizophrenia. In contrast, in controls thicker cortex in the left supramarginal region was correlated with lower musical ability. These results shed light on the clinical pathology underlying the associations of musical ability, cognitive dysfunction and negative symptoms in patients with schizophrenia. Crown Copyright © 2018. Published by Elsevier B.V. All rights reserved.
Robson, Holly; Sage, Karen; Ralph, Matthew A Lambon
2012-01-01
Wernicke's aphasia (WA) is the classical neurological model of comprehension impairment and, as a result, the posterior temporal lobe is assumed to be critical to semantic cognition. This conclusion is potentially confused by (a) the existence of patient groups with semantic impairment following damage to other brain regions (semantic dementia and semantic aphasia) and (b) an ongoing debate about the underlying causes of comprehension impairment in WA. By directly comparing these three patient groups for the first time, we demonstrate that the comprehension impairment in Wernicke's aphasia is best accounted for by dual deficits in acoustic-phonological analysis (associated with pSTG) and semantic cognition (associated with pMTG and angular gyrus). The WA group were impaired on both nonverbal and verbal comprehension assessments consistent with a generalised semantic impairment. This semantic deficit was most similar in nature to that of the semantic aphasia group suggestive of a disruption to semantic control processes. In addition, only the WA group showed a strong effect of input modality on comprehension, with accuracy decreasing considerably as acoustic-phonological requirements increased. These results deviate from traditional accounts which emphasise a single impairment and, instead, implicate two deficits underlying the comprehension disorder in WA. Copyright © 2011 Elsevier Ltd. All rights reserved.
Language-Invariant Verb Processing Regions in Spanish-English Bilinguals
Willms, Joanna L.; Shapiro, Kevin A.; Peelen, Marius V.; Pajtas, Petra E.; Costa, Albert; Moo, Lauren R.; Caramazza, Alfonso
2011-01-01
Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. PMID:21515387
NASA Astrophysics Data System (ADS)
Rigaud, Sylvain; Deflandre, Bruno; Grenz, Christian; Pozzato, Lara; Cesbron, Florian; Meulé, Samuel; Bonin, Patricia; Michotey, Valérie; Mirleau, Pascal; Mirleau, Fatma; Knoery, Joel; Zuberer, Frédéric; Guillemain, Dorian; Marguerite, Sébatien; Mayot, Nicolas; Faure, Vincent; Grisel, Raphael; Radakovitch, Olivier
2017-04-01
The desoxygenation of the water column in coastal areas, refered as coastal hypoxia, is currently a growing phenomenon still particularly complex to predict. This is mainly due to the fact that the biogeochemical response of the benthic ecosystem to the variation of the oxygen contents in the water column remains poorly understood. Dissolved oxygen concentration is a key parameter controling the benthic micro- and macro-community as well as the biogeochemical reactions occuring in the surface sediment. More particularly, the variation over variable time scales (from hour to years) of the oxygen deficit may induce different pathways for biogeochemical processes such as the oxydation of freshly deposited organic matter and nutrients and metals recycling. This results in variable chemical fluxes at the sediment-water interface, that may in turn, support the eutrophication and desoxygenation of the aquatic system. Our study focus on the Berre lagoon, an eutrophicated mediterranean lagoon impacted by hypoxia events in the water column. Three stations, closely located but impacted by contrasted temporal variation of oxygen deficit in the water column were selected: one station with rare oxygen deficit and with functionnal macrofauna community, one station with almost permanent oxygen deficit and no macrofauna community and one intermediate station with seasonnal oxygen deficit and degraded macrofauna community. Each station was surveyed once during a same field survey while the intermediate station was surveyed seasonnaly. For each campaign, we report vertical profiles of the main chemical components (oxygen, nutrients, metals) along the water-column/sediment continuum, with an increased vertical resolution in the benthic zone using a multi-tool approach (high vertical resolution suprabenthic water sampler and microsensors profiler). In addition, total chemical fluxes at the sediment-water interface was obtained using benthic chambers. This dataset was used to evaluate the influence, of the oxygen concentrations (and its short and long-term variations) in the water column on the nature and location of the main biogeochemical reactions occuring in the benthic zone and the resulting fluxes at the sediment-water interface.
Brain Regions Underlying Word Finding Difficulties in Temporal Lobe Epilepsy
ERIC Educational Resources Information Center
Trebuchon-Da Fonseca, Agnes; Guedj, Eric; Alario, F-Xavier; Laguitton, Virginie; Mundler, Olivier; Chauvel, Patrick; Liegeois-Chauvel, Catherine
2009-01-01
Word finding difficulties are often reported by epileptic patients with seizures originating from the language dominant cerebral hemisphere, for example, in temporal lobe epilepsy. Evidence regarding the brain regions underlying this deficit comes from studies of peri-operative electro-cortical stimulation, as well as post-surgical performance.…
Effects of Cueing in Auditory Temporal Masking
ERIC Educational Resources Information Center
Zhang, Ting; Formby, Craig
2007-01-01
Purpose: In a landmark study, B. A. Wright et al. (1997) reported an apparent backward-masking deficit in language-learning-impaired children. Subsequently, the controversial interpretation of those results has been influential in guiding treatments for childhood language problems. This study revisited the temporal-masking paradigm reported by B.…
ERIC Educational Resources Information Center
Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund
2012-01-01
It has been difficult to differentiate attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in terms of some aspects of their cognitive profile. While both show deficits in executive functions, it has been suggested that they may differ in their response to monetary reward. For instance, children with ADHD prefer…
Temporal lobe epilepsy in patients with nonlesional MRI and normal memory: an SEEG study.
Suresh, Suraj; Sweet, Jennifer; Fastenau, Philip S; Lüders, Hans; Landazuri, Patrick; Miller, Jonathan
2015-12-01
Temporal lobe epilepsy (TLE) in the absence of MRI abnormalities and memory deficits is often presumed to have an extramesial or even extratemporal source. In this paper the authors report the results of a comprehensive stereoelectroencephalography (SEEG) analysis in patients with TLE with normal MRI images and memory scores. Eighteen patients with medically refractory epilepsy who also had unremarkable MR images and normal verbal and visual memory scores on neuropsychological testing were included in the study. All patients had seizure semiology and video electroencephalography (EEG) findings suggestive of TLE. A standardized SEEG investigation was performed for each patient with electrodes implanted into the mesial and lateral temporal lobe, temporal tip, posterior temporal neocortex, orbitomesiobasal frontal lobe, posterior cingulate gyrus, and insula. This information was used to plan subsequent surgical management. Interictal SEEG abnormalities were observed in the mesial temporal structures in 17 patients (94%) and in the temporal tip in 6 (33%). Seizure onset was exclusively from mesial structures in 13 (72%), exclusively from lateral temporal cortex and/or temporal tip structures in 2 (11%), and independently from mesial and neocortical foci in 3 (17%). No seizure activity was observed arising from any extratemporal location. All patients underwent surgical intervention targeting the temporal lobe and tailored to the SEEG findings, and all experienced significant improvement in seizure frequency with a postoperative follow-up observation period of at least 1 year. This study demonstrates 3 important findings: 1) normal memory does not preclude mesial temporal seizure onset; 2) onset of seizures exclusively from mesial temporal structures without early neocortical involvement is common, even in the absence of memory deficits; and 3) extratemporal seizure onset is rare when video EEG and semiology are consistent with focal TLE.
Neuropsychological and FDG-PET profiles in VGKC autoimmune limbic encephalitis.
Dodich, Alessandra; Cerami, Chiara; Iannaccone, Sandro; Marcone, Alessandra; Alongi, Pierpaolo; Crespi, Chiara; Canessa, Nicola; Andreetta, Francesca; Falini, Andrea; Cappa, Stefano F; Perani, Daniela
2016-10-01
Limbic encephalitis (LE) is characterized by an acute or subacute onset with memory impairments, confusional state, behavioral disorders, variably associated with seizures and dystonic movements. It is due to inflammatory processes that selectively affect the medial temporal lobe structures. Voltage-gate potassium channel (VGKC) autoantibodies are frequently observed. In this study, we assessed at the individual level FDG-PET brain metabolic dysfunctions and neuropsychological profiles in three autoimmune LE cases seropositive for neuronal VGKC-complex autoantibodies. LGI1 and CASPR2 potassium channel complex autoantibody subtyping was performed. Cognitive abilities were evaluated with an in-depth neuropsychological battery focused on episodic memory and affective recognition/processing skills. FDG-PET data were analyzed at single-subject level according to a standardized and validated voxel-based Statistical Parametric Mapping (SPM) method. Patients showed severe episodic memory and fear recognition deficits at the neuropsychological assessment. No disorder of mentalizing processing was present. Variable patterns of increases and decreases of brain glucose metabolism emerged in the limbic structures, highlighting the pathology-driven selective vulnerability of this system. Additional involvement of cortical and subcortical regions, particularly in the sensorimotor system and basal ganglia, was found. Episodic memory and fear recognition deficits characterize the cognitive profile of LE. Commonalities and differences may occur in the brain metabolic patterns. Single-subject voxel-based analysis of FDG-PET imaging could be useful in the early detection of the metabolic correlates of cognitive and non-cognitive deficits characterizing LE condition. Copyright © 2016 Elsevier Inc. All rights reserved.
Cognitive Mechanisms in Decision-Making in Patients With Mild Alzheimer Disease.
Alameda-Bailen, Jose Ramon; Salguero-Alcaniz, Maria Pilar; Merchan-Clavellino, Ana; Paino-Quesada, Susana
2017-01-01
Alzheimer's dementia is characterized by significant cortical and subcortical atrophy, causing diverse neuropsychological deficits. According to the somatic marker hypothesis, the areas responsible for generating the somatic markers that anticipate the consequences of a decision and thereby optimize the process would be affected in these patients. The aim of this experiment is to study the decision-making processes in Alzheimer type dementia patients to determine potential deficits in these processes as a result of the disease, aside from the cognitive impairment that is typical of aging. In addition, we wish to determine the defining characteristics of decision-making in these patients, on the basis of the prospect valence-learning parameters. We evaluated 30 patients with Alzheimer's disease and a control group of 30 healthy subjects. A short version of the Iowa Gambling Task was used. The results showed that patients made less advantageous choices than did controls. Group differences were quantitative and qualitative, as significant differences in cognitive mechanisms identified in the prospect valence-learning decisions were observed. These results are consistent with evidence from neuroimaging studies as well as with work carried out with amnesic patients. That problems in our patients' decision-making could be due to the characteristic memory deficits of this disease, which prevents them from establishing new stimulus-reward relationships and eliminating previously learned responses as a result of the parietal and temporal atrophy they present. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Infant discrimination of rapid auditory cues predicts later language impairment.
Benasich, April A; Tallal, Paula
2002-10-17
The etiology and mechanisms of specific language impairment (SLI) in children are unknown. Differences in basic auditory processing abilities have been suggested to underlie their language deficits. Studies suggest that the neuropathology, such as atypical patterns of cerebral lateralization and cortical cellular anomalies, implicated in such impairments likely occur early in life. Such anomalies may play a part in the rapid processing deficits seen in this disorder. However, prospective, longitudinal studies in infant populations that are critical to examining these hypotheses have not been done. In the study described, performance on brief, rapidly-presented, successive auditory processing and perceptual-cognitive tasks were assessed in two groups of infants: normal control infants with no family history of language disorders and infants from families with a positive family history for language impairment. Initial assessments were obtained when infants were 6-9 months of age (M=7.5 months) and the sample was then followed through age 36 months. At the first visit, infants' processing of rapid auditory cues as well as global processing speed and memory were assessed. Significant differences in mean thresholds were seen in infants born into families with a history of SLI as compared with controls. Examination of relations between infant processing abilities and emerging language through 24 months-of-age revealed that threshold for rapid auditory processing at 7.5 months was the single best predictor of language outcome. At age 3, rapid auditory processing threshold and being male, together predicted 39-41% of the variance in language outcome. Thus, early deficits in rapid auditory processing abilities both precede and predict subsequent language delays. These findings support an essential role for basic nonlinguistic, central auditory processes, particularly rapid spectrotemporal processing, in early language development. Further, these findings provide a temporal diagnostic window during which future language impairments may be addressed.
Time processing impairments in preschoolers at risk of developing difficulties in mathematics.
Tobia, Valentina; Rinaldi, Luca; Marzocchi, Gian Marco
2018-03-01
The occurrence of time processing problems in individuals with Development Dyscalculia (DD) has favored the view of a general magnitude system devoted to both numerical and temporal information. Yet, this scenario has been partially challenged by studies indicating that time difficulties can be attributed to poor calculation or counting skills, which can support reasoning on time in school-aged children and adults. Here, we tackle this debate by exploring the performance of young children before they fully develop the symbolic number system. Preschoolers at risk of developing DD were compared with typically developing children in a series of tasks investigating time processing and in their 'sense of time', evaluated by parents and teachers. Results yielded a poorer performance in time reproduction of 5-second intervals and in time discrimination, as well as a weaker 'sense of time', in children at risk of DD. These findings provide evidence of a common magnitude system that would be responsible for deficits in both numerical and temporal domains, already at early stages of life. © 2016 John Wiley & Sons Ltd.
Dispaldro, Marco; Corradi, Nicola
2015-01-01
The purpose of this study is to evaluate whether children with Specific Language Impairment (SLI) have a deficit in processing a sequence of two visual stimuli (S1 and S2) presented at different inter-stimulus intervals and in different spatial locations. In particular, the core of this study is to investigate whether S1 identification is disrupted due to a retroactive interference of S2. To this aim, two experiments were planned in which children with SLI and children with typical development (TD), matched by age and non-verbal IQ, were compared (Experiment 1: SLI n=19; TD n=19; Experiment 2: SLI n=16; TD n=16). Results show group differences in the ability to identify a single stimulus surrounded by flankers (Baseline level). Moreover, children with SLI show a stronger negative interference of S2, both for temporal and spatial modulation. These results are discussed in the light of an attentional processing limitation in children with SLI. Copyright © 2015 Elsevier Ltd. All rights reserved.
Group rhythmic synchrony and attention in children
Khalil, Alexander K.; Minces, Victor; McLoughlin, Grainne; Chiba, Andrea
2013-01-01
Synchrony, or the coordinated processing of time, is an often-overlooked yet critical context for human interaction. This study tests the relationship between the ability to synchronize rhythmically in a group setting with the ability to attend in 102 elementary schoolchildren. Impairments in temporal processing have frequently been shown to exist in clinical populations with learning disorders, particularly those with Attention Deficit Hyperactivity Disorder (ADHD). Based on this evidence, we hypothesized that the ability to synchronize rhythmically in a group setting—an instance of the type of temporal processing necessary for successful interaction and learning—would be correlated with the ability to attend across the continuum of the population. A music class is an ideal setting for the study of interpersonal timing. In order to measure synchrony in this context, we constructed instruments that allowed the recording and measurement of individual rhythmic performance. The SWAN teacher questionnaire was used as a measurement of attentional behavior. We find that the ability to synchronize with others in a group music class can predict a child's attentional behavior. PMID:24032021
Cohen, Michael X; David, Nicole; Vogeley, Kai; Elger, Christian E
2009-01-01
The posterior superior temporal sulcus (pSTS) is a key structure for our ability to infer others' mental states based on social cues including facial expressions, body posture, and gestures ("mentalizing"), but the neural mechanisms of this ability remain largely unknown. We recorded electrocorticogram directly from the pSTS in humans to show that enhanced neural oscillations in the gamma frequency range (35-55 Hz) accompany mentalizing. One patient with a lesion in pSTS was tested behaviorally on this task; he was unable to infer a virtual character's preferences from nonverbal social cues. Enhanced coherent gamma oscillations in the patients with intact pSTS may reflect a process by which social signals are bound into a unified representation to support mentalizing. This may be relevant for other social cognitive processes, as well as to the study of autism spectrum disorders, for which both mentalizing deficits and abnormal gamma activity have been reported.
Impaired MMN/P3a complex in first-episode psychosis: cognitive and psychosocial associations.
Hermens, Daniel F; Ward, Philip B; Hodge, M Antoinette Redoblado; Kaur, Manreena; Naismith, Sharon L; Hickie, Ian B
2010-08-16
Mismatch negativity (MMN) is a neurophysiological indicator of the brain's ability to extract relevant information from an irrelevant background. The P3a orienting response often accompanies MMN in deviance detection paradigms. Both MMN and P3a have been described as reliable biomarkers of schizophrenia. MMN/P3a impairments are associated with deficits in verbal memory and attentional switching, reflecting dysfunctions in the temporal and frontal systems, respectively. It remains unresolved whether MMN/P3a are robust biomarkers of psychosis in first-episode patients. Thirty-four young people (18 to 30years) were assessed in this study; 17 first-episode psychosis (FEP) patients were compared to 17 healthy controls. To elicit MMN/P3a, a two-tone passive auditory oddball paradigm with 8% duration deviants was used; event-related potentials were recorded at frontal, central and temporal (mastoid) sites. Neuropsychological assessments included processing speed, attentional switching, simple attention, and verbal learning and memory. Social functioning and quality of life measures were also obtained. The FEP group showed significantly reduced MMN amplitudes compared to controls. The FEP group also showed significantly reduced P3a amplitudes at frontal and central sites compared with controls. As expected, the FEP group also showed significant deficits in attention and verbal learning/memory. Correlational analyses found strong associations between fronto-central MMN/P3a peak amplitude and cognitive/psychosocial functioning. This study provides evidence of early neurobiological markers in young people with FEP. These findings suggest that MMN/P3a impairments are present at early stages of psychosis and that fundamental pre-attentive/deviance detection deficits may mark the beginning of progressive underlying changes with illness onset. Such deficits in FEP appear to have important links with higher-order cognitive and psychosocial functioning. Copyright (c) 2010 Elsevier Inc. All rights reserved.
Language and Brain Volumes in Children with Epilepsy
Caplan, Rochelle; Levitt, Jennifer; Siddarth, Prabha; Wu, Keng Nei; Gurbani, Suresh; Shields, W. Donald; Sankar, Raman
2010-01-01
This study compared the relationship of language skill with fronto-temporal volumes in 69 medically treated epilepsy subjects and 34 healthy children, aged 6.1-16.6 years. It also determined if the patients with linguistic deficits had abnormal volumes and atypical associations between volumes and language skills in these brain regions. The children underwent language testing and magnetic resonance imaging scans at 1.5 Tesla. Brain tissue was segmented and fronto-temporal volumes were computed. Higher mean language scores were significantly associated with larger inferior frontal gyrus, temporal lobe, and posterior superior temporal gyrus gray matter volumes in the epilepsy group and in the children with epilepsy with average language scores. Increased total brain and dorsolateral prefrontal gray and white matter volumes, however, were associated with higher language scores in the healthy controls. Within the epilepsy group, linguistic deficits were related to smaller anterior superior temporal gyrus gray matter volumes and a negative association between language scores and dorsolateral prefrontal gray matter volumes. These findings demonstrate abnormal development of language related brain regions, and imply differential reorganization of brain regions subserving language in children with epilepsy with normal linguistic skills and in those with impaired language. PMID:20149755
Schoof, Tim; Rosen, Stuart
2014-01-01
Normal-hearing older adults often experience increased difficulties understanding speech in noise. In addition, they benefit less from amplitude fluctuations in the masker. These difficulties may be attributed to an age-related auditory temporal processing deficit. However, a decline in cognitive processing likely also plays an important role. This study examined the relative contribution of declines in both auditory and cognitive processing to the speech in noise performance in older adults. Participants included older (60–72 years) and younger (19–29 years) adults with normal hearing. Speech reception thresholds (SRTs) were measured for sentences in steady-state speech-shaped noise (SS), 10-Hz sinusoidally amplitude-modulated speech-shaped noise (AM), and two-talker babble. In addition, auditory temporal processing abilities were assessed by measuring thresholds for gap, amplitude-modulation, and frequency-modulation detection. Measures of processing speed, attention, working memory, Text Reception Threshold (a visual analog of the SRT), and reading ability were also obtained. Of primary interest was the extent to which the various measures correlate with listeners' abilities to perceive speech in noise. SRTs were significantly worse for older adults in the presence of two-talker babble but not SS and AM noise. In addition, older adults showed some cognitive processing declines (working memory and processing speed) although no declines in auditory temporal processing. However, working memory and processing speed did not correlate significantly with SRTs in babble. Despite declines in cognitive processing, normal-hearing older adults do not necessarily have problems understanding speech in noise as SRTs in SS and AM noise did not differ significantly between the two groups. Moreover, while older adults had higher SRTs in two-talker babble, this could not be explained by age-related cognitive declines in working memory or processing speed. PMID:25429266
Ichikawa, Hiroko; Nakato, Emi; Kanazawa, So; Shimamura, Keiichi; Sakuta, Yuiko; Sakuta, Ryoichi; Yamaguchi, Masami K; Kakigi, Ryusuke
2014-10-01
Children with attention-deficit/hyperactivity disorder (ADHD) have difficulty recognizing facial expressions. They identify angry expressions less accurately than typically developing (TD) children, yet little is known about their atypical neural basis for the recognition of facial expressions. Here, we used near-infrared spectroscopy (NIRS) to examine the distinctive cerebral hemodynamics of ADHD and TD children while they viewed happy and angry expressions. We measured the hemodynamic responses of 13 ADHD boys and 13 TD boys to happy and angry expressions at their bilateral temporal areas, which are sensitive to face processing. The ADHD children showed an increased concentration of oxy-Hb for happy faces but not for angry faces, while TD children showed increased oxy-Hb for both faces. Moreover, the individual peak latency of hemodynamic response in the right temporal area showed significantly greater variance in the ADHD group than in the TD group. Such atypical brain activity observed in ADHD boys may relate to their preserved ability to recognize a happy expression and their difficulty recognizing an angry expression. We firstly demonstrated that NIRS can be used to detect atypical hemodynamic response to facial expressions in ADHD children. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.
Auditory temporal processing in healthy aging: a magnetoencephalographic study
Sörös, Peter; Teismann, Inga K; Manemann, Elisabeth; Lütkenhöner, Bernd
2009-01-01
Background Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years. Results The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants. Conclusion The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms. PMID:19351410
Ketteler, Simon; Ketteler, Daniel; Vohn, René; Kastrau, Frank; Schulz, Jörg B; Reetz, Kathrin; Huber, Walter
2014-09-18
Previous neuroimaging studies showed that correct resolution of lexical ambiguity relies on the integrity of prefrontal and inferior parietal cortices. Whereas prefrontal brain areas were associated with executive control over semantic selection, inferior parietal areas were linked with access to modality-independent representations of semantic memory. Yet insufficiently understood is the contribution of subcortical structures in ambiguity processing. Patients with disturbed basal ganglia function such as Parkinson׳s disease (PD) showed development of discourse comprehension deficits evoked by lexical ambiguity. To further investigate the engagement of cortico-subcortical networks functional Magnetic Resonance Imaging (fMRI) was monitored during ambiguity resolution in eight early PD patients without dementia and 14 age- and education-matched controls. Participants were required to relate meanings to a lexically ambiguous target (homonym). Each stimulus consisted of two words arranged on top of a screen, which had to be attributed to a homonym at the bottom. Brain activity was found in bilateral inferior parietal (BA 39), right middle temporal (BA 21/22), left middle frontal (BA 10) and bilateral inferior frontal areas (BA 45/46). Extent and amplitude of activity in the angular gyrus changed depending on semantic association strength that varied between conditions. Less activity in the left caudate was associated with semantic integration deficits in PD. The results of the present study suggest a relationship between subtle language deficits and early stages of basal ganglia dysfunction. Uncovering impairments in ambiguity resolution may be of future use in the neuropsychological assessment of non-motor deficits in PD. Copyright © 2014 Elsevier B.V. All rights reserved.
O'Tuathaigh, Colm M P; Mathur, Naina; O'Callaghan, Matthew J; MacIntyre, Lynsey; Harvey, Richard; Lai, Donna; Waddington, John L; Pickard, Benjamin S; Watson, David G; Moran, Paula M
2017-09-01
Although there is considerable genetic and pathologic evidence for an association between neuregulin 1 (NRG1) dysregulation and schizophrenia, the underlying molecular and cellular mechanisms remain unclear. Mutant mice containing disruption of the transmembrane (TM) domain of the NRG1 gene constitute a heuristic model for dysregulation of NRG1-ErbB4 signaling in schizophrenia. The present study focused on hitherto uncharacterized information processing phenotypes in this mutant line. Using a mass spectrometry-based metabolomics approach, we also quantified levels of unique metabolites in brain. Across 2 different sites and protocols, Nrg1 mutants demonstrated deficits in prepulse inhibition, a measure of sensorimotor gating, that is, disrupted in schizophrenia; these deficits were partially reversed by acute treatment with second, but not first-, generation antipsychotic drugs. However, Nrg1 mutants did not show a specific deficit in latent inhibition, a measure of selective attention that is also disrupted in schizophrenia. In contrast, in a "what-where-when" object recognition memory task, Nrg1 mutants displayed sex-specific (males only) disruption of "what-when" performance, indicative of impaired temporal aspects of episodic memory. Differential metabolomic profiling revealed that these behavioral phenotypes were accompanied, most prominently, by alterations in lipid metabolism pathways. This study is the first to associate these novel physiological mechanisms, previously independently identified as being abnormal in schizophrenia, with disruption of NRG1 function. These data suggest novel mechanisms by which compromised neuregulin function from birth might lead to schizophrenia-relevant behavioral changes in adulthood. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center.
Alcoholism and Dampened Temporal Limbic Activation to Emotional Faces
Marinkovic, Ksenija; Oscar-Berman, Marlene; Urban, Trinity; O’Reilly, Cara E.; Howard, Julie A.; Sawyer, Kayle; Harris, Gordon J.
2013-01-01
Background Excessive chronic drinking is accompanied by a broad spectrum of emotional changes ranging from apathy and emotional flatness to deficits in comprehending emotional information, but their neural bases are poorly understood. Methods Emotional abnormalities associated with alcoholism were examined with functional magnetic resonance imaging in abstinent long-term alcoholic men in comparison to healthy demographically matched controls. Participants were presented with emotionally valenced words and photographs of faces during deep (semantic) and shallow (perceptual) encoding tasks followed by recognition. Results Overall, faces evoked stronger activation than words, with the expected material-specific laterality (left hemisphere for words, and right for faces) and depth of processing effects. However, whereas control participants showed stronger activation in the amygdala and hippocampus when viewing faces with emotional (relative to neutral) expressions, the alcoholics responded in an undifferentiated manner to all facial expressions. In the alcoholic participants, amygdala activity was inversely correlated with an increase in lateral prefrontal activity as a function of their behavioral deficits. Prefrontal modulation of emotional function as a compensation for the blunted amygdala activity during a socially relevant face appraisal task is in agreement with a distributed network engagement during emotional face processing. Conclusions Deficient activation of amygdala and hippocampus may underlie impaired processing of emotional faces associated with long-term alcoholism and may be a part of the wide array of behavioral problems including disinhibition, concurring with previously documented interpersonal difficulties in this population. Furthermore, the results suggest that alcoholics may rely on prefrontal rather than temporal limbic areas in order to compensate for reduced limbic responsivity and to maintain behavioral adequacy when faced with emotionally or socially challenging situations. PMID:19673745
The white matter structural network underlying human tool use and tool understanding.
Bi, Yanchao; Han, Zaizhu; Zhong, Suyu; Ma, Yujun; Gong, Gaolang; Huang, Ruiwang; Song, Luping; Fang, Yuxing; He, Yong; Caramazza, Alfonso
2015-04-29
The ability to recognize, create, and use complex tools is a milestone in human evolution. Widely distributed brain regions in parietal, frontal, and temporal cortices have been implicated in using and understanding tools, but the roles of their anatomical connections in supporting tool use and tool conceptual behaviors are unclear. Using deterministic fiber tracking in healthy participants, we first examined how 14 cortical regions that are consistently activated by tool processing are connected by white matter (WM) tracts. The relationship between the integrity of each of the 33 obtained tracts and tool processing deficits across 86 brain-damaged patients was investigated. WM tract integrity was measured with both lesion percentage (structural imaging) and mean fractional anisotropy (FA) values (diffusion imaging). Behavioral abilities were assessed by a tool use task, a range of conceptual tasks, and control tasks. We found that three left hemisphere tracts connecting frontoparietal and intrafrontal areas overlapping with left superior longitudinal fasciculus are crucial for tool use such that larger lesion and lower mean FA values on these tracts were associated with more severe tool use deficits. These tracts and five additional left hemisphere tracts connecting frontal and temporal/parietal regions, mainly overlapping with left superior longitudinal fasciculus, inferior frontooccipital fasciculus, uncinate fasciculus, and anterior thalamic radiation, are crucial for tool concept processing. Largely consistent results were also obtained using voxel-based symptom mapping analyses. Our results revealed the WM structural networks that support the use and conceptual understanding of tools, providing evidence for the anatomical skeleton of the tool knowledge network. Copyright © 2015 the authors 0270-6474/15/356822-14$15.00/0.
Hickok, G; Okada, K; Barr, W; Pa, J; Rogalsky, C; Donnelly, K; Barde, L; Grant, A
2008-12-01
Data from lesion studies suggest that the ability to perceive speech sounds, as measured by auditory comprehension tasks, is supported by temporal lobe systems in both the left and right hemisphere. For example, patients with left temporal lobe damage and auditory comprehension deficits (i.e., Wernicke's aphasics), nonetheless comprehend isolated words better than one would expect if their speech perception system had been largely destroyed (70-80% accuracy). Further, when comprehension fails in such patients their errors are more often semantically-based, than-phonemically based. The question addressed by the present study is whether this ability of the right hemisphere to process speech sounds is a result of plastic reorganization following chronic left hemisphere damage, or whether the ability exists in undamaged language systems. We sought to test these possibilities by studying auditory comprehension in acute left versus right hemisphere deactivation during Wada procedures. A series of 20 patients undergoing clinically indicated Wada procedures were asked to listen to an auditorily presented stimulus word, and then point to its matching picture on a card that contained the target picture, a semantic foil, a phonemic foil, and an unrelated foil. This task was performed under three conditions, baseline, during left carotid injection of sodium amytal, and during right carotid injection of sodium amytal. Overall, left hemisphere injection led to a significantly higher error rate than right hemisphere injection. However, consistent with lesion work, the majority (75%) of these errors were semantic in nature. These findings suggest that auditory comprehension deficits are predominantly semantic in nature, even following acute left hemisphere disruption. This, in turn, supports the hypothesis that the right hemisphere is capable of speech sound processing in the intact brain.
Routes to short-term memory indexing: lessons from deaf native users of American Sign Language.
Hirshorn, Elizabeth A; Fernandez, Nina M; Bavelier, Daphne
2012-01-01
Models of working memory (WM) have been instrumental in understanding foundational cognitive processes and sources of individual differences. However, current models cannot conclusively explain the consistent group differences between deaf signers and hearing speakers on a number of short-term memory (STM) tasks. Here we take the perspective that these results are not due to a temporal order-processing deficit in deaf individuals, but rather reflect different biases in how different types of memory cues are used to do a given task. We further argue that the main driving force behind the shifts in relative biasing is a consequence of language modality (sign vs. speech) and the processing they afford, and not deafness, per se.
Routes to short term memory indexing: Lessons from deaf native users of American Sign Language
Hirshorn, Elizabeth A.; Fernandez, Nina M.; Bavelier, Daphne
2012-01-01
Models of working memory (WM) have been instrumental in understanding foundational cognitive processes and sources of individual differences. However, current models cannot conclusively explain the consistent group differences between deaf signers and hearing speakers on a number of short-term memory (STM) tasks. Here we take the perspective that these results are not due to a temporal order-processing deficit in deaf individuals, but rather reflect different biases in how different types of memory cues are used to do a given task. We further argue that the main driving force behind the shifts in relative biasing is a consequence of language modality (sign vs. speech) and the processing they afford, and not deafness, per se. PMID:22871205
Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.
Eddins, Ann Clock; Eddins, David A
This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.
The assessment of colour perception, naming and knowledge: a new test device with a case study.
Pagani, Rossella; Bosco, Giovanna; Dalla Valle, Elisabetta; Capitani, Erminio; Laiacona, Marcella
2012-08-01
Besides ocular diseases, also cerebral damage may cause colour vision deficits; cerebral lesions may be associated with a variety of clinical conditions that impair colour processing. This study presents procedures and normative data for a rapid, comprehensive seven-test battery aimed at assessing colour perception, colour naming and object colour knowledge. The norms, obtained from 96 healthy Italian participants, allow normality/pathology judgements on the basis of one-sided tolerance limits, after adjusting the score of each test for the demographic variables of the proband subjects. We also report, as an example, use of the battery in a stroke patient; this patient was chosen because her lesion affected the left temporal-occipital cortex, an area sometimes associated with a deficit of colour processing. The patient resulted normal on colour perception and colour name retrieval, but defective on object colour knowledge probed using the stimulus name. For the sound definition of the functional locus of cognitive impairment at the single case level, a multi-faceted set of tasks is necessary.
Movement Control in Older Adults: Does Old Age Mean Middle of the Road?
ERIC Educational Resources Information Center
Raw, Rachael K.; Kountouriotis, Georgios K.; Mon-Williams, Mark; Wilkie, Richard M.
2012-01-01
Old age is associated with poorer movement skill, as indexed by reduced speed and accuracy. Nevertheless, reductions in speed and accuracy can also reflect compensation as well as deficit. We used a manual tracing and a driving task to identify generalized spatial and temporal compensations and deficits associated with old age. In Experiment 1,…
Distinct Roles for Medial Temporal Lobe Structures in Memory for Objects and Their Locations
ERIC Educational Resources Information Center
Buffalo, Elizabeth A.; Bellgowan, Patrick S. F.; Martin, Alex
2006-01-01
The ability to learn and retain novel information depends on a system of structures in the medial temporal lobe (MTL) including the hippocampus and the surrounding entorhinal, perirhinal, and parahippocampal cortices. Damage to these structures produces profound memory deficits; however, the unique contribution to memory of each of these…
Variable disruption of a syntactic processing network in primary progressive aphasia.
Wilson, Stephen M; DeMarco, Andrew T; Henry, Maya L; Gesierich, Benno; Babiak, Miranda; Miller, Bruce L; Gorno-Tempini, Maria Luisa
2016-11-01
Syntactic processing deficits are highly variable in individuals with primary progressive aphasia. Damage to left inferior frontal cortex has been associated with syntactic deficits in primary progressive aphasia in a number of structural and functional neuroimaging studies. However, a contrasting picture of a broader syntactic network has emerged from neuropsychological studies in other aphasic cohorts, and functional imaging studies in healthy controls. To reconcile these findings, we used functional magnetic resonance imaging to investigate the functional neuroanatomy of syntactic comprehension in 51 individuals with primary progressive aphasia, composed of all clinical variants and a range of degrees of syntactic processing impairment. We used trial-by-trial reaction time as a proxy for syntactic processing load, to determine which regions were modulated by syntactic processing in each patient, and how the set of regions recruited was related to whether syntactic processing was ultimately successful or unsuccessful. Relationships between functional abnormalities and patterns of cortical atrophy were also investigated. We found that the individual degree of syntactic comprehension impairment was predicted by left frontal atrophy, but also by functional disruption of a broader syntactic processing network, comprising left posterior frontal cortex, left posterior temporal cortex, and the left intraparietal sulcus and adjacent regions. These regions were modulated by syntactic processing in healthy controls and in patients with primary progressive aphasia with relatively spared syntax, but they were modulated to a lesser extent or not at all in primary progressive aphasia patients whose syntax was relatively impaired. Our findings suggest that syntactic comprehension deficits in primary progressive aphasia reflect not only structural and functional changes in left frontal cortex, but also disruption of a wider syntactic processing network. © The Author (2016). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Han, Jooman; Mody, Maria; Ahlfors, Seppo P
2012-10-03
Children with specific reading impairment may have subtle deficits in speech perception related to difficulties in phonological processing. The aim of this study was to examine brain oscillatory activity related to phonological processing in the context of auditory sentence comprehension using magnetoencephalography to better understand these deficits. Good and poor readers, 16-18 years of age, were tested on speech perception of sentence-terminal incongruent words that were phonologically manipulated to be similar or dissimilar to corresponding congruent target words. Functional coupling between regions was measured using phase-locking values (PLVs). Gamma-band (30-45 Hz) PLV between auditory cortex and superior temporal sulcus in the right hemisphere was differentially modulated in the two groups by the degree of phonological contrast between the congruent and the incongruent target words in the latency range associated with semantic processing. Specifically, the PLV was larger in the phonologically similar than in the phonologically dissimilar condition in the good readers. This pattern was reversed in the poor readers, whose lower PLV in the phonologically similar condition may be indicative of the impaired phonological coding abilities of the group, and consequent vulnerability under perceptually demanding conditions. Overall, the results support the role of gamma oscillations in spoken language processing.
Ozmeral, Erol J; Eddins, David A; Eddins, Ann C
2016-12-01
Previous electrophysiological studies of interaural time difference (ITD) processing have demonstrated that ITDs are represented by a nontopographic population rate code. Rather than narrow tuning to ITDs, neural channels have broad tuning to ITDs in either the left or right auditory hemifield, and the relative activity between the channels determines the perceived lateralization of the sound. With advancing age, spatial perception weakens and poor temporal processing contributes to declining spatial acuity. At present, it is unclear whether age-related temporal processing deficits are due to poor inhibitory controls in the auditory system or degraded neural synchrony at the periphery. Cortical processing of spatial cues based on a hemifield code are susceptible to potential age-related physiological changes. We consider two distinct predictions of age-related changes to ITD sensitivity: declines in inhibitory mechanisms would lead to increased excitation and medial shifts to rate-azimuth functions, whereas a general reduction in neural synchrony would lead to reduced excitation and shallower slopes in the rate-azimuth function. The current study tested these possibilities by measuring an evoked response to ITD shifts in a narrow-band noise. Results were more in line with the latter outcome, both from measured latencies and amplitudes of the global field potentials and source-localized waveforms in the left and right auditory cortices. The measured responses for older listeners also tended to have reduced asymmetric distribution of activity in response to ITD shifts, which is consistent with other sensory and cognitive processing models of aging. Copyright © 2016 the American Physiological Society.
Martin, Chris B; Mirsattari, Seyed M; Pruessner, Jens C; Pietrantonio, Sandra; Burneo, Jorge G; Hayman-Abello, Brent; Köhler, Stefan
2012-11-01
In déjà vu, a phenomenological impression of familiarity for the current visual environment is experienced with a sense that it should in fact not feel familiar. The fleeting nature of this phenomenon in daily life, and the difficulty in developing experimental paradigms to elicit it, has hindered progress in understanding déjà vu. Some neurological patients with temporal-lobe epilepsy (TLE) consistently experience déjà vu at the onset of their seizures. An investigation of such patients offers a unique opportunity to shed light on its possible underlying mechanisms. In the present study, we sought to determine whether unilateral TLE patients with déjà vu (TLE+) show a unique pattern of interictal memory deficits that selectively affect familiarity assessment. In Experiment 1, we employed a Remember-Know paradigm for categorized visual scenes and found evidence for impairments that were limited to familiarity-based responses. In Experiment 2, we administered an exclusion task for highly similar categorized visual scenes that placed both recognition processes in opposition. TLE+ patients again displayed recognition impairments, and these impairments spared their ability to engage recollective processes so as to counteract familiarity. The selective deficits we observed in TLE+ patients contrasted with the broader pattern of recognition-memory impairments that was present in a control group of unilateral patients without déjà vu (TLE-). MRI volumetry revealed that ipsilateral medial temporal structures were less broadly affected in TLE+ than in TLE- patients, with a trend for more focal volume reductions in the rhinal cortices of the TLE+ group. The current findings establish a first empirical link between déjà vu in TLE and processes of familiarity assessment, as defined and measured in current cognitive models. They also reveal a pattern of selectivity in recognition impairments that is rarely observed and, thus, of significant theoretical interest to the memory literature at large. Copyright © 2012 Elsevier Ltd. All rights reserved.
The use of listening devices to ameliorate auditory deficit in children with autism.
Rance, Gary; Saunders, Kerryn; Carew, Peter; Johansson, Marlin; Tan, Johanna
2014-02-01
To evaluate both monaural and binaural processing skills in a group of children with autism spectrum disorder (ASD) and to determine the degree to which personal frequency modulation (radio transmission) (FM) listening systems could ameliorate their listening difficulties. Auditory temporal processing (amplitude modulation detection), spatial listening (integration of binaural difference cues), and functional hearing (speech perception in background noise) were evaluated in 20 children with ASD. Ten of these subsequently underwent a 6-week device trial in which they wore the FM system for up to 7 hours per day. Auditory temporal processing and spatial listening ability were poorer in subjects with ASD than in matched controls (temporal: P = .014 [95% CI -6.4 to -0.8 dB], spatial: P = .003 [1.0 to 4.4 dB]), and performance on both of these basic processing measures was correlated with speech perception ability (temporal: r = -0.44, P = .022; spatial: r = -0.50, P = .015). The provision of FM listening systems resulted in improved discrimination of speech in noise (P < .001 [11.6% to 21.7%]). Furthermore, both participant and teacher questionnaire data revealed device-related benefits across a range of evaluation categories including Effect of Background Noise (P = .036 [-60.7% to -2.8%]) and Ease of Communication (P = .019 [-40.1% to -5.0%]). Eight of the 10 participants who undertook the 6-week device trial remained consistent FM users at study completion. Sustained use of FM listening devices can enhance speech perception in noise, aid social interaction, and improve educational outcomes in children with ASD. Copyright © 2014 Mosby, Inc. All rights reserved.
Wilke, Melanie; Kagan, Igor; Andersen, Richard A.
2012-01-01
Impairments of spatial awareness and decision making occur frequently as a consequence of parietal lesions. Here we used event-related functional MRI (fMRI) in monkeys to investigate rapid reorganization of spatial networks during reversible pharmacological inactivation of the lateral intraparietal area (LIP), which plays a role in the selection of eye movement targets. We measured fMRI activity in control and inactivation sessions while monkeys performed memory saccades to either instructed or autonomously chosen spatial locations. Inactivation caused a reduction of contralesional choices. Inactivation effects on fMRI activity were anatomically and functionally specific and mainly consisted of: (i) activity reduction in the upper bank of the superior temporal sulcus (temporal parietal occipital area) for single contralesional targets, especially in the inactivated hemisphere; and (ii) activity increase accompanying contralesional choices between bilateral targets in several frontal and parieto-temporal areas in both hemispheres. There was no overactivation for ipsilesional targets or choices in the intact hemisphere. Task-specific effects of LIP inactivation on blood oxygen level-dependent activity in the temporal parietal occipital area underline the importance of the superior temporal sulcus for spatial processing. Furthermore, our results agree only partially with the influential interhemispheric competition model of spatial neglect and suggest an additional component of interhemispheric cooperation in the compensation of neglect deficits. PMID:22562793
Krajcovicova, Lenka; Mikl, Michal; Marecek, Radek; Rektorova, Irena
2014-01-01
Changes in connectivity of the posterior node of the default mode network (DMN) were studied when switching from baseline to a cognitive task using functional magnetic resonance imaging. In all, 15 patients with mild to moderate Alzheimer's disease (AD) and 18 age-, gender-, and education-matched healthy controls (HC) participated in the study. Psychophysiological interactions analysis was used to assess the specific alterations in the DMN connectivity (deactivation-based) due to psychological effects from the complex visual scene encoding task. In HC, we observed task-induced connectivity decreases between the posterior cingulate and middle temporal and occipital visual cortices. These findings imply successful involvement of the ventral visual pathway during the visual processing in our HC cohort. In AD, involvement of the areas engaged in the ventral visual pathway was observed only in a small volume of the right middle temporal gyrus. Additional connectivity changes (decreases) in AD were present between the posterior cingulate and superior temporal gyrus when switching from baseline to task condition. These changes are probably related to both disturbed visual processing and the DMN connectivity in AD and reflect deficits and compensatory mechanisms within the large scale brain networks in this patient population. Studying the DMN connectivity using psychophysiological interactions analysis may provide a sensitive tool for exploring early changes in AD and their dynamics during the disease progression.
Race, Elizabeth; Keane, Margaret M.; Verfaellie, Mieke
2015-01-01
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well-characterized MTL damage and healthy controls constructed narratives about (a) future events, (b) past events, and (c) visually-presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking. PMID:21753003
Race, Elizabeth; Keane, Margaret M; Verfaellie, Mieke
2011-07-13
The medial temporal lobe (MTL) makes critical contributions to episodic memory, but its contributions to episodic future thinking remain a matter of debate. By one view, imagining future events relies on MTL mechanisms that also support memory for past events. Alternatively, it has recently been suggested that future thinking is independent of MTL-mediated processes and can be supported by regions outside the MTL. The current study investigated the nature and necessity of MTL involvement in imagining the future and tested the novel hypothesis that the MTL contributes to future thinking by supporting online binding processes related to narrative construction. Human amnesic patients with well characterized MTL damage and healthy controls constructed narratives about (1) future events, (2) past events, and (3) visually presented pictures. While all three tasks place similar demands on narrative construction, only the past and future conditions require memory/future thinking to mentally generate relevant narrative information. Patients produced impoverished descriptions of both past and future events but were unimpaired at producing detailed picture narratives. In addition, future-thinking performance positively correlated with episodic memory performance but did not correlate with picture narrative performance. Finally, future-thinking impairments were present when MTL lesions were restricted to the hippocampus and did not depend on the presence of neural damage outside the MTL. These results indicate that the ability to generate and maintain a detailed narrative is preserved in amnesia and suggest that a common MTL mechanism supports both episodic memory and episodic future thinking.
McDonald, Skye; Dalton, Katie I; Rushby, Jacqueline A; Landin-Romero, Ramon
2018-06-14
Adults with severe traumatic brain injury (TBI) often suffer poor social cognition. Social cognition is complex, requiring verbal, non-verbal, auditory, visual and affective input and integration. While damage to focal temporal and frontal areas has been implicated in disorders of social cognition after TBI, the role of white matter pathology has not been examined. In this study 17 adults with chronic, severe TBI and 17 control participants underwent structural MRI scans and Diffusion Tensor Imaging. The Awareness of Social Inference Test (TASIT) was used to assess their ability to understand emotional states, thoughts, intentions and conversational meaning in everyday exchanges. Track-based spatial statistics were used to perform voxelwise analysis of Fractional Anisotropy (FA) and Mean Diffusivity (MD) of white matter tracts associated with poor social cognitive performance. FA suggested a wide range of tracts were implicated in poor TASIT performance including tracts known to mediate, auditory localisation (planum temporale) communication between nonverbal and verbal processes in general (corpus callosum) and in memory in particular (fornix) as well as tracts and structures associated with semantics and verbal recall (left temporal lobe and hippocampus), multimodal processing and integration (thalamus, external capsule, cerebellum) and with social cognition (orbitofrontal cortex, frontopolar cortex, right temporal lobe). Even when controlling for non-social cognition, the corpus callosum, fornix, bilateral thalamus, right external capsule and right temporal lobe remained significant contributors to social cognitive performance. This study highlights the importance of loss of white matter connectivity in producing complex social information processing deficits after TBI.
Mapping Anterior Temporal Lobe Language Areas with FMRI: A Multi-Center Normative Study
Binder, Jeffrey R.; Gross, William L.; Allendorfer, Jane B.; Bonilha, Leonardo; Chapin, Jessica; Edwards, Jonathan C.; Grabowski, Thomas J.; Langfitt, John T.; Loring, David W.; Lowe, Mark J.; Koenig, Katherine; Morgan, Paul S.; Ojemann, Jeffrey G.; Rorden, Christopher; Szaflarski, Jerzy P.; Tivarus, Madalina E.; Weaver, Kurt E.
2010-01-01
Removal of the anterior temporal lobe (ATL) is an effective surgical treatment for intractable temporal lobe epilepsy but carries a risk of language and verbal memory deficits. Preoperative localization of functional zones in the ATL might help reduce these risks, yet fMRI protocols in current widespread use produce very little activation in this region. Based on recent evidence suggesting a role for the ATL in semantic integration, we designed an fMRI protocol comparing comprehension of brief narratives (Story task) with a semantically shallow control task involving serial arithmetic (Math task). The Story > Math contrast elicited strong activation throughout the ATL, lateral temporal lobe, and medial temporal lobe bilaterally in an initial cohort of 18 healthy participants. The task protocol was then implemented at 6 other imaging centers using identical methods. Data from a second cohort of participants scanned at these centers closely replicated the results from the initial cohort. The Story-Math protocol provides a reliable method for activation of surgical regions of interest in the ATL. The bilateral activation supports previous claims that conceptual processing involves both temporal lobes. Used in combination with language lateralization measures, reliable ATL activation maps may be useful for predicting cognitive outcome in ATL surgery, though the validity of this approach needs to be established in a prospective surgical series. PMID:20884358
Henry, Kenneth S.; Kale, Sushrut; Heinz, Michael G.
2014-01-01
While changes in cochlear frequency tuning are thought to play an important role in the perceptual difficulties of people with sensorineural hearing loss (SNHL), the possible role of temporal processing deficits remains less clear. Our knowledge of temporal envelope coding in the impaired cochlea is limited to two studies that examined auditory-nerve fiber responses to narrowband amplitude modulated stimuli. In the present study, we used Wiener-kernel analyses of auditory-nerve fiber responses to broadband Gaussian noise in anesthetized chinchillas to quantify changes in temporal envelope coding with noise-induced SNHL. Temporal modulation transfer functions (TMTFs) and temporal windows of sensitivity to acoustic stimulation were computed from 2nd-order Wiener kernels and analyzed to estimate the temporal precision, amplitude, and latency of envelope coding. Noise overexposure was associated with slower (less negative) TMTF roll-off with increasing modulation frequency and reduced temporal window duration. The results show that at equal stimulus sensation level, SNHL increases the temporal precision of envelope coding by 20–30%. Furthermore, SNHL increased the amplitude of envelope coding by 50% in fibers with CFs from 1–2 kHz and decreased mean response latency by 0.4 ms. While a previous study of envelope coding demonstrated a similar increase in response amplitude, the present study is the first to show enhanced temporal precision. This new finding may relate to the use of a more complex stimulus with broad frequency bandwidth and a dynamic temporal envelope. Exaggerated neural coding of fast envelope modulations may contribute to perceptual difficulties in people with SNHL by acting as a distraction from more relevant acoustic cues, especially in fluctuating background noise. Finally, the results underscore the value of studying sensory systems with more natural, real-world stimuli. PMID:24596545
Abram, Samantha V; Wisner, Krista M; Fox, Jaclyn M; Barch, Deanna M; Wang, Lei; Csernansky, John G; MacDonald, Angus W; Smith, Matthew J
2017-03-01
Impaired cognitive empathy is a core social cognitive deficit in schizophrenia associated with negative symptoms and social functioning. Cognitive empathy and negative symptoms have also been linked to medial prefrontal and temporal brain networks. While shared behavioral and neural underpinnings are suspected for cognitive empathy and negative symptoms, research is needed to test these hypotheses. In two studies, we evaluated whether resting-state functional connectivity between data-driven networks, or components (referred to as, inter-component connectivity), predicted cognitive empathy and experiential and expressive negative symptoms in schizophrenia subjects. Study 1: We examined associations between cognitive empathy and medial prefrontal and temporal inter-component connectivity at rest using a group-matched schizophrenia and control sample. We then assessed whether inter-component connectivity metrics associated with cognitive empathy were also related to negative symptoms. Study 2: We sought to replicate the connectivity-symptom associations observed in Study 1 using an independent schizophrenia sample. Study 1 results revealed that while the groups did not differ in average inter-component connectivity, a medial-fronto-temporal metric and an orbito-fronto-temporal metric were related to cognitive empathy. Moreover, the medial-fronto-temporal metric was associated with experiential negative symptoms in both schizophrenia samples. These findings support recent models that link social cognition and negative symptoms in schizophrenia. Hum Brain Mapp 38:1111-1124, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Quednow, Boris B; Jessen, Frank; Kuhn, Kai-Uwe; Maier, Wolfgang; Daum, Irene; Wagner, Michael
2006-05-01
Chronic administration of the common club drug 3,4-methylenedioxymethamphetamine (MDMA, ecstasy) is associated with long-term depletion of serotonin (5-HT) and loss of 5-HT axons in the brains of rodents and non-human primates, and evidence suggests that recreational MDMA consumption may also affect the human serotonergic system. Moreover, it was consistently shown that abstinent MDMA users have memory deficits. Recently, it was supposed that these deficits are an expression of a temporal or rather hippocampal dysfunction caused by the serotonergic neurotoxicity of MDMA. The aim of this study is to examine the memory deficits of MDMA users neuropsychologically in order to evaluate the role of different brain regions. Nineteen male abstinent MDMA users, 19 male abstinent cannabis users and 19 male drug-naive control subjects were examined with a German version of the Rey Auditory Verbal Learning Test (RAVLT). MDMA users showed widespread and marked verbal memory deficits, compared to drug-naive controls as well as compared to cannabis users, whereas cannabis users did not differ from control subjects in their memory performance. MDMA users revealed impairments in learning, consolidation, recall and recognition. In addition, they also showed a worse recall consistency and strong retroactive interference whereby both measures were previously associated with frontal lobe function. There was a significant correlation between memory performance and the amount of MDMA taken. These results suggest that the memory deficits of MDMA users are not only the result of a temporal or hippocampal dysfunction, but also of a dysfunction of regions within the frontal cortex.
Effects of Age and Hearing Loss on Gap Detection and the Precedence Effect: Broadband Stimuli
ERIC Educational Resources Information Center
Roberts, Richard A.; Lister, Jennifer J.
2004-01-01
Older listeners with normal-hearing sensitivity and impaired-hearing sensitivity often demonstrate poorer-than-normal performance on tasks of speech understanding in noise and reverberation. Deficits in temporal resolution and in the precedence effect may underlie this difficulty. Temporal resolution is often studied by means of a gap-detection…
ERIC Educational Resources Information Center
Walsh, Jennifer A.; Creighton, Sarah E.; Rutherford, M. D.
2016-01-01
Some, but not all, relevant studies have revealed face processing deficits among those with autism spectrum disorder (ASD). In particular, deficits are revealed in face processing tasks that involve emotion perception. The current study examined whether either deficits in processing emotional expression or deficits in processing social cognitive…
Drane, Daniel L.; Ojemann, Jeffrey G.; Phatak, Vaishali; Loring, David W.; Gross, Robert E.; Hebb, Adam O.; Silbergeld, Daniel L.; Miller, John W.; Voets, Natalie L.; Saindane, Amit M.; Barsalou, Lawrence; Meador, Kimford J.; Ojemann, George A.; Tranel, Daniel
2012-01-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre-and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. PMID:23040175
Drane, Daniel L; Ojemann, Jeffrey G; Phatak, Vaishali; Loring, David W; Gross, Robert E; Hebb, Adam O; Silbergeld, Daniel L; Miller, John W; Voets, Natalie L; Saindane, Amit M; Barsalou, Lawrence; Meador, Kimford J; Ojemann, George A; Tranel, Daniel
2013-06-01
This study aims to demonstrate that the left and right anterior temporal lobes (ATLs) perform critical but unique roles in famous face identification, with damage to either leading to differing deficit patterns reflecting decreased access to lexical or semantic concepts but not their degradation. Famous face identification was studied in 22 presurgical and 14 postsurgical temporal lobe epilepsy (TLE) patients and 20 healthy comparison subjects using free recall and multiple choice (MC) paradigms. Right TLE patients exhibited presurgical deficits in famous face recognition, and postsurgical deficits in both famous face recognition and familiarity judgments. However, they did not exhibit any problems with naming before or after surgery. In contrast, left TLE patients demonstrated both pre- and postsurgical deficits in famous face naming but no significant deficits in recognition or familiarity. Double dissociations in performance between groups were alleviated by altering task demands. Postsurgical right TLE patients provided with MC options correctly identified greater than 70% of famous faces they initially rated as unfamiliar. Left TLE patients accurately chose the name for nearly all famous faces they recognized (based on their verbal description) but initially failed to name, although they tended to rapidly lose access to this name. We believe alterations in task demands activate alternative routes to semantic and lexical networks, demonstrating that unique pathways to such stored information exist, and suggesting a different role for each ATL in identifying visually presented famous faces. The right ATL appears to play a fundamental role in accessing semantic information from a visual route, with the left ATL serving to link semantic information to the language system to produce a specific name. These findings challenge several assumptions underlying amodal models of semantic memory, and provide support for the integrated multimodal theories of semantic memory and a distributed representation of concepts. Copyright © 2012 Elsevier Ltd. All rights reserved.
Pereira, Marta LG Freitas; Camargo, Marina von Zuben A; Aprahamian, Ivan; Forlenza, Orestes V
2014-01-01
A great amount of research has been developed around the early cognitive impairments that best predict the onset of Alzheimer’s disease (AD). Given that mild cognitive impairment (MCI) is no longer considered to be an intermediate state between normal aging and AD, new paths have been traced to acquire further knowledge about this condition and its subtypes, and to determine which of them have a higher risk of conversion to AD. It is now known that other deficits besides episodic and semantic memory impairments may be present in the early stages of AD, such as visuospatial and executive function deficits. Furthermore, recent investigations have proven that the hippocampus and the medial temporal lobe structures are not only involved in memory functioning, but also in visual processes. These early changes in memory, visual, and executive processes may also be detected with the study of eye movement patterns in pathological conditions like MCI and AD. In the present review, we attempt to explore the existing literature concerning these patterns of oculomotor changes and how these changes are related to the early signs of AD. In particular, we argue that deficits in visual short-term memory, specifically in iconic memory, attention processes, and inhibitory control, may be found through the analysis of eye movement patterns, and we discuss how they might help to predict the progression from MCI to AD. We add that the study of eye movement patterns in these conditions, in combination with neuroimaging techniques and appropriate neuropsychological tasks based on rigorous concepts derived from cognitive psychology, may highlight the early presence of cognitive impairments in the course of the disease. PMID:25031536
Miyauchi, Eri; Kawasaki, Masahiro
2018-06-11
Boredom is a universal experience; however, the neural mechanisms underlying the phenomenon remain unclear. Previous research suggests that boredom is related to attentional failure and derives a possible explanation for the cognitive processes of boredom as a product of appraisals made about task-unrelated thoughts. There are little published data regarding proposed processes from neuroscientific perspectives. Therefore, the authors aimed to examine whether cognitive processes of boredom with task-unrelated thoughts followed by appraisals of them can be explained by examining oscillatory correlates. Electroencephalography was used to measure changes in neural oscillatory activity during subjective experiences of boredom or dislike in healthy subjects. Using this approach, temporal information of brain activity particular to the boredom experience was acquired. Additionally, the Adult Attention-Deficit Hyperactivity Disorder Self-Report Scale was used to evaluate the effects of attentional deficits in the neural processing of boredom. Tonic increase in theta and transient increases in alpha activity were exhibited before the key press response for experiencing boredom; however, only tonic increases in theta amplitudes were boredom specific. The results of this pilot study suggest that the boredom experience is possibly associated with cognitive processes involved in task-unrelated thoughts, followed by their appraisals to be bored, mediated by alpha and theta activity. Copyright © 2018 Elsevier B.V. All rights reserved.
Language-invariant verb processing regions in Spanish-English bilinguals.
Willms, Joanna L; Shapiro, Kevin A; Peelen, Marius V; Pajtas, Petra E; Costa, Albert; Moo, Lauren R; Caramazza, Alfonso
2011-07-01
Nouns and verbs are fundamental grammatical building blocks of all languages. Studies of brain-damaged patients and healthy individuals have demonstrated that verb processing can be dissociated from noun processing at a neuroanatomical level. In cases where bilingual patients have a noun or verb deficit, the deficit has been observed in both languages. This suggests that the noun-verb distinction may be based on neural components that are common across languages. Here we investigated the cortical organization of grammatical categories in healthy, early Spanish-English bilinguals using functional magnetic resonance imaging (fMRI) in a morphophonological alternation task. Four regions showed greater activity for verbs than for nouns in both languages: left posterior middle temporal gyrus (LMTG), left middle frontal gyrus (LMFG), pre-supplementary motor area (pre-SMA), and right middle occipital gyrus (RMOG); no regions showed greater activation for nouns. Multi-voxel pattern analysis within verb-specific regions showed indistinguishable activity patterns for English and Spanish, indicating language-invariant bilingual processing. In LMTG and LMFG, patterns were more similar within than across grammatical category, both within and across languages, indicating language-invariant grammatical class information. These results suggest that the neural substrates underlying verb-specific processing are largely independent of language in bilinguals, both at the macroscopic neuroanatomical level and at the level of voxel activity patterns. Copyright © 2011 Elsevier Inc. All rights reserved.
Abnormal auditory pattern perception in schizophrenia.
Haigh, Sarah M; Coffman, Brian A; Murphy, Timothy K; Butera, Christiana D; Salisbury, Dean F
2016-10-01
Mismatch negativity (MMN) in response to deviation from physical sound parameters (e.g., pitch, duration) is reduced in individuals with long-term schizophrenia (Sz), suggesting deficits in deviance detection. However, MMN can appear at several time intervals as part of deviance detection. Understanding which part of the processing stream is abnormal in Sz is crucial for understanding MMN pathophysiology. We measured MMN to complex pattern deviants, which have been shown to produce multiple MMNs in healthy controls (HC). Both simple and complex MMNs were recorded from 27 Sz and 27 matched HC. For simple MMN, pitch- and duration-deviants were presented among frequent standard tones. For complex MMN, patterns of five single tones were repeatedly presented, with the occasional deviant group of tones containing an extra sixth tone. Sz showed smaller pitch MMN (p=0.009, ~110ms) and duration MMN (p=0.030, ~170ms) than healthy controls. For complex MMN, there were two deviance-related negativities. The first (~150ms) was not significantly different between HC and SZ. The second was significantly reduced in Sz (p=0.011, ~400ms). The topography of the late complex MMN was consistent with generators in anterior temporal cortex. Worse late MMN in Sz was associated with increased emotional withdrawal, poor attention, lack of spontaneity/conversation, and increased preoccupation. Late MMN blunting in schizophrenia suggests a deficit in later stages of deviance processing. Correlations with negative symptoms measures are preliminary, but suggest that abnormal complex auditory perceptual processes may compound higher-order cognitive and social deficits in the disorder. Copyright © 2016 Elsevier B.V. All rights reserved.
Vanneste, Sandrine; Baudouin, Alexia; Bouazzaoui, Badiâa; Taconnat, Laurence
2016-07-01
Time-based prospective memory (TBPM) is required when it is necessary to remember to perform an action at a specific future point in time. This type of memory has been found to be particularly sensitive to ageing, probably because it requires a self-initiated response at a specific time. In this study, we sought to examine the involvement of temporal processes in the time monitoring strategy, which has been demonstrated to be a decisive factor in TBPM efficiency. We compared the performance of young and older adults in a TBPM task in which they had to press a response button every minute while categorising words. The design allowed participants to monitor time by checking a clock whenever they decided. Participants also completed a classic time-production task and several executive tasks assessing inhibition, updating and shifting processes. Our results confirm an age-related lack of accuracy in prospective memory performance, which seems to be related to a deficient strategic use of time monitoring. This could in turn be partially explained by age-related temporal deficits, as evidenced in the duration production task. These findings suggest that studies designed to investigate the age effect in TBPM tasks should consider the contribution of temporal mechanisms.
Hardy, Chris J D; Agustus, Jennifer L; Marshall, Charles R; Clark, Camilla N; Russell, Lucy L; Bond, Rebecca L; Brotherhood, Emilie V; Thomas, David L; Crutch, Sebastian J; Rohrer, Jonathan D; Warren, Jason D
2017-07-27
Non-verbal auditory impairment is increasingly recognised in the primary progressive aphasias (PPAs) but its relationship to speech processing and brain substrates has not been defined. Here we addressed these issues in patients representing the non-fluent variant (nfvPPA) and semantic variant (svPPA) syndromes of PPA. We studied 19 patients with PPA in relation to 19 healthy older individuals. We manipulated three key auditory parameters-temporal regularity, phonemic spectral structure and prosodic predictability (an index of fundamental information content, or entropy)-in sequences of spoken syllables. The ability of participants to process these parameters was assessed using two-alternative, forced-choice tasks and neuroanatomical associations of task performance were assessed using voxel-based morphometry of patients' brain magnetic resonance images. Relative to healthy controls, both the nfvPPA and svPPA groups had impaired processing of phonemic spectral structure and signal predictability while the nfvPPA group additionally had impaired processing of temporal regularity in speech signals. Task performance correlated with standard disease severity and neurolinguistic measures. Across the patient cohort, performance on the temporal regularity task was associated with grey matter in the left supplementary motor area and right caudate, performance on the phoneme processing task was associated with grey matter in the left supramarginal gyrus, and performance on the prosodic predictability task was associated with grey matter in the right putamen. Our findings suggest that PPA syndromes may be underpinned by more generic deficits of auditory signal analysis, with a distributed cortico-subcortical neuraoanatomical substrate extending beyond the canonical language network. This has implications for syndrome classification and biomarker development.
Tomasino, Barbara; Marin, Dario; Maieron, Marta; D'Agostini, Serena; Fabbro, Franco; Skrap, Miran; Luzzatti, Claudio
2015-12-01
Neuropsychological data about acquired impairments in reading and writing provide a strong basis for the theoretical framework of the dual-route models. The present study explored the functional neuroanatomy of the reading and spelling processing system. We describe the reading and writing performance of patient CF, an Italian native speaker who developed an extremely selective reading and spelling deficit (his spontaneous speech, oral comprehension, repetition and oral picture naming were almost unimpaired) in processing double letters associated with surface dyslexia and dysgraphia, following a tumor in the left temporal lobe. In particular, the majority of CF's errors in spelling were phonologically plausible substitutions, errors concerning letter numerosity of consonants, and syllabic phoneme-to-grapheme conversion (PGC) errors. A similar pattern of impairment also emerged in his reading behavior, with a majority of lexical stress errors (the only possible type of surface reading errors in the Italian language, due the extreme regularity of print-to-sound correspondence). CF's neuropsychological profile was combined with structural neuroimaging data, fiber tracking, and functional maps and compared to that of healthy control participants. We related CF's deficit to a dissociation between impaired ventral/lexical route (as evidenced by a fractional anisotropy - FA decrease along the inferior fronto-occipital fasciculus - IFOF) and relatively preserved dorsal/phonological route (as evidenced by a rather full integrity of the superior longitudinal fasciculus - SLF). In terms of functional processing, the lexical-semantic ventral route network was more activated in controls than in CF, while the network supporting the dorsal route was shared by CF and the control participants. Our results are discussed within the theoretical framework of dual-route models of reading and spelling, emphasize the importance of the IFOF both in lexical reading and spelling, and offer a better comprehension of the neurological and functional substrates involved in written language and, in particular, in surface dyslexia and dysgraphia and in doubling/de-doubling consonant sounds and letters. Copyright © 2015 Elsevier Ltd. All rights reserved.
Johnson, Ray; Nessler, Doreen; Friedman, David
2013-01-01
Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299–312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837–1840). To test the hypothesis that older adults’ well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants’ retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of “compensatory” brain activity. We conclude that part of older adults’ episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative “compensatory” processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the recruitment of additional cognitive processes is an adaptive response across the life span. PMID:23276214
Avanzino, Laura; Pelosin, Elisa; Martino, Davide; Abbruzzese, Giovanni
2013-01-01
Timing of sequential movements is altered in Parkinson disease (PD). Whether timing deficits in internally generated sequential movements in PD depends also on difficulties in motor planning, rather than merely on a defective ability to materially perform the planned movement is still undefined. To unveil this issue, we adopted a modified version of an established test for motor timing, i.e. the synchronization–continuation paradigm, by introducing a motor imagery task. Motor imagery is thought to involve mainly processes of movement preparation, with reduced involvement of end-stage movement execution-related processes. Fourteen patients with PD and twelve matched healthy volunteers were asked to tap in synchrony with a metronome cue (SYNC) and then, when the tone stopped, to keep tapping, trying to maintain the same rhythm (CONT-EXE) or to imagine tapping at the same rhythm, rather than actually performing it (CONT-MI). We tested both a sub-second and a supra-second inter-stimulus interval between the cues. Performance was recorded using a sensor-engineered glove and analyzed measuring the temporal error and the interval reproduction accuracy index. PD patients were less accurate than healthy subjects in the supra-second time reproduction task when performing both continuation tasks (CONT-MI and CONT-EXE), whereas no difference was detected in the synchronization task and on all tasks involving a sub-second interval. Our findings suggest that PD patients exhibit a selective deficit in motor timing for sequential movements that are separated by a supra-second interval and that this deficit may be explained by a defect of motor planning. Further, we propose that difficulties in motor planning are of a sufficient degree of severity in PD to affect also the motor performance in the supra-second time reproduction task. PMID:24086534
Evidence for perceptual deficits in associative visual (prosop)agnosia: a single-case study.
Delvenne, Jean François; Seron, Xavier; Coyette, Françoise; Rossion, Bruno
2004-01-01
Associative visual agnosia is classically defined as normal visual perception stripped of its meaning [Archiv für Psychiatrie und Nervenkrankheiten 21 (1890) 22/English translation: Cognitive Neuropsychol. 5 (1988) 155]: these patients cannot access to their stored visual memories to categorize the objects nonetheless perceived correctly. However, according to an influential theory of visual agnosia [Farah, Visual Agnosia: Disorders of Object Recognition and What They Tell Us about Normal Vision, MIT Press, Cambridge, MA, 1990], visual associative agnosics necessarily present perceptual deficits that are the cause of their impairment at object recognition Here we report a detailed investigation of a patient with bilateral occipito-temporal lesions strongly impaired at object and face recognition. NS presents normal drawing copy, and normal performance at object and face matching tasks as used in classical neuropsychological tests. However, when tested with several computer tasks using carefully controlled visual stimuli and taking both his accuracy rate and response times into account, NS was found to have abnormal performances at high-level visual processing of objects and faces. Albeit presenting a different pattern of deficits than previously described in integrative agnosic patients such as HJA and LH, his deficits were characterized by an inability to integrate individual parts into a whole percept, as suggested by his failure at processing structurally impossible three-dimensional (3D) objects, an absence of face inversion effects and an advantage at detecting and matching single parts. Taken together, these observations question the idea of separate visual representations for object/face perception and object/face knowledge derived from investigations of visual associative (prosop)agnosia, and they raise some methodological issues in the analysis of single-case studies of (prosop)agnosic patients.
Loughin, Catherine A
2016-03-01
Chiari-like malformation is a condition of the craniocervical junction in which there is a mismatch of the structures of the caudal cranial fossa causing the cerebellum to herniate into the foramen magnum. This herniation can lead to fluid buildup in the spinal cord, also known as syringomyelia. Pain is the most common clinical sign followed by scratching. Other neurologic signs noted are facial nerve deficits, seizures, vestibular syndrome, ataxia, menace deficit, proprioceptive deficits, head tremor, temporal muscle atrophy, and multifocal central nervous system signs. MRI is the diagnostic of choice, but computed tomography can also be used. Copyright © 2016 Elsevier Inc. All rights reserved.
Temporal lobe deficits in murderers: EEG findings undetected by PET.
Gatzke-Kopp, L M; Raine, A; Buchsbaum, M; LaCasse, L
2001-01-01
This study evaluates electroencephalography (EEG) and positron emission tomography (PET) in the same subjects. Fourteen murderers were assessed by using both PET (while they were performing the continuous performance task) and EEG during a resting state. EEG revealed significant increases in slow-wave activity in the temporal, but not frontal, lobe in murderers, in contrast to prior PET findings that showed reduced prefrontal, but not temporal, glucose metabolism. Results suggest that resting EEG shows empirical utility distinct from PET activation findings.
Impairments in the Face-Processing Network in Developmental Prosopagnosia and Semantic Dementia
Mendez, Mario F.; Ringman, John M.; Shapira, Jill S.
2015-01-01
Background Developmental prosopagnosia (DP) and semantic dementia (SD) may be the two most common neurologic disorders of face processing, but their main clinical and pathophysiologic differences have not been established. To identify those features, we compared patients with DP and SD. Methods Five patients with DP, five with right temporal-predominant SD, and ten normal controls underwent cognitive, visual perceptual, and face-processing tasks. Results Although the patients with SD were more cognitively impaired than those with DP, the two groups did not differ statistically on the visual perceptual tests. On the face-processing tasks, the DP group had difficulty with configural analysis and they reported relying on serial, feature-by-feature analysis or awareness of salient features to recognize faces. By contrast, the SD group had problems with person knowledge and made semantically related errors. The SD group had better face familiarity scores, suggesting a potentially useful clinical test for distinguishing SD from DP. Conclusions These two disorders of face processing represent clinically distinguishable disturbances along a right hemisphere face-processing network: DP, characterized by early configural agnosia for faces, and SD, characterized primarily by a multimodal person knowledge disorder. We discuss these preliminary findings in the context of the current literature on the face-processing network; recent studies suggest an additional right anterior temporal, unimodal face familiarity-memory deficit consistent with an “associative prosopagnosia.” PMID:26705265
Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund
2012-11-01
It has been difficult to differentiate attention-deficit/hyperactivity disorder (ADHD) and autism spectrum disorder (ASD) in terms of some aspects of their cognitive profile. While both show deficits in executive functions, it has been suggested that they may differ in their response to monetary reward. For instance, children with ADHD prefer small immediate over large delayed rewards more than typically developing controls. One explanation for this is that they discount the value of rewards to a higher degree as they are moved into the future. The current study investigated whether children with ADHD can be differentiated from those with ASD in terms of reward discounting. Thirty-nine children (8-16 y) with ADHD, 34 children with ASD and 46 typically developing controls performed a hypothetical monetary temporal discounting task. Participants were instructed to make repeated choices between small variable rewards (0, 5, 10, 20, 30€) delivered immediately and large rewards delivered after a variable delay. Children with ADHD but not ASD discounted future rewards at a higher rate than typically developing controls. These data confirm steeper discounting of future rewards in ADHD and add to a small but growing literature showing that the psychological profile of ADHD can be distinguished from that of ASD in terms of disrupted motivational processes. © 2012 Blackwell Publishing Ltd.
Nestor, Liam; Roberts, Gloria; Garavan, Hugh; Hester, Robert
2008-04-15
The consumption of cannabis has been linked to impairments in human learning and memory, as well as aspects of executive functioning. Cannabis-related impairments in learning and memory in chronic cannabis users, it has been argued, are caused by the effects of cannabis on hippocampal functioning. The current study involved two experiments. Experiment 1 compared 35 current users of cannabis and 38 well-matched controls on a face-name task, previously shown to activate the hippocampal region. Based on the results of experiment 1, experiment 2 used fMRI and a modified version of the face-name task, to examine cortical and (para)hippocampal activity during learning and recall in 14 current users of cannabis and 14 controls. Results of experiment 1 showed that cannabis users were significantly worse with respect to learning, short and long-term memory performance. Experiment 2 showed that despite non-significant differences in learning and memory performance, cannabis users had significantly lower levels of BOLD activity in the right superior temporal gyrus, right superior frontal gyrus, right middle frontal gyrus and left superior frontal gyrus compared to controls during learning. Results also showed that cannabis users had significantly higher BOLD activity in the right parahippocampal gyrus during learning. Hypoactivity in frontal and temporal cortices, and relative hyperactivity in the parahippocampus identify functional deficits and compensatory processes in cannabis users.
Calderón-Garcidueñas, Lilian; Engle, Randall; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardón, Ricardo; Romero, Lina; Monroy-Acosta, Maria E; Bryant, Christopher; González-González, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo
2011-12-01
Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood. Copyright © 2011 Elsevier Inc. All rights reserved.
Atypical neural synchronization to speech envelope modulations in dyslexia.
De Vos, Astrid; Vanvooren, Sophie; Vanderauwera, Jolijn; Ghesquière, Pol; Wouters, Jan
2017-01-01
A fundamental deficit in the synchronization of neural oscillations to temporal information in speech could underlie phonological processing problems in dyslexia. In this study, the hypothesis of a neural synchronization impairment is investigated more specifically as a function of different neural oscillatory bands and temporal information rates in speech. Auditory steady-state responses to 4, 10, 20 and 40Hz modulations were recorded in normal reading and dyslexic adolescents to measure neural synchronization of theta, alpha, beta and low-gamma oscillations to syllabic and phonemic rate information. In comparison to normal readers, dyslexic readers showed reduced non-synchronized theta activity, reduced synchronized alpha activity and enhanced synchronized beta activity. Positive correlations between alpha synchronization and phonological skills were found in normal readers, but were absent in dyslexic readers. In contrast, dyslexic readers exhibited positive correlations between beta synchronization and phonological skills. Together, these results suggest that auditory neural synchronization of alpha and beta oscillations is atypical in dyslexia, indicating deviant neural processing of both syllabic and phonemic rate information. Impaired synchronization of alpha oscillations in particular demonstrated to be the most prominent neural anomaly possibly hampering speech and phonological processing in dyslexic readers. Copyright © 2016 Elsevier Inc. All rights reserved.
Tsapkini, Kyrana; Vindiola, Manuel; Rapp, Brenda
2011-04-01
Little is known about the neural reorganization that takes place subsequent to lesions that affect orthographic processing (reading and/or spelling). We report on an fMRI investigation of an individual with a left mid-fusiform resection that affected both reading and spelling (Tsapkini & Rapp, 2010). To investigate possible patterns of functional reorganization, we compared the behavioral and neural activation patterns of this individual with those of a group of control participants for the tasks of silent reading of words and pseudowords and the passive viewing of faces and objects, all tasks that typically recruit the inferior temporal lobes. This comparison was carried out with methods that included a novel application of Mahalanobis distance statistics, and revealed: (1) normal behavioral and neural responses for face and object processing, (2) evidence of neural reorganization bilaterally in the posterior fusiform that supported normal performance in pseudoword reading and which contributed to word reading (3) evidence of abnormal recruitment of the bilateral anterior temporal lobes indicating compensatory (albeit insufficient) recruitment of mechanisms for circumventing the word reading deficit. Copyright © 2010 Elsevier Inc. All rights reserved.
Gera, Geetanjali; Fling, Brett W; Van Ooteghem, Karen; Cameron, Michelle; Frank, James S; Horak, Fay B
2016-09-01
Multiple sclerosis (MS) is associated with balance deficits resulting in falls and impaired mobility. Although rehabilitation has been recommended to address these balance deficits, the extent to which people with MS can learn and retain improvements in postural responses is unknown. To determine the ability of people with MS to improve postural control with surface perturbation training. A total of 24 patients with mild MS and 14 age-matched controls underwent postural control training with a set pattern of continuous, forward-backward, sinusoidal, and surface translations provided by a force platform. Postural control was then tested the following day for retention. The primary outcome measures were the relative phase and center-of-mass (CoM) gain between the body CoM and the platform motion. People with MS demonstrated similar improvements in acquiring and retaining changes in the temporal control of the CoM despite significant deficits in postural motor performance at the baseline. Both MS and control groups learned to anticipate the pattern of forward-backward perturbations, so body CoM shifted from a phase-lag (age-matched controls [CS] = -7.1 ± 1.3; MS = -12.9 ± 1.0) toward a phase-lead (CS = -0.7 ± 1.8; MS = -6.1 ± 1.4) relationship with the surface oscillations. However, MS patients were not able to retain the changes in the spatial control of the CoM acquired during training. People with MS have the capacity to improve use of a feed-forward postural strategy with practice and retain the learned behavior for temporal not spatial control of CoM, despite their significant postural response impairments. © The Author(s) 2015.
Neuronal correlate of visual associative long-term memory in the primate temporal cortex
NASA Astrophysics Data System (ADS)
Miyashita, Yasushi
1988-10-01
In human long-term memory, ideas and concepts become associated in the learning process1. No neuronal correlate for this cognitive function has so far been described, except that memory traces are thought to be localized in the cerebral cortex; the temporal lobe has been assigned as the site for visual experience because electric stimulation of this area results in imagery recall,2 and lesions produce deficits in visual recognition of objects3-9. We previously reported that in the anterior ventral temporal cortex of monkeys, individual neurons have a sustained activity that is highly selective for a few of the 100 coloured fractal patterns used in a visual working-memory task10. Here I report the development of this selectivity through repeated trials involving the working memory. The few patterns for which a neuron was conjointly selective were frequently related to each other through stimulus-stimulus association imposed during training. The results indicate that the selectivity acquired by these cells represents a neuronal correlate of the associative long-term memory of pictures.
Emotion-induced trade-offs in spatiotemporal vision.
Bocanegra, Bruno R; Zeelenberg, René
2011-05-01
It is generally assumed that emotion facilitates human vision in order to promote adaptive responses to a potential threat in the environment. Surprisingly, we recently found that emotion in some cases impairs the perception of elementary visual features (Bocanegra & Zeelenberg, 2009b). Here, we demonstrate that emotion improves fast temporal vision at the expense of fine-grained spatial vision. We tested participants' threshold resolution with Landolt circles containing a small spatial or brief temporal discontinuity. The prior presentation of a fearful face cue, compared with a neutral face cue, impaired spatial resolution but improved temporal resolution. In addition, we show that these benefits and deficits were triggered selectively by the global configural properties of the faces, which were transmitted only through low spatial frequencies. Critically, the common locus of these opposite effects suggests a trade-off between magno- and parvocellular-type visual channels, which contradicts the common assumption that emotion invariably improves vision. We show that, rather than being a general "boost" for all visual features, affective neural circuits sacrifice the slower processing of small details for a coarser but faster visual signal.
Temporal and Region-Specific Requirements of αCaMKII in Spatial and Contextual Learning
Achterberg, Katharina G.; Buitendijk, Gabriëlle H.S.; Kool, Martijn J.; Goorden, Susanna M.I.; Post, Laura; Slump, Denise E.; Silva, Alcino J.; van Woerden, Geeske M.
2014-01-01
The α isoform of the calcium/calmodulin-dependent protein kinase II (αCaMKII) has been implicated extensively in molecular and cellular mechanisms underlying spatial and contextual learning in a wide variety of species. Germline deletion of Camk2a leads to severe deficits in spatial and contextual learning in mice. However, the temporal and region-specific requirements for αCaMKII have remained largely unexplored. Here, we generated conditional Camk2a mutants to examine the influence of spatially restricted and temporally controlled expression of αCaMKII. Forebrain-specific deletion of the Camk2a gene resulted in severe deficits in water maze and contextual fear learning, whereas mice with deletion restricted to the cerebellum learned normally. Furthermore, we found that temporally controlled deletion of the Camk2a gene in adult mice is as detrimental as germline deletion for learning and synaptic plasticity. Together, we confirm the requirement for αCaMKII in the forebrain, but not the cerebellum, in spatial and contextual learning. Moreover, we highlight the absolute requirement for intact αCaMKII expression at the time of learning. PMID:25143599
Individual Differences Reveal Correlates of Hidden Hearing Deficits
Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G.
2015-01-01
Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of “normal hearing.” PMID:25653371
Norman, Luke J; Carlisi, Christina O; Christakou, Anastasia; Chantiluke, Kaylita; Murphy, Clodagh; Simmons, Andrew; Giampietro, Vincent; Brammer, Michael; Mataix-Cols, David; Rubia, Katya
2017-11-30
Both Attention-Deficit/Hyperactivity Disorder (ADHD) and Obsessive-Compulsive Disorder (OCD) are associated with choice impulsivity, i.e. the tendency to prefer smaller immediate rewards over larger delayed rewards. However, the extent to which this impulsivity is mediated by shared or distinct underlying neural mechanisms is unclear. Twenty-six boys with ADHD, 20 boys with OCD and 20 matched controls (aged 12-18) completed an fMRI version of an individually adjusted temporal discounting (TD) task which requires choosing between a variable amount of money now or £100 in one week, one month or one year. Activations to immediate and delayed reward choices were compared between groups using a three-way ANCOVA. ADHD patients had steeper discounting rates on the task relative to controls. OCD patients did not differ from controls or patients with ADHD. Patients with ADHD and OCD showed predominantly shared activation deficits during TD in fronto-striato-insular-cerebellar regions responsible for self-control and temporal foresight, suggesting that choice impulsivity is mediated by overlapping neural dysfunctions in both disorders. OCD patients alone showed dysfunction relative to controls in right orbitofrontal and rostrolateral prefrontal cortex, extending previous findings of abnormalities in these regions in OCD to the domain of choice impulsiveness. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Green, Amity E; Fitzgerald, Paul B; Johnston, Patrick J; Nathan, Pradeep J; Kulkarni, Jayashri; Croft, Rodney J
2017-08-01
Schizophrenia is characterised by significant episodic memory impairment that is thought to be related to problems with encoding, however the neuro-functional mechanisms underlying these deficits are not well understood. The present study used a subsequent recognition memory paradigm and event-related potentials (ERPs) to investigate temporal aspects of episodic memory encoding deficits in schizophrenia. Electroencephalographic data was recorded in 24 patients and 19 healthy controls whilst participants categorised single words as pleasant/unpleasant. ERPs were generated to subsequently recognised versus unrecognised words on the basis of a forced-choice recognition memory task. Subsequent memory effects were examined with the late positive component (LPP). Group differences in N1, P2, N400 and LPP were examined for words correctly recognised. Patients performed more poorly than controls on the recognition task. During encoding patients had significantly reduced N400 and LPP amplitudes than controls. LPP amplitude correlated with task performance however amplitudes did not differ between patients and controls as a function of subsequent memory. No significant differences in N1 or P2 amplitude or latency were observed. The present results indicate that early sensory processes are intact and dysfunctional higher order cognitive processes during encoding are contributing to episodic memory impairments in schizophrenia.
Marslen-Wilson, William D.; Randall, Billi; Wright, Paul; Devereux, Barry J.; Zhuang, Jie; Papoutsi, Marina; Stamatakis, Emmanuel A.
2011-01-01
For the past 150 years, neurobiological models of language have debated the role of key brain regions in language function. One consistently debated set of issues concern the role of the left inferior frontal gyrus in syntactic processing. Here we combine measures of functional activity, grey matter integrity and performance in patients with left hemisphere damage and healthy participants to ask whether the left inferior frontal gyrus is essential for syntactic processing. In a functional neuroimaging study, participants listened to spoken sentences that either contained a syntactically ambiguous or matched unambiguous phrase. Behavioural data on three tests of syntactic processing were subsequently collected. In controls, syntactic processing co-activated left hemisphere Brodmann areas 45/47 and posterior middle temporal gyrus. Activity in a left parietal cluster was sensitive to working memory demands in both patients and controls. Exploiting the variability in lesion location and performance in the patients, voxel-based correlational analyses showed that tissue integrity and neural activity—primarily in left Brodmann area 45 and posterior middle temporal gyrus—were correlated with preserved syntactic performance, but unlike the controls, patients were insensitive to syntactic preferences, reflecting their syntactic deficit. These results argue for the essential contribution of the left inferior frontal gyrus in syntactic analysis and highlight the functional relationship between left Brodmann area 45 and the left posterior middle temporal gyrus, suggesting that when this relationship breaks down, through damage to either region or to the connections between them, syntactic processing is impaired. On this view, the left inferior frontal gyrus may not itself be specialized for syntactic processing, but plays an essential role in the neural network that carries out syntactic computations. PMID:21278407
Perceptual grouping in the human brain: common processing of different cues.
Seymour, Kiley; Karnath, Hans-Otto; Himmelbach, Marc
2008-12-03
The perception of global scenes and objects consisting of multiple constituents is based on the integration of local elements or features. Gestalt grouping cues, such as proximity or similarity, can aid this process. Using functional MRI we investigated whether grouping guided by different gestalt cues rely on distinct networks in the brain or share a common network. Our study revealed that gestalt grouping involved the inferior parietal cortex, middle temporal gyrus and prefrontal cortex irrespective of the specific cue used. These findings agree with observations in neurological patients, which suggest that inferior parietal regions may aid the integration of local features into a global gestalt. Damage to this region results in simultanagnosia, a deficit in perceiving multiple objects and global scenes.
White Matter Correlates of Auditory Comprehension Outcomes in Chronic Post-Stroke Aphasia
Xing, Shihui; Lacey, Elizabeth H.; Skipper-Kallal, Laura M.; Zeng, Jinsheng; Turkeltaub, Peter E.
2017-01-01
Neuroimaging studies have shown that speech comprehension involves a number of widely distributed regions within the frontal and temporal lobes. We aimed to examine the differential contributions of white matter connectivity to auditory word and sentence comprehension in chronic post-stroke aphasia. Structural and diffusion MRI data were acquired on 40 patients with chronic post-stroke aphasia. A battery of auditory word and sentence comprehension tests were administered to all the patients. Tract-based spatial statistics were used to identify areas in which white matter integrity related to specific comprehension deficits. Relevant tracts were reconstructed using probabilistic tractography in healthy older participants, and the mean values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) of the entire tracts were examined in relation to comprehension scores. Anterior temporal white matter integrity loss and involvement of the uncinate fasciculus related to word-level comprehension deficits (RFA = 0.408, P = 0.012; RMD = −0.429, P = 0.008; RAD = −0.424, P = 0.009; RRD = −0.439, P = 0.007). Posterior temporal white matter integrity loss and involvement of the inferior longitudinal fasciculus related to sentence-level comprehension deficits (RFA = 0.382, P = 0.02; RMD = −0.461, P = 0.004; RAD = −0.457, P = 0.004; RRD = −0.453, P = 0.005). Loss of white matter integrity in the inferior fronto-occipital fasciculus related to both word- and sentence-level comprehension (word-level scores: RFA = 0.41, P = 0.012; RMD = −0.447, P = 0.006; RAD = −0.489, P = 0.002; RRD = −0.432, P = 0.008; sentence-level scores: RFA = 0.409, P = 0.012; RMD = −0.413, P = 0.011; RAD = −0.408, P = 0.012; RRD = −0.413, P = 0.011). Lesion overlap, but not white matter integrity, in the arcuate fasciculus related to sentence-level comprehension deficits. These findings suggest that word-level comprehension outcomes in chronic post-stroke aphasia rely primarily on anterior temporal lobe pathways, whereas sentence-level comprehension relies on more widespread pathways including the posterior temporal lobe. PMID:28275366
Therapy-induced brain reorganization patterns in aphasia.
Abel, Stefanie; Weiller, Cornelius; Huber, Walter; Willmes, Klaus; Specht, Karsten
2015-04-01
Both hemispheres are engaged in recovery from word production deficits in aphasia. Lexical therapy has been shown to induce brain reorganization even in patients with chronic aphasia. However, the interplay of factors influencing reorganization patterns still remains unresolved. We were especially interested in the relation between lesion site, therapy-induced recovery, and beneficial reorganization patterns. Thus, we applied intensive lexical therapy, which was evaluated with functional magnetic resonance imaging, to 14 chronic patients with aphasic word retrieval deficits. In a group study, we aimed to illuminate brain reorganization of the naming network in comparison with healthy controls. Moreover, we intended to analyse the data with joint independent component analysis to relate lesion sites to therapy-induced brain reorganization, and to correlate resulting components with therapy gain. As a result, we found peri-lesional and contralateral activations basically overlapping with premorbid naming networks observed in healthy subjects. Reduced activation patterns for patients compared to controls before training comprised damaged left hemisphere language areas, right precentral and superior temporal gyrus, as well as left caudate and anterior cingulate cortex. There were decreasing activations of bilateral visuo-cognitive, articulatory, attention, and language areas due to therapy, with stronger decreases for patients in right middle temporal gyrus/superior temporal sulcus, bilateral precuneus as well as left anterior cingulate cortex and caudate. The joint independent component analysis revealed three components indexing lesion subtypes that were associated with patient-specific recovery patterns. Activation decreases (i) of an extended frontal lesion disconnecting language pathways occurred in left inferior frontal gyrus; (ii) of a small frontal lesion were found in bilateral inferior frontal gyrus; and (iii) of a large temporo-parietal lesion occurred in bilateral inferior frontal gyrus and contralateral superior temporal gyrus. All components revealed increases in prefrontal areas. One component was negatively correlated with therapy gain. Therapy was associated exclusively with activation decreases, which could mainly be attributed to higher processing efficiency within the naming network. In our joint independent component analysis, all three lesion patterns disclosed involved deactivation of left inferior frontal gyrus. Moreover, we found evidence for increased demands on control processes. As expected, we saw partly differential reorganization profiles depending on lesion patterns. There was no compensatory deactivation for the large left inferior frontal lesion, with its less advantageous outcome probably being related to its disconnection from crucial language processing pathways. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
van Geldorp, Bonnie; Bouman, Zita; Hendriks, Marc P H; Kessels, Roy P C
2014-03-01
The medial temporal lobe is an important structure for long-term memory formation, but its role in working memory is less clear. Recent studies have shown hippocampal involvement during working memory tasks requiring binding of information. It is yet unclear whether this is limited to tasks containing spatial features. The present study contrasted three binding conditions and one single-item condition in patients with unilateral anterior temporal lobectomy. A group of 43 patients with temporal lobectomy (23 left; 20 right) and 20 matched controls were examined with a working memory task assessing spatial relational binding (object-location), non-spatial relational binding (object-object), conjunctive binding (object-colour) and working memory for single items. We varied the delay period (3 or 6s), as there is evidence showing that delay length may modulate working memory performance. The results indicate that performance was worse for patients than for controls in both relational binding conditions, whereas patients were unimpaired in conjunctive binding. Single-item memory was found to be marginally impaired, due to a deficit on long-delay trials only. In conclusion, working memory binding deficits are found in patients with unilateral anterior temporal lobectomy. The role of the medial temporal lobe in working memory is not limited to tasks containing spatial features. Rather, it seems to be involved in relational binding, but not in conjunctive binding. The medial temporal lobe gets involved when working memory capacity does not suffice, for example when relations have to be maintained or when the delay period is long. Copyright © 2014 Elsevier Inc. All rights reserved.
Cortical thickness and folding deficits in conduct-disordered adolescents
Hyatt, Christopher J.; Haney-Caron, Emily; Stevens, Michael C.
2012-01-01
Background Studies of pediatric conduct disorder (CD) have described frontal and temporal lobe structural abnormalities that parallel findings in antisocial adults. The purpose of this study was to examine previously unexplored cortical thickness and folding as markers for brain abnormalities in “pure CD”-diagnosed adolescents. Based on current fronto-temporal theories, we hypothesized that CD youth would have thinner cortex or less cortical folding in temporal and frontal lobes than control subjects. Methods We obtained T1-weighted brain structure images from n=24 control and n=19 CD participants aged 12–18 years, matched by overall gender and age. We measured group differences in cortical thickness and local gyrification index (regional cortical folding measure) using surface-based morphometry with clusterwise correction for multiple comparisons. Results CD participants, when compared with controls, showed both reduced cortical thickness and folding. Thinner cortex was located primarily in posterior brain regions, including left superior temporal and parietal lobes, temporoparietal junction and paracentral lobule, right superior temporal and parietal lobes, temporoparietal junction and precuneus. Folding deficits were located mainly in anterior brain regions and included left insula, ventro- and dorsomedial prefrontal, anterior cingulate and orbitofrontal cortices, temporal lobe, right superior frontal and parietal lobes and paracentral lobule. Conclusions Our findings generally agree with previous CD volumetric studies, but here show the unique contributions of cortical thickness and folding to gray matter reductions in pure CD in different brain regions. PMID:22209639
Sidlauskaite, Justina; Caeyenberghs, Karen; Sonuga-Barke, Edmund; Roeyers, Herbert; Wiersema, Jan R
2015-01-01
Prior studies demonstrate altered organization of functional brain networks in attention-deficit/hyperactivity disorder (ADHD). However, the structural underpinnings of these functional disturbances are poorly understood. In the current study, we applied a graph-theoretic approach to whole-brain diffusion magnetic resonance imaging data to investigate the organization of structural brain networks in adults with ADHD and unaffected controls using deterministic fiber tractography. Groups did not differ in terms of global network metrics - small-worldness, global efficiency and clustering coefficient. However, there were widespread ADHD-related effects at the nodal level in relation to local efficiency and clustering. The affected nodes included superior occipital, supramarginal, superior temporal, inferior parietal, angular and inferior frontal gyri, as well as putamen, thalamus and posterior cerebellum. Lower local efficiency of left superior temporal and supramarginal gyri was associated with higher ADHD symptom scores. Also greater local clustering of right putamen and lower local clustering of left supramarginal gyrus correlated with ADHD symptom severity. Overall, the findings indicate preserved global but altered local network organization in adult ADHD implicating regions underpinning putative ADHD-related neuropsychological deficits.
Libero, Lauren E; Stevens, Carl E; Kana, Rajesh K
2014-10-01
The ability to interpret others' body language is a vital skill that helps us infer their thoughts and emotions. However, individuals with autism spectrum disorder (ASD) have been found to have difficulty in understanding the meaning of people's body language, perhaps leading to an overarching deficit in processing emotions. The current fMRI study investigates the functional connectivity underlying emotion and action judgment in the context of processing body language in high-functioning adolescents and young adults with autism, using an independent components analysis (ICA) of the fMRI time series. While there were no reliable group differences in brain activity, the ICA revealed significant involvement of occipital and parietal regions in processing body actions; and inferior frontal gyrus, superior medial prefrontal cortex, and occipital cortex in body expressions of emotions. In a between-group analysis, participants with autism, relative to typical controls, demonstrated significantly reduced temporal coherence in left ventral premotor cortex and right superior parietal lobule while processing emotions. Participants with ASD, on the other hand, showed increased temporal coherence in left fusiform gyrus while inferring emotions from body postures. Finally, a positive predictive relationship was found between empathizing ability and the brain areas underlying emotion processing in ASD participants. These results underscore the differential role of frontal and parietal brain regions in processing emotional body language in autism. Copyright © 2014 Wiley Periodicals, Inc.
Psychopathy: cognitive and neural dysfunction.
R Blair, R James
2013-06-01
Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause-ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder.
Psychopathy: cognitive and neural dysfunction
R. Blair, R. James
2013-01-01
Psychopathy is a developmental disorder marked by emotional deficits and an increased risk for antisocial behavior. It is not equivalent to the diagnosis Antisocial Personality Disorder, which concentrates only on the increased risk for antisocial behavior and not a specific cause—ie, the reduced empathy and guilt that constitutes the emotional deficit. The current review considers data from adults with psychopathy with respect to the main cognitive accounts of the disorder that stress either a primary attention deficit or a primary emotion deficit. In addition, the current review considers data regarding the neurobiology of this disorder. Dysfunction within the amygdala's role in reinforcement learning and the role of ventromedial frontal cortex in the representation of reinforcement value is stressed. Data is also presented indicating potential difficulties within parts of temporal and posterior cingulate cortex. Suggestions are made with respect to why these deficits lead to the development of the disorder. PMID:24174892
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning.
Couto, Blas; Adolfi, Federico; Sedeño, Lucas; Salles, Alejo; Canales-Johnson, Andrés; Alvarez-Abut, Pablo; Garcia-Cordero, Indira; Pietto, Marcos; Bekinschtein, Tristan; Sigman, Mariano; Manes, Facundo; Ibanez, Agustin
2015-01-01
Interoception is the moment-to-moment sensing of the physiological condition of the body. The multimodal sources of interoception can be classified into two different streams of afferents: an internal pathway of signals arising from core structures (i.e., heart, blood vessels, and bronchi) and an external pathway of body-mapped sensations (i.e., chemosensation and pain) arising from peripersonal space. This study examines differential processing along these streams within the insular cortex (IC) and their subcortical tracts connecting frontotemporal networks. Two rare patients presenting focal lesions of the IC (insular lesion, IL) or its subcortical tracts (subcortical lesion, SL) were tested. Internally generated interoceptive streams were assessed through a heartbeat detection (HBD) task, while those externally triggered were tapped via taste, smell, and pain recognition tasks. A differential pattern was observed. The IC patient showed impaired internal signal processing while the SL patient exhibited external perception deficits. Such selective deficits remained even when comparing each patient with a group of healthy controls and a group of brain-damaged patients. These outcomes suggest the existence of distinguishable interoceptive streams. Results are discussed in relation with neuroanatomical substrates, involving a fronto-insulo-temporal network for interoceptive and cognitive contextual integration. PMID:25983697
Béracochéa, Daniel
2005-01-01
Chronic alcohol consumption (CAC) can lead to the Korsakoff syndrome (KS), a memory deficiency attributed to diencephalic damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiamine-deficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB). Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a) that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b) that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS.
Béracochéa, Daniel
2005-01-01
Chronic alcohol consumption (CAC) can lead to the Korsakoff syndrome (KS), a memory deficiency attributed to diencephalie damage and/or to medial temporal or cortical related dysfunction. The etiology of KS remains unclear. Most animal models of KS involve thiaminedeficient diets associated with pyrithiamine treatment. Here we present a mouse model of CAC-induced KS. We demonstrate that CAC-generated retrieval memory deficits in working/ episodic memory tasks, together with a reduction of fear reactivity, result from damage to the mammillary bodies (MB). Experimental lesions of MB in non-alcoholic mice produced the same memory and emotional impairments. Drugs having anxiogenic-like properties counteract such impairments produced by CAC or by MB lesions. We suggest (a) that MB are the essential components of a brain network underlying emotional processes, which would be critically important in the retrieval processes involved in working/ episodic memory tasks, and (b) that failure to maintain emotional arousal due to MB damage can be a main factor of CAC-induced memory deficits. Overall, our animal model fits well with general neuropsychological and anatomic impairments observed in KS. PMID:16444899
Leo, Antonino; De Luca, Rosario; Russo, Margherita; Naro, Antonino; Bramanti, Placido; Calabrò, Rocco S
2016-01-01
Cognitive impairment after stroke is quite common and can cause important disability with a relevant impact on quality of life. Cognitive rehabilitation (CR) and related assistive technology may improve functional outcomes. A 30-year-old woman came to our research institute for an intensive CR cycle following a right parieto-temporal stroke. Because the patient was in the chronic phase, we decided to use 3 different rehabilitative protocols: (a) traditional cognitive training (TCT), (b) computerized cognitive training (CCT), and (c) CCT combined with transcranial direct stimulation (CCT plus) with a 2-week interval separating each session. Cognitive and language deficits were investigated using an ad-hoc psychometric battery at baseline (T0), post-TCT (T1), post-CCT (T2), and post-CCT plus (T3). Our patient showed the best neuropsychological improvement, with regard to attention processes and language domain, after T3. Our data showed that CCT plus should be considered a promising tool in the treatment of poststroke neuropsychological deficits.
Leung, Celeste; Cao, Feng; Nguyen, Robin; Joshi, Krutika; Aqrabawi, Afif J; Xia, Shuting; Cortez, Miguel A; Snead, O Carter; Kim, Jun Chul; Jia, Zhengping
2018-05-22
Social interactions are essential to our mental health, and a deficit in social interactions is a hallmark characteristic of numerous brain disorders. Various subregions within the medial temporal lobe have been implicated in social memory, but the underlying mechanisms that tune these neural circuits remain unclear. Here, we demonstrate that optical activation of excitatory entorhinal cortical perforant projections to the dentate gyrus (EC-DG) is necessary and sufficient for social memory retrieval. We further show that inducible disruption of p21-activated kinase (PAK) signaling, a key pathway important for cytoskeletal reorganization, in the EC-DG circuit leads to impairments in synaptic function and social recognition memory, and, importantly, optogenetic activation of the EC-DG terminals reverses the social memory deficits in the transgenic mice. These results provide compelling evidence that activation of the EC-DG pathway underlies social recognition memory recall and that PAK signaling may play a critical role in modulating this process. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Demurie, Ellen; Roeyers, Herbert; Wiersema, Jan R; Sonuga-Barke, Edmund
2016-04-01
Cognitive and motivational factors differentially affect individuals with mental health problems such as ADHD. Here we introduce a new task to disentangle the relative contribution of inhibitory control and reward anticipation on task performance in children with ADHD and/or autism spectrum disorders (ASD). Typically developing children, children with ADHD, ASD, or both disorders worked during separate sessions for monetary or social rewards in go/no-go tasks with varying inhibitory load levels. Participants also completed a monetary temporal discounting (TD) task. As predicted, task performance was sensitive to both the effects of anticipated reward amount and inhibitory load. Reward amount had different effects depending on inhibitory load level. TD correlated with inhibitory control in the ADHD group. The integration of the monetary incentive delay and go/no-go paradigms was successful. Surprisingly, there was no evidence of inhibitory control deficits or altered reward anticipation in the clinical groups. © The Author(s) 2013.
Berlingeri, Manuela; Ravasio, Alessandra; Cranna, Silvia; Basilico, Stefania; Sberna, Maurizio; Bottini, Gabriella; Paulesu, Eraldo
2015-12-01
Three cognitive components may play a crucial role in both memory awareness and in anosognosia for memory deficit (AMD): (1) a personal data base (PDB), i.e., a memory store that contains "semantic" representations about the self, (2) monitoring processes (MPs) and (3) an explicit evaluation system (EES), or comparator, that assesses and binds the representations stored in the PDB with information obtained from the environment. We compared both the behavior and the functional connectivity (as assessed by resting-state fMRI) of AMD patients with aware patients and healthy controls. We found that AMD is associated with an impoverished PDB, while MPs are necessary to successfully update the PDB. AMD was associated with reduced functional connectivity within both the default-mode network and in a network that includes the left lateral temporal cortex, the hippocampus and the insula. The reduced connectivity between the hippocampus and the insular cortex was correlated with AMD severity. Copyright © 2015 Elsevier Inc. All rights reserved.
Pairing tone trains with vagus nerve stimulation induces temporal plasticity in auditory cortex.
Shetake, Jai A; Engineer, Navzer D; Vrana, Will A; Wolf, Jordan T; Kilgard, Michael P
2012-01-01
The selectivity of neurons in sensory cortex can be modified by pairing neuromodulator release with sensory stimulation. Repeated pairing of electrical stimulation of the cholinergic nucleus basalis, for example, induces input specific plasticity in primary auditory cortex (A1). Pairing nucleus basalis stimulation (NBS) with a tone increases the number of A1 neurons that respond to the paired tone frequency. Pairing NBS with fast or slow tone trains can respectively increase or decrease the ability of A1 neurons to respond to rapidly presented tones. Pairing vagus nerve stimulation (VNS) with a single tone alters spectral tuning in the same way as NBS-tone pairing without the need for brain surgery. In this study, we tested whether pairing VNS with tone trains can change the temporal response properties of A1 neurons. In naïve rats, A1 neurons respond strongly to tones repeated at rates up to 10 pulses per second (pps). Repeatedly pairing VNS with 15 pps tone trains increased the temporal following capacity of A1 neurons and repeatedly pairing VNS with 5 pps tone trains decreased the temporal following capacity of A1 neurons. Pairing VNS with tone trains did not alter the frequency selectivity or tonotopic organization of auditory cortex neurons. Since VNS is well tolerated by patients, VNS-tone train pairing represents a viable method to direct temporal plasticity in a variety of human conditions associated with temporal processing deficits. Copyright © 2011 Elsevier Inc. All rights reserved.
Kawase, Miki; Hanba, Yuko T; Katsuhara, Maki
2013-07-01
We investigated the photosynthetic capacity and plant growth of tobacco plants overexpressing ice plant (Mesembryanthemum crystallinum L.) aquaporin McMIPB under (1) a well-watered growth condition, (2) a well-watered and temporal higher vapor pressure deficit (VPD) condition, and (3) a soil water deficit growth condition to investigate the effect of McMIPB on photosynthetic responses under moderate soil and atmospheric humidity and water deficit conditions. Transgenic plants showed a significantly higher photosynthesis rate (by 48 %), higher mesophyll conductance (by 52 %), and enhanced growth under the well-watered growth condition than those of control plants. Decreases in the photosynthesis rate and stomatal conductance from ambient to higher VPD were slightly higher in transgenic plants than those in control plants. When plants were grown under the soil water deficit condition, decreases in the photosynthesis rate and stomatal conductance were less significant in transgenic plants than those in control plants. McMIPB is likely to work as a CO2 transporter, as well as control the regulation of stomata to water deficits.
Memory deficits due to brain injury: unique PET findings and dream alterations
Nishida, Masaki; Nariai, Tadashi; Hiura, Mikio; Ishii, Kenji; Nishikawa, Toru
2011-01-01
The authors herein report the case of a young male with memory deficits due to a traumatic head injury, who presented with sleep-related symptoms such as hypersomnia and dream alterations. Although MRI and polysomnography showed no abnormalities, 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and 11C flumazenil (FMZ)-PET revealed findings consistent with cerebral damage to the affected temporal region. The memory deficit of the patient gradually improved in parallel with the relief of the sleep-related symptoms. FDG-PET showed considerable improvement in glucose metabolism when he had recovered, however, evidence of neural loss remained in the FMZ-PET findings. PMID:22674950
Recognition memory span in autopsy-confirmed Dementia with Lewy Bodies and Alzheimer's Disease.
Salmon, David P; Heindel, William C; Hamilton, Joanne M; Vincent Filoteo, J; Cidambi, Varun; Hansen, Lawrence A; Masliah, Eliezer; Galasko, Douglas
2015-08-01
Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and Normal Control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from long-term storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. Copyright © 2015 Elsevier Ltd. All rights reserved.
Recognition Memory Span in Autopsy-Confirmed Dementia with Lewy Bodies and Alzheimer’s Disease
Salmon, David P.; Heindel, William C.; Hamilton, Joanne M.; Filoteo, J. Vincent; Cidambi, Varun; Hansen, Lawrence A.; Masliah, Eliezer; Galasko, Douglas
2016-01-01
Evidence from patients with amnesia suggests that recognition memory span tasks engage both long-term memory (i.e., secondary memory) processes mediated by the diencephalic-medial temporal lobe memory system and working memory processes mediated by fronto-striatal systems. Thus, the recognition memory span task may be particularly effective for detecting memory deficits in disorders that disrupt both memory systems. The presence of unique pathology in fronto-striatal circuits in Dementia with Lewy Bodies (DLB) compared to AD suggests that performance on the recognition memory span task might be differentially affected in the two disorders even though they have quantitatively similar deficits in secondary memory. In the present study, patients with autopsy-confirmed DLB or AD, and normal control (NC) participants, were tested on separate recognition memory span tasks that required them to retain increasing amounts of verbal, spatial, or visual object (i.e., faces) information across trials. Results showed that recognition memory spans for verbal and spatial stimuli, but not face stimuli, were lower in patients with DLB than in those with AD, and more impaired relative to NC performance. This was despite similar deficits in the two patient groups on independent measures of secondary memory such as the total number of words recalled from Long-Term Storage on the Buschke Selective Reminding Test. The disproportionate vulnerability of recognition memory span task performance in DLB compared to AD may be due to greater fronto-striatal involvement in DLB and a corresponding decrement in cooperative interaction between working memory and secondary memory processes. Assessment of recognition memory span may contribute to the ability to distinguish between DLB and AD relatively early in the course of disease. PMID:26184443
Winsky-Sommerer, R; Grouselle, D; Rougeot, C; Laurent, V; David, J-P; Delacourte, A; Dournaud, P; Seidah, N G; Lindberg, I; Trottier, S; Epelbaum, J
2003-01-01
A somatostatin deficit occurs in the cerebral cortex of Alzheimer's disease patients without a major loss in somatostatin-containing neurons. This deficit could be related to a reduction in the rate of proteolytic processing of peptide precursors. Since the two proprotein convertases (PC)1 and PC2 are responsible for the processing of neuropeptide precursors directed to the regulated secretory pathway, we examined whether they are involved first in the proteolytic processing of prosomatostatin in mouse and human brain and secondly in somatostatin defect associated with Alzheimer's disease. By size exclusion chromatography, the cleavage of prosomatostatin to somatostatin-14 is almost totally abolished in the cortex of PC2 null mice, while the proportions of prosomatostatin and somatostatin-28 are increased. By immunohistochemistry, PC1 and PC2 were localized in many neuronal elements in human frontal and temporal cortex. The convertases levels were quantified by Western blot, as well as the protein 7B2 which is required for the production of active PC2. No significant change in PC1 levels was observed in Alzheimer's disease. In contrast, a marked decrease in the ratio of the PC2 precursor to the total enzymatic pool was observed in the frontal cortex of Alzheimer patients. This decrease coincides with an increase in the binding protein 7B2. However, the content and enzymatic activity of the PC2 mature form were similar in Alzheimer patients and controls. Therefore, the cortical somatostatin defect is not due to convertase alteration occuring during Alzheimer's disease. Further studies will be needed to assess the mechanisms involved in somatostatin deficiency in Alzheimer's disease.
Microsurgical techniques in temporal lobe epilepsy.
Alonso Vanegas, Mario A; Lew, Sean M; Morino, Michiharu; Sarmento, Stenio A
2017-04-01
Temporal lobe resection is the most prevalent epilepsy surgery procedure. However, there is no consensus on the best surgical approach to treat temporal lobe epilepsy. Complication rates are low and efficacy is very high regarding seizures after such procedures. However, there is still ample controversy regarding the best surgical approach to warrant maximum seizure control with minimal functional deficits. We describe the most frequently used microsurgical techniques for removal of both the lateral and mesial temporal lobe structures in the treatment of medically intractable temporal lobe epilepsy (TLE) due to mesial temporal sclerosis (corticoamygdalohippocampectomy and selective amygdalohippocampectomy). The choice of surgical technique appears to remain a surgeon's preference for the near future. Meticulous surgical technique and thorough three-dimensional microsurgical knowledge are essentials for obtaining the best results. Wiley Periodicals, Inc. © 2017 International League Against Epilepsy.
Auditory mismatch impairments are characterized by core neural dysfunctions in schizophrenia
Gaebler, Arnim Johannes; Mathiak, Klaus; Koten, Jan Willem; König, Andrea Anna; Koush, Yury; Weyer, David; Depner, Conny; Matentzoglu, Simeon; Edgar, James Christopher; Willmes, Klaus; Zvyagintsev, Mikhail
2015-01-01
Major theories on the neural basis of schizophrenic core symptoms highlight aberrant salience network activity (insula and anterior cingulate cortex), prefrontal hypoactivation, sensory processing deficits as well as an impaired connectivity between temporal and prefrontal cortices. The mismatch negativity is a potential biomarker of schizophrenia and its reduction might be a consequence of each of these mechanisms. In contrast to the previous electroencephalographic studies, functional magnetic resonance imaging may disentangle the involved brain networks at high spatial resolution and determine contributions from localized brain responses and functional connectivity to the schizophrenic impairments. Twenty-four patients and 24 matched control subjects underwent functional magnetic resonance imaging during an optimized auditory mismatch task. Haemodynamic responses and functional connectivity were compared between groups. These data sets further entered a diagnostic classification analysis to assess impairments on the individual patient level. In the control group, mismatch responses were detected in the auditory cortex, prefrontal cortex and the salience network (insula and anterior cingulate cortex). Furthermore, mismatch processing was associated with a deactivation of the visual system and the dorsal attention network indicating a shift of resources from the visual to the auditory domain. The patients exhibited reduced activation in all of the respective systems (right auditory cortex, prefrontal cortex, and the salience network) as well as reduced deactivation of the visual system and the dorsal attention network. Group differences were most prominent in the anterior cingulate cortex and adjacent prefrontal areas. The latter regions also exhibited a reduced functional connectivity with the auditory cortex in the patients. In the classification analysis, haemodynamic responses yielded a maximal accuracy of 83% based on four features; functional connectivity data performed similarly or worse for up to about 10 features. However, connectivity data yielded a better performance when including more than 10 features yielding up to 90% accuracy. Among others, the most discriminating features represented functional connections between the auditory cortex and the anterior cingulate cortex as well as adjacent prefrontal areas. Auditory mismatch impairments incorporate major neural dysfunctions in schizophrenia. Our data suggest synergistic effects of sensory processing deficits, aberrant salience attribution, prefrontal hypoactivation as well as a disrupted connectivity between temporal and prefrontal cortices. These deficits are associated with subsequent disturbances in modality-specific resource allocation. Capturing different schizophrenic core dysfunctions, functional magnetic resonance imaging during this optimized mismatch paradigm reveals processing impairments on the individual patient level, rendering it a potential biomarker of schizophrenia. PMID:25743635
Receptoral and Neural Aliasing.
1993-01-30
standard psychophysical methods. Stereoscoptc capability makes VisionWorks ideal for investigating and simulating strabismus and amblyopia , or developing... amblyopia . OElectrophyslological and psychophysical response to spatio-temporal and novel stimuli for investipttion of visual field deficits
Visuospatial processing in children with neurofibromatosis type 1
Clements-Stephens, Amy M.; Rimrodt, Sheryl L.; Gaur, Pooja; Cutting, Laurie E.
2008-01-01
Neuroimaging studies investigating the neural network of visuospatial processing have revealed a right hemisphere network of activation including inferior parietal lobe, dorsolateral prefrontal cortex, and extrastriate regions. Impaired visuospatial processing, indicated by the Judgment of Line Orientation (JLO), is commonly seen in individuals with Neurofibromatosis type 1 (NF-1). Nevertheless, few studies have examined the neural activity associated with visuospatial processing in NF-1, in particular, during a JLO task. This study used functional neuroimaging to explore differences in volume of activation in predefined regions of interest between 13 individuals with NF-1 and 13 controls while performing an analogue JLO task. We hypothesized that participants with NF-1 would show anomalous right hemisphere activation and therefore would recruit regions within the left hemisphere to complete the task. Multivariate analyses of variance were used to test for differences between groups in frontal, temporal, parietal, and occipital regions. Results indicate that, as predicted, controls utilized various right hemisphere regions to complete the task, while the NF-1 group tended to recruit left hemisphere regions. These results suggest that the NF-1 group has an inefficient right hemisphere network. An additional unexpected finding was that the NF-1 group showed decreased volume of activation in primary visual cortex (BA 17). Future studies are needed to examine whether the decrease in primary visual cortex is related to a deficit in basic visual processing; findings could ultimately lead to a greater understanding of the nature of deficits in NF-1 and have implications for remediation. PMID:17988695
Don’t speak too fast! Processing of fast rate speech in children with specific language impairment
Bedoin, Nathalie; Krifi-Papoz, Sonia; Herbillon, Vania; Caillot-Bascoul, Aurélia; Gonzalez-Monge, Sibylle; Boulenger, Véronique
2018-01-01
Background Perception of speech rhythm requires the auditory system to track temporal envelope fluctuations, which carry syllabic and stress information. Reduced sensitivity to rhythmic acoustic cues has been evidenced in children with Specific Language Impairment (SLI), impeding syllabic parsing and speech decoding. Our study investigated whether these children experience specific difficulties processing fast rate speech as compared with typically developing (TD) children. Method Sixteen French children with SLI (8–13 years old) with mainly expressive phonological disorders and with preserved comprehension and 16 age-matched TD children performed a judgment task on sentences produced 1) at normal rate, 2) at fast rate or 3) time-compressed. Sensitivity index (d′) to semantically incongruent sentence-final words was measured. Results Overall children with SLI perform significantly worse than TD children. Importantly, as revealed by the significant Group × Speech Rate interaction, children with SLI find it more challenging than TD children to process both naturally or artificially accelerated speech. The two groups do not significantly differ in normal rate speech processing. Conclusion In agreement with rhythm-processing deficits in atypical language development, our results suggest that children with SLI face difficulties adjusting to rapid speech rate. These findings are interpreted in light of temporal sampling and prosodic phrasing frameworks and of oscillatory mechanisms underlying speech perception. PMID:29373610
Speed, Haley E.; Kouser, Mehreen; Xuan, Zhong; Reimers, Jeremy M.; Ochoa, Christine F.; Gupta, Natasha; Liu, Shunan
2015-01-01
SHANK3 (also known as PROSAP2) is a postsynaptic scaffolding protein at excitatory synapses in which mutations and deletions have been implicated in patients with idiopathic autism, Phelan–McDermid (aka 22q13 microdeletion) syndrome, and other neuropsychiatric disorders. In this study, we have created a novel mouse model of human autism caused by the insertion of a single guanine nucleotide into exon 21 (Shank3G). The resulting frameshift causes a premature STOP codon and loss of major higher molecular weight Shank3 isoforms at the synapse. Shank3G/G mice exhibit deficits in hippocampus-dependent spatial learning, impaired motor coordination, altered response to novelty, and sensory processing deficits. At the cellular level, Shank3G/G mice also exhibit impaired hippocampal excitatory transmission and plasticity as well as changes in baseline NMDA receptor-mediated synaptic responses. This work identifies clear alterations in synaptic function and behavior in a novel, genetically accurate mouse model of autism mimicking an autism-associated insertion mutation. Furthermore, these findings lay the foundation for future studies aimed to validate and study region-selective and temporally selective genetic reversal studies in the Shank3G/G mouse that was engineered with such future experiments in mind. PMID:26134648
Graham, Reiko; Devinsky, Orrin; Labar, Kevin S
2007-01-07
Amygdala damage has been associated with impairments in perceiving facial expressions of fear. However, deficits in perceiving other emotions, such as anger, and deficits in perceiving emotion blends have not been definitively established. One possibility is that methods used to index expression perception are susceptible to heuristic use, which may obscure impairments. To examine this, we adapted a task used to examine categorical perception of morphed facial expressions [Etcoff, N. L., & Magee, J. J. (1992). Categorical perception of facial expressions. Cognition, 44(3), 227-240]. In one version of the task, expressions were categorized with unlimited time constraints. In the other, expressions were presented with limited exposure durations to tap more automatic aspects of processing. Three morph progressions were employed: neutral to anger, neutral to fear, and fear to anger. Both tasks were administered to a participant with bilateral amygdala damage (S.P.), age- and education-matched controls, and young controls. The second task was also administered to unilateral temporal lobectomy patients. In the first version, S.P. showed impairments relative to normal controls on the neutral-to-anger and fear-to-anger morphs, but not on the neutral-to-fear morph. However, reaction times suggested that speed-accuracy tradeoffs could account for results. In the second version, S.P. showed impairments on all morph types relative to all other subject groups. A third experiment showed that this deficit did not extend to the perception of morphed identities. These results imply that when heuristics use is discouraged on tasks utilizing subtle emotion transitions, deficits in the perception of anger and anger/fear blends, as well as fear, are evident with bilateral amygdala damage.
Attention and executive deficits in Alzheimer's disease. A critical review.
Perry, R J; Hodges, J R
1999-03-01
In this review we summarize the progress that has been made in the research on attentional and executive deficits in Alzheimer's disease. Like memory, attention is now recognized as consisting of subtypes that differ in their function and anatomical basis. We base our review upon a classification of three subtypes of attention: selective, sustained and divided. This model derives from lesion studies, animal electrophysiological recordings and functional imaging. We examine how these subcomponents of attention can be reconciled with neuropsychological models of attentional control, particularly the Supervisory Attentional System and the Central Executive System of Shallice and Baddeley, respectively. We also discuss the relationship of attention to the concept of executive function. Current evidence suggests that after an initial amnesic stage in Alzheimer's disease, attention is the first non-memory domain to be affected, before deficits in language and visuospatial functions. This is consistent with the possibility that difficulties with activities of daily living, which occur in even mildly demented patients, may be related to attentional deficits. It appears that divided attention and aspects of selective attention, such as set-shifting and response selection, are particularly vulnerable while sustained attention is relatively preserved in the early stages. The phenomenon of cognitive slowing in Alzheimer's disease and normal ageing emphasizes the need to discriminate quantitative changes in attention dysfunction from qualitative changes which may be specifically related to the disease process. The neuropathological basis of these attentional deficits remains unsettled, with two competing hypotheses: spread of pathology from the medial temporal to basal forebrain structures versus corticocortical tract disconnection. Finally we discuss the difficulties of comparing evidence across studies and look at the implications for the design of future studies and future directions that may be fruitful in the research on attention in Alzheimer's disease.
Rizio, Avery A; Moyer, Karlee J; Diaz, Michele T
2017-04-01
Older adults often show declines in phonological aspects of language production, particularly for low-frequency words, but maintain strong semantic systems. However, there are different theories about the mechanism that may underlie such age-related differences in language (e.g., age-related declines in transmission of activation or inhibition). This study used fMRI to investigate whether age-related differences in language production are associated with transmission deficits or inhibition deficits. We used the picture-word interference paradigm to examine age-related differences in picture naming as a function of both target frequency and the relationship between the target picture and distractor word. We found that the presence of a categorically related distractor led to greater semantic elaboration by older adults compared to younger adults, as evidenced by older adults' increased recruitment of regions including the left middle frontal gyrus and bilateral precuneus. When presented with a phonologically related distractor, patterns of neural activation are consistent with previously observed age deficits in phonological processing, including age-related reductions in the recruitment of regions such as the left middle temporal gyrus and right supramarginal gyrus. Lastly, older, but not younger, adults show increased brain activation of the pre- and postcentral gyri as a function of decreasing target frequency when target pictures are paired with a phonological distractor, suggesting that cuing the phonology of the target disproportionately aids production of low-frequency items. Overall, this pattern of results is generally consistent with the transmission deficit hypothesis, illustrating that links within the phonological system, but not the semantic system, are weakened with age.
Individual differences reveal correlates of hidden hearing deficits.
Bharadwaj, Hari M; Masud, Salwa; Mehraei, Golbarg; Verhulst, Sarah; Shinn-Cunningham, Barbara G
2015-02-04
Clinical audiometry has long focused on determining the detection thresholds for pure tones, which depend on intact cochlear mechanics and hair cell function. Yet many listeners with normal hearing thresholds complain of communication difficulties, and the causes for such problems are not well understood. Here, we explore whether normal-hearing listeners exhibit such suprathreshold deficits, affecting the fidelity with which subcortical areas encode the temporal structure of clearly audible sound. Using an array of measures, we evaluated a cohort of young adults with thresholds in the normal range to assess both cochlear mechanical function and temporal coding of suprathreshold sounds. Listeners differed widely in both electrophysiological and behavioral measures of temporal coding fidelity. These measures correlated significantly with each other. Conversely, these differences were unrelated to the modest variation in otoacoustic emissions, cochlear tuning, or the residual differences in hearing threshold present in our cohort. Electroencephalography revealed that listeners with poor subcortical encoding had poor cortical sensitivity to changes in interaural time differences, which are critical for localizing sound sources and analyzing complex scenes. These listeners also performed poorly when asked to direct selective attention to one of two competing speech streams, a task that mimics the challenges of many everyday listening environments. Together with previous animal and computational models, our results suggest that hidden hearing deficits, likely originating at the level of the cochlear nerve, are part of "normal hearing." Copyright © 2015 the authors 0270-6474/15/352161-12$15.00/0.
ERIC Educational Resources Information Center
Bengner, T.; Malina, T.
2007-01-01
We tested whether memory deficits in temporal lobe epilepsy (TLE) are better described by a single- or dual-store memory model. To this aim, we analyzed the influence of TLE and proactive interference (PI) on immediate and 24-h long-term recency effects during face recognition in 16 healthy participants and 18 right and 21 left non-surgical TLE…
ERIC Educational Resources Information Center
Demurie, Ellen; Roeyers, Herbert; Baeyens, Dieter; Sonuga-Barke, Edmund
2013-01-01
It has been shown that delayed consumable rewards are discounted to a higher degree than money, which has been referred to as the "domain effect". Until now the effects of reward type on temporal discounting (TD) have mainly been studied in adults. Although there is evidence that children with attention-deficit/hyperactivity disorder (ADHD) tend…
Losing the beat: deficits in temporal coordination.
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-12-19
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961-969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception-action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals.
Losing the beat: deficits in temporal coordination
Palmer, Caroline; Lidji, Pascale; Peretz, Isabelle
2014-01-01
Tapping or clapping to an auditory beat, an easy task for most individuals, reveals precise temporal synchronization with auditory patterns such as music, even in the presence of temporal fluctuations. Most models of beat-tracking rely on the theoretical concept of pulse: a perceived regular beat generated by an internal oscillation that forms the foundation of entrainment abilities. Although tapping to the beat is a natural sensorimotor activity for most individuals, not everyone can track an auditory beat. Recently, the case of Mathieu was documented (Phillips-Silver et al. 2011 Neuropsychologia 49, 961–969. (doi:10.1016/j.neuropsychologia.2011.02.002)). Mathieu presented himself as having difficulty following a beat and exhibited synchronization failures. We examined beat-tracking in normal control participants, Mathieu, and a second beat-deaf individual, who tapped with an auditory metronome in which unpredictable perturbations were introduced to disrupt entrainment. Both beat-deaf cases exhibited failures in error correction in response to the perturbation task while exhibiting normal spontaneous motor tempi (in the absence of an auditory stimulus), supporting a deficit specific to perception–action coupling. A damped harmonic oscillator model was applied to the temporal adaptation responses; the model's parameters of relaxation time and endogenous frequency accounted for differences between the beat-deaf cases as well as the control group individuals. PMID:25385783
Neural Substrates of Semantic Prospection – Evidence from the Dementias
Irish, Muireann; Eyre, Nadine; Dermody, Nadene; O’Callaghan, Claire; Hodges, John R.; Hornberger, Michael; Piguet, Olivier
2016-01-01
The ability to envisage personally relevant events at a future time point represents an incredibly sophisticated cognitive endeavor and one that appears to be intimately linked to episodic memory integrity. Far less is known regarding the neurocognitive mechanisms underpinning the capacity to envisage non-personal future occurrences, known as semantic future thinking. Moreover the degree of overlap between the neural substrates supporting episodic and semantic forms of prospection remains unclear. To this end, we sought to investigate the capacity for episodic and semantic future thinking in Alzheimer’s disease (n = 15) and disease-matched behavioral-variant frontotemporal dementia (n = 15), neurodegenerative disorders characterized by significant medial temporal lobe (MTL) and frontal pathology. Participants completed an assessment of past and future thinking across personal (episodic) and non-personal (semantic) domains, as part of a larger neuropsychological battery investigating episodic and semantic processing, and their performance was contrasted with 20 age- and education-matched healthy older Controls. Participants underwent whole-brain T1-weighted structural imaging and voxel-based morphometry analysis was conducted to determine the relationship between gray matter integrity and episodic and semantic future thinking. Relative to Controls, both patient groups displayed marked future thinking impairments, extending across episodic and semantic domains. Analyses of covariance revealed that while episodic future thinking deficits could be explained solely in terms of episodic memory proficiency, semantic prospection deficits reflected the interplay between episodic and semantic processing. Distinct neural correlates emerged for each form of future simulation with differential involvement of prefrontal, lateral temporal, and medial temporal regions. Notably, the hippocampus was implicated irrespective of future thinking domain, with the suggestion of lateralization effects depending on the type of information being simulated. Whereas episodic future thinking related to right hippocampal integrity, semantic future thinking was found to relate to left hippocampal integrity. Our findings support previous observations of significant MTL involvement for semantic forms of prospection and point to distinct neurocognitive mechanisms which must be functional to support future-oriented forms of thought across personal and non-personal contexts. PMID:27252632
New spatial and temporal indices of Indian summer monsoon rainfall
NASA Astrophysics Data System (ADS)
Dwivedi, Sanjeev; Uma, R.; Lakshmi Kumar, T. V.; Narayanan, M. S.; Pokhrel, Samir; Kripalani, R. H.
2018-02-01
The overall yearly seasonal performance of Indian southwest monsoon rainfall (ISMR) for the whole Indian land mass is presently expressed by the India Meteorological Department (IMD) by a single number, the total quantum of rainfall. Any particular year is declared as excess/deficit or normal monsoon rainfall year on the basis of this single number. It is well known that monsoon rainfall also has high interannual variability in spatial and temporal scales. To account for these aspects in ISMR, we propose two new spatial and temporal indices. These indices have been calculated using the 115 years of IMD daily 0.25° × 0.25° gridded rainfall data. Both indices seem to go in tandem with the in vogue seasonal quantum index. The anomaly analysis indicates that the indices during excess monsoon years behave randomly, while for deficit monsoon years the phase of all the three indices is the same. Evaluation of these indices is also studied with respect to the existing dynamical indices based on large-scale circulation. It is found that the new temporal indices have better link with circulation indices as compared to the new spatial indices. El Nino and Southern Oscillation (ENSO) especially over the equatorial Pacific Ocean still have the largest influence in both the new indices. However, temporal indices have much better remote influence as compared to that of spatial indices. Linkages over the Indian Ocean regions are very different in both the spatial and temporal indices. Continuous wavelet transform (CWT) analysis indicates that the complete spectrum of oscillation of the QI is shared in the lower oscillation band by the spatial index and in the higher oscillation band by the temporal index. These new indices may give some extra dimension to study Indian summer monsoon variability.
Zierhut, Kathrin C; Schulte-Kemna, Anna; Kaufmann, Jörn; Steiner, Johann; Bogerts, Bernhard; Schiltz, Kolja
2013-04-01
Schizophrenia is considered a brain disease with a quite heterogeneous clinical presentation. Studies in schizophrenia have yielded a wide array of correlations between structural and functional brain changes and clinical and cognitive symptoms. Reductions of grey matter volume (GMV) in the prefrontal and temporal cortex have been described which are crucial for the development of positive and negative symptoms and impaired working memory (WM). Associations between GMV reduction and positive and negative symptoms as well as WM impairment were assessed in schizophrenia patients (symptomatology in 34, WM in 26) and compared to healthy controls (36 total, WM in 26). GMV was determined by voxel-based morphometry and its relation to positive and negative symptoms as well as WM performance was assessed. In schizophrenia patients, reductions of GMV were evident in anterior cingulate cortex, ventrolateral prefrontal cortex (VLPFC), superior temporal cortex, and insula. GMV reductions in the superior temporal gyrus (STG) were associated with positive symptom severity as well as WM impairment. Furthermore, the absolute GMV of VLPFC was strongly related to negative symptoms. These predicted WM performance as well as processing speed. The present results support the assumption of two distinct pathomechanisms responsible for impaired WM in schizophrenia: (1) GMV reductions in the VLPFC predict the severity of negative symptoms. Increased negative symptoms in turn are associated with a slowing down of processing speed and predict an impaired WM. (2) GMV reductions in the temporal and mediofrontal cortex are involved in the development of positive symptoms and impair WM performance, too. Copyright © 2012 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Tong, Xiuhong; Tong, Xiuli; King Yiu, Fung
2018-01-01
Increasing evidence suggests that children with developmental dyslexia exhibit a deficit not only at the segmental level of phonological processing but also, by extension, at the suprasegmental level. However, it remains unclear whether such a suprasegmental phonological processing deficit is due to a difficulty in processing acoustic cues of…
Alexander, Michelle; Garbus, Haley; Smith, Amanda L.; Fitch, R. Holly
2013-01-01
Children born prematurely (<37 weeks gestational age) or at very low birth weight (VLBW; <1500 grams) are at increased risk for hypoxic ischemic (HI) brain injuries. Term infants can also suffer HI from birth complications. In both groups, blood/oxygen delivery to the brain is compromised, often resulting in brain damage and later cognitive delays (e.g., language deficits). Literature suggests that language delays in a variety of developmentally impaired populations (including specific language impairment (SLI), dyslexia, and early HI-injury) may be associated with underlying deficits in rapid auditory processing (RAP; the ability to process and discriminate brief acoustic cues). Data supporting a relationship between RAP deficits and poor language outcomes is consistent with the “magnocellular theory,” which purports that damage to or loss of large (magnocellular) cells in thalamic nuclei could underlie disruptions in temporal processing of sensory input, possibly including auditory (medial geniculate nucleus; MGN) information This theory could be applied to neonatal HI populations that show subsequent RAP deficits. In animal models of neonatal HI, persistent RAP deficits are seen in postnatal (P)7 HI injured rats (who exhibit neuropathology comparable to term birth injury), but not in P1–3 HI injured rodents (who exhibit neuropathology comparable to human pre-term injury). The current study sought to investigate the mean cell size, cell number, and cumulative probability of cell size in the MGN of P3 HI and P7 HI injured male rats that had previously demonstrated behavioral RAP deficits. Pilot data from our lab (Alexander et al., 2011) previously revealed cell size abnormalities (a shift towards smaller cells) in P7 but not P1 HI injured animals when compared to shams. Our current finding support this result, with evidence of a significant shift to smaller cells in the experimental MGN of P7 HI but not P3 HI subjects. P7 HI animals also showed significantly fewer cells in the affected (right) MGN as compared P3 HI and shams animals. Moreover, cell number in the right hemisphere was found to correlate with gap detection (fewer cells = worse performance) in P7 HI injured subjects. These findings could be applied to clinical populations, providing an anatomic marker that may index potential long-term language disabilities in HI injured infants and possibly other at-risk populations. PMID:24184287
Absence of both auditory evoked potentials and auditory percepts dependent on timing cues.
Starr, A; McPherson, D; Patterson, J; Don, M; Luxford, W; Shannon, R; Sininger, Y; Tonakawa, L; Waring, M
1991-06-01
An 11-yr-old girl had an absence of sensory components of auditory evoked potentials (brainstem, middle and long-latency) to click and tone burst stimuli that she could clearly hear. Psychoacoustic tests revealed a marked impairment of those auditory perceptions dependent on temporal cues, that is, lateralization of binaural clicks, change of binaural masked threshold with changes in signal phase, binaural beats, detection of paired monaural clicks, monaural detection of a silent gap in a sound, and monaural threshold elevation for short duration tones. In contrast, auditory functions reflecting intensity or frequency discriminations (difference limens) were only minimally impaired. Pure tone audiometry showed a moderate (50 dB) bilateral hearing loss with a disproportionate severe loss of word intelligibility. Those auditory evoked potentials that were preserved included (1) cochlear microphonics reflecting hair cell activity; (2) cortical sustained potentials reflecting processing of slowly changing signals; and (3) long-latency cognitive components (P300, processing negativity) reflecting endogenous auditory cognitive processes. Both the evoked potential and perceptual deficits are attributed to changes in temporal encoding of acoustic signals perhaps occurring at the synapse between hair cell and eighth nerve dendrites. The results from this patient are discussed in relation to previously published cases with absent auditory evoked potentials and preserved hearing.
Fan, Fengmei; Zou, Yizhuang; Jin, Zhen; Zen, Yawei; Zhu, Xiaolin; Yang, Fude; Tan, Yunlong; Zhou, Dongfeng
2015-01-01
Self-evaluation plays an important role in adaptive functioning and is a process that is typically impaired in patients with schizophrenia. Underlying neural mechanisms for this dysfunction may be associated with manifested psychosis. However, the brain substrates underlying this deficit are not well known. The present study used brain blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) and gray matter voxel-based morphometry to explore the functional and structural brain correlates of self-evaluation deficits in schizophrenia. Eighteen patients with schizophrenia and 17 healthy controls were recruited and asked to judge whether a set of personality-trait adjectives were appropriate for describing themselves, a familiar other, or whether the adjectives were of positive or negative valence. Patients had slower response times for negative trait attributions than controls did; responses to positive trait attributions were faster than those for negative traits among the patient group, while no differences were observed in the control group. Control subjects showed greater activation within the dorsal medial prefrontal cortex (dMPFC) and the anterior cingulate cortex (ACC) than the patient group during the self-evaluation > semantic positivity-evaluation contrast. Patients showed greater activation mainly within the posterior cingulate gyrus (PCC) as compared to controls for the other-evaluation > semantic positivity-evaluation contrast. Furthermore, gray matter volume was reduced in the MPFC, temporal lobe, cuneus, and the dorsal lateral prefrontal cortex (DLPFC) among the patient group when compared to controls. The present study adds to previous findings regarding self- and other-referential processing in schizophrenia, providing support for neurobiological models of self-reflection impairment. PMID:26406464
Emotional cues enhance the attentional effects on spatial and temporal resolution.
Bocanegra, Bruno R; Zeelenberg, René
2011-12-01
In the present study, we demonstrated that the emotional significance of a spatial cue enhances the effect of covert attention on spatial and temporal resolution (i.e., our ability to discriminate small spatial details and fast temporal flicker). Our results indicated that fearful face cues, as compared with neutral face cues, enhanced the attentional benefits in spatial resolution but also enhanced the attentional deficits in temporal resolution. Furthermore, we observed that the overall magnitudes of individuals' attentional effects correlated strongly with the magnitude of the emotion × attention interaction effect. Combined, these findings provide strong support for the idea that emotion enhances the strength of a cue's attentional response.
Facial decoding in schizophrenia is underpinned by basic visual processing impairments.
Belge, Jan-Baptist; Maurage, Pierre; Mangelinckx, Camille; Leleux, Dominique; Delatte, Benoît; Constant, Eric
2017-09-01
Schizophrenia is associated with a strong deficit in the decoding of emotional facial expression (EFE). Nevertheless, it is still unclear whether this deficit is specific for emotions or due to a more general impairment for any type of facial processing. This study was designed to clarify this issue. Thirty patients suffering from schizophrenia and 30 matched healthy controls performed several tasks evaluating the recognition of both changeable (i.e. eyes orientation and emotions) and stable (i.e. gender, age) facial characteristics. Accuracy and reaction times were recorded. Schizophrenic patients presented a performance deficit (accuracy and reaction times) in the perception of both changeable and stable aspects of faces, without any specific deficit for emotional decoding. Our results demonstrate a generalized face recognition deficit in schizophrenic patients, probably caused by a perceptual deficit in basic visual processing. It seems that the deficit in the decoding of emotional facial expression (EFE) is not a specific deficit of emotion processing, but is at least partly related to a generalized perceptual deficit in lower-level perceptual processing, occurring before the stage of emotion processing, and underlying more complex cognitive dysfunctions. These findings should encourage future investigations to explore the neurophysiologic background of these generalized perceptual deficits, and stimulate a clinical approach focusing on more basic visual processing. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.
Cognitive impairment and medial temporal lobe structure in young adults with a depressive episode.
Donix, Markus; Haussmann, Robert; Helling, Franziska; Zweiniger, Anne; Lange, Jan; Werner, Annett; Donix, Katharina L; Brandt, Moritz D; Linn, Jennifer; Bauer, Michael; Buthut, Maria
2018-09-01
Cognitive deficits are common in patients with a depressive episode although the predictors for their development and severity remain elusive. We investigated whether subjective and objective cognitive impairment in young depressed adults would be associated with cortical thinning in medial temporal subregions. High-resolution magnetic resonance imaging, cortical unfolding data analysis, and comprehensive assessments of subjective and objective cognitive abilities were performed on 27 young patients with a depressive episode (mean age: 29.0 ± 5.8 years) and 23 older participants without a history of a depressive disorder but amnestic mild cognitive impairment (68.5 ± 6.6 years) or normal cognition (65.2 ± 8.7 years). Thickness reductions in parahippocampal, perirhinal and fusiform cortices were associated with subjective memory deficits only among young patients with a depressive episode and a measurable cognitive impairment. Long-term longitudinal data would be desirable to determine the trajectories of cognitive impairment associated with depression in patients with or without cortical structure changes. The presence of clinically significant cognitive deficits in young people with a depressive episode may identify a patient population with extrahippocampal cortical thinning. Copyright © 2018 Elsevier B.V. All rights reserved.
Assessing a Metacognitive Account of Associative Memory Impairments in Temporal Lobe Epilepsy
Kemp, Steven; Souchay, Céline; Moulin, Chris J. A.
2016-01-01
Previous research has pointed to a deficit in associative recognition in temporal lobe epilepsy (TLE). Associative recognition tasks require discrimination between various combinations of words which have and have not been seen previously (such as old-old or old-new pairs). People with TLE tend to respond to rearranged old-old pairs as if they are “intact” old-old pairs, which has been interpreted as a failure to use a recollection strategy to overcome the familiarity of two recombined words into a new pairing. We examined this specific deficit in the context of metacognition, using postdecision confidence judgements at test. We expected that TLE patients would show inappropriate levels of confidence for associative recognition. Although TLE patients reported lower confidence levels in their responses overall, they were sensitive to the difficulty of varying pair types in their judgements and gave significantly higher confidence ratings for their correct answers. We conclude that a strategic deficit is not at play in the associative recognition of people with TLE, insofar as they are able to monitor the status of their memory system. This adds to a growing body of research suggesting that recollection is impaired in TLE, but not metacognition. PMID:27721992
The role of awake craniotomy in reducing intraoperative visual field deficits during tumor surgery
Wolfson, Racheal; Soni, Neil; Shah, Ashish H.; Hosein, Khadil; Sastry, Ananth; Bregy, Amade; Komotar, Ricardo J.
2015-01-01
Objective: Homonymous hemianopia due to damage to the optic radiations or visual cortex is a possible consequence of tumor resection involving the temporal or occipital lobes. The purpose of this review is to present and analyze a series of studies regarding the use of awake craniotomy (AC) to decrease visual field deficits following neurosurgery. Materials and Methods: A literature search was performed using the Medline and PubMed databases from 1970 and 2014 that compared various uses of AC other than intraoperative motor/somatosensory/language mapping with a focus on visual field mapping. Results: For the 17 patients analyzed in this study, 14 surgeries resulted in quadrantanopia, 1 in hemianopia, and 2 without visual deficits. Overall, patient satisfaction with AC was high, and AC was a means to reduce surgery-related complications and cost related with the procedure. Conclusion AC is a safe and tolerable procedure that can be used effectively to map optic radiations and the visual cortices in order to preserve visual function during resection of tumors infiltrating the temporal and occipital lobes. In the majority of cases, a homonymous hemianopia was prevented and patients were left with a quadrantanopia that did not interfere with daily function. PMID:26396597
Haut, Kristen M.; van Erp, Theo G. M.; Knowlton, Barbara; Bearden, Carrie E.; Subotnik, Kenneth; Ventura, Joseph; Nuechterlein, Keith H.; Cannon, Tyrone D.
2014-01-01
Patients with and at risk for psychosis may have difficulty using associative strategies to facilitate episodic memory encoding and recall. In parallel studies, patients with first-episode schizophrenia (n = 27) and high psychosis risk (n = 28) compared with control participants (n = 22 and n = 20, respectively) underwent functional MRI during a remember-know memory task. Psychophysiological interaction analyses, using medial temporal lobe (MTL) structures as regions of interest, were conducted to measure functional connectivity patterns supporting successful episodic memory. During encoding, patients with first-episode schizophrenia demonstrated reduced functional coupling between MTL regions and regions involved in stimulus representations, stimulus selection, and cognitive control. Relative to control participants and patients with high psychosis risk who did not convert to psychosis, patients with high psychosis risk who later converted to psychosis also demonstrated reduced connectivity between MTL regions and auditory-verbal and visual-association regions. These results suggest that episodic memory deficits in schizophrenia are related to inefficient recruitment of cortical connections involved in associative memory formation; such deficits precede the onset of psychosis among those individuals at high clinical risk. PMID:25750836
Haut, Kristen M; van Erp, Theo G M; Knowlton, Barbara; Bearden, Carrie E; Subotnik, Kenneth; Ventura, Joseph; Nuechterlein, Keith H; Cannon, Tyrone D
2015-03-01
Patients with and at risk for psychosis may have difficulty using associative strategies to facilitate episodic memory encoding and recall. In parallel studies, patients with first-episode schizophrenia ( n = 27) and high psychosis risk ( n = 28) compared with control participants ( n = 22 and n = 20, respectively) underwent functional MRI during a remember-know memory task. Psychophysiological interaction analyses, using medial temporal lobe (MTL) structures as regions of interest, were conducted to measure functional connectivity patterns supporting successful episodic memory. During encoding, patients with first-episode schizophrenia demonstrated reduced functional coupling between MTL regions and regions involved in stimulus representations, stimulus selection, and cognitive control. Relative to control participants and patients with high psychosis risk who did not convert to psychosis, patients with high psychosis risk who later converted to psychosis also demonstrated reduced connectivity between MTL regions and auditory-verbal and visual-association regions. These results suggest that episodic memory deficits in schizophrenia are related to inefficient recruitment of cortical connections involved in associative memory formation; such deficits precede the onset of psychosis among those individuals at high clinical risk.
Ramsey, Lenny; Rengachary, Jennifer; Zinn, Kristi; Siegel, Joshua S.; Metcalf, Nicholas V.; Strube, Michael J.; Snyder, Abraham Z.; Corbetta, Maurizio; Shulman, Gordon L.
2016-01-01
Strokes often cause multiple behavioural deficits that are correlated at the population level. Here, we show that motor and attention deficits are selectively associated with abnormal patterns of resting state functional connectivity in the dorsal attention and motor networks. We measured attention and motor deficits in 44 right hemisphere-damaged patients with a first-time stroke at 1–2 weeks post-onset. The motor battery included tests that evaluated deficits in both upper and lower extremities. The attention battery assessed both spatial and non-spatial attention deficits. Summary measures for motor and attention deficits were identified through principal component analyses on the raw behavioural scores. Functional connectivity in structurally normal cortex was estimated based on the temporal correlation of blood oxygenation level-dependent signals measured at rest with functional magnetic resonance imaging. Any correlation between motor and attention deficits and between functional connectivity in the dorsal attention network and motor networks that might spuriously affect the relationship between each deficit and functional connectivity was statistically removed. We report a double dissociation between abnormal functional connectivity patterns and attention and motor deficits, respectively. Attention deficits were significantly more correlated with abnormal interhemispheric functional connectivity within the dorsal attention network than motor networks, while motor deficits were significantly more correlated with abnormal interhemispheric functional connectivity patterns within the motor networks than dorsal attention network. These findings indicate that functional connectivity patterns in structurally normal cortex following a stroke link abnormal physiology in brain networks to the corresponding behavioural deficits. PMID:27225794
Motor signatures of emotional reactivity in frontotemporal dementia.
Marshall, Charles R; Hardy, Chris J D; Russell, Lucy L; Clark, Camilla N; Bond, Rebecca L; Dick, Katrina M; Brotherhood, Emilie V; Mummery, Cath J; Schott, Jonathan M; Rohrer, Jonathan D; Kilner, James M; Warren, Jason D
2018-01-18
Automatic motor mimicry is essential to the normal processing of perceived emotion, and disrupted automatic imitation might underpin socio-emotional deficits in neurodegenerative diseases, particularly the frontotemporal dementias. However, the pathophysiology of emotional reactivity in these diseases has not been elucidated. We studied facial electromyographic responses during emotion identification on viewing videos of dynamic facial expressions in 37 patients representing canonical frontotemporal dementia syndromes versus 21 healthy older individuals. Neuroanatomical associations of emotional expression identification accuracy and facial muscle reactivity were assessed using voxel-based morphometry. Controls showed characteristic profiles of automatic imitation, and this response predicted correct emotion identification. Automatic imitation was reduced in the behavioural and right temporal variant groups, while the normal coupling between imitation and correct identification was lost in the right temporal and semantic variant groups. Grey matter correlates of emotion identification and imitation were delineated within a distributed network including primary visual and motor, prefrontal, insular, anterior temporal and temporo-occipital junctional areas, with common involvement of supplementary motor cortex across syndromes. Impaired emotional mimesis may be a core mechanism of disordered emotional signal understanding and reactivity in frontotemporal dementia, with implications for the development of novel physiological biomarkers of socio-emotional dysfunction in these diseases.
Frontal lobe function in temporal lobe epilepsy
Stretton, J.; Thompson, P.J.
2012-01-01
Summary Temporal lobe epilepsy (TLE) is typically associated with long-term memory dysfunction. The frontal lobes support high-level cognition comprising executive skills and working memory that is vital for daily life functioning. Deficits in these functions have been increasingly reported in TLE. Evidence from both the neuropsychological and neuroimaging literature suggests both executive function and working memory are compromised in the presence of TLE. In relation to executive impairment, particular focus has been paid to set shifting as measured by the Wisconsin Card Sorting Task. Other discrete executive functions such as decision-making and theory of mind also appear vulnerable but have received little attention. With regard to working memory, the medial temporal lobe structures appear have a more critical role, but with emerging evidence of hippocampal dependent and independent processes. The relative role of underlying pathology and seizure spread is likely to have considerable bearing upon the cognitive phenotype and trajectory in TLE. The identification of the nature of frontal lobe dysfunction in TLE thus has important clinical implications for prognosis and surgical management. Longitudinal neuropsychological and neuroimaging studies assessing frontal lobe function in TLE patients pre- and postoperatively will improve our understanding further. PMID:22100147
Schubert, D; Martens, G J M; Kolk, S M
2015-07-01
The prefrontal cortex (PFC), seat of the highest-order cognitive functions, constitutes a conglomerate of highly specialized brain areas and has been implicated to have a role in the onset and installation of various neurodevelopmental disorders. The development of a properly functioning PFC is directed by transcription factors, guidance cues and other regulatory molecules and requires the intricate and temporal orchestration of a number of developmental processes. Disturbance or failure of any of these processes causing neurodevelopmental abnormalities within the PFC may contribute to several of the cognitive deficits seen in patients with neurodevelopmental disorders. In this review, we elaborate on the specific processes underlying prefrontal development, such as induction and patterning of the prefrontal area, proliferation, migration and axonal guidance of medial prefrontal progenitors, and their eventual efferent and afferent connections. We furthermore integrate for the first time the available knowledge from genome-wide studies that have revealed genes linked to neurodevelopmental disorders with experimental molecular evidence in rodents. The integrated data suggest that the pathogenic variants in the neurodevelopmental disorder-associated genes induce prefrontal cytoarchitectonical impairments. This enhances our understanding of the molecular mechanisms of prefrontal (mis)development underlying the four major neurodevelopmental disorders in humans, that is, intellectual disability, autism spectrum disorders, attention deficit hyperactivity disorder and schizophrenia, and may thus provide clues for the development of novel therapies.
Lesiuk, Teresa; Bugos, Jennifer A; Murakami, Brea
2018-04-22
Music listening interventions such as Rhythmic Auditory Stimulation can improve mobility, balance, and gait in Parkinson’s Disease (PD). Yet, the impact of music training on executive functions is not yet known. Deficits in executive functions (e.g., attention, processing speed) in patients with PD result in gait interference, deficits in emotional processing, loss of functional capacity (e.g., intellectual activity, social participation), and reduced quality of life. The model of temporal prediction and timing suggests two networks collectively contribute to movement generation and execution: the basal ganglia-thalamocortical network (BGTC) and the cerebellar-thalamocortical network (CTC). Due to decreases in dopamine responsible for the disruption of the BGTC network in adults with PD, it is hypothesized that rhythmic auditory cues assist patients through recruiting an alternate network, the CTC, which extends to the supplementary motor areas (SMA) and the frontal cortices. In piano training, fine motor finger movements activate the cerebellum and SMA, thereby exercising the CTC network. We hypothesize that exercising the CTC network through music training will contribute to enhanced executive functions. Previous research suggested that music training enhances cognitive performance (i.e., working memory and processing speed) in healthy adults and adults with cognitive impairments. This review and rationale provides support for the use of music training to enhance cognitive outcomes in patients with Parkinson’s Disease (PD).
Atypical rapid audio-visual temporal recalibration in autism spectrum disorders.
Noel, Jean-Paul; De Niear, Matthew A; Stevenson, Ryan; Alais, David; Wallace, Mark T
2017-01-01
Changes in sensory and multisensory function are increasingly recognized as a common phenotypic characteristic of Autism Spectrum Disorders (ASD). Furthermore, much recent evidence suggests that sensory disturbances likely play an important role in contributing to social communication weaknesses-one of the core diagnostic features of ASD. An established sensory disturbance observed in ASD is reduced audiovisual temporal acuity. In the current study, we substantially extend these explorations of multisensory temporal function within the framework that an inability to rapidly recalibrate to changes in audiovisual temporal relations may play an important and under-recognized role in ASD. In the paradigm, we present ASD and typically developing (TD) children and adolescents with asynchronous audiovisual stimuli of varying levels of complexity and ask them to perform a simultaneity judgment (SJ). In the critical analysis, we test audiovisual temporal processing on trial t as a condition of trial t - 1. The results demonstrate that individuals with ASD fail to rapidly recalibrate to audiovisual asynchronies in an equivalent manner to their TD counterparts for simple and non-linguistic stimuli (i.e., flashes and beeps, hand-held tools), but exhibit comparable rapid recalibration for speech stimuli. These results are discussed in terms of prior work showing a speech-specific deficit in audiovisual temporal function in ASD, and in light of current theories of autism focusing on sensory noise and stability of perceptual representations. Autism Res 2017, 10: 121-129. © 2016 International Society for Autism Research, Wiley Periodicals, Inc. © 2016 International Society for Autism Research, Wiley Periodicals, Inc.
Mamashli, Fahimeh; Khan, Sheraz; Bharadwaj, Hari; Michmizos, Konstantinos; Ganesan, Santosh; Garel, Keri-Lee A.; Hashmi, Javeria Ali; Herbert, Martha R.; Hämäläinen, Matti; Kenet, Tal
2017-01-01
Autism spectrum disorder (ASD) is associated with difficulty in processing speech in a noisy background, but the neural mechanisms that underlie this deficit have not been mapped. To address this question, we used magnetoencephalography to compare the cortical responses between ASD and typically developing (TD) individuals to a passive mismatch paradigm. We repeated the paradigm twice, once in a quiet background, and once in the presence of background noise. We focused on both the evoked mismatch field (MMF) response in temporal and frontal cortical locations, and functional connectivity with spectral specificity between those locations. In the quiet condition, we found common neural sources of the MMF response in both groups, in the right temporal gyrus and inferior frontal gyrus (IFG). In the noise condition, the MMF response in the right IFG was preserved in the TD group, but reduced relative to the quiet condition in ASD group. The MMF response in the right IFG also correlated with severity of ASD. Moreover, in noise, we found significantly reduced normalized coherence (deviant normalized by standard) in ASD relative to TD, in the beta band (14–25 Hz), between left temporal and left inferior frontal sub-regions. However, unnormalized coherence (coherence during deviant or standard) was significantly increased in ASD relative to TD, in multiple frequency bands. Our findings suggest increased recruitment of neural resources in ASD irrespective of the task difficulty, alongside a reduction in top-down modulations, usually mediated by the beta band, needed to mitigate the impact of noise on auditory processing. PMID:27910247
Medial temporal lobe contributions to short-term memory for faces
Race, Elizabeth; LaRocque, Karen F.; Keane, Margaret M.; Verfaellie, Mieke
2015-01-01
The role of the medial temporal lobes (MTL) in short-term memory (STM) remains a matter of debate. While imaging studies commonly show hippocampal activation during short-delay memory tasks, evidence from amnesic patients with MTL lesions is mixed. It has been argued that apparent STM impairments in amnesia may reflect long-term memory (LTM) contributions to performance. We challenge this conclusion by demonstrating that MTL amnesic patients show impaired delayed matching-to-sample (DMS) for faces in a task that meets both a traditional delay-based and a recently proposed distractor-based criterion for classification as a STM task. In Experiment 1, we demonstrate that our face DMS task meets the proposed distractor-based criterion for STM classification, in that extensive processing of delay-period distractor stimuli disrupts performance of healthy individuals. In Experiment 2, MTL amnesic patients with lesions extending into anterior subhippocampal cortex, but not patients with lesions limited to the hippocampus, show impaired performance on this task without distraction at delays as short as 8s, within temporal range of delay-based STM classification, in the context of intact perceptual matching performance. Experiment 3 provides support for the hypothesis that STM for faces relies on configural processing by showing that the extent to which healthy participants’ performance is disrupted by interference depends on the configural demands of the distractor task. Together, these findings are consistent with the notion that the amnesic impairment in STM for faces reflects a deficit in configural processing associated with subhippocampal cortices and provide novel evidence that the MTL supports cognition beyond the LTM domain. PMID:23937185
Braun, Mischa; Weinrich, Christiane; Finke, Carsten; Ostendorf, Florian; Lehmann, Thomas-Nicolas; Ploner, Christoph J
2011-03-01
Converging evidence from behavioral and imaging studies suggests that within the human medial temporal lobe (MTL) the hippocampal formation may be particularly involved in recognition memory of associative information. However, it is unclear whether the hippocampal formation processes all types of associations or whether there is a specialization for processing of associations involving spatial information. Here, we investigated this issue in six patients with postsurgical lesions of the right MTL affecting the hippocampal formation and in ten healthy controls. Subjects performed a battery of delayed match-to-sample tasks with two delays (900/5,000 ms) and three set sizes. Subjects were requested to remember either single features (colors, locations, shapes, letters) or feature associations (color-location, color-shape, color-letter). In the single-feature conditions, performance of patients did not differ from controls. In the association conditions, a significant delay-dependent deficit in memory of color-location associations was found. This deficit was largely independent of set size. By contrast, performance in the color-shape and color-letter conditions was normal. These findings support the hypothesis that a region within the right MTL, presumably the hippocampal formation, does not equally support all kinds of visual memory but rather has a bias for processing of associations involving spatial information. Recruitment of this region during memory tasks appears to depend both on processing type (associative/nonassociative) and to-be-remembered material (spatial/nonspatial). Copyright © 2010 Wiley-Liss, Inc.
Working Memory Integration Processes in Benign Childhood Epilepsy with Centrotemporal Spikes.
Kárpáti, Judit; Donauer, Nándor; Somogyi, Eszter; Kónya, Anikó
2015-12-01
Benign epilepsy of childhood with centrotemporal spikes (BECTS) is the most frequent focal epilepsy in children; however, the pattern of affected memory processes remains controversial. Previous studies in BECTS imply deficits in complex working memory tasks, but not in simple modality-specific tasks. We studied working memory processes in children with BECTS by comparing performance in memory binding tasks of different complexities. We compared 17 children with BECTS (aged 6 to 13 years) to 17 healthy children matched for age, sex, and intelligence quotient. We measured spatial and verbal memory components separately and jointly on three single-binding tasks (binding of what and where; what and when; and where and when) and a combined-binding task (integration of what, where, and when). We also evaluated basic visuospatial memory functions with subtests of the Children's Memory Scale, and intellectual abilities with verbal tasks of the Wechsler Intelligence Scale for Children-Fourth Edition and the Raven Progressive Matrices. We found no difference between the BECTS and control groups in single-binding tasks; however, the children with BECTS performed significantly worse on the combined task, which included integration of spatial, verbal, and temporal information. We found no deficits in their intellectual abilities or basic visuospatial memory functions. Children with BECTS may have intact simple maintenance processes of working memory, but difficulty with high-level functions requiring attentional and executive resources. Our findings imply no specific memory dysfunction in BECTS, but suggest difficulties in integrating information within working memory, and possible frontal lobe disturbances.
Mentalizing and motivation neural function during social interactions in autism spectrum disorders☆
Assaf, Michal; Hyatt, Christopher J.; Wong, Christina G.; Johnson, Matthew R.; Schultz, Robert T.; Hendler, Talma; Pearlson, Godfrey D.
2013-01-01
Autism Spectrum Disorders (ASDs) are characterized by core deficits in social functions. Two theories have been suggested to explain these deficits: mind-blindness theory posits impaired mentalizing processes (i.e. decreased ability for establishing a representation of others' state of mind), while social motivation theory proposes that diminished reward value for social information leads to reduced social attention, social interactions, and social learning. Mentalizing and motivation are integral to typical social interactions, and neuroimaging evidence points to independent brain networks that support these processes in healthy individuals. However, the simultaneous function of these networks has not been explored in individuals with ASDs. We used a social, interactive fMRI task, the Domino game, to explore mentalizing- and motivation-related brain activation during a well-defined interval where participants respond to rewards or punishments (i.e. motivation) and concurrently process information about their opponent's potential next actions (i.e. mentalizing). Thirteen individuals with high-functioning ASDs, ages 12–24, and 14 healthy controls played fMRI Domino games against a computer-opponent and separately, what they were led to believe was a human-opponent. Results showed that while individuals with ASDs understood the game rules and played similarly to controls, they showed diminished neural activity during the human-opponent runs only (i.e. in a social context) in bilateral middle temporal gyrus (MTG) during mentalizing and right Nucleus Accumbens (NAcc) during reward-related motivation (Pcluster < 0.05 FWE). Importantly, deficits were not observed in these areas when playing against a computer-opponent or in areas related to motor and visual processes. These results demonstrate that while MTG and NAcc, which are critical structures in the mentalizing and motivation networks, respectively, activate normally in a non-social context, they fail to respond in an otherwise identical social context in ASD compared to controls. We discuss implications to both the mind-blindness and social motivation theories of ASD and the importance of social context in research and treatment protocols. PMID:24273716
Lobier, Muriel A.; Peyrin, Carole; Pichat, Cédric; Le Bas, Jean-François; Valdois, Sylviane
2014-01-01
The visual attention (VA) span deficit hypothesis of developmental dyslexia posits that impaired multiple element processing can be responsible for poor reading outcomes. In VA span impaired dyslexic children, poor performance on letter report tasks is associated with reduced parietal activations for multiple letter processing. While this hints towards a non-specific, attention-based dysfunction, it is still unclear whether reduced parietal activity generalizes to other types of stimuli. Furthermore, putative links between reduced parietal activity and reduced ventral occipito-temporal (vOT) in dyslexia have yet to be explored. Using functional magnetic resonance imaging, we measured brain activity in 12 VA span impaired dyslexic adults and 12 adult skilled readers while they carried out a categorization task on single or multiple alphanumeric or non-alphanumeric characters. While healthy readers activated parietal areas more strongly for multiple than single element processing (right-sided for alphanumeric and bilateral for non-alphanumeric), similar stronger multiple element right parietal activations were absent for dyslexic participants. Contrasts between skilled and dyslexic readers revealed significantly reduced right superior parietal lobule (SPL) activity for dyslexic readers regardless of stimuli type. Using a priori anatomically defined regions of interest, we showed that neural activity was reduced for dyslexic participants in both SPL and vOT bilaterally. Finally, we used multiple regressions to test whether SPL activity was related to vOT activity in each group. In the left hemisphere, SPL activity covaried with vOT activity for both normal and dyslexic readers. In contrast, in the right hemisphere, SPL activity covaried with vOT activity only for dyslexic readers. These results bring critical support to the VA interpretation of the VA Span deficit. In addition, they offer a new insight on how deficits in automatic vOT based word recognition could arise in developmental dyslexia. PMID:25071509
Yang, Li-Zhuang; Zhang, Wei; Shi, Bin; Yang, Zhiyu; Wei, Zhengde; Gu, Feng; Zhang, Jing; Cui, Guanbao; Liu, Ying; Zhou, Yifeng; Zhang, Xiaochu; Rao, Hengyi
2014-01-01
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique that can modulate cortical excitability. Although the clinical value of tDCS has been advocated, the potential of tDCS in cognitive rehabilitation of face processing deficits is less understood. Face processing has been associated with the occipito-temporal cortex (OT). The present study investigated whether face processing in healthy adults can be modulated by applying tDCS over the OT. Experiment 1 investigated whether tDCS can affect N170, a face-sensitive ERP component, with a face orientation judgment task. The N170 in the right hemisphere was reduced in active stimulation conditions compared with the sham stimulation condition for both upright faces and inverted faces. Experiment 2 further demonstrated that tDCS can modulate the composite face effect, a type of holistic processing that reflects the obligatory attention to all parts of a face. The composite face effect was reduced in active stimulation conditions compared with the sham stimulation condition. Additionally, the current polarity did not modulate the effect of tDCS in the two experiments. The present study demonstrates that N170 can be causally manipulated by stimulating the OT with weak currents. Furthermore, our study provides evidence that obligatory attention to all parts of a face can be affected by the commonly used tDCS parameter setting. PMID:25531112
NASA Astrophysics Data System (ADS)
Roberts, Michael J.; Braun, Noah O.; Sinclair, Thomas R.; Lobell, David B.; Schlenker, Wolfram
2017-09-01
We compare predictions of a simple process-based crop model (Soltani and Sinclair 2012), a simple statistical model (Schlenker and Roberts 2009), and a combination of both models to actual maize yields on a large, representative sample of farmer-managed fields in the Corn Belt region of the United States. After statistical post-model calibration, the process model (Simple Simulation Model, or SSM) predicts actual outcomes slightly better than the statistical model, but the combined model performs significantly better than either model. The SSM, statistical model and combined model all show similar relationships with precipitation, while the SSM better accounts for temporal patterns of precipitation, vapor pressure deficit and solar radiation. The statistical and combined models show a more negative impact associated with extreme heat for which the process model does not account. Due to the extreme heat effect, predicted impacts under uniform climate change scenarios are considerably more severe for the statistical and combined models than for the process-based model.
Bosch, Oliver G.; Wagner, Michael; Jessen, Frank; Kühn, Kai-Uwe; Joe, Alexius; Seifritz, Erich; Maier, Wolfgang; Biersack, Hans-Jürgen; Quednow, Boris B.
2013-01-01
Introduction 3,4-Methylenedioxymethamphetamine (MDMA, “ecstasy”) is a recreational club drug with supposed neurotoxic effects selectively on the serotonin system. MDMA users consistently exhibit memory dysfunction but there is an ongoing debate if these deficits are induced mainly by alterations in the prefrontal or mediotemporal cortex, especially the hippocampus. Thus, we investigated the relation of verbal memory deficits with alterations of regional cerebral brain glucose metabolism (rMRGlu) in recreational MDMA users. Methods Brain glucose metabolism in rest was assessed using 2-deoxy-2-(18F)fluoro-D-glucose positron emission tomography (18FDG PET) in 19 male recreational users of MDMA and 19 male drug-naïve controls. 18FDG PET data were correlated with memory performance assessed with a German version of the Rey Auditory Verbal Learning Test. Results As previously shown, MDMA users showed significant impairment in verbal declarative memory performance. PET scans revealed significantly decreased rMRGlu in the bilateral dorsolateral prefrontal and inferior parietal cortex, bilateral thalamus, right hippocampus, right precuneus, right cerebellum, and pons (at the level of raphe nuclei) of MDMA users. Among MDMA users, learning and recall were positively correlated with rMRGlu predominantly in bilateral frontal and parietal brain regions, while recognition was additionally related to rMRGlu in the right mediotemporal and bihemispheric lateral temporal cortex. Moreover, cumulative lifetime dose of MDMA was negatively correlated with rMRGlu in the left dorsolateral and bilateral orbital and medial PFC, left inferior parietal and right lateral temporal cortex. Conclusions Verbal learning and recall deficits of recreational MDMA users are correlated with glucose hypometabolism in prefrontal and parietal cortex, while word recognition was additionally correlated with mediotemporal hypometabolism. We conclude that memory deficits of MDMA users arise from combined fronto-parieto-mediotemporal dysfunction. PMID:23585882
Regional neuronal network failure and cognition in late-onset sporadic Alzheimer disease.
Carter, S F; Embleton, K V; Anton-Rodriguez, J M; Burns, A; Ralph, M A L; Herholz, K
2014-06-01
The severe cognitive deficits in Alzheimer disease are associated with structural lesions in gray and white matter in addition to changes in synaptic function. The current investigation studied the breakdown of the structure and function in regional networks involving the Papez circuit and extended neocortical association areas. Cortical volumetric and diffusion tensor imaging (3T MR imaging), positron-emission tomography with (18)F fluorodeoxyglucose on a high-resolution research tomograph, and comprehensive neuropsychological assessments were performed in patients with late-onset sporadic Alzheimer disease, those with mild cognitive impairment, and elderly healthy controls. Atrophy of the medial temporal lobes was the strongest and most consistent abnormality in patients with mild cognitive impairment and Alzheimer disease. Atrophy in the temporal, frontal, and parietal regions was most strongly related to episodic memory deficits, while deficits in semantic cognition were also strongly related to reductions of glucose metabolism in the posterior cingulate cortex and temporoparietal regions. Changes in fractional anisotropy within white matter tracts, particularly in the left cingulum bundle, uncinate fasciculus, superior longitudinal fasciculus, and inferior fronto-occipital fasciculus, were significantly associated with the cognitive deficits in multiple regression analyses. Posterior cingulate and orbitofrontal metabolic deficits appeared to be related to microstructural changes in projecting white matter tracts. Many lesioned network components within the Papez circuit and extended neocortical association areas were significantly associated with cognitive dysfunction in both mild cognitive impairment and late-onset sporadic Alzheimer disease. Hippocampal atrophy was the most prominent lesion, with associated impairment of the uncinate and cingulum white matter microstructures and hippocampal and posterior cingulate metabolic impairment. © 2014 by American Journal of Neuroradiology.
Acute auditory agnosia as the presenting hearing disorder in MELAS.
Miceli, Gabriele; Conti, Guido; Cianfoni, Alessandro; Di Giacopo, Raffaella; Zampetti, Patrizia; Servidei, Serenella
2008-12-01
MELAS is commonly associated with peripheral hearing loss. Auditory agnosia is a rare cortical auditory impairment, usually due to bilateral temporal damage. We document, for the first time, auditory agnosia as the presenting hearing disorder in MELAS. A young woman with MELAS (A3243G mtDNA mutation) suffered from acute cortical hearing damage following a single stroke-like episode, in the absence of previous hearing deficits. Audiometric testing showed marked central hearing impairment and very mild sensorineural hearing loss. MRI documented bilateral, acute lesions to superior temporal regions. Neuropsychological tests demonstrated auditory agnosia without aphasia. Our data and a review of published reports show that cortical auditory disorders are relatively frequent in MELAS, probably due to the strikingly high incidence of bilateral and symmetric damage following stroke-like episodes. Acute auditory agnosia can be the presenting hearing deficit in MELAS and, conversely, MELAS should be suspected in young adults with sudden hearing loss.
Neural Substrates of Auditory Emotion Recognition Deficits in Schizophrenia.
Kantrowitz, Joshua T; Hoptman, Matthew J; Leitman, David I; Moreno-Ortega, Marta; Lehrfeld, Jonathan M; Dias, Elisa; Sehatpour, Pejman; Laukka, Petri; Silipo, Gail; Javitt, Daniel C
2015-11-04
Deficits in auditory emotion recognition (AER) are a core feature of schizophrenia and a key component of social cognitive impairment. AER deficits are tied behaviorally to impaired ability to interpret tonal ("prosodic") features of speech that normally convey emotion, such as modulations in base pitch (F0M) and pitch variability (F0SD). These modulations can be recreated using synthetic frequency modulated (FM) tones that mimic the prosodic contours of specific emotional stimuli. The present study investigates neural mechanisms underlying impaired AER using a combined event-related potential/resting-state functional connectivity (rsfMRI) approach in 84 schizophrenia/schizoaffective disorder patients and 66 healthy comparison subjects. Mismatch negativity (MMN) to FM tones was assessed in 43 patients/36 controls. rsfMRI between auditory cortex and medial temporal (insula) regions was assessed in 55 patients/51 controls. The relationship between AER, MMN to FM tones, and rsfMRI was assessed in the subset who performed all assessments (14 patients, 21 controls). As predicted, patients showed robust reductions in MMN across FM stimulus type (p = 0.005), particularly to modulations in F0M, along with impairments in AER and FM tone discrimination. MMN source analysis indicated dipoles in both auditory cortex and anterior insula, whereas rsfMRI analyses showed reduced auditory-insula connectivity. MMN to FM tones and functional connectivity together accounted for ∼50% of the variance in AER performance across individuals. These findings demonstrate that impaired preattentive processing of tonal information and reduced auditory-insula connectivity are critical determinants of social cognitive dysfunction in schizophrenia, and thus represent key targets for future research and clinical intervention. Schizophrenia patients show deficits in the ability to infer emotion based upon tone of voice [auditory emotion recognition (AER)] that drive impairments in social cognition and global functional outcome. This study evaluated neural substrates of impaired AER in schizophrenia using a combined event-related potential/resting-state fMRI approach. Patients showed impaired mismatch negativity response to emotionally relevant frequency modulated tones along with impaired functional connectivity between auditory and medial temporal (anterior insula) cortex. These deficits contributed in parallel to impaired AER and accounted for ∼50% of variance in AER performance. Overall, these findings demonstrate the importance of both auditory-level dysfunction and impaired auditory/insula connectivity in the pathophysiology of social cognitive dysfunction in schizophrenia. Copyright © 2015 the authors 0270-6474/15/3514910-13$15.00/0.
Separate elements of episodic memory subserved by distinct hippocampal-prefrontal connections.
Barker, Gareth R I; Banks, Paul J; Scott, Hannah; Ralph, G Scott; Mitrophanous, Kyriacos A; Wong, Liang-Fong; Bashir, Zafar I; Uney, James B; Warburton, E Clea
2017-02-01
Episodic memory formation depends on information about a stimulus being integrated within a precise spatial and temporal context, a process dependent on the hippocampus and prefrontal cortex. Investigations of putative functional interactions between these regions are complicated by multiple direct and indirect hippocampal-prefrontal connections. Here application of a pharmacogenetic deactivation technique enabled us to investigate the mnemonic contributions of two direct hippocampal-medial prefrontal cortex (mPFC) pathways, one arising in the dorsal CA1 (dCA1) and the other in the intermediate CA1 (iCA1). While deactivation of either pathway impaired episodic memory, the resulting pattern of mnemonic deficits was different: deactivation of the dCA1→mPFC pathway selectively disrupted temporal order judgments while iCA1→mPFC pathway deactivation disrupted spatial memory. These findings reveal a previously unsuspected division of function among CA1 neurons that project directly to the mPFC. Such subnetworks may enable the distinctiveness of contextual information to be maintained in an episodic memory circuit.
Harciarek, Michał; Williamson, John B; Biedunkiewicz, Bogdan; Lichodziejewska-Niemierko, Monika; Dębska-Ślizień, Alicja; Rutkowski, Bolesław
2012-01-01
Although dialyzed patients often have cognitive problems, little is known about the nature of these deficits. We hypothesized that, in contrast to semantic fluency relying mainly on temporal lobes, phonemic fluency, preferentially depending on functions of frontal-subcortical systems, would be particularly sensitive to the constellation of physiological pathological processes associated with end-stage renal disease and dialysis. Therefore, we longitudinally compared phonemic and semantic fluency performance between 49 dialyzed patients and 30 controls. Overall, patients performed below controls only on the phonemic fluency task. Furthermore, their performance on this task declined over time, whereas there was no change in semantic fluency. Moreover, this decline was related to the presence of hypertension and higher blood urea nitrogen. We suggest that these findings may be due to a combination of vascular and topic effects that impact more on fronto-subcortical than temporal lobe networks, but this speculation requires direct confirmation.
Automatic affective processing impairments in patients with deficit syndrome schizophrenia.
Strauss, Gregory P; Allen, Daniel N; Duke, Lisa A; Ross, Sylvia A; Schwartz, Jason
2008-07-01
Affective impairments were examined in patients with and without deficit syndrome schizophrenia. Two Emotional Stroop tasks designed to measure automatic processing of emotional information were administered to deficit (n=15) and non-deficit syndrome (n=26) schizophrenia patients classified according to the Schedule for the Deficit Syndrome, and matched non-patient control subjects (n=22). In comparison to non-deficit patients and controls, deficit syndrome patients demonstrated a lack of attention bias for positive information, and an elevated attentional lingering effect for negative information. These findings suggest that positive information fails to automatically capture attention of deficit syndrome patients, and that when negative information captures attention, it produces difficulty in disengagement Attentional abnormalities were significantly correlated with negative symptoms, such that more severe symptoms were associated with less attention bias for positive emotion and a greater lingering effect for negative information. Results are generally consistent with a mood-congruent processing abnormality and suggest that impaired automatic processing may be core to diminished emotional experience symptoms exhibited in deficit syndrome patients.
Global motion perception deficits in autism are reflected as early as primary visual cortex
Thomas, Cibu; Kravitz, Dwight J.; Wallace, Gregory L.; Baron-Cohen, Simon; Martin, Alex; Baker, Chris I.
2014-01-01
Individuals with autism are often characterized as ‘seeing the trees, but not the forest’—attuned to individual details in the visual world at the expense of the global percept they compose. Here, we tested the extent to which global processing deficits in autism reflect impairments in (i) primary visual processing; or (ii) decision-formation, using an archetypal example of global perception, coherent motion perception. In an event-related functional MRI experiment, 43 intelligence quotient and age-matched male participants (21 with autism, age range 15–27 years) performed a series of coherent motion perception judgements in which the amount of local motion signals available to be integrated into a global percept was varied by controlling stimulus viewing duration (0.2 or 0.6 s) and the proportion of dots moving in the correct direction (coherence: 4%, 15%, 30%, 50%, or 75%). Both typical participants and those with autism evidenced the same basic pattern of accuracy in judging the direction of motion, with performance decreasing with reduced coherence and shorter viewing durations. Critically, these effects were exaggerated in autism: despite equal performance at the long duration, performance was more strongly reduced by shortening viewing duration in autism (P < 0.015) and decreasing stimulus coherence (P < 0.008). To assess the neural correlates of these effects we focused on the responses of primary visual cortex and the middle temporal area, critical in the early visual processing of motion signals, as well as a region in the intraparietal sulcus thought to be involved in perceptual decision-making. The behavioural results were mirrored in both primary visual cortex and the middle temporal area, with a greater reduction in response at short, compared with long, viewing durations in autism compared with controls (both P < 0.018). In contrast, there was no difference between the groups in the intraparietal sulcus (P > 0.574). These findings suggest that reduced global motion perception in autism is driven by an atypical response early in visual processing and may reflect a fundamental perturbation in neural circuitry. PMID:25060095
Johnson, Ray; Nessler, Doreen; Friedman, David
2013-06-01
Nessler, Johnson, Bersick, and Friedman (D. Nessler, R. Johnson, Jr., M. Bersick, & D. Friedman, 2006, On why the elderly have normal semantic retrieval but deficient episodic encoding: A study of left inferior frontal ERP activity, NeuroImage, Vol. 30, pp. 299-312) found that, compared with young adults, older adults show decreased event-related brain potential (ERP) activity over posterior left inferior prefrontal cortex (pLIPFC) in a 400- to 1,400-ms interval during episodic encoding. This altered brain activity was associated with significantly decreased recognition performance and reduced recollection-related brain activity at retrieval (D. Nessler, D. Friedman, R. Johnson, Jr., & M. Bersick, 2007, Does repetition engender the same retrieval processes in young and older adults? NeuroReport, Vol. 18, pp. 1837-1840). To test the hypothesis that older adults' well-documented episodic retrieval deficit is related to reduced pLIPFC activity at encoding, we used a novel divided attention task in healthy young adults that was specifically timed to disrupt encoding in either the 1st or 2nd half of a 300- to 1,400-ms interval. The results showed that diverting resources for 550 ms during either half of this interval reproduced the 4 characteristic aspects of the older participants' retrieval performance: normal semantic retrieval during encoding, reduced subsequent episodic recognition and recall, reduced recollection-related ERP activity, and the presence of "compensatory" brain activity. We conclude that part of older adults' episodic memory deficit is attributable to altered pLIPFC activity during encoding due to reduced levels of available processing resources. Moreover, the findings also provide insights into the nature and timing of the putative "compensatory" processes posited to be used by older adults in an attempt to compensate for age-related decline in cognitive function. These results support the scaffolding account of compensation, in which the recruitment of additional cognitive processes is an adaptive response across the life span. PsycINFO Database Record (c) 2013 APA, all rights reserved.
Sanabria, Federico; Killeen, Peter R
2008-01-01
Background The inability to inhibit reinforced responses is a defining feature of ADHD associated with impulsivity. The Spontaneously Hypertensive Rat (SHR) has been extolled as an animal model of ADHD, but there is no clear experimental evidence of inhibition deficits in SHR. Attempts to demonstrate these deficits may have suffered from methodological and analytical limitations. Methods We provide a rationale for using two complementary response-withholding tasks to doubly dissociate impulsivity from motivational and motor processes. In the lever-holding task (LHT), continual lever depression was required for a minimum interval. Under a differential reinforcement of low rates schedule (DRL), a minimum interval was required between lever presses. Both tasks were studied using SHR and two normotensive control strains, Wistar-Kyoto (WKY) and Long Evans (LE), over an overlapping range of intervals (1 – 5 s for LHT and 5 – 60 s for DRL). Lever-holding and DRL performance was characterized as the output of a mixture of two processes, timing and iterative random responding; we call this account of response inhibition the Temporal Regulation (TR) model. In the context of TR, impulsivity was defined as a bias toward premature termination of the timed intervals. Results The TR model provided an accurate description of LHT and DRL performance. On the basis of TR parameter estimates, SHRs were more impulsive than LE rats across tasks and target times. WKY rats produced substantially shorter timed responses in the lever-holding task than in DRL, suggesting a motivational or motor deficit. The precision of timing by SHR, as measured by the variance of their timed intervals, was excellent, flouting expectations from ADHD research. Conclusion This research validates the TR model of response inhibition and supports SHR as an animal model of ADHD-related impulsivity. It indicates, however, that SHR's impulse-control deficit is not caused by imprecise timing. The use of ad hoc impulsivity metrics and of WKY as control strain for SHR impulsivity are called into question. PMID:18261220
Cognitive deficits caused by prefrontal cortical and hippocampal neural disinhibition.
Bast, Tobias; Pezze, Marie; McGarrity, Stephanie
2017-10-01
We review recent evidence concerning the significance of inhibitory GABA transmission and of neural disinhibition, that is, deficient GABA transmission, within the prefrontal cortex and the hippocampus, for clinically relevant cognitive functions. Both regions support important cognitive functions, including attention and memory, and their dysfunction has been implicated in cognitive deficits characterizing neuropsychiatric disorders. GABAergic inhibition shapes cortico-hippocampal neural activity, and, recently, prefrontal and hippocampal neural disinhibition has emerged as a pathophysiological feature of major neuropsychiatric disorders, especially schizophrenia and age-related cognitive decline. Regional neural disinhibition, disrupting spatio-temporal control of neural activity and causing aberrant drive of projections, may disrupt processing within the disinhibited region and efferent regions. Recent studies in rats showed that prefrontal and hippocampal neural disinhibition (by local GABA antagonist microinfusion) dysregulates burst firing, which has been associated with important aspects of neural information processing. Using translational tests of clinically relevant cognitive functions, these studies showed that prefrontal and hippocampal neural disinhibition disrupts regional cognitive functions (including prefrontal attention and hippocampal memory function). Moreover, hippocampal neural disinhibition disrupted attentional performance, which does not require the hippocampus but requires prefrontal-striatal circuits modulated by the hippocampus. However, some prefrontal and hippocampal functions (including inhibitory response control) are spared by regional disinhibition. We consider conceptual implications of these findings, regarding the distinct relationships of distinct cognitive functions to prefrontal and hippocampal GABA tone and neural activity. Moreover, the findings support the proposition that prefrontal and hippocampal neural disinhibition contributes to clinically relevant cognitive deficits, and we consider pharmacological strategies for ameliorating cognitive deficits by rebalancing disinhibition-induced aberrant neural activity. Linked Articles This article is part of a themed section on Pharmacology of Cognition: a Panacea for Neuropsychiatric Disease? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.19/issuetoc. © 2017 The British Pharmacological Society.
Lawton, Teri
2016-01-01
There is an ongoing debate about whether the cause of dyslexia is based on linguistic, auditory, or visual timing deficits. To investigate this issue three interventions were compared in 58 dyslexics in second grade (7 years on average), two targeting the temporal dynamics (timing) of either the auditory or visual pathways with a third reading intervention (control group) targeting linguistic word building. Visual pathway training in dyslexics to improve direction-discrimination of moving test patterns relative to a stationary background (figure/ground discrimination) significantly improved attention, reading fluency, both speed and comprehension, phonological processing, and both auditory and visual working memory relative to controls, whereas auditory training to improve phonological processing did not improve these academic skills significantly more than found for controls. This study supports the hypothesis that faulty timing in synchronizing the activity of magnocellular with parvocellular visual pathways is a fundamental cause of dyslexia, and argues against the assumption that reading deficiencies in dyslexia are caused by phonological deficits. This study demonstrates that visual movement direction-discrimination can be used to not only detect dyslexia early, but also for its successful treatment, so that reading problems do not prevent children from readily learning. PMID:27551263
Hoxha, Eriola; Lippiello, Pellegrino; Scelfo, Bibiana; Tempia, Filippo; Ghirardi, Mirella; Miniaci, Maria Concetta
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization.
Unraveling the Mysteries of Turbulence Transport in a Wind Farm
Jha, Pankaj K.; Duque, Earl P. N.; Bashioum, Jessica L.; ...
2015-06-26
A true physical understanding of the mysteries involved in the recovery process of the wake momentum deficit, downstream of utility-scale wind turbines in the atmosphere, has not been obtained to date. Field data are not acquired at sufficient spatial and temporal resolutions to dissect some of the mysteries of wake turbulence. It is here that the actuator line method has evolved to become the technology standard in the wind energy community. This work presents the actuator line method embedded into an Open source Field Operation and Manipulation (OpenFOAM) large-eddy simulation solver and applies it to two small wind farms, themore » first one consisting of an array of two National Renewable Energy Laboratory 5 Megawatt (NREL 5-MW) turbines separated by seven rotor diameters in neutral and unstable atmospheric boundary-layer flow and the second one consisting of five NREL 5-MW wind turbines in unstable atmospheric conditions arranged in two staggered arrays of two and three turbines, respectively. Detailed statistics involving power spectral density (PSD) of turbine power along with standard deviations reveal the effects of atmospheric turbulence and its space and time scales. In conclusion, high-resolution surface data extracts provide new insight into the complex recovery process of the wake momentum deficit governed by turbulence transport phenomena.« less
Unraveling the Mysteries of Turbulence Transport in a Wind Farm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jha, Pankaj K.; Duque, Earl P. N.; Bashioum, Jessica L.
A true physical understanding of the mysteries involved in the recovery process of the wake momentum deficit, downstream of utility-scale wind turbines in the atmosphere, has not been obtained to date. Field data are not acquired at sufficient spatial and temporal resolutions to dissect some of the mysteries of wake turbulence. It is here that the actuator line method has evolved to become the technology standard in the wind energy community. This work presents the actuator line method embedded into an Open source Field Operation and Manipulation (OpenFOAM) large-eddy simulation solver and applies it to two small wind farms, themore » first one consisting of an array of two National Renewable Energy Laboratory 5 Megawatt (NREL 5-MW) turbines separated by seven rotor diameters in neutral and unstable atmospheric boundary-layer flow and the second one consisting of five NREL 5-MW wind turbines in unstable atmospheric conditions arranged in two staggered arrays of two and three turbines, respectively. Detailed statistics involving power spectral density (PSD) of turbine power along with standard deviations reveal the effects of atmospheric turbulence and its space and time scales. In conclusion, high-resolution surface data extracts provide new insight into the complex recovery process of the wake momentum deficit governed by turbulence transport phenomena.« less
Lippiello, Pellegrino; Scelfo, Bibiana
2017-01-01
The formation of the complex cerebellar cortical circuits follows different phases, with initial synaptogenesis and subsequent processes of refinement guided by a variety of mechanisms. The regularity of the cellular and synaptic organization of the cerebellar cortex allowed detailed studies of the structural plasticity mechanisms underlying the formation of new synapses and retraction of redundant ones. For the attainment of the monoinnervation of the Purkinje cell by a single climbing fiber, several signals are involved, including electrical activity, contact signals, homosynaptic and heterosynaptic interaction, calcium transients, postsynaptic receptors, and transduction pathways. An important role in this developmental program is played by serotonergic projections that, acting on temporally and spatially regulated postsynaptic receptors, induce and modulate the phases of synaptic formation and maturation. In the adult cerebellar cortex, many developmental mechanisms persist but play different roles, such as supporting synaptic plasticity during learning and formation of cerebellar memory traces. A dysfunction at any stage of this process can lead to disorders of cerebellar origin, which include autism spectrum disorders but are not limited to motor deficits. Recent evidence in animal models links impairment of Purkinje cell function with autism-like symptoms including sociability deficits, stereotyped movements, and interspecific communication by vocalization. PMID:28894610
Visual body recognition in a prosopagnosic patient.
Moro, V; Pernigo, S; Avesani, R; Bulgarelli, C; Urgesi, C; Candidi, M; Aglioti, S M
2012-01-01
Conspicuous deficits in face recognition characterize prosopagnosia. Information on whether agnosic deficits may extend to non-facial body parts is lacking. Here we report the neuropsychological description of FM, a patient affected by a complete deficit in face recognition in the presence of mild clinical signs of visual object agnosia. His deficit involves both overt and covert recognition of faces (i.e. recognition of familiar faces, but also categorization of faces for gender or age) as well as the visual mental imagery of faces. By means of a series of matching-to-sample tasks we investigated: (i) a possible association between prosopagnosia and disorders in visual body perception; (ii) the effect of the emotional content of stimuli on the visual discrimination of faces, bodies and objects; (iii) the existence of a dissociation between identity recognition and the emotional discrimination of faces and bodies. Our results document, for the first time, the co-occurrence of body agnosia, i.e. the visual inability to discriminate body forms and body actions, and prosopagnosia. Moreover, the results show better performance in the discrimination of emotional face and body expressions with respect to body identity and neutral actions. Since FM's lesions involve bilateral fusiform areas, it is unlikely that the amygdala-temporal projections explain the relative sparing of emotion discrimination performance. Indeed, the emotional content of the stimuli did not improve the discrimination of their identity. The results hint at the existence of two segregated brain networks involved in identity and emotional discrimination that are at least partially shared by face and body processing. Copyright © 2011 Elsevier Ltd. All rights reserved.
Estmacott, Robyn W; Moscovitch, Morris
2002-03-01
The consolidation theory of long-term memory (e.g., Squire, 1992) predicts that damage to the medial temporal lobes will result in temporally graded retrograde memory loss, with a disproportionate impairment of recent relative to remote knowledge; in contrast, severe atrophy of the temporal neocortex is predicted to result in the reverse temporally graded pattern, with a selective sparing of recent memory (K.S. Graham & Hodges, 1997). Previously, we reported evidence that autobiographical episodic memory does not follow this temporal pattern (Westmacott, Leach, Freedman, & Moscovitch, 2001). In the present study, we found evidence suggesting that semantic memory loss does follow the predicted temporal pattern. We used a set of tasks that tap implicit and explicit memory for famous names and English vocabulary terms from across the 20th century. KC, a person with medial temporal amnesia, consistently demonstrated across tasks a selective deficit for famous names and vocabulary terms from the 5-year period just prior to injury; this deficit was particularly profound for elaborated semantic knowledge (e.g., word definitions, occupation of famous person). However, when asked to guess on unfamiliar items, KC's performance for names and words from this 5-year time period increased substantially, suggesting that he retains some of this knowledge at an implicit or rudimentary level. Conversely, EL, a semantic dementia patient with temporal neocortical atrophy and relative sparing of the medial temporal lobe, demonstrated a selective sparing of names and words from the most recent time period. However, this selective sparing of recent semantic memory was demonstrated in the implicit tasks only; performance on explicit tasks suggested an equally severe impairment of semantics across all time periods. Unlike the data from our previous study of autobiographical episodic memory, these findings are consistent with the predictions both of consolidation theory (Hodges & Graham, 1998; Squire, 1992) and multiple trace theory (Nadel & Moscovitch, 1999) that the hippocampus plays a timelimited role in the acquisition and representation of long-term semantic memories. Moreover, our findings suggest that tasks requiring minimal verbal production and explicit recall may provide a more sensitive and comprehensive assessment of intact memory capacity in brain-damaged individuals.
Qiao, Zhengxue; Yang, Aiying; Qiu, Xiaohui; Yang, Xiuxian; Zhang, Congpei; Zhu, Xiongzhao; He, Jincai; Wang, Lin; Bai, Bing; Sun, Hailian; Zhao, Lun; Yang, Yanjie
2015-10-30
Gender differences in rates of major depressive disorder (MDD) are well established, but gender differences in cognitive function have been little studied. Auditory mismatch negativity (MMN) was used to investigate gender differences in pre-attentive information processing in first episode MDD. In the deviant-standard reverse oddball paradigm, duration auditory MMN was obtained in 30 patients (15 males) and 30 age-/education-matched controls. Over frontal-central areas, mean amplitude of increment MMN (to a 150-ms deviant tone) was smaller in female than male patients; there was no sex difference in decrement MMN (to a 50-ms deviant tone). Neither increment nor decrement MMN differed between female and male patients over temporal areas. Frontal-central MMN and temporal MMN did not differ between male and female controls in any condition. Over frontal-central areas, mean amplitude of increment MMN was smaller in female patients than female controls; there was no difference in decrement MMN. Neither increment nor decrement MMN differed between female patients and female controls over temporal areas. Frontal-central MMN and temporal MMN did not differ between male patients and male controls. Mean amplitude of increment MMN in female patients did not correlate with symptoms, suggesting this sex-specific deficit is a trait- not a state-dependent phenomenon. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Early metabolic crisis-related brain atrophy and cognition in traumatic brain injury.
Wright, Matthew J; McArthur, David L; Alger, Jeffry R; Van Horn, Jack; Irimia, Andrei; Filippou, Maria; Glenn, Thomas C; Hovda, David A; Vespa, Paul
2013-09-01
Traumatic brain injury often results in acute metabolic crisis. We recently demonstrated that this is associated with chronic brain atrophy, which is most prominent in the frontal and temporal lobes. Interestingly, the neuropsychological profile of traumatic brain injury is often characterized as 'frontal-temporal' in nature, suggesting a possible link between acute metabolic crisis-related brain atrophy and neurocognitive impairment in this population. While focal lesions and diffuse axonal injury have a well-established role in the neuropsychological deficits observed following traumatic brain injury, no studies to date have examined the possible contribution of acute metabolic crisis-related atrophy in the neuropsychological sequelae of traumatic brain injury. In the current study we employed positron emission tomography, magnetic resonance imaging, and neuropsychological assessments to ascertain the relationship between acute metabolic crisis-related brain atrophy and neurocognitive outcome in a sample of 14 right-handed traumatic brain injury survivors. We found that acute metabolic crisis-related atrophy in the frontal and temporal lobes was associated with poorer attention, executive functioning, and psychomotor abilities at 12 months post-injury. Furthermore, participants with gross frontal and/or temporal lobe atrophy exhibited numerous clinically significant neuropsychological deficits in contrast to participants with other patterns of brain atrophy. Our findings suggest that interventions that reduce acute metabolic crisis may lead to improved functional outcomes for traumatic brain injury survivors.
Current Perspectives on the Cerebellum and Reading Development.
Alvarez, Travis A; Fiez, Julie A
2018-05-03
The dominant neural models of typical and atypical reading focus on the cerebral cortex. However, Nicolson et al. (2001) proposed a model, the cerebellar deficit hypothesis, in which the cerebellum plays an important role in reading. To evaluate the evidence in support of this model, we qualitatively review the current literature and employ meta-analytic tools examining patterns of functional connectivity between the cerebellum and the cerebral reading network. We find evidence for a phonological circuit with connectivity between the cerebellum and a dorsal fronto-parietal pathway, and a semantic circuit with cerebellar connectivity to a ventral fronto-temporal pathway. Furthermore, both cerebral pathways have functional connections with the mid-fusiform gyrus, a region implicated in orthographic processing. Consideration of these circuits within the context of the current literature suggests the cerebellum is positioned to influence both phonological and word-based decoding procedures for recognizing unfamiliar printed words. Overall, multiple lines of research provide support for the cerebellar deficit hypothesis, while also highlighting the need for further research to test mechanistic hypotheses. Copyright © 2018. Published by Elsevier Ltd.
Mirror me: Imitative responses in adults with autism.
Schunke, Odette; Schöttle, Daniel; Vettorazzi, Eik; Brandt, Valerie; Kahl, Ursula; Bäumer, Tobias; Ganos, Christos; David, Nicole; Peiker, Ina; Engel, Andreas K; Brass, Marcel; Münchau, Alexander
2016-02-01
Dysfunctions of the human mirror neuron system have been postulated to underlie some deficits in autism spectrum disorders including poor imitative performance and impaired social skills. Using three reaction time experiments addressing mirror neuron system functions under simple and complex conditions, we examined 20 adult autism spectrum disorder participants and 20 healthy controls matched for age, gender and education. Participants performed simple finger-lifting movements in response to (1) biological finger and non-biological dot movement stimuli, (2) acoustic stimuli and (3) combined visual-acoustic stimuli with different contextual (compatible/incompatible) and temporal (simultaneous/asynchronous) relation. Mixed model analyses revealed slower reaction times in autism spectrum disorder. Both groups responded faster to biological compared to non-biological stimuli (Experiment 1) implying intact processing advantage for biological stimuli in autism spectrum disorder. In Experiment 3, both groups had similar 'interference effects' when stimuli were presented simultaneously. However, autism spectrum disorder participants had abnormally slow responses particularly when incompatible stimuli were presented consecutively. Our results suggest imitative control deficits rather than global imitative system impairments. © The Author(s) 2015.
NASA Astrophysics Data System (ADS)
Karageorgiou, Elissaios; Lewis, Scott M.; Riley McCarten, J.; Leuthold, Arthur C.; Hemmy, Laura S.; McPherson, Susan E.; Rottunda, Susan J.; Rubins, David M.; Georgopoulos, Apostolos P.
2012-10-01
In previous work (Georgopoulos et al 2007 J. Neural Eng. 4 349-55) we reported on the use of magnetoencephalographic (MEG) synchronous neural interactions (SNI) as a functional biomarker in Alzheimer's dementia (AD) diagnosis. Here we report on the application of canonical correlation analysis to investigate the relations between SNI and cognitive neuropsychological (NP) domains in AD patients. First, we performed individual correlations between each SNI and each NP, which provided an initial link between SNI and specific cognitive tests. Next, we performed factor analysis on each set, followed by a canonical correlation analysis between the derived SNI and NP factors. This last analysis optimally associated the entire MEG signal with cognitive function. The results revealed that SNI as a whole were mostly associated with memory and language, and, slightly less, executive function, processing speed and visuospatial abilities, thus differentiating functions subserved by the frontoparietal and the temporal cortices. These findings provide a direct interpretation of the information carried by the SNI and set the basis for identifying specific neural disease phenotypes according to cognitive deficits.
Anatomy of Language Impairments in Primary Progressive Aphasia
Rogalski, Emily; Cobia, Derin; Harrison, Theresa M.; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M.-Marsel
2011-01-01
Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca’s area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions. PMID:21368046
Anatomy of language impairments in primary progressive aphasia.
Rogalski, Emily; Cobia, Derin; Harrison, Theresa M; Wieneke, Christina; Thompson, Cynthia K; Weintraub, Sandra; Mesulam, M-Marsel
2011-03-02
Primary progressive aphasia (PPA) is a clinical dementia syndrome characterized by progressive decline in language function but relative sparing of other cognitive domains. There are three recognized PPA variants: agrammatic, semantic, and logopenic. Although each PPA subtype is characterized by the nature of the principal deficit, individual patients frequently display subtle impairments in additional language domains. The present study investigated the distribution of atrophy related to performance in specific language domains (i.e., grammatical processing, semantic processing, fluency, and sentence repetition) across PPA variants to better understand the anatomical substrates of language. Results showed regionally specific relationships, primarily in the left hemisphere, between atrophy and impairments in language performance. Most notable was the neuroanatomical distinction between fluency and grammatical processing. Poor fluency was associated with regions dorsal to the traditional boundaries of Broca's area in the inferior frontal sulcus and the posterior middle frontal gyrus, whereas grammatical processing was associated with more widespread atrophy, including the inferior frontal gyrus and supramarginal gyrus. Repetition performance was correlated with atrophy in the posterior superior temporal gyrus. The correlation of atrophy with semantic processing impairment was localized to the anterior temporal poles. Atrophy patterns were more closely correlated with domain-specific performance than with subtype. These results show that PPA reflects a selective disruption of the language network as a whole, with no rigid boundaries between subtypes. Further, these atrophy patterns reveal anatomical correlates of language that could not have been surmised in patients with aphasia resulting from cerebrovascular lesions.
Brown, Patrick J.; Devanand, D.P.; Liu, Xinhua; Caccappolo, Elise
2013-01-01
CONTEXT The original mild cognitive impairment (MCI) criteria exclude substantial functional deficits, but recent reports suggest otherwise. Identifying the extent, severity, type, and correlates of functional deficits that occur in MCI and mild Alzheimer’s disease (AD) can aid in early detection of incipient dementia and identify potential mechanistic pathways to disrupted instrumental activities of daily living (IADLs). OBJECTIVES To examine the number, type, and severity of functional impairments and identify the clinical characteristics associated with functional impairment across individuals with amnestic MCI (aMCI) and those with mild AD. DESIGN The study uses baseline data from the Alzheimer’s Disease Neuroimaging Initiative. SETTING Data from the Alzheimer’s Disease Neuroimaging Initiative was collected at multiple research sites in the US and Canada. PATIENTS The samples included 229 controls, 394 aMCI, and 193 AD patients. MAIN OUTCOME MEASURE The 10-item Pfeffer Functional Activities Questionnaire (FAQ) assessed function. RESULTS Informant-reported FAQ deficits were common in patients with aMCI (72.3%) and AD (97.4%) but were rarely self-reported by controls (7.9%). The average severity per FAQ deficit did not differ between patients with aMCI and controls; both were less impaired than patients with AD (P < .001). Two FAQ items (remembering appointments, family occasions, holidays, and medications; assembling tax records, business affairs, or other papers) were specific (0.95) in differentiating controls from the combined aMCI and AD groups (only 34.0% of patients with aMCI and 3.6% of patients with AD had no difficulty with these 2 items). The severity of FAQ deficits in the combined aMCI and AD group was associated with worse Trailmaking Test A scores and smaller hippocampal volumes (P < .001). Within the aMCI group, functionally intact individuals had greater hippocampal volumes and better Auditory Verbal Learning Test 30-minute delay and Trailmaking Test A (P < .001) scores compared with those with moderate or severe FAQ deficits. Patients with a high number of deficits were more likely to express the APOE ε4 allele (63.8%) compared with patients with no (46.8%) or few (48.4%) functional deficits. CONCLUSIONS Mild IADL deficits are common in individuals with aMCI and should be considered in MCI criteria. Two IADLs, remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers, appear to be characteristic of clinically significant cognitive impairment. In patients with aMCI, impairment in memory and processing speed and greater medial temporal atrophy were associated with greater IADL deficits PMID:21646578
Functional impairment in elderly patients with mild cognitive impairment and mild Alzheimer disease.
Brown, Patrick J; Devanand, D P; Liu, Xinhua; Caccappolo, Elise
2011-06-01
The original mild cognitive impairment (MCI) criteria exclude substantial functional deficits, but recent reports suggest otherwise. Identifying the extent, severity, type, and correlates of functional deficits that occur in MCI and mild Alzheimer disease (AD) can aid in early detection of incipient dementia and can identify potential mechanistic pathways to disrupted instrumental activities of daily living (IADLs). To examine the number, type, and severity of functional impairments and to identify the clinical characteristics associated with functional impairment across patients with amnestic MCI (aMCI) and those with mild AD. Study using baseline data from the Alzheimer's Disease Neuroimaging Initiative. Multiple research sites in the United States and Canada. Patients Samples included 229 control individuals, 394 patients with aMCI, and 193 patients with AD. The 10-item Pfeffer Functional Activities Questionnaire (FAQ) assessed function. Informant-reported FAQ deficits were common in patients with aMCI (72.3%) and AD (97.4%) but were rarely self-reported by controls (7.9%). The average severity per FAQ deficit did not differ between patients with aMCI and controls; both were less impaired than patients with AD (P < .001). Two FAQ items (remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers) were specific (specificity estimate, 0.95) in differentiating the control group from the combined aMCI and AD groups (only 34.0% of patients with aMCI and 3.6% of patients with AD had no difficulty with these 2 items). The severity of FAQ deficits in the combined aMCI and AD group was associated with worse Trail Making Test, part A scores and smaller hippocampal volumes (P < .001 for both). Within the aMCI group, functionally intact individuals had greater hippocampal volumes and better Auditory Verbal Learning Test 30-minute delay and Trail Making Test, part A (P < .001 for each) scores compared with individuals with moderate or severe FAQ deficits. Patients with a high number of deficits were more likely to express the apolipoprotein ε4 allele (63.8%) compared with patients with no (46.8%) or few (48.4%) functional deficits. Mild IADL deficits are common in individuals with aMCI and should be incorporated into MCI criteria. Two IADLs--remembering appointments, family occasions, holidays, and medications and assembling tax records, business affairs, or other papers--appear to be characteristic of clinically significant cognitive impairment. In patients with aMCI, impairment in memory and processing speed and greater medial temporal atrophy were associated with greater IADL deficits.