Palva, J. Matias; Zhigalov, Alexander; Hirvonen, Jonni; Korhonen, Onerva; Linkenkaer-Hansen, Klaus; Palva, Satu
2013-01-01
Scale-free fluctuations are ubiquitous in behavioral performance and neuronal activity. In time scales from seconds to hundreds of seconds, psychophysical dynamics and the amplitude fluctuations of neuronal oscillations are governed by power-law-form long-range temporal correlations (LRTCs). In millisecond time scales, neuronal activity comprises cascade-like neuronal avalanches that exhibit power-law size and lifetime distributions. However, it remains unknown whether these neuronal scaling laws are correlated with those characterizing behavioral performance or whether neuronal LRTCs and avalanches are related. Here, we show that the neuronal scaling laws are strongly correlated both with each other and with behavioral scaling laws. We used source reconstructed magneto- and electroencephalographic recordings to characterize the dynamics of ongoing cortical activity. We found robust power-law scaling in neuronal LRTCs and avalanches in resting-state data and during the performance of audiovisual threshold stimulus detection tasks. The LRTC scaling exponents of the behavioral performance fluctuations were correlated with those of concurrent neuronal avalanches and LRTCs in anatomically identified brain systems. The behavioral exponents also were correlated with neuronal scaling laws derived from a resting-state condition and with a similar anatomical topography. Finally, despite the difference in time scales, the scaling exponents of neuronal LRTCs and avalanches were strongly correlated during both rest and task performance. Thus, long and short time-scale neuronal dynamics are related and functionally significant at the behavioral level. These data suggest that the temporal structures of human cognitive fluctuations and behavioral variability stem from the scaling laws of individual and intrinsic brain dynamics. PMID:23401536
Application of Dynamic Mode Decomposition: Temporal Evolution of Flow Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Conlin, William; Yu, Paulo; Durgesh, Vibhav
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be fatal or debilitating on rupture. Aneurysm hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. The flow in an aneurysm exhibits complex fluid dynamics behavior due to an inherent unsteady inflow condition and its interactions with large-scale flow structures present in the aneurysm. The objective of this study is to identify the large-scale structures in the aneurysm, study temporal behavior, and quantify their interaction with the inflow condition. For this purpose, detailed Particle Image Velocimetry (PIV) measurements were performed at the center plane of an idealized aneurysm model for a range of inflow conditions. Inflow conditions were precisely controlled using a ViVitro SuperPump system. Dynamic Modal Decomposition (DMD) of the velocity field was used to identify coherent structures and their temporal behavior. DMD was successful in capturing the large-scale flow structures and their temporal behavior. A low dimensional approximation to the flow field was obtained with the most relevant dynamic modes and was used to obtain temporal information about the coherent structures and their interaction with the inflow, formation, evolution, and growth.
Test and Evaluation of Architecture-Aware Compiler Environment
2011-11-01
biology, medicine, social sciences , and security applications. Challenges include extremely large graphs (the Facebook friend network has over...Operations with Temporal Binning ....................................................................... 32 4.12 Memory behavior and Energy per...five challenge problems empirically, exploring their scaling properties, computation and datatype needs, memory behavior , and temporal behavior
Temporal scaling of the growth dependent optical properties of microalgae
NASA Astrophysics Data System (ADS)
Zhao, J. M.; Ma, C. Y.; Liu, L. H.
2018-07-01
The optical properties of microalgae are basic parameters for analyzing light field distribution in photobioreactors (PBRs). With the growth of microalgae cell, their optical properties will vary with growth time due to accumulation of pigment and lipid, cell division and metabolism. In this work, we report a temporal scaling behavior of the growth dependent optical properties of microalgae cell suspensions with both experimental and theoretical evidence presented. A new concept, the temporal scaling function (TSF), defined as the ratio of absorption or scattering cross-sections at growth phase to that at stationary phase, is introduced to characterize the temporal scaling behavior. The temporal evolution and temporal scaling characteristics of the absorption and scattering cross-sections of three example microalgae species, Chlorella vulgaris, Chlorella pyrenoidosa, and Chlorella protothecoides, were experimentally studied at spectral range 380-850 nm. It is shown that the TSFs of the absorption and scattering cross-sections for different microalgae species are approximately constant at different wavelength, which confirms theoretical predictions very well. With the aid of the temporal scaling relation, the optical properties at any growth time can be calculated based on those measured at stationary phase, hence opens a new way to determine the time-dependent optical properties of microalgae. The findings of this work will help the understanding of time dependent optical properties of microalgae and facilitate their applications in light field analysis in PBRs design.
USDA-ARS?s Scientific Manuscript database
Nonlinear interactions and feedbacks across spatial and temporal scales are common features of biological and physical systems. These emergent behaviors often result in surprises that challenge the ability of scientists to understand and predict system behavior at one scale based on information at f...
NASA Astrophysics Data System (ADS)
Condon, Laura E.; Maxwell, Reed M.
2014-03-01
Regional scale water management analysis increasingly relies on integrated modeling tools. Much recent work has focused on groundwater-surface water interactions and feedbacks. However, to our knowledge, no study has explicitly considered impacts of management operations on the temporal dynamics of the natural system. Here, we simulate twenty years of hourly moisture dependent, groundwater-fed irrigation using a three-dimensional, fully integrated, hydrologic model (ParFlow-CLM). Results highlight interconnections between irrigation demand, groundwater oscillation frequency and latent heat flux variability not previously demonstrated. Additionally, the three-dimensional model used allows for novel consideration of spatial patterns in temporal dynamics. Latent heat flux and water table depth both display spatial organization in temporal scaling, an important finding given the spatial homogeneity and weak scaling observed in atmospheric forcings. Pumping and irrigation amplify high frequency (sub-annual) variability while attenuating low frequency (inter-annual) variability. Irrigation also intensifies scaling within irrigated areas, essentially increasing temporal memory in both the surface and the subsurface. These findings demonstrate management impacts that extend beyond traditional water balance considerations to the fundamental behavior of the system itself. This is an important step to better understanding groundwater’s role as a buffer for natural variability and the impact that water management has on this capacity.
A new framework to increase the efficiency of large-scale solar power plants.
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Kleissl, Jan P.
2015-11-01
A new framework to estimate the spatio-temporal behavior of solar power is introduced, which predicts the statistical behavior of power output at utility scale Photo-Voltaic (PV) power plants. The framework is based on spatio-temporal Gaussian Processes Regression (Kriging) models, which incorporates satellite data with the UCSD version of the Weather and Research Forecasting model. This framework is designed to improve the efficiency of the large-scale solar power plants. The results are also validated from measurements of the local pyranometer sensors, and some improvements in different scenarios are observed. Solar energy.
Arkhincheev, V E
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways-by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
NASA Astrophysics Data System (ADS)
Arkhincheev, V. E.
2017-03-01
The new asymptotic behavior of the survival probability of particles in a medium with absorbing traps in an electric field has been established in two ways—by using the scaling approach and by the direct solution of the diffusion equation in the field. It has shown that at long times, this drift mechanism leads to a new temporal behavior of the survival probability of particles in a medium with absorbing traps.
Villafranca, Alexander; Hamlin, Colin; Rodebaugh, Thomas L; Robinson, Sandra; Jacobsohn, Eric
2017-09-10
Disruptive intraoperative behavior has detrimental effects to clinicians, institutions, and patients. How clinicians respond to this behavior can either exacerbate or attenuate its effects. Previous investigations of disruptive behavior have used survey scales with significant limitations. The study objective was to develop appropriate scales to measure exposure and responses to disruptive behavior. We obtained ethics approval. The scales were developed in a sequence of steps. They were pretested using expert reviews, computational linguistic analysis, and cognitive interviews. The scales were then piloted on Canadian operating room clinicians. Factor analysis was applied to half of the data set for question reduction and grouping. Item response analysis and theoretical reviews ensured that important questions were not eliminated. Internal consistency was evaluated using Cronbach α. Model fit was examined on the second half of the data set using confirmatory factor analysis. Content validity of the final scales was re-evaluated. Consistency between observed relationships and theoretical predictions was assessed. Temporal stability was evaluated on a subsample of 38 respondents. A total of 1433 and 746 clinicians completed the exposure and response scales, respectively. Content validity indices were excellent (exposure = 0.96, responses = 1.0). Internal consistency was good (exposure = 0.93, responses = 0.87). Correlations between the exposure scale and secondary measures were consistent with expectations based on theory. Temporal stability was acceptable (exposure = 0.77, responses = 0.73). We have developed scales measuring exposure and responses to disruptive behavior. They generate valid and reliable scores when surveying operating room clinicians, and they overcome the limitations of previous tools. These survey scales are freely available.
Interannual consistency in fractal snow depth patterns at two Colorado mountain sites
Jeffrey S. Deems; Steven R. Fassnacht; Kelly J. Elder
2008-01-01
Fractal dimensions derived from log-log variograms are useful for characterizing spatial structure and scaling behavior in snow depth distributions. This study examines the temporal consistency of snow depth scaling features at two sites using snow depth distributions derived from lidar datasets collected in 2003 and 2005. The temporal snow accumulation patterns in...
Fire danger and fire behavior modeling systems in Australia, Europe, and North America
Francis M. Fujioka; A. Malcolm Gill; Domingos X. Viegas; B. Mike Wotton
2009-01-01
Wildland fire occurrence and behavior are complex phenomena involving essentially fuel (vegetation), topography, and weather. Fire managers around the world use a variety of systems to track and predict fire danger and fire behavior, at spatial scales that span from local to global extents, and temporal scales ranging from minutes to seasons. The fire management...
A multi-scale conceptual model of fire and disease interactions in North American forests
NASA Astrophysics Data System (ADS)
Varner, J. M.; Kreye, J. K.; Sherriff, R.; Metz, M.
2013-12-01
One aspect of global change with increasing attention is the interactions between irruptive pests and diseases and wildland fire behavior and effects. These pests and diseases affect fire behavior and effects in spatially and temporally complex ways. Models of fire and pathogen interactions have been constructed for individual pests or diseases, but to date, no synthesis of this complexity has been attempted. Here we synthesize North American fire-pathogen interactions into syndromes with similarities in spatial extent and temporal duration. We base our models on fire interactions with three examples: sudden oak death (caused by the pathogen Phytopthora ramorum) and the native tree tanoak (Notholithocarpus densiflorus); mountain pine beetle (Dendroctonus ponderosae) and western Pinus spp.; and hemlock woolly adelgid (Adelges tsugae) on Tsuga spp. We evaluate each across spatial (severity of attack from branch to landscape scale) and temporal scales (from attack to decades after) and link each change to its coincident effects on fuels and potential fire behavior. These syndromes differ in their spatial and temporal severity, differentially affecting windows of increased or decreased community flammability. We evaluate these models with two examples: the recently emergent ambrosia beetle-vectored laurel wilt (caused by the pathogen Raffaelea lauricola) in native members of the Lauraceae and the early 20th century chestnut blight (caused by the pathogen Cryphonectria parasitica) that led to the decline of American chestnut (Castanea dentata). Some changes (e.g., reduced foliar moisture content) have short-term consequences for potential fire behavior while others (functional extirpation) have more complex indirect effects on community flammability. As non-native emergent diseases and pests continue, synthetic models that aid in prediction of fire behavior and effects will enable the research and management community to prioritize mitigation efforts to realized effects.
Visual search of cyclic spatio-temporal events
NASA Astrophysics Data System (ADS)
Gautier, Jacques; Davoine, Paule-Annick; Cunty, Claire
2018-05-01
The analysis of spatio-temporal events, and especially of relationships between their different dimensions (space-time-thematic attributes), can be done with geovisualization interfaces. But few geovisualization tools integrate the cyclic dimension of spatio-temporal event series (natural events or social events). Time Coil and Time Wave diagrams represent both the linear time and the cyclic time. By introducing a cyclic temporal scale, these diagrams may highlight the cyclic characteristics of spatio-temporal events. However, the settable cyclic temporal scales are limited to usual durations like days or months. Because of that, these diagrams cannot be used to visualize cyclic events, which reappear with an unusual period, and don't allow to make a visual search of cyclic events. Also, they don't give the possibility to identify the relationships between the cyclic behavior of the events and their spatial features, and more especially to identify localised cyclic events. The lack of possibilities to represent the cyclic time, outside of the temporal diagram of multi-view geovisualization interfaces, limits the analysis of relationships between the cyclic reappearance of events and their other dimensions. In this paper, we propose a method and a geovisualization tool, based on the extension of Time Coil and Time Wave, to provide a visual search of cyclic events, by allowing to set any possible duration to the diagram's cyclic temporal scale. We also propose a symbology approach to push the representation of the cyclic time into the map, in order to improve the analysis of relationships between space and the cyclic behavior of events.
Towards a critical transition theory under different temporal scales and noise strengths
NASA Astrophysics Data System (ADS)
Shi, Jifan; Li, Tiejun; Chen, Luonan
2016-03-01
The mechanism of critical phenomena or critical transitions has been recently studied from various aspects, in particular considering slow parameter change and small noise. In this article, we systematically classify critical transitions into three types based on temporal scales and noise strengths of dynamical systems. Specifically, the classification is made by comparing three important time scales τλ, τtran, and τergo, where τλ is the time scale of parameter change (e.g., the change of environment), τtran is the time scale when a particle or state transits from a metastable state into another, and τergo is the time scale when the system becomes ergodic. According to the time scales, we classify the critical transition behaviors as three types, i.e., state transition, basin transition, and distribution transition. Moreover, for each type of transition, there are two cases, i.e., single-trajectory transition and multitrajectory ensemble transition, which correspond to the transition of individual behavior and population behavior, respectively. We also define the critical point for each type of critical transition, derive several properties, and further propose the indicators for predicting critical transitions with numerical simulations. In addition, we show that the noise-to-signal ratio is effective to make the classification of critical transitions for real systems.
Division of Labor in Colonies of the Eusocial Wasp, Mischocyttarus consimilis
Torres, Viviana O.; Montagna, Thiago S.; Raizer, Josué; Antonialli-Junior, William F.
2012-01-01
The division of labor between castes and the division of labor in workers according to age (temporal polyethism) in social wasps are crucial for maintaining social organization. This study evaluated the division of labor between castes, and the temporal polyethism in workers of Mischocyttarus consimilis Zikán (Hymenoptera: Vespidae). To describe the behavioral repertory of this species, observations were made of 21 colonies, with 100 hours of observations. In order to observe temporal polyethism, each newly emerged wasp was marked with colored dots on the upper area of the thorax. This allowed the observation of behavioral acts performed by each worker from the time of emergence to its death. Through hybrid multidimensional scaling, a clear division between queens and workers could be identified, in which the behaviors of physical dominance and food solicitation characterized the queen caste; while behaviors such as adult—adult trophallaxis, destruction of cells, alarm, foraging for prey, foraging for nectar, and unsuccessful foraging characterized the worker caste. Hybrid multidimensional scaling characterized two groups, with intra—nest activities preferentially accomplished by younger workers, while extra—nest activities such as foraging were executed more frequently by older workers. PMID:22954231
ERIC Educational Resources Information Center
Kates, Wendy R.; Miller, Adam M.; Abdulsabur, Nuria; Antshel, Kevin M.; Conchelos, Jena; Fremont, Wanda; Roizen, Nancy
2006-01-01
Objective: To investigate the association between mesial temporal lobe morphology, ratios of prefrontal cortex to amygdala and hippocampus volumes, and psychiatric symptomatology in children and adolescents with velocardiofacial syndrome (VCFS). Method: Scores on behavioral rating scales and volumetric measures of the amygdala, hippocampus, and…
Anti-correlation and multifractal features of Spain electricity spot market
NASA Astrophysics Data System (ADS)
Norouzzadeh, P.; Dullaert, W.; Rahmani, B.
2007-07-01
We use multifractal detrended fluctuation analysis (MF-DFA) to numerically investigate correlation, persistence, multifractal properties and scaling behavior of the hourly spot prices for the Spain electricity exchange-Compania O Peradora del Mercado de Electricidad (OMEL). Through multifractal analysis, fluctuations behavior, the scaling exponents and generalized Hurst exponents are studied. Moreover, contribution of fat-tailed probability distributions and nonlinear temporal correlations to multifractality is studied.
Fluctuation scaling, Taylor's law, and crime.
Hanley, Quentin S; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor's law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor's law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057 ± 0.026) while burglary exhibited a greater exponent (α = 1.292 ± 0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor's law exponents from 1.43 ± 0.12 (Drugs) to 2.094 ± 0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation.
Fluctuation Scaling, Taylor’s Law, and Crime
Hanley, Quentin S.; Khatun, Suniya; Yosef, Amal; Dyer, Rachel-May
2014-01-01
Fluctuation scaling relationships have been observed in a wide range of processes ranging from internet router traffic to measles cases. Taylor’s law is one such scaling relationship and has been widely applied in ecology to understand communities including trees, birds, human populations, and insects. We show that monthly crime reports in the UK show complex fluctuation scaling which can be approximated by Taylor’s law relationships corresponding to local policing neighborhoods and larger regional and countrywide scales. Regression models applied to local scale data from Derbyshire and Nottinghamshire found that different categories of crime exhibited different scaling exponents with no significant difference between the two regions. On this scale, violence reports were close to a Poisson distribution (α = 1.057±0.026) while burglary exhibited a greater exponent (α = 1.292±0.029) indicative of temporal clustering. These two regions exhibited significantly different pre-exponential factors for the categories of anti-social behavior and burglary indicating that local variations in crime reports can be assessed using fluctuation scaling methods. At regional and countrywide scales, all categories exhibited scaling behavior indicative of temporal clustering evidenced by Taylor’s law exponents from 1.43±0.12 (Drugs) to 2.094±0081 (Other Crimes). Investigating crime behavior via fluctuation scaling gives insight beyond that of raw numbers and is unique in reporting on all processes contributing to the observed variance and is either robust to or exhibits signs of many types of data manipulation. PMID:25271781
Gutenberg-Richter law for Internetquakes
NASA Astrophysics Data System (ADS)
Abe, Sumiyoshi; Suzuki, Norikazu
2003-03-01
The temporal behavior of the Internet is studied by performing Ping experiments. Sudden drastic changes in the Internet time series of round-trip times of the Ping signals (i.e., congestion of the network) are catastrophic and can be identified as “Internetquakes”. Magnitude of the Internetquakes is defined and the Gutenberg-Richter law is found to hold for the cumulative frequency of the Internetquakes and magnitude. Therefore, earthquakes, financial markets and the Internet share a common scale free nature in their temporal behaviors.
A scale-invariant internal representation of time.
Shankar, Karthik H; Howard, Marc W
2012-01-01
We propose a principled way to construct an internal representation of the temporal stimulus history leading up to the present moment. A set of leaky integrators performs a Laplace transform on the stimulus function, and a linear operator approximates the inversion of the Laplace transform. The result is a representation of stimulus history that retains information about the temporal sequence of stimuli. This procedure naturally represents more recent stimuli more accurately than less recent stimuli; the decrement in accuracy is precisely scale invariant. This procedure also yields time cells that fire at specific latencies following the stimulus with a scale-invariant temporal spread. Combined with a simple associative memory, this representation gives rise to a moment-to-moment prediction that is also scale invariant in time. We propose that this scale-invariant representation of temporal stimulus history could serve as an underlying representation accessible to higher-level behavioral and cognitive mechanisms. In order to illustrate the potential utility of this scale-invariant representation in a variety of fields, we sketch applications using minimal performance functions to problems in classical conditioning, interval timing, scale-invariant learning in autoshaping, and the persistence of the recency effect in episodic memory across timescales.
Omori's law in the Internet traffic
NASA Astrophysics Data System (ADS)
Abe, S.; Suzuki, N.
2003-03-01
The Internet is a complex system, whose temporal behavior is highly nonstationary and exhibits sudden drastic changes regarded as main shocks or catastrophes. Here, analyzing a set of time series data of round-trip time measured in echo experiment with the Ping Command, the property of "aftershocks" (i.e., catastrophes of smaller scales) after a main shock is studied. It is found that the aftershocks obey Omori's law. Thus, the Internet shares with earthquakes and financial-market crashes a common scale-invariant feature in the temporal patterns of aftershocks.
A Cellular Automata Model for the Study of Landslides
NASA Astrophysics Data System (ADS)
Liucci, Luisa; Suteanu, Cristian; Melelli, Laura
2016-04-01
Power-law scaling has been observed in the frequency distribution of landslide sizes in many regions of the world, for landslides triggered by different factors, and in both multi-temporal and post-event datasets, thus indicating the universal character of this property of landslides and suggesting that the same mechanisms drive the dynamics of mass wasting processes. The reasons for the scaling behavior of landslide sizes are widely debated, since their understanding would improve our knowledge of the spatial and temporal evolution of this phenomenon. Self-Organized Critical (SOC) dynamics and the key role of topography have been suggested as possible explanations. The scaling exponent of the landslide size-frequency distribution defines the probability of landslide magnitudes and it thus represents an important parameter for hazard assessment. Therefore, another - still unanswered - important question concerns the factors on which its value depends. This paper investigates these issues using a Cellular Automata (CA) model. The CA uses a real topographic surface acquired from a Digital Elevation Model to represent the initial state of the system, where the states of cells are defined in terms of altitude. The stability criterion is based on the slope gradient. The system is driven to instability through a temporal decrease of the stability condition of cells, which may be thought of as representing the temporal weakening of soil caused by factors like rainfall. A transition rule defines the way in which instabilities lead to discharge from unstable cells to the neighboring cells, deciding upon the landslide direction and the quantity of mass involved. Both the direction and the transferred mass depend on the local topographic features. The scaling properties of the area-frequency distributions of the resulting landslide series are investigated for several rates of weakening and for different time windows, in order to explore the response of the system to model parameters, and its temporal behavior. Results show that the model reproduces the scaling behavior of real landslide areas; while the value of the scaling exponent is stable over time, it linearly decreases with increasing rate of weakening. This suggests that it is the intensity of the triggering mechanism rather than its duration that affects the probability of landslide magnitudes. A quantitative relationship between the scaling exponent of the area frequency distribution of the generated landslides, on one hand, and the changes regarding the topographic surface affected by landslides, on the other hand, is established. The fact that a similar behavior could be observed in real systems may have useful implications in the context of landslide hazard assessment. These results support the hypotheses that landslides are driven by SOC dynamics, and that topography plays a key role in the scaling properties of their size distribution.
Classification of Animal Movement Behavior through Residence in Space and Time.
Torres, Leigh G; Orben, Rachael A; Tolkova, Irina; Thompson, David R
2017-01-01
Identification and classification of behavior states in animal movement data can be complex, temporally biased, time-intensive, scale-dependent, and unstandardized across studies and taxa. Large movement datasets are increasingly common and there is a need for efficient methods of data exploration that adjust to the individual variability of each track. We present the Residence in Space and Time (RST) method to classify behavior patterns in movement data based on the concept that behavior states can be partitioned by the amount of space and time occupied in an area of constant scale. Using normalized values of Residence Time and Residence Distance within a constant search radius, RST is able to differentiate behavior patterns that are time-intensive (e.g., rest), time & distance-intensive (e.g., area restricted search), and transit (short time and distance). We use grey-headed albatross (Thalassarche chrysostoma) GPS tracks to demonstrate RST's ability to classify behavior patterns and adjust to the inherent scale and individuality of each track. Next, we evaluate RST's ability to discriminate between behavior states relative to other classical movement metrics. We then temporally sub-sample albatross track data to illustrate RST's response to less resolved data. Finally, we evaluate RST's performance using datasets from four taxa with diverse ecology, functional scales, ecosystems, and data-types. We conclude that RST is a robust, rapid, and flexible method for detailed exploratory analysis and meta-analyses of behavioral states in animal movement data based on its ability to integrate distance and time measurements into one descriptive metric of behavior groupings. Given the increasing amount of animal movement data collected, it is timely and useful to implement a consistent metric of behavior classification to enable efficient and comparative analyses. Overall, the application of RST to objectively explore and compare behavior patterns in movement data can enhance our fine- and broad- scale understanding of animal movement ecology.
NASA Astrophysics Data System (ADS)
Racoviteanu, A.
2014-12-01
High rates of glacier retreat for the last decades are often reported, and believed to be induced by 20th century climate changes. However, regional glacier fluctuations are complex, and depend on a combination of climate and local topography. Furthermore, in ares such as the Hindu-Kush Himalaya, there are concerns about warming, decreasing monsoon precipitation and their impact on local glacier regimes. Currently, the challenge is in understanding the magnitude of feedbacks between large-scale climate forcing and small-scale glacier behavior. Spatio-temporal patterns of glacier distribution are still llimited in some areas of the high Hindu-Kush Himalaya, but multi-temporal satellite imagery has helped fill spatial and temporal gaps in regional glacier parameters in the last decade. Here I present a synopsis of the behavior of glaciers across the Himalaya, following a west to east gradient. In particular, I focus on spatial patterns of glacier parameters in the eastern Himalaya, which I investigate at multi-spatial scales using remote sensing data from declassified Corona, ASTER, Landsat ETM+, Quickbird and Worldview2 sensors. I also present the use of high-resolution imagery, including texture and thermal analysis for mapping glacier features at small scale, which are particularly useful in understanding surface trends of debris-covered glaciers, which are prevalent in the Himalaya. I compare and contrast spatial patterns of glacier area and élévation changes in the monsoon-influenced eastern Himalaya (the Everest region in the Nepal Himalaya and Sikkim in the Indian Himalaya) with other observations from the dry western Indian Himalaya (Ladakh and Lahul-Spiti), both field measurements and remote sensing-based. In the eastern Himalaya, results point to glacier area change of -0.24 % ± 0.08% per year from the 1960's to the 2006's, with a higher rate of retreat in the last decade (-0.43% /yr). Debris-covered glacier tongues show thinning trends of -30.8 m± 39 m on average over the last four decades, similar to other studies in the same climatic area. However, at small scales, the behavior of glaciers is highly heterogenous, with contrasting patterns of thickening glacier termini versus retreating nad thinning glacier tongues.
Sweeney, Allison M; Culcea, Ileana
2017-05-01
The present study aimed to quantify the magnitude of the association between future temporal perspective and Body Mass Index (BMI), diet, and exercise, respectively, and to clarify whether subjective future-focus scales or delay-discounting tasks are a more robust predictor of health behaviors. A systematic search was conducted for studies that included a dispositional measure of future temporal perspective and a measure of BMI, eating, and/or exercise behavior. Effect sizes for BMI, eating, and exercise were calculated using a random-effects model. The aggregate effect sizes for BMI (r = 0.14, k = 36, 95% CI = 0.10 - 0.18, p < 0.001), eating (r = 0.16, k = 18, 95% CI = 0.12-0.21, p < 0.001), and exercise (r = 0.12, k = 18, 95% CI = 0.09-0.14, p < 0.001) were significant and small in magnitude. Neither the type of future temporal perspective task (delay-discounting vs. subjective future-focus scale) nor the percentage of obese participants moderated the effect of temporal perspective on BMI, eating, or exercise. Although small in magnitude, the association between temporal perspective and health outcomes is comparable to other individual differences, such as personality and temperament. Future research is needed to examine how increasing the value placed on future outcomes can be integrated into long-term health behavior change interventions. Copyright © 2017 Elsevier Ltd. All rights reserved.
Space and time scales in human-landscape systems.
Kondolf, G Mathias; Podolak, Kristen
2014-01-01
Exploring spatial and temporal scales provides a way to understand human alteration of landscape processes and human responses to these processes. We address three topics relevant to human-landscape systems: (1) scales of human impacts on geomorphic processes, (2) spatial and temporal scales in river restoration, and (3) time scales of natural disasters and behavioral and institutional responses. Studies showing dramatic recent change in sediment yields from uplands to the ocean via rivers illustrate the increasingly vast spatial extent and quick rate of human landscape change in the last two millennia, but especially in the second half of the twentieth century. Recent river restoration efforts are typically small in spatial and temporal scale compared to the historical human changes to ecosystem processes, but the cumulative effectiveness of multiple small restoration projects in achieving large ecosystem goals has yet to be demonstrated. The mismatch between infrequent natural disasters and individual risk perception, media coverage, and institutional response to natural disasters results in un-preparedness and unsustainable land use and building practices.
Quantifying drivers of wild pig movement across multiple spatial and temporal scales.
Kay, Shannon L; Fischer, Justin W; Monaghan, Andrew J; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S; Hartley, Steve B; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; VerCauteren, Kurt C; Pepin, Kim M
2017-01-01
The movement behavior of an animal is determined by extrinsic and intrinsic factors that operate at multiple spatio-temporal scales, yet much of our knowledge of animal movement comes from studies that examine only one or two scales concurrently. Understanding the drivers of animal movement across multiple scales is crucial for understanding the fundamentals of movement ecology, predicting changes in distribution, describing disease dynamics, and identifying efficient methods of wildlife conservation and management. We obtained over 400,000 GPS locations of wild pigs from 13 different studies spanning six states in southern U.S.A., and quantified movement rates and home range size within a single analytical framework. We used a generalized additive mixed model framework to quantify the effects of five broad predictor categories on movement: individual-level attributes, geographic factors, landscape attributes, meteorological conditions, and temporal variables. We examined effects of predictors across three temporal scales: daily, monthly, and using all data during the study period. We considered both local environmental factors such as daily weather data and distance to various resources on the landscape, as well as factors acting at a broader spatial scale such as ecoregion and season. We found meteorological variables (temperature and pressure), landscape features (distance to water sources), a broad-scale geographic factor (ecoregion), and individual-level characteristics (sex-age class), drove wild pig movement across all scales, but both the magnitude and shape of covariate relationships to movement differed across temporal scales. The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc ) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
Spectral analysis of temporal non-stationary rainfall-runoff processes
NASA Astrophysics Data System (ADS)
Chang, Ching-Min; Yeh, Hund-Der
2018-04-01
This study treats the catchment as a block box system with considering the rainfall input and runoff output being a stochastic process. The temporal rainfall-runoff relationship at the catchment scale is described by a convolution integral on a continuous time scale. Using the Fourier-Stieltjes representation approach, a frequency domain solution to the convolution integral is developed to the spectral analysis of runoff processes generated by temporal non-stationary rainfall events. It is shown that the characteristic time scale of rainfall process increases the runoff discharge variability, while the catchment mean travel time constant plays the role in reducing the variability of runoff discharge. Similar to the behavior of groundwater aquifers, catchments act as a low-pass filter in the frequency domain for the rainfall input signal.
Schizotypal Perceptual Aberrations of Time: Correlation between Score, Behavior and Brain Activity
Arzy, Shahar; Mohr, Christine; Molnar-Szakacs, Istvan; Blanke, Olaf
2011-01-01
A fundamental trait of the human self is its continuum experience of space and time. Perceptual aberrations of this spatial and temporal continuity is a major characteristic of schizophrenia spectrum disturbances – including schizophrenia, schizotypal personality disorder and schizotypy. We have previously found the classical Perceptual Aberration Scale (PAS) scores, related to body and space, to be positively correlated with both behavior and temporo-parietal activation in healthy participants performing a task involving self-projection in space. However, not much is known about the relationship between temporal perceptual aberration, behavior and brain activity. To this aim, we composed a temporal Perceptual Aberration Scale (tPAS) similar to the traditional PAS. Testing on 170 participants suggested similar performance for PAS and tPAS. We then correlated tPAS and PAS scores to participants' performance and neural activity in a task of self-projection in time. tPAS scores correlated positively with reaction times across task conditions, as did PAS scores. Evoked potential mapping and electrical neuroimaging showed self-projection in time to recruit a network of brain regions at the left anterior temporal cortex, right temporo-parietal junction, and occipito-temporal cortex, and duration of activation in this network positively correlated with tPAS and PAS scores. These data demonstrate that schizotypal perceptual aberrations of both time and space, as reflected by tPAS and PAS scores, are positively correlated with performance and brain activation during self-projection in time in healthy individuals along the schizophrenia spectrum. PMID:21267456
Predictability and hierarchy in Drosophila behavior.
Berman, Gordon J; Bialek, William; Shaevitz, Joshua W
2016-10-18
Even the simplest of animals exhibit behavioral sequences with complex temporal dynamics. Prominent among the proposed organizing principles for these dynamics has been the idea of a hierarchy, wherein the movements an animal makes can be understood as a set of nested subclusters. Although this type of organization holds potential advantages in terms of motion control and neural circuitry, measurements demonstrating this for an animal's entire behavioral repertoire have been limited in scope and temporal complexity. Here, we use a recently developed unsupervised technique to discover and track the occurrence of all stereotyped behaviors performed by fruit flies moving in a shallow arena. Calculating the optimally predictive representation of the fly's future behaviors, we show that fly behavior exhibits multiple time scales and is organized into a hierarchical structure that is indicative of its underlying behavioral programs and its changing internal states.
Turbulent pipe flow at extreme Reynolds numbers.
Hultmark, M; Vallikivi, M; Bailey, S C C; Smits, A J
2012-03-02
Both the inherent intractability and complex beauty of turbulence reside in its large range of physical and temporal scales. This range of scales is captured by the Reynolds number, which in nature and in many engineering applications can be as large as 10(5)-10(6). Here, we report turbulence measurements over an unprecedented range of Reynolds numbers using a unique combination of a high-pressure air facility and a new nanoscale anemometry probe. The results reveal previously unknown universal scaling behavior for the turbulent velocity fluctuations, which is remarkably similar to the well-known scaling behavior of the mean velocity distribution.
NASA Astrophysics Data System (ADS)
Lamb, Derek A.
2016-10-01
While sunspots follow a well-defined pattern of emergence in space and time, small-scale flux emergence is assumed to occur randomly at all times in the quiet Sun. HMI's full-disk coverage, high cadence, spatial resolution, and duty cycle allow us to probe that basic assumption. Some case studies of emergence suggest that temporal clustering on spatial scales of 50-150 Mm may occur. If clustering is present, it could serve as a diagnostic of large-scale subsurface magnetic field structures. We present the results of a manual survey of small-scale flux emergence events over a short time period, and a statistical analysis addressing the question of whether these events show spatio-temporal behavior that is anything other than random.
ERIC Educational Resources Information Center
Folkestad, James E.; McKernan, Brian; Train, Stephanie; Martey, Rosa Mikeal; Rhodes, Matthew G.; Kenski, Kate; Shaw, Adrienne; Stromer-Galley, Jennifer; Clegg, Benjamin A.; Strzalkowski, Tomek
2018-01-01
The engaging nature of video games has intrigued learning professionals attempting to capture and retain learners' attention. Designing learning interventions that not only capture the learner's attention, but also are designed around the natural cycle of attention will be vital for learning. This paper introduces the temporal attentive…
Effects of Spatial Scale on Cognitive Play in Preschool Children.
ERIC Educational Resources Information Center
Delong, Alton J.; And Others
1994-01-01
Examined effects of a reduced-scale play environment on the temporal aspects of complex play behavior. Children playing with playdough in a 7 x 5 x 5-foot structure began complex play more quickly, played in longer segments, and spent slightly more time in complex play than when in full-size conditions, suggesting that scale-reduced environments…
Gouhier, Tarik C; Guichard, Frédéric
2007-03-01
In marine systems, the occurrence and implications of disturbance-recovery cycles have been revealed at the landscape level, but only in demographically open or closed systems where landscape-level dynamics are assumed to have no feedback effect on regional dynamics. We present a mussel metapopulation model to elucidate the role of landscape-level disturbance cycles for regional response of mussel populations to onshore productivity and larval transport. Landscape dynamics are generated through spatially explicit rules, and each landscape is connected to its neighbor through unidirectional larval dispersal. The role of landscape disturbance cycles in the regional system behavior is elucidated (1) in demographically open vs. demographically coupled systems, in relation to (2) onshore reproductive output and (3) the temporal scale of landscape disturbance dynamics. By controlling for spatial structure at the landscape and metapopulation levels, we first demonstrate the interaction between landscape and oceanographic connectivity. The temporal scale of disturbance cycles, as controlled by mussel colonization rate, plays a critical role in the regional behavior of the system. Indeed, fast disturbance cycles are responsible for regional synchrony in relation to onshore reproductive output. Slow disturbance cycles, however, lead to increased robustness to changes in productivity and to demographic coupling. These testable predictions indicate that the occurrence and temporal scale of local disturbance-recovery dynamics can drive large-scale variability in demographically open systems, and the response of metapopulations to changes in nearshore productivity.
Zion Golumbic, Elana M.; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the ‘Cocktail Party’ effect. Yet, the neural mechanisms underlying on-line speech decoding and attentional stream selection are not well understood. We review findings from behavioral and neurophysiological investigations that underscore the importance of the temporal structure of speech for achieving these perceptual feats. We discuss the hypothesis that entrainment of ambient neuronal oscillations to speech’s temporal structure, across multiple time-scales, serves to facilitate its decoding and underlies the selection of an attended speech stream over other competing input. In this regard, speech decoding and attentional stream selection are examples of ‘active sensing’, emphasizing an interaction between proactive and predictive top-down modulation of neuronal dynamics and bottom-up sensory input. PMID:22285024
Development of cultural belief scales for mammography screening.
Russell, Kathleen M; Champion, Victoria L; Perkins, Susan M
2003-01-01
To develop instruments to measure culturally related variables that may influence mammography screening behaviors in African American women. Instrumentation methodology. Community organizations and public housing in the Indianapolis, IN, area. 111 African American women with a mean age of 60.2 years and 64 Caucasian women with a mean age of 60 years. After item development, scales were administered. Data were analyzed by factor analysis, item analysis via internal consistency reliability using Cronbach's alpha, and independent t tests and logistic regression analysis to test theoretical relationships. Personal space preferences, health temporal orientation, and perceived personal control. Space items were factored into interpersonal and physical scales. Temporal orientation items were loaded on one factor, creating a one-dimensional scale. Control items were factored into internal and external control scales. Cronbach's alpha coefficients for the scales ranged from 0.76-0.88. Interpersonal space preference, health temporal orientation, and perceived internal control scales each were predictive of mammography screening adherence. The three tested scales were reliable and valid. Scales, on average, did not differ between African American and Caucasian populations. These scales may be useful in future investigations aimed at increasing mammography screening in African American and Caucasian women.
Economic analysis of fuel treatments
D. Evan Mercer; Jeffrey P. Prestemon
2012-01-01
The economics of wildfire is complicated because wildfire behavior depends on the spatial and temporal scale at which management decisions made, and because of uncertainties surrounding the results of management actions. Like the wildfire processes they seek to manage, interventions through fire prevention programs, suppression, and fuels management are scale dependent...
Critical Song Features for Auditory Pattern Recognition in Crickets
Meckenhäuser, Gundula; Hennig, R. Matthias; Nawrot, Martin P.
2013-01-01
Many different invertebrate and vertebrate species use acoustic communication for pair formation. In the cricket Gryllus bimaculatus, females recognize their species-specific calling song and localize singing males by positive phonotaxis. The song pattern of males has a clear structure consisting of brief and regular pulses that are grouped into repetitive chirps. Information is thus present on a short and a long time scale. Here, we ask which structural features of the song critically determine the phonotactic performance. To this end we employed artificial neural networks to analyze a large body of behavioral data that measured females’ phonotactic behavior under systematic variation of artificially generated song patterns. In a first step we used four non-redundant descriptive temporal features to predict the female response. The model prediction showed a high correlation with the experimental results. We used this behavioral model to explore the integration of the two different time scales. Our result suggested that only an attractive pulse structure in combination with an attractive chirp structure reliably induced phonotactic behavior to signals. In a further step we investigated all feature sets, each one consisting of a different combination of eight proposed temporal features. We identified feature sets of size two, three, and four that achieve highest prediction power by using the pulse period from the short time scale plus additional information from the long time scale. PMID:23437054
Detrended fluctuation analysis of human brain electroencephalogram
NASA Astrophysics Data System (ADS)
Pan, C. P.; Zheng, B.; Wu, Y. Z.; Wang, Y.; Tang, X. W.
2004-08-01
With the detrended fluctuation analysis, we investigate dynamics of human brain electroencephalogram. Long-range temporal correlation and scaling behavior are observed, and certain characteristic of the Alzheimer's disease is revealed.
Detection of crossover time scales in multifractal detrended fluctuation analysis
NASA Astrophysics Data System (ADS)
Ge, Erjia; Leung, Yee
2013-04-01
Fractal is employed in this paper as a scale-based method for the identification of the scaling behavior of time series. Many spatial and temporal processes exhibiting complex multi(mono)-scaling behaviors are fractals. One of the important concepts in fractals is crossover time scale(s) that separates distinct regimes having different fractal scaling behaviors. A common method is multifractal detrended fluctuation analysis (MF-DFA). The detection of crossover time scale(s) is, however, relatively subjective since it has been made without rigorous statistical procedures and has generally been determined by eye balling or subjective observation. Crossover time scales such determined may be spurious and problematic. It may not reflect the genuine underlying scaling behavior of a time series. The purpose of this paper is to propose a statistical procedure to model complex fractal scaling behaviors and reliably identify the crossover time scales under MF-DFA. The scaling-identification regression model, grounded on a solid statistical foundation, is first proposed to describe multi-scaling behaviors of fractals. Through the regression analysis and statistical inference, we can (1) identify the crossover time scales that cannot be detected by eye-balling observation, (2) determine the number and locations of the genuine crossover time scales, (3) give confidence intervals for the crossover time scales, and (4) establish the statistically significant regression model depicting the underlying scaling behavior of a time series. To substantive our argument, the regression model is applied to analyze the multi-scaling behaviors of avian-influenza outbreaks, water consumption, daily mean temperature, and rainfall of Hong Kong. Through the proposed model, we can have a deeper understanding of fractals in general and a statistical approach to identify multi-scaling behavior under MF-DFA in particular.
Yang, Ming; De Coensel, Bert; Kang, Jian
2015-08-01
1/f noise or pink noise, which has been shown to be universal in nature, has also been observed in the temporal envelope of music, speech, and environmental sound. Moreover, the slope of the spectral density of the temporal envelope of music has been shown to correlate well to its pleasing, dull, or chaotic character. In this paper, the temporal structure of a number of instantaneous psychoacoustic parameters of environmental sound is examined in order to investigate whether a 1/f temporal structure appears in various types of sound that are generally preferred by people in everyday life. The results show, to some extent, that different categories of environmental sounds have different temporal structure characteristics. Only a number of urban sounds considered and birdsong, generally, exhibit 1/f behavior on short to medium duration time scales, i.e., from 0.1 s to 10 s, in instantaneous loudness and sharpness, whereas a more chaotic variation is found in birdsong at longer time scales, i.e., of 10 s-200 s. The other sound categories considered exhibit random or monotonic variations in the different time scales. In general, this study shows that a 1/f temporal structure is not necessarily present in environmental sounds that are commonly perceived as pleasant.
Lottig, Noah R.; Tan, Pang-Ning; Wagner, Tyler; Cheruvelil, Kendra Spence; Soranno, Patricia A.; Stanley, Emily H.; Scott, Caren E.; Stow, Craig A.; Yuan, Shuai
2017-01-01
Ecology has a rich history of studying ecosystem dynamics across time and space that has been motivated by both practical management needs and the need to develop basic ideas about pattern and process in nature. In situations in which both spatial and temporal observations are available, similarities in temporal behavior among sites (i.e., synchrony) provide a means of understanding underlying processes that create patterns over space and time. We used pattern analysis algorithms and data spanning 22–25 yr from 601 lakes to ask three questions: What are the temporal patterns of lake water clarity at sub‐continental scales? What are the spatial patterns (i.e., geography) of synchrony for lake water clarity? And, what are the drivers of spatial and temporal patterns in lake water clarity? We found that the synchrony of water clarity among lakes is not spatially structured at sub‐continental scales. Our results also provide strong evidence that the drivers related to spatial patterns in water clarity are not related to the temporal patterns of water clarity. This analysis of long‐term patterns of water clarity and possible drivers contributes to understanding of broad‐scale spatial patterns in the geography of synchrony and complex relationships between spatial and temporal patterns across ecosystems.
Temporal scaling behavior of forest and urban fires
NASA Astrophysics Data System (ADS)
Wang, J.; Song, W.; Zheng, H.; Telesca, L.
2009-04-01
It has been found that many natural systems are characterized by scaling behavior. In such systems natural factors dominate the event dynamics. Forest fires in different countries have been found to exhibit frequency-size power law over many orders of magnitude and with similar value of parameters. But in countries with high population density such as China and Japan, more than 95% of the forest fire disasters are caused by human activities. Furthermore, with the development of society, the wildland-urban interface (WUI) area is becoming more and more populated, and the forest fire is much connected with urban fire. Therefore exploring the scaling behavior of fires dominated by human-related factors is very challenging. The present paper explores the temporal scaling behavior of forest fires and urban fires in Japan with mathematical methods. Two factors, Allan factor (AF) and Fano factor (FF) are used to investigate time-scaling of fire systems. It is found that the FF for both forest fires and urban fires increases linearly in log-log scales, and this indicates that it behaves as a power-law for all the investigated timescales. From the AF plot a 7 days cycle is found, which indicates a weekly cycle. This may be caused by human activities which has a weekly periodicity because on weekends people usually have more outdoor activities, which may cause more hidden trouble of fire disasters. Our findings point out that although the human factors are the main cause, both the forest fires and urban fires exhibit time-scaling behavior. At the same time, the scaling exponents for urban fires are larger than forest fires, signifying a more intense clustering. The reason may be that fires are affected not only by weather condition, but also by human activities, which play a more important role for urban fires than forest fires and have a power law distribution and scaling behavior. Then some work is done to the relative humidity. Similar distribution law characterizes the relative humidity. The AF plot and FF plot of relative humidity validate the existence of a strong link between weather and fires, and it is very likely that the daily humidity cycle determines the daily fire periodicity.
Achieving behavioral control with millisecond resolution in a high-level programming environment.
Asaad, Wael F; Eskandar, Emad N
2008-08-30
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the 1 ms time-scale that is relevant for the alignment of behavioral and neural events.
Tatsumi, Tomonori; Takenouchi, Takashi
2014-01-01
[Purpose] The purpose of this study was to examine the causal relationships between the psychological acceptance process of athletic injury and athletic-rehabilitation behavior. [Subjects] One hundred forty-four athletes who had injury experiences participated in this study, and 133 (mean age = 20.21 years, SD = 1.07; mean weeks without playing sports = 7.97 weeks, SD = 11.26) of them provided valid questionnaire responses which were subjected to analysis. [Methods] The subjects were asked to answer our originally designed questionnaire, the Psychosocial Recovery Factor Scale (PSRF-S), and two other pre-existing scales, the Athletic Injury Psychological Acceptance Scale and the Athletic-Rehabilitation Dedication Scale. [Results] The results of factor analysis indicate “emotional stability”, “social competence in the team”, “temporal perspective”, and “communication with the teammates” are factors of the PSRF-S. Lastly, the causal model in which psychosocial recovery factors are mediated by psychological acceptance of athletic injury, and influence on rehabilitation behaviors, was examined using structural equation modeling (SEM). The results of SEM indicate that the factors of emotional stability and temporal perspective are mediated by the psychological acceptance of the injury, which positively influences athletic-rehabilitation dedication. [Conclusion] The causal model was confirmed to be valid. PMID:25202190
Understanding spatio-temporal strategies of adult zebrafish exploration in the open field test.
Stewart, Adam Michael; Gaikwad, Siddharth; Kyzar, Evan; Kalueff, Allan V
2012-04-27
Zebrafish (Danio rerio) are emerging as a useful model organism for neuroscience research. Mounting evidence suggests that various traditional rodent paradigms may be adapted for testing zebrafish behavior. The open field test is a popular rodent test of novelty exploration, recently applied to zebrafish research. To better understand fish novelty behavior, we exposed adult zebrafish to two different open field arenas for 30 min, assessing the amount and temporal patterning of their exploration. While (similar to rodents) zebrafish scale their locomotory activity depending on the size of the tank, the temporal patterning of their activity was independent of arena size. These observations strikingly parallel similar rodent behaviors, suggesting that spatio-temporal strategies of animal exploration may be evolutionarily conserved across vertebrate species. In addition, we found interesting oscillations in zebrafish exploration, with the per-minute distribution of their horizontal activity demonstrating sinusoidal-like patterns. While such patterning is not reported for rodents and other higher vertebrates, a nonlinear regression analysis confirmed the oscillation patterning of all assessed zebrafish behavioral endpoints in both open field arenas, revealing a potentially important aspect of novelty exploration in lower vertebrates. Copyright © 2012 Elsevier B.V. All rights reserved.
Multi-Scale Modeling in Morphogenesis: A Critical Analysis of the Cellular Potts Model
Voss-Böhme, Anja
2012-01-01
Cellular Potts models (CPMs) are used as a modeling framework to elucidate mechanisms of biological development. They allow a spatial resolution below the cellular scale and are applied particularly when problems are studied where multiple spatial and temporal scales are involved. Despite the increasing usage of CPMs in theoretical biology, this model class has received little attention from mathematical theory. To narrow this gap, the CPMs are subjected to a theoretical study here. It is asked to which extent the updating rules establish an appropriate dynamical model of intercellular interactions and what the principal behavior at different time scales characterizes. It is shown that the longtime behavior of a CPM is degenerate in the sense that the cells consecutively die out, independent of the specific interdependence structure that characterizes the model. While CPMs are naturally defined on finite, spatially bounded lattices, possible extensions to spatially unbounded systems are explored to assess to which extent spatio-temporal limit procedures can be applied to describe the emergent behavior at the tissue scale. To elucidate the mechanistic structure of CPMs, the model class is integrated into a general multiscale framework. It is shown that the central role of the surface fluctuations, which subsume several cellular and intercellular factors, entails substantial limitations for a CPM's exploitation both as a mechanistic and as a phenomenological model. PMID:22984409
Individual Differences and Auditory Conditioning in Neonates.
ERIC Educational Resources Information Center
Franz, W. K.; And Others
The purposes of this study are (1) to analyze learning ability in newborns using heart rate responses to auditory temporal conditioning and (2) to correlate these with measures on the Brazelton Neonatal Behavioral Assessment Scale. Twenty normal neonates were tested using the Brazelton Scale on the third day of life. They were also given a…
Spatio-temporal error growth in the multi-scale Lorenz'96 model
NASA Astrophysics Data System (ADS)
Herrera, S.; Fernández, J.; Rodríguez, M. A.; Gutiérrez, J. M.
2010-07-01
The influence of multiple spatio-temporal scales on the error growth and predictability of atmospheric flows is analyzed throughout the paper. To this aim, we consider the two-scale Lorenz'96 model and study the interplay of the slow and fast variables on the error growth dynamics. It is shown that when the coupling between slow and fast variables is weak the slow variables dominate the evolution of fluctuations whereas in the case of strong coupling the fast variables impose a non-trivial complex error growth pattern on the slow variables with two different regimes, before and after saturation of fast variables. This complex behavior is analyzed using the recently introduced Mean-Variance Logarithmic (MVL) diagram.
Irresistible ants: exposure to novel toxic prey increases consumption over multiple temporal scales.
Herr, Mark W; Robbins, Travis R; Centi, Alan; Thawley, Christopher J; Langkilde, Tracy
2016-07-01
As species become increasingly exposed to novel challenges, it is critical to understand how evolutionary (i.e., generational) and plastic (i.e., within lifetime) responses work together to determine a species' fate or predict its distribution. The introduction of non-native species imposes novel pressures on the native species that they encounter. Understanding how native species exposed to toxic or distasteful invaders change their feeding behavior can provide insight into their ability to cope with these novel threats as well as broader questions about the evolution of this behavior. We demonstrated that native eastern fence lizards do not avoid consuming invasive fire ants following repeated exposure to this toxic prey. Rather fence lizards increased their consumption of these ants following exposure on three different temporal scales. Lizards ate more fire ants when they were exposed to this toxic prey over successive days. Lizards consumed more fire ants if they had been exposed to fire ants as juveniles 6 months earlier. Finally, lizards from populations exposed to fire ants over multiple generations consumed more fire ants than those from fire ant-free areas. These results suggest that the potentially lethal consumption of fire ants may carry benefits resulting in selection for this behavior, and learning that persists long after initial exposure. Future research on the response of native predators to venomous prey over multiple temporal scales will be valuable in determining the long-term effects of invasion by these novel threats.
Utsumi, Daniel Augusto; Miranda, Mônica Carolina; Muszkat, Mauro
2016-12-30
Temporal Discounting (TD) reflects a tendency to discount a reward more deeply the longer its delivery is delayed. TD tasks and behavioral scales have been used to investigate 'hot' executive functions in ADHD. The present study analyzed TD task performance shown by ADHD and control groups for correlations with emotional self-regulation metrics from two scales, the Behavior Rating Inventory of Executive Functions (BRIEF) and the Child Behavior Checklist (CBCL). Children (ages 8-12) with ADHD (n=25) and controls (n=24) were assessed using material rewards (toys) for three types of task: Hypothetical (H); Hypothetical with temporal expectation (HTE); and Real (R). Between-group differences were found for the HTE task, on which the ADHD group showed a higher rate of discounting their favorite toy over time, especially at 10s and 20s. This was the only task on which performance significantly correlated with BRIEF metrics, thus suggesting associations between impulsivity and low emotional self-regulation, but no task was correlated with CBCL score. The conclusion is that tasks involving toys and HTE in particular may be used to investigate TD in children with ADHD and as a means of evaluating the interface between the reward system and emotional self-regulation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Lattice-level measurement of material strength with LCLS during ultrafast dynamic compression
NASA Astrophysics Data System (ADS)
Milathianaki, Despina; Boutet, Sebastien; Ratner, Daniel; White, William; Williams, Garth; Gleason, Arianna; Swift, Damian; Higginbotham, Andrew; Wark, Justin
2013-10-01
An in-depth understanding of the stress-strain behavior of materials during ultrafast dynamic compression requires experiments that offer in-situ observation of the lattice at the pertinent temporal and spatial scales. To date, the lattice response under extreme strain-rate conditions (>108 s-1) has been inferred predominantly from continuum-level measurements and multi-million atom molecular dynamics simulations. Several time-resolved x-ray diffraction experiments have captured important information on plasticity kinetics, while limited to nanosecond timescales due to the lack of high brilliance ultrafast x-ray sources. Here we present experiments at LCLS combining ultrafast laser-shocks and serial femtosecond x-ray diffraction. The high spectral brightness (~1012 photons per pulse, ΔE/E = 0.2%) and subpicosecond temporal resolution (<100 fs pulsewidth) of the LCLS x-ray free electron laser allow investigations that link simulations and experiments at the fundamental temporal and spatial scales for the first time. We present movies of the lattice undergoing rapid shock-compression, composed by a series of single femtosecond x-ray snapshots, demonstrating the transient behavior while successfully decoupling the elastic and plastic response in polycrystalline Cu.
Jian, Yun; Silvestri, Sonia; Brown, Jeff; Hickman, Rick; Marani, Marco
2014-01-01
An improved understanding of mosquito population dynamics under natural environmental forcing requires adequate field observations spanning the full range of temporal scales over which mosquito abundance fluctuates in natural conditions. Here we analyze a 9-year daily time series of uninterrupted observations of adult mosquito abundance for multiple mosquito species in North Carolina to identify characteristic scales of temporal variability, the processes generating them, and the representativeness of observations at different sampling resolutions. We focus in particular on Aedes vexans and Culiseta melanura and, using a combination of spectral analysis and modeling, we find significant population fluctuations with characteristic periodicity between 2 days and several years. Population dynamical modelling suggests that the observed fast fluctuations scales (2 days-weeks) are importantly affected by a varying mosquito activity in response to rapid changes in meteorological conditions, a process neglected in most representations of mosquito population dynamics. We further suggest that the range of time scales over which adult mosquito population variability takes place can be divided into three main parts. At small time scales (indicatively 2 days-1 month) observed population fluctuations are mainly driven by behavioral responses to rapid changes in weather conditions. At intermediate scales (1 to several month) environmentally-forced fluctuations in generation times, mortality rates, and density dependence determine the population characteristic response times. At longer scales (annual to multi-annual) mosquito populations follow seasonal and inter-annual environmental changes. We conclude that observations of adult mosquito populations should be based on a sub-weekly sampling frequency and that predictive models of mosquito abundance must include behavioral dynamics to separate the effects of a varying mosquito activity from actual changes in the abundance of the underlying population.
Linking the Grain Scale to Experimental Measurements and Other Scales
NASA Astrophysics Data System (ADS)
Vogler, Tracy
2017-06-01
A number of physical processes occur at the scale of grains that can have a profound influence on the behavior of materials under shock loading. Examples include inelastic deformation, pore collapse, fracture, friction, and internal wave reflections. In some cases such as the initiation of energetics and brittle fracture, these processes can have first order effects on the behavior of materials: the emergent behavior from the grain scale is the dominant one. In other cases, many aspects of the bulk behavior can be described by a continuum description, but some details of the behavior are missed by continuum descriptions. The multi-scale model paradigm envisions flow of information from smaller scales (atomic, dislocation, etc.) to the grain or mesoscale and the up to the continuum scale. A significant challenge in this approach is the need to validate each step. For the grain scale, diagnosing behavior is challenging because of the small spatial and temporal scales involved. Spatially resolved diagnostics have begun to shed light on these processes, and, more recently, advanced light sources have started to be used to probe behavior at the grain scale. In this talk, I will discuss some interesting phenomena that occur at the grain scale in shock loading, experimental approaches to probe the grain scale, and efforts to link the grain scale to smaller and larger scales. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE.
Achieving behavioral control with millisecond resolution in a high-level programming environment
Asaad, Wael F.; Eskandar, Emad N.
2008-01-01
The creation of psychophysical tasks for the behavioral neurosciences has generally relied upon low-level software running on a limited range of hardware. Despite the availability of software that allows the coding of behavioral tasks in high-level programming environments, many researchers are still reluctant to trust the temporal accuracy and resolution of programs running in such environments, especially when they run atop non-real-time operating systems. Thus, the creation of behavioral paradigms has been slowed by the intricacy of the coding required and their dissemination across labs has been hampered by the various types of hardware needed. However, we demonstrate here that, when proper measures are taken to handle the various sources of temporal error, accuracy can be achieved at the one millisecond time-scale that is relevant for the alignment of behavioral and neural events. PMID:18606188
Simulating spatial and temporally related fire weather
Isaac C. Grenfell; Mark Finney; Matt Jolly
2010-01-01
Use of fire behavior models has assumed an increasingly important role for managers of wildfire incidents to make strategic decisions. For fire risk assessments and danger rating at very large spatial scales, these models depend on fire weather variables or fire danger indices. Here, we describe a method to simulate fire weather at a national scale that captures the...
Roger D. Ottmar; John I. Blake; William T. Crolly
2012-01-01
The inherent spatial and temporal heterogeneity of fuel beds in forests of the southeastern United States may require fine scale fuel measurements for providing reliable fire hazard and fuel treatment effectiveness estimates. In a series of five papers, an intensive, fine scale fuel inventory from the Savanna River Site in the southeastern United States is used for...
Spatial and Temporal Patterns of Suspended Sediment Yields in Nested Urban Catchments
NASA Astrophysics Data System (ADS)
Kemper, J. T.; Miller, A. J.; Welty, C.
2017-12-01
In a highly regulated area such as the Chesapeake Bay watershed, suspended sediment is a matter of primary concern. Near real-time turbidity and discharge data have been collected continuously for more than four years at five stream gages representing three nested watershed scales (1-2 sq km, 5-6 sq km, 14 sq km) in the highly impervious Dead Run watershed, located in Baltimore County, MD. Using turbidity-concentration relationships based on sample analyses at the gage site, sediment yields for each station can be quantified for a variety of temporal scales. Sediment yields have been calculated for 60+ different storms across four years. Yields show significant spatial variation, both at equivalent sub-watershed scales and from headwaters to mouth. Yields are higher at the headwater station with older development and virtually no stormwater management (DR5) than at the station with more recent development and more extensive stormwater management (DR2). However, this pattern is reversed for the stations at the next larger scale: yields are lower at DR4, downstream of DR5, than at DR3, downstream of DR2. This suggests spatial variation in the dominant sediment sources within each subwatershed. Additionally, C-Q hysteresis curves display consistent counterclockwise behavior at the DR4 station, in contrast to the consistent clockwise behavior displayed at the DR3 station. This further suggests variation in dominant sediment sources (perhaps distal vs local, respectively). We observe consistent seasonal trends in the relative magnitudes of sediment yield for different subwatersheds (e.g. DR3>DR4 in summer, DR5>DR2 in spring). We also observe significant year-to-year variation in sediment yield at the headwater and intermediate scales, whereas yields at the 14 sq km scale are largely similar across the monitored years. This observation would be consistent with the possibility that internal storage and remobilization tend to modulate downstream yields even with spatial and temporal variation in upstream sources. The fine-scale design of this study represents a unique opportunity to compare and contrast sediment yields across a variety of spatial and temporal scales, and provide insight into sediment transport dynamics within an urbanized watershed.
Self Organized Criticality as a new paradigm of sleep regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.; Bartsch, Ronny P.
2012-02-01
Humans and animals often exhibit brief awakenings from sleep (arousals), which are traditionally viewed as random disruptions of sleep caused by external stimuli or pathologic perturbations. However, our recent findings show that arousals exhibit complex temporal organization and scale-invariant behavior, characterized by a power-law probability distribution for their durations, while sleep stage durations exhibit exponential behavior. The co-existence of both scale-invariant and exponential processes generated by a single regulatory mechanism has not been observed in physiological systems until now. Such co-existence resembles the dynamical features of non-equilibrium systems exhibiting self-organized criticality (SOC). Our empirical analysis and modeling approaches based on modern concepts from statistical physics indicate that arousals are an integral part of sleep regulation and may be necessary to maintain and regulate healthy sleep by releasing accumulated excitations in the regulatory neuronal networks, following a SOC-type temporal organization.
Cycles, scaling and crossover phenomenon in length of the day (LOD) time series
NASA Astrophysics Data System (ADS)
Telesca, Luciano
2007-06-01
The dynamics of the temporal fluctuations of the length of the day (LOD) time series from January 1, 1962 to November 2, 2006 were investigated. The power spectrum of the whole time series has revealed annual, semi-annual, decadal and daily oscillatory behaviors, correlated with oceanic-atmospheric processes and interactions. The scaling behavior was analyzed by using the detrended fluctuation analysis (DFA), which has revealed two different scaling regimes, separated by a crossover timescale at approximately 23 days. Flicker-noise process can describe the dynamics of the LOD time regime involving intermediate and long timescales, while Brownian dynamics characterizes the LOD time series for small timescales.
Avalanches and scaling collapse in the large-N Kuramoto model
NASA Astrophysics Data System (ADS)
Coleman, J. Patrick; Dahmen, Karin A.; Weaver, Richard L.
2018-04-01
We study avalanches in the Kuramoto model, defined as excursions of the order parameter due to ephemeral episodes of synchronization. We present scaling collapses of the avalanche sizes, durations, heights, and temporal profiles, extracting scaling exponents, exponent relations, and scaling functions that are shown to be consistent with the scaling behavior of the power spectrum, a quantity independent of our particular definition of an avalanche. A comprehensive scaling picture of the noise in the subcritical finite-N Kuramoto model is developed, linking this undriven system to a larger class of driven avalanching systems.
Jan C. Thomas; Eric V. Mueller; Simon Santamaria; Michael Gallagher; Mohamad El Houssami; Alexander Filkov; Kenneth Clark; Nicholas Skowronski; Rory M. Hadden; William Mell; Albert Simeoni
2017-01-01
An experimental approach has been developed to quantify the characteristics and flux of firebrands during a management-scale wildfire in a pine-dominated ecosystem. By characterizing the local fire behavior and measuring the temporal and spatial variation in firebrand collection, the flux of firebrands has been related to the fire behavior for the first time. This...
SEARCH: Spatially Explicit Animal Response to Composition of Habitat.
Pauli, Benjamin P; McCann, Nicholas P; Zollner, Patrick A; Cummings, Robert; Gilbert, Jonathan H; Gustafson, Eric J
2013-01-01
Complex decisions dramatically affect animal dispersal and space use. Dispersing individuals respond to a combination of fine-scale environmental stimuli and internal attributes. Individual-based modeling offers a valuable approach for the investigation of such interactions because it combines the heterogeneity of animal behaviors with spatial detail. Most individual-based models (IBMs), however, vastly oversimplify animal behavior and such behavioral minimalism diminishes the value of these models. We present program SEARCH (Spatially Explicit Animal Response to Composition of Habitat), a spatially explicit, individual-based, population model of animal dispersal through realistic landscapes. SEARCH uses values in Geographic Information System (GIS) maps to apply rules that animals follow during dispersal, thus allowing virtual animals to respond to fine-scale features of the landscape and maintain a detailed memory of areas sensed during movement. SEARCH also incorporates temporally dynamic landscapes so that the environment to which virtual animals respond can change during the course of a simulation. Animals in SEARCH are behaviorally dynamic and able to respond to stimuli based upon their individual experiences. Therefore, SEARCH is able to model behavioral traits of dispersing animals at fine scales and with many dynamic aspects. Such added complexity allows investigation of unique ecological questions. To illustrate SEARCH's capabilities, we simulated case studies using three mammals. We examined the impact of seasonally variable food resources on the weight distribution of dispersing raccoons (Procyon lotor), the effect of temporally dynamic mortality pressure in combination with various levels of behavioral responsiveness in eastern chipmunks (Tamias striatus), and the impact of behavioral plasticity and home range selection on disperser mortality and weight change in virtual American martens (Martes americana). These simulations highlight the relevance of SEARCH for a variety of applications and illustrate benefits it can provide for conservation planning.
The temporal structures and functional significance of scale-free brain activity
He, Biyu J.; Zempel, John M.; Snyder, Abraham Z.; Raichle, Marcus E.
2010-01-01
SUMMARY Scale-free dynamics, with a power spectrum following P ∝ f-β, are an intrinsic feature of many complex processes in nature. In neural systems, scale-free activity is often neglected in electrophysiological research. Here, we investigate scale-free dynamics in human brain and show that it contains extensive nested frequencies, with the phase of lower frequencies modulating the amplitude of higher frequencies in an upward progression across the frequency spectrum. The functional significance of scale-free brain activity is indicated by task performance modulation and regional variation, with β being larger in default network and visual cortex and smaller in hippocampus and cerebellum. The precise patterns of nested frequencies in the brain differ from other scale-free dynamics in nature, such as earth seismic waves and stock market fluctuations, suggesting system-specific generative mechanisms. Our findings reveal robust temporal structures and behavioral significance of scale-free brain activity and should motivate future study on its physiological mechanisms and cognitive implications. PMID:20471349
Human dynamics of spending: Longitudinal study of a coalition loyalty program
NASA Astrophysics Data System (ADS)
Yi, Il Gu; Jeong, Hyang Min; Choi, Woosuk; Jang, Seungkwon; Lee, Heejin; Kim, Beom Jun
2014-09-01
Large-scale data of a coalition loyalty program is analyzed in terms of the temporal dynamics of customers' behaviors. We report that the two main activities of a loyalty program, earning and redemption of points, exhibit very different behaviors. It is also found that as customers become older from their early 20's, both male and female customers increase their earning and redemption activities until they arrive at the turning points, beyond which both activities decrease. The positions of turning points as well as the maximum earned and redeemed points are found to differ for males and females. On top of these temporal behaviors, we identify that there exists a learning effect and customers learn how to earn and redeem points as their experiences accumulate in time.
Spatiotemporal Spike Coding of Behavioral Adaptation in the Dorsal Anterior Cingulate Cortex
Logiaco, Laureline; Quilodran, René; Procyk, Emmanuel; Arleo, Angelo
2015-01-01
The frontal cortex controls behavioral adaptation in environments governed by complex rules. Many studies have established the relevance of firing rate modulation after informative events signaling whether and how to update the behavioral policy. However, whether the spatiotemporal features of these neuronal activities contribute to encoding imminent behavioral updates remains unclear. We investigated this issue in the dorsal anterior cingulate cortex (dACC) of monkeys while they adapted their behavior based on their memory of feedback from past choices. We analyzed spike trains of both single units and pairs of simultaneously recorded neurons using an algorithm that emulates different biologically plausible decoding circuits. This method permits the assessment of the performance of both spike-count and spike-timing sensitive decoders. In response to the feedback, single neurons emitted stereotypical spike trains whose temporal structure identified informative events with higher accuracy than mere spike count. The optimal decoding time scale was in the range of 70–200 ms, which is significantly shorter than the memory time scale required by the behavioral task. Importantly, the temporal spiking patterns of single units were predictive of the monkeys’ behavioral response time. Furthermore, some features of these spiking patterns often varied between jointly recorded neurons. All together, our results suggest that dACC drives behavioral adaptation through complex spatiotemporal spike coding. They also indicate that downstream networks, which decode dACC feedback signals, are unlikely to act as mere neural integrators. PMID:26266537
Temporal scaling and spatial statistical analyses of groundwater level fluctuations
NASA Astrophysics Data System (ADS)
Sun, H.; Yuan, L., Sr.; Zhang, Y.
2017-12-01
Natural dynamics such as groundwater level fluctuations can exhibit multifractionality and/or multifractality due likely to multi-scale aquifer heterogeneity and controlling factors, whose statistics requires efficient quantification methods. This study explores multifractionality and non-Gaussian properties in groundwater dynamics expressed by time series of daily level fluctuation at three wells located in the lower Mississippi valley, after removing the seasonal cycle in the temporal scaling and spatial statistical analysis. First, using the time-scale multifractional analysis, a systematic statistical method is developed to analyze groundwater level fluctuations quantified by the time-scale local Hurst exponent (TS-LHE). Results show that the TS-LHE does not remain constant, implying the fractal-scaling behavior changing with time and location. Hence, we can distinguish the potentially location-dependent scaling feature, which may characterize the hydrology dynamic system. Second, spatial statistical analysis shows that the increment of groundwater level fluctuations exhibits a heavy tailed, non-Gaussian distribution, which can be better quantified by a Lévy stable distribution. Monte Carlo simulations of the fluctuation process also show that the linear fractional stable motion model can well depict the transient dynamics (i.e., fractal non-Gaussian property) of groundwater level, while fractional Brownian motion is inadequate to describe natural processes with anomalous dynamics. Analysis of temporal scaling and spatial statistics therefore may provide useful information and quantification to understand further the nature of complex dynamics in hydrology.
Criticality and Phase Transition in Stock-Price Fluctuations
NASA Astrophysics Data System (ADS)
Kiyono, Ken; Struzik, Zbigniew R.; Yamamoto, Yoshiharu
2006-02-01
We analyze the behavior of the U.S. S&P 500 index from 1984 to 1995, and characterize the non-Gaussian probability density functions (PDF) of the log returns. The temporal dependence of fat tails in the PDF of a ten-minute log return shows a gradual, systematic increase in the probability of the appearance of large increments on approaching black Monday in October 1987, reminiscent of parameter tuning towards criticality. On the occurrence of the black Monday crash, this culminates in an abrupt transition of the scale dependence of the non-Gaussian PDF towards scale-invariance characteristic of critical behavior. These facts suggest the need for revisiting the turbulent cascade paradigm recently proposed for modeling the underlying dynamics of the financial index, to account for time varying—phase transitionlike and scale invariant-critical-like behavior.
Two distinct subtypes of right temporal variant frontotemporal dementia
Josephs, K A.; Whitwell, J L.; Knopman, D S.; Boeve, B F.; Vemuri, P; Senjem, M L.; Parisi, J E.; Ivnik, R J.; Dickson, D W.; Petersen, R C.; Jack, C R.
2009-01-01
Background: Right temporal frontotemporal dementia (FTD) is an anatomic variant of FTD associated with relatively distinct behavioral and cognitive symptoms. We aimed to determine whether right temporal FTD is a homogeneous clinical, imaging, and pathologic/genetic entity. Methods: In this case-control study, 101 subjects with FTD were identified. Atlas-based parcellation generated temporal, frontal, and parietal grey matter volumes which were used to identify subjects with a right temporal dominant atrophy pattern. Clinical, neuropsychological, genetic, and neuropathologic features were reviewed. The subjects with right temporal FTD were grouped by initial clinical diagnosis and voxel-based morphometry was used to assess grey matter loss in the different groups, compared to controls, and each other. Results: We identified 20 subjects with right temporal FTD. Twelve had been initially diagnosed with behavioral variant FTD (bvFTD), and the other 8 with semantic dementia (SMD). Personality change and inappropriate behaviors were more frequent in the bvFTD group, while prosopagnosia, word-finding difficulties, comprehension problems, and topographagnosia were more frequent in the SMD group. The bvFTD group showed greater loss in frontal lobes than the SMD group. The SMD group showed greater fusiform loss than the bvFTD group. All 8 bvFTD subjects with pathologic/genetic diagnosis showed abnormalities in tau protein (7 with tau mutations), while all three SMD subjects with pathology showed abnormalities in TDP-43 (p = 0.006). Conclusions: We have identified 2 subtypes of right temporal variant frontotemporal dementia (FTD) allowing further differentiation of FTD subjects with underlying tau pathology from those with TDP-43 pathology. GLOSSARY ADPR = Alzheimer Disease Patient Registry; ADRC = Alzheimer Disease Research Center; bvFTD = behavioral variant frontotemporal dementia; CDR-SB = Clinical Dementia Rating Scale sum of boxes; FDR = False Discovery Rate; FTD = frontotemporal dementia; MMSE = Mini-Mental State Examination; NPI = Neuropsychiatric Inventory; SMD = semantic dementia; TPM = tissue probability map; VBM = voxel-based morphometry. PMID:19884571
Selective attention to temporal features on nested time scales.
Henry, Molly J; Herrmann, Björn; Obleser, Jonas
2015-02-01
Meaningful auditory stimuli such as speech and music often vary simultaneously along multiple time scales. Thus, listeners must selectively attend to, and selectively ignore, separate but intertwined temporal features. The current study aimed to identify and characterize the neural network specifically involved in this feature-selective attention to time. We used a novel paradigm where listeners judged either the duration or modulation rate of auditory stimuli, and in which the stimulation, working memory demands, response requirements, and task difficulty were held constant. A first analysis identified all brain regions where individual brain activation patterns were correlated with individual behavioral performance patterns, which thus supported temporal judgments generically. A second analysis then isolated those brain regions that specifically regulated selective attention to temporal features: Neural responses in a bilateral fronto-parietal network including insular cortex and basal ganglia decreased with degree of change of the attended temporal feature. Critically, response patterns in these regions were inverted when the task required selectively ignoring this feature. The results demonstrate how the neural analysis of complex acoustic stimuli with multiple temporal features depends on a fronto-parietal network that simultaneously regulates the selective gain for attended and ignored temporal features. © The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
A diffusion perspective on temporal networks: A case study on a supermarket
NASA Astrophysics Data System (ADS)
Deng, Shiguo; Qiu, Lu; Yang, Yue; Yang, Huijie
2016-01-01
From a large amount of records, one can extract behavioral characteristics of a social system at different scales. Theoretically, it can help us to know how the global behavior of a social system is formed from individual activities. Practically, it can be used to optimize and even to control the social system. Complicated relationships between the individuals form a network, which evolves with time. The behavior of the system can be accordingly understood in the framework of temporal network. In the present paper, instead of focusing on microscopic structures, we develop a framework to investigate temporal networks from the viewpoint of diffusion process, in which each snapshot network is divided into groups and the ID number of the group a node belongs to is used to measure its state. By this way trajectories of the nodes form an ensemble of realizations of a stochastic process. As an illustration, we investigate the diffusion behavior of a supermarket. One can find that with the increase of time the customers cluster and separate into different groups. Meanwhile, the system evolves in a significant order way, instead of a complete random one.
Properties of the Residual Stress of the Temporally Filtered Navier-Stokes Equations
NASA Technical Reports Server (NTRS)
Pruett, C. D.; Gatski, T. B.; Grosch, C. E.; Thacker, W. D.
2002-01-01
The development of a unifying framework among direct numerical simulations, large-eddy simulations, and statistically averaged formulations of the Navier-Stokes equations, is of current interest. Toward that goal, the properties of the residual (subgrid-scale) stress of the temporally filtered Navier-Stokes equations are carefully examined. Causal time-domain filters, parameterized by a temporal filter width 0 less than Delta less than infinity, are considered. For several reasons, the differential forms of such filters are preferred to their corresponding integral forms; among these, storage requirements for differential forms are typically much less than for integral forms and, for some filters, are independent of Delta. The behavior of the residual stress in the limits of both vanishing and in infinite filter widths is examined. It is shown analytically that, in the limit Delta to 0, the residual stress vanishes, in which case the Navier-Stokes equations are recovered from the temporally filtered equations. Alternately, in the limit Delta to infinity, the residual stress is equivalent to the long-time averaged stress, and the Reynolds-averaged Navier-Stokes equations are recovered from the temporally filtered equations. The predicted behavior at the asymptotic limits of filter width is further validated by numerical simulations of the temporally filtered forced, viscous Burger's equation. Finally, finite filter widths are also considered, and a priori analyses of temporal similarity and temporal approximate deconvolution models of the residual stress are conducted.
Ren, Jingli; Chen, Cun; Wang, Gang; ...
2017-03-22
This study explores the temporal scaling behavior induced shear-branching structure in response to variant temperatures and strain rates during plastic deformation of Zr-based bulk metallic glass (BMG). The data analysis based on the compression tests suggests that there are two states of shear-branching structures: the fractal structure with a long-range order at an intermediate temperature of 223 K and a larger strain rate of 2.5 × 10 –2 s –1; the disordered structure dominated at other temperature and strain rate. It can be deduced from the percolation theory that the compressive ductility, ec, can reach the maximum value at themore » intermediate temperature. Furthermore, a dynamical model involving temperature is given for depicting the shear-sliding process, reflecting the plastic deformation has fractal structure at the temperature of 223 K and strain rate of 2.5 × 10 –2 s –1.« less
NASA Technical Reports Server (NTRS)
Maynard, Nelson C.
2004-01-01
Our analysis concerns macro and meso-scale aspects of coupling between the IMF and the magnetosphere-ionosphere system, as opposed to the microphysics of determining how electron gyrotropy is broken and merging actually occurs. We correlate observed behaviors at Cluster and at Polar with temporal variations in other regions, such as in the ionosphere as measured by SuperDARN. Addressing problems with simultaneous observations from diverse locations properly constrains our interpretations.
Characterization of Tissue Structure at Varying Length Scales Using Temporal Diffusion Spectroscopy
Gore, John C.; Xu, Junzhong; Colvin, Daniel C.; Yankeelov, Thomas E.; Parsons, Edward C.; Does, Mark D.
2011-01-01
The concepts, theoretical behavior and experimental applications of temporal diffusion spectroscopy are reviewed and illustrated. Temporal diffusion spectra are obtained by using oscillating gradient waveforms in diffusion-weighted measurements, and represent the manner in which various spectral components of molecular velocity correlations vary in different geometrical structures that restrict or hinder free movements. Measurements made at different gradient frequencies reveal information on the scale of restrictions or hindrances to free diffusion, and the shape of a spectrum reveals the relative contributions of spatial restrictions at different distance scales. Such spectra differ from other so-called diffusion spectra which depict spatial frequencies and are defined at a fixed diffusion time. Experimentally, oscillating gradients at moderate frequency are more feasible for exploring restrictions at very short distances, which in tissues correspond to structures smaller than cells. We describe the underlying concepts of temporal diffusion spectra and provide analytical expressions for the behavior of the diffusion coefficient as a function of gradient frequency in simple geometries with different dimensions. Diffusion in more complex model media that mimic tissues has been simulated using numerical methods. Experimental measurements of diffusion spectra have been obtained in suspensions of particles and cells, as well as in vivo in intact animals. An observation of particular interest is the increased contrast and heterogeneity observed in tumors using oscillating gradients at moderate frequency compared to conventional pulse gradient methods, and the potential for detecting changes in tumors early in their response to treatment. Computer simulations suggest that diffusion spectral measurements may be sensitive to intracellular structures such as nuclear size, and that changes in tissue diffusion properties may be measured before there are changes in cell density. PMID:20677208
Using Wavelets to Evaluate Persistence of High Frequency Hydrologic and Hydrochemistry Signals
NASA Astrophysics Data System (ADS)
Koirala, S. R.; Gentry, R. W.
2009-12-01
In the area of sustainability science, it is becoming increasingly important to understand the basal condition of a natural system, and its long-term behavior. Research is needed to better understand the temporal scaling of hydrochemistry in streams and watersheds and its relationship to the hydrologic factors that influence its behavior. Persistence of dissolved chemicals in streams has been demonstrated to be linked to certain hydrologic processes, such as interactions between hydrologic units and storage in surface or sub-surface systems. In this study, wavelet analyses provided a novel theoretical basis for insights into long-term hydrochemistry behavior in an east Tennessee watershed. Temporal analyses were conducted on weekly time series data of hydrochemistry (nitrate, chloride, sulfate and calcium concentrations) collected from November 1995 to December 2005 at the West Fork of Walker Branch in Oak Ridge, Tennessee. Hydrochemistry plays an important role in ecosystem services, particularly nitrate, and in general the signal responses can be complex. The signals in this study were modeled using a wavelet approach as a mechanism for evaluating short-and long term temporal effects. The Walker Branch conceptual hydrology model is augmented by these results that show characteristic periodicities or structures for flowpath lengths in the vadose zone (< 20 week period), saturated zone (20 to 50 week period) and bedrock zone (> 50 week period) with implications for hydrochemistry within the watershed. In general, time series signals of watershed hydrochemistry may provide clues as to broad environmental, ecological and economic impacts at the basin scale.
THEORETICAL REVIEW The Hippocampus, Time, and Memory Across Scales
Howard, Marc W.; Eichenbaum, Howard
2014-01-01
A wealth of experimental studies with animals have offered insights about how neural networks within the hippocampus support the temporal organization of memories. These studies have revealed the existence of “time cells” that encode moments in time, much as the well-known “place cells” map locations in space. Another line of work inspired by human behavioral studies suggests that episodic memories are mediated by a state of temporal context that changes gradually over long time scales, up to at least a few thousand seconds. In this view, the “mental time travel” hypothesized to support the experience of episodic memory corresponds to a “jump back in time” in which a previous state of temporal context is recovered. We suggest that these 2 sets of findings could be different facets of a representation of temporal history that maintains a record at the last few thousand seconds of experience. The ability to represent long time scales comes at the cost of discarding precise information about when a stimulus was experienced—this uncertainty becomes greater for events further in the past. We review recent computational work that describes a mechanism that could construct such a scale-invariant representation. Taken as a whole, this suggests the hippocampus plays its role in multiple aspects of cognition by representing events embedded in a general spatiotemporal context. The representation of internal time can be useful across nonhippocampal memory systems. PMID:23915126
The dark side of light at night: physiological, epidemiological, and ecological consequences.
Navara, Kristen J; Nelson, Randy J
2007-10-01
Organisms must adapt to the temporal characteristics of their surroundings to successfully survive and reproduce. Variation in the daily light cycle, for example, acts through endocrine and neurobiological mechanisms to control several downstream physiological and behavioral processes. Interruptions in normal circadian light cycles and the resulting disruption of normal melatonin rhythms cause widespread disruptive effects involving multiple body systems, the results of which can have serious medical consequences for individuals, as well as large-scale ecological implications for populations. With the invention of electrical lights about a century ago, the temporal organization of the environment has been drastically altered for many species, including humans. In addition to the incidental exposure to light at night through light pollution, humans also engage in increasing amounts of shift-work, resulting in repeated and often long-term circadian disruption. The increasing prevalence of exposure to light at night has significant social, ecological, behavioral, and health consequences that are only now becoming apparent. This review addresses the complicated web of potential behavioral and physiological consequences resulting from exposure to light at night, as well as the large-scale medical and ecological implications that may result.
Multiscale analysis of the intensity fluctuation in a time series of dynamic speckle patterns.
Federico, Alejandro; Kaufmann, Guillermo H
2007-04-10
We propose the application of a method based on the discrete wavelet transform to detect, identify, and measure scaling behavior in dynamic speckle. The multiscale phenomena presented by a sample and displayed by its speckle activity are analyzed by processing the time series of dynamic speckle patterns. The scaling analysis is applied to the temporal fluctuation of the speckle intensity and also to the two derived data sets generated by its magnitude and sign. The application of the method is illustrated by analyzing paint-drying processes and bruising in apples. The results are discussed taking into account the different time organizations obtained for the scaling behavior of the magnitude and the sign of the intensity fluctuation.
Temporal dynamics of biogeochemical processes at the Norman Landfill site
Arora, Bhavna; Mohanty, Binayak P.; McGuire, Jennifer T.; Cozzarelli, Isabelle M.
2013-01-01
The temporal variability observed in redox sensitive species in groundwater can be attributed to coupled hydrological, geochemical, and microbial processes. These controlling processes are typically nonstationary, and distributed across various time scales. Therefore, the purpose of this study is to investigate biogeochemical data sets from a municipal landfill site to identify the dominant modes of variation and determine the physical controls that become significant at different time scales. Data on hydraulic head, specific conductance, δ2H, chloride, sulfate, nitrate, and nonvolatile dissolved organic carbon were collected between 1998 and 2000 at three wells at the Norman Landfill site in Norman, OK. Wavelet analysis on this geochemical data set indicates that variations in concentrations of reactive and conservative solutes are strongly coupled to hydrologic variability (water table elevation and precipitation) at 8 month scales, and to individual eco-hydrogeologic framework (such as seasonality of vegetation, surface-groundwater dynamics) at 16 month scales. Apart from hydrologic variations, temporal variability in sulfate concentrations can be associated with different sources (FeS cycling, recharge events) and sinks (uptake by vegetation) depending on the well location and proximity to the leachate plume. Results suggest that nitrate concentrations show multiscale behavior across temporal scales for different well locations, and dominant variability in dissolved organic carbon for a closed municipal landfill can be larger than 2 years due to its decomposition and changing content. A conceptual framework that explains the variability in chemical concentrations at different time scales as a function of hydrologic processes, site-specific interactions, and/or coupled biogeochemical effects is also presented.
Double dynamic scaling in human communication dynamics
NASA Astrophysics Data System (ADS)
Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua
2017-05-01
In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.
Persistent neuronal activity in human prefrontal cortex links perception and action
Haller, Matar; Case, John; Crone, Nathan E.; Chang, Edward F.; King-Stephens, David; Laxer, Kenneth D.; Weber, Peter B.; Parvizi, Josef; Knight, Robert T.; Shestyuk, Avgusta Y.
2017-01-01
How do humans flexibly respond to changing environmental demands on a sub-second temporal scale? Extensive research has highlighted the key role of the prefrontal cortex in flexible decision-making and adaptive behavior, yet the core mechanisms that translate sensory information into behavior remain undefined. Utilizing direct human cortical recordings, we investigated the temporal and spatial evolution of neuronal activity, indexed by the broadband gamma signal, while sixteen participants performed a broad range of self-paced cognitive tasks. Here we describe a robust domain- and modality-independent pattern of persistent stimulus-to-response neural activation that encodes stimulus features and predicts motor output on a trial-by-trial basis with near-perfect accuracy. Observed across a distributed network of brain areas, this persistent neural activation is centered in the prefrontal cortex and is required for successful response implementation, providing a functional substrate for domain-general transformation of perception into action, critical for flexible behavior.
Scaling behavior of nonisothermal phase separation.
Rüllmann, Max; Alig, Ingo
2004-04-22
The phase separation process in a critical mixture of polydimethylsiloxane and polyethylmethylsiloxane (PDMS/PEMS, a system with an upper critical solution temperature) was investigated by time-resolved light scattering during continuous quenches from the one-phase into the two-phase region. Continuous quenches were realized by cooling ramps with different cooling rates kappa. Phase separation kinetics is studied by means of the temporal evolution of the scattering vector qm and the intensity Im at the scattering peak. The curves qm(t) for different cooling rates can be shifted onto a single mastercurve. The curves Im(t) show similar behavior. As shift factors, a characteristic length Lc and a characteristic time tc are introduced. Both characteristic quantities depend on the cooling rate through power laws: Lc approximately kappa(-delta) and tc approximately kappa(-rho). Scaling behavior in isothermal critical demixing is well known. There the temporal evolutions of qm and Im for different quench depths DeltaT can be scaled with the correlation length xi and the interdiffusion coefficient D, both depending on DeltaT through critical power laws. We show in this paper that the cooling rate scaling in nonisothermal demixing is a consequence of the quench depth scaling in the isothermal case. The exponents delta and rho are related to the critical exponents nu and nu* of xi and D, respectively. The structure growth during nonisothermal demixing can be described with a semiempirical model based on the hydrodynamic coarsening mechanism well known in the isothermal case. In very late stages of nonisothermal phase separation a secondary scattering maximum appears. This is due to secondary demixing. We explain the onset of secondary demixing by a competition between interdiffusion and coarsening. (c) 2004 American Institute of Physics
Wang, S Q; Zhang, H Y; Li, Z L
2016-10-01
Understanding spatio-temporal distribution of pest in orchards can provide important information that could be used to design monitoring schemes and establish better means for pest control. In this study, the spatial and temporal distribution of Bactrocera minax (Enderlein) (Diptera: Tephritidae) was assessed, and activity trends were evaluated by using probability kriging. Adults of B. minax were captured in two successive occurrences in a small-scale citrus orchard by using food bait traps, which were placed both inside and outside the orchard. The weekly spatial distribution of B. minax within the orchard and adjacent woods was examined using semivariogram parameters. The edge concentration was discovered during the most weeks in adult occurrence, and the population of the adults aggregated with high probability within a less-than-100-m-wide band on both of the sides of the orchard and the woods. The sequential probability kriged maps showed that the adults were estimated in the marginal zone with higher probability, especially in the early and peak stages. The feeding, ovipositing, and mating behaviors of B. minax are possible explanations for these spatio-temporal patterns. Therefore, spatial arrangement and distance to the forest edge of traps or spraying spot should be considered to enhance pest control on B. minax in small-scale orchards.
Interaction-Dominant Dynamics in Human Cognition: Beyond 1/f[superscript [alpha
ERIC Educational Resources Information Center
Ihlen, Espen A. F.; Vereijken, Beatrix
2010-01-01
It has been suggested that human behavior in general and cognitive performance in particular emerge from coordination between multiple temporal scales. In this article, we provide quantitative support for such a theory of interaction-dominant dynamics in human cognition by using wavelet-based multifractal analysis and accompanying multiplicative…
ITAG: A fine-scale measurement platform to inform organismal response to a changing ocean
NASA Astrophysics Data System (ADS)
Katija, K.; Shorter, K. A.; Mooney, T. A.; Mann, D.; Wang, A. Z.; Sonnichsen, F. N.
2016-02-01
Soft-bodied marine invertebrates comprise a keystone component of ocean ecosystems, however we know little of their behaviors and physiological responses within their natural habitat. Quantifying ocean conditions and measuring an organisms' response to the physical environment is vital to understanding organismal responses to a changing ocean. However, we face technological limitations when attempting to quantify the physical and environmental conditions that organisms encounter at spatial and temporal scales of an individual organism. Here we describe a novel, eco-sensor tag (the ITAG) that has 3-axis accelerometer, 3-axis magnetometer, pressure, temperature, and light sensors. Current and future efforts involve miniaturizing and integrating O2 and salinity sensors to the ITAG. The tagging package is designed to be neutrally buoyant, and after a prescribed time, the electronics separate from a weighted base and floats to the surface. Tags were deployed on five jellyfish (Aurelia aurita) and eight squid (Loligo forbesi) in laboratory conditions for up to 24 hr. Using concurrent video and tag data, movement signatures for specific behaviors were identified. Based on these laboratory trials, we found that squid activity level changed in response to ambient light conditions, which can inform trade-offs between behavior and energy expenditure in captive and wild animals. The ITAG opens the door for lab and field-based measurements of behavior, physiology, and concurrent environmental parameters that not only inform interactions in a changing ocean, but also provides a novel platform by which characterization of the environment can be conducted at fine spatial and temporal scales.
Spawning site selection and contingent behavior in Common Snook, Centropomus undecimalis.
Lowerre-Barbieri, Susan; Villegas-Ríos, David; Walters, Sarah; Bickford, Joel; Cooper, Wade; Muller, Robert; Trotter, Alexis
2014-01-01
Reproductive behavior affects spatial population structure and our ability to manage for sustainability in marine and diadromous fishes. In this study, we used fishery independent capture-based sampling to evaluate where Common Snook occurred in Tampa Bay and if it changed with spawning season, and passive acoustic telemetry to assess fine scale behavior at an inlet spawning site (2007-2009). Snook concentrated in three areas during the spawning season only one of which fell within the expected spawning habitat. Although in lower numbers, they remained in these areas throughout the winter months. Acoustically-tagged snook (n = 31) showed two seasonal patterns at the spawning site: Most fish occurred during the spawning season but several fish displayed more extended residency, supporting the capture-based findings that Common Snook exhibit facultative catadromy. Spawning site selection for iteroparous, multiple-batch spawning fishes occurs at the lifetime, annual, or intra-annual temporal scales. In this study we show colonization of a new spawning site, indicating that lifetime spawning site fidelity of Common Snook is not fixed at this fine spatial scale. However, individuals did exhibit annual and intra-seasonal spawning site fidelity to this new site over the three years studied. The number of fish at the spawning site increased in June and July (peak spawning months) and on new and full lunar phases indicating within population variability in spawning and movement patterns. Intra-seasonal patterns of detection also differed significantly with sex. Common Snook exhibited divergent migration tactics and habitat use at the annual and estuarine scales, with contingents using different overwintering habitat. Migration tactics also varied at the spawning site at the intra-seasonal scale and with sex. These results have important implications for understanding how reproductive behavior affects spatio-temporal patterns of fish abundance and their resilience to disturbance events and fishing pressure.
Viviant, Morgane; Monestiez, Pascal; Guinet, Christophe
2014-01-01
Predicting how climatic variations will affect marine predator populations relies on our ability to assess foraging success, but evaluating foraging success in a marine predator at sea is particularly difficult. Dive metrics are commonly available for marine mammals, diving birds and some species of fish. Bottom duration or dive duration are usually used as proxies for foraging success. However, few studies have tried to validate these assumptions and identify the set of behavioral variables that best predict foraging success at a given time scale. The objective of this study was to assess if foraging success in Antarctic fur seals could be accurately predicted from dive parameters only, at different temporal scales. For this study, 11 individuals were equipped with either Hall sensors or accelerometers to record dive profiles and detect mouth-opening events, which were considered prey capture attempts. The number of prey capture attempts was best predicted by descent and ascent rates at the dive scale; bottom duration and descent rates at 30-min, 1-h, and 2-h scales; and ascent rates and maximum dive depths at the all-night scale. Model performances increased with temporal scales, but rank and sign of the factors varied according to the time scale considered, suggesting that behavioral adjustment in response to prey distribution could occur at certain scales only. The models predicted the foraging intensity of new individuals with good accuracy despite high inter-individual differences. Dive metrics that predict foraging success depend on the species and the scale considered, as verified by the literature and this study. The methodology used in our study is easy to implement, enables an assessment of model performance, and could be applied to any other marine predator. PMID:24603534
Pond fractals in a tidal flat.
Cael, B B; Lambert, Bennett; Bisson, Kelsey
2015-11-01
Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.
NASA Astrophysics Data System (ADS)
Cael, B. B.; Lambert, Bennett; Bisson, Kelsey
2015-11-01
Studies over the past decade have reported power-law distributions for the areas of terrestrial lakes and Arctic melt ponds, as well as fractal relationships between their areas and coastlines. Here we report similar fractal structure of ponds in a tidal flat, thereby extending the spatial and temporal scales on which such phenomena have been observed in geophysical systems. Images taken during low tide of a tidal flat in Damariscotta, Maine, reveal a well-resolved power-law distribution of pond sizes over three orders of magnitude with a consistent fractal area-perimeter relationship. The data are consistent with the predictions of percolation theory for unscreened perimeters and scale-free cluster size distributions and are robust to alterations of the image processing procedure. The small spatial and temporal scales of these data suggest this easily observable system may serve as a useful model for investigating the evolution of pond geometries, while emphasizing the generality of fractal behavior in geophysical surfaces.
NASA Astrophysics Data System (ADS)
Panagiotopoulos, Paris; Kolesik, Miroslav; Moloney, Jerome V.
2016-09-01
We numerically investigate the scaling behavior of midinfrared filaments at extremely high input energies. It is shown that, given sufficient power, kilometer-scale, low-loss atmospheric filamentation is attainable by prechirping the pulse. Fully resolved four-dimensional (x y z t ) simulations show that, while in a spatially imperfect beam the modulation instability can lead to multiple hot-spot formation, the individual filaments are still stabilized by the recently proposed mechanism that relies on the temporal walk-off of short-wavelength radiation.
Individual consistency in the behaviors of newly-settled reef fish
Meekan, Mark G.; McCormick, Mark I.
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish. PMID:26020013
Individual consistency in the behaviors of newly-settled reef fish.
White, James R; Meekan, Mark G; McCormick, Mark I
2015-01-01
Flexibility in behavior is advantageous for organisms that transition between stages of a complex life history. However, various constraints can set limits on plasticity, giving rise to the existence of personalities that have associated costs and benefits. Here, we document a field and laboratory experiment that examines the consistency of measures of boldness, activity, and aggressive behavior in the young of a tropical reef fish, Pomacentrus amboinensis (Pomacentridae) immediately following their transition between pelagic larval and benthic juvenile habitats. Newly-settled fish were observed in aquaria and in the field on replicated patches of natural habitat cleared of resident fishes. Seven behavioral traits representing aspects of boldness, activity and aggression were monitored directly and via video camera over short (minutes), medium (hours), and long (3 days) time scales. With the exception of aggression, these behaviors were found to be moderately or highly consistent over all time scales in both laboratory and field settings, implying that these fish show stable personalities within various settings. Our study is the first to examine the temporal constancy of behaviors in both field and laboratory settings in over various time scales at a critically important phase during the life cycle of a reef fish.
Differential Hedonic Experience and Behavioral Activation in Schizophrenia and Bipolar Disorder
Tso, Ivy F.; Grove, Tyler B.; Taylor, Stephan F.
2014-01-01
The Kraepelinian distinction between schizophrenia (SZ) and bipolar disorder (BP) emphasizes affective and volitional impairment in the former, but data directly comparing the two disorders for hedonic experience are scarce. This study examined whether hedonic experience and behavioral activation may be useful phenotypes distinguishing SZ and BP. Participants were 39 SZ and 24 BP patients without current mood episode matched for demographics and negative affect, along with 36 healthy controls (HC). They completed the Chapman Physical and Social Anhedonia Scales, Temporal Experience of Pleasure Scale (TEPS), and Behavioral Activation Scale (BAS). SZ and BP showed equally elevated levels of self-report negative affect and trait anhedonia compared to HC. However, SZ reported significantly lower pleasure experience (TEPS) and behavioral activation (BAS) than BP, who did not differ from HC. SZ and BP showed differential patterns of relationships between the hedonic experience and behavioral activation measures. Overall, the results suggest that reduced hedonic experience and behavioral activation may be effective phenotypes distinguishing SZ from BP even when affective symptoms are minimal. However, hedonic experience differences between SZ and BP are sensitive to measurement strategy, calling for further research on the nature of anhedonia and its relation to motivation in these disorders. PMID:24999173
McKinstry, Jeffrey L; Edelman, Gerald M
2013-01-01
Animal behavior often involves a temporally ordered sequence of actions learned from experience. Here we describe simulations of interconnected networks of spiking neurons that learn to generate patterns of activity in correct temporal order. The simulation consists of large-scale networks of thousands of excitatory and inhibitory neurons that exhibit short-term synaptic plasticity and spike-timing dependent synaptic plasticity. The neural architecture within each area is arranged to evoke winner-take-all (WTA) patterns of neural activity that persist for tens of milliseconds. In order to generate and switch between consecutive firing patterns in correct temporal order, a reentrant exchange of signals between these areas was necessary. To demonstrate the capacity of this arrangement, we used the simulation to train a brain-based device responding to visual input by autonomously generating temporal sequences of motor actions.
Anatomical Correlates of Non-Verbal Perception in Dementia Patients
Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih
2016-01-01
Purpose: Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. Methods: To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer’s dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. Results: The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Conclusions: Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits. PMID:27630558
Anatomical Correlates of Non-Verbal Perception in Dementia Patients.
Lin, Pin-Hsuan; Chen, Hsiu-Hui; Chen, Nai-Ching; Chang, Wen-Neng; Huang, Chi-Wei; Chang, Ya-Ting; Hsu, Shih-Wei; Hsu, Che-Wei; Chang, Chiung-Chih
2016-01-01
Patients with dementia who have dissociations in verbal and non-verbal sound processing may offer insights into the anatomic basis for highly related auditory modes. To determine the neuronal networks on non-verbal perception, 16 patients with Alzheimer's dementia (AD), 15 with behavior variant fronto-temporal dementia (bv-FTD), 14 with semantic dementia (SD) were evaluated and compared with 15 age-matched controls. Neuropsychological and auditory perceptive tasks were included to test the ability to compare pitch changes, scale-violated melody and for naming and associating with environmental sound. The brain 3D T1 images were acquired and voxel-based morphometry (VBM) was used to compare and correlated the volumetric measures with task scores. The SD group scored the lowest among 3 groups in pitch or scale-violated melody tasks. In the environmental sound test, the SD group also showed impairment in naming and also in associating sound with pictures. The AD and bv-FTD groups, compared with the controls, showed no differences in all tests. VBM with task score correlation showed that atrophy in the right supra-marginal and superior temporal gyri was strongly related to deficits in detecting violated scales, while atrophy in the bilateral anterior temporal poles and left medial temporal structures was related to deficits in environmental sound recognition. Auditory perception of pitch, scale-violated melody or environmental sound reflects anatomical degeneration in dementia patients and the processing of non-verbal sounds are mediated by distinct neural circuits.
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Wavelet-based surrogate time series for multiscale simulation of heterogeneous catalysis
Savara, Aditya Ashi; Daw, C. Stuart; Xiong, Qingang; ...
2016-01-28
We propose a wavelet-based scheme that encodes the essential dynamics of discrete microscale surface reactions in a form that can be coupled with continuum macroscale flow simulations with high computational efficiency. This makes it possible to simulate the dynamic behavior of reactor-scale heterogeneous catalysis without requiring detailed concurrent simulations at both the surface and continuum scales using different models. Our scheme is based on the application of wavelet-based surrogate time series that encodes the essential temporal and/or spatial fine-scale dynamics at the catalyst surface. The encoded dynamics are then used to generate statistically equivalent, randomized surrogate time series, which canmore » be linked to the continuum scale simulation. As a result, we illustrate an application of this approach using two different kinetic Monte Carlo simulations with different characteristic behaviors typical for heterogeneous chemical reactions.« less
Benchmarking sheath subgrid boundary conditions for macroscopic-scale simulations
NASA Astrophysics Data System (ADS)
Jenkins, T. G.; Smithe, D. N.
2015-02-01
The formation of sheaths near metallic or dielectric-coated wall materials in contact with a plasma is ubiquitous, often giving rise to physical phenomena (sputtering, secondary electron emission, etc) which influence plasma properties and dynamics both near and far from the material interface. In this paper, we use first-principles PIC simulations of such interfaces to formulate a subgrid sheath boundary condition which encapsulates fundamental aspects of the sheath behavior at the interface. Such a boundary condition, based on the capacitive behavior of the sheath, is shown to be useful in fluid simulations wherein sheath scale lengths are substantially smaller than scale lengths for other relevant physical processes (e.g. radiofrequency wavelengths), in that it enables kinetic processes associated with the presence of the sheath to be numerically modeled without explicit resolution of spatial and temporal sheath scales such as electron Debye length or plasma frequency.
Understanding metropolitan patterns of daily encounters.
Sun, Lijun; Axhausen, Kay W; Lee, Der-Horng; Huang, Xianfeng
2013-08-20
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters' bounded nature. An individual's encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of "familiar strangers" in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or "structure of co-presence" across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and--particularly--disclosing the impact of human behavior on various diffusion/spreading processes.
Circadian clock and cardiac vulnerability: A time stamp on multi-scale neuroautonomic regulation
NASA Astrophysics Data System (ADS)
Ivanov, Plamen Ch.
2005-03-01
Cardiovascular vulnerability displays a 24-hour pattern with a peak between 9AM and 11AM. This daily pattern in cardiac risk is traditionally attributed to external factors including activity levels and sleep-wake cycles. However,influences from the endogenous circadian pacemaker independent from behaviors may also affect cardiac control. We investigate heartbeat dynamics in healthy subjects recorded throughout a 10-day protocol wherein the sleep/wake and behavior cycles are desynchronized from the endogenous circadian cycle,enabling assessment of circadian factors while controlling for behavior-related factors. We demonstrate that the scaling exponent characterizing temporal correlations in heartbeat dynamics over multiple time scales does exhibit a significant circadian rhythm with a sharp peak at the circadian phase corresponding to the period 9-11AM, and that this rhythm is independent from scheduled behaviors and mean heart rate. Our findings of strong circadian rhythms in the multi-scale heartbeat dynamics of healthy young subjects indicate that the underlying mechanism of cardiac regulation is strongly influenced by the endogenous circadian pacemaker. A similar circadian effect in vulnerable individuals with underlying cardiovascular disease would contribute to the morning peak of adverse cardiac events observed in epidemiological studies.
Understanding metropolitan patterns of daily encounters
Sun, Lijun; Axhausen, Kay W.; Lee, Der-Horng; Huang, Xianfeng
2013-01-01
Understanding of the mechanisms driving our daily face-to-face encounters is still limited; the field lacks large-scale datasets describing both individual behaviors and their collective interactions. However, here, with the help of travel smart card data, we uncover such encounter mechanisms and structures by constructing a time-resolved in-vehicle social encounter network on public buses in a city (about 5 million residents). Using a population scale dataset, we find physical encounters display reproducible temporal patterns, indicating that repeated encounters are regular and identical. On an individual scale, we find that collective regularities dominate distinct encounters’ bounded nature. An individual’s encounter capability is rooted in his/her daily behavioral regularity, explaining the emergence of “familiar strangers” in daily life. Strikingly, we find individuals with repeated encounters are not grouped into small communities, but become strongly connected over time, resulting in a large, but imperceptible, small-world contact network or “structure of co-presence” across the whole metropolitan area. Revealing the encounter pattern and identifying this large-scale contact network are crucial to understanding the dynamics in patterns of social acquaintances, collective human behaviors, and—particularly—disclosing the impact of human behavior on various diffusion/spreading processes. PMID:23918373
Novel Flood Detection and Analysis Method Using Recurrence Property
NASA Astrophysics Data System (ADS)
Wendi, Dadiyorto; Merz, Bruno; Marwan, Norbert
2016-04-01
Temporal changes in flood hazard are known to be difficult to detect and attribute due to multiple drivers that include processes that are non-stationary and highly variable. These drivers, such as human-induced climate change, natural climate variability, implementation of flood defence, river training, or land use change, could impact variably on space-time scales and influence or mask each other. Flood time series may show complex behavior that vary at a range of time scales and may cluster in time. This study focuses on the application of recurrence based data analysis techniques (recurrence plot) for understanding and quantifying spatio-temporal changes in flood hazard in Germany. The recurrence plot is known as an effective tool to visualize the dynamics of phase space trajectories i.e. constructed from a time series by using an embedding dimension and a time delay, and it is known to be effective in analyzing non-stationary and non-linear time series. The emphasis will be on the identification of characteristic recurrence properties that could associate typical dynamic behavior to certain flood situations.
Complex network analysis of brain functional connectivity under a multi-step cognitive task
NASA Astrophysics Data System (ADS)
Cai, Shi-Min; Chen, Wei; Liu, Dong-Bai; Tang, Ming; Chen, Xun
2017-01-01
Functional brain network has been widely studied to understand the relationship between brain organization and behavior. In this paper, we aim to explore the functional connectivity of brain network under a multi-step cognitive task involving consecutive behaviors, and further understand the effect of behaviors on the brain organization. The functional brain networks are constructed based on a high spatial and temporal resolution fMRI dataset and analyzed via complex network based approach. We find that at voxel level the functional brain network shows robust small-worldness and scale-free characteristics, while its assortativity and rich-club organization are slightly restricted to the order of behaviors performed. More interestingly, the functional connectivity of brain network in activated ROIs strongly correlates with behaviors and is obviously restricted to the order of behaviors performed. These empirical results suggest that the brain organization has the generic properties of small-worldness and scale-free characteristics, and its diverse functional connectivity emerging from activated ROIs is strongly driven by these behavioral activities via the plasticity of brain.
Cellular automata rule characterization and classification using texture descriptors
NASA Astrophysics Data System (ADS)
Machicao, Jeaneth; Ribas, Lucas C.; Scabini, Leonardo F. S.; Bruno, Odermir M.
2018-05-01
The cellular automata (CA) spatio-temporal patterns have attracted the attention from many researchers since it can provide emergent behavior resulting from the dynamics of each individual cell. In this manuscript, we propose an approach of texture image analysis to characterize and classify CA rules. The proposed method converts the CA spatio-temporal patterns into a gray-scale image. The gray-scale is obtained by creating a binary number based on the 8-connected neighborhood of each dot of the CA spatio-temporal pattern. We demonstrate that this technique enhances the CA rule characterization and allow to use different texture image analysis algorithms. Thus, various texture descriptors were evaluated in a supervised training approach aiming to characterize the CA's global evolution. Our results show the efficiency of the proposed method for the classification of the elementary CA (ECAs), reaching a maximum of 99.57% of accuracy rate according to the Li-Packard scheme (6 classes) and 94.36% for the classification of the 88 rules scheme. Moreover, within the image analysis context, we found a better performance of the method by means of a transformation of the binary states to a gray-scale.
Peters, K.A.; Otis, D.L.
2005-01-01
The risk-disturbance hypothesis asserts that animals perceive human disturbance similar to nonlethal predation stimuli, and exhibit comparable responses in the form of optimization tradeoffs. However, few studies have examined how natural predation risk factors interact with human-disturbance stimuli to elicit such responses. We observed American Oystercatcher (Haematopus palliatus) vigilance behavior from September-December 2002 on the Cape Romain National Wildlife Refuge, South Carolina. A set of models was constructed based on 340 focal-animal samples and models revealed relationships between vigilance behavior, predator density, and boat activity. Oystercatchers increased vigilance in response to aerial predators, particularly late in the season when predator species composition was dominated by Northern Harriers (Circus cyaneus). At a broader temporal scale, oystercatchers exhibited the highest vigilance rates during simultaneous peaks in boating disturbance and Osprey (Pandion haliaetus) activity. Due to this temporal overlap of stimuli, it is difficult to interpret what may have been driving the observed increased in vigilance. Foraging rates appeared to be primarily driven by habitat and tidal stage indicating that time lost to vigilance did not effectively reduce intake. Taken together, these findings provide some support for the risk-disturbance hypothesis, underscore the sensitivity of disturbance studies to temporal scale, and draw attention to the potential confounding effects of natural predation risk. ?? The Cooper Ornithological Society 2005.
Consideration of immediate and future consequences, smoking status, and body mass index.
Adams, Jean
2012-03-01
Health-related behaviors often involve immediate costs to achieve long-term benefits. How one considers the future outcomes of present day behaviors (e.g., temporal orientation) may play a role in engagement in healthy behaviors. The Consideration of Future Consequences Scale (CFCS) measures temporal orientation on a unidimensional continuum. Recently, 2 subscales of the CFCS have been reported: immediate (CFC-I) and future (CFC-F) consequences. These support a multidimensional conceptualization of temporal orientation. Confirmatory factor analysis was performed on CFCS data. The associations between 2 health-related variables [smoking and body mass index (BMI)] and each subscale were then explored, controlling for sociodemographic variables. A random sample of 2,000 individuals aged 18 years or over was selected from the edited electoral role for one English city and sent a postal questionnaire, including the CFCS and questions on age, gender, socioeconomic position, and self-reported current smoking status and BMI. Complete data was provided by 800 participants (response rate = 40.0%). The 2-factor model fitted CFCS data better than the 1-factor model. In multiple linear regression, CFC-I was positively associated with BMI, B (95% confidence interval [CI]) = 0.47 (0.06 to 0.88), p = .025; and odds of being a current smoker, odds ratio (95% CI) = 1.28 (1.02 to 1.60), p = .035; CFC-F was not associated with health-related variables. These data support the multidimensional conceptualization of temporal orientation. Consideration of immediate consequences may be a more important determinant of health-related behaviors than consideration of future consequences.
Pluviometric characterization of the Coca river basin by using a stochastic rainfall model
NASA Astrophysics Data System (ADS)
González-Zeas, Dunia; Chávez-Jiménez, Adriadna; Coello-Rubio, Xavier; Correa, Ángel; Martínez-Codina, Ángela
2014-05-01
An adequate design of the hydraulic infrastructures, as well as, the prediction and simulation of a river basin require historical records with a greater temporal and spatial resolution. However, the lack of an extensive network of precipitation data, the short time scale data and the incomplete information provided by the available rainfall stations limit the analysis and design of complex hydraulic engineering systems. As a consequence, it is necessary to develop new quantitative tools in order to face this obstacle imposed by ungauged or poorly gauged basins. In this context, the use of a spatial-temporal rainfall model allows to simulate the historical behavior of the precipitation and at the same time, to obtain long-term synthetic series that preserve the extremal behavior. This paper provides a characterization of the precipitation in the Coca river basin located in Ecuador by using RainSim V3, a robust and well tested stochastic rainfall model based on a spatial-temporal Neyman-Scott rectangular pulses process. A preliminary consistency analysis of the historical rainfall data available has been done in order to identify climatic regions with similar precipitation behavior patterns. Mean and maximum yearly and monthly fields of precipitation of high resolution spaced grids have been obtained through the use of interpolation techniques. According to the climatological similarity, long time series of daily temporal resolution of precipitation have been generated in order to evaluate the model skill in capturing the structure of daily observed precipitation. The results show a good performance of the model in reproducing very well the gross statistics, including the extreme values of rainfall at daily scale. The spatial pattern represented by the observed and simulated precipitation fields highlights the existence of two important regions characterized by different pluviometric comportment, with lower precipitation in the upper part of the basin and higher precipitation in the lower part of the basin.
Psychometric properties of the Chinese version of the Psycho-educational Profile-Revised (CPEP-R).
Shek, Daniel T L; Tsang, Sandra K M; Lam, Lorinda L; Tang, Florence L Y; Cheung, Penita M P
2005-02-01
The purpose of this study was to examine the reliability and validity of the Chinese version of the Psycho-educational Profile-Revised (PEP-R). The Chinese PEP-R (CPEP-R) was administered to 63 preschool children with symptoms of autistic disorder recruited from special child-care centers in Hong Kong. Results showed that the scales of the CPEP-R were internally consistent, reliable across raters and temporally stable. Regarding the concurrent validity of the CPEP-R, the developmental score and developmental age assessed by the CPEP-R were significantly correlated with the Merrill-Palmer Scale of Mental Tests and the Hong Kong Based Adaptive Behavior Scale. The Behavioral Scale of the CPEP-R was also significantly related to the Childhood Autism Rating Scale. Besides replicating the findings in the Western context, the present study suggests that the psychometric properties of the PEP-R are stable across cultures and the related findings support the cross-cultural reliability of the tool.
Social Vocalizations of Big Brown Bats Vary with Behavioral Context
Gadziola, Marie A.; Grimsley, Jasmine M. S.; Faure, Paul A.; Wenstrup, Jeffrey J.
2012-01-01
Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller. PMID:22970247
Minimum entropy density method for the time series analysis
NASA Astrophysics Data System (ADS)
Lee, Jeong Won; Park, Joongwoo Brian; Jo, Hang-Hyun; Yang, Jae-Suk; Moon, Hie-Tae
2009-01-01
The entropy density is an intuitive and powerful concept to study the complicated nonlinear processes derived from physical systems. We develop the minimum entropy density method (MEDM) to detect the structure scale of a given time series, which is defined as the scale in which the uncertainty is minimized, hence the pattern is revealed most. The MEDM is applied to the financial time series of Standard and Poor’s 500 index from February 1983 to April 2006. Then the temporal behavior of structure scale is obtained and analyzed in relation to the information delivery time and efficient market hypothesis.
NASA Astrophysics Data System (ADS)
Lu, Shikun; Zhang, Hao; Li, Xihai; Li, Yihong; Niu, Chao; Yang, Xiaoyun; Liu, Daizhi
2018-03-01
Combining analyses of spatial and temporal characteristics of the ionosphere is of great significance for scientific research and engineering applications. Tensor decomposition is performed to explore the temporal-longitudinal-latitudinal characteristics in the ionosphere. Three-dimensional tensors are established based on the time series of ionospheric vertical total electron content maps obtained from the Centre for Orbit Determination in Europe. To obtain large-scale characteristics of the ionosphere, rank-1 decomposition is used to obtain U^{(1)}, U^{(2)}, and U^{(3)}, which are the resulting vectors for the time, longitude, and latitude modes, respectively. Our initial finding is that the correspondence between the frequency spectrum of U^{(1)} and solar variation indicates that rank-1 decomposition primarily describes large-scale temporal variations in the global ionosphere caused by the Sun. Furthermore, the time lags between the maxima of the ionospheric U^{(2)} and solar irradiation range from 1 to 3.7 h without seasonal dependence. The differences in time lags may indicate different interactions between processes in the magnetosphere-ionosphere-thermosphere system. Based on the dataset displayed in the geomagnetic coordinates, the position of the barycenter of U^{(3)} provides evidence for north-south asymmetry (NSA) in the large-scale ionospheric variations. The daily variation in such asymmetry indicates the influences of solar ionization. The diurnal geomagnetic coordinate variations in U^{(3)} show that the large-scale EIA (equatorial ionization anomaly) variations during the day and night have similar characteristics. Considering the influences of geomagnetic disturbance on ionospheric behavior, we select the geomagnetic quiet GIMs to construct the ionospheric tensor. The results indicate that the geomagnetic disturbances have little effect on large-scale ionospheric characteristics.
Determining Scale-dependent Patterns in Spatial and Temporal Datasets
NASA Astrophysics Data System (ADS)
Roy, A.; Perfect, E.; Mukerji, T.; Sylvester, L.
2016-12-01
Spatial and temporal datasets of interest to Earth scientists often contain plots of one variable against another, e.g., rainfall magnitude vs. time or fracture aperture vs. spacing. Such data, comprised of distributions of events along a transect / timeline along with their magnitudes, can display persistent or antipersistent trends, as well as random behavior, that may contain signatures of underlying physical processes. Lacunarity is a technique that was originally developed for multiscale analysis of data. In a recent study we showed that lacunarity can be used for revealing changes in scale-dependent patterns in fracture spacing data. Here we present a further improvement in our technique, with lacunarity applied to various non-binary datasets comprised of event spacings and magnitudes. We test our technique on a set of four synthetic datasets, three of which are based on an autoregressive model and have magnitudes at every point along the "timeline" thus representing antipersistent, persistent, and random trends. The fourth dataset is made up of five clusters of events, each containing a set of random magnitudes. The concept of lacunarity ratio, LR, is introduced; this is the lacunarity of a given dataset normalized to the lacunarity of its random counterpart. It is demonstrated that LR can successfully delineate scale-dependent changes in terms of antipersistence and persistence in the synthetic datasets. This technique is then applied to three different types of data: a hundred-year rainfall record from Knoxville, TN, USA, a set of varved sediments from Marca Shale, and a set of fracture aperture and spacing data from NE Mexico. While the rainfall data and varved sediments both appear to be persistent at small scales, at larger scales they both become random. On the other hand, the fracture data shows antipersistence at small scale (within cluster) and random behavior at large scales. Such differences in behavior with respect to scale-dependent changes in antipersistence to random, persistence to random, or otherwise, maybe be related to differences in the physicochemical properties and processes contributing to multiscale datasets.
ERIC Educational Resources Information Center
Golumbic, Elana M. Zion; Poeppel, David; Schroeder, Charles E.
2012-01-01
The human capacity for processing speech is remarkable, especially given that information in speech unfolds over multiple time scales concurrently. Similarly notable is our ability to filter out of extraneous sounds and focus our attention on one conversation, epitomized by the "Cocktail Party" effect. Yet, the neural mechanisms underlying on-line…
Evaluating crown fire rate of spread predictions from physics-based models
C. M. Hoffman; J. Ziegler; J. Canfield; R. R. Linn; W. Mell; C. H. Sieg; F. Pimont
2015-01-01
Modeling the behavior of crown fires is challenging due to the complex set of coupled processes that drive the characteristics of a spreading wildfire and the large range of spatial and temporal scales over which these processes occur. Detailed physics-based modeling approaches such as FIRETEC and the Wildland Urban Interface Fire Dynamics Simulator (WFDS) simulate...
Temporal pattern processing in songbirds.
Comins, Jordan A; Gentner, Timothy Q
2014-10-01
Understanding how the brain perceives, organizes and uses patterned information is directly related to the neurobiology of language. Given the present limitations, such knowledge at the scale of neurons, neural circuits and neural populations can only come from non-human models, focusing on shared capacities that are relevant to language processing. Here we review recent advances in the behavioral and neural basis of temporal pattern processing of natural auditory communication signals in songbirds, focusing on European starlings. We suggest a general inhibitory circuit for contextual modulation that can act to control sensory representations based on patterning rules. Copyright © 2014. Published by Elsevier Ltd.
Multiplex Networks of Cortical and Hippocampal Neurons Revealed at Different Timescales
Timme, Nicholas; Ito, Shinya; Myroshnychenko, Maxym; Yeh, Fang-Chin; Hiolski, Emma; Hottowy, Pawel; Beggs, John M.
2014-01-01
Recent studies have emphasized the importance of multiplex networks – interdependent networks with shared nodes and different types of connections – in systems primarily outside of neuroscience. Though the multiplex properties of networks are frequently not considered, most networks are actually multiplex networks and the multiplex specific features of networks can greatly affect network behavior (e.g. fault tolerance). Thus, the study of networks of neurons could potentially be greatly enhanced using a multiplex perspective. Given the wide range of temporally dependent rhythms and phenomena present in neural systems, we chose to examine multiplex networks of individual neurons with time scale dependent connections. To study these networks, we used transfer entropy – an information theoretic quantity that can be used to measure linear and nonlinear interactions – to systematically measure the connectivity between individual neurons at different time scales in cortical and hippocampal slice cultures. We recorded the spiking activity of almost 12,000 neurons across 60 tissue samples using a 512-electrode array with 60 micrometer inter-electrode spacing and 50 microsecond temporal resolution. To the best of our knowledge, this preparation and recording method represents a superior combination of number of recorded neurons and temporal and spatial recording resolutions to any currently available in vivo system. We found that highly connected neurons (“hubs”) were localized to certain time scales, which, we hypothesize, increases the fault tolerance of the network. Conversely, a large proportion of non-hub neurons were not localized to certain time scales. In addition, we found that long and short time scale connectivity was uncorrelated. Finally, we found that long time scale networks were significantly less modular and more disassortative than short time scale networks in both tissue types. As far as we are aware, this analysis represents the first systematic study of temporally dependent multiplex networks among individual neurons. PMID:25536059
Adaptive nest clustering and density-dependent nest survival in dabbling ducks
Ringelman, Kevin M.; Eadie, John M.; Ackerman, Joshua T.
2014-01-01
Density-dependent population regulation is observed in many taxa, and understanding the mechanisms that generate density dependence is especially important for the conservation of heavily-managed species. In one such system, North American waterfowl, density dependence is often observed at continental scales, and nest predation has long been implicated as a key factor driving this pattern. However, despite extensive research on this topic, it remains unclear if and how nest density influences predation rates. Part of this confusion may have arisen because previous studies have studied density-dependent predation at relatively large spatial and temporal scales. Because the spatial distribution of nests changes throughout the season, which potentially influences predator behavior, nest survival may vary through time at relatively small spatial scales. As such, density-dependent nest predation might be more detectable at a spatially- and temporally-refined scale and this may provide new insights into nest site selection and predator foraging behavior. Here, we used three years of data on nest survival of two species of waterfowl, mallards and gadwall, to more fully explore the relationship between local nest clustering and nest survival. Throughout the season, we found that the distribution of nests was consistently clustered at small spatial scales (˜50–400 m), especially for mallard nests, and that this pattern was robust to yearly variation in nest density and the intensity of predation. We demonstrated further that local nest clustering had positive fitness consequences – nests with closer nearest neighbors were more likely to be successful, a result that is counter to the general assumption that nest predation rates increase with nest density.
Spatiotemporal multivariate mixture models for Bayesian model selection in disease mapping.
Lawson, A B; Carroll, R; Faes, C; Kirby, R S; Aregay, M; Watjou, K
2017-12-01
It is often the case that researchers wish to simultaneously explore the behavior of and estimate overall risk for multiple, related diseases with varying rarity while accounting for potential spatial and/or temporal correlation. In this paper, we propose a flexible class of multivariate spatio-temporal mixture models to fill this role. Further, these models offer flexibility with the potential for model selection as well as the ability to accommodate lifestyle, socio-economic, and physical environmental variables with spatial, temporal, or both structures. Here, we explore the capability of this approach via a large scale simulation study and examine a motivating data example involving three cancers in South Carolina. The results which are focused on four model variants suggest that all models possess the ability to recover simulation ground truth and display improved model fit over two baseline Knorr-Held spatio-temporal interaction model variants in a real data application.
Sexual compulsivity scale: adaptation and validation in the spanish population.
Ballester-Arnal, Rafael; Gómez-Martínez, Sandra; Llario, M Dolores-Gil; Salmerón-Sánchez, Pedro
2013-01-01
Sexual compulsivity has been studied in relation to high-risk behavior for sexually transmitted infections. The aim of this study was the adaptation and validation of the Sexual Compulsivity Scale to a sample of Spanish young people. This scale was applied to 1,196 (891 female, 305 male) Spanish college students. The results of principal components factor analysis using a varimax rotation indicated a two-factor solution. The reliability of the Sexual Compulsivity Scale was found to be high. Moreover, the scale showed good temporal stability. External correlates were examined through Pearson correlations between the Sexual Compulsivity Scale and other constructs related with HIV prevention. The authors' results suggest that the Sexual Compulsivity Scale is an appropriate measure for assessing sexual compulsivity, showing adequate psychometric properties in the Spanish population.
High-resolution behavioral mapping of electric fishes in Amazonian habitats.
Madhav, Manu S; Jayakumar, Ravikrishnan P; Demir, Alican; Stamper, Sarah A; Fortune, Eric S; Cowan, Noah J
2018-04-11
The study of animal behavior has been revolutionized by sophisticated methodologies that identify and track individuals in video recordings. Video recording of behavior, however, is challenging for many species and habitats including fishes that live in turbid water. Here we present a methodology for identifying and localizing weakly electric fishes on the centimeter scale with subsecond temporal resolution based solely on the electric signals generated by each individual. These signals are recorded with a grid of electrodes and analyzed using a two-part algorithm that identifies the signals from each individual fish and then estimates the position and orientation of each fish using Bayesian inference. Interestingly, because this system involves eavesdropping on electrocommunication signals, it permits monitoring of complex social and physical interactions in the wild. This approach has potential for large-scale non-invasive monitoring of aquatic habitats in the Amazon basin and other tropical freshwater systems.
Virtual Patterson Experiment - A Way to Access the Rheology of Aggregates and Melanges
NASA Astrophysics Data System (ADS)
Delannoy, Thomas; Burov, Evgueni; Wolf, Sylvie
2014-05-01
Understanding the mechanisms of lithospheric deformation requires bridging the gap between human-scale laboratory experiments and the huge geological objects they represent. Those experiments are limited in spatial and time scale as well as in choice of materials (e.g., mono-phase minerals, exaggerated temperatures and strain rates), which means that the resulting constitutive laws may not fully represent real rocks at geological spatial and temporal scales. We use the thermo-mechanical numerical modelling approach as a tool to link both experiments and nature and hence better understand the rheology of the lithosphere, by enabling us to study the behavior of polymineralic aggregates and their impact on the localization of the deformation. We have adapted the large strain visco-elasto-plastic Flamar code to allow it to operate at all spatial and temporal scales, from sub-grain to geodynamic scale, and from seismic time scales to millions of years. Our first goal was to reproduce real rock mechanics experiments on deformation of mono and polymineralic aggregates in Patterson's load machine in order to deepen our understanding of the rheology of polymineralic rocks. In particular, we studied in detail the deformation of a 15x15 mm mica-quartz sample at 750 °C and 300 MPa. This mixture includes a molten phase and a solid phase in which shear bands develop as a result of interactions between ductile and brittle deformation and stress concentration at the boundaries between weak and strong phases. We used digitized x-ray scans of real samples as initial configuration for the numerical models so the model-predicted deformation and stress-strain behavior can match those observed in the laboratory experiment. Analyzing the numerical experiments providing the best match with the press experiments and making other complementary models by changing different parameters in the initial state (strength contrast between the phases, proportions, microstructure, etc.) provides a number of new elements of understanding of the mechanisms governing the localization of the deformation across the aggregates. We next used stress-strain curves derived from the numerical experiments to study in detail the evolution of the rheological behavior of each mineral phase as well as that of the mixtures in order to formulate constitutive relations for mélanges and polymineralic aggregates. The next step of our approach would be to link the constitutive laws obtained at small scale (laws that govern the rheology of a polymineralic aggregate, the effect of the presence of a molten phase, etc.) to the large-scale behavior of the Earth by implementing them in lithosphere-scale models.
Lattice Boltzmann-Based Approaches for Pore-Scale Reactive Transport
Yoon, Hongkyu; Kang, Qinjun; Valocchi, Albert J.
2015-07-29
Here an important geoscience and environmental applications such as geologic carbon storage, environmental remediation, and unconventional oil and gas recovery are best understood in the context of reactive flow and multicomponent transport in the subsurface environment. The coupling of chemical and microbiological reactions with hydrological and mechanical processes can lead to complex behaviors across an enormous range of spatial and temporal scales. These coupled responses are also strongly influenced by the heterogeneity and anisotropy of the geologic formations. Reactive transport processes can change the pore morphology at the pore scale, thereby leading to nonlinear interactions with advective and diffusive transport,more » which can strongly influence larger-scale properties such as permeability and dispersion.« less
Cai, Mingbo; Stetson, Chess; Eagleman, David M.
2012-01-01
When observers experience a constant delay between their motor actions and sensory feedback, their perception of the temporal order between actions and sensations adapt (Stetson et al., 2006). We present here a novel neural model that can explain temporal order judgments (TOJs) and their recalibration. Our model employs three ubiquitous features of neural systems: (1) information pooling, (2) opponent processing, and (3) synaptic scaling. Specifically, the model proposes that different populations of neurons encode different delays between motor-sensory events, the outputs of these populations feed into rivaling neural populations (encoding “before” and “after”), and the activity difference between these populations determines the perceptual judgment. As a consequence of synaptic scaling of input weights, motor acts which are consistently followed by delayed sensory feedback will cause the network to recalibrate its point of subjective simultaneity. The structure of our model raises the possibility that recalibration of TOJs is a temporal analog to the motion aftereffect (MAE). In other words, identical neural mechanisms may be used to make perceptual determinations about both space and time. Our model captures behavioral recalibration results for different numbers of adapting trials and different adapting delays. In line with predictions of the model, we additionally demonstrate that temporal recalibration can last through time, in analogy to storage of the MAE. PMID:23130010
Hasselmo, Michael E.
2008-01-01
The spiking activity of hippocampal neurons during REM sleep exhibits temporally structured replay of spiking occurring during previously experienced trajectories (Louie and Wilson, 2001). Here, temporally structured replay of place cell activity during REM sleep is modeled in a large-scale network simulation of grid cells, place cells and head direction cells. During simulated waking behavior, the movement of the simulated rat drives activity of a population of head direction cells that updates the activity of a population of entorhinal grid cells. The population of grid cells drives the activity of place cells coding individual locations. Associations between location and movement direction are encoded by modification of excitatory synaptic connections from place cells to speed modulated head direction cells. During simulated REM sleep, the population of place cells coding an experienced location activates the head direction cells coding the associated movement direction. Spiking of head direction cells then causes frequency shifts within the population of entorhinal grid cells to update a phase representation of location. Spiking grid cells then activate new place cells that drive new head direction activity. In contrast to models that perform temporally compressed sequence retrieval similar to sharp wave activity, this model can simulate data on temporally structured replay of hippocampal place cell activity during REM sleep at time scales similar to those observed during waking. These mechanisms could be important for episodic memory of trajectories. PMID:18973557
Interdisciplinary Team Science in Cell Biology.
Horwitz, Rick
2016-11-01
The cell is complex. With its multitude of components, spatial-temporal character, and gene expression diversity, it is challenging to comprehend the cell as an integrated system and to develop models that predict its behaviors. I suggest an approach to address this issue, involving system level data analysis, large scale team science, and philanthropy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cortico-hippocampal systems involved in memory and cognition: the PMAT framework.
Ritchey, Maureen; Libby, Laura A; Ranganath, Charan
2015-01-01
In this chapter, we review evidence that the cortical pathways to the hippocampus appear to extend from two large-scale cortical systems: a posterior medial (PM) system that includes the parahippocampal cortex and retrosplenial cortex, and an anterior temporal (AT) system that includes the perirhinal cortex. This "PMAT" framework accounts for differences in the anatomical and functional connectivity of the medial temporal lobes, which may underpin differences in cognitive function between the systems. The PM and AT systems make distinct contributions to memory and to other cognitive domains, and convergent findings suggest that they are involved in processing information about contexts and items, respectively. In order to support the full complement of memory-guided behavior, the two systems must interact, and the hippocampal and ventromedial prefrontal cortex may serve as sites of integration between the two systems. We conclude that when considering the "connected hippocampus," inquiry should extend beyond the medial temporal lobes to include the large-scale cortical systems of which they are a part. © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cockrell, M.; Murawski, S. A.; Sanchirico, J. N.; O'Farrell, S.; Strelcheck, A.
2016-02-01
Spatial and temporal patterns of fishing activity have historically been described over relatively coarse scales or with limited datasets. However, new and innovative approaches for fisheries management will require an understanding of both species population dynamics and fleet behavior at finer spatial and temporal resolution. In this study we describe the spatial and temporal patterns of commercial reef-fish fisheries on the West Florida Shelf (WFS) from 2006-14, using a combination of on-board observer, catch logbook, and vessel satellite tracking data. The satellite tracking data is both high resolution (ie, records from each vessel at least once every hour for the duration of a trip), and required of all federally-permitted reef fish vessels in the Gulf of Mexico, making this a uniquely rich and powerful dataset. Along with spatial and temporal fishery dynamics, we quantified concomitant patterns in fishery economics and catch metrics, such as total landings and catch composition. Fishery patterns were correlated to a number of variables across the vessel, trip, and whole fleet scales, including vessel size, distance from home port, number of days at sea, and days available to fish. Notably, changes in management structure during the years examined (eg, establishment of a seasonal closed area in 2009 and implementation of an individual fishing quota system for Grouper-Tilefish in 2010), as well as emergency spatial closures during the Deepwater Horizon oil spill in 2010, enabled us to examine the impacts of specific management frameworks on the WFS reef-fish fishery. This research highlights the need to better understand the biological, economic, and social impacts within fisheries when managing for conservation and fisheries sustainability. We discuss our results in the context of a changing policy and management landscape for marine and coastal resources in the Gulf of Mexico.
[French scale validation of the Infant Behavior Questionnaire three months after birth].
Lacombe, Marie; Delmas, Philippe; Carrier, Nathalie; Rabillon, Florence; Couture, Marie-Estelle
2015-06-01
Breastfeeding is recognize to be the perfect food of mother and child's health. The child's temperament is one of the factors that may explain pursuing the breastfeeding. Few instruments are available in French to measure this factor. The objective of the study is to present and validate the French translation of the scale "Infant Behavior Questionnaire" (IBQ). The sample consists of 193 primaparous or multiparous women who gave birth in a maternity in Paris. The child's temperament questionnaire was sent by mail three months after the birth. The same questionnaire was sent to a sub-sample of 30 women 15 days later. Analyses were conducted to assess the temporal stability, internal consistency, construct validity and predictive. The different results tend to show a compliant validity to the french scale version. This first IBQ French-language validation is worth pursuing in order to confirm the scale factor structure and participate to studies supporting mothers in their breastfeeding project.
Scaling in the aggregation dynamics of a magnetorheological fluid.
Domínguez-García, P; Melle, Sonia; Pastor, J M; Rubio, M A
2007-11-01
We present experimental results on the aggregation dynamics of a magnetorheological fluid, namely, an aqueous suspension of micrometer-sized superparamagnetic particles, under the action of a constant uniaxial magnetic field using video microscopy and image analysis. We find a scaling behavior in several variables describing the aggregation kinetics. The data agree well with the Family-Vicsek scaling ansatz for diffusion-limited cluster-cluster aggregation. The kinetic exponents z and z' are obtained from the temporal evolution of the mean cluster size S(t) and the number of clusters N(t), respectively. The crossover exponent Delta is calculated in two ways: first, from the initial slope of the scaling function; second, from the evolution of the nonaggregated particles, n1(t). We report on results of Brownian two-dimensional dynamics simulations and compare the results with the experiments. Finally, we discuss the differences obtained between the kinetic exponents in terms of the variation in the crossover exponent and relate this behavior to the physical interpretation of the crossover exponent.
Testing Linear Temporal Logic Formulae on Finite Execution Traces
NASA Technical Reports Server (NTRS)
Havelund, Klaus; Rosu, Grigore; Norvig, Peter (Technical Monitor)
2001-01-01
We present an algorithm for efficiently testing Linear Temporal Logic (LTL) formulae on finite execution traces. The standard models of LTL are infinite traces, reflecting the behavior of reactive and concurrent systems which conceptually may be continuously alive. In most past applications of LTL. theorem provers and model checkers have been used to formally prove that down-scaled models satisfy such LTL specifications. Our goal is instead to use LTL for up-scaled testing of real software applications. Such tests correspond to analyzing the conformance of finite traces against LTL formulae. We first describe what it means for a finite trace to satisfy an LTL property. We then suggest an optimized algorithm based on transforming LTL formulae. The work is done using the Maude rewriting system. which turns out to provide a perfect notation and an efficient rewriting engine for performing these experiments.
An investigation of chaotic Kolmogorov flows
NASA Technical Reports Server (NTRS)
Platt, N.; Sirovich, L.; Fitzmaurice, N.
1990-01-01
A two dimensional flow governed by the incompressible Navier-Stokes equations with a steady spatially periodic forcing (known as the Kolmogorov flow) is numerically simulated. The behavior of the flow and its transition states as the Reynolds number (Re) varies is investigated in detail, as well as a number of the flow features. A sequence of bifurcations is shown to take place in the flow as Re varied. Two main regimes of the flow were observed: small and large scale structure regimes corresponding to different ranges of Re. Each of the regimes includes a number of quasiperiodic, chaotic, and relaminarization windows. In addition, each range contains a chaotic window with non-ergodic chaotic attractors. Spatially disordered, but temporally steady states were discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and, where possible, Lyapunov exponents and Kaplan-Yorke dimension.
Critical behavior in earthquake energy dissipation
NASA Astrophysics Data System (ADS)
Wanliss, James; Muñoz, Víctor; Pastén, Denisse; Toledo, Benjamín; Valdivia, Juan Alejandro
2017-09-01
We explore bursty multiscale energy dissipation from earthquakes flanked by latitudes 29° S and 35.5° S, and longitudes 69.501° W and 73.944° W (in the Chilean central zone). Our work compares the predictions of a theory of nonequilibrium phase transitions with nonstandard statistical signatures of earthquake complex scaling behaviors. For temporal scales less than 84 hours, time development of earthquake radiated energy activity follows an algebraic arrangement consistent with estimates from the theory of nonequilibrium phase transitions. There are no characteristic scales for probability distributions of sizes and lifetimes of the activity bursts in the scaling region. The power-law exponents describing the probability distributions suggest that the main energy dissipation takes place due to largest bursts of activity, such as major earthquakes, as opposed to smaller activations which contribute less significantly though they have greater relative occurrence. The results obtained provide statistical evidence that earthquake energy dissipation mechanisms are essentially "scale-free", displaying statistical and dynamical self-similarity. Our results provide some evidence that earthquake radiated energy and directed percolation belong to a similar universality class.
Regional climate projection of the Maritime Continent using the MIT Regional Climate Model
NASA Astrophysics Data System (ADS)
IM, E. S.; Eltahir, E. A. B.
2014-12-01
Given that warming of the climate system is unequivocal (IPCC AR5), accurate assessment of future climate is essential to understand the impact of climate change due to global warming. Modelling the climate change of the Maritime Continent is particularly challenge, showing a high degree of uncertainty. Compared to other regions, model agreement of future projections in response to anthropogenic emission forcings is much less. Furthermore, the spatial and temporal behaviors of climate projections seem to vary significantly due to a complex geographical condition and a wide range of scale interactions. For the fine-scale climate information (27 km) suitable for representing the complexity of climate change over the Maritime Continent, dynamical downscaling is performed using the MIT regional climate model (MRCM) during two thirty-year period for reference (1970-1999) and future (2070-2099) climate. Initial and boundary conditions are provided by Community Earth System Model (CESM) simulations under the emission scenarios projected by MIT Integrated Global System Model (IGSM). Changes in mean climate as well as the frequency and intensity of extreme climate events are investigated at various temporal and spatial scales. Our analysis is primarily centered on the different behavior of changes in convective and large-scale precipitation over land vs. ocean during dry vs. wet season. In addition, we attempt to find the added value to downscaled results over the Maritime Continent through the comparison between MRCM and CESM projection. Acknowledgements.This research was supported by the National Research Foundation Singapore through the Singapore MIT Alliance for Research and Technology's Center for Environmental Sensing and Modeling interdisciplinary research program.
Wittmann, Marc
2011-01-01
It has been suggested that perception and action can be understood as evolving in temporal epochs or sequential processing units. Successive events are fused into units forming a unitary experience or “psychological present.” Studies have identified several temporal integration levels on different time scales which are fundamental for our understanding of behavior and subjective experience. In recent literature concerning the philosophy and neuroscience of consciousness these separate temporal processing levels are not always precisely distinguished. Therefore, empirical evidence from psychophysics and neuropsychology on these distinct temporal processing levels is presented and discussed within philosophical conceptualizations of time experience. On an elementary level, one can identify a functional moment, a basic temporal building block of perception in the range of milliseconds that defines simultaneity and succession. Below a certain threshold temporal order is not perceived, individual events are processed as co-temporal. On a second level, an experienced moment, which is based on temporal integration of up to a few seconds, has been reported in many qualitatively different experiments in perception and action. It has been suggested that this segmental processing mechanism creates temporal windows that provide a logistical basis for conscious representation and the experience of nowness. On a third level of integration, continuity of experience is enabled by working memory in the range of multiple seconds allowing the maintenance of cognitive operations and emotional feelings, leading to mental presence, a temporal window of an individual’s experienced presence. PMID:22022310
Dynamics of Numerics & Spurious Behaviors in CFD Computations. Revised
NASA Technical Reports Server (NTRS)
Yee, Helen C.; Sweby, Peter K.
1997-01-01
The global nonlinear behavior of finite discretizations for constant time steps and fixed or adaptive grid spacings is studied using tools from dynamical systems theory. Detailed analysis of commonly used temporal and spatial discretizations for simple model problems is presented. The role of dynamics in the understanding of long time behavior of numerical integration and the nonlinear stability, convergence, and reliability of using time-marching approaches for obtaining steady-state numerical solutions in computational fluid dynamics (CFD) is explored. The study is complemented with examples of spurious behavior observed in steady and unsteady CFD computations. The CFD examples were chosen to illustrate non-apparent spurious behavior that was difficult to detect without extensive grid and temporal refinement studies and some knowledge from dynamical systems theory. Studies revealed the various possible dangers of misinterpreting numerical simulation of realistic complex flows that are constrained by available computing power. In large scale computations where the physics of the problem under study is not well understood and numerical simulations are the only viable means of solution, extreme care must be taken in both computation and interpretation of the numerical data. The goal of this paper is to explore the important role that dynamical systems theory can play in the understanding of the global nonlinear behavior of numerical algorithms and to aid the identification of the sources of numerical uncertainties in CFD.
Temporal and spatial complexity of maternal thermoregulation in tropical pythons.
Stahlschmidt, Zachary Ross; Shine, Richard; Denardo, Dale F
2012-01-01
Parental care is a widespread adaptation that evolved independently in a broad range of taxa. Although the dynamics by which two parents meet the developmental needs of offspring are well studied in birds, we lack understanding about the temporal and spatial complexity of parental care in taxa exhibiting female-only care, the predominant mode of parental care. Thus, we examined the behavioral and physiological mechanisms by which female water pythons Liasis fuscus meet a widespread developmental need (thermoregulation) in a natural setting. Although female L. fuscus were not facultatively thermogenic, they did use behaviors on multiple spatial scales (e.g., shifts in egg-brooding postures and surface activity patterns) to balance the thermal needs of their offspring throughout reproduction (gravidity and egg brooding). Maternal behaviors in L. fuscus varied by stage within reproduction and were mediated by interindividual variation in body size and fecundity. Female pythons with relatively larger clutch sizes were cooler during egg brooding, suggesting a trade-off between reproductive quantity (size of clutch) and quality (developmental temperature). In nature, caregiving parents of all taxa must navigate both extrinsic factors (temporal and spatial complexity) and intrinsic factors (body size and fecundity) to meet the needs of their offspring. Our study used a comprehensive approach that can be used as a general template for future research examining the dynamics by which parents meet other developmental needs (e.g., predation risk or energy balance).
Assessing global vegetation activity using spatio-temporal Bayesian modelling
NASA Astrophysics Data System (ADS)
Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.
2016-04-01
This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support our hypothesis. That is, the change of vegetation in space and time may be better understood when modelling vegetation change as both a dynamic and multivariate process. Therefore, future research will focus on a multivariate dynamical spatio-temporal modelling approach. This ongoing research is performed within the context of the project "Global impacts of hydrological and climatic extremes on vegetation" (project acronym: SAT-EX) which is part of the Belgian research programme for Earth Observation Stereo III.
Temporal variability in the suspended sediment load and streamflow of the Doce River
NASA Astrophysics Data System (ADS)
Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva
2017-10-01
Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.
Development and psychometric evaluation of the Personal Growth Initiative Scale-II.
Robitschek, Christine; Ashton, Matthew W; Spering, Cynthia C; Geiger, Nathaniel; Byers, Danielle; Schotts, G Christian; Thoen, Megan A
2012-04-01
The original Personal Growth Initiative Scale (PGIS; Robitschek, 1998) was unidimensional, despite theory identifying multiple components (e.g., cognition and behavior) of personal growth initiative (PGI). The present research developed a multidimensional measure of the complex process of PGI, while retaining the brief and psychometrically sound properties of the original scale. Study 1 focused on scale development, including theoretical derivation of items, assessing factor structure, reducing number of items, and refining the scale length using samples of college students. Study 2 consisted of confirmatory factor analysis with 3 independent samples of college students and community members. Lastly, Study 3 assessed test-retest reliability over 1-, 2-, 4-, and 6-week periods and tests of concurrent and discriminant validity using samples of college students. The final measure, the Personal Growth Initiative Scale-II (PGIS-II), includes 4 subscales: Readiness for Change, Planfulness, Using Resources, and Intentional Behavior. These studies provide exploratory and confirmatory evidence for the 4-factor structure, strong internal consistency for the subscales and overall score across samples, acceptable temporal stability at all assessed intervals, and concurrent and discriminant validity of the PGIS-II. Future directions for research and clinical practice are discussed.
On the Assessment of Global Terrestrial Reference Frame Temporal Variations
NASA Astrophysics Data System (ADS)
Ampatzidis, Dimitrios; Koenig, Rolf; Zhu, Shengyuan
2015-04-01
Global Terrestrial Reference Frames (GTRFs) as the International Terrestrial Reference Frame (ITRF) provide reliable 4-D position information (3-D coordinates and their evolution through time). The given 3-D velocities play a significant role in precise position acquisition and are estimated from long term coordinate time series from the space-geodetic techniques DORIS, GNSS, SLR, and VLBI. GTRFs temporal evolution is directly connected with their internal stability: The more intense and inhomogeneous velocity field, the less stable TRF is derived. The assessment of the quality of the GTRF is mainly realized by comparing it to each individual technique's reference frame. E.g the comparison of GTRFs to SLR-only based TRF gives the sense of the ITRF stability with respect to the Geocenter and scale and their associated rates respectively. In addition, the comparison of ITRF to the VLBI-only based TRF can be used for the scale validation. However, till now there is not any specified methodology for the total assessment (in terms of origin, orientation and scale respectively) of the temporal evolution and GTRFs associated accuracy. We present a new alternative diagnostic tool for the assessment of GTRFs temporal evolution based on the well-known time-dependent Helmert type transformation formula (three shifts, three rotations and scale rates respectively). The advantage of the new methodology relies on the fact that it uses the full velocity field of the TRF and therefore all points not just the ones common to different techniques. It also examines simultaneously rates of origin, orientation and scale. The methodology is presented and implemented to the two existing GTRFs on the market (ITRF and DTRF which is computed from DGFI) , the results are discussed. The results also allow to compare directly each GTRF dynamic behavior. Furthermore, the correlations of the estimated parameters can also provide useful information to the proposed GTRFs assessment scheme.
A Trade-Off Study Revealing Nested Timescales of Constraint
Wijnants, M. L.; Cox, R. F. A.; Hasselman, F.; Bosman, A. M. T.; Van Orden, G.
2012-01-01
This study investigates human performance in a cyclic Fitts task at three different scales of observation, either in the presence (difficult condition) or in the absence (easy condition) of a speed–accuracy trade-off. At the fastest scale, the harmonicity of the back and forth movements, which reflects the dissipation of mechanical energy, was measured within the timeframe of single trials. At an intermediate scale, speed and accuracy measures were determined over a trial. The slowest scale pertains to the temporal structure of movement variability, which evolves over multiple trials. In the difficult condition, reliable correlations across each of the measures corroborated a coupling of nested scales of performance. Participants who predominantly emphasized the speed-side of the trade-off (despite the instruction to be both fast and accurate) produced more harmonic movements and clearer 1/f scaling in the produced movement time series, but were less accurate and produced more random variability in the produced movement amplitudes (vice versa for more accurate participants). This implied that speed–accuracy trade-off was accompanied by a trade-off between temporal and spatial streams of 1/f scaling, as confirmed by entropy measures. In the easy condition, however, no trade-offs nor couplings among scales of performance were observed. Together, these results suggest that 1/f scaling is more than just a byproduct of cognition. These findings rather support the claim that interaction-dominant dynamics constitute a coordinative basis for goal-directed behavior. PMID:22654760
Temporal eye movement strategies during naturalistic viewing
Wang, Helena X.; Freeman, Jeremy; Merriam, Elisha P.; Hasson, Uri; Heeger, David J.
2011-01-01
The deployment of eye movements to complex spatiotemporal stimuli likely involves a variety of cognitive factors. However, eye movements to movies are surprisingly reliable both within and across observers. We exploited and manipulated that reliability to characterize observers’ temporal viewing strategies. Introducing cuts and scrambling the temporal order of the resulting clips systematically changed eye movement reliability. We developed a computational model that exhibited this behavior and provided an excellent fit to the measured eye movement reliability. The model assumed that observers searched for, found, and tracked a point-of-interest, and that this process reset when there was a cut. The model did not require that eye movements depend on temporal context in any other way, and it managed to describe eye movements consistently across different observers and two movie sequences. Thus, we found no evidence for the integration of information over long time scales (greater than a second). The results are consistent with the idea that observers employ a simple tracking strategy even while viewing complex, engaging naturalistic stimuli. PMID:22262911
Mining Temporal Patterns to Improve Agents Behavior: Two Case Studies
NASA Astrophysics Data System (ADS)
Fournier-Viger, Philippe; Nkambou, Roger; Faghihi, Usef; Nguifo, Engelbert Mephu
We propose two mechanisms for agent learning based on the idea of mining temporal patterns from agent behavior. The first one consists of extracting temporal patterns from the perceived behavior of other agents accomplishing a task, to learn the task. The second learning mechanism consists in extracting temporal patterns from an agent's own behavior. In this case, the agent then reuses patterns that brought self-satisfaction. In both cases, no assumption is made on how the observed agents' behavior is internally generated. A case study with a real application is presented to illustrate each learning mechanism.
Alcohol Dose Effects on Brain Circuits During Simulated Driving: An fMRI Study
Meda, Shashwath A.; Calhoun, Vince D.; Astur, Robert S.; Turner, Beth M.; Ruopp, Kathryn; Pearlson, Godfrey D.
2009-01-01
Driving while intoxicated remains a major public health hazard. Driving is a complex task involving simultaneous recruitment of multiple cognitive functions. The investigators studied the neural substrates of driving and their response to different blood alcohol concentrations (BACs), using functional magnetic resonance imaging (fMRI) and a virtual reality driving simulator. We used independent component analysis (ICA) to isolate spatially independent and temporally correlated driving-related brain circuits in 40 healthy, adult moderate social drinkers. Each subject received three individualized, separate single-blind doses of beverage alcohol to produce BACs of 0.05% (moderate), 0.10% (high), or 0% (placebo). 3 T fMRI scanning and continuous behavioral measurement occurred during simulated driving. Brain function was assessed and compared using both ICA and a conventional general linear model (GLM) analysis. ICA results replicated and significantly extended our previous 1.5T study (Calhoun et al. [2004a]: Neuropsychopharmacology 29:2097–2017). GLM analysis revealed significant dose-related functional differences, complementing ICA data. Driving behaviors including opposite white line crossings and mean speed independently demonstrated significant dose-dependent changes. Behavior-based factors also predicted a frontal-basal-temporal circuit to be functionally impaired with alcohol dosage across baseline scaled, good versus poorly performing drivers. We report neural correlates of driving behavior and found dose-related spatio-temporal disruptions in critical driving-associated regions including the superior, middle and orbito frontal gyri, anterior cingulate, primary/supplementary motor areas, basal ganglia, and cerebellum. Overall, results suggest that alcohol (especially at high doses) causes significant impairment of both driving behavior and brain functionality related to motor planning and control, goal directedness, error monitoring, and memory. PMID:18571794
Turbulence measurements in high Reynolds number boundary layers
NASA Astrophysics Data System (ADS)
Vallikivi, Margit; Smits, Alexander
2013-11-01
Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
Long-term Spatial Distribution Patterns of Protozoa in Connected Microhabitats
NASA Astrophysics Data System (ADS)
Taghon, G. L.; Tuorto, S. J.
2016-02-01
Studies of microbial ecosystems usually assume habitat homogeneity. Recent research, however, indicates that habitat structure varies at millimeter scales and that this patchiness affects abundance and behavior of microbes. In this study, two species of ciliated protozoa were maintained, together, for multiple generations in microfluidic devices consisting of arrays of interconnected microhabitats with differing resource availability. The species differed in their population dynamics and tendency to disperse among microhabitats. Both species coexisted for over 45 days, and their coexistence likely resulted from habitat selection at millimeter scales. We demonstrate that it is not only possible, but imperative, that detailed ecological phenomena of microbial systems be studied at the relevant spatial and temporal scales.
Temporal integration at consecutive processing stages in the auditory pathway of the grasshopper.
Wirtssohn, Sarah; Ronacher, Bernhard
2015-04-01
Temporal integration in the auditory system of locusts was quantified by presenting single clicks and click pairs while performing intracellular recordings. Auditory neurons were studied at three processing stages, which form a feed-forward network in the metathoracic ganglion. Receptor neurons and most first-order interneurons ("local neurons") encode the signal envelope, while second-order interneurons ("ascending neurons") tend to extract more complex, behaviorally relevant sound features. In different neuron types of the auditory pathway we found three response types: no significant temporal integration (some ascending neurons), leaky energy integration (receptor neurons and some local neurons), and facilitatory processes (some local and ascending neurons). The receptor neurons integrated input over very short time windows (<2 ms). Temporal integration on longer time scales was found at subsequent processing stages, indicative of within-neuron computations and network activity. These different strategies, realized at separate processing stages and in parallel neuronal pathways within one processing stage, could enable the grasshopper's auditory system to evaluate longer time windows and thus to implement temporal filters, while at the same time maintaining a high temporal resolution. Copyright © 2015 the American Physiological Society.
Method for a quantitative investigation of the frozen flow hypothesis
Schock; Spillar
2000-09-01
We present a technique to test the frozen flow hypothesis quantitatively, using data from wave-front sensors such as those found in adaptive optics systems. Detailed treatments of the theoretical background of the method and of the error analysis are presented. Analyzing data from the 1.5-m and 3.5-m telescopes at the Starfire Optical Range, we find that the frozen flow hypothesis is an accurate description of the temporal development of atmospheric turbulence on time scales of the order of 1-10 ms but that significant deviations from the frozen flow behavior are present for longer time scales.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yu, Y.; Pang, N.; Halpin-Healy, T.
1994-12-01
The linear Langevin equation proposed by Edwards and Wilkinson [Proc. R. Soc. London A 381, 17 (1982)] is solved in closed form for noise of arbitrary space and time correlation. Furthermore, the temporal development of the full probability functional describing the height fluctuations is derived exactly, exhibiting an interesting evolution between two distinct Gaussian forms. We determine explicitly the dynamic scaling function for the interfacial width for any given initial condition, isolate the early-time behavior, and discover an invariance that was unsuspected in this problem of arbitrary spatiotemporal noise.
Beitel, Ralph E.; Schreiner, Christoph E.; Leake, Patricia A.
2016-01-01
In profoundly deaf cats, behavioral training with intracochlear electric stimulation (ICES) can improve temporal processing in the primary auditory cortex (AI). To investigate whether similar effects are manifest in the auditory midbrain, ICES was initiated in neonatally deafened cats either during development after short durations of deafness (8 wk of age) or in adulthood after long durations of deafness (≥3.5 yr). All of these animals received behaviorally meaningless, “passive” ICES. Some animals also received behavioral training with ICES. Two long-deaf cats received no ICES prior to acute electrophysiological recording. After several months of passive ICES and behavioral training, animals were anesthetized, and neuronal responses to pulse trains of increasing rates were recorded in the central (ICC) and external (ICX) nuclei of the inferior colliculus. Neuronal temporal response patterns (repetition rate coding, minimum latencies, response precision) were compared with results from recordings made in the AI of the same animals (Beitel RE, Vollmer M, Raggio MW, Schreiner CE. J Neurophysiol 106: 944–959, 2011; Vollmer M, Beitel RE. J Neurophysiol 106: 2423–2436, 2011). Passive ICES in long-deaf cats remediated severely degraded temporal processing in the ICC and had no effects in the ICX. In contrast to observations in the AI, behaviorally relevant ICES had no effects on temporal processing in the ICC or ICX, with the single exception of shorter latencies in the ICC in short-deaf cats. The results suggest that independent of deafness duration passive stimulation and behavioral training differentially transform temporal processing in auditory midbrain and cortex, and primary auditory cortex emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf cat. NEW & NOTEWORTHY Behaviorally relevant vs. passive electric stimulation of the auditory nerve differentially affects neuronal temporal processing in the central nucleus of the inferior colliculus (ICC) and the primary auditory cortex (AI) in profoundly short-deaf and long-deaf cats. Temporal plasticity in the ICC depends on a critical amount of electric stimulation, independent of its behavioral relevance. In contrast, the AI emerges as a pivotal site for behaviorally driven neuronal temporal plasticity in the deaf auditory system. PMID:27733594
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation
NASA Astrophysics Data System (ADS)
Ballard, Christopher C.; Esty, C. Clark; Egolf, David A.
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
The psychology of martyrdom: making the ultimate sacrifice in the name of a cause.
Bélanger, Jocelyn J; Caouette, Julie; Sharvit, Keren; Dugas, Michelle
2014-09-01
Martyrdom is defined as the psychological readiness to suffer and sacrifice one's life for a cause. An integrative set of 8 studies investigated the concept of martyrdom by creating a new tool to quantitatively assess individuals' propensity toward self-sacrifice. Studies 1A-1C consisted of psychometric work attesting to the scale's unidimensionality, internal consistency, and temporal stability while examining its nomological network. Studies 2A-2B focused on the scale's predictive validity, especially as it relates to extreme behaviors and suicidal terrorism. Studies 3-5 focused on the influence of self-sacrifice on automatic decision making, costly and altruistic behaviors, and morality judgments. Results involving more than 2,900 participants from different populations, including a terrorist sample, supported the proposed conceptualization of martyrdom and demonstrated its importance for a vast repertoire of cognitive, emotional, and behavioral phenomena. Implications and future directions for the psychology of terrorism are discussed. 2014 APA, all rights reserved
Collective behavior of large-scale neural networks with GPU acceleration.
Qu, Jingyi; Wang, Rubin
2017-12-01
In this paper, the collective behaviors of a small-world neuronal network motivated by the anatomy of a mammalian cortex based on both Izhikevich model and Rulkov model are studied. The Izhikevich model can not only reproduce the rich behaviors of biological neurons but also has only two equations and one nonlinear term. Rulkov model is in the form of difference equations that generate a sequence of membrane potential samples in discrete moments of time to improve computational efficiency. These two models are suitable for the construction of large scale neural networks. By varying some key parameters, such as the connection probability and the number of nearest neighbor of each node, the coupled neurons will exhibit types of temporal and spatial characteristics. It is demonstrated that the implementation of GPU can achieve more and more acceleration than CPU with the increasing of neuron number and iterations. These two small-world network models and GPU acceleration give us a new opportunity to reproduce the real biological network containing a large number of neurons.
Finding equilibrium in the spatiotemporal chaos of the complex Ginzburg-Landau equation.
Ballard, Christopher C; Esty, C Clark; Egolf, David A
2016-11-01
Equilibrium statistical mechanics allows the prediction of collective behaviors of large numbers of interacting objects from just a few system-wide properties; however, a similar theory does not exist for far-from-equilibrium systems exhibiting complex spatial and temporal behavior. We propose a method for predicting behaviors in a broad class of such systems and apply these ideas to an archetypal example, the spatiotemporal chaotic 1D complex Ginzburg-Landau equation in the defect chaos regime. Building on the ideas of Ruelle and of Cross and Hohenberg that a spatiotemporal chaotic system can be considered a collection of weakly interacting dynamical units of a characteristic size, the chaotic length scale, we identify underlying, mesoscale, chaotic units and effective interaction potentials between them. We find that the resulting equilibrium Takahashi model accurately predicts distributions of particle numbers. These results suggest the intriguing possibility that a class of far-from-equilibrium systems may be well described at coarse-grained scales by the well-established theory of equilibrium statistical mechanics.
NASA Technical Reports Server (NTRS)
Stawarz, J. E.; Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Pouquet, A.; Burch, J. L.; Giles, B. L.; Khotyaintsev, Y.; Le Contel, O.;
2016-01-01
Spatial and high-time-resolution properties of the velocities, magnetic field, and 3-D electric field within plasma turbulence are examined observationally using data from the Magnetospheric Multiscale mission. Observations from a Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause are examined, which both provides a series of repeatable intervals to analyze, giving better statistics, and provides a first look at the properties of turbulence in the KHI. For the first time direct observations of both the high-frequency ion and electron velocity spectra are examined, showing differing ion and electron behavior at kinetic scales. Temporal spectra exhibit power law behavior with changes in slope near the ion gyrofrequency and lower hybrid frequency. The work provides the first observational evidence for turbulent intermittency and anisotropy consistent with quasi two-dimensional turbulence in association with the KHI. The behavior of kinetic-scale intermittency is found to have differences from previous studies of solar wind turbulence, leading to novel insights on the turbulent dynamics in the KHI.
Travis J. Woolley; Mark E. Harmon; Kari B. O’Connell
2015-01-01
Inter-annual variability (IAV) of forest Net Primary Productivity (NPP) is a function of both extrinsic (e.g., climate) and intrinsic (e.g., stand dynamics) drivers. As estimates of NPP in forests are scaled from trees to stands to the landscape, an understanding of the relative effects of these factors on spatial and temporal behavior of NPP is important. Although a...
An Investigation of Chaotic Kolmogorov Flows
1990-08-01
plane for the Poincare sections used later. The choice of the constant D controls apparent positioning of the hyperplane in the phase...discovered in large scale structure regime. Features of the diverse cases are displayed in terms of the temporal power spectrum, Poincare sections and...examine in some detail the behavior of the flow and its transition states for a range of the bifurcation parameter Re. We use Poincare sections to
Xuan Chen; Barry K. Goodwin; Jeffrey P. Prestemon
2014-01-01
In the U.S. forest products industry, wildfire is one of the leading causes of damage and economic losses. While individual wildfire behavior is well studied, new literature is emerging on broad-scale (e.g., county-level) wildfire risks. Our paper studies wildfire risks using crucial informational vari ables across both spatio units and time periods....
NASA Astrophysics Data System (ADS)
Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.
2006-11-01
Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.
Dynamic functional connectivity: Promise, issues, and interpretations
Hutchison, R. Matthew; Womelsdorf, Thilo; Allen, Elena A.; Bandettini, Peter A.; Calhoun, Vince D.; Corbetta, Maurizio; Penna, Stefania Della; Duyn, Jeff H.; Glover, Gary H.; Gonzalez-Castillo, Javier; Handwerker, Daniel A.; Keilholz, Shella; Kiviniemi, Vesa; Leopold, David A.; de Pasquale, Francesco; Sporns, Olaf; Walter, Martin; Chang, Catie
2013-01-01
The brain must dynamically integrate, coordinate, and respond to internal and external stimuli across multiple time scales. Non-invasive measurements of brain activity with fMRI have greatly advanced our understanding of the large-scale functional organization supporting these fundamental features of brain function. Conclusions from previous resting-state fMRI investigations were based upon static descriptions of functional connectivity (FC), and only recently studies have begun to capitalize on the wealth of information contained within the temporal features of spontaneous BOLD FC. Emerging evidence suggests that dynamic FC metrics may index changes in macroscopic neural activity patterns underlying critical aspects of cognition and behavior, though limitations with regard to analysis and interpretation remain. Here, we review recent findings, methodological considerations, neural and behavioral correlates, and future directions in the emerging field of dynamic FC investigations. PMID:23707587
Chen, Hong; Li, Shanshan
2018-01-01
There exists a lack of specific research methods to estimate the relationship between an organization and its employees, which has long challenged research in the field of organizational management. Therefore, this article introduces psychological distance concept into the research of organizational behavior, which can define the concept of psychological distance between employees and an organization and describe a level of perceived correspondence or interaction between subjects and objects. We developed an employee-organization psychological distance (EOPD) scale through both qualitative and quantitative analysis methods. As indicated by the research results based on grounded theory (10 employee in-depth interview records and 277 opening questionnaires) and formal investigation (544 questionnaires), this scale consists of six dimensions: experiential distance, behavioral distance, emotional distance, cognitive distance, spatial-temporal distance, and objective social distance based on 44 items. Finally, we determined that the EOPD scale exhibited acceptable reliability and validity using confirmatory factor analysis. This research may establish a foundation for future research on the measurement of psychological relationships between employees and organizations. PMID:29375427
Swezey, C.
2001-01-01
This paper presents a compilation of eolian-based records of late Quaternary climate changes in the Sahara. Although the data are relatively sparse, when viewed as a whole, they reveal a general pattern of widespread eolian sediment mobilization prior to 11,000 cal. years BP, eolian sediment stabilization from 11,000 to 5000 cal. years BP, and a return to widespread eolian sediment mobilization after 5000 cal. years BP. Furthermore, an eolian-based record from southern Tunisia reveals the existence of millennial-scale changes in eolian sediment behavior. These millennial-scale variations provide examples of eolian sediment responses to climate changes at a scale intermediate between seasonal and orbital ('Milankovitch') changes, and they are also coincident with abrupt atmospheric and oceanic changes. The general synchroneity of the eolian stratigraphic records and their coincidence with various oceanic and atmospheric changes suggest that global forcing mechanisms have influenced late Quaternary eolian sediment behavior in the Sahara. ?? 2001 Elsevier Science B.V.
NASA Astrophysics Data System (ADS)
Ruohoniemi, J. M.; Greenwald, R. A.; Oksavik, K.; Baker, J. B.
2007-12-01
The electric fields at high latitudes are often modeled as a static pattern in the absence of variation in solar wind parameters or geomagnetic disturbance. However, temporal variability in the local electric fields on time scales of minutes for stable conditions has been reported and characterized statistically as an intrinsic property amounting to turbulence. We describe the results of applying a new technique to SuperDARN HF radar observations of ionospheric plasma convection at middle and high latitudes that gives views of the variability of the electric fields at sub-second time scales. We address the question of whether there is a limit to the temporal scale of the electric field variability and consider whether the turbulence on minute time scales is due to organized but unresolved behavior. The basis of the measurements is the ability to record raw samples from the individual multipulse sequences that are transmitted during the standard 3 or 6-second SuperDARN integration period; a backscattering volume is then effectively sampled at a cadence of 200 ms. The returns from the individual sequences are often sufficiently well-ordered to permit a sequence-by-sequence characterization of the electric field and backscattered power. We attempt a statistical characterization of the variability at these heretofore inaccessible time scales and consider how variability is influenced by solar wind and magentospheric factors.
NASA Astrophysics Data System (ADS)
Price, Aaron; Lee, H.
2010-01-01
Many astronomical objects, processes, and events exist and occur at extreme scales of spatial and temporal magnitudes. Our research draws upon the psychological literature, replete with evidence of linguistic and metaphorical links between the spatial and temporal domains, to compare how students estimate spatial and temporal magnitudes associated with objects and processes typically taught in science class.. We administered spatial and temporal scale estimation tests, with many astronomical items, to 417 students enrolled in 12 undergraduate science courses. Results show that while the temporal test was more difficult, students’ overall performance patterns between the two tests were mostly similar. However, asymmetrical correlations between the two tests indicate that students think of the extreme ranges of spatial and temporal scales in different ways, which is likely influenced by their classroom experience. When making incorrect estimations, students tended to underestimate the difference between the everyday scale and the extreme scales on both tests. This suggests the use of a common logarithmic mental number line for both spatial and temporal magnitude estimation. However, there are differences between the two tests in the errors student make in the everyday range. Among the implications discussed is the use of spatio-temporal reference frames, instead of smooth bootstrapping, to help students maneuver between scales of magnitude and the use of logarithmic transformations between reference frames. Implications for astronomy range from learning about spectra to large scale galaxy structure.
Wilson, Robyn S.; Hardisty, David J.; Epanchin-Niell, Rebecca S.; Runge, Michael C.; Cottingham, Kathryn L.; Urban, Dean L.; Maguire, Lynn A.; Hastings, Alan; Mumby, Peter J.; Peters, Debra P.C.
2016-01-01
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.
Wilson, Robyn S; Hardisty, David J; Epanchin-Niell, Rebecca S; Runge, Michael C; Cottingham, Kathryn L; Urban, Dean L; Maguire, Lynn A; Hastings, Alan; Mumby, Peter J; Peters, Debra P C
2016-02-01
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long-term inertia and short-term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management-decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers' actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time-scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long-term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short-sighted behavior to make it less appealing. Additional application of these tools and long-term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed. © 2015 Society for Conservation Biology.
Periodic and Aperiodic Variability in the Molecular Cloud ρ Ophiuchus
NASA Astrophysics Data System (ADS)
Parks, J. Robert; Plavchan, Peter; White, Russel J.; Gee, Alan H.
2014-03-01
Presented are the results of a near-IR photometric survey of 1678 stars in the direction of the ρ Ophiuchus (ρ Oph) star forming region using data from the 2MASS Calibration Database. For each target in this sample, up to 1584 individual J-, H-, and Ks -band photometric measurements with a cadence of ~1 day are obtained over three observing seasons spanning ~2.5 yr it is the most intensive survey of stars in this region to date. This survey identifies 101 variable stars with ΔKs -band amplitudes from 0.044 to 2.31 mag and Δ(J - Ks ) color amplitudes ranging from 0.053 to 1.47 mag. Of the 72 young ρ Oph star cluster members included in this survey, 79% are variable; in addition, 22 variable stars are identified as candidate members. Based on the temporal behavior of the Ks time-series, the variability is distinguished as either periodic, long time-scale or irregular. This temporal behavior coupled with the behavior of stellar colors is used to assign a dominant variability mechanism. A new period-searching algorithm finds periodic signals in 32 variable stars with periods between 0.49 to 92 days. The chief mechanism driving the periodic variability for 18 stars is rotational modulation of cool starspots while 3 periodically vary due to accretion-induced hot spots. The time-series for six variable stars contains discrete periodic "eclipse-like" features with periods ranging from 3 to 8 days. These features may be asymmetries in the circumstellar disk, potentially sustained or driven by a proto-planet at or near the co-rotation radius. Aperiodic, long time-scale variations in stellar flux are identified in the time-series for 31 variable stars with time-scales ranging from 64 to 790 days. The chief mechanism driving long time-scale variability is variable extinction or mass accretion rates. The majority of the variable stars (40) exhibit sporadic, aperiodic variability over no discernable time-scale. No chief variability mechanism could be identified for these variable stars.
Abnormal behavior in children with temporal lobe epilepsy and ganglioglioma.
Guimarães, Catarina A; Franzon, Renata C; Souza, Elisabete A P; Schmutzler, Kátia M R S; Montenegro, Maria Augusta; Queiroz, Luciano de S; Cendes, Fernando; Guerreiro, Marilisa M
2004-10-01
Temporal lobe epilepsy in childhood is characterized by great clinical, electroencephalographic, and etiological diversity. The prognosis after temporal lobe epilepsy surgery in childhood is usually good, with most patients achieving complete seizure control. However, in some children behavior deteriorates postoperatively. We report two girls (2 and 6 years of age) with refractory seizures due to temporal lobe ganglioglioma. They exhibited aggression and hyperactivity since the beginning of their epilepsy. In both patients, behavioral disturbances worsened postoperatively, despite complete seizure control. Patients and parents should be advised about possible behavioral disturbances after epilepsy surgery, especially in the presence of a temporal lobe developmental tumor, even when seizure control is achieved postoperatively.
Behaviors induced or disrupted by complex partial seizures.
Leung, L S; Ma, J; McLachlan, R S
2000-09-01
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
NASA Astrophysics Data System (ADS)
Dong, T. Y.; Nittrouer, J.; McElroy, B. J.; Ma, H.; Czapiga, M. J.; Il'icheva, E.; Pavlov, M.; Parker, G.
2017-12-01
The movement of water and sediment in natural channels creates various types of alluvial morphologies that span length scales from dunes to deltas. The behavior of these morphologies is controlled microscopically by hydrodynamic conditions and bed material size, and macroscopically by hydrologic and geological settings. Alluvial morphologies can be modeled as either diffusive or kinematic waves, in accordance with their respective boundary conditions. Recently, it has been shown that the difference between these two dynamic behaviors of alluvial morphologies can be characterized by the backwater number, which is a dimensionless value normalizing the length scale of a morphological feature to its local hydrodynamic condition. Application of the backwater number has proven useful for evaluating the size of morphologies, including deltas (e.g., by assessing the preferential avulsion location of a lobe), and for comparing bedform types across different fluvial systems. Yet two critical questions emerge when applying the backwater number: First, how do different types of alluvial morphologies compare within a single deltaic system, where there is a hydrodynamic transition from uniform to non-uniform flow? Second, how do different types of morphologies evolve temporally within a system as a function of changing water discharge? This study addresses these questions by compiling and analyzing field data from the Selenga River delta, Russia, which include measurements of flow velocity, channel geometry, bed material grain size, and channel slope, as well as length scales of various morphologies, including dunes, island bars, meanders, bifurcations, and delta lobes. Data analyses reveal that the length scale of morphologies decrease and the backwater number increases as flow transitions from uniform to non-uniform conditions progressing downstream. It is shown that the evaluated length scale hierarchy and planform distribution of different morphologies can be used to estimate slope, shear velocity and sediment flux within this depositional system. The findings from this research can be applied to evaluate spatially and temporally varying morphodynamic conditions, based on structures measured from both modern systems and ancient sedimentary records.
Tsuchiya, Masa; Giuliani, Alessandro; Hashimoto, Midori; Erenpreisa, Jekaterina; Yoshikawa, Kenichi
2015-01-01
Background The underlying mechanism of dynamic control of the genome-wide expression is a fundamental issue in bioscience. We addressed it in terms of phase transition by a systemic approach based on both density analysis and characteristics of temporal fluctuation for the time-course mRNA expression in differentiating MCF-7 breast cancer cells. Methodology In a recent work, we suggested criticality as an essential aspect of dynamic control of genome-wide gene expression. Criticality was evident by a unimodal-bimodal transition through flattened unimodal expression profile. The flatness on the transition suggests the existence of a critical transition at which up- and down-regulated expression is balanced. Mean field (averaging) behavior of mRNAs based on the temporal expression changes reveals a sandpile type of transition in the flattened profile. Furthermore, around the transition, a self-similar unimodal-bimodal transition of the whole expression occurs in the density profile of an ensemble of mRNA expression. These singular and scaling behaviors identify the transition as the expression phase transition driven by self-organized criticality (SOC). Principal Findings Emergent properties of SOC through a mean field approach are revealed: i) SOC, as a form of genomic phase transition, consolidates distinct critical states of expression, ii) Coupling of coherent stochastic oscillations between critical states on different time-scales gives rise to SOC, and iii) Specific gene clusters (barcode genes) ranging in size from kbp to Mbp reveal similar SOC to genome-wide mRNA expression and ON-OFF synchronization to critical states. This suggests that the cooperative gene regulation of topological genome sub-units is mediated by the coherent phase transitions of megadomain-scaled conformations between compact and swollen chromatin states. Conclusion and Significance In summary, our study provides not only a systemic method to demonstrate SOC in whole-genome expression, but also introduces novel, physically grounded concepts for a breakthrough in the study of biological regulation. PMID:26067993
Nonlinear Behavior of the Geomagnetic Fluctuations Recorded in Different Geomagnetic Latitudes
NASA Astrophysics Data System (ADS)
Kovacs, P.; Heilig, B.; Koppan, A.; Vadasz, G.; Echim, M.
2014-12-01
The paper concerns with the nonlinear properties of geomagnetic variations recorded in different geomagnetic latitudes, in the years of solar maximum and minimum. For the study, we use the geomagnetic time-series recorded by some of the stations of the EMMA quasi-meridional magnetometer network, established for pulsation study, in September 2001. The stations are located approx. along the magnetic meridian of 100 degree, and the sampling frequency of the series is 1 Hz. It is argued that the geomagnetic field exhibits nonlinear intermittent fluctuations in certain temporal scale range. For quantitatively investigating the scaling ranges and the variation of intermittent properties with latitude and time, we analyse the higher order moments of the time records (probability density function or structure function analyses). The multifractal or self-similar scaling of the fluctuations is investigated via the fitting of the P model to structure function scaling exponents. We also study the power-law behaviour of the power-spectral density functions of the series in order to evaluate the possible inertial frequency (and temporal) range of the geomagnetic field and compare them with the scaling ranges of structure functions. The range where intermittent geomagnetic variation is found falls typically between 100 and 20.000 s, i.e. covers the temporal range of the main phases of geomagnetic storms. It is shown that the intensity of intermittent fluctuations increases from solar minimum to solar maximum. The expected increase in the level of intermittency with the geomagnetic latitude can be evidenced only in the years of solar minimum. The research leading to these results has received funding from the European Community's Seventh Framework Programme ([FP7/2007-2013]) under grant agreement n° 313038/STORM.
The role of visual processing in motor learning and control: Insights from electroencephalography.
Krigolson, Olav E; Cheng, Darian; Binsted, Gord
2015-05-01
Traditionally our understanding of goal-directed action been derived from either behavioral findings or neuroanatomically derived imaging (i.e., fMRI). While both of these approaches have proven valuable, they lack the ability to determine a direct locus of function while concurrently having the necessary temporal precision needed to understand millisecond scale neural interactions respectively. In this review we summarize some seminal behavioral findings across three broad areas (target perturbation, feed-forward control, and feedback processing) and for each discuss the application of electroencephalography (EEG) to the understanding of the temporal nature of visual cue utilization during movement planning, control, and learning using four existing scalp potentials. Specifically, we examine the appropriateness of using the N100 potential as an indicator of corrective behaviors in response to target perturbation, the N200 as an index of movement planning, the P300 potential as a metric of feed-forward processes, and the feedback-related negativity as an index of motor learning. Although these existing components have potential for insight into cognitive contributions and the timing of the neural processes that contribute to motor control further research is needed to expand the control-related potentials and to develop methods to permit their accurate characterization across a wide range of behavioral tasks. Copyright © 2015 Elsevier B.V. All rights reserved.
Polyphasic Temporal Behavior of Finger-Tapping Performance: A Measure of Motor Skills and Fatigue.
Aydin, Leyla; Kiziltan, Erhan; Gundogan, Nimet Unay
2016-01-01
Successive voluntary motor movement involves a number of physiological mechanisms and may reflect motor skill development and neuromuscular fatigue. In this study, the temporal behavior of finger tapping was investigated in relation to motor skills and fatigue by using a long-term computer-based test. The finger-tapping performances of 29 healthy male volunteers were analyzed using linear and nonlinear regression models established for inter-tapping interval. The results suggest that finger-tapping performance exhibits a polyphasic nature, and has several characteristic time points, which may be directly related to muscle dynamics and energy consumption. In conclusion, we believe that future studies evaluating the polyphasic nature of the maximal voluntary movement will lead to the definition of objective scales that can be used in the follow up of some neuromuscular diseases, as well as, the determination of motor skills, individual ability, and peripheral fatigue through the use of a low cost, easy-to-use computer-based finger-tapping test.
Neural circuits. Labeling of active neural circuits in vivo with designed calcium integrators.
Fosque, Benjamin F; Sun, Yi; Dana, Hod; Yang, Chao-Tsung; Ohyama, Tomoko; Tadross, Michael R; Patel, Ronak; Zlatic, Marta; Kim, Douglas S; Ahrens, Misha B; Jayaraman, Vivek; Looger, Loren L; Schreiter, Eric R
2015-02-13
The identification of active neurons and circuits in vivo is a fundamental challenge in understanding the neural basis of behavior. Genetically encoded calcium (Ca(2+)) indicators (GECIs) enable quantitative monitoring of cellular-resolution activity during behavior. However, such indicators require online monitoring within a limited field of view. Alternatively, post hoc staining of immediate early genes (IEGs) indicates highly active cells within the entire brain, albeit with poor temporal resolution. We designed a fluorescent sensor, CaMPARI, that combines the genetic targetability and quantitative link to neural activity of GECIs with the permanent, large-scale labeling of IEGs, allowing a temporally precise "activity snapshot" of a large tissue volume. CaMPARI undergoes efficient and irreversible green-to-red conversion only when elevated intracellular Ca(2+) and experimenter-controlled illumination coincide. We demonstrate the utility of CaMPARI in freely moving larvae of zebrafish and flies, and in head-fixed mice and adult flies. Copyright © 2015, American Association for the Advancement of Science.
Mesolimbic Dopamine Signals the Value of Work
Hamid, Arif A.; Pettibone, Jeffrey R.; Mabrouk, Omar S.; Hetrick, Vaughn L.; Schmidt, Robert; Vander Weele, Caitlin M.; Kennedy, Robert T.; Aragona, Brandon J.; Berke, Joshua D.
2015-01-01
Dopamine cell firing can encode errors in reward prediction, providing a learning signal to guide future behavior. Yet dopamine is also a key modulator of motivation, invigorating current behavior. Existing theories propose that fast (“phasic”) dopamine fluctuations support learning, while much slower (“tonic”) dopamine changes are involved in motivation. We examined dopamine release in the nucleus accumbens across multiple time scales, using complementary microdialysis and voltammetric methods during adaptive decision-making. We first show that minute-by-minute dopamine levels covary with reward rate and motivational vigor. We then show that second-by-second dopamine release encodes an estimate of temporally-discounted future reward (a value function). We demonstrate that changing dopamine immediately alters willingness to work, and reinforces preceding action choices by encoding temporal-difference reward prediction errors. Our results indicate that dopamine conveys a single, rapidly-evolving decision variable, the available reward for investment of effort, that is employed for both learning and motivational functions. PMID:26595651
Behavioral training enhances cortical temporal processing in neonatally deafened juvenile cats
Vollmer, Maike; Raggio, Marcia W.; Schreiner, Christoph E.
2011-01-01
Deaf humans implanted with a cochlear prosthesis depend largely on temporal cues for speech recognition because spectral information processing is severely impaired. Training with a cochlear prosthesis is typically required before speech perception shows improvement, suggesting that relevant experience modifies temporal processing in the central auditory system. We tested this hypothesis in neonatally deafened cats by comparing temporal processing in the primary auditory cortex (AI) of cats that received only chronic passive intracochlear electric stimulation (ICES) with cats that were also trained with ICES to detect temporally challenging trains of electric pulses. After months of chronic passive stimulation and several weeks of detection training in behaviorally trained cats, multineuronal AI responses evoked by temporally modulated ICES were recorded in anesthetized animals. The stimulus repetition rates that produced the maximum number of phase-locked spikes (best repetition rate) and 50% cutoff rate were significantly higher in behaviorally trained cats than the corresponding rates in cats that received only chronic passive ICES. Behavioral training restored neuronal temporal following ability to levels comparable with those recorded in naïve prior normal-hearing adult deafened animals. Importantly, best repetitition rates and cutoff rates were highest for neuronal clusters activated by the electrode configuration used in behavioral training. These results suggest that neuroplasticity in the AI is induced by behavioral training and perceptual learning in animals deprived of ordinary auditory experience during development and indicate that behavioral training can ameliorate or restore temporal processing in the AI of profoundly deaf animals. PMID:21543753
Yerramilli, Anjaneyulu; Srinivas, Challa Venkata; Dasari, Hari Prasad; Tuluri, Francis; White, Loren D.; Baham, Julius M.; Young, John H.; Hughes, Robert; Patrick, Chuck; Hardy, Mark G.; Swanier, Shelton J.
2009-01-01
Atmospheric dispersion calculations are made using the HYSPLIT Particle Dispersion Model for studying the transport and dispersion of air-borne releases from point elevated sources in the Mississippi Gulf coastal region. Simulations are performed separately with three meteorological data sets having different spatial and temporal resolution for a typical summer period in 1–3 June 2006 representing a weak synoptic condition. The first two data are the NCEP global and regional analyses (FNL, EDAS) while the third is a meso-scale simulation generated using the Weather Research and Forecasting model with nested domains at a fine resolution of 4 km. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of the combined influences of the land-sea breeze circulation, the large scale flow field and diurnal alteration in the mixing depth across the coast. The model predicted SO2 concentrations showed that the trajectory and the concentration distribution varied in the three cases of input data. While calculations with FNL data show an overall higher correlation, there is a significant positive bias during daytime and negative bias during night time. Calculations with EDAS fields are significantly below the observations during both daytime and night time though plume behavior follows the coastal circulation. The diurnal plume behavior and its distribution are better simulated using the mesoscale WRF meteorological fields in the coastal environment suggesting its suitability for pollution dispersion impact assessment in the local scale. Results of different cases of simulation, comparison with observations, correlation and bias in each case are presented. PMID:19440433
Castelblanco-Martínez, Delma Nataly; Morales-Vela, Benjamin; Slone, Daniel H.; Padilla-Saldívar, Janneth Adriana; Reid, James P.; Hernández-Arana, Héctor Abuid
2015-01-01
Diving or respiratory behavior in aquatic mammals can be used as an indicator of physiological activity and consequently, to infer behavioral patterns. Five Antillean manatees, Trichechus manatus manatus, were captured in Chetumal Bay and tagged with GPS tracking devices. The radios were equipped with a micropower saltwater sensor (SWS), which records the times when the tag assembly was submerged. The information was analyzed to establish individual fine-scale behaviors. For each fix, we established the following variables: distance (D), sampling interval (T), movement rate (D/T), number of dives (N), and total diving duration (TDD). We used logic criteria and simple scatterplots to distinguish between behavioral categories: ‘Travelling’ (D/T ≥ 3 km/h), ‘Surface’ (↓TDD, ↓N), ‘Bottom feeding’ (↑TDD, ↑N) and ‘Bottom resting’ (↑TDD, ↓N). Habitat categories were qualitatively assigned: Lagoon, Channels, Caye shore, City shore, Channel edge, and Open areas. The instrumented individuals displayed a daily rhythm of bottom activities, with surfacing activities more frequent during the night and early in the morning. More investigation into those cycles and other individual fine-scale behaviors related to their proximity to concentrations of human activity would be informative
Qualitative and temporal reasoning in engine behavior analysis
NASA Technical Reports Server (NTRS)
Dietz, W. E.; Stamps, M. E.; Ali, M.
1987-01-01
Numerical simulation models, engine experts, and experimental data are used to generate qualitative and temporal representations of abnormal engine behavior. Engine parameters monitored during operation are used to generate qualitative and temporal representations of actual engine behavior. Similarities between the representations of failure scenarios and the actual engine behavior are used to diagnose fault conditions which have already occurred, or are about to occur; to increase the surveillance by the monitoring system of relevant engine parameters; and to predict likely future engine behavior.
2010-01-01
or in more general terms, as a result of dislocation nucleation, motion, multiplication, and interaction). Nonetheless, state-of-the-art simulation ...computational power, together with under-developed physics within the simulation codes (i.e. cross-slip, climb, crystal rotations and patterning to...name a few), prevent realistic dislocation simulations over temporal and spatial domains that are readily accessible by experimental methods [9, 10
Williams, Alex H; Kim, Tony Hyun; Wang, Forea; Vyas, Saurabh; Ryu, Stephen I; Shenoy, Krishna V; Schnitzer, Mark; Kolda, Tamara G; Ganguli, Surya
2018-06-27
Perceptions, thoughts, and actions unfold over millisecond timescales, while learned behaviors can require many days to mature. While recent experimental advances enable large-scale and long-term neural recordings with high temporal fidelity, it remains a formidable challenge to extract unbiased and interpretable descriptions of how rapid single-trial circuit dynamics change slowly over many trials to mediate learning. We demonstrate a simple tensor component analysis (TCA) can meet this challenge by extracting three interconnected, low-dimensional descriptions of neural data: neuron factors, reflecting cell assemblies; temporal factors, reflecting rapid circuit dynamics mediating perceptions, thoughts, and actions within each trial; and trial factors, describing both long-term learning and trial-to-trial changes in cognitive state. We demonstrate the broad applicability of TCA by revealing insights into diverse datasets derived from artificial neural networks, large-scale calcium imaging of rodent prefrontal cortex during maze navigation, and multielectrode recordings of macaque motor cortex during brain machine interface learning. Copyright © 2018 Elsevier Inc. All rights reserved.
Perspectives on the geographic stability and mobility of people in cities
Hanson, Susan
2005-01-01
A class of questions in the human environment sciences focuses on the relationship between individual or household behavior and local geographic context. Central to these questions is the nature of people's geographic mobility as well as the duration of their locational stability at varying spatial and temporal scales. The problem for researchers is that the processes of mobility/stability are temporally and spatially dynamic and therefore difficult to measure. Whereas time and space are continuous, analysts must select levels of aggregation for both length of time in place and spatial scale of place that fit with the problem in question. Previous work has emphasized mobility and suppressed stability as an analytic category. I focus here on stability and show how analyzing individuals' stability requires also analyzing their mobility. Through an empirical example centered on the relationship between entrepreneurship and place, I demonstrate how a spotlight on stability illuminates a resolution to the measurement problem by highlighting the interdependence between the time and space dimensions of stability/mobility. PMID:16230616
Baker, Christa A.; Ma, Lisa; Casareale, Chelsea R.
2016-01-01
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8–12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. SIGNIFICANCE STATEMENT The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. PMID:27559179
Baker, Christa A; Ma, Lisa; Casareale, Chelsea R; Carlson, Bruce A
2016-08-24
In many sensory pathways, central neurons serve as temporal filters for timing patterns in communication signals. However, how a population of neurons with diverse temporal filtering properties codes for natural variation in communication signals is unknown. Here we addressed this question in the weakly electric fish Brienomyrus brachyistius, which varies the time intervals between successive electric organ discharges to communicate. These fish produce an individually stereotyped signal called a scallop, which consists of a distinctive temporal pattern of ∼8-12 electric pulses. We manipulated the temporal structure of natural scallops during behavioral playback and in vivo electrophysiology experiments to probe the temporal sensitivity of scallop encoding and recognition. We found that presenting time-reversed, randomized, or jittered scallops increased behavioral response thresholds, demonstrating that fish's electric signaling behavior was sensitive to the precise temporal structure of scallops. Next, using in vivo intracellular recordings and discriminant function analysis, we found that the responses of interval-selective midbrain neurons were also sensitive to the precise temporal structure of scallops. Subthreshold changes in membrane potential recorded from single neurons discriminated natural scallops from time-reversed, randomized, and jittered sequences. Pooling the responses of multiple neurons improved the discriminability of natural sequences from temporally manipulated sequences. Finally, we found that single-neuron responses were sensitive to interindividual variation in scallop sequences, raising the question of whether fish may analyze scallop structure to gain information about the sender. Collectively, these results demonstrate that a population of interval-selective neurons can encode behaviorally relevant temporal patterns with millisecond precision. The timing patterns of action potentials, or spikes, play important roles in representing information in the nervous system. However, how these temporal patterns are recognized by downstream neurons is not well understood. Here we use the electrosensory system of mormyrid weakly electric fish to investigate how a population of neurons with diverse temporal filtering properties encodes behaviorally relevant input timing patterns, and how this relates to behavioral sensitivity. We show that fish are behaviorally sensitive to millisecond variations in natural, temporally patterned communication signals, and that the responses of individual midbrain neurons are also sensitive to variation in these patterns. In fact, the output of single neurons contains enough information to discriminate stereotyped communication signals produced by different individuals. Copyright © 2016 the authors 0270-6474/16/368985-16$15.00/0.
Berger, Theodore W.; Song, Dong; Chan, Rosa H. M.; Marmarelis, Vasilis Z.; LaCoss, Jeff; Wills, Jack; Hampson, Robert E.; Deadwyler, Sam A.; Granacki, John J.
2012-01-01
This paper describes the development of a cognitive prosthesis designed to restore the ability to form new long-term memories typically lost after damage to the hippocampus. The animal model used is delayed nonmatch-to-sample (DNMS) behavior in the rat, and the “core” of the prosthesis is a biomimetic multi-input/multi-output (MIMO) nonlinear model that provides the capability for predicting spatio-temporal spike train output of hippocampus (CA1) based on spatio-temporal spike train inputs recorded presynaptically to CA1 (e.g., CA3). We demonstrate the capability of the MIMO model for highly accurate predictions of CA1 coded memories that can be made on a single-trial basis and in real-time. When hippocampal CA1 function is blocked and long-term memory formation is lost, successful DNMS behavior also is abolished. However, when MIMO model predictions are used to reinstate CA1 memory-related activity by driving spatio-temporal electrical stimulation of hippocampal output to mimic the patterns of activity observed in control conditions, successful DNMS behavior is restored. We also outline the design in very-large-scale integration for a hardware implementation of a 16-input, 16-output MIMO model, along with spike sorting, amplification, and other functions necessary for a total system, when coupled together with electrode arrays to record extracellularly from populations of hippocampal neurons, that can serve as a cognitive prosthesis in behaving animals. PMID:22438335
NASA Astrophysics Data System (ADS)
Gong, Caixia; Chen, Xinjun; Gao, Feng; Tian, Siquan
2014-12-01
Temporal and spatial scales play important roles in fishery ecology, and an inappropriate spatio-temporal scale may result in large errors in modeling fish distribution. The objective of this study is to evaluate the roles of spatio-temporal scales in habitat suitability modeling, with the western stock of winter-spring cohort of neon flying squid ( Ommastrephes bartramii) in the northwest Pacific Ocean as an example. In this study, the fishery-dependent data from the Chinese Mainland Squid Jigging Technical Group and sea surface temperature (SST) from remote sensing during August to October of 2003-2008 were used. We evaluated the differences in a habitat suitability index model resulting from aggregating data with 36 different spatial scales with a combination of three latitude scales (0.5°, 1° and 2°), four longitude scales (0.5°, 1°, 2° and 4°), and three temporal scales (week, fortnight, and month). The coefficients of variation (CV) of the weekly, biweekly and monthly suitability index (SI) were compared to determine which temporal and spatial scales of SI model are more precise. This study shows that the optimal temporal and spatial scales with the lowest CV are month, and 0.5° latitude and 0.5° longitude for O. bartramii in the northwest Pacific Ocean. This suitability index model developed with an optimal scale can be cost-effective in improving forecasting fishing ground and requires no excessive sampling efforts. We suggest that the uncertainty associated with spatial and temporal scales used in data aggregations needs to be considered in habitat suitability modeling.
Mediator of moderators: temporal stability of intention and the intention-behavior relation.
Sheeran, Paschal; Abraham, Charles
2003-02-01
Intention certainty, past behavior, self-schema, anticipated regret, and attitudinal versus normative control all have been found to moderate intention-behavior relations. It is argued that moderation occurs because these variables produce "strong" intentions. Stability of intention over time is a key index of intention strength. Consequently, it was hypothesized that temporal stability of intention would mediate moderation by these other moderators. Participants (N = 185) completed questionnaire measures of theory of planned behavior constructs and moderator variables at two time points and subsequently reported their exercise behavior. Findings showed that all of the moderators, including temporal stability, were associated with significant improvements in consistency between intention and behavior. Temporal stability also mediated the effects of the other moderators, supporting the study hypothesis. Copyright 2003 Society for Personality and Social Psychology, Inc.
Yang, Fei; Thomas, Maria A; Dehdashti, Farrokh; Grigsby, Perry W
2013-05-01
The aim of this pilot study was to explore heterogeneity in the temporal behavior of intratumoral [(18)F]fluorodeoxyglucose (FDG) accumulation at a regional scale in patients with cervical cancer undergoing chemoradiotherapy. Included in the study were 20 patients with FIGO stages IB1 to IVA cervical cancer treated with combined chemoradiotherapy. Patients underwent FDG PET/CT before treatment, during weeks 2 and 4 of treatment, and 12 weeks after completion of therapy. Patients were classified based on response to therapy as showing a complete metabolic response (CMR), a partial metabolic response (PMR), or residual disease and the development of new disease (NEW). Based on the presence of residual primary tumor following therapy, patients were divided into two groups, CMR and PMR/NEW. Temporal profiles of intratumoral FDG heterogeneity as characterized by textural features at a regional scale were assessed and compared with those of the standardized uptake value (SUV) indices (SUVmax and SUVmean) within the context of differentiating response groups. Textural features at a regional scale with emphasis on characterizing contiguous regions of high uptake in tumors decreased significantly with time (P < 0.001) in the CMR group, while features describing contiguous regions of low uptake along with those measuring the nonuniformity of contiguous isointense regions in tumors exhibited significant temporal changes in the PMR/NEW group (P < 0.03) but showed no persistent trends with time. Both SUV indices showed significant changes during the course of the disease in both patient groups (P < 0.001 for SUVmax and SUVmean in the CMR group; P = 0.0109 and 0.0136, respectively, for SUVmax and SUVmean in the PMR/NEW group), and also decreased at a constant rate in the CMR group and decreased up to the 4th week of treatment and then increased in the PMR/NEW group. The temporal changes in the heterogeneity of intratumoral FDG distribution characterized at a regional scale using image-based textural features may provide an adjunctive or alternative option for understanding tumor response to chemoradiotherapy and interpreting FDG accumulation dynamics in patients with malignant cervical tumors during the course of the disease.
A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns.
Osgood, Nathaniel D; Paul, Tuhin; Stanley, Kevin G; Qian, Weicheng
2016-01-01
Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist.
NASA Technical Reports Server (NTRS)
Crosson, William L.; Smith, Eric A.
1992-01-01
The behavior of in situ measurements of surface fluxes obtained during FIFE 1987 is examined by using correlative and spectral techniques in order to assess the significance of fluctuations on various time scales, from subdiurnal up to synoptic, intraseasonal, and annual scales. The objectives of this analysis are: (1) to determine which temporal scales have a significant impact on areal averaged fluxes and (2) to design a procedure for filtering an extended flux time series that preserves the basic diurnal features and longer time scales while removing high frequency noise that cannot be attributed to site-induced variation. These objectives are accomplished through the use of a two-dimensional cross-time Fourier transform, which serves to separate processes inherently related to diurnal and subdiurnal variability from those which impact flux variations on the longer time scales. A filtering procedure is desirable before the measurements are utilized as input with an experimental biosphere model, to insure that model based intercomparisons at multiple sites are uncontaminated by input variance not related to true site behavior. Analysis of the spectral decomposition indicates that subdiurnal time scales having periods shorter than 6 hours have little site-to-site consistency and therefore little impact on areal integrated fluxes.
Temporal data mining for the quality assessment of hemodialysis services.
Bellazzi, Riccardo; Larizza, Cristiana; Magni, Paolo; Bellazzi, Roberto
2005-05-01
This paper describes the temporal data mining aspects of a research project that deals with the definition of methods and tools for the assessment of the clinical performance of hemodialysis (HD) services, on the basis of the time series automatically collected during hemodialysis sessions. Intelligent data analysis and temporal data mining techniques are applied to gain insight and to discover knowledge on the causes of unsatisfactory clinical results. In particular, two new methods for association rule discovery and temporal rule discovery are applied to the time series. Such methods exploit several pre-processing techniques, comprising data reduction, multi-scale filtering and temporal abstractions. We have analyzed the data of more than 5800 dialysis sessions coming from 43 different patients monitored for 19 months. The qualitative rules associating the outcome parameters and the measured variables were examined by the domain experts, which were able to distinguish between rules confirming available background knowledge and unexpected but plausible rules. The new methods proposed in the paper are suitable tools for knowledge discovery in clinical time series. Their use in the context of an auditing system for dialysis management helped clinicians to improve their understanding of the patients' behavior.
Mesoscale behavior study of collector aggregations in a wet dust scrubber.
Li, Xiaochuan; Wu, Xiang; Hu, Haibin; Jiang, Shuguang; Wei, Tao; Wang, Dongxue
2018-01-01
In order to address the bottleneck problem of low fine-particle removal efficiency of self-excited dust scrubbers, this paper is focused on the influence of the intermittent gas-liquid two-phase flow on the mesoscale behavior of collector aggregations. The latter is investigated by the application of high-speed dynamic image technology to the self-excited dust scrubber experimental setup. The real-time-scale monitoring of the dust removal process is provided to clarify its operating mechanism at the mesoscale level. The results obtained show that particulate capturing in self-excited dust scrubber is provided by liquid droplets, liquid films/curtains, bubbles, and their aggregations. Complex spatial and temporal structures are intrinsic to each kind of collector morphology, and these are considered as the major factors controlling the dust removal mechanism of self-excited dust scrubbers. For the specific parameters of gas-liquid two-phase flow under study, the evolution patterns of particular collectors reflect the intrinsic, intermittent, and complex characteristics of the temporal structure. The intermittent initiation of the collector and the air hole formation-collapse cyclic processes provide time and space for the fine dust to escape from being trapped by the collectors. The above mesoscale experimental data provide more insight into the factors reducing the dust removal efficiency of self-excited dust scrubbers. This paper focuses on the reconsideration of the capturer aggregations of self-excited dust scrubbers from the mesoscale. Complex structures in time and space scales exist in each kind of capturer morphology. With changes of operating parameters, the morphology and spatial distributions of capturers diversely change. The change of the capturer over time presents remarkable, intermittent, and complex characteristics of the temporal structure.
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G. R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries. PMID:28575078
Poli, Caroline L; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D; Jodice, Patrick G R
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m-35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Dynamic oceanography determines fine scale foraging behavior of Masked Boobies in the Gulf of Mexico
Poli, Caroline L.; Harrison, Autumn-Lynn; Vallarino, Adriana; Gerard, Patrick D.; Jodice, Patrick G.R.
2017-01-01
During breeding, foraging marine birds are under biological, geographic, and temporal constraints. These contraints require foraging birds to efficiently process environmental cues derived from physical habitat features that occur at nested spatial scales. Mesoscale oceanography in particular may change rapidly within and between breeding seasons, and findings from well-studied systems that relate oceanography to seabird foraging may transfer poorly to regions with substantially different oceanographic conditions. Our objective was to examine foraging behavior of a pan-tropical seabird, the Masked Booby (Sula dactylatra), in the understudied Caribbean province, a moderately productive region driven by highly dynamic currents and fronts. We tracked 135 individuals with GPS units during May 2013, November 2013, and December 2014 at a regionally important breeding colony in the southern Gulf of Mexico. We measured foraging behavior using characteristics of foraging trips and used area restricted search as a proxy for foraging events. Among individual attributes, nest stage contributed to differences in foraging behavior whereas sex did not. Birds searched for prey at nested hierarchical scales ranging from 200 m—35 km. Large-scale coastal and shelf-slope fronts shifted position between sampling periods and overlapped geographically with overall foraging locations. At small scales (at the prey patch level), the specific relationship between environmental variables and foraging behavior was highly variable among individuals but general patterns emerged. Sea surface height anomaly and velocity of water were the strongest predictors of area restricted search behavior in random forest models, a finding that is consistent with the characterization of the Gulf of Mexico as an energetic system strongly influenced by currents and eddies. Our data may be combined with tracking efforts in the Caribbean province and across tropical regions to advance understanding of seabird sensing of the environment and serve as a baseline for anthropogenic based threats such as development, pollution, and commercial fisheries.
Spatio-temporal scaling of channels in braided streams.
A.G. Hunt; G.E. Grant; V.K. Gupta
2006-01-01
The spatio-temporal scaling relationship for individual channels in braided streams is shown to be identical to the spatio-temporal scaling associated with constant Froude number, e.g., Fr = l. A means to derive this relationship is developed from a new theory of sediment transport. The mechanism by which the Fr = l condition apparently governs the scaling seems to...
Brennan, Sean R.; Fernandez, Diego P.; Zimmerman, Christian E.; Cerling, Thure E.; Brown, Randy J.; Wooller, Matthew J.
2015-01-01
Heterogeneity in 87Sr/86Sr ratios of river-dissolved strontium (Sr) across geologically diverse environments provides a useful tool for investigating provenance, connectivity and movement patterns of various organisms and materials. Evaluation of site-specific 87Sr/86Sr temporal variability throughout study regions is a prerequisite for provenance research, but the dynamics driving temporal variability are generally system-dependent and not accurately predictable. We used the time-keeping properties of otoliths from non-migratory slimy sculpin (Cottus cognatus) to evaluate multi-scale 87Sr/86Sr temporal variability of river waters throughout the Nushagak River, a large (34,700 km2) remote watershed in Alaska, USA. Slimy sculpin otoliths incorporated site-specific temporal variation at sub-annual resolution and were able to record on the order of 0.0001 changes in the 87Sr/86Sr ratio. 87Sr/86Sr profiles of slimy sculpin collected in tributaries and main-stem channels of the upper watershed indicated that these regions were temporally stable, whereas the Lower Nushagak River exhibited some spatio-teporal variability. This study illustrates how the behavioral ecology of a non-migratory organism can be used to evaluate sub-annual 87Sr/86Sr temporal variability and has broad implications for provenance studies employing this tracer.
Paholpak, Pongsatorn; Carr, Andrew R; Barsuglia, Joseph P; Barrows, Robin J; Jimenez, Elvira; Lee, Grace J; Mendez, Mario F
2016-09-19
While much disinhibition in dementia results from generalized impulsivity, in behavioral variant frontotemporal dementia (bvFTD) disinhibition may also result from impaired social cognition. To deconstruct disinhibition and its neural correlates in bvFTD vs. early-onset Alzheimer's disease (eAD). Caregivers of 16 bvFTD and 21 matched-eAD patients completed the Frontal Systems Behavior Scale disinhibition items. The disinhibition items were further categorized into (1) "person-based" subscale which predominantly associated with violating social propriety and personal boundary and (2) "generalized-impulsivity" subscale which included nonspecific impulsive acts. Subscale scores were correlated with grey matter volumes from tensor-based morphometry on magnetic resonance images. In comparison to the eAD patients, the bvFTD patients developed greater person-based disinhibition (P < 0.001) but comparable generalized impulsivity. Severity of person-based disinhibition significantly correlated with the left anterior superior temporal sulcus (STS), and generalized-impulsivity correlated with the right orbitofrontal cortex (OFC) and the left anterior temporal lobe (aTL). Person-based disinhibition was predominant in bvFTD and correlated with the left STS. In both dementia, violations of social propriety and personal boundaries involved fronto-parieto-temporal network of Theory of Mind, whereas nonspecific disinhibition involved the OFC and aTL. © The Author(s) 2016.
Very high elevation water ice clouds on Mars: Their morphology and temporal behavior
NASA Technical Reports Server (NTRS)
Jaquin, Fred
1988-01-01
Quantitative analysis of Viking images of the martian planetary limb has uncovered the existence and temporal behavior of water ice clouds that form between 50 and 90 km elevation. These clouds show a seasonal behavior that may be correlated with lower atmosphere dynamics. Enhanced vertical mixing of the atmosphere as Mars nears perihelion is hypothesized as the cause of the seasonal dependence, and the diurnal dependence is explained by the temporal behavior of the martian diurnal thermal tide. Viking images also provide a data set of the vertical distribution of aerosols in the martian atmosphere. The temporal and spatial distribution of aerosols are characterized.
NASA Astrophysics Data System (ADS)
Hutter, Nils; Losch, Martin; Menemenlis, Dimitris
2017-04-01
Sea ice models with the traditional viscous-plastic (VP) rheology and very high grid resolution can resolve leads and deformation rates that are localised along Linear Kinematic Features (LKF). In a 1-km pan-Arctic sea ice-ocean simulation, the small scale sea-ice deformations in the Central Arctic are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS). A new coupled scaling analysis for data on Eulerian grids determines the spatial and the temporal scaling as well as the coupling between temporal and spatial scales. The spatial scaling of the modelled sea ice deformation implies multi-fractality. The spatial scaling is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling and its coupling to temporal scales with satellite observations and models with the modern elasto-brittle rheology challenges previous results with VP models at coarse resolution where no such scaling was found. The temporal scaling analysis, however, shows that the VP model does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
Remote Sensing, GIS, and Vector-Borne Disease
NASA Technical Reports Server (NTRS)
Beck, Louisa R.
2001-01-01
The concept of global climate change encompasses more than merely an alteration in temperature; it also includes spatial and temporal covariations in precipitation and humidity, and more frequent occurrence of extreme weather events. The impact of these variations, which can occur at a variety of temporal and spatial scales, could have a direct impact on disease transmission through their environmental consequences for pathogen, vector, and host survival, as well as indirectly through human demographic and behavioral responses. New and future sensor systems will allow scientists to investigate the relationships between climate change and environmental risk factors at multiple spatial, temporal and spectral scales. Higher spatial resolution will provide better opportunities for mapping urban features previously only possible with high resolution aerial photography. These opportunities include housing quality (e.g., Chagas'disease, leishmaniasis) and urban mosquito habitats (e.g., dengue fever, filariasis, LaCrosse encephalitis). There are or will be many new sensors that have higher spectral resolution, enabling scientists to acquire more information about parameters such as soil moisture, soil type, better vegetation discrimination, and ocean color, to name a few. Although soil moisture content is now detectable using Landsat, the new thermal, shortwave infrared, and radar sensors will be able to provide this information at a variety of scales not achievable using Landsat. Soil moisture could become a key component in transmission risk models for Lyme disease (tick survival), helminthiases (worm habitat), malaria (vector-breeding habitat), and schistosomiasis (snail habitat).
Dual-Pitch Processing Mechanisms in Primate Auditory Cortex
Bendor, Daniel; Osmanski, Michael S.
2012-01-01
Pitch, our perception of how high or low a sound is on a musical scale, is a fundamental perceptual attribute of sounds and is important for both music and speech. After more than a century of research, the exact mechanisms used by the auditory system to extract pitch are still being debated. Theoretically, pitch can be computed using either spectral or temporal acoustic features of a sound. We have investigated how cues derived from the temporal envelope and spectrum of an acoustic signal are used for pitch extraction in the common marmoset (Callithrix jacchus), a vocal primate species, by measuring pitch discrimination behaviorally and examining pitch-selective neuronal responses in auditory cortex. We find that pitch is extracted by marmosets using temporal envelope cues for lower pitch sounds composed of higher-order harmonics, whereas spectral cues are used for higher pitch sounds with lower-order harmonics. Our data support dual-pitch processing mechanisms, originally proposed by psychophysicists based on human studies, whereby pitch is extracted using a combination of temporal envelope and spectral cues. PMID:23152599
Modeling Temporal Behavior in Large Networks: A Dynamic Mixed-Membership Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rossi, R; Gallagher, B; Neville, J
Given a large time-evolving network, how can we model and characterize the temporal behaviors of individual nodes (and network states)? How can we model the behavioral transition patterns of nodes? We propose a temporal behavior model that captures the 'roles' of nodes in the graph and how they evolve over time. The proposed dynamic behavioral mixed-membership model (DBMM) is scalable, fully automatic (no user-defined parameters), non-parametric/data-driven (no specific functional form or parameterization), interpretable (identifies explainable patterns), and flexible (applicable to dynamic and streaming networks). Moreover, the interpretable behavioral roles are generalizable, computationally efficient, and natively supports attributes. We applied ourmore » model for (a) identifying patterns and trends of nodes and network states based on the temporal behavior, (b) predicting future structural changes, and (c) detecting unusual temporal behavior transitions. We use eight large real-world datasets from different time-evolving settings (dynamic and streaming). In particular, we model the evolving mixed-memberships and the corresponding behavioral transitions of Twitter, Facebook, IP-Traces, Email (University), Internet AS, Enron, Reality, and IMDB. The experiments demonstrate the scalability, flexibility, and effectiveness of our model for identifying interesting patterns, detecting unusual structural transitions, and predicting the future structural changes of the network and individual nodes.« less
Allometric and temporal scaling of movement characteristics in Galapagos tortoises
Bastille-Rousseau, Guillaume; Yackulic, Charles B.; Frair, Jacqueline L.; Cabrera, Freddy; Blake, Stephen
2016-01-01
Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs.We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour – giant Galapagos tortoises (Chelonoidis spp.) – to test how movement metrics estimated on a monthly basis scaled with body size.We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex.Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates.Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises.
Allometric and temporal scaling of movement characteristics in Galapagos tortoises.
Bastille-Rousseau, Guillaume; Yackulic, Charles B; Frair, Jacqueline L; Cabrera, Freddy; Blake, Stephen
2016-09-01
Understanding how individual movement scales with body size is of fundamental importance in predicting ecological relationships for diverse species. One-dimensional movement metrics scale consistently with body size yet vary over different temporal scales. Knowing how temporal scale influences the relationship between animal body size and movement would better inform hypotheses about the efficiency of foraging behaviour, the ontogeny of energy budgets, and numerous life-history trade-offs. We investigated how the temporal scaling of allometric patterns in movement varies over the course of a year, specifically during periods of motivated (directional and fast movement) and unmotivated (stationary and tortuous movement) behaviour. We focused on a recently diverged group of species that displays wide variation in movement behaviour - giant Galapagos tortoises (Chelonoidis spp.) - to test how movement metrics estimated on a monthly basis scaled with body size. We used state-space modelling to estimate seven different movement metrics of Galapagos tortoises. We used log-log regression of the power law to evaluate allometric scaling for these movement metrics and contrasted relationships by species and sex. Allometric scaling of movement was more apparent during motivated periods of movement. During this period, allometry was revealed at multiple temporal intervals (hourly, daily and monthly), with values observed at daily and monthly intervals corresponding most closely to the expected one-fourth scaling coefficient, albeit with wide credible intervals. We further detected differences in the magnitude of scaling among taxa uncoupled from observed differences in the temporal structuring of their movement rates. Our results indicate that the definition of temporal scales is fundamental to the detection of allometry of movement and should be given more attention in movement studies. Our approach not only provides new conceptual insights into temporal attributes in one-dimensional scaling of movement, but also generates valuable insights into the movement ecology of iconic yet poorly understood Galapagos giant tortoises. © 2016 The Authors. Journal of Animal Ecology © 2016 British Ecological Society.
Weber, Alexander M; Soreni, Noam; Noseworthy, Michael D
2014-08-01
To study the effect of acute alcohol intoxication on the functional connectivity of the default mode network (DMN) and temporal fractal properties of the healthy adult brain. Eleven healthy male volunteers were asked to drink 0.59 g/kg of ethanol. Resting state blood oxygen level dependent (rsBOLD) MRI scans were obtained before consumption, 60 min post-consumption and 90 min post-consumption. Before each rsBOLD scan, pointed-resolved spectroscopy (PRESS) (1)H-MRS (magnetic resonance spectroscopy) scans were acquired to measure ethanol levels in the right basal ganglia. Significant changes in DMN connectivity were found following alcohol consumption (p < 0.01). Both increased and decreased regional connectivity were found after 60 min, whereas mostly decreased connectivity was found after 90 min. The fractal behaviour of the rsBOLD signal, which is believed to help reveal complexity of small-scale neuronal circuitry, became more ordered after both 60 and 90 min of alcohol consumption (p < 0.01). The DMN has been linked to personal identity and social behavior. As such, our preliminary findings may provide insight into the neuro-functional underpinnings of the cognitive and behavioral changes observed during acute alcohol intoxication. The reduced fractal dimension implies a change in function of small-scale neural networks towards less complex signaling.
Ni, Hsing-Chang; Hung, June; Wu, Chen-Te; Wu, Yu-Yu; Chang, Chee-Jen; Chen, Rou-Shayn; Huang, Ying-Zu
2017-01-01
Intermittent theta burst stimulation (iTBS), a patterned repetitive transcranial magnetic stimulation, was applied over the posterior superior temporal sulcus (pSTS) or dorsolateral prefrontal cortex (DLPFC) to explore its impact in adults with autism spectrum disorder (ASD). Among 25 adults with ASD, 19 (mean age: 20.8 years) completed the randomized, sham-controlled, crossover trial. Every participant received iTBS over the bilateral DLPFC, bilateral pSTS and inion (as a sham control stimulation) in a randomized order with a 1-week interval. Neuropsychological functions were assessed using the Conners' Continuous Performance Test (CCPT) and the Wisconsin Card Sorting Test (WCST). Behavioral outcomes were measured using the Yale-Brown Obsessive Compulsive Scale (Y-BOCS) and the Social Responsiveness Scale (SRS). In comparison to that in the sham stimulation, the reaction time in the CCPT significantly decreased following single DLPFC session (p = 0.04, effect size = 0.71) while there were no significant differences in the CCPT and WCST following single pSTS session. Besides, the results in behavioral outcomes were inconsistent and had discrepancy between reports of parents and patients. In conclusion, a single session of iTBS over the bilateral DLPFC may alter the neuropsychological function in adults with ASD. The impacts of multiple-sessions iTBS over the DLPFC or pSTS deserve further investigations. PMID:28536500
The Sleeping Giant, NuSTAR Observations of magnetar SGR 1806-20
NASA Astrophysics Data System (ADS)
Younes, George; Baring, Matthew; Kouveliotou, Chryssa; Harding, Alice; Donavan, Sophia; Gogus, Ersin; Kaspi, Victoria; Granot, Jonathan
2018-01-01
Magnetars are a subclass of isolated neutron stars known for their extreme transient behavior, on different time-scales ranging from milliseconds to years. On the seconds time-scales, almost all magnetars have been observed to enter bursting episodes where they emit 10s to 100s of short (~0.1 s), bright (1.0e37-1.0e41 erg), hard X-ray bursts within the span of days to weeks. These episodes are usually accompanied by an alteration of the source persistent X-ray emission, during which the spectral and temporal properties of the magnetar change drastically. The source persistent X-ray flux increases, occasionally by as many as three orders of magnitude, while its timing properties vary, either in the form of a glitch or a more gradual change in the spin-down rate. Three magnetars have so far shown a Gaint Flare, an immense flare of energy (E~1.0e46 erg) lasting for few hundred seconds. I will report on the analysis of 5 NuSTAR observations of SGR 1806-20, the last magnetar to emit a giant flare (December 2004), taken between April 2015 to April 2016. I will discuss the long-term temporal and spectral behavior of the source from 1993 to 2016, i.e., prior, during, and after its major bursting bursting episode of 2004.
NASA Astrophysics Data System (ADS)
Hartin, C.; Lynch, C.; Kravitz, B.; Link, R. P.; Bond-Lamberty, B. P.
2017-12-01
Typically, uncertainty quantification of internal variability relies on large ensembles of climate model runs under multiple forcing scenarios or perturbations in a parameter space. Computationally efficient, standard pattern scaling techniques only generate one realization and do not capture the complicated dynamics of the climate system (i.e., stochastic variations with a frequency-domain structure). In this study, we generate large ensembles of climate data with spatially and temporally coherent variability across a subselection of Coupled Model Intercomparison Project Phase 5 (CMIP5) models. First, for each CMIP5 model we apply a pattern emulation approach to derive the model response to external forcing. We take all the spatial and temporal variability that isn't explained by the emulator and decompose it into non-physically based structures through use of empirical orthogonal functions (EOFs). Then, we perform a Fourier decomposition of the EOF projection coefficients to capture the input fields' temporal autocorrelation so that our new emulated patterns reproduce the proper timescales of climate response and "memory" in the climate system. Through this 3-step process, we derive computationally efficient climate projections consistent with CMIP5 model trends and modes of variability, which address a number of deficiencies inherent in the ability of pattern scaling to reproduce complex climate model behavior.
Foreshock and aftershocks in simple earthquake models.
Kazemian, J; Tiampo, K F; Klein, W; Dominguez, R
2015-02-27
Many models of earthquake faults have been introduced that connect Gutenberg-Richter (GR) scaling to triggering processes. However, natural earthquake fault systems are composed of a variety of different geometries and materials and the associated heterogeneity in physical properties can cause a variety of spatial and temporal behaviors. This raises the question of how the triggering process and the structure interact to produce the observed phenomena. Here we present a simple earthquake fault model based on the Olami-Feder-Christensen and Rundle-Jackson-Brown cellular automata models with long-range interactions that incorporates a fixed percentage of stronger sites, or asperity cells, into the lattice. These asperity cells are significantly stronger than the surrounding lattice sites but eventually rupture when the applied stress reaches their higher threshold stress. The introduction of these spatial heterogeneities results in temporal clustering in the model that mimics that seen in natural fault systems along with GR scaling. In addition, we observe sequences of activity that start with a gradually accelerating number of larger events (foreshocks) prior to a main shock that is followed by a tail of decreasing activity (aftershocks). This work provides further evidence that the spatial and temporal patterns observed in natural seismicity are strongly influenced by the underlying physical properties and are not solely the result of a simple cascade mechanism.
NASA Astrophysics Data System (ADS)
Van Oost, Kristof; Nadeu, Elisabet; Wiaux, François; Wang, Zhengang; Stevens, François; Vanclooster, Marnik; Tran, Anh; Bogaert, Patrick; Doetterl, Sebastian; Lambot, Sébastien; Van wesemael, Bas
2014-05-01
In this paper, we synthesize the main outcomes of a collaborative project (2009-2014) initiated at the UCL (Belgium). The main objective of the project was to increase our understanding of soil organic matter dynamics in complex landscapes and use this to improve predictions of regional scale soil carbon balances. In a first phase, the project characterized the emergent spatial variability in soil organic matter storage and key soil properties at the regional scale. Based on the integration of remote sensing, geomorphological and soil analysis techniques, we quantified the temporal and spatial variability of soil carbon stock and pool distribution at the local and regional scales. This work showed a linkage between lateral fluxes of C in relation with sediment transport and the spatial variation in carbon storage at multiple spatial scales. In a second phase, the project focused on characterizing key controlling factors and process interactions at the catena scale. In-situ experiments of soil CO2 respiration showed that the soil carbon response at the catena scale was spatially heterogeneous and was mainly controlled by the catenary variation of soil physical attributes (soil moisture, temperature, C quality). The hillslope scale characterization relied on advanced hydrogeophysical techniques such as GPR (Ground Penetrating Radar), EMI (Electromagnetic induction), ERT (Electrical Resistivity Tomography), and geophysical inversion and data mining tools. Finally, we report on the integration of these insights into a coupled and spatially explicit model and its application. Simulations showed that C stocks and redistribution of mass and energy fluxes are closely coupled, they induce structured spatial and temporal patterns with non negligible attached uncertainties. We discuss the main outcomes of these activities in relation to sink-source behavior and relevance of erosion processes for larger-scale C budgets.
A data-driven prediction method for fast-slow systems
NASA Astrophysics Data System (ADS)
Groth, Andreas; Chekroun, Mickael; Kondrashov, Dmitri; Ghil, Michael
2016-04-01
In this work, we present a prediction method for processes that exhibit a mixture of variability on low and fast scales. The method relies on combining empirical model reduction (EMR) with singular spectrum analysis (SSA). EMR is a data-driven methodology for constructing stochastic low-dimensional models that account for nonlinearity and serial correlation in the estimated noise, while SSA provides a decomposition of the complex dynamics into low-order components that capture spatio-temporal behavior on different time scales. Our study focuses on the data-driven modeling of partial observations from dynamical systems that exhibit power spectra with broad peaks. The main result in this talk is that the combination of SSA pre-filtering with EMR modeling improves, under certain circumstances, the modeling and prediction skill of such a system, as compared to a standard EMR prediction based on raw data. Specifically, it is the separation into "fast" and "slow" temporal scales by the SSA pre-filtering that achieves the improvement. We show, in particular that the resulting EMR-SSA emulators help predict intermittent behavior such as rapid transitions between specific regions of the system's phase space. This capability of the EMR-SSA prediction will be demonstrated on two low-dimensional models: the Rössler system and a Lotka-Volterra model for interspecies competition. In either case, the chaotic dynamics is produced through a Shilnikov-type mechanism and we argue that the latter seems to be an important ingredient for the good prediction skills of EMR-SSA emulators. Shilnikov-type behavior has been shown to arise in various complex geophysical fluid models, such as baroclinic quasi-geostrophic flows in the mid-latitude atmosphere and wind-driven double-gyre ocean circulation models. This pervasiveness of the Shilnikow mechanism of fast-slow transition opens interesting perspectives for the extension of the proposed EMR-SSA approach to more realistic situations.
Trost, F; Hahn, S; Müller, Y; Gasilov, S; Hofmann, R; Baumbach, T
2017-12-18
Recently, the diffractogram, that is, the Fourier transform of the intensity contrast induced by Fresnel free-space propagation of a given (exit) wave field, was investigated non-perturbatively in the phase-scaling factor S (controlling the strength of phase variation) for the special case of a Gaussian phase of width [Formula: see text]. Surprisingly, an additional low-frequency zero σ * = σ * (S, F) >0 emerges critically at small Fresnel number F (σ proportional to square of 2D spatial frequency). Here, we study the S-scaling behavior of the entire diffractogram. We identify a valley of maximum S-scaling linearity in the F - σ plane corresponding to a nearly universal physical frequency ξml = (0:143 ± 0.001)w -1/2 . Large values of F (near field) are shown to imply S-scaling linearity for low σ but nowhere else (overdamped non-oscillatory). In contrast, small F values (far field) entail distinct, sizable s-bands of good S-scaling linearity (damped oscillatory). These bands also occur in simulated diffractograms induced by a complex phase map (Lena). The transition from damped oscillatory to overdamped non-oscillatory diffractograms is shown to be a critical phenomenon for the Gaussian case. We also give evidence for the occurrence of this transition in an X-ray imaging experiment. Finally, we show that the extreme far-field limit generates a σ-universal diffractogram under certain requirements on the phase map: information on phase shape then is solely encoded in S-scaling behavior.
Structural Controllability and Controlling Centrality of Temporal Networks
Pan, Yujian; Li, Xiang
2014-01-01
Temporal networks are such networks where nodes and interactions may appear and disappear at various time scales. With the evidence of ubiquity of temporal networks in our economy, nature and society, it's urgent and significant to focus on its structural controllability as well as the corresponding characteristics, which nowadays is still an untouched topic. We develop graphic tools to study the structural controllability as well as its characteristics, identifying the intrinsic mechanism of the ability of individuals in controlling a dynamic and large-scale temporal network. Classifying temporal trees of a temporal network into different types, we give (both upper and lower) analytical bounds of the controlling centrality, which are verified by numerical simulations of both artificial and empirical temporal networks. We find that the positive relationship between aggregated degree and controlling centrality as well as the scale-free distribution of node's controlling centrality are virtually independent of the time scale and types of datasets, meaning the inherent robustness and heterogeneity of the controlling centrality of nodes within temporal networks. PMID:24747676
Temporal prediction errors modulate task-switching performance
Limongi, Roberto; Silva, Angélica M.; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus’ onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as “executive control” is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching. PMID:26379568
Temporal prediction errors modulate task-switching performance.
Limongi, Roberto; Silva, Angélica M; Góngora-Costa, Begoña
2015-01-01
We have previously shown that temporal prediction errors (PEs, the differences between the expected and the actual stimulus' onset times) modulate the effective connectivity between the anterior cingulate cortex and the right anterior insular cortex (rAI), causing the activity of the rAI to decrease. The activity of the rAI is associated with efficient performance under uncertainty (e.g., changing a prepared behavior when a change demand is not expected), which leads to hypothesize that temporal PEs might disrupt behavior-change performance under uncertainty. This hypothesis has not been tested at a behavioral level. In this work, we evaluated this hypothesis within the context of task switching and concurrent temporal predictions. Our participants performed temporal predictions while observing one moving ball striking a stationary ball which bounced off with a variable temporal gap. Simultaneously, they performed a simple color comparison task. In some trials, a change signal made the participants change their behaviors. Performance accuracy decreased as a function of both the temporal PE and the delay. Explaining these results without appealing to ad hoc concepts such as "executive control" is a challenge for cognitive neuroscience. We provide a predictive coding explanation. We hypothesize that exteroceptive and proprioceptive minimization of PEs would converge in a fronto-basal ganglia network which would include the rAI. Both temporal gaps (or uncertainty) and temporal PEs would drive and modulate this network respectively. Whereas the temporal gaps would drive the activity of the rAI, the temporal PEs would modulate the endogenous excitatory connections of the fronto-striatal network. We conclude that in the context of perceptual uncertainty, the system is not able to minimize perceptual PE, causing the ongoing behavior to finalize and, in consequence, disrupting task switching.
Scale size-dependent characteristics of the nightside aurora
NASA Astrophysics Data System (ADS)
Humberset, B. K.; Gjerloev, J. W.; Samara, M.; Michell, R. G.
2017-02-01
We have determined the spatiotemporal characteristics of the magnetosphere-ionosphere (M-I) coupling using auroral imaging. Observations at fixed positions for an extended period of time are provided by a ground-based all-sky imager measuring the 557.7 nm auroral emissions. We report on a single event of nightside aurora (˜22 magnetic local time) preceding a substorm onset. To determine the spatiotemporal characteristics, we perform an innovative analysis of an all-sky imager movie (19 min duration, images at 3.31 Hz) that combines a two-dimensional spatial fast Fourier transform with a temporal correlation. We find a scale size-dependent variability where the largest scale sizes are stable on timescales of minutes while the small scale sizes are more variable. When comparing two smaller time intervals of different types of auroral displays, we find a variation in their characteristics. The characteristics averaged over the event are in remarkable agreement with the spatiotemporal characteristics of the nightside field-aligned currents during moderately disturbed times. Thus, two different electrodynamical parameters of the M-I coupling show similar behavior. This gives independent support to the claim of a system behavior that uses repeatable solutions to transfer energy and momentum from the magnetosphere to the ionosphere.
Dissipative gravitational bouncer on a vibrating surface
NASA Astrophysics Data System (ADS)
Espinoza Ortiz, J. S.; Lagos, R. E.
2017-12-01
We study the dynamical behavior of a particle flying under the influence of a gravitational field, with dissipation constant λ (Stokes-like), colliding successive times against a rigid surface vibrating harmonically with restitution coefficient α. We define re-scaled dimensionless dynamical variables, such as the relative particle velocity Ω with respect to the surface’s velocity; and the real parameter τ accounting for the temporal evolution of the system. At the particle-surface contact point and for the k‧th collision, we construct the mapping described by (τk ; Ω k ) in order to analyze the system’s nonlinear dynamical behavior. From the dynamical mapping, the fixed point trajectory is computed and its stability is analyzed. We find the dynamical behavior of the fixed point trajectory to be stable or unstable, depending on the values of the re-scaled vibrating surface amplitude Γ, the restitution coefficient α and the damping constant λ. Other important dynamical aspects such as the phase space volume and the one cycle vibrating surface (decomposed into absorbing and transmitting regions) are also discussed. Furthermore, the model rescues well known results in the limit λ = 0.
Multistimulation group therapy in Alzheimer's disease promotes changes in brain functioning.
Baglio, Francesca; Griffanti, Ludovica; Saibene, Francesca Lea; Ricci, Cristian; Alberoni, Margherita; Critelli, Raffaella; Villanelli, Fabiana; Fioravanti, Raffaella; Mantovani, Federica; D'amico, Alessandra; Cabinio, Monia; Preti, Maria Giulia; Nemni, Raffaello; Farina, Elisabetta
2015-01-01
Background. The growing social emergency represented by Alzheimer's disease (AD) and the lack of medical treatments able to modify the disease course have kindled the interest in nonpharmacological therapies. Objective. We introduced a novel nonpharmacological approach for people with AD (PWA) named Multidimensional Stimulation group Therapy (MST) to improve PWA condition in different disease domains: cognition, behavior, and motor functioning. Methods. Enrolling 60 PWA in a mild to moderate stage of the disease, we evaluated the efficacy of MST with a randomized-controlled study. Neuropsychological and neurobehavioral measures and functional magnetic resonance imaging (fMRI) data were considered as outcome measures. Results. The following significant intervention-related changes were observed: reduction in Neuropsychiatric Inventory scale score, improvement in language and memory subscales of Alzheimer's Disease Assessment Scale-Cognitive subscale, and increased fMRI activations in temporal brain areas, right insular cortex, and thalamus. Conclusions. Cognitive-behavioral and fMRI results support the notion that MST has significant effects in improving PWA cognitive-behavioral status by restoring neural functioning. © The Author(s) 2014.
Spatio-temporal alignment of pedobarographic image sequences.
Oliveira, Francisco P M; Sousa, Andreia; Santos, Rubim; Tavares, João Manuel R S
2011-07-01
This article presents a methodology to align plantar pressure image sequences simultaneously in time and space. The spatial position and orientation of a foot in a sequence are changed to match the foot represented in a second sequence. Simultaneously with the spatial alignment, the temporal scale of the first sequence is transformed with the aim of synchronizing the two input footsteps. Consequently, the spatial correspondence of the foot regions along the sequences as well as the temporal synchronizing is automatically attained, making the study easier and more straightforward. In terms of spatial alignment, the methodology can use one of four possible geometric transformation models: rigid, similarity, affine, or projective. In the temporal alignment, a polynomial transformation up to the 4th degree can be adopted in order to model linear and curved time behaviors. Suitable geometric and temporal transformations are found by minimizing the mean squared error (MSE) between the input sequences. The methodology was tested on a set of real image sequences acquired from a common pedobarographic device. When used in experimental cases generated by applying geometric and temporal control transformations, the methodology revealed high accuracy. In addition, the intra-subject alignment tests from real plantar pressure image sequences showed that the curved temporal models produced better MSE results (P < 0.001) than the linear temporal model. This article represents an important step forward in the alignment of pedobarographic image data, since previous methods can only be applied on static images.
Grabowski, Timothy B.; McAdam, Bruce J.; Thorsteinsson, Vilhjalmur; Marteinsdóttir, Gudrún
2015-01-01
Understanding the environmental processes determining the timing and success of reproduction is of critical importance to developing effective management strategies of marine fishes. Unfortunately it has proven difficult to comprehensively study the reproductive behavior of broadcast-spawning fishes. The use of electronic data storage tags (DSTs) has the potential to provide insights into the behavior of fishes. These tags allow for data collection over relatively large spatial and temporal scales that can be correlated to predicted environmental conditions and ultimately be used to refine predictions of year class strength. In this paper we present data retrieved from DSTs demonstrating that events putatively identified as Atlantic cod spawning behavior is tied to a lunar cycle with a pronounced semi-lunar cycle within it. Peak activity occurs around the full and new moon with no evidence of relationship with day/night cycles.
Parkison, Steven A.; Carlson, Jay D.; Chaudoin, Tammy R.; Hoke, Traci A.; Schenk, A. Katrin; Goulding, Evan H.; Pérez, Lance C.; Bonasera, Stephen J.
2016-01-01
Inexpensive, high-throughput, low maintenance systems for precise temporal and spatial measurement of mouse home cage behavior (including movement, feeding, and drinking) are required to evaluate products from large scale pharmaceutical design and genetic lesion programs. These measurements are also required to interpret results from more focused behavioral assays. We describe the design and validation of a highly-scalable, reliable mouse home cage behavioral monitoring system modeled on a previously described, one-of-a-kind system [1]. Mouse position was determined by solving static equilibrium equations describing the force and torques acting on the system strain gauges; feeding events were detected by a photobeam across the food hopper, and drinking events were detected by a capacitive lick sensor. Validation studies show excellent agreement between mouse position and drinking events measured by the system compared with video-based observation – a gold standard in neuroscience. PMID:23366406
Assar, Rodrigo; Montecino, Martín A; Maass, Alejandro; Sherman, David J
2014-07-01
In order to describe the dynamic behavior of a complex biological system, it is useful to combine models integrating processes at different levels and with temporal dependencies. Such combinations are necessary for modeling acclimatization, a phenomenon where changes in environmental conditions can induce drastic changes in the behavior of a biological system. In this article we formalize the use of hybrid systems as a tool to model this kind of biological behavior. A modeling scheme called strong switches is proposed. It allows one to take into account both minor adjustments to the coefficients of a continuous model, and, more interestingly, large-scale changes to the structure of the model. We illustrate the proposed methodology with two applications: acclimatization in wine fermentation kinetics, and acclimatization of osteo-adipo differentiation system linking stimulus signals to bone mass. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Scaling Behavior of Firm Growth
NASA Astrophysics Data System (ADS)
Stanley, Michael H. R.; Nunes Amaral, Luis A.; Buldyrev, Sergey V.; Havlin, Shlomo; Leschhorn, Heiko; Maass, Philipp; Salinger, Michael A.; Stanley, H. Eugene
1996-03-01
The theory of the firm is of considerable interest in economics. The standard microeconomic theory of the firm is largely a static model and has thus proved unsatisfactory for addressing inherently dynamic issues such as the growth of economies. In recent years, many have attempted to develop richer models that provide a more accurate representation of firm dynamics due to learning, innovative effort, and the development of organizational infrastructure. The validity of these new, inherently dynamic theories depends on their consistency with the statistical properties of firm growth, e.g. the relationship between growth rates and firm size. Using the Compustat database over the time period 1975-1991, we find: (i) the distribution of annual growth rates for firms with approximately the same sales displays an exponential form with the logarithm of growth rate, and (ii) the fluctuations in the growth rates --- measured by the width of this distribution --- scale as a power law with the firm sales. We place these findings of scaling behavior in the context of conventional economics by considering firm growth dynamics with temporal correlations and also, by considering a hierarchical organization of the departments of a firm.
Temporal Relatedness: Personality and Behavioral Correlates
ERIC Educational Resources Information Center
Getsinger, Stephen H.
1975-01-01
Two studies explored the relationship of temporal relatedness to self actualization, sex, and certain temporal behaviors. Subjects who obtained higher time-relatedness scores demonstrated greater self-actualization, evaluated the present time mode more positively, overestimated time intervals in an estimation task, and performed less accurately in…
The functional organization of human epileptic hippocampus
Klimes, Petr; Duque, Juliano J.; Brinkmann, Ben; Van Gompel, Jamie; Stead, Matt; St. Louis, Erik K.; Halamek, Josef; Jurak, Pavel
2016-01-01
The function and connectivity of human brain is disrupted in epilepsy. We previously reported that the region of epileptic brain generating focal seizures, i.e., the seizure onset zone (SOZ), is functionally isolated from surrounding brain regions in focal neocortical epilepsy. The modulatory effect of behavioral state on the spatial and spectral scales over which the reduced functional connectivity occurs, however, is unclear. Here we use simultaneous sleep staging from scalp EEG with intracranial EEG recordings from medial temporal lobe to investigate how behavioral state modulates the spatial and spectral scales of local field potential synchrony in focal epileptic hippocampus. The local field spectral power and linear correlation between adjacent electrodes provide measures of neuronal population synchrony at different spatial scales, ∼1 and 10 mm, respectively. Our results show increased connectivity inside the SOZ and low connectivity between electrodes in SOZ and outside the SOZ. During slow-wave sleep, we observed decreased connectivity for ripple and fast ripple frequency bands within the SOZ at the 10 mm spatial scale, while the local synchrony remained high at the 1 mm spatial scale. Further study of these phenomena may prove useful for SOZ localization and help understand seizure generation, and the functional deficits seen in epileptic eloquent cortex. PMID:27030735
Collective motion in animal groups
NASA Astrophysics Data System (ADS)
Couzin, Iain
2004-03-01
In recent years there has been a growing interest in the relationship between individual behavior and population-level properties in animal groups. One of the fundamental problems is related to spatial scale; how do interactions over a local range result in population properties at larger, averaged, scales, and how can we integrate the properties of aggregates over these scales? Many group-living animals exhibit complex, and coordinated, spatio-temporal patterns which despite their ubiquity and ecological importance are very poorly understood. This is largely due to the difficulties associated with quantifying the motion of, and interactions among, many animals simultaneously. It is on how these behaviors scale to collective behaviors that I will focus here. Using a combined empirical approach (using novel computer vision techniques) and individual-based computer models, I investigate pattern formation in both invertebrate and vertebrate systems, including - Collective memory and self-organized group structure in vertebrate groups (Couzin, I.D., Krause, J., James, R., Ruxton, G.D. & Franks, N.R. (2002) Journal of Theoretical Biology 218, 1-11. (2) Couzin, I.D. & Krause, J. (2003) Advances in the Study of Behavior 32, 1-75. (3) Hoare, D.J., Couzin, I.D. Godin, J.-G. & Krause, J. (2003) Animal Behaviour, in press.) - Self-organized lane formation and optimized traffic flow in army ants (Couzin, I.D. & Franks, N.R. (2003) Proceedings of the Royal Society of London, Series B 270, 139-146) - Leadership and information transfer in flocks, schools and swarms. - Why do hoppers hop? Hopping and the generation of long-range order in some of the largest animal groups in nature, locust hopper bands.
NASA Astrophysics Data System (ADS)
Gray, A. B.
2017-12-01
Watersheds with sufficient monitoring data have been predominantly found to display nonstationary suspended sediment dynamics, whereby the relationship between suspended sediment concentration and discharge changes over time. Despite the importance of suspended sediment as a keystone of geophysical and biochemical processes, and as a primary mediator of water quality, stationary behavior remains largely assumed in the context of these applications. This study presents an investigation into the time dependent behavior of small mountainous rivers draining the coastal ranges of the western continental US over interannual to interdecadal time scales. Of the 250+ small coastal (drainage area < 2x104 km2) watersheds in this region, only 23 have discharge associated suspended sediment concentration time series with base periods of 10 years or more. Event to interdecadal scale nonstationary suspended sediment dynamics were identified throughout these systems. Temporal patterns of non-stationary behavior provided some evidence for spatial coherence, which may be related to synoptic hydro-metrological patterns and regional scale changes in land use patterns. However, the results also highlight the complex, integrative nature of watershed scale fluvial suspended sediment dynamics. This underscores the need for in-depth, forensic approaches for initial processes identification, which require long term, high resolution monitoring efforts in order to adequately inform management. The societal implications of nonstationary sediment dynamics and their controls were further explored through the case of California, USA, where over 150 impairment listings have resulted in more than 50 sediment TMDLs, only 3 of which are flux based - none of which account for non-stationary behavior.
Fractal scaling analysis of groundwater dynamics in confined aquifers
NASA Astrophysics Data System (ADS)
Tu, Tongbi; Ercan, Ali; Kavvas, M. Levent
2017-10-01
Groundwater closely interacts with surface water and even climate systems in most hydroclimatic settings. Fractal scaling analysis of groundwater dynamics is of significance in modeling hydrological processes by considering potential temporal long-range dependence and scaling crossovers in the groundwater level fluctuations. In this study, it is demonstrated that the groundwater level fluctuations in confined aquifer wells with long observations exhibit site-specific fractal scaling behavior. Detrended fluctuation analysis (DFA) was utilized to quantify the monofractality, and multifractal detrended fluctuation analysis (MF-DFA) and multiscale multifractal analysis (MMA) were employed to examine the multifractal behavior. The DFA results indicated that fractals exist in groundwater level time series, and it was shown that the estimated Hurst exponent is closely dependent on the length and specific time interval of the time series. The MF-DFA and MMA analyses showed that different levels of multifractality exist, which may be partially due to a broad probability density distribution with infinite moments. Furthermore, it is demonstrated that the underlying distribution of groundwater level fluctuations exhibits either non-Gaussian characteristics, which may be fitted by the Lévy stable distribution, or Gaussian characteristics depending on the site characteristics. However, fractional Brownian motion (fBm), which has been identified as an appropriate model to characterize groundwater level fluctuation, is Gaussian with finite moments. Therefore, fBm may be inadequate for the description of physical processes with infinite moments, such as the groundwater level fluctuations in this study. It is concluded that there is a need for generalized governing equations of groundwater flow processes that can model both the long-memory behavior and the Brownian finite-memory behavior.
Scaling up our understanding of non-consumptive effects in insect systems
Hermann, Sara L.; Landis, Douglas A.
2017-04-06
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
Scaling up our understanding of non-consumptive effects in insect systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hermann, Sara L.; Landis, Douglas A.
Here, non-consumptive effects (NCEs) of predators on prey is an important topic in insect ecology with potential applications for pest management. NCEs are changes in prey behavior and physiology that aid in predation avoidance. While NCEs can have positive outcomes for prey survival there may also be negative consequences including increased stress and reduced growth. These effects can cascade through trophic systems influencing ecosystem function. Most NCEs have been studied at small spatial and temporal scales. However, recent studies show promise for the potential to manipulate NCEs for pest management. We suggest the next frontier for NCE studies includes manipulatingmore » the landscape of fear to improve pest control, which requires scaling-up to field and landscape levels, over ecologically relevant time frames.« less
NASA Astrophysics Data System (ADS)
Eisler, Zoltán; Kertész, János
2006-04-01
Records of the traded value fi of stocks display fluctuation scaling, a proportionality between the standard deviation σi and the average ⟨fi⟩ : σi∝⟨fi⟩α , with a strong time scale dependence α(Δt) . The nontrivial (i.e., neither 0.5 nor 1) value of α may have different origins and provides information about the microscopic dynamics. We present a set of stylized facts and then show their connection to such behavior. The functional form α(Δt) originates from two aspects of the dynamics: Stocks of larger companies both tend to be traded in larger packages and also display stronger correlations of traded value. The results are integrated into a general framework that can be applied to a wide range of complex systems.
Quantifying drivers of wild pig movement across multiple spatial and temporal scales
Kay, Shannon L.; Fischer, Justin W.; Monaghan, Andrew J.; Beasley, James C; Boughton, Raoul; Campbell, Tyler A; Cooper, Susan M; Ditchkoff, Stephen S.; Hartley, Stephen B.; Kilgo, John C; Wisely, Samantha M; Wyckoff, A Christy; Vercauteren, Kurt C.; Pipen, Kim M
2017-01-01
The analytical framework we present can be used to assess movement patterns arising from multiple data sources for a range of species while accounting for spatio-temporal correlations. Our analyses show the magnitude by which reaction norms can change based on the temporal scale of response data, illustrating the importance of appropriately defining temporal scales of both the movement response and covariates depending on the intended implications of research (e.g., predicting effects of movement due to climate change versus planning local-scale management). We argue that consideration of multiple spatial scales within the same framework (rather than comparing across separate studies post-hoc) gives a more accurate quantification of cross-scale spatial effects by appropriately accounting for error correlation.
Temporal discounting: basic research and the analysis of socially important behavior.
Critchfield, T S; Kollins, S H
2001-01-01
Recent basic research on human temporal discounting is reviewed to illustrate procedures, summarize key findings, and draw parallels with both nonhuman animal research and conceptual writings on self-control. Lessons derived from this research are then applied to the challenge of analyzing socially important behaviors such as drug abuse, eating and exercise, and impulsiveness associated with attention deficit hyperactivity disorder. Attending to the broader temporal context in which behavior occurs may aid in the analysis of socially important behavior. Applying this perspective to the study of behavior in natural environments also highlights the importance of combining methodological flexibility with conceptual rigor to promote the extension of applied behavior analysis to a broader array of socially important behaviors. PMID:11317983
Magnuson, Matthew Evan; Thompson, Garth John; Schwarb, Hillary; Pan, Wen-Ju; McKinley, Andy; Schumacher, Eric H; Keilholz, Shella Dawn
2015-12-01
The brain is organized into networks composed of spatially separated anatomical regions exhibiting coherent functional activity over time. Two of these networks (the default mode network, DMN, and the task positive network, TPN) have been implicated in the performance of a number of cognitive tasks. To directly examine the stable relationship between network connectivity and behavioral performance, high temporal resolution functional magnetic resonance imaging (fMRI) data were collected during the resting state, and behavioral data were collected from 15 subjects on different days, exploring verbal working memory, spatial working memory, and fluid intelligence. Sustained attention performance was also evaluated in a task interleaved between resting state scans. Functional connectivity within and between the DMN and TPN was related to performance on these tasks. Decreased TPN resting state connectivity was found to significantly correlate with fewer errors on an interrupter task presented during a spatial working memory paradigm and decreased DMN/TPN anti-correlation was significantly correlated with fewer errors on an interrupter task presented during a verbal working memory paradigm. A trend for increased DMN resting state connectivity to correlate to measures of fluid intelligence was also observed. These results provide additional evidence of the relationship between resting state networks and behavioral performance, and show that such results can be observed with high temporal resolution fMRI. Because cognitive scores and functional connectivity were collected on nonconsecutive days, these results highlight the stability of functional connectivity/cognitive performance coupling.
Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed
NASA Astrophysics Data System (ADS)
Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.
2016-12-01
Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.
Spatio-temporal dynamics of a fish spawning aggregation and its fishery in the Gulf of California
Erisman, Brad; Aburto-Oropeza, Octavio; Gonzalez-Abraham, Charlotte; Mascareñas-Osorio, Ismael; Moreno-Báez, Marcia; Hastings, Philip A.
2012-01-01
We engaged in cooperative research with fishers and stakeholders to characterize the fine-scale, spatio-temporal characteristics of spawning behavior in an aggregating marine fish (Cynoscion othonopterus: Sciaenidae) and coincident activities of its commercial fishery in the Upper Gulf of California. Approximately 1.5–1.8 million fish are harvested annually from spawning aggregations of C. othonopterus during 21–25 days of fishing and within an area of 1,149 km2 of a biosphere reserve. Spawning and fishing are synchronized on a semi-lunar cycle, with peaks in both occurring 5 to 2 days before the new and full moon, and fishing intensity and catch are highest at the spawning grounds within a no-take reserve. Results of this study demonstrate the benefits of combining GPS data loggers, fisheries data, biological surveys, and cooperative research with fishers to produce spatio-temporally explicit information relevant to the science and management of fish spawning aggregations and the spatial planning of marine reserves. PMID:22359736
Tabuchi, Masashi; Sakurai, Takeshi; Mitsuno, Hidefumi; Namiki, Shigehiro; Minegishi, Ryo; Shiotsuki, Takahiro; Uchino, Keiro; Sezutsu, Hideki; Tamura, Toshiki; Haupt, Stephan Shuichi; Nakatani, Kei; Kanzaki, Ryohei
2013-01-01
The olfactory system of male moths has an extreme sensitivity with the capability to detect and recognize conspecific pheromones dispersed and greatly diluted in the air. Just 170 molecules of the silkmoth (Bombyx mori) sex pheromone bombykol are sufficient to induce sexual behavior in the male. However, it is still unclear how the sensitivity of olfactory receptor neurons (ORNs) is relayed through the brain to generate high behavioral responsiveness. Here, we show that ORN activity that is subthreshold in terms of behavior can be amplified to suprathreshold levels by temporal integration in antennal lobe projection neurons (PNs) if occurring within a specific time window. To control ORN inputs with high temporal resolution, channelrhodopsin-2 was genetically introduced into bombykol-responsive ORNs. Temporal integration in PNs was only observed for weak inputs, but not for strong inputs. Pharmacological dissection revealed that GABAergic mechanisms inhibit temporal integration of strong inputs, showing that GABA signaling regulates PN responses in a stimulus-dependent fashion. Our results show that boosting of the PNs’ responses by temporal integration of olfactory information occurs specifically near the behavioral threshold, effectively defining the lower bound for behavioral responsiveness. PMID:24006366
Mapping a multidimensional emotion in response to television commercials.
Morris, Jon D; Klahr, Nelson J; Shen, Feng; Villegas, Jorge; Wright, Paul; He, Guojun; Liu, Yijun
2009-03-01
Unlike previous emotional studies using functional neuroimaging that have focused on either locating discrete emotions in the brain or linking emotional response to an external behavior, this study investigated brain regions in order to validate a three-dimensional construct--namely pleasure, arousal, and dominance (PAD) of emotion induced by marketing communication. Emotional responses to five television commercials were measured with Advertisement Self-Assessment Manikins (AdSAM) for PAD and with functional magnetic resonance imaging (fMRI) to identify corresponding patterns of brain activation. We found significant differences in the AdSAM scores on the pleasure and arousal rating scales among the stimuli. Using the AdSAM response as a model for the fMRI image analysis, we showed bilateral activations in the inferior frontal gyri and middle temporal gyri associated with the difference on the pleasure dimension, and activations in the right superior temporal gyrus and right middle frontal gyrus associated with the difference on the arousal dimension. These findings suggest a dimensional approach of constructing emotional changes in the brain and provide a better understanding of human behavior in response to advertising stimuli.
Simultaneous neural and movement recording in large-scale immersive virtual environments.
Snider, Joseph; Plank, Markus; Lee, Dongpyo; Poizner, Howard
2013-10-01
Virtual reality (VR) allows precise control and manipulation of rich, dynamic stimuli that, when coupled with on-line motion capture and neural monitoring, can provide a powerful means both of understanding brain behavioral relations in the high dimensional world and of assessing and treating a variety of neural disorders. Here we present a system that combines state-of-the-art, fully immersive, 3D, multi-modal VR with temporally aligned electroencephalographic (EEG) recordings. The VR system is dynamic and interactive across visual, auditory, and haptic interactions, providing sight, sound, touch, and force. Crucially, it does so with simultaneous EEG recordings while subjects actively move about a 20 × 20 ft² space. The overall end-to-end latency between real movement and its simulated movement in the VR is approximately 40 ms. Spatial precision of the various devices is on the order of millimeters. The temporal alignment with the neural recordings is accurate to within approximately 1 ms. This powerful combination of systems opens up a new window into brain-behavioral relations and a new means of assessment and rehabilitation of individuals with motor and other disorders.
Femtosecond movies of water near interfaces at sub-Angstrom resolution
NASA Astrophysics Data System (ADS)
Coridan, Robert; Hwee Lai, Ghee; Schmidt, Nathan; Abbamonte, Peter; Wong, Gerard C. L.
2010-03-01
The behavior of liquid water near interfaces with nanoscopic variations in chemistry influences a broad range of phenomena in biology. Using inelastic x-ray scattering (IXS) data from 3rd-generation synchrotron x-ray sources, we reconstruct the Greens function of liquid water, which describes the å-scale spatial and femtosecond-scale temporal evolution of density fluctuations. We extend this response function formalism to reconstruct the evolution of hydration structures near dynamic surfaces with different charge distributions, in order to define more precisely the molecular signature of hydrophilicity and hydrophobicity. Moreover, we investigate modifications to surface hydration structures and dynamics as the size of hydrophilic and hydrophobic patches are varied.
Angeler, David G.; Allen, Craig R.; Johnson, Richard K.
2013-01-01
1. Ecosystems at high altitudes and latitudes are expected to be particularly vulnerable to the effects of global change. We assessed the responses of littoral invertebrate communities to changing abiotic conditions in subarctic Swedish lakes with long-term data (1988–2010) and compared the responses of subarctic lakes with those of more southern, hemiboreal lakes. 2. We used a complex systems approach, based on multivariate time-series modelling, and identified dominant and distinct temporal frequencies in the data; that is, we tracked community change at distinct temporal scales. We determined the distribution of functional feeding groups of invertebrates within and across temporal scales. Within and cross-scale distributions of functions have been considered to confer resilience to ecosystems, despite changing environmental conditions. 3. Two patterns of temporal change within the invertebrate communities were identified that were consistent across the lakes. The first pattern was one of monotonic change associated with changing abiotic lake conditions. The second was one of showing fluctuation patterns largely unrelated to gradual environmental change. Thus, two dominant and distinct temporal frequencies (temporal scales) were present in all lakes analysed. 4. Although the contribution of individual feeding groups varied between subarctic and hemiboreal lakes, they shared overall similar functional attributes (richness, evenness, diversity) and redundancies of functions within and between the observed temporal scales. This highlights similar resilience characteristics in subarctic and hemiboreal lakes. 5. Synthesis and applications. The effects of global change can be particularly strong at a single scale in ecosystems. Over time, this can cause monotonic change in communities and eventually lead to a loss of important ecosystem services upon reaching a critical threshold. Dynamics at other spatial or temporal scales can be unrelated to environmental change. The relative ‘intactness’ of these scales that are unaffected by global change and the persistence of functions at those scales may safeguard the whole system from the potential loss of functions at the scale at which global change impacts can be substantial. Thus, an understanding of scale-specific processes provides managers with a realistic assessment of vulnerabilities and the relative resilience of ecosystems to environmental change. Explicit consideration of ‘intact’ and ‘affected’ scales in analyses of global change impacts provides opportunities to tailor more specific management plans.
Measurements of the wall-normal velocity component in very high Reynolds number pipe flow
NASA Astrophysics Data System (ADS)
Vallikivi, Margit; Hultmark, Marcus; Smits, Alexander J.
2012-11-01
Nano-Scale Thermal Anemometry Probes (NSTAPs) have recently been developed and used to study the scaling of the streamwise component of turbulence in pipe flow over a very large range of Reynolds numbers. This probe has an order of magnitude higher spatial and temporal resolution than regular hot wires, allowing it to resolve small scale motions at very high Reynolds numbers. Here use a single inclined NSTAP probe to study the scaling of the wall normal component of velocity fluctuations in the same flow. These new probes are calibrated using a method that is based on the use of the linear stress region of a fully developed pipe flow. Results on the behavior of the wall-normal component of velocity for Reynolds numbers up to 2 million are reported. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2007-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of - 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approx. 1 min for meso-scale currents and approx. 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
The Internet As a Large-Scale Complex System
NASA Astrophysics Data System (ADS)
Park, Kihong; Willinger, Walter
2005-06-01
The Internet may be viewed as a "complex system" with diverse features and many components that can give rise to unexpected emergent phenomena, revealing much about its own engineering. This book brings together chapter contributions from a workshop held at the Santa Fe Institute in March 2001. This volume captures a snapshot of some features of the Internet that may be fruitfully approached using a complex systems perspective, meaning using interdisciplinary tools and methods to tackle the subject area. The Internet penetrates the socioeconomic fabric of everyday life; a broader and deeper grasp of the Internet may be needed to meet the challenges facing the future. The resulting empirical data have already proven to be invaluable for gaining novel insights into the network's spatio-temporal dynamics, and can be expected to become even more important when tryin to explain the Internet's complex and emergent behavior in terms of elementary networking-based mechanisms. The discoveries of fractal or self-similar network traffic traces, power-law behavior in network topology and World Wide Web connectivity are instances of unsuspected, emergent system traits. Another important factor at the heart of fair, efficient, and stable sharing of network resources is user behavior. Network systems, when habited by selfish or greedy users, take on the traits of a noncooperative multi-party game, and their stability and efficiency are integral to understanding the overall system and its dynamics. Lastly, fault-tolerance and robustness of large-scale network systems can exhibit spatial and temporal correlations whose effective analysis and management may benefit from rescaling techniques applied in certain physical and biological systems. The present book will bring together several of the leading workers involved in the analysis of complex systems with the future development of the Internet.
Woods, H Arthur; Dillon, Michael E; Pincebourde, Sylvain
2015-12-01
We analyze the effects of changing patterns of thermal availability, in space and time, on the performance of small ectotherms. We approach this problem by breaking it into a series of smaller steps, focusing on: (1) how macroclimates interact with living and nonliving objects in the environment to produce a mosaic of thermal microclimates and (2) how mobile ectotherms filter those microclimates into realized body temperatures by moving around in them. Although the first step (generation of mosaics) is conceptually straightforward, there still exists no general framework for predicting spatial and temporal patterns of microclimatic variation. We organize potential variation along three axes-the nature of the objects producing the microclimates (abiotic versus biotic), how microclimates translate macroclimatic variation (amplify versus buffer), and the temporal and spatial scales over which microclimatic conditions vary (long versus short). From this organization, we propose several general rules about patterns of microclimatic diversity. To examine the second step (behavioral sampling of locally available microclimates), we construct a set of models that simulate ectotherms moving on a thermal landscape according to simple sets of diffusion-based rules. The models explore the effects of both changes in body size (which affect the time scale over which organisms integrate operative body temperatures) and increases in the mean and variance of temperature on the thermal landscape. Collectively, the models indicate that both simple behavioral rules and interactions between body size and spatial patterns of thermal variation can profoundly affect the distribution of realized body temperatures experienced by ectotherms. These analyses emphasize the rich set of problems still to solve before arriving at a general, predictive theory of the biological consequences of climate change. Copyright © 2014 Elsevier Ltd. All rights reserved.
Impact of Inflow Conditions on Coherent Structures in an Aneurysm
NASA Astrophysics Data System (ADS)
Yu, Paulo; Durgesh, Vibhav; Johari, Hamid
2017-11-01
An aneurysm is an enlargement of a weakened arterial wall that can be debilitating or fatal on rupture. Studies have shown that hemodynamics is integral to developing an understanding of aneurysm formation, growth, and rupture. This investigation focuses on a comprehensive study of the impact of varying inflow conditions and aneurysm shapes on spatial and temporal behavior of flow parameters and structures in an aneurysm. Two different shapes of an idealized rigid aneurysm model were studied and the non-dimensional frequency and Reynolds number were varied between 2-5 and 50-250, respectively. A ViVitro Labs SuperPump system was used to precisely control inflow conditions. Particle Image Velocimetry (PIV) measurements were performed at three different locations inside the aneurysm sac to obtain detailed velocity flow field information. The results of this study showed that aneurysm morphology significantly impacts spatial and temporal behavior of large-scale flow structures as well as wall shear stress distribution. The flow behavior and structures showed a significant difference with change in inflow conditions. A primary fluctuating flow structure was observed for Reynolds number of 50, while for higher Reynolds numbers, primary and secondary flow structures were observed. Furthermore, the paths of these coherent structures were dependent on aneurysm shape and inflow parameters.
Cortical Specializations Underlying Fast Computations
Volgushev, Maxim
2016-01-01
The time course of behaviorally relevant environmental events sets temporal constraints on neuronal processing. How does the mammalian brain make use of the increasingly complex networks of the neocortex, while making decisions and executing behavioral reactions within a reasonable time? The key parameter determining the speed of computations in neuronal networks is a time interval that neuronal ensembles need to process changes at their input and communicate results of this processing to downstream neurons. Theoretical analysis identified basic requirements for fast processing: use of neuronal populations for encoding, background activity, and fast onset dynamics of action potentials in neurons. Experimental evidence shows that populations of neocortical neurons fulfil these requirements. Indeed, they can change firing rate in response to input perturbations very quickly, within 1 to 3 ms, and encode high-frequency components of the input by phase-locking their spiking to frequencies up to 300 to 1000 Hz. This implies that time unit of computations by cortical ensembles is only few, 1 to 3 ms, which is considerably faster than the membrane time constant of individual neurons. The ability of cortical neuronal ensembles to communicate on a millisecond time scale allows for complex, multiple-step processing and precise coordination of neuronal activity in parallel processing streams, while keeping the speed of behavioral reactions within environmentally set temporal constraints. PMID:25689988
Temporal Organization of Sound Information in Auditory Memory.
Song, Kun; Luo, Huan
2017-01-01
Memory is a constructive and organizational process. Instead of being stored with all the fine details, external information is reorganized and structured at certain spatiotemporal scales. It is well acknowledged that time plays a central role in audition by segmenting sound inputs into temporal chunks of appropriate length. However, it remains largely unknown whether critical temporal structures exist to mediate sound representation in auditory memory. To address the issue, here we designed an auditory memory transferring study, by combining a previously developed unsupervised white noise memory paradigm with a reversed sound manipulation method. Specifically, we systematically measured the memory transferring from a random white noise sound to its locally temporal reversed version on various temporal scales in seven experiments. We demonstrate a U-shape memory-transferring pattern with the minimum value around temporal scale of 200 ms. Furthermore, neither auditory perceptual similarity nor physical similarity as a function of the manipulating temporal scale can account for the memory-transferring results. Our results suggest that sounds are not stored with all the fine spectrotemporal details but are organized and structured at discrete temporal chunks in long-term auditory memory representation.
A Theoretical Basis for Entropy-Scaling Effects in Human Mobility Patterns
2016-01-01
Characterizing how people move through space has been an important component of many disciplines. With the advent of automated data collection through GPS and other location sensing systems, researchers have the opportunity to examine human mobility at spatio-temporal resolution heretofore impossible. However, the copious and complex data collected through these logging systems can be difficult for humans to fully exploit, leading many researchers to propose novel metrics for encapsulating movement patterns in succinct and useful ways. A particularly salient proposed metric is the mobility entropy rate of the string representing the sequence of locations visited by an individual. However, mobility entropy rate is not scale invariant: entropy rate calculations based on measurements of the same trajectory at varying spatial or temporal granularity do not yield the same value, limiting the utility of mobility entropy rate as a metric by confounding inter-experimental comparisons. In this paper, we derive a scaling relationship for mobility entropy rate of non-repeating straight line paths from the definition of Lempel-Ziv compression. We show that the resulting formulation predicts the scaling behavior of simulated mobility traces, and provides an upper bound on mobility entropy rate under certain assumptions. We further show that this formulation has a maximum value for a particular sampling rate, implying that optimal sampling rates for particular movement patterns exist. PMID:27571423
Multiscale spatial and temporal estimation of the b-value
NASA Astrophysics Data System (ADS)
García-Hernández, R.; D'Auria, L.; Barrancos, J.; Padilla, G.
2017-12-01
The estimation of the spatial and temporal variations of the Gutenberg-Richter b-value is of great importance in different seismological applications. One of the problems affecting its estimation is the heterogeneous distribution of the seismicity which makes its estimate strongly dependent upon the selected spatial and/or temporal scale. This is especially important in volcanoes where dense clusters of earthquakes often overlap the background seismicity. Proposed solutions for estimating temporal variations of the b-value include considering equally spaced time intervals or variable intervals having an equal number of earthquakes. Similar approaches have been proposed to image the spatial variations of this parameter as well.We propose a novel multiscale approach, based on the method of Ogata and Katsura (1993), allowing a consistent estimation of the b-value regardless of the considered spatial and/or temporal scales. Our method, named MUST-B (MUltiscale Spatial and Temporal characterization of the B-value), basically consists in computing estimates of the b-value at multiple temporal and spatial scales, extracting for a give spatio-temporal point a statistical estimator of the value, as well as and indication of the characteristic spatio-temporal scale. This approach includes also a consistent estimation of the completeness magnitude (Mc) and of the uncertainties over both b and Mc.We applied this method to example datasets for volcanic (Tenerife, El Hierro) and tectonic areas (Central Italy) as well as an example application at global scale.
Flexible timing by temporal scaling of cortical responses
Wang, Jing; Narain, Devika; Hosseini, Eghbal A.; Jazayeri, Mehrdad
2017-01-01
Musicians can perform at different tempos, speakers can control the cadence of their speech, and children can flexibly vary their temporal expectations of events. To understand the neural basis of such flexibility, we recorded from the medial frontal cortex of nonhuman primates trained to produce different time intervals with different effectors. Neural responses were heterogeneous, nonlinear and complex, and exhibited a remarkable form of temporal invariance: firing rate profiles were temporally scaled to match the produced intervals. Recording from downstream neurons in the caudate and thalamic neurons projecting to the medial frontal cortex indicated that this phenomenon originates within cortical networks. Recurrent neural network models trained to perform the task revealed that temporal scaling emerges from nonlinearities in the network and degree of scaling is controlled by the strength of external input. These findings demonstrate a simple and general mechanism for conferring temporal flexibility upon sensorimotor and cognitive functions. PMID:29203897
NASA Astrophysics Data System (ADS)
Vidal, V.; Adam, C.; Escartin, J.
2007-12-01
Walvis and St.~Helena are the only long-lived hotspot chains in the South Atlantic. Therefore, their characterization is important to constrain the processes associated with mantle plume formation, their temporal evolution, and the interaction with plate and mantle dynamics in the region. We study the temporal evolution of plume buoyancy and magma production rate along both hotspot chains, which are constrained from the swell and volume of volcanic materials emplaced along the chain. The regional depth anomaly is calculated by correcting the 2' bathymetry grid of Smith & Sandwell (1997) for thermal subsidence and sediment loading. We separate the topography associated with volcanism and the swell surrounding the hotspot chains using the MiFil filtering method (Adam et al., 2005). We then estimate the temporal variations associated with both parameters by computing volumes along the hotspot tracks. Neither Walvis nor St.~Helena show a 'classical' hotspot behavior. We find that two plumes are at the origin of the St.~Helena chain. This study also shows a swell associated with the Circe seamount, supporting the existence of a hotspot NW of the St.~Helena trail. The variation in swell and volcanic fluxes suggests temporal variability in the plume behavior at time scales of 10-20~m.y. and 5~m.y., which may be related to oscillations and instabilities of the plume conduit, respectively. Cumulative fluxes in the area are largest for Walvis and weakest for Circe, and all are significantly lower than that reported for the Hawai'i hotspot.
van Duijn, Erik; Vrijmoeth, Eslie M; Giltay, Erik J; Bernhard Landwehrmeyer, G
2018-03-01
Huntington's disease (HD) gene expansion carriers are at an increased risk of suicide, but so far, no studies have investigated the full spectrum of suicidality, including suicidal ideation, suicidal behavior and self-injurious behavior. We included 1451 HD gene expansion carriers (age 48.4 years (SD 14.0), 54.8% female) of the REGISTRY study of the European Huntington's Disease Network. Lifetime suicidal ideation and suicidal behavior were assessed with the Columbia-Suicidal Severity Rating Scale. Motor symptoms and disease stage were assessed using subscales of the Unified Huntington's Disease Rating Scale, and depressed mood and irritability were assessed by the Problem Behaviors Assessment. Lifetime passive suicidal ideation was reported by 21.2%. Participants in stage II showed the highest prevalence rate of suicidal ideation, while participants in stage IV/V showed the highest prevalence of suicidal behavior. A lifetime suicide attempt was reported by 6.5% of the HD gene expansion carriers. In multivariate regression analyses, both suicidal ideation and suicidal behavior were associated with a depressed mood, and to a lesser extend to irritability. Results may have been affected by denial or recall bias and no conclusions can be made about the temporal and causal relationships with depressed mood and irritability because of the cross-sectional analyses. Given the high prevalence of suicidal ideation and suicidal behavior in all stages of HD, it is important to screen HD gene expansion carriers for suicidal ideation and suicidal behavior on a regular basis in clinical practice. Copyright © 2017 Elsevier B.V. All rights reserved.
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks
Vestergaard, Christian L.; Génois, Mathieu
2015-01-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling. PMID:26517860
Temporal Gillespie Algorithm: Fast Simulation of Contagion Processes on Time-Varying Networks.
Vestergaard, Christian L; Génois, Mathieu
2015-10-01
Stochastic simulations are one of the cornerstones of the analysis of dynamical processes on complex networks, and are often the only accessible way to explore their behavior. The development of fast algorithms is paramount to allow large-scale simulations. The Gillespie algorithm can be used for fast simulation of stochastic processes, and variants of it have been applied to simulate dynamical processes on static networks. However, its adaptation to temporal networks remains non-trivial. We here present a temporal Gillespie algorithm that solves this problem. Our method is applicable to general Poisson (constant-rate) processes on temporal networks, stochastically exact, and up to multiple orders of magnitude faster than traditional simulation schemes based on rejection sampling. We also show how it can be extended to simulate non-Markovian processes. The algorithm is easily applicable in practice, and as an illustration we detail how to simulate both Poissonian and non-Markovian models of epidemic spreading. Namely, we provide pseudocode and its implementation in C++ for simulating the paradigmatic Susceptible-Infected-Susceptible and Susceptible-Infected-Recovered models and a Susceptible-Infected-Recovered model with non-constant recovery rates. For empirical networks, the temporal Gillespie algorithm is here typically from 10 to 100 times faster than rejection sampling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Efroymson, Rebecca Ann; Dale, Virginia H; Kline, Keith L
Indicators of the environmental sustainability of biofuel production, distribution, and use should be selected, measured, and interpreted with respect to the context in which they are used. These indicators include measures of soil quality, water quality and quantity, greenhouse-gas emissions, biodiversity, air quality, and vegetation productivity. Contextual considerations include the purpose for the sustainability analysis, the particular biofuel production and distribution system (including supply chain, management aspects, and system viability), policy conditions, stakeholder values, location, temporal influences, spatial scale, baselines, and reference scenarios. Recommendations presented in this paper include formulating the problem for particular analyses, selecting appropriate context-specific indicators ofmore » environmental sustainability, and developing indicators that can reflect multiple environmental properties at low cost within a defined context. In addition, contextual considerations such as technical objectives, varying values and perspectives of stakeholder groups, and availability and reliability of data need to be understood and considered. Sustainability indicators for biofuels are most useful if adequate historical data are available, information can be collected at appropriate spatial and temporal scales, organizations are committed to use indicator information in the decision-making process, and indicators can effectively guide behavior toward more sustainable practices.« less
Alavash, Mohsen; Lim, Sung-Joo; Thiel, Christiane; Sehm, Bernhard; Deserno, Lorenz; Obleser, Jonas
2018-05-15
Dopamine underlies important aspects of cognition, and has been suggested to boost cognitive performance. However, how dopamine modulates the large-scale cortical dynamics during cognitive performance has remained elusive. Using functional MRI during a working memory task in healthy young human listeners, we investigated the effect of levodopa (l-dopa) on two aspects of cortical dynamics, blood oxygen-level-dependent (BOLD) signal variability and the functional connectome of large-scale cortical networks. We here show that enhanced dopaminergic signaling modulates the two potentially interrelated aspects of large-scale cortical dynamics during cognitive performance, and the degree of these modulations is able to explain inter-individual differences in l-dopa-induced behavioral benefits. Relative to placebo, l-dopa increased BOLD signal variability in task-relevant temporal, inferior frontal, parietal and cingulate regions. On the connectome level, however, l-dopa diminished functional integration across temporal and cingulo-opercular regions. This hypo-integration was expressed as a reduction in network efficiency and modularity in more than two thirds of the participants and to different degrees. Hypo-integration co-occurred with relative hyper-connectivity in paracentral lobule and precuneus, as well as posterior putamen. Both, l-dopa-induced BOLD signal variability modulation and functional connectome modulations proved predictive of an individual's l-dopa-induced benefits in behavioral performance, namely response speed and perceptual sensitivity. Lastly, l-dopa-induced modulations of BOLD signal variability were correlated with l-dopa-induced modulation of nodal connectivity and network efficiency. Our findings underline the role of dopamine in maintaining the dynamic range of, and communication between, cortical systems, and their explanatory power for inter-individual differences in benefits from dopamine during cognitive performance. Copyright © 2018 Elsevier Inc. All rights reserved.
Exploring the Variability of the Fermi LAT Blazar Population
NASA Astrophysics Data System (ADS)
Macomb, Daryl J.; Shrader, C. R.
2014-01-01
The flux variability of the approximately 2000 point sources cataloged by the Fermi Gamma-Ray Space Telescope provide important clues to population characteristics. This is particularly true of the more than 1100 source that are likely AGN. By characterizing the intrinsic flux variability and distinguishing this variability from flaring behavior, we can better address questions of flare amplitudes, durations, recurrence times, and temporal profiles. A better understanding of the responsible physical environments, such as the scale and location of jet structures responsible for the high-energy emission, may emerge from such studies. Assessing these characteristics as a function of blazar sub-class is a further goal in order to address questions about the fundamentals of blazar AGN physics. Here we report on progress made in categorizing blazar flare behavior, and correlate these behaviors with blazar sub-type and other source parameters.
Movement reveals scale dependence in habitat selection of a large ungulate
Northrup, Joseph; Anderson, Charles R.; Hooten, Mevin B.; Wittemyer, George
2016-01-01
Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife–human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient habitat with lower development densities will be a critical best management practice as development expands globally.
Scale invariance of temporal order discrimination using complex, naturalistic events
Kwok, Sze Chai; Macaluso, Emiliano
2015-01-01
Recent demonstrations of scale invariance in cognitive domains prompted us to investigate whether a scale-free pattern might exist in retrieving the temporal order of events from episodic memory. We present four experiments using an encoding-retrieval paradigm with naturalistic stimuli (movies or video clips). Our studies show that temporal order judgement retrieval times were negatively correlated with the temporal separation between two events in the movie. This relation held, irrespective of whether temporal distances were on the order of tens of minutes (Exp 1−2) or just a few seconds (Exp 3−4). Using the SIMPLE model, we factored in the retention delays between encoding and retrieval (delays of 24 h, 15 min, 1.5–2.5 s, and 0.5 s for Exp 1–4, respectively) and computed a temporal similarity score for each trial. We found a positive relation between similarity and retrieval times; that is, the more temporally similar two events, the slower the retrieval of their temporal order. Using Bayesian analysis, we confirmed the equivalence of the RT/similarity relation across all experiments, which included a vast range of temporal distances and retention delays. These results provide evidence for scale invariance during the retrieval of temporal order of episodic memories. PMID:25909581
Carricarte Naranjo, Claudia; Sanchez-Rodriguez, Lazaro M; Brown Martínez, Marta; Estévez Báez, Mario; Machado García, Andrés
2017-07-01
Heart rate variability (HRV) analysis is a relevant tool for the diagnosis of cardiovascular autonomic neuropathy (CAN). To our knowledge, no previous investigation on CAN has assessed the complexity of HRV from an ordinal perspective. Therefore, the aim of this work is to explore the potential of permutation entropy (PE) analysis of HRV complexity for the assessment of CAN. For this purpose, we performed a short-term PE analysis of HRV in healthy subjects and type 1 diabetes mellitus patients, including patients with CAN. Standard HRV indicators were also calculated in the control group. A discriminant analysis was used to select the variables combination with best discriminative power between control and CAN patients groups, as well as for classifying cases. We found that for some specific temporal scales, PE indicators were significantly lower in CAN patients than those calculated for controls. In such cases, there were ordinal patterns with high probabilities of occurrence, while others were hardly found. We posit this behavior occurs due to a decrease of HRV complexity in the diseased system. Discriminant functions based on PE measures or probabilities of occurrence of ordinal patterns provided an average of 75% and 96% classification accuracy. Correlations of PE and HRV measures showed to depend only on temporal scale, regardless of pattern length. PE analysis at some specific temporal scales, seem to provide additional information to that obtained with traditional HRV methods. We concluded that PE analysis of HRV is a promising method for the assessment of CAN. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tao, Yuqiang; Xue, Bin; Yao, Shuchun; Deng, Jiancai; Gui, Zhifan
2012-04-03
Although numerous studies have addressed sequestration of hydrophobic organic compounds (HOCs) in laboratory, little attention has been paid to its evaluation method in field at large temporal scale. A biomimetic tool, triolein embedded cellulose acetate membrane (TECAM), was therefore tested to evaluate sequestration of six PAHs with various hydrophobicity in a well-dated sediment core sampled from Nanyi Lake, China. Properties of sediment organic matter (OM) varying with aging time dominated the sequestration of PAHs in the sediment core. TECAM-sediment accumulation factors (MSAFs) of the PAHs declined with aging time, and significantly correlated with the corresponding biota-sediment accumulation factors (BSAFs) for gastropod (Bellamya aeruginosa) simultaneously incubated in the same sediment slices. Sequestration rates of the PAHs in the sediment core evaluated by TECAM were much lower than those obtained from laboratory study. The relationship between relative availability for TECAM (MSAF(t)/MSAF(0)) and aging time followed the first order exponential decay model. MSAF(t)/MSAF(0) was well-related to the minor changes of the properties of OM varying with aging time. Compared with chemical extraction, sequestration reflected by TECAM was much closer to that by B. aeruginosa. In contrast to B. aeruginosa, TECAM could avoid metabolism and the influences from feeding and other behaviors of organisms, and it is much easier to deploy and ready in laboratory. Hence TECAM provides an effective and convenient way to study sequestration of PAHs and probably other HOCs in field at large temporal scale.
Landscape analysis of methane flux across complex terrain
NASA Astrophysics Data System (ADS)
Kaiser, K. E.; McGlynn, B. L.; Dore, J. E.
2014-12-01
Greenhouse gas (GHG) fluxes into and out of the soil are influenced by environmental conditions resulting in landscape-mediated patterns of spatial heterogeneity. The temporal variability of inputs (e.g. precipitation) and internal redistribution (e.g. groundwater flow) and dynamics (e.g. microbial communities) make predicating these fluxes challenging. Complex terrain can provide a laboratory for improving understanding of the spatial patterns, temporal dynamics, and drivers of trace gas flux rates, requisite to constraining current GHG budgets and future scenarios. Our research builds on previous carbon cycle research at the USFS Tenderfoot Creek Experimental Forest, Little Belt Mountains, Montana that highlighted the relationships between landscape position and seasonal CO2 efflux, induced by the topographic redistribution of water. Spatial patterns and landscape scale mediation of CH4 fluxes in seasonally aerobic soils have not yet been elucidated. We measured soil methane concentrations and fluxes across a full range of landscape positions, leveraging topographic and seasonal gradients, to examine the relationships between environmental variables, hydrologic dynamics, and CH4 production and consumption. We determined that a threshold of ~30% VWC distinguished the direction of flux at individual time points, with the riparian area and uplands having distinct source/sink characteristics respectively. Riparian locations were either strong sources or fluctuated between sink and source behavior, resulting in near neutral seasonal flux. Upland sites however, exhibited significant relationships between sink strength and topographic/energy balance indices. Our results highlight spatial and temporal coherence to landscape scale heterogeneity of CH4 dynamics that can improve estimates of landscape scale CH4 balances and sensitivity to change.
Lovejoy, S; de Lima, M I P
2015-07-01
Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, Stefan; Lewandowski, Joerg; Hannah, David; McDonald, Karlie; Folegot, Silvia; Baranov, Victor
2016-04-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale laboratory microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Ecohydrological Interfaces as Dynamic Hotspots of Biogeochemical Cycling
NASA Astrophysics Data System (ADS)
Krause, S.
2015-12-01
Ecohydrological interfaces, represent the boundaries between water-dependent ecosystems that can alter substantially the fluxes of energy and matter. There is still a critical gap of understanding the organisational principles of the drivers and controls of spatially and temporally variable ecohydrological interface functions. This knowledge gap limits our capacity to efficiently quantify, predict and manage the services provided by complex ecosystems. Many ecohydrological interfaces are characterized by step changes in microbial metabolic activity, steep redox gradients and often even thermodynamic phase shifts, for instance at the interfaces between atmosphere and water or soil matrix and macro-pores interfaces. This paper integrates investigations from point scale microcosm experiments with reach and subcatchment scale tracer experiments and numerical modeling studies to elaborate similarities in the drivers and controls that constitute the enhanced biogeochemical activity of different types of ecohydrologica interfaces across a range of spatial and temporal scales. We therefore combine smart metabolic activity tracers to quantify the impact of bioturbating benthic fauna onto ecosystem respiration and oxygen consumption and investigate at larger scale, how microbial metabolic activity and carbon turnover at the water-sediment interface are controlled by sediment physical and chemical properties as well as water temperatures. Numerical modeling confirmed that experimentally identified hotspots of streambed biogeochemical cycling were controlled by patterns of physical properties such as hydraulic conductivities or bioavailability of organic matter, impacting on residence time distributions and hence reaction times. In contrast to previous research, our investigations thus confirmed that small-scale variability of physical and chemical interface properties had a major impact on biogeochemical processing at the investigated ecohydrological interfaces. Our results furthermore indicate that to fully understand spatial patterns and temporal dynamics of ecohydrological interface functioning, including hotspots and hot moments, detailed knowledge of the impacts of biological behavior on the physic-chemical ecosystem conditions, and vice-versa, is required.
Abney, Drew H; Dale, Rick; Louwerse, Max M; Kello, Christopher T
2018-04-06
Recent studies of naturalistic face-to-face communication have demonstrated coordination patterns such as the temporal matching of verbal and non-verbal behavior, which provides evidence for the proposal that verbal and non-verbal communicative control derives from one system. In this study, we argue that the observed relationship between verbal and non-verbal behaviors depends on the level of analysis. In a reanalysis of a corpus of naturalistic multimodal communication (Louwerse, Dale, Bard, & Jeuniaux, ), we focus on measuring the temporal patterns of specific communicative behaviors in terms of their burstiness. We examined burstiness estimates across different roles of the speaker and different communicative modalities. We observed more burstiness for verbal versus non-verbal channels, and for more versus less informative language subchannels. Using this new method for analyzing temporal patterns in communicative behaviors, we show that there is a complex relationship between verbal and non-verbal channels. We propose a "temporal heterogeneity" hypothesis to explain how the language system adapts to the demands of dialog. Copyright © 2018 Cognitive Science Society, Inc.
The Maximum Entropy Limit of Small-scale Magnetic Field Fluctuations in the Quiet Sun
NASA Astrophysics Data System (ADS)
Gorobets, A. Y.; Berdyugina, S. V.; Riethmüller, T. L.; Blanco Rodríguez, J.; Solanki, S. K.; Barthol, P.; Gandorfer, A.; Gizon, L.; Hirzberger, J.; van Noort, M.; Del Toro Iniesta, J. C.; Orozco Suárez, D.; Schmidt, W.; Martínez Pillet, V.; Knölker, M.
2017-11-01
The observed magnetic field on the solar surface is characterized by a very complex spatial and temporal behavior. Although feature-tracking algorithms have allowed us to deepen our understanding of this behavior, subjectivity plays an important role in the identification and tracking of such features. In this paper, we continue studies of the temporal stochasticity of the magnetic field on the solar surface without relying either on the concept of magnetic features or on subjective assumptions about their identification and interaction. We propose a data analysis method to quantify fluctuations of the line-of-sight magnetic field by means of reducing the temporal field’s evolution to the regular Markov process. We build a representative model of fluctuations converging to the unique stationary (equilibrium) distribution in the long time limit with maximum entropy. We obtained different rates of convergence to the equilibrium at fixed noise cutoff for two sets of data. This indicates a strong influence of the data spatial resolution and mixing-polarity fluctuations on the relaxation process. The analysis is applied to observations of magnetic fields of the relatively quiet areas around an active region carried out during the second flight of the Sunrise/IMaX and quiet Sun areas at the disk center from the Helioseismic and Magnetic Imager on board the Solar Dynamics Observatory satellite.
Space Technology 5 Multi-Point Observations of Temporal Variability of Field-Aligned Currents
NASA Technical Reports Server (NTRS)
Le, Guan; Wang, Yongli; Slavin, James A.; Strangeway, Robert J.
2008-01-01
Space Technology 5 (ST5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that meso-scale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of approximately 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are approximately 1 min for meso-scale currents and approximately 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Astrophysics Data System (ADS)
Nissanka, I. D.; Richter, D. H.
2017-12-01
Previous studies have shown that sea spray droplets can play a significant role in air-sea heat and moisture exchange. The larger spray droplets have potential to transfer considerable amount of mass, momentum and heat, however they remain closer to surface and their residence times are shorter due to the faster settling. On the other hand, smaller droplets have high vertical mobility which allows sufficient time for droplets to adjust to ambient conditions. Hence, to study the heat and moisture characteristics of sea spray droplets it is important to understand how different droplet sizes behave in the Marine Atmospheric Boundary Layer (MABL), especially their temporal evolutions. In this study sea spray droplet transport in the MABL is simulated using Large Eddy Simulation combined with a Lagrangian Particle model which represents spray droplets of varying size. The individual droplets are tracked while their radius and temperature evolve based on local ambient conditions. The particles are advected based on the local resolved velocities and the particle dispersion due to sub-filtered scale motions are modeled using a Lagrangian stochastic model. In this study a series of simulations are conducted with the focus of understanding fundamental droplet microphysics, which will help characterize and quantify the lifetime and airborne concentrations of spray droplets in the MABL, thus elucidating ongoing knowledge gaps which are impossible to fill using observations alone. We measure the size resolved spray droplet vertical concentrations, particle residence times, and temporal evolution of droplet radius and temperature to explain the behavior of sea spry droplets in MABL. The PDF of residence time of different initial droplet sizes and joint PDFs of droplet life time and radius and temperature for different droplet sizes are calculated to further quantify the temporal and spatial behavior of sea spray droplets in the MABL, which can be used as inputs into bulk models of air-sea transfer.
Validation of the Temporal Satisfaction with Life Scale in a Sample of Chinese University Students
ERIC Educational Resources Information Center
Ye, Shengquan
2007-01-01
The study aims at validating the Temporal Satisfaction With Life Scale (TSWLS; Pavot et al., 1998, "The Temporal Satisfaction With Life Scale", Journal of Personality Assessment 70, pp. 340-354) in a non-western context. Data from 646 Chinese university students (330 females and 316 males) supported the three-factor structure of the…
Temporal change in forest fragmentation at multiple scales
J.D. Wickham; K.H. Riitters; T.G. Wade; J.W. Coulston
2007-01-01
Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay region and the state of New Jersey to compare patch-based and areaâdensity scaling measures...
NASA Astrophysics Data System (ADS)
Naufan, Ihsan; Sivakumar, Bellie; Woldemeskel, Fitsum M.; Raghavan, Srivatsan V.; Vu, Minh Tue; Liong, Shie-Yui
2018-01-01
Understanding the spatial and temporal variability of rainfall has always been a great challenge, and the impacts of climate change further complicate this issue. The present study employs the concepts of complex networks to study the spatial connections in rainfall, with emphasis on climate change and rainfall scaling. Rainfall outputs (during 1961-1990) from a regional climate model (i.e. Weather Research and Forecasting (WRF) model that downscaled the European Centre for Medium-range Weather Forecasts, ECMWF ERA-40 reanalyses) over Southeast Asia are studied, and data corresponding to eight different temporal scales (6-hr, 12-hr, daily, 2-day, 4-day, weekly, biweekly, and monthly) are analyzed. Two network-based methods are applied to examine the connections in rainfall: clustering coefficient (a measure of the network's local density) and degree distribution (a measure of the network's spread). The influence of rainfall correlation threshold (T) on spatial connections is also investigated by considering seven different threshold levels (ranging from 0.5 to 0.8). The results indicate that: (1) rainfall networks corresponding to much coarser temporal scales exhibit properties similar to that of small-world networks, regardless of the threshold; (2) rainfall networks corresponding to much finer temporal scales may be classified as either small-world networks or scale-free networks, depending upon the threshold; and (3) rainfall spatial connections exhibit a transition phase at intermediate temporal scales, especially at high thresholds. These results suggest that the most appropriate model for studying spatial connections may often be different at different temporal scales, and that a combination of small-world and scale-free network models might be more appropriate for rainfall upscaling/downscaling across all scales, in the strict sense of scale-invariance. The results also suggest that spatial connections in the studied rainfall networks in Southeast Asia are weak, especially when more stringent conditions are imposed (i.e. when T is very high), except at the monthly scale.
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments.
Losch, Martin; Menemenlis, Dimitris
2018-01-01
Abstract Sea ice models with the traditional viscous‐plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan‐Arctic sea ice‐ocean simulation, the small‐scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data. PMID:29576996
NASA Astrophysics Data System (ADS)
Hutter, Nils; Losch, Martin; Menemenlis, Dimitris
2018-01-01
Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
Hutter, Nils; Losch, Martin; Menemenlis, Dimitris
2018-01-01
Sea ice models with the traditional viscous-plastic (VP) rheology and very small horizontal grid spacing can resolve leads and deformation rates localized along Linear Kinematic Features (LKF). In a 1 km pan-Arctic sea ice-ocean simulation, the small-scale sea ice deformations are evaluated with a scaling analysis in relation to satellite observations of the Envisat Geophysical Processor System (EGPS) in the Central Arctic. A new coupled scaling analysis for data on Eulerian grids is used to determine the spatial and temporal scaling and the coupling between temporal and spatial scales. The spatial scaling of the modeled sea ice deformation implies multifractality. It is also coupled to temporal scales and varies realistically by region and season. The agreement of the spatial scaling with satellite observations challenges previous results with VP models at coarser resolution, which did not reproduce the observed scaling. The temporal scaling analysis shows that the VP model, as configured in this 1 km simulation, does not fully resolve the intermittency of sea ice deformation that is observed in satellite data.
On the Instability of Large Slopes in the Upstream of Wu River, Taiwan
NASA Astrophysics Data System (ADS)
Shou, Keh-Jian; Lin, Jia-Fei
2015-04-01
Considering the existence of various types of landslides (shallow and deep-seated) and the importance of protection targets (the landslide might affect a residential area, cut a road, isolate a village, etc.), this study aims to analyze the landslide susceptibility along the Lixing Industrial Road, i.e., Nantou County Road # 89, in the upstream of Wu River. Focusing on the selected typical large scale landslides, the data and information of the landslides were collected from the field and the government (including the local government, the Soil and Water Conservation Bureau, and the highway agencies). Based on the data of Li-DAR and the information from boreholes, the temporal behavior and the complex mechanism of large scale landslides were analyzed. To assess the spatial hazard of the landslides, probabilistic analysis was applied. The study of the landslide mechanism can help to understand the behavior of landslides in similar geologic conditions, and the results of hazard analysis can be applied for risk prevention and management in the study area.
Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.
2012-01-01
Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.
Valeix, M; Loveridge, A J; Chamaillé-Jammes, S; Davidson, Z; Murindagomo, F; Fritz, H; Macdonald, D W
2009-01-01
Predators may influence their prey populations not only through direct lethal effects, but also through indirect behavioral changes. Here, we combined spatiotemporal fine-scale data from GPS radio collars on lions with habitat use information on 11 African herbivores in Hwange National Park (Zimbabwe) to test whether the risk of predation by lions influenced the distribution of herbivores in the landscape. Effects of long-term risk of predation (likelihood of lion presence calculated over four months) and short-term risk of predation (actual presence of lions in the vicinity in the preceding 24 hours) were contrasted. The long-term risk of predation by lions appeared to influence the distributions of all browsers across the landscape, but not of grazers. This result strongly suggests that browsers and grazers, which face different ecological constraints, are influenced at different spatial and temporal scales in the variation of the risk of predation by lions. The results also show that all herbivores tend to use more open habitats preferentially when lions are in their vicinity, probably an effective anti-predator behavior against such an ambush predator. Behaviorally induced effects of lions may therefore contribute significantly to structuring African herbivore communities, and hence possibly their effects on savanna ecosystems.
Wohrer, Adrien; Machens, Christian K.
2015-01-01
All of our perceptual experiences arise from the activity of neural populations. Here we study the formation of such percepts under the assumption that they emerge from a linear readout, i.e., a weighted sum of the neurons’ firing rates. We show that this assumption constrains the trial-to-trial covariance structure of neural activities and animal behavior. The predicted covariance structure depends on the readout parameters, and in particular on the temporal integration window w and typical number of neurons K used in the formation of the percept. Using these predictions, we show how to infer the readout parameters from joint measurements of a subject’s behavior and neural activities. We consider three such scenarios: (1) recordings from the complete neural population, (2) recordings of neuronal sub-ensembles whose size exceeds K, and (3) recordings of neuronal sub-ensembles that are smaller than K. Using theoretical arguments and artificially generated data, we show that the first two scenarios allow us to recover the typical spatial and temporal scales of the readout. In the third scenario, we show that the readout parameters can only be recovered by making additional assumptions about the structure of the full population activity. Our work provides the first thorough interpretation of (feed-forward) percept formation from a population of sensory neurons. We discuss applications to experimental recordings in classic sensory decision-making tasks, which will hopefully provide new insights into the nature of perceptual integration. PMID:25793393
NASA Astrophysics Data System (ADS)
Goodwell, Allison E.; Kumar, Praveen
2017-07-01
In an ecohydrologic system, components of atmospheric, vegetation, and root-soil subsystems participate in forcing and feedback interactions at varying time scales and intensities. The structure of this network of complex interactions varies in terms of connectivity, strength, and time scale due to perturbations or changing conditions such as rainfall, drought, or land use. However, characterization of these interactions is difficult due to multivariate and weak dependencies in the presence of noise, nonlinearities, and limited data. We introduce a framework for Temporal Information Partitioning Networks (TIPNets), in which time-series variables are viewed as nodes, and lagged multivariate mutual information measures are links. These links are partitioned into synergistic, unique, and redundant information components, where synergy is information provided only jointly, unique information is only provided by a single source, and redundancy is overlapping information. We construct TIPNets from 1 min weather station data over several hour time windows. From a comparison of dry, wet, and rainy conditions, we find that information strengths increase when solar radiation and surface moisture are present, and surface moisture and wind variability are redundant and synergistic influences, respectively. Over a growing season, network trends reveal patterns that vary with vegetation and rainfall patterns. The framework presented here enables us to interpret process connectivity in a multivariate context, which can lead to better inference of behavioral shifts due to perturbations in ecohydrologic systems. This work contributes to more holistic characterizations of system behavior, and can benefit a wide variety of studies of complex systems.
NASA Astrophysics Data System (ADS)
de León-Lomelí, R.; Murguía, J. S.; Chouvarda, I.; Méndez, M. O.; González-Galván, E.; Alba, A.
2016-01-01
During sleep there exists a nonlinear dynamic phenomenon, which is called cyclic alternating pattern. This phenomenon is generated in the brain and is composed of a series of events of short duration known as A-phases. It has been shown that A-phases can be found in other physiological systems such as the cardiovascular. However, there is no evidence that shows the temporal influence of the A-phases with the cardiovascular system. For this purpose, we consider the scaling method known as detrended fluctuation analysis (DFA). The analysis was carried out in well sleepers and insomnia people, and the numerical results show an increment in the scaling parameter for the insomnia subjects compared with the normal ones. In addition, the results of the heart dynamics suggests a persistent behavior toward the 1/f-noise.
Space Technology 5 (ST-5) Observations of Field-Aligned Currents: Temporal Variability
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from STS. The data demonstrate that masoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about I min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
NASA Technical Reports Server (NTRS)
Le, Guan
2010-01-01
Space Technology 5 (ST-5) is a three micro-satellite constellation deployed into a 300 x 4500 km, dawn-dusk, sun-synchronous polar orbit from March 22 to June 21, 2006, for technology validations. In this paper, we present a study of the temporal variability of field-aligned currents using multi-point magnetic field measurements from ST5. The data demonstrate that mesoscale current structures are commonly embedded within large-scale field-aligned current sheets. The meso-scale current structures are very dynamic with highly variable current density and/or polarity in time scales of about 10 min. They exhibit large temporal variations during both quiet and disturbed times in such time scales. On the other hand, the data also shown that the time scales for the currents to be relatively stable are about 1 min for meso-scale currents and about 10 min for large scale current sheets. These temporal features are obviously associated with dynamic variations of their particle carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of meso-scale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Temporal Immediacy: A Two-System Theory of Mind for Understanding and Changing Health Behaviors.
Cook, Paul F; Schmiege, Sarah J; Reeder, Blaine; Horton-Deutsch, Sara; Lowe, Nancy K; Meek, Paula
Health promotion and chronic disease management both require behavior change, but people find it hard to change behavior despite having good intentions. The problem arises because patients' narratives about experiences and intentions are filtered through memory and language. These narratives inaccurately reflect intuitive decision-making or actual behaviors. We propose a principle-temporal immediacy-as a moderator variable that explains which of two mental systems (narrative or intuitive) will be activated in any given situation. We reviewed multiple scientific areas to test temporal immediacy as an explanation for findings. In an iterative process, we used evidence from philosophy, cognitive neuroscience, behavioral economics, symptom science, and ecological momentary assessment to develop our theoretical perspective. These perspectives each suggest two cognitive systems that differ in their level of temporal immediacy: an intuitive system that produces behavior in response to everyday states and a narrative system that interprets and explains these experiences after the fact. Writers from Plato onward describe two competing influences on behavior-often with moral overtones. People tend to identify with the language-based narrative system and blame unhelpful results on the less accessible intuitive system, but neither is completely rational, and the intuitive system has strengths based on speed and serial processing. The systems differ based on temporal immediacy-the description of an experience as either "now" or "usually"-with the intuitive system generating behaviors automatically in real time and the narrative system producing beliefs about the past or future. The principle of temporal immediacy is a tool to integrate nursing science with other disciplinary traditions and to improve research and practice. Interventions should build on each system's strengths, rather than treating the intuitive system as a barrier for the narrative system to overcome. Nursing researchers need to study the roles and effects of both systems.
ERIC Educational Resources Information Center
McKay, Michael T.; Percy, Andrew; Goudie, Andrew J.; Sumnall, Harry R.; Cole, Jon C.
2012-01-01
The Temporal Focus Scale (TFS) is a 12-item self-report measure of cognitive engagement with the temporal domains of past, present and future. Developed in college student samples, a three-factor structure with adequate reliability and validity was documented in a series of independent studies. We tested the factor structure of the scale in a…
Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.
2008-01-01
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674
Kolb, Bryan
2010-12-01
The article by Malkova, Mishkin, Suomo, and Bachevalier (2010, this issue) adds an important piece to our understanding of the role of the medial versus lateral temporal regions in socioemotional behavior. In their paper, they evaluate the effect of infant and adult amygdala lesions and infant inferotemporal cortex lesions on the social interactions of monkeys in infancy and adulthood. The results show that medial temporal lesions performed in infants produce greater effects on socioaffective behavior than similar lesions in adulthood and that infant monkeys with inferotemporal lesions exhibit social deficits that are resolved by adulthood. These results are relevant to three significant issues: (1) the role of the medial temporal and lateral temporal cortex in the symptoms of the Kluver-Bucy syndrome; (2) the role of age at injury in behavioral change after cerebral injuries; and (3) the importance of lesion locus and behavioral measure for recovery from infant and adult cerebral injury. © 2010 APA, all rights reserved.
Temporal Stability and Convergent Validity of the Behavior Assessment System for Children.
ERIC Educational Resources Information Center
Merydith, Scott P.
2001-01-01
Assesses the temporal stability and convergent validity of the Behavioral Assessment System for Children (BASC). Teachers and parents rated kindergarten and first-grade students using BASC. Teachers were more stable in rating children's externalizing behaviors and attention problems. Discusses results in terms of the accuracy of information…
Wilson, K M; Huff, J L
2001-05-01
The influence on social behavior of beliefs in Satan and the nature of evil has received little empirical study. Elaine Pagels (1995) in her book, The Origin of Satan, argued that Christians' intolerance toward others is due to their belief in an active Satan. In this study, more than 200 college undergraduates completed the Manitoba Prejudice Scale and the Attitudes Toward Homosexuals Scale (B. Altemeyer, 1988), as well as the Belief in an Active Satan Scale, developed by the authors. The Belief in an Active Satan Scale demonstrated good internal consistency and temporal stability. Correlational analyses revealed that for the female participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men and intolerance toward ethnic minorities. For the male participants, belief in an active Satan was directly related to intolerance toward lesbians and gay men but was not significantly related to intolerance toward ethnic minorities. Results of this research showed that it is possible to meaningfully measure belief in an active Satan and that such beliefs may encourage intolerance toward others.
Fluctuation scaling of quotation activities in the foreign exchange market
NASA Astrophysics Data System (ADS)
Sato, Aki-Hiro; Nishimura, Maiko; Hołyst, Janusz A.
2010-07-01
We study the scaling behavior of quotation activities for various currency pairs in the foreign exchange market. The components’ centrality is estimated from multiple time series and visualized as a currency pair network. The power-law relationship between a mean of quotation activity and its standard deviation for each currency pair is found. The scaling exponent α and the ratio between common and specific fluctuations η increase with the length of the observation time window Δt. The result means that although for Δt=1 (min), the market dynamics are governed by specific processes, and at a longer time scale Δt>100 (min) the common information flow becomes more important. We point out that quotation activities are not independently Poissonian for Δt=1 (min), and temporally or mutually correlated activities of quotations can happen even at this time scale. A stochastic model for the foreign exchange market based on a bipartite graph representation is proposed.
Temporal Patterns of Behavior from the Scheduling of Psychology Quizzes
ERIC Educational Resources Information Center
Jarmolowicz, David P.; Hayashi, Yusuke; St. Peter Pipkin, Claire
2010-01-01
Temporal patterns of behavior have been observed in real-life performances such as bill passing in the U.S. Congress, in-class studying, and quiz taking. However, the practical utility of understanding these patterns has not been evaluated. The current study demonstrated the presence of temporal patterns of quiz taking in a university-level…
Temporal behavior of a solute cloud in a fractal heterogeneous porous medium at different scales
NASA Astrophysics Data System (ADS)
Ross, Katharina; Attinger, Sabine
2010-05-01
Water pollution is still a very real problem and the need for efficient models for flow and solute transport in heterogeneous porous or fractured media is evident. In our study we focus on solute transport in heterogeneous fractured media. In heterogeneous fractured media the shape of the pores and fractures in the subsurface might be modeled as a fractal network or a heterogeneous structure with infinite correlation length. To derive explicit results for larger scale or effective transport parameters in such structures is the aim of this work. To describe flow and transport we investigate the temporal behavior of transport coefficients of solute movement through a spatially heterogeneous medium. It is necessary to distinguish between two fundamentally different quantities characterizing the solute dispersion: The effective dispersion coefficient Deff(t) represents the physical (observable) dispersion in one given realization of the medium. It is conceptually different from the mathematically simpler ensemble dispersion coefficient Dens(t) which characterizes the (abstract) dispersion with respect to the set of all possible realizations of the medium. In the framework of a stochastic approach DENTZ ET AL. (2000 I[2] & II[3]) derive explicit expressions for the temporal behavior of the center-of-mass velocity and the dispersion of the concentration distribution, using a second order perturbation expansion. In their model the authors assume a finite correlation length of the heterogeneities and use a GAUSSIAN correlation function. In a first step, we model the fractured medium as a heterogeneous porous medium with infinite correlation length and neglect single fractures. ZHAN & WHEATCRAFT (1996[4]) analyze the macrodispersivity tensor in fractal porous media using a non-integer exponent which consists of the HURST coefficient and the fractal dimension D. To avoid this non-integer exponent for numerical reasons we extend the study of DENTZ ET AL. (2000 I[2] & II[3]) and derive explicit expressions for the center-of-mass velocity and the longitudinal dispersion coefficient for isotropic and anisotropic media as well as for point-like (where the extent of the source distribution is small compared to the correlation lengths of the heterogeneities) and spatially extended injections. Our results clearly show that the difference between Deff and Dens persists for all times. In other words, ensemble mixing and effective mixing coefficients do not approach the same asymptotic limit. The center-of-mass fluctuations between different flow paths for a plume traveling through the medium never become irrelevant and ergodicity breaks down in such media. Our ongoing work concerns the investigation of the transversal dispersion coefficient and the extension of the upscaling method coarse graining[1] to heterogeneous fractal porous media with embedded single fractures. References [1]ATTINGER, S. (2003): Generalized coarse graining procedures for flow in porous media, Computational Geosciences, 7 (4), pp. 253-273. [2]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 1. Point-like injection, Water Resources Research, 36 (12), pp. 3591-3604. [3]DENTZ, M. / KINZELBACH, H. / ATTINGER, S. and W. KINZELBACH (2000): Temporal behavior of a solute cloud in a heterogeneous porous medium: 2. Spatially extended injection, Water Resources Research, 36 (12), pp. 3605-3614. [4]ZHAN, H. and S. W. WHEATCRAFT (1996): Macrodispersivity tensor for nonreactive solute transport in isotropic and anisotropic fractal porous media: Analytical solutions, Water Resources Research, 32 (12), pp. 3461-3474.
Lopez, Richard B; Stillman, Paul E; Heatherton, Todd F; Freeman, Jonathan B
2018-01-01
In this review, we present the case for using computer mouse-tracking techniques to examine psychological processes that support (and hinder) self-regulation of eating. We first argue that computer mouse-tracking is suitable for studying the simultaneous engagement of-and dynamic interactions between-multiple perceptual and cognitive processes as they unfold and interact over a fine temporal scale (i.e., hundreds of milliseconds). Next, we review recent work that implemented mouse-tracking techniques by measuring mouse movements as participants chose between various food items (of varying nutritional content). Lastly, we propose next steps for future investigations to link behavioral features from mouse-tracking paradigms, corresponding neural correlates, and downstream eating behaviors.
Regional brain responses in nulliparous women to emotional infant stimuli.
Montoya, Jessica L; Landi, Nicole; Kober, Hedy; Worhunsky, Patrick D; Rutherford, Helena J V; Mencl, W Einar; Mayes, Linda C; Potenza, Marc N
2012-01-01
Infant cries and facial expressions influence social interactions and elicit caretaking behaviors from adults. Recent neuroimaging studies suggest that neural responses to infant stimuli involve brain regions that process rewards. However, these studies have yet to investigate individual differences in tendencies to engage or withdraw from motivationally relevant stimuli. To investigate this, we used event-related fMRI to scan 17 nulliparous women. Participants were presented with novel infant cries of two distress levels (low and high) and unknown infant faces of varying affect (happy, sad, and neutral) in a randomized, counter-balanced order. Brain activation was subsequently correlated with scores on the Behavioral Inhibition System/Behavioral Activation System scale. Infant cries activated bilateral superior and middle temporal gyri (STG and MTG) and precentral and postcentral gyri. Activation was greater in bilateral temporal cortices for low- relative to high-distress cries. Happy relative to neutral faces activated the ventral striatum, caudate, ventromedial prefrontal, and orbitofrontal cortices. Sad versus neutral faces activated the precuneus, cuneus, and posterior cingulate cortex, and behavioral activation drive correlated with occipital cortical activations in this contrast. Behavioral inhibition correlated with activation in the right STG for high- and low-distress cries relative to pink noise. Behavioral drive correlated inversely with putamen, caudate, and thalamic activations for the comparison of high-distress cries to pink noise. Reward-responsiveness correlated with activation in the left precentral gyrus during the perception of low-distress cries relative to pink noise. Our findings indicate that infant cry stimuli elicit activations in areas implicated in auditory processing and social cognition. Happy infant faces may be encoded as rewarding, whereas sad faces activate regions associated with empathic processing. Differences in motivational tendencies may modulate neural responses to infant cues.
Garcia, Antonio F.; Acosta, Melina; Pirani, Saifa; Edwards, Daniel; Osman, Augustine
2017-01-01
We describe 2 studies designed to evaluate scores on the Multidimensional Shame-related Response Inventory-21 (MSRI-21), a recently developed instrument that measures affective and behavioral responses to shame. The inventory assesses shame-related responses in 3 categories: negative self-evaluation, fear of social consequences, and maladaptive behavior tendency. For Study 1, (N = 743) undergraduates completed the MSRI-21. Confirmatory factor analysis supported the validity of the MSRI-21 3-factor structure. Latent variable modeling of coefficient-α provided strong evidence for the internal consistency of scores on each scale. In Study 2, (N = 540) undergraduates completed the instrument along with 5 concurrent measures chosen for clinical significance. Achievement of factorial invariance supported the use of MSRI-21 scale scores to make valid mean comparisons across gender. In addition, MSRI-21 scale scores were associated as expected with scores on measures of self-harm, suicide, and other risk factors. Taken together, results of 2 studies support the internal consistency reliability, factorial validity, factorial invariance, and convergent validity of scores on the MSRI-21. Further work is needed to assess the temporal stability of the MSRI-21 scale scores, invariance across clinical status and other groupings, item-level measurement properties, and viability in highly symptomatic samples. PMID:28182490
Maggi, Silvia; Balzani, Edoardo; Lassi, Glenda; Garcia-Garcia, Celina; Plano, Andrea; Espinoza, Stefano; Mus, Liudmila; Tinarelli, Federico; Nolan, Patrick M; Gainetdinov, Raul R; Balci, Fuat; Nieus, Thierry; Tucci, Valter
2017-12-19
Circadian clock is known to adapt to environmental changes and can significantly influence cognitive and physiological functions. In this work, we report specific behavioral, cognitive, and sleep homeostatic defects in the after hours (Afh) circadian mouse mutant, which is characterized by lengthened circadian period. We found that the circadian timing irregularities in Afh mice resulted in higher interval timing uncertainty and suboptimal decisions due to incapability of processing probabilities. Our phenotypic observations further suggested that Afh mutants failed to exhibit the necessary phenotypic plasticity for adapting to temporal changes at multiple time scales (seconds-to-minutes to circadian). These behavioral effects of Afh mutation were complemented by the specific disruption of the Per/Cry circadian regulatory complex in brain regions that govern food anticipatory behaviors, sleep, and timing. We derive statistical predictions, which indicate that circadian clock and sleep are complementary processes in controlling behavioral/cognitive performance during 24 hrs. The results of this study have pivotal implications for understanding how the circadian clock modulates sleep and behavior.
Dynamic functional connectivity shapes individual differences in associative learning.
Fatima, Zainab; Kovacevic, Natasha; Misic, Bratislav; McIntosh, Anthony Randal
2016-11-01
Current neuroscientific research has shown that the brain reconfigures its functional interactions at multiple timescales. Here, we sought to link transient changes in functional brain networks to individual differences in behavioral and cognitive performance by using an active learning paradigm. Participants learned associations between pairs of unrelated visual stimuli by using feedback. Interindividual behavioral variability was quantified with a learning rate measure. By using a multivariate statistical framework (partial least squares), we identified patterns of network organization across multiple temporal scales (within a trial, millisecond; across a learning session, minute) and linked these to the rate of change in behavioral performance (fast and slow). Results indicated that posterior network connectivity was present early in the trial for fast, and later in the trial for slow performers. In contrast, connectivity in an associative memory network (frontal, striatal, and medial temporal regions) occurred later in the trial for fast, and earlier for slow performers. Time-dependent changes in the posterior network were correlated with visual/spatial scores obtained from independent neuropsychological assessments, with fast learners performing better on visual/spatial subtests. No relationship was found between functional connectivity dynamics in the memory network and visual/spatial test scores indicative of cognitive skill. By using a comprehensive set of measures (behavioral, cognitive, and neurophysiological), we report that individual variations in learning-related performance change are supported by differences in cognitive ability and time-sensitive connectivity in functional neural networks. Hum Brain Mapp 37:3911-3928, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Stick-slip behavior in a continuum-granular experiment.
Geller, Drew A; Ecke, Robert E; Dahmen, Karin A; Backhaus, Scott
2015-12-01
We report moment distribution results from a laboratory experiment, similar in character to an isolated strike-slip earthquake fault, consisting of sheared elastic plates separated by a narrow gap filled with a two-dimensional granular medium. Local measurement of strain displacements of the plates at 203 spatial points located adjacent to the gap allows direct determination of the event moments and their spatial and temporal distributions. We show that events consist of spatially coherent, larger motions and spatially extended (noncoherent), smaller events. The noncoherent events have a probability distribution of event moment consistent with an M(-3/2) power law scaling with Poisson-distributed recurrence times. Coherent events have a log-normal moment distribution and mean temporal recurrence. As the applied normal pressure increases, there are more coherent events and their log-normal distribution broadens and shifts to larger average moment.
Principles of Temporal Processing Across the Cortical Hierarchy.
Himberger, Kevin D; Chien, Hsiang-Yun; Honey, Christopher J
2018-05-02
The world is richly structured on multiple spatiotemporal scales. In order to represent spatial structure, many machine-learning models repeat a set of basic operations at each layer of a hierarchical architecture. These iterated spatial operations - including pooling, normalization and pattern completion - enable these systems to recognize and predict spatial structure, while robust to changes in the spatial scale, contrast and noisiness of the input signal. Because our brains also process temporal information that is rich and occurs across multiple time scales, might the brain employ an analogous set of operations for temporal information processing? Here we define a candidate set of temporal operations, and we review evidence that they are implemented in the mammalian cerebral cortex in a hierarchical manner. We conclude that multiple consecutive stages of cortical processing can be understood to perform temporal pooling, temporal normalization and temporal pattern completion. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.
TEMPORAL CHANGE IN FOREST FRAGMENTATION AT MULTIPLE SCALES
Previous studies of temporal changes in fragmentation have focused almost exclusively on patch and edge statistics, which might not detect changes in the spatial scale at which forest occurs in or dominates the landscape. We used temporal land-cover data for the Chesapeake Bay r...
Field evidence for pervasive indirect effects of fishing on prey foraging behavior.
Madin, Elizabeth M P; Gaines, Steven D; Warner, Robert R
2010-12-01
The indirect, ecosystem-level consequences of ocean fishing, and particularly the mechanisms driving them, are poorly understood. Most studies focus on density-mediated trophic cascades, where removal of predators alternately causes increases and decreases in abundances of lower trophic levels. However, cascades could also be driven by where and when prey forage rather than solely by prey abundance. Over a large gradient of fishing intensity in the central Pacific's remote northern Line Islands, including a nearly pristine, baseline coral reef system, we found that changes in predation risk elicit strong behavioral responses in foraging patterns across multiple prey fish species. These responses were observed as a function of both short-term ("acute") risk and longer-term ("chronic") risk, as well as when prey were exposed to model predators to isolate the effect of perceived predation risk from other potentially confounding factors. Compared to numerical prey responses, antipredator behavioral responses such as these can potentially have far greater net impacts (by occurring over entire assemblages) and operate over shorter temporal scales (with potentially instantaneous response times) in transmitting top-down effects. A rich body of literature exists on both the direct effects of human removal of predators from ecosystems and predators' effects on prey behavior. Our results draw together these lines of research and provide the first empirical evidence that large-scale human removal of predators from a natural ecosystem indirectly alters prey behavior. These behavioral changes may, in turn, drive previously unsuspected alterations in reef food webs.
Process scales in catchment science: a new synthesis
Concerns surrounding data resolution, choice of spatial and temporal scales in research design, and problems with extrapolation of processes across spatial and temporal scales differ greatly between scientific process-elucidation research and scenario exploration for watershed ma...
Solari, Nicola; Sviatkó, Katalin; Laszlovszky, Tamás; Hegedüs, Panna; Hangya, Balázs
2018-01-01
Understanding how the brain controls behavior requires observing and manipulating neural activity in awake behaving animals. Neuronal firing is timed at millisecond precision. Therefore, to decipher temporal coding, it is necessary to monitor and control animal behavior at the same level of temporal accuracy. However, it is technically challenging to deliver sensory stimuli and reinforcers as well as to read the behavioral responses they elicit with millisecond precision. Presently available commercial systems often excel in specific aspects of behavior control, but they do not provide a customizable environment allowing flexible experimental design while maintaining high standards for temporal control necessary for interpreting neuronal activity. Moreover, delay measurements of stimulus and reinforcement delivery are largely unavailable. We combined microcontroller-based behavior control with a sound delivery system for playing complex acoustic stimuli, fast solenoid valves for precisely timed reinforcement delivery and a custom-built sound attenuated chamber using high-end industrial insulation materials. Together this setup provides a physical environment to train head-fixed animals, enables calibrated sound stimuli and precisely timed fluid and air puff presentation as reinforcers. We provide latency measurements for stimulus and reinforcement delivery and an algorithm to perform such measurements on other behavior control systems. Combined with electrophysiology and optogenetic manipulations, the millisecond timing accuracy will help interpret temporally precise neural signals and behavioral changes. Additionally, since software and hardware provided here can be readily customized to achieve a large variety of paradigms, these solutions enable an unusually flexible design of rodent behavioral experiments. PMID:29867383
Dynamics of Conflicts in Wikipedia
Yasseri, Taha; Sumi, Robert; Rung, András; Kornai, András; Kertész, János
2012-01-01
In this work we study the dynamical features of editorial wars in Wikipedia (WP). Based on our previously established algorithm, we build up samples of controversial and peaceful articles and analyze the temporal characteristics of the activity in these samples. On short time scales, we show that there is a clear correspondence between conflict and burstiness of activity patterns, and that memory effects play an important role in controversies. On long time scales, we identify three distinct developmental patterns for the overall behavior of the articles. We are able to distinguish cases eventually leading to consensus from those cases where a compromise is far from achievable. Finally, we analyze discussion networks and conclude that edit wars are mainly fought by few editors only. PMID:22745683
Thalamic inhibition: diverse sources, diverse scales
Halassa, Michael M.; Acsády, László
2016-01-01
The thalamus is the major source of cortical inputs shaping sensation, action and cognition. Thalamic circuits are targeted by two major inhibitory systems: the thalamic reticular nucleus (TRN) and extra-thalamic inhibitory (ETI) inputs. A unifying framework of how these systems operate is currently lacking. Here, we propose that TRN circuits are specialized to exert thalamic control at different spatiotemporal scales. Local inhibition of thalamic spike rates prevails during attentional selection whereas global inhibition more likely during sleep. In contrast, the ETI (arising from basal ganglia, zona incerta, anterior pretectum and pontine reticular formation) provides temporally-precise and focal inhibition, impacting spike timing. Together, these inhibitory systems allow graded control of thalamic output, enabling thalamocortical operations to dynamically match ongoing behavioral demands. PMID:27589879
Callan, Judith A; Dunbar-Jacob, Jacqueline; Sereika, Susan M; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B; Thase, Michael E
2012-01-01
We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of "Patient Factors" and "Therapy/Task Factors." Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46).
Callan, Judith A.; Dunbar-Jacob, Jacqueline; Sereika, Susan M.; Stone, Clement; Fasiczka, Amy; Jarrett, Robin B.; Thase, Michael E.
2013-01-01
We conducted a two-phase study to develop and evaluate the psychometric properties of an instrument to identify barriers to Cognitive Behavioral Therapy (CBT) homework completion in a depressed sample. In Phase I, we developed an item pool by interviewing 20 depressed patients and 20 CBT therapists. In Phase II, we created and administered a draft instrument to 56 people with depression. Exploratory Factor Analysis revealed a 2-factor oblique solution of “Patient Factors” and “Therapy/Task Factors.” Internal consistency coefficients ranged from .80 to .95. Temporal stability was demonstrated through Pearson correlations of .72 (for the therapist/task subscale) to .95 (for the patient subscale) over periods of time that ranged from 2 days to 3 weeks. The patient subscale was able to satisfactorily classify patients (75 to 79 %) with low and high adherence at both sessions. Specificity was .66 at both time points. Sensitivity was .80 at sessions B and .77 at session C. There were no consistent predictors of assignment compliance when measured by the Assignment Compliance Rating Scale (Primakoff, Epstein, & Covi, 1986). The Rating Scale and subscale scores did, however, correlate significantly with assignment non-compliance (.32 to .46). PMID:24049556
Neuroimaging correlates of parent ratings of working memory in typically developing children
Mahone, E. Mark; Martin, Rebecca; Kates, Wendy R.; Hay, Trisha; Horská, Alena
2009-01-01
The purpose of the present study was to investigate construct validity of parent ratings of working memory in children, using a multi-trait/multi-method design including neuroimaging, rating scales, and performance-based measures. Thirty-five typically developing children completed performance-based tests of working memory and nonexecutive function (EF) skills, received volumetric MRI, and were rated by parents on both EF-specific and broad behavior rating scales. After controlling for total cerebral volume and age, parent ratings of working memory were significantly correlated with frontal gray, but not temporal, parietal, or occipital gray, or any lobar white matter volumes. Performance-based measures of working memory were also moderately correlated with frontal lobe gray matter volume; however, non-EF parent ratings and non-EF performance-based measures were not correlated with frontal lobe volumes. Results provide preliminary support for the convergent and discriminant validity of parent ratings of working memory, and emphasize their utility in exploring brain–behavior relationships in children. Rating scales that directly examine EF skills may potentially have ecological validity, not only for “everyday” function, but also as correlates of brain volume. PMID:19128526
An integrative neuroscience model of "significance" processing.
Williams, Leanne M
2006-03-01
The Gordon [37-40] framework of Integrative Neuroscience is used to develop a continuum model for understanding the central role of motivationally-determined "significance" in organizing human information processing. Significance is defined as the property which gives a stimulus relevance to our core motivation to minimize danger and maximize pleasure. Within this framework, the areas of cognition and emotion, theories of motivational arousal and orienting, and the current understanding of neural systems are brought together. The basis of integration is a temporal continuum in which significance processing extends from the most rapid millisecond time scale of automatic, nonconscious mechanisms to the time scale of seconds, in which memory is shaped, to the controlled and conscious mechanisms unfolding over minutes. Over this continuum, significant stimuli are associated with a spectrum of defensive (or consumptive) behaviors through to volitional regulatory behaviors for danger (versus pleasure) and associated brainstem, limbic, medial forebrain bundle and prefrontal circuits, all of which reflect a balance of excitatory (predominant at rapid time scales) to inhibitory mechanisms. Across the lifespan, the negative and positive outcomes of significance processing, coupled with constitutional and genetic factors, will contribute to plasticity, shaping individual adaptations and maladaptions in the balance of excitatory-inhibitory mechanisms.
NASA Astrophysics Data System (ADS)
Quiroz, M.; Cienfuegos, R.
2017-12-01
At present, there is good knowledge acquired by the scientific community on characterizing the evolution of tsunami energy at ocean and shelf scales. For instance, the investigations of Rabinovich (2013) and Yamazaki (2011), represent some important advances in this subject. In the present paper we rather focus on tsunami energy evolution, and ultimately its decay, in coastal areas because characteristic time scales of this process has implications for early warning, evacuation initiation, and cancelling. We address the tsunami energy evolution analysis at three different spatial scales, a global scale at the ocean basin level, in particular the Pacific Ocean basin, a regional scale comprising processes that occur at the continental shelf level, and finally a local scale comprising coastal areas or bays. These scales were selected following the motivation to understand how the response is associated with tsunami, and how the energy evolves until it is completely dissipated. Through signal processing methods, such as discrete and wavelets analysis, we analyze time series of recent tsunamigenic events in the main Chilean coastal cities. Based on this analysis, we propose a conceptual model based on the influence of geomorphological variables on the evolution and decay of tsunami energy. This model acts as a filter from the seismic source to the observed response in coastal zones. Finally, we hope to conclude with practical tools that will establish patterns of behavior and scaling of energy evolution through interconnections from seismic source variables and the geomorphological component to understand the response and predict behavior for a given site.
Balancing past and present: how experience influences boldness over time in Eurasian perch
Magnhagen, Carin
2017-01-01
Abstract Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels. PMID:29491973
Balancing past and present: how experience influences boldness over time in Eurasian perch.
Hellström, Gustav; Magnhagen, Carin
2017-04-01
Adapting to fluctuating predation conditions is a challenge for prey. By learning through experience, animals may adjust their anti-predator behavior to better reflect current predation risk. Although many studies show experience of predation to alter prey behavior, little is known about how prey rely on such experience over time. By comparing boldness over different temporal scales between individuals of Eurasian perch, either experienced or naïve of predators, we examine how risk is traded based on past and present experience. Differences in predator exposure during the first year of life were found to lead to differences in risk-taking behavior, even after the perch been kept in a predator-free environment for 9 months. However, the response to a potential predator was quickly readjusted after increased experience of current conditions. The results highlight how prey have to balance past experiences of predators against current threat levels.
Simulations of thermodynamics and kinetics on rough energy landscapes with milestoning.
Bello-Rivas, Juan M; Elber, Ron
2016-03-05
We investigated by computational means the kinetics and stationary behavior of stochastic dynamics on an ensemble of rough two-dimensional energy landscapes. There are no obvious separations of temporal scales in these systems, which constitute a simple model for the behavior of glasses and some biomaterials. Even though there are significant computational challenges present in these systems due to the large number of metastable states, the Milestoning method is able to compute their kinetic and thermodynamic properties exactly. We observe two clearly distinguished regimes in the overall kinetics: one in which diffusive behavior dominates and another that follows an Arrhenius law (despite the absence of a dominant barrier). We compare our results with those obtained with an exactly-solvable one-dimensional model, and with the results from the rough one-dimensional energy model introduced by Zwanzig. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.
Allan, Darcey M.; Lonigan, Christopher J.
2014-01-01
Although both the Continuous Performance Test (CPT) and behavior rating scales are used in both practice and research to assess inattentive and hyperactive/impulsive behaviors, the correlations between performance on the CPT and teachers' ratings are typically only small-to-moderate. This study examined trajectories of performance on a low target-frequency visual CPT in a sample of preschool children and how these trajectories were associated with teacher-ratings of problem behaviors (i.e., inattention, hyperactivity/impulsivity [H/I], and oppositional/defiant behavior). Participants included 399 preschool children (Mean age = 56 months; 49.4% female; 73.7% White/Caucasian). An ADHD-rating scale was completed by teachers, and the CPT was completed by the preschoolers. Results showed that children's performance across four temporal blocks on the CPT was not stable across the duration of the task, with error rates generally increasing from initial to later blocks. The predictive relations of teacher-rated problem behaviors to performance trajectories on the CPT were examined using growth curve models. Higher rates of teacher-reported inattention and H/I were uniquely associated with higher rates of initial omission errors and initial commission errors, respectively. Higher rates of teacher-reported overall problem behaviors were associated with increasing rates of omission but not commission errors during the CPT; however, the relation was not specific to one type of problem behavior. The results of this study indicate that the pattern of errors on the CPT in preschool samples is complex and may be determined by multiple behavioral factors. These findings have implications for the interpretation of CPT performance in young children. PMID:25419645
Allan, Darcey M; Lonigan, Christopher J
2015-06-01
Although both the continuous performance test (CPT) and behavior rating scales are used in both practice and research to assess inattentive and hyperactive/impulsive behaviors, the correlations between performance on the CPT and teachers' ratings are typically only small-to-moderate. This study examined trajectories of performance on a low target-frequency visual CPT in a sample of preschool children and how these trajectories were associated with teacher-ratings of problem behaviors (i.e., inattention, hyperactivity/impulsivity [H/I], and oppositional/defiant behavior). Participants included 399 preschool children (mean age = 56 months; 49.4% female; 73.7% White/Caucasian). An attention deficit/hyperactivity disorder (ADHD) rating scale was completed by teachers, and the CPT was completed by the preschoolers. Results showed that children's performance across 4 temporal blocks on the CPT was not stable across the duration of the task, with error rates generally increasing from initial to later blocks. The predictive relations of teacher-rated problem behaviors to performance trajectories on the CPT were examined using growth curve models. Higher rates of teacher-reported inattention and H/I were uniquely associated with higher rates of initial omission errors and initial commission errors, respectively. Higher rates of teacher-reported overall problem behaviors were associated with increasing rates of omission but not commission errors during the CPT; however, the relation was not specific to 1 type of problem behavior. The results of this study indicate that the pattern of errors on the CPT in preschool samples is complex and may be determined by multiple behavioral factors. These findings have implications for the interpretation of CPT performance in young children. (c) 2015 APA, all rights reserved).
Churgin, Matthew A; Jung, Sang-Kyu; Yu, Chih-Chieh; Chen, Xiangmei; Raizen, David M; Fang-Yen, Christopher
2017-01-01
The roundworm C. elegans is a mainstay of aging research due to its short lifespan and easily manipulable genetics. Current, widely used methods for long-term measurement of C. elegans are limited by low throughput and the difficulty of performing longitudinal monitoring of aging phenotypes. Here we describe the WorMotel, a microfabricated device for long-term cultivation and automated longitudinal imaging of large numbers of C. elegans confined to individual wells. Using the WorMotel, we find that short-lived and long-lived strains exhibit patterns of behavioral decline that do not temporally scale between individuals or populations, but rather resemble the shortest and longest lived individuals in a wild type population. We also find that behavioral trajectories of worms subject to oxidative stress resemble trajectories observed during aging. Our method is a powerful and scalable tool for analysis of C. elegans behavior and aging. DOI: http://dx.doi.org/10.7554/eLife.26652.001 PMID:28537553
Toward broadband mechanical spectroscopy.
Hecksher, Tina; Torchinsky, Darius H; Klieber, Christoph; Johnson, Jeremy A; Dyre, Jeppe C; Nelson, Keith A
2017-08-15
Diverse material classes exhibit qualitatively similar behavior when made viscous upon cooling toward the glass transition, suggesting a common theoretical basis. We used seven different measurement methods to determine the mechanical relaxation kinetics of a prototype molecular glass former over a temporal range of 13 decades and over a temperature range spanning liquid to glassy states. The data conform to time-temperature superposition for the main (alpha) process and to a scaling relation of schematic mode-coupling theory. The broadband mechanical measurements demonstrated have fundamental and practical applications in polymer science, geophysics, multifunctional materials, and other areas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
2017-09-27
Demeter-W, an open-access software written in Python, consists of extensible module packages. It is developed with statistical downscaling algorithms, to spatially and temporally downscale water demand data into finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. For better understanding of the driving forces and patterns for global water withdrawal, the researchers is able to utilize Demeter-W to reconstruct the data sets to examine the issues related to water withdrawals at fine spatial and temporal scales.
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity (“residence times”) of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales. PMID:26261985
Capello, Manuela; Robert, Marianne; Soria, Marc; Potin, Gael; Itano, David; Holland, Kim; Deneubourg, Jean-Louis; Dagorn, Laurent
2015-01-01
The rapid expansion of the use of passive acoustic telemetry technologies has facilitated unprecedented opportunities for studying the behavior of marine organisms in their natural environment. This technological advance would greatly benefit from the parallel development of dedicated methodologies accounting for the variety of timescales involved in the remote detection of tagged animals related to instrumental, environmental and behavioral events. In this paper we propose a methodological framework for estimating the site fidelity ("residence times") of acoustic tagged animals at different timescales, based on the survival analysis of continuous residence times recorded at multiple receivers. Our approach is validated through modeling and applied on two distinct datasets obtained from a small coastal pelagic species (bigeye scad, Selar crumenophthalmus) and a large, offshore pelagic species (yellowfin tuna, Thunnus albacares), which show very distinct spatial scales of behavior. The methodological framework proposed herein allows estimating the most appropriate temporal scale for processing passive acoustic telemetry data depending on the scientific question of interest. Our method provides residence times free of the bias inherent to environmental and instrumental noise that can be used to study the small scale behavior of acoustic tagged animals. At larger timescales, it can effectively identify residence times that encompass the diel behavioral excursions of fish out of the acoustic detection range. This study provides a systematic framework for the analysis of passive acoustic telemetry data that can be employed for the comparative study of different species and study sites. The same methodology can be used each time discrete records of animal detections of any nature are employed for estimating the site fidelity of an animal at different timescales.
Large-scale climate variation modifies the winter grouping behavior of endangered Indiana bats
Thogmartin, Wayne E.; McKann, Patrick C.
2014-01-01
Power laws describe the functional relationship between 2 quantities, such as the frequency of a group as the multiplicative power of group size. We examined whether the annual size of well-surveyed wintering populations of endangered Indiana bats (Myotis sodalis) followed a power law, and then leveraged this relationship to predict whether the aggregation of Indiana bats in winter was influenced by global climate processes. We determined that Indiana bat wintering populations were distributed according to a power law (mean scaling coefficient α = −0.44 [95% confidence interval {95% CI} = −0.61, −0.28). The antilog of these annual scaling coefficients ranged between 0.67 and 0.81, coincident with the three-fourths power found in many other biological phenomena. We associated temporal patterns in the annual (1983–2011) scaling coefficient with the North Atlantic Oscillation (NAO) index in August (βNAOAugust = −0.017 [90% CI = −0.032, −0.002]), when Indiana bats are deciding when and where to hibernate. After accounting for the strong effect of philopatry to habitual wintering locations, Indiana bats aggregated in larger wintering populations during periods of severe winter and in smaller populations in milder winters. The association with August values of the NAO indicates that bats anticipate future winter weather conditions when deciding where to roost, a heretofore unrecognized role for prehibernation swarming behavior. Future research is needed to understand whether the three-fourths–scaling patterns we observed are related to scaling in metabolism.
Scale considerations for ecosystem management
Jonathan B. Haufler; Thomas R. Crow; David Wilcove
1999-01-01
One of the difficult challenges facing ecosystem management is the determination of appropriate spatial and temporal scales to use. Scale in spatial sence includes considerations of both the size area or extent of an ecosystem management activity, as well as thedegree of resolution of mapped or measured data. In the temporal sense, scale concerns the duration of both...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra
2015-07-15
Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less
Convective boundary layer heights over mountainous terrain - A review of concepts -
NASA Astrophysics Data System (ADS)
De Wekker, Stephan; Kossmann, Meinolf
2015-12-01
Mountainous terrain exerts an important influence on the Earth's atmosphere and affects atmospheric transport and mixing at a wide range of temporal and spatial scales. The vertical scale of this transport and mixing is determined by the height of the atmospheric boundary layer, which is therefore an important parameter in air pollution studies, weather forecasting, climate modeling, and many other applications. It is recognized that the spatio-temporal structure of the daytime convective boundary layer (CBL) height is strongly modified and more complex in hilly and mountainous terrain compared to flat terrain. While the CBL over flat terrain is mostly dominated by turbulent convection, advection from multi-scale thermally driven flows plays an important role for the CBL evolution over mountainous terrain. However, detailed observations of the CBL structure and understanding of the underlying processes are still limited. Characteristics of CBL heights in mountainous terrain are reviewed for dry, convective conditions. CBLs in valleys and basins, where hazardous accumulation of pollutants is of particular concern, are relatively well-understood compared to CBLs over slopes, ridges, or mountain peaks. Interests in the initiation of shallow and deep convection, and of budgets and long-range transport of air pollutants and trace gases, have triggered some recent studies on terrain induced exchange processes between the CBL and the overlying atmosphere. These studies have helped to gain more insight into CBL structure over complex mountainous terrain, but also show that the universal definition of CBL height over mountains remains an unresolved issue. The review summarizes the progress that has been made in documenting and understanding spatio-temporal behavior of CBL heights in mountainous terrain and concludes with a discussion of open research questions and opportunities for future research.
Siegel, Adam J; Fondrk, M Kim; Amdam, Gro V; Page, Robert E
2013-01-01
Honey bee workers exhibit an age-based division of labor (temporal polyethism, DOL). Younger bees transition through sets of tasks within the nest; older bees forage outside. Components of temporal polyethism remain unrevealed. Here, we investigate the timing and pattern of pre-foraging behavior in distinct strains of bees to (1) determine if a general pattern of temporal DOL exists in honey bees, (2) to demonstrate a direct genetic impact on temporal pacing, and (3) to further elucidate the mechanisms controlling foraging initiation. Honey bees selected for differences in stored pollen demonstrate consistent differences in foraging initiation age. Those selected for increased pollen storage (high pollen hoarding strain, HSBs) initiate foraging earlier in life than those selected for decreased pollen storage (low pollen hoarding strain, LSBs). We found that HSBs both initiate and terminate individual pre-foraging tasks earlier than LSBs when housed in a common hive environment. Unselected commercial bees (wild type) generally demonstrated intermediate behavioral timing. There were few differences between genotypes for the proportion of pre-foraging effort dedicated to individual tasks, though total pre-foraging effort differences differed dramatically. This demonstrates that behavioral pacing can be accelerated or slowed, but the pattern of behavior is not fundamentally altered, suggesting a general pattern of temporal behavior in honey bees. This also demonstrates direct genetic control of temporal pacing. Finally, our results suggest that earlier HSB protein (pollen) consumption termination compared to LSBs may contribute to an earlier decline in hemolymph vitellogenin protein titers, which would explain their earlier onset of foraging.
Interictal Epileptiform Discharges Impair Word Recall in Multiple Brain Areas
Horak, Peter C.; Meisenhelter, Stephen; Song, Yinchen; Testorf, Markus E.; Kahana, Michael J.; Viles, Weston D.; Bujarski, Krzysztof A.; Connolly, Andrew C.; Robbins, Ashlee A.; Sperling, Michael R.; Sharan, Ashwini D.; Worrell, Gregory A.; Miller, Laura R.; Gross, Robert E.; Davis, Kathryn A.; Roberts, David W.; Lega, Bradley; Sheth, Sameer A.; Zaghloul, Kareem A.; Stein, Joel M.; Das, Sandhitsu R.; Rizzuto, Daniel S.; Jobst, Barbara C.
2016-01-01
Summary Objectives Interictal epileptiform discharges (IEDs) have been linked to memory impairment, but the spatial and temporal dynamics of this relationship remain elusive. In the present study, we aim to systematically characterize the brain areas and times at which IEDs affect memory. Methods Eighty epilepsy patients participated in a delayed free recall task while undergoing intracranial EEG monitoring. We analyzed the locations and timing of IEDs relative to the behavioral data in order to measure their effects on memory. Results Overall IED rates did not correlate with task performance across subjects (r = 0.03, p = 0.8). However, at a finer temporal scale, within-subject memory was negatively affected by IEDs during the encoding and recall periods of the task but not during the rest and distractor periods (p < 0.01, p < 0.001, p = 0.3, and p = 0.8 respectively). The effects of IEDs during encoding and recall were stronger in the left hemisphere than in the right (p < 0.05). Out of six brain areas analyzed, IEDs in the inferior temporal, medial temporal, and parietal areas significantly affected memory (false discovery rate < 0.05). Significance These findings reveal a network of brain areas sensitive to IEDs with key nodes in temporal as well as parietal lobes. They also demonstrate the time-dependent effects of IEDs in this network on memory. PMID:27935031
Quantifying uncertainty and computational complexity for pore-scale simulations
NASA Astrophysics Data System (ADS)
Chen, C.; Yuan, Z.; Wang, P.; Yang, X.; Zhenyan, L.
2016-12-01
Pore-scale simulation is an essential tool to understand the complex physical process in many environmental problems, from multi-phase flow in the subsurface to fuel cells. However, in practice, factors such as sample heterogeneity, data sparsity and in general, our insufficient knowledge of the underlying process, render many simulation parameters and hence the prediction results uncertain. Meanwhile, most pore-scale simulations (in particular, direct numerical simulation) incur high computational cost due to finely-resolved spatio-temporal scales, which further limits our data/samples collection. To address those challenges, we propose a novel framework based on the general polynomial chaos (gPC) and build a surrogate model representing the essential features of the underlying system. To be specific, we apply the novel framework to analyze the uncertainties of the system behavior based on a series of pore-scale numerical experiments, such as flow and reactive transport in 2D heterogeneous porous media and 3D packed beds. Comparing with recent pore-scale uncertainty quantification studies using Monte Carlo techniques, our new framework requires fewer number of realizations and hence considerably reduce the overall computational cost, while maintaining the desired accuracy.
Regional climates in the GISS global circulation model - Synoptic-scale circulation
NASA Technical Reports Server (NTRS)
Hewitson, B.; Crane, R. G.
1992-01-01
A major weakness of current general circulation models (GCMs) is their perceived inability to predict reliably the regional consequences of a global-scale change, and it is these regional-scale predictions that are necessary for studies of human-environmental response. For large areas of the extratropics, the local climate is controlled by the synoptic-scale atmospheric circulation, and it is the purpose of this paper to evaluate the synoptic-scale circulation of the Goddard Institute for Space Studies (GISS) GCM. A methodology for validating the daily synoptic circulation using Principal Component Analysis is described, and the methodology is then applied to the GCM simulation of sea level pressure over the continental United States (excluding Alaska). The analysis demonstrates that the GISS 4 x 5 deg GCM Model II effectively simulates the synoptic-scale atmospheric circulation over the United States. The modes of variance describing the atmospheric circulation of the model are comparable to those found in the observed data, and these modes explain similar amounts of variance in their respective datasets. The temporal behavior of these circulation modes in the synoptic time frame are also comparable.
Cortical Correlates of Binaural Temporal Processing Deficits in Older Adults.
Eddins, Ann Clock; Eddins, David A
This study was designed to evaluate binaural temporal processing in young and older adults using a binaural masking level difference (BMLD) paradigm. Using behavioral and electrophysiological measures within the same listeners, a series of stimulus manipulations was used to evaluate the relative contribution of binaural temporal fine-structure and temporal envelope cues. We evaluated the hypotheses that age-related declines in the BMLD task would be more strongly associated with temporal fine-structure than envelope cues and that age-related declines in behavioral measures would be correlated with cortical auditory evoked potential (CAEP) measures. Thirty adults participated in the study, including 10 young normal-hearing, 10 older normal-hearing, and 10 older hearing-impaired adults with bilaterally symmetric, mild-to-moderate sensorineural hearing loss. Behavioral and CAEP thresholds were measured for diotic (So) and dichotic (Sπ) tonal signals presented in continuous diotic (No) narrowband noise (50-Hz wide) maskers. Temporal envelope cues were manipulated by using two different narrowband maskers; Gaussian noise (GN) with robust envelope fluctuations and low-noise noise (LNN) with minimal envelope fluctuations. The potential to use temporal fine-structure cues was controlled by varying the signal frequency (500 or 4000 Hz), thereby relying on the natural decline in phase-locking with increasing frequency. Behavioral and CAEP thresholds were similar across groups for diotic conditions, while the masking release in dichotic conditions was larger for younger than for older participants. Across all participants, BMLDs were larger for GN than LNN and for 500-Hz than for 4000-Hz conditions, where envelope and fine-structure cues were most salient, respectively. Specific age-related differences were demonstrated for 500-Hz dichotic conditions in GN and LNN, reflecting reduced binaural temporal fine-structure coding. No significant age effects were observed for 4000-Hz dichotic conditions, consistent with similar use of binaural temporal envelope cues across age in these conditions. For all groups, thresholds and derived BMLD values obtained using the behavioral and CAEP methods were strongly correlated, supporting the notion that CAEP measures may be useful as an objective index of age-related changes in binaural temporal processing. These results demonstrate an age-related decline in the processing of binaural temporal fine-structure cues with preserved temporal envelope coding that was similar with and without mild-to-moderate peripheral hearing loss. Such age-related changes can be reliably indexed by both behavioral and CAEP measures in young and older adults.
Casarrubea, Maurizio; Faulisi, Fabiana; Magnusson, Magnus S; Crescimanno, Giuseppe
2016-08-01
The largest amount of researches on the hot-plate test was carried out using quantitative assessments. However, the evaluation of the relationships among the different elements that compose the behavioral response to pain requires different approaches. Although previous studies have provided clear information on the behavioral structure of the response, no data are available on its temporal structure. The objective of this study was to investigate the temporal structure of the behavioral response to pain in Wistar rat tested in hot-plate and how this structure was influenced by morphine-induced analgesia. The behavior of four groups of subjects tested in hot-plate, one administered saline and three with different doses (3, 6, 12 mg/kg) of morphine IP, was analyzed by means of quantitative and t-pattern analyses. The latter is a multivariate technique able to detect the existence of statistically significant temporal relationships among the behavioral events in time. A clear-cut influence of morphine on quantitative parameters of the response to the noxious stimulation was observed. T-pattern analysis evidenced profound structural changes of behavior. Twenty-four different t-patterns were identified following saline, whereas a dose-dependent reduction was observed following morphine. Such a reduction was accompanied by a decrease of the total amount of t-patterns detected. Morphine, by reducing the effects of the noxious stimulation, orients animal behavior prevalently toward exploratory t-patterns. In addition, it is suggested that the temporal structure of the response is very quickly organized and adapted to environmental noxious cues.
NASA Astrophysics Data System (ADS)
Girard, L.; Weiss, J.; Molines, J. M.; Barnier, B.; Bouillon, S.
2009-08-01
Sea ice drift and deformation from models are evaluated on the basis of statistical and scaling properties. These properties are derived from two observation data sets: the RADARSAT Geophysical Processor System (RGPS) and buoy trajectories from the International Arctic Buoy Program (IABP). Two simulations obtained with the Louvain-la-Neuve Ice Model (LIM) coupled to a high-resolution ocean model and a simulation obtained with the Los Alamos Sea Ice Model (CICE) were analyzed. Model ice drift compares well with observations in terms of large-scale velocity field and distributions of velocity fluctuations although a significant bias on the mean ice speed is noted. On the other hand, the statistical properties of ice deformation are not well simulated by the models: (1) The distributions of strain rates are incorrect: RGPS distributions of strain rates are power law tailed, i.e., exhibit "wild randomness," whereas models distributions remain in the Gaussian attraction basin, i.e., exhibit "mild randomness." (2) The models are unable to reproduce the spatial and temporal correlations of the deformation fields: In the observations, ice deformation follows spatial and temporal scaling laws that express the heterogeneity and the intermittency of deformation. These relations do not appear in simulated ice deformation. Mean deformation in models is almost scale independent. The statistical properties of ice deformation are a signature of the ice mechanical behavior. The present work therefore suggests that the mechanical framework currently used by models is inappropriate. A different modeling framework based on elastic interactions could improve the representation of the statistical and scaling properties of ice deformation.
Brain Regions Related to Impulsivity Mediate the Effects of Early Adversity on Antisocial Behavior.
Mackey, Scott; Chaarani, Bader; Kan, Kees-Jan; Spechler, Philip A; Orr, Catherine; Banaschewski, Tobias; Barker, Gareth; Bokde, Arun L W; Bromberg, Uli; Büchel, Christian; Cattrell, Anna; Conrod, Patricia J; Desrivières, Sylvane; Flor, Herta; Frouin, Vincent; Gallinat, Jürgen; Gowland, Penny; Heinz, Andreas; Ittermann, Bernd; Paillère Martinot, Marie-Laure; Artiges, Eric; Nees, Frauke; Papadopoulos-Orfanos, Dimitri; Poustka, Luise; Smolka, Michael N; Jurk, Sarah; Walter, Henrik; Whelan, Robert; Schumann, Gunter; Althoff, Robert R; Garavan, Hugh
2017-08-15
Individual differences in impulsivity and early adversity are known to be strong predictors of adolescent antisocial behavior. However, the neurobiological bases of impulsivity and their relation to antisocial behavior and adversity are poorly understood. Impulsivity was estimated with a temporal discounting task. Voxel-based morphometry was used to determine the brain structural correlates of temporal discounting in a large cohort (n = 1830) of 14- to 15-year-old children. Mediation analysis was then used to determine whether the volumes of brain regions associated with temporal discounting mediate the relation between adverse life events (e.g., family conflict, serious accidents) and antisocial behaviors (e.g., precocious sexual activity, bullying, illicit substance use). Greater temporal discounting (more impulsivity) was associated with 1) lower volume in frontomedial cortex and bilateral insula and 2) greater volume in a subcortical region encompassing the ventral striatum, hypothalamus and anterior thalamus. The volume ratio between these cortical and subcortical regions was found to partially mediate the relation between adverse life events and antisocial behavior. Temporal discounting is related to regions of the brain involved in reward processing and interoception. The results support a developmental imbalance model of impulsivity and are consistent with the idea that negative environmental factors can alter the developing brain in ways that promote antisocial behavior. Copyright © 2016 Society of Biological Psychiatry. Published by Elsevier Inc. All rights reserved.
Population dynamics in an intermittent refuge
NASA Astrophysics Data System (ADS)
Colombo, E. H.; Anteneodo, C.
2016-10-01
Population dynamics is constrained by the environment, which needs to obey certain conditions to support population growth. We consider a standard model for the evolution of a single species population density, which includes reproduction, competition for resources, and spatial spreading, while subject to an external harmful effect. The habitat is spatially heterogeneous, there existing a refuge where the population can be protected. Temporal variability is introduced by the intermittent character of the refuge. This scenario can apply to a wide range of situations, from a laboratory setting where bacteria can be protected by a blinking mask from ultraviolet radiation, to large-scale ecosystems, like a marine reserve where there can be seasonal fishing prohibitions. Using analytical and numerical tools, we investigate the asymptotic behavior of the total population as a function of the size and characteristic time scales of the refuge. We obtain expressions for the minimal size required for population survival, in the slow and fast time scale limits.
Growns, Ivor; Astles, Karen; Gehrke, Peter
2006-03-01
We studied the multiscale (sites, river reaches and rivers) and short-term temporal (monthly) variability in a freshwater fish assemblage. We found that small-scale spatial variation and short-term temporal variability significantly influenced fish community structure in the Macquarie and Namoi Rivers. However, larger scale spatial differences between rivers were the largest source of variation in the data. The interaction between temporal change and spatial variation in fish community structure, whilst statistically significant, was smaller than the variation between rivers. This suggests that although the fish communities within each river changed between sampling occasions, the underlying differences between rivers were maintained. In contrast, the strongest interaction between temporal and spatial effects occurred at the smallest spatial scale, at the level of individual sites. This means whilst the composition of the fish assemblage at a given site may fluctuate, the magnitude of these changes is unlikely to affect larger scale differences between reaches within rivers or between rivers. These results suggest that sampling at any time within a single season will be sufficient to show spatial differences that occur over large spatial scales, such as comparisons between rivers or between biogeographical regions.
Sensitivity of peak flow to the change of rainfall temporal pattern due to warmer climate
NASA Astrophysics Data System (ADS)
Fadhel, Sherien; Rico-Ramirez, Miguel Angel; Han, Dawei
2018-05-01
The widely used design storms in urban drainage networks has different drawbacks. One of them is that the shape of the rainfall temporal pattern is fixed regardless of climate change. However, previous studies have shown that the temporal pattern may scale with temperature due to climate change, which consequently affects peak flow. Thus, in addition to the scaling of the rainfall volume, the scaling relationship for the rainfall temporal pattern with temperature needs to be investigated by deriving the scaling values for each fraction within storm events, which is lacking in many parts of the world including the UK. Therefore, this study analysed rainfall data from 28 gauges close to the study area with a 15-min resolution as well as the daily temperature data. It was found that, at warmer temperatures, the rainfall temporal pattern becomes less uniform, with more intensive peak rainfall during higher intensive times and weaker rainfall during less intensive times. This is the case for storms with and without seasonal separations. In addition, the scaling values for both the rainfall volume and the rainfall fractions (i.e. each segment of rainfall temporal pattern) for the summer season were found to be higher than the corresponding results for the winter season. Applying the derived scaling values for the temporal pattern of the summer season in a hydrodynamic sewer network model produced high percentage change of peak flow between the current and future climate. This study on the scaling of rainfall fractions is the first in the UK, and its findings are of importance to modellers and designers of sewer systems because it can provide more robust scenarios for flooding mitigation in urban areas.
NASA Astrophysics Data System (ADS)
Alday, Josu G.; Martínez de Aragón, Juan; de-Miguel, Sergio; Bonet, José Antonio
2017-04-01
Mushrooms are important non-wood-forest-products in many Mediterranean ecosystems, being highly vulnerable to climate change. However, the ecological scales of variation of mushroom productivity and diversity, and climate dependence has been usually overlooked due to a lack of available data. We determined the spatio-temporal variability of epigeous sporocarps and the climatic factors driving their fruiting to plan future sustainable management of wild mushrooms production. We collected fruiting bodies in Pinus sylvestris stands along an elevation gradient for 8 consecutive years. Overall, sporocarp biomass was mainly dependent on inter-annual variations, whereas richness was more spatial-scale dependent. Elevation was not significant, but there were clear elevational differences in biomass and richness patterns between ectomycorrhizal and saprotrophic guilds. The main driver of variation was late-summer-early-autumn precipitation. Thus, different scale processes (inter-annual vs. spatial-scale) drive sporocarp biomass and diversity patterns; temporal effects for biomass and ectomycorrhizal fungi vs. spatial scale for diversity and saprotrophic fungi. The significant role of precipitation across fungal guilds and spatio-temporal scales indicates that it is a limiting resource controlling sporocarp production and diversity in Mediterranean regions. The high spatial and temporal variability of mushrooms emphasize the need for long-term datasets of multiple spatial points to effectively characterize fungal fruiting patterns.
Brain Regions Influencing Implicit Violent Attitudes: A Lesion-Mapping Study.
Cristofori, Irene; Zhong, Wanting; Mandoske, Valerie; Chau, Aileen; Krueger, Frank; Strenziok, Maren; Grafman, Jordan
2016-03-02
Increased aggression is common after traumatic brain injuries and may persist after cognitive recovery. Maladaptive aggression and violence are associated with dysfunction in the prefrontal and temporal cortex, but such dysfunctional behaviors are typically measured by explicit scales and history. However, it is well known that answers on explicit scales on sensitive topics--such as aggressive thoughts and behaviors--may not reveal true tendencies. Here, we investigated the neural basis of implicit attitudes toward aggression in humans using a modified version of the Implicit Association Task (IAT) with a unique sample of 112 Vietnam War veterans who suffered penetrating brain injury and 33 healthy controls who also served in combat in Vietnam but had no history of brain injury. We hypothesized that dorsolateral prefrontal cortex (dlPFC) lesions, due to the crucial role of the dlPFC in response inhibition, could influence performance on the IAT. In addition, we investigated the causal contribution of specific brain areas to implicit attitudes toward violence. We found a more positive implicit attitude toward aggression among individuals with lesions to the dlPFC and inferior posterior temporal cortex (ipTC). Furthermore, executive functions were critically involved in regulating implicit attitudes toward violence and aggression. Our findings complement existing evidence on the neural basis of explicit aggression centered on the ventromedial prefrontal cortex. These findings highlight that dlPFC and ipTC play a causal role in modulating implicit attitudes about violence and are crucially involved in the pathogenesis of aggressive behavior. Maladaptive aggression and violence can lead to interpersonal conflict and criminal behavior. Surprisingly little is known about implicit attitudes toward violence and aggression. Here, we used a range of techniques, including voxel-based lesion-symptom mapping, to examine the causal role of brain structures underpinning implicit attitudes toward aggression in a unique sample of combat veterans with traumatic brain injury. We found that damage to the dorsolateral prefrontal cortex (dlPFC) led to a more positive implicit attitude toward violence that under most normal situations would be considered inappropriate. These results suggest that treatments aimed at increasing cognitive control using cognitive behavioral therapies dependent on the intact dlPFC could treat aggressive and violent behavior. Copyright © 2016 the authors 0270-6474/16/362757-12$15.00/0.
NASA Astrophysics Data System (ADS)
Lutoff, C.; Anquetin, S.; Ruin, I.; Chassande, M.
2009-09-01
Flash floods are complex phenomena. The atmospheric and hydrological generating mechanisms of the phenomenon are not completely understood, leading to highly uncertain forecasts of and warnings for these events. On the other hand warning and crisis response to such violent and fast events is not a straightforward process. In both the social and physical aspect of the problem, space and time scales involved either in hydrometeorology, human behavior and social organizations sciences are of crucial importance. Forecasters, emergency managers, mayors, school superintendents, school transportation managers, first responders and road users, all have different time and space frameworks that they use to take emergency decision for themselves, their group or community. The integration of space and time scales of both the phenomenon and human activities is therefore a necessity to better deal with questions as forecasting lead-time and warning efficiency. The aim of this oral presentation is to focus on the spatio-temporal aspects of flash floods to improve our understanding of the event dynamic compared to the different scales of the social response. The authors propose a framework of analysis to compare the temporality of: i) the forecasts (from Méteo-France and from EFAS (Thielen et al., 2008)), ii) the meteorological and hydrological parameters, iii) the social response at different scales. The September 2005 event is particularly interesting for such analysis. The rainfall episode lasted nearly a week with two distinct phases separated by low intensity precipitations. Therefore the Méteo-France vigilance bulletin where somehow disconnected from the local flood’s impacts. Our analysis focuses on the timings of different types of local response, including the delicate issue of school transportation, in regard to the forecasts and the actual dynamic of the event.
Statistical physics approach to earthquake occurrence and forecasting
NASA Astrophysics Data System (ADS)
de Arcangelis, Lucilla; Godano, Cataldo; Grasso, Jean Robert; Lippiello, Eugenio
2016-04-01
There is striking evidence that the dynamics of the Earth crust is controlled by a wide variety of mutually dependent mechanisms acting at different spatial and temporal scales. The interplay of these mechanisms produces instabilities in the stress field, leading to abrupt energy releases, i.e., earthquakes. As a consequence, the evolution towards instability before a single event is very difficult to monitor. On the other hand, collective behavior in stress transfer and relaxation within the Earth crust leads to emergent properties described by stable phenomenological laws for a population of many earthquakes in size, time and space domains. This observation has stimulated a statistical mechanics approach to earthquake occurrence, applying ideas and methods as scaling laws, universality, fractal dimension, renormalization group, to characterize the physics of earthquakes. In this review we first present a description of the phenomenological laws of earthquake occurrence which represent the frame of reference for a variety of statistical mechanical models, ranging from the spring-block to more complex fault models. Next, we discuss the problem of seismic forecasting in the general framework of stochastic processes, where seismic occurrence can be described as a branching process implementing space-time-energy correlations between earthquakes. In this context we show how correlations originate from dynamical scaling relations between time and energy, able to account for universality and provide a unifying description for the phenomenological power laws. Then we discuss how branching models can be implemented to forecast the temporal evolution of the earthquake occurrence probability and allow to discriminate among different physical mechanisms responsible for earthquake triggering. In particular, the forecasting problem will be presented in a rigorous mathematical framework, discussing the relevance of the processes acting at different temporal scales for different levels of prediction. In this review we also briefly discuss how the statistical mechanics approach can be applied to non-tectonic earthquakes and to other natural stochastic processes, such as volcanic eruptions and solar flares.
Dynamic Behavior of Sand: Annual Report FY 11
DOE Office of Scientific and Technical Information (OSTI.GOV)
Antoun, T; Herbold, E; Johnson, S
2012-03-15
Currently, design of earth-penetrating munitions relies heavily on empirical relationships to estimate behavior, making it difficult to design novel munitions or address novel target situations without expensive and time-consuming full-scale testing with relevant system and target characteristics. Enhancing design through numerical studies and modeling could help reduce the extent and duration of full-scale testing if the models have enough fidelity to capture all of the relevant parameters. This can be separated into three distinct problems: that of the penetrator structural and component response, that of the target response, and that of the coupling between the two. This project focuses onmore » enhancing understanding of the target response, specifically granular geomaterials, where the temporal and spatial multi-scale nature of the material controls its response. As part of the overarching goal of developing computational capabilities to predict the performance of conventional earth-penetrating weapons, this project focuses specifically on developing new models and numerical capabilities for modeling sand response in ALE3D. There is general recognition that granular materials behave in a manner that defies conventional continuum approaches which rely on response locality and which degrade in the presence of strong response nonlinearities, localization, and phase gradients. There are many numerical tools available to address parts of the problem. However, to enhance modeling capability, this project is pursuing a bottom-up approach of building constitutive models from higher fidelity, smaller spatial scale simulations (rather than from macro-scale observations of physical behavior as is traditionally employed) that are being augmented to address the unique challenges of mesoscale modeling of dynamically loaded granular materials. Through understanding response and sensitivity at the grain-scale, it is expected that better reduced order representations of response can be formulated at the continuum scale as illustrated in Figure 1 and Figure 2. The final result of this project is to implement such reduced order models in the ALE3D material library for general use.« less
Papachristou, Efstathios; Ormel, Johan; Oldehinkel, Albertine J.; Kyriakopoulos, Marinos; Reinares, María; Reichenberg, Abraham; Frangou, Sophia
2013-01-01
Context Early identification of Bipolar Disorder (BD) remains poor despite the high levels of disability associated with the disorder. Objective We developed and evaluated a new DSM orientated scale for the identification of young people at risk for BD based on the Child Behavior Checklist (CBCL) and compared its performance against the CBCL-Pediatric Bipolar Disorder (CBCL-PBD) and the CBCL-Externalizing Scale, the two most widely used scales. Methods The new scale, CBCL-Mania Scale (CBCL-MS), comprises 19 CBCL items that directly correspond to operational criteria for mania. We tested the reliability, longitudinal stability and diagnostic accuracy of the CBCL-MS on data from the TRacking Adolescents' Individual Lives Survey (TRAILS), a prospective epidemiological cohort study of 2230 Dutch youths assessed with the CBCL at ages 11, 13 and 16. At age 19 lifetime psychiatric diagnoses were ascertained with the Composite International Diagnostic Interview. We compared the predictive ability of the CBCL-MS against the CBCL-Externalising Scale and the CBCL-PBD in the TRAILS sample. Results The CBCL-MS had high internal consistency and satisfactory accuracy (area under the curve = 0.64) in this general population sample. Principal Component Analyses, followed by parallel analyses and confirmatory factor analyses, identified four factors corresponding to distractibility/disinhibition, psychosis, increased libido and disrupted sleep. This factor structure remained stable across all assessment ages. Logistic regression analyses showed that the CBCL-MS had significantly higher predictive ability than both the other scales. Conclusions Our data demonstrate that the CBCL-MS is a promising screening instrument for BD. The factor structure of the CBCL-MS showed remarkable temporal stability between late childhood and early adulthood suggesting that it maps on to meaningful developmental dimensions of liability to BD. PMID:23967059
Spotswood, Erica N.; Bartolome, James W.; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery. PMID:26222069
Spotswood, Erica N; Bartolome, James W; Allen-Diaz, Barbara
2015-01-01
Community response to external drivers such climate and disturbance can lead to fluctuations in community composition, or to directional change. Temporal dynamics can be influenced by a combination of drivers operating at multiple spatial scales, including external landscape scale drivers, local abiotic conditions, and local species pools. We hypothesized that spatial variation in these factors can create heterogeneity in temporal dynamics within landscapes. We used understory plant species composition from an 11 year dataset from a California oak woodland to compare plots where disturbance was experimentally manipulated with the removal of livestock grazing and a prescribed burn. We quantified three properties of temporal variation: compositional change (reflecting the appearance and disappearance of species), temporal fluctuation, and directional change. Directional change was related most strongly to disturbance type, and was highest at plots where grazing was removed during the study. Temporal fluctuations, compositional change, and directional change were all related to intrinsic abiotic factors, suggesting that some locations are more responsive to external drivers than others. Temporal fluctuations and compositional change were linked to local functional composition, indicating that environmental filters can create subsets of the local species pool that do not respond in the same way to external drivers. Temporal dynamics are often assumed to be relatively static at the landscape scale, provided disturbance and climate are continuous. This study shows that local and landscape scale factors jointly influence temporal dynamics creating hotspots that are particularly responsive to climate and disturbance. Thus, adequate predictions of response to disturbance or to changing climate will only be achieved by considering how factors at multiple spatial scales influence community resilience and recovery.
Intermediate scattering function of an anisotropic active Brownian particle
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-01-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations. PMID:27830719
Intermediate scattering function of an anisotropic active Brownian particle.
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-10
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Intermediate scattering function of an anisotropic active Brownian particle
NASA Astrophysics Data System (ADS)
Kurzthaler, Christina; Leitmann, Sebastian; Franosch, Thomas
2016-10-01
Various challenges are faced when animalcules such as bacteria, protozoa, algae, or sperms move autonomously in aqueous media at low Reynolds number. These active agents are subject to strong stochastic fluctuations, that compete with the directed motion. So far most studies consider the lowest order moments of the displacements only, while more general spatio-temporal information on the stochastic motion is provided in scattering experiments. Here we derive analytically exact expressions for the directly measurable intermediate scattering function for a mesoscopic model of a single, anisotropic active Brownian particle in three dimensions. The mean-square displacement and the non-Gaussian parameter of the stochastic process are obtained as derivatives of the intermediate scattering function. These display different temporal regimes dominated by effective diffusion and directed motion due to the interplay of translational and rotational diffusion which is rationalized within the theory. The most prominent feature of the intermediate scattering function is an oscillatory behavior at intermediate wavenumbers reflecting the persistent swimming motion, whereas at small length scales bare translational and at large length scales an enhanced effective diffusion emerges. We anticipate that our characterization of the motion of active agents will serve as a reference for more realistic models and experimental observations.
Hidden scaling patterns and universality in written communication
NASA Astrophysics Data System (ADS)
Formentin, M.; Lovison, A.; Maritan, A.; Zanzotto, G.
2014-07-01
The temporal statistics exhibited by written correspondence appear to be media dependent, with features which have so far proven difficult to characterize. We explain the origin of these difficulties by disentangling the role of spontaneous activity from decision-based prioritizing processes in human dynamics, clocking all waiting times through each agent's "proper time" measured by activity. This unveils the same fundamental patterns in written communication across all media (letters, email, sms), with response times displaying truncated power-law behavior and average exponents near -3/2. When standard time is used, the response time probabilities are theoretically predicted to exhibit a bimodal character, which is empirically borne out by our newly collected years-long data on email. These perspectives on the temporal dynamics of human correspondence should aid in the analysis of interaction phenomena in general, including resource management, optimal pricing and routing, information sharing, and emergency handling.
Bethel, EW; Bauer, A; Abbasi, H; ...
2016-06-10
The considerable interest in the high performance computing (HPC) community regarding analyzing and visualization data without first writing to disk, i.e., in situ processing, is due to several factors. First is an I/O cost savings, where data is analyzed /visualized while being generated, without first storing to a filesystem. Second is the potential for increased accuracy, where fine temporal sampling of transient analysis might expose some complex behavior missed in coarse temporal sampling. Third is the ability to use all available resources, CPU’s and accelerators, in the computation of analysis products. This STAR paper brings together researchers, developers and practitionersmore » using in situ methods in extreme-scale HPC with the goal to present existing methods, infrastructures, and a range of computational science and engineering applications using in situ analysis and visualization.« less
Emerging Technologies for Assessing Physical Activity Behaviors in Space and Time
Hurvitz, Philip M.; Moudon, Anne Vernez; Kang, Bumjoon; Saelens, Brian E.; Duncan, Glen E.
2014-01-01
Precise measurement of physical activity is important for health research, providing a better understanding of activity location, type, duration, and intensity. This article describes a novel suite of tools to measure and analyze physical activity behaviors in spatial epidemiology research. We use individual-level, high-resolution, objective data collected in a space-time framework to investigate built and social environment influences on activity. First, we collect data with accelerometers, global positioning system units, and smartphone-based digital travel and photo diaries to overcome many limitations inherent in self-reported data. Behaviors are measured continuously over the full spectrum of environmental exposures in daily life, instead of focusing exclusively on the home neighborhood. Second, data streams are integrated using common timestamps into a single data structure, the “LifeLog.” A graphic interface tool, “LifeLog View,” enables simultaneous visualization of all LifeLog data streams. Finally, we use geographic information system SmartMap rasters to measure spatially continuous environmental variables to capture exposures at the same spatial and temporal scale as in the LifeLog. These technologies enable precise measurement of behaviors in their spatial and temporal settings but also generate very large datasets; we discuss current limitations and promising methods for processing and analyzing such large datasets. Finally, we provide applications of these methods in spatially oriented research, including a natural experiment to evaluate the effects of new transportation infrastructure on activity levels, and a study of neighborhood environmental effects on activity using twins as quasi-causal controls to overcome self-selection and reverse causation problems. In summary, the integrative characteristics of large datasets contained in LifeLogs and SmartMaps hold great promise for advancing spatial epidemiologic research to promote healthy behaviors. PMID:24479113
Local orientational mobility in regular hyperbranched polymers.
Dolgushev, Maxim; Markelov, Denis A; Fürstenberg, Florian; Guérin, Thomas
2016-07-01
We study the dynamics of local bond orientation in regular hyperbranched polymers modeled by Vicsek fractals. The local dynamics is investigated through the temporal autocorrelation functions of single bonds and the corresponding relaxation forms of the complex dielectric susceptibility. We show that the dynamic behavior of single segments depends on their remoteness from the periphery rather than on the size of the whole macromolecule. Remarkably, the dynamics of the core segments (which are most remote from the periphery) shows a scaling behavior that differs from the dynamics obtained after structural average. We analyze the most relevant processes of single segment motion and provide an analytic approximation for the corresponding relaxation times. Furthermore, we describe an iterative method to calculate the orientational dynamics in the case of very large macromolecular sizes.
Nonlinear dynamics of the magnetosphere and space weather
NASA Technical Reports Server (NTRS)
Sharma, A. Surjalal
1996-01-01
The solar wind-magnetosphere system exhibits coherence on the global scale and such behavior can arise from nonlinearity on the dynamics. The observational time series data were used together with phase space reconstruction techniques to analyze the magnetospheric dynamics. Analysis of the solar wind, auroral electrojet and Dst indices showed low dimensionality of the dynamics and accurate prediction can be made with an input/output model. The predictability of the magnetosphere in spite of the apparent complexity arises from its dynamical synchronism with the solar wind. The electrodynamic coupling between different regions of the magnetosphere yields its coherent, low dimensional behavior. The data from multiple satellites and ground stations can be used to develop a spatio-temporal model that identifies the coupling between different regions. These nonlinear dynamical models provide space weather forecasting capabilities.
Physical Processes and Real-Time Chemical Measurement of the Insect Olfactory Environment
Abrell, Leif; Hildebrand, John G.
2009-01-01
Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems. PMID:18548311
Spatial/Temporal Variations of Crime: A Routine Activity Theory Perspective.
de Melo, Silas Nogueira; Pereira, Débora V S; Andresen, Martin A; Matias, Lindon Fonseca
2018-05-01
Temporal and spatial patterns of crime in Campinas, Brazil, are analyzed considering the relevance of routine activity theory in a Latin American context. We use geo-referenced criminal event data, 2010-2013, analyzing spatial patterns using census tracts and temporal patterns considering seasons, months, days, and hours. Our analyses include difference in means tests, count-based regression models, and Kulldorff's scan test. We find that crime in Campinas, Brazil, exhibits both temporal and spatial-temporal patterns. However, the presence of these patterns at the different temporal scales varies by crime type. Specifically, not all crime types have statistically significant temporal patterns at all scales of analysis. As such, routine activity theory works well to explain temporal and spatial-temporal patterns of crime in Campinas, Brazil. However, local knowledge of Brazilian culture is necessary for understanding a portion of these crime patterns.
Temporal self-regulation theory: a neurobiologically informed model for physical activity behavior
Hall, Peter A.; Fong, Geoffrey T.
2015-01-01
Dominant explanatory models for physical activity behavior are limited by the exclusion of several important components, including temporal dynamics, ecological forces, and neurobiological factors. The latter may be a critical omission, given the relevance of several aspects of cognitive function for the self-regulatory processes that are likely required for consistent implementation of physical activity behavior in everyday life. This narrative review introduces temporal self-regulation theory (TST; Hall and Fong, 2007, 2013) as a new explanatory model for physical activity behavior. Important features of the model include consideration of the default status of the physical activity behavior, as well as the disproportionate influence of temporally proximal behavioral contingencies. Most importantly, the TST model proposes positive feedback loops linking executive function (EF) and the performance of physical activity behavior. Specifically, those with relatively stronger executive control (and optimized brain structures supporting it, such as the dorsolateral prefrontal cortex (PFC)) are able to implement physical activity with more consistency than others, which in turn serves to strengthen the executive control network itself. The TST model has the potential to explain everyday variants of incidental physical activity, sport-related excellence via capacity for deliberate practice, and variability in the propensity to schedule and implement exercise routines. PMID:25859196
Double dissociation of social functioning in frontotemporal dementia
Rankin, Katherine P.; Kramer, Joel H.; Mychack, Paula; Miller, Bruce L.
2009-01-01
Background Efforts to characterize changes in social functioning in frontotemporal dementia (FTD) have failed to elicit clear dissociation between frontal and temporal variants of the disease based on behavioral measures. Methods This study obtained premorbid and current first-degree relative ratings using an established measure of interpersonal functioning, the Interpersonal Adjectives Scales, to measure personality change in 16 patients with frontal variant (FLV) and 13 with temporal variant (TLV) FTD, and in a control group of 16 patients with AD. Results All three groups showed significant change over time in multiple domains, including increased introversion (FG) and submissiveness (HI). However, patients with both FTD subtypes evidenced significantly greater increases in overall interpersonal pathology vector length [VL] than did patients with AD, who remained within the normal range on all scores. Patients with FLV showed a 2 SD increase in submissiveness (HI), but their cold-heartedness (DE) change scores were not significantly different from those of patients with AD. Conversely, the TLV cold-heartedness (DE) score increased 2 SD compared to minimal change for the AD and FLV groups, yet change in submissiveness (HI) did not differentiate between AD and TLV groups. Conclusions The Interpersonal Adjectives Scales differentiated both FTD groups from patients with AD on the basis of both degree and direction of personality change. Also, the two subtypes of FTD showed distinctly different patterns of change in social functioning: patients with temporal variant shifted toward severe interpersonal coldness with mild loss of dominance, whereas patients with frontal variant showed the opposite pattern. PMID:12552042
Capturing the Temporal Sequence of Interaction in Young Siblings
Steele, Fiona; Jenkins, Jennifer
2015-01-01
We explored whether young children exhibit subtypes of behavioral sequences during sibling interaction. Ten-minute, free-play observations of over 300 sibling dyads were coded for positivity, negativity and disengagement. The data were analyzed using growth mixture modeling (GMM). Younger (18-month-old) children’s temporal behavioral sequences showed a harmonious (53%) and a casual (47%) class. Older (approximately four-year-old) children’s behavior was more differentiated revealing a harmonious (25%), a deteriorating (31%), a recovery (22%) and a casual (22%) class. A more positive maternal affective climate was associated with more positive patterns. Siblings’ sequential behavioral patterns tended to be complementary rather than reciprocal in nature. The study illustrates a novel use of GMM and makes a theoretical contribution by showing that young children exhibit distinct types of temporal behavioral sequences that are related to parenting processes. PMID:25996957
Broderick, Patricia A
2013-06-21
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system.
Broderick, Patricia A.
2013-01-01
The present discourse links the electrical and chemical properties of the brain with neurotransmitters and movement behaviors to further elucidate strategies to diagnose and treat brain disease. Neuromolecular imaging (NMI), based on electrochemical principles, is used to detect serotonin in nerve terminals (dorsal and ventral striata) and somatodendrites (ventral tegmentum) of reward/motor mesocorticolimbic and nigrostriatal brain circuits. Neuronal release of serotonin is detected at the same time and in the same animal, freely moving and unrestrained, while open-field behaviors are monitored via infrared photobeams. The purpose is to emphasize the unique ability of NMI and the BRODERICK PROBE® biosensors to empirically image a pattern of temporal synchrony, previously reported, for example, in Aplysia using central pattern generators (CPGs), serotonin and cerebral peptide-2. Temporal synchrony is reviewed within the context of the literature on central pattern generators, neurotransmitters and movement disorders. Specifically, temporal synchrony data are derived from studies on psychostimulant behavior with and without cocaine while at the same time and continuously, serotonin release in motor neurons within basal ganglia, is detected. The results show that temporal synchrony between the neurotransmitter, serotonin and natural movement occurs when the brain is NOT injured via, e.g., trauma, addictive drugs or psychiatric illness. In striking contrast, in the case of serotonin and cocaine-induced psychostimulant behavior, a different form of synchrony and also asynchrony can occur. Thus, the known dysfunctional movement behavior produced by cocaine may well be related to the loss of temporal synchrony, the loss of the ability to match serotonin in brain with motor activity. The empirical study of temporal synchrony patterns in humans and animals may be more relevant to the dynamics of motor circuits and movement behaviors than are studies of static parameters currently relied upon within the realms of science and medicine. There are myriad applications for the use of NMI to discover clinically relevant diagnoses and treatments for brain disease involving the motor system. PMID:24961434
ERIC Educational Resources Information Center
Cheek, Kim A.; LaDue, Nicole D.; Shipley, Thomas F.
2017-01-01
Geoscientists analyze and integrate spatial and temporal information at a range of scales to understand Earth processes. Despite this, the concept of scale is ill defined and taught unevenly across the K-16 continuum. This literature review focuses on two meanings of scale: one as the magnitude of the extent of a dimension and the other as a…
Larval Connectivity and the International Management of Fisheries
Kough, Andrew S.; Paris, Claire B.; Butler, Mark J.
2013-01-01
Predicting the oceanic dispersal of planktonic larvae that connect scattered marine animal populations is difficult, yet crucial for management of species whose movements transcend international boundaries. Using multi-scale biophysical modeling techniques coupled with empirical estimates of larval behavior and gamete production, we predict and empirically verify spatio-temporal patterns of larval supply and describe the Caribbean-wide pattern of larval connectivity for the Caribbean spiny lobster (Panulirus argus), an iconic coral reef species whose commercial value approaches $1 billion USD annually. Our results provide long sought information needed for international cooperation in the management of marine resources by identifying lobster larval connectivity and dispersal pathways throughout the Caribbean. Moreover, we outline how large-scale fishery management could explicitly recognize metapopulation structure by considering larval transport dynamics and pelagic larval sanctuaries. PMID:23762273
Movement reveals scale dependence in habitat selection of a large ungulate.
Northrup, Joseph M; Anderson, Charles R; Hooten, Mevin B; Wittemyer, George
2016-12-01
Ecological processes operate across temporal and spatial scales. Anthropogenic disturbances impact these processes, but examinations of scale dependence in impacts are infrequent. Such examinations can provide important insight to wildlife-human interactions and guide management efforts to reduce impacts. We assessed spatiotemporal scale dependence in habitat selection of mule deer (Odocoileus hemionus) in the Piceance Basin of Colorado, USA, an area of ongoing natural gas development. We employed a newly developed animal movement method to assess habitat selection across scales defined using animal-centric spatiotemporal definitions ranging from the local (defined from five hour movements) to the broad (defined from weekly movements). We extended our analysis to examine variation in scale dependence between night and day and assess functional responses in habitat selection patterns relative to the density of anthropogenic features. Mule deer displayed scale invariance in the direction of their response to energy development features, avoiding well pads and the areas closest to roads at all scales, though with increasing strength of avoidance at coarser scales. Deer displayed scale-dependent responses to most other habitat features, including land cover type and habitat edges. Selection differed between night and day at the finest scales, but homogenized as scale increased. Deer displayed functional responses to development, with deer inhabiting the least developed ranges more strongly avoiding development relative to those with more development in their ranges. Energy development was a primary driver of habitat selection patterns in mule deer, structuring their behaviors across all scales examined. Stronger avoidance at coarser scales suggests that deer behaviorally mediated their interaction with development, but only to a degree. At higher development densities than seen in this area, such mediation may not be possible and thus maintenance of sufficient habitat with lower development densities will be a critical best management practice as development expands globally. © 2016 by the Ecological Society of America.
The Behavioral Toxicology of High-Peak, Low Average Power, Pulsed Microwave Irradiation
1993-01-25
Psychometrika, 47, 95-99. Raslear, T. G. (1983). A test of the Pfanzagl bisection model in rats. Journal of Experimental Psychology : Animal Behavior Processes, 9...temporal bisection, Y-maze, treadmill running, food motivation (behavioraleconomics), and Persolt swim test . Reliable effects were found with the...subsequent task performance: temporal bisection, Y-maze, treadmill running, food motivation (behavioral economics), and Porsolt swim test . Reliable effects
Temporal Contingency as an Independent Component of Parenting Behavior.
ERIC Educational Resources Information Center
Keller, Heidi; Lohaus, Arnold; Volker, Susanne; Cappenberg, Martina; Chasiotis, Athanasios
1999-01-01
Examined relationship between temporal contingency of maternal behavior and interactional quality. Found that although prompt responding was typical, the existence of individual differences indicated that this tendency was expressed in different communicative channels. The relationship between contingency and ratings of interactional quality was…
Sex differences in giraffe foraging behavior at two spatial scales.
Ginnett, T F; Demment, Montague W
1997-04-01
We test predictions about differences in the foraging behaviors of male and female giraffes (Giraffa camelopardalis tippelskirchi Matchie) that derive from a hypothesis linking sexual size dimorphism to foraging behavior. This body-size hypothesis predicts that males will exhibit specific behaviors that increase their dry-matter intake rate relative to females. Foraging behavior was examined at two hierarchical levels corresponding to two spatial and temporal scales, within patches and within habitats. Patches are defined as individual trees or shrubs and habitats are defined as collections of patches within plant communities. Males were predicted to increase dry-matter intake rate within patches by taking larger bites, cropping bites more quickly, chewing less, and chewing faster. Within habitats, males were expected to increase intake rate by increasing the proportion of foraging time devoted to food ingestion as opposed to inter-patch travel time and vigilance. The predictions were tested in a free-ranging population of giraffes in Mikumi National Park, Tanzania. Males spent less total time foraging than females but allocated a greater proportion of their foraging time to forage ingestion as opposed to travel between patches. There was no sex difference in rumination time but males spent more time in activities other than foraging and rumination, such as walking. Within patches, males took larger bites than females, but females cropped bites more quickly and chewed faster. Males had longer per-bite handling times than females but had shorter handling times per gram of intake. Within habitats, males had longer average patch residence times but there was no significant sex difference in inter-patch travel times. There was no overall difference between sexes in vigilance while foraging, although there were significant sex by habitat and sex by season interactions. Although not all the predictions were confirmed, overall the results agree qualitatively with the body-size hypothesis. Sex-related differences in foraging behavior led to greater estimated intake rates for males at the within-patch and within-habitat scales.
The trend of the multi-scale temporal variability of precipitation in Colorado River Basin
NASA Astrophysics Data System (ADS)
Jiang, P.; Yu, Z.
2011-12-01
Hydrological problems like estimation of flood and drought frequencies under future climate change are not well addressed as a result of the disability of current climate models to provide reliable prediction (especially for precipitation) shorter than 1 month. In order to assess the possible impacts that multi-scale temporal distribution of precipitation may have on the hydrological processes in Colorado River Basin (CRB), a comparative analysis of multi-scale temporal variability of precipitation as well as the trend of extreme precipitation is conducted in four regions controlled by different climate systems. Multi-scale precipitation variability including within-storm patterns and intra-annual, inter-annual and decadal variabilities will be analyzed to explore the possible trends of storm durations, inter-storm periods, average storm precipitation intensities and extremes under both long-term natural climate variability and human-induced warming. Further more, we will examine the ability of current climate models to simulate the multi-scale temporal variability and extremes of precipitation. On the basis of these analyses, a statistical downscaling method will be developed to disaggregate the future precipitation scenarios which will provide a more reliable and finer temporal scale precipitation time series for hydrological modeling. Analysis results and downscaling results will be presented.
The impact of spatial and temporal patterns on multi-cellular behavior
NASA Astrophysics Data System (ADS)
Nikolic, Djordje L.
What makes a fruit fly a fruit fly? Essentially this question stems from one of the most fascinating problems in biology: how a single cell (fertilized egg) can give rise to a fully grown animal. To be able to answer this question, the importance to how spatial and temporal patterns of gene and protein expression influence the development of an organism must be understood. After all, fruit fly larvae are segmented, while fertilized eggs are not. Pattern formation is fundamental to establishing this organization of the developing embryo with the ultimate goal being the precise arrangements of specialized cells and tissues within each organ in an adult organism. The research presented here showcases the examples of studies that assess the impact spatial and temporal protein patterns have on the behavior of a collection of cells. By introducing new experimental, non-traditional techniques we developed model systems that allowed us to examine the dependence of the strength of adhesion of cells on the protein organization on sub-cellular, micron length scales, and to investigate how epithelial cell sheets coordinate their migration incorporating individual cell locomotion, molecular signal propagation and different boundary conditions. The first part of this dissertation presents a photolithography-based silanization patterning technique that allowed us to homogeneously pattern large areas with high precision. This method is then applied to organizing cell adhesion-promoting proteins on surfaces for the purposes of studying and manipulating cell behavior. We show how the strength of adhesion is dependent on high local density of an adhesive extracellular matrix protein fibronectin. The varied appeal of this technique is exhibited by showing its applicability to pattern stretched DNA, too. The second part of this dissertation focuses on the impact of spatial and temporal propagation of a molecular signal (ERK 1/2 MAPK) in migrating epithelial sheets during wound healing. By tracking the motion of individual cells within the sheet under the three constructed conditions, we show how the dynamics of the individual cells' motion is responsible for the coordinated migration of the sheet in accordance with the activation of ERK 1/2 MAPK.
Becker, Sara J.; Nargiso, Jessica E.; Wolff, Jennifer C.; Uhl, Kristen M.; Simon, Valerie A.; Spirito, Anthony; Prinstein, Mitchell J.
2012-01-01
There is considerable evidence linking substance use and delinquent behavior among adolescents. However, the nature and temporal ordering of this relationship remains uncertain, particularly among early adolescents and those with significant psychopathology. This study examined the temporal ordering of substance use and delinquent behavior in a sample of psychiatrically hospitalized early adolescents. Youth (n = 108) between the ages of 12 and 15 years completed three assessments over 18 months following hospitalization. Separate cross-lagged panel models examined the reciprocal relationship between delinquent behavior and two types of substance use (e.g., alcohol and marijuana). Results provided evidence of cross-lagged effects for marijuana: delinquent behavior at 9 months predicted marijuana use at 18 months. No predictive effects were found between alcohol use and delinquent behavior over time. Findings demonstrate the stability of delinquent behavior and substance use among young adolescents with psychiatric concerns. Furthermore, results highlight the value of examining alcohol and marijuana use outcomes separately in order to better understand the complex pathways between substance use and delinquent behavior among early adolescents. PMID:22197300
Temporal changes in native-exotic richness correlations during early post-fire succession
Qinfeng Guo
2017-01-01
The relationship between native and exotic richness has mostly been studied with respect to space (i.e., positive at larger scales, but negative or more variable at smaller scales) and its temporal patterns have rarely been investigated. Although some studies have monitored the temporal trends of both native and exotic richness, how these two groups of species might be...
NASA Astrophysics Data System (ADS)
Christianson, D. S.; Kaufman, C. G.; Kueppers, L. M.; Harte, J.
2013-12-01
Sampling limitations and current modeling capacity justify the common use of mean temperature values in summaries of historical climate and future projections. However, a monthly mean temperature representing a 1-km2 area on the landscape is often unable to capture the climate complexity driving organismal and ecological processes. Estimates of variability in addition to mean values are more biologically meaningful and have been shown to improve projections of range shifts for certain species. Historical analyses of variance and extreme events at coarse spatial scales, as well as coarse-scale projections, show increasing temporal variability in temperature with warmer means. Few studies have considered how spatial variance changes with warming, and analysis for both temporal and spatial variability across scales is lacking. It is unclear how the spatial variability of fine-scale conditions relevant to plant and animal individuals may change given warmer coarse-scale mean values. A change in spatial variability will affect the availability of suitable habitat on the landscape and thus, will influence future species ranges. By characterizing variability across both temporal and spatial scales, we can account for potential bias in species range projections that use coarse climate data and enable improvements to current models. In this study, we use temperature data at multiple spatial and temporal scales to characterize spatial and temporal variability under a warmer climate, i.e., increased mean temperatures. Observational data from the Sierra Nevada (California, USA), experimental climate manipulation data from the eastern and western slopes of the Rocky Mountains (Colorado, USA), projected CMIP5 data for California (USA) and observed PRISM data (USA) allow us to compare characteristics of a mean-variance relationship across spatial scales ranging from sub-meter2 to 10,000 km2 and across temporal scales ranging from hours to decades. Preliminary spatial analysis at fine-spatial scales (sub-meter to 10-meter) shows greater temperature variability with warmer mean temperatures. This is inconsistent with the inherent assumption made in current species distribution models that fine-scale variability is static, implying that current projections of future species ranges may be biased -- the direction and magnitude requiring further study. While we focus our findings on the cross-scaling characteristics of temporal and spatial variability, we also compare the mean-variance relationship between 1) experimental climate manipulations and observed conditions and 2) temporal versus spatial variance, i.e., variability in a time-series at one location vs. variability across a landscape at a single time. The former informs the rich debate concerning the ability to experimentally mimic a warmer future. The latter informs space-for-time study design and analyses, as well as species persistence via a combined spatiotemporal probability of suitable future habitat.
NASA Technical Reports Server (NTRS)
Le, G.; Wang, Y.; Slavin, J. A.; Strangeway, R. L.
2009-01-01
Space Technology 5 (ST5) is a constellation mission consisting of three microsatellites. It provides the first multipoint magnetic field measurements in low Earth orbit, which enables us to separate spatial and temporal variations. In this paper, we present a study of the temporal variability of field-aligned currents using the ST5 data. We examine the field-aligned current observations during and after a geomagnetic storm and compare the magnetic field profiles at the three spacecraft. The multipoint data demonstrate that mesoscale current structures, commonly embedded within large-scale current sheets, are very dynamic with highly variable current density and/or polarity in approx.10 min time scales. On the other hand, the data also show that the time scales for the currents to be relatively stable are approx.1 min for mesoscale currents and approx.10 min for large-scale currents. These temporal features are very likely associated with dynamic variations of their charge carriers (mainly electrons) as they respond to the variations of the parallel electric field in auroral acceleration region. The characteristic time scales for the temporal variability of mesoscale field-aligned currents are found to be consistent with those of auroral parallel electric field.
Scale-invariant cascades in turbulence and evolution
NASA Astrophysics Data System (ADS)
Guttenberg, Nicholas Ryan
In this dissertation, I present work addressing three systems which are traditionally considered to be unrelated: turbulence, evolution, and social organization. The commonality between these systems is that in each case, microscopic interaction rules give rise to an emergent behavior that in some way makes contact with the macroscopic scale of the problem. The open-ended evolution of complexity in evolving systems is analogous to the scale-free structure established in turbulent flows through local transportation of energy. In both cases, an invariance is required for the cascading behavior to occur, and in both cases the scale-free structure is built up from some initial scale from which the behavior is fed. In turbulence, I examine the case of two-dimensional turbulence in order to support the hypothesis that the friction factor and velocity profile of turbulent pipe flows depend on the turbulent energy spectrum in a way unpredicted by the classic Prandtl theory. By simulating two-dimensional flows in controlled geometries, either an inverse energy cascade or forward enstrophy cascade can be produced. The friction factor scaling of the flow changes depending on which cascade is present, in a way consistent with momentum transfer theory and roughness-induced criticality. In the problem of evolution, I show that open-ended growth of complexity can be obtained by ensuring that the evolutionary dynamics are invariant with respect to changes in complexity. Finite system size, finite point mutation rate, and fixed points in the fitness landscape can all interrupt this cascade behavior, producing an analogue to the integral scale of turbulence. This complexity cascade can exist both for competing and for symbiotic sets of organisms. Extending this picture to the qualitatively-different levels of organization of real lifeforms (viruses, unicellular, biofilms, multicellular) requires an understanding of how the processes of evolution themselves evolve. I show that a separation of spatial or temporal scales can enhance selection pressure on parameters that only matter several generations down the line. Because of this, I conclude that the prime candidates for the emergence of novel evolutionary mechanisms are biofilms and things living in oscillating environments. Finally, in the problem of social organization, I show that different types of control hierarchies - leaders or communal decision making - can emerge depending on the relationship between the environment in which members of the social group act and the development and exchange of information.
NASA Astrophysics Data System (ADS)
Plocoste, Thomas; Calif, Rudy; Jacoby-Koaly, Sandra
2017-11-01
A good knowledge of the intermittency of atmospheric pollutants is crucial for air pollution management. We consider here particulate matter PM 10 and ground-level ozone O3 time series in Guadeloupe archipelago which experiments a tropical and humid climate in the Caribbean zone. The aim of this paper is to study their scaling statistics in the framework of fully developed turbulence and Kolmogorov's theory. Firstly, we estimate their Fourier power spectra and consider their scaling properties in the physical space. The power spectra computed follows a power law behavior for both considered pollutants. Thereafter we study the scaling behavior of PM 10 and O3 time series. Contrary to numerous studies where the multifractal detrended fluctuation analysis is frequently applied, here, the classical structure function analysis is used to extract the scaling exponent or multifractal spectrum ζ(q) ; this function provides a full characterization of a process at all intensities and all scales. The obtained results show that PM 10 and O3 possess intermittent and multifractal properties. The singularity spectrum MS(α) also confirms both pollutants multifractal features. The originality of this work comes from a statistical modeling performed on ζ(q) and MS(α) by a lognormal model to compute the intermittency parameter μ. By contrast with PM 10 which mainly depends on puffs of Saharan dust (synoptic-scale), O3 is more intermittent due to variability of its local precursors. The results presented in this paper can help to better understand the mechanisms governing the dynamics of PM 10 and O3 in Caribbean islands context.
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals
Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...
2018-02-09
Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less
Delayed Reinforcement of Operant Behavior
ERIC Educational Resources Information Center
Lattal, Kennon A.
2010-01-01
The experimental analysis of delay of reinforcement is considered from the perspective of three questions that seem basic not only to understanding delay of reinforcement but also, by implication, the contributions of temporal relations between events to operant behavior. The first question is whether effects of the temporal relation between…
Reinforcing and timing properties of water in the schedule-induced drinking situation.
Ruiz, Jorge A; López-Tolsa, Gabriela E; Pellón, Ricardo
2016-06-01
A series of recent studies from our laboratory have added to the preceding literature on the potential role of water (in addition to food) as a positive reinforcer in the schedule-induced drinking situation, thus suggesting that adjunctive behaviors might have motivational properties that make their engagement a preferable alternative. It has also been suggested that adjunctive behaviors serve as a behavioral clock that helps organisms to estimate time, making their engagement motivational, so that they enable more accurate time adjustment under temporal schedules. Here, we review some of these experiments on conditioned reinforcement and concurrent chains, as well as on temporal learning. Data presented in this article suggest that adjunctive behaviors may be a part of the behavior patterns maintained by reinforcement, thus serving towards a better performance in temporal tasks. Copyright © 2016 Elsevier B.V. All rights reserved.
Gomez, Jesse; Pestilli, Franco; Witthoft, Nathan; Golarai, Golijeh; Liberman, Alina; Poltoratski, Sonia; Yoon, Jennifer; Grill-Spector, Kalanit
2014-01-01
Summary It is unknown if the white matter properties associated with specific visual networks selectively affect category-specific processing. In a novel protocol we combined measurements of white matter structure, functional selectivity, and behavior in the same subjects. We find two parallel white matter pathways along the ventral temporal lobe connecting to either face-selective or place-selective regions. Diffusion properties of portions of these tracts adjacent to face- and place-selective regions of ventral temporal cortex correlate with behavioral performance for face or place processing, respectively. Strikingly, adults with developmental prosopagnosia (face blindness) express an atypical structure-behavior relationship near face-selective cortex, suggesting that white matter atypicalities in this region may have behavioral consequences. These data suggest that examining the interplay between cortical function, anatomical connectivity, and visual behavior is integral to understanding functional networks and their role in producing visual abilities and deficits. PMID:25569351
High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data.
Huang, Tom; Elghafari, Anas; Relia, Kunal; Chunara, Rumi
2017-11-01
Understanding tobacco- and alcohol-related behavioral patterns is critical for uncovering risk factors and potentially designing targeted social computing intervention systems. Given that we make choices multiple times per day, hourly and daily patterns are critical for better understanding behaviors. Here, we combine natural language processing, machine learning and time series analyses to assess Twitter activity specifically related to alcohol and tobacco consumption and their sub-daily, daily and weekly cycles. Twitter self-reports of alcohol and tobacco use are compared to other data streams available at similar temporal resolution. We assess if discussion of drinking by inferred underage versus legal age people or discussion of use of different types of tobacco products can be differentiated using these temporal patterns. We find that time and frequency domain representations of behaviors on social media can provide meaningful and unique insights, and we discuss the types of behaviors for which the approach may be most useful.
THETRIS: A MICRO-SCALE TEMPERATURE AND GAS RELEASE MODEL FOR TRISO FUEL
DOE Office of Scientific and Technical Information (OSTI.GOV)
J. Ortensi; A.M. Ougouag
2011-12-01
The dominating mechanism in the passive safety of gas-cooled, graphite-moderated, high-temperature reactors (HTRs) is the Doppler feedback effect. These reactor designs are fueled with sub-millimeter sized kernels formed into TRISO particles that are imbedded in a graphite matrix. The best spatial and temporal representation of the feedback effect is obtained from an accurate approximation of the fuel temperature. Most accident scenarios in HTRs are characterized by large time constants and slow changes in the fuel and moderator temperature fields. In these situations a meso-scale, pebble and compact scale, solution provides a good approximation of the fuel temperature. Micro-scale models aremore » necessary in order to obtain accurate predictions in faster transients or when parameters internal to the TRISO are needed. Since these coated particles constitute one of the fundamental design barriers for the release of fission products, it becomes important to understand the transient behavior inside this containment system. An explicit TRISO fuel temperature model named THETRIS has been developed and incorporated into the CYNOD-THERMIX-KONVEK suite of coupled codes. The code includes gas release models that provide a simple predictive capability of the internal pressure during transients. The new model yields similar results to those obtained with other micro-scale fuel models, but with the added capability to analyze gas release, internal pressure buildup, and effects of a gap in the TRISO. The analyses show the instances when the micro-scale models improve the predictions of the fuel temperature and Doppler feedback. In addition, a sensitivity study of the potential effects on the transient behavior of high-temperature reactors due to the presence of a gap is included. Although the formation of a gap occurs under special conditions, its consequences on the dynamic behavior of the reactor can cause unexpected responses during fast transients. Nevertheless, the strong Doppler feedback forces the reactor to quickly stabilize.« less
Landscape ecology: Past, present, and future [Chapter 4
Samuel A. Cushman; Jeffrey S. Evans; Kevin McGarigal
2010-01-01
In the preceding chapters we discussed the central role that spatial and temporal variability play in ecological systems, the importance of addressing these explicitly within ecological analyses and the resulting need to carefully consider spatial and temporal scale and scaling. Landscape ecology is the science of linking patterns and processes across scale in both...
Anfo Response To Low-Stress Planar Impacts
NASA Astrophysics Data System (ADS)
Cooper, Marcia A.; Trott, Wayne M.; Schmitt, Robert G.; Short, Mark; Jackson, Scott I.
2012-03-01
Ammonium Nitrate plus Fuel Oil (ANFO) is a non-ideal explosive where the mixing behavior of the mm-diameter prills with the absorbed fuel oil is of critical importance for chemical energy release. The large-scale heterogeneity of ANFO establishes conditions uniquely suited for observation using the spatially- and temporally-resolved line-imaging ORVIS (Optically Recording Velocity Interferometer System) diagnostic. The first demonstration of transmitted wave profiles in ANFO from planar impacts using a single-stage gas gun is reported. Major observations including an extended compaction precursor, post-shock particle velocity variations and between-prill jetting are reported.
Spatiotemporal Organization of Energy Release Events in the Quiet Solar Corona
NASA Technical Reports Server (NTRS)
Uritsky, Vadim M.; Davila, Joseph M.
2014-01-01
Using data from the STEREO and SOHO spacecraft, we show that temporal organization of energy release events in the quiet solar corona is close to random, in contrast to the clustered behavior of flaring times in solar active regions. The locations of the quiet-Sun events follow the meso- and supergranulation pattern of the underling photosphere. Together with earlier reports of the scale-free event size statistics, our findings suggest that quiet solar regions responsible for bulk coronal heating operate in a driven self-organized critical state, possibly involving long-range Alfvenic interactions.
NASA Astrophysics Data System (ADS)
Manore, C.; Conrad, J.; Del Valle, S.; Ziemann, A.; Fairchild, G.; Generous, E. N.
2017-12-01
Mosquito-borne diseases such as Zika, dengue, and chikungunya viruses have dynamics coupled to weather, ecology, human infrastructure, socio-economic demographics, and behavior. We use time-varying remote sensing and weather data, along with demographics and ecozones to predict risk through time for Zika, dengue, and chikungunya outbreaks in Brazil. We use distributed lag methods to quantify the lag between outbreaks and weather. Our statistical model indicates that the relationships between the variables are complex, but that quantifying risk is possible with the right data at appropriate spatio-temporal scales.
Navigational strategies underlying phototaxis in larval zebrafish.
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel "Virtual Circle" assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms.
The temporal structure of behaviour and sleep homeostasis.
Vyazovskiy, Vladyslav V; Tobler, Irene
2012-01-01
The amount and architecture of vigilance states are governed by two distinct processes, which occur at different time scales. The first, a slow one, is related to a wake/sleep dependent homeostatic Process S, which occurs on a time scale of hours, and is reflected in the dynamics of NREM sleep EEG slow-wave activity. The second, a fast one, is manifested in a regular alternation of two sleep states--NREM and REM sleep, which occur, in rodents, on a time scale of ~5-10 minutes. Neither the mechanisms underlying the time constants of these two processes--the slow one and the fast one, nor their functional significance are understood. Notably, both processes are primarily apparent during sleep, while their potential manifestation during wakefulness is obscured by ongoing behaviour. Here, we find, in mice provided with running wheels, that the two sleep processes become clearly apparent also during waking at the level of behavior and brain activity. Specifically, the slow process was manifested in the total duration of waking periods starting from dark onset, while the fast process was apparent in a regular occurrence of running bouts during the waking periods. The dynamics of both processes were stable within individual animals, but showed large interindividual variability. Importantly, the two processes were not independent: the periodic structure of waking behaviour (fast process) appeared to be a strong predictor of the capacity to sustain continuous wakefulness (slow process). The data indicate that the temporal organization of vigilance states on both the fast and the slow time scales may arise from a common neurophysiologic mechanism.
NASA Astrophysics Data System (ADS)
Blume, T.; Zehe, E.; Bronstert, A.
2009-07-01
Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.
NASA Astrophysics Data System (ADS)
Barros, A. P.; Prat, O. P.; Sun, X.; Shrestha, P.; Miller, D.
2009-04-01
The classic conceptual model of orographic rainfall depicts strong stationary horizontal gradients in rainfall accumulations and landcover contrasts across topographic divides (i.e. the rainshadow) at the broad scale of mountain ranges, or isolated orographic features. Whereas this model is sufficient to fingerprint the land-modulation of precipitation at the macroscale in climate studies, and can be useful to force geological models of land evolution for example, it fails to describe the active 4D space-time gradients that are critical at the fundamental scale of mountain hydrometeorology and hydrology, that is the headwater catchment. That is, the scale at which flash-floods are generated and landslides are triggered. Our work surveying the spatial and temporal habits of clouds and rainfall for some of the world's major mountain ranges from remotely-sensed data shows a close alignment of spatial scaling behavior with landform down to the mountain fold scale, that is the ridge-valley. Likewise, we find that diurnal and seasonal cycles are organized and constrained by topography from the macro- to the meso- to the alpha-scale of individual basins varying with synoptic weather conditions. At the catchment scale, the diurnal cycle exhibits an oscillatory behavior with storm features moving up and down from the ridge crests to the valley floor and back and forth from head to mouth along the valley with strong variations in rainfall intensity and duration. Direct observations to provide quantitative estimates of precipitation at this scale are beyond the capability of satellite-based observations present and anticipated in the next 10-20 years. This limitation can be addressed by assimilating the space-time modes of variability of rainfall into satellite-observations at coarser scale using multiscale blending algorithms. The challenge is to characterize the modes of space-time variability of precipitation in a systematic, and quantitative fashion that can be generalized. It requires understanding the physical controls that govern the diurnal cycle and how these physical controls translate into spatial and temporal variability of dynamics and microphysics of precipitation in headwater catchments, and especially in the context of extreme events for natural hazards assessments. Toward this goal, we have initiated a sequence of number of intense observing period (IOP) campaigns in the Great Smoky Mountains National Park using radiosondes, tethersondes, microrain radars, and a high resolution raingauge network that for the first time monitors rainfall systematically along ridges in the Appalachians. Along with field observations, a high-resolution coupled model has been implemented to diagnose the evolution of the 4D structure of regional circulations and associated precipitation for IOP conditions and for reconstructing historical extremes associated with the interaction of tropical cyclones with the mountains. A synthesis of data analysis and model simulations will be presented.
Effects of Spatio-Temporal Aliasing on Pilot Performance in Active Control Tasks
NASA Technical Reports Server (NTRS)
Zaal, Peter; Sweet, Barbara
2010-01-01
Spatio-temporal aliasing affects pilot performance and control behavior. For increasing refresh rates: 1) Significant change in control behavior: a) Increase in visual gain and neuromuscular frequency. b) Decrease in visual time delay. 2) Increase in tracking performance: a) Decrease in RMSe. b) Increase in crossover frequency.
Reconceptualizing Children's Suggestibility: Bidirectional and Temporal Properties
ERIC Educational Resources Information Center
Gilstrap, Livia L.; Ceci, Stephen J.
2005-01-01
Forty-one children (3 to 7 years) were exposed to a staged event and later interviewed by 1 of 41 professional interviewers. All interviews were coded with a detailed, mutually exclusive, and exhaustive coding scheme capturing adult behaviors (leading questions vs. neutral) and child behaviors (acquiescence vs. denial) in a temporally organized…
Temporal and spatial behavior of pharmaceuticals in Narragansett Bay, Rhode Island, United States.
The behavior and fate of pharmaceutical ingredients in coastal marine ecosystems are not well understood. To address this, the spatial and temporal distribution of 15 high-volume pharmaceuticals were measured over a 1-yr period in Narragansett Bay (RI, USA) to elucidate factors a...
Guadayol, Òscar; Silbiger, Nyssa J.; Donahue, Megan J.; Thomas, Florence I. M.
2014-01-01
Spatial and temporal environmental variability are important drivers of ecological processes at all scales. As new tools allow the in situ exploration of individual responses to fluctuations, ecologically meaningful ways of characterizing environmental variability at organism scales are needed. We investigated the fine-scale spatial heterogeneity of high-frequency temporal variability in temperature, dissolved oxygen concentration, and pH experienced by benthic organisms in a shallow coastal coral reef. We used a spatio-temporal sampling design, consisting of 21 short-term time-series located along a reef flat-to-reef slope transect, coupled to a long-term station monitoring water column changes. Spectral analyses revealed sharp gradients in variance decomposed by frequency, as well as differences between physically-driven and biologically-reactive parameters. These results highlight the importance of environmental variance at organismal scales and present a new sampling scheme for exploring this variability in situ. PMID:24416364
NASA Astrophysics Data System (ADS)
Afshari, Saied; Hejazi, S. Hossein; Kantzas, Apostolos
2018-05-01
Miscible displacement of fluids in porous media is often characterized by the scaling of the mixing zone length with displacement time. Depending on the viscosity contrast of fluids, the scaling law varies between the square root relationship, a sign for dispersive transport regime during stable displacement, and the linear relationship, which represents the viscous fingering regime during an unstable displacement. The presence of heterogeneities in a porous medium significantly affects the scaling behavior of the mixing length as it interacts with the viscosity contrast to control the mixing of fluids in the pore space. In this study, the dynamics of the flow and transport during both unit and adverse viscosity ratio miscible displacements are investigated in heterogeneous packings of circular grains using pore-scale numerical simulations. The pore-scale heterogeneity level is characterized by the variations of the grain diameter and velocity field. The growth of mixing length is employed to identify the nature of the miscible transport regime at different viscosity ratios and heterogeneity levels. It is shown that as the viscosity ratio increases to higher adverse values, the scaling law of mixing length gradually shifts from dispersive to fingering nature up to a certain viscosity ratio and remains almost the same afterwards. In heterogeneous media, the mixing length scaling law is observed to be generally governed by the variations of the velocity field rather than the grain size. Furthermore, the normalization of mixing length temporal plots with respect to the governing parameters of viscosity ratio, heterogeneity, medium length, and medium aspect ratio is performed. The results indicate that mixing length scales exponentially with log-viscosity ratio and grain size standard deviation while the impact of aspect ratio is insignificant. For stable flows, mixing length scales with the square root of medium length, whereas it changes linearly with length during unstable flows. This scaling procedure allows us to describe the temporal variation of mixing length using a generalized curve for various combinations of the flow conditions and porous medium properties.
Matheus, Filipe C; Rial, Daniel; Real, Joana I; Lemos, Cristina; Takahashi, Reinaldo N; Bertoglio, Leandro J; Cunha, Rodrigo A; Prediger, Rui D
2016-08-01
The dorsolateral striatum (DLS) processes motor and non-motor functions and undergoes extensive dopaminergic degeneration in Parkinson's disease (PD). The nigrostriatal dopaminergic degeneration also affects other brain areas including the pre-frontal cortex (PFC), which has been associated with the appearance of anhedonia and depression at pre-motor phases of PD. Using behavioral, neurochemical, and electrophysiological approaches, we investigated the temporal dissociation between the role of the DLS and PFC in the appearance of anhedonia and defense behaviors relevant to depression in rats submitted to bilateral DLS lesions with 6-hydroxydopamine (6-OHDA; 10 μg/hemisphere). 6-OHDA induced partial dopaminergic nigrostriatal damage with no gross motor impairments. Anhedonic-like behaviors were observed in the splash and sucrose consumption tests only 7 days after 6-OHDA lesion. By contrast, defense behaviors relevant to depression evaluated in the forced swimming test and social withdrawal only emerged 21 days after 6-OHDA lesion when anhedonia was no longer present. These temporally dissociated behavioral alterations were coupled to temporal- and structure-dependent alterations in dopaminergic markers such as dopamine D1 and D2 receptors and dopamine transporter, leading to altered dopamine sensitivity in DLS and PFC circuits, evaluated electrophysiologically. These results provide the first demonstration of a dissociated involvement of the DLS and PFC in anhedonic-like and defense behaviors relevant to depression in 6-OHDA-lesioned rats, which was linked with temporal fluctuations in dopaminergic receptor density, leading to altered dopaminergic system sensitivity in these two brain structures. This sheds new light to the duality between depressive and anhedonic symptoms in PD.
Stable isotope time series and dentin increments elucidate Pleistocene proboscidean paleobiology
NASA Astrophysics Data System (ADS)
Fisher, Daniel; Rountrey, Adam; Smith, Kathlyn; Fox, David
2010-05-01
Investigations of stable isotope composition of mineralized tissues have added greatly to our knowledge of past climates and dietary behaviors of organisms, even when they are implemented through 'bulk sampling', in which a single assay yields a single, time-averaged value. Likewise, the practice of 'sclerochronology', which documents periodic structural increments comprising a growth record for accretionary tissues, offers insights into rates of growth and age data at a scale of temporal resolution permitted by the nature of structural increments. We combine both of these approaches to analyze dental tissues of late Pleistocene proboscideans. Tusk dentin typically preserves a record of accretionary growth consisting of histologically distinct increments on daily, approximately weekly, and yearly time scales. Working on polished transverse or longitudinal sections, we mill out a succession of temporally controlled dentin samples bounded by clear structural increments with a known position in the sequence of tusk growth. We further subject each sample (or an aliquot thereof) to multiple compositional analyses - most frequently to assess δ18O and δ13C of hydroxyapatite carbonate, and δ13C and δ15N of collagen. This yields, for each animal and each series of years investigated, a set of parallel compositional time series with a temporal resolution of 1-2 months (or finer if we need additional precision). Patterns in variation of thickness of periodic sub-annual increments yield insight into intra-annual and inter-annual variation of tusk growth rate. This is informative even by itself, but it is still more valuable when coupled with compositional time series. Further, the controls on different stable isotope systems are sufficiently different that the data ensemble yields 'much more than the sum of its parts.' By assessing how compositions and growth rates covary, we monitor with greater confidence changes in local climate, diet, behavior, and health status. We illustrate the potential of this approach with case studies that reveal: season of birth and age of weaning in juvenile mammoths; age of maturation in male mastodons; season of musth in mammoths and mastodons; and season of death and tests of simultaneity of death in mammoths and mastodons. The data provided by histological and stable isotope analyses rarely reveal cause of death directly, but they can, in concert with other observations, affect perceptions of the likelihood of competing interpretations of cause of death. Most important, paleobiological inferences based on these studies can be integrated over broad geographic and temporal scales to show how specific paleobiological traits changed through time, prior to extinction. These studies have great power for investigating causes of extinction because contrasting patterns of change are expected under different hypothesized drivers of extinction.
NASA Technical Reports Server (NTRS)
Fu, L.-L.; Chelton, D. B.
1985-01-01
A new method is developed for studying large-scale temporal variability of ocean currents from satellite altimetric sea level measurements at intersections (crossovers) of ascending and descending orbit ground tracks. Using this method, sea level time series can be constructed from crossover sea level differences in small sample areas where altimetric crossovers are clustered. The method is applied to Seasat altimeter data to study the temporal evolution of the Antarctic Circumpolar Current (ACC) over the 3-month Seasat mission (July-October 1978). The results reveal a generally eastward acceleration of the ACC around the Southern Ocean with meridional disturbances which appear to be associated with bottom topographic features. This is the first direct observational evidence for large-scale coherence in the temporal variability of the ACC. It demonstrates the great potential of satellite altimetry for synoptic observation of temporal variability of the world ocean circulation.
The need to consider temporal variability when modelling exchange at the sediment-water interface
Rosenberry, Donald O.
2011-01-01
Most conceptual or numerical models of flows and processes at the sediment-water interface assume steady-state conditions and do not consider temporal variability. The steady-state assumption is required because temporal variability, if quantified at all, is usually determined on a seasonal or inter-annual scale. In order to design models that can incorporate finer-scale temporal resolution we first need to measure variability at a finer scale. Automated seepage meters that can measure flow across the sediment-water interface with temporal resolution of seconds to minutes were used in a variety of settings to characterize seepage response to rainfall, wind, and evapotranspiration. Results indicate that instantaneous seepage fluxes can be much larger than values commonly reported in the literature, although seepage does not always respond to hydrological processes. Additional study is needed to understand the reasons for the wide range and types of responses to these hydrologic and atmospheric events.
Spatial and temporal characteristics of droughts in Luanhe River basin, China
NASA Astrophysics Data System (ADS)
Wang, Yixuan; Zhang, Ting; Chen, Xu; Li, Jianzhu; Feng, Ping
2018-02-01
The spatial and temporal characteristics of drought are investigated for Luanhe River basin, using monthly precipitation data from 26 stations covering the common period of 1958-2011. The spatial pattern of drought was assessed by applying principal component analysis (PCA) to the Standardized Precipitation Index (SPI) computed on 3- and 12-month time scales. In addition, annual SPI and seasonal SPIs (including spring SPI, summer SPI, autumn SPI, and winter SPI) were also defined and considered in this study to characterize seasonal and annual drought conditions, respectively. For all seven SPI cases, three distinctive sub-regions with different temporal evolutions of droughts are well identified, respectively, representing the southeast, middle, and northwest of the Luanhe River basin. The Mann-Kendall (MK) trend test with a trend-free pre-whitening (TFPW) procedure and Sen's method were used to determine the temporal trends in the annual and seasonal SPI time series. The continuous wavelet transform (CWT) was employed for further detecting the periodical features of drought condition in each sub-region. Results of MK and Sen's tests show a general tendency of intensification in summer drought over the entire basin, while a significant mitigating trend in spring drought. On the whole, an aggravating trend of inter-annual drought is discovered across the basin. Based on the CWT, the drought variability in the basin is generally dominated by 16- to 64-month cycles, and the 2- to 6-year cycles appear to be obvious when concerned with annual and seasonal droughts. Furthermore, a cross wavelet analysis was performed to examine the possible links between the drought conditions and large-scale climate patterns. The teleconnections of ENSO, NAO, PDO, and AMO show significant influences on the regional droughts principally concentrated in the 16- to 64-month period, maybe responsible for the physical causes of the cyclical behavior of drought occurrences. PDO and AMO also highlight a noteworthy correlation with drought variability on a decadal scale (around 128-month period). The findings of this study will provide valuable references for regional drought mitigation and water resource management.
Temporal scaling in information propagation.
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-18
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Temporal scaling in information propagation
NASA Astrophysics Data System (ADS)
Huang, Junming; Li, Chao; Wang, Wen-Qiang; Shen, Hua-Wei; Li, Guojie; Cheng, Xue-Qi
2014-06-01
For the study of information propagation, one fundamental problem is uncovering universal laws governing the dynamics of information propagation. This problem, from the microscopic perspective, is formulated as estimating the propagation probability that a piece of information propagates from one individual to another. Such a propagation probability generally depends on two major classes of factors: the intrinsic attractiveness of information and the interactions between individuals. Despite the fact that the temporal effect of attractiveness is widely studied, temporal laws underlying individual interactions remain unclear, causing inaccurate prediction of information propagation on evolving social networks. In this report, we empirically study the dynamics of information propagation, using the dataset from a population-scale social media website. We discover a temporal scaling in information propagation: the probability a message propagates between two individuals decays with the length of time latency since their latest interaction, obeying a power-law rule. Leveraging the scaling law, we further propose a temporal model to estimate future propagation probabilities between individuals, reducing the error rate of information propagation prediction from 6.7% to 2.6% and improving viral marketing with 9.7% incremental customers.
Fulham, Elizabeth; Mullan, Barbara
2011-06-01
An estimated 25% of the populations of both the United States and Australia suffer from foodborne illness every year, generally as a result of incorrect food handling practices. The aim of the current study was to determine through the application of the theory of planned behavior what motivates these behaviors and to supplement the model with two aspects of temporal self-regulation theory--behavioral prepotency and executive function--in an attempt to bridge the "intention-behavior gap." A prospective 1-week design was utilized to investigate the prediction of food hygiene using the theory of planned behavior with the additional variables of behavioral prepotency and executive function. One hundred forty-nine undergraduate psychology students completed two neurocognitive executive function tasks and a self-report questionnaire assessing theory of planned behavior variables, behavioral prepotency, and intentions to perform hygienic food handling behaviors. A week later, behavior was assessed via a follow-up self-report questionnaire. It was found that subjective norm and perceived behavioral control predicted intentions and intentions predicted behavior. However, behavioral prepotency was found to be the strongest predictor of behavior, over and above intentions, suggesting that food hygiene behavior is habitual. Neither executive function measure of self-regulation predicted any additional variance. These results provide support for the utility of the theory of planned behavior in this health domain, but the augmentation of the theory with two aspects of temporal self-regulation theory was only partially successful.
Phylogenetic community structure: temporal variation in fish assemblage
Santorelli, Sergio; Magnusson, William; Ferreira, Efrem; Caramaschi, Erica; Zuanon, Jansen; Amadio, Sidnéia
2014-01-01
Hypotheses about phylogenetic relationships among species allow inferences about the mechanisms that affect species coexistence. Nevertheless, most studies assume that phylogenetic patterns identified are stable over time. We used data on monthly samples of fish from a single lake over 10 years to show that the structure in phylogenetic assemblages varies over time and conclusions depend heavily on the time scale investigated. The data set was organized in guild structures and temporal scales (grouped at three temporal scales). Phylogenetic distance was measured as the mean pairwise distances (MPD) and as mean nearest-neighbor distance (MNTD). Both distances were based on counts of nodes. We compared the observed values of MPD and MNTD with values that were generated randomly using null model independent swap. A serial runs test was used to assess the temporal independence of indices over time. The phylogenetic pattern in the whole assemblage and the functional groups varied widely over time. Conclusions about phylogenetic clustering or dispersion depended on the temporal scales. Conclusions about the frequency with which biotic processes and environmental filters affect the local assembly do not depend only on taxonomic grouping and spatial scales. While these analyzes allow the assertion that all proposed patterns apply to the fish assemblages in the floodplain, the assessment of the relative importance of these processes, and how they vary depending on the temporal scale and functional group studied, cannot be determined with the effort commonly used. It appears that, at least in the system that we studied, the assemblages are forming and breaking continuously, resulting in various phylogeny-related structures that makes summarizing difficult. PMID:25360256
NASA Astrophysics Data System (ADS)
Roongthumskul, Yuttana; Fredrickson-Hemsing, Lea; Kao, Albert; Bozovic, Dolores
2011-11-01
Hair bundles of the bullfrog sacculus display spontaneous oscillations that show complex temporal profiles. Quiescent intervals are typically interspersed with oscillations, analogous to bursting behavior observed in neural systems. By introducing slow calcium dynamics into the theoretical model of bundle mechanics, we reproduce numerically the multi-mode oscillations and explore the effects of internal parameters on the temporal profiles and the frequency tuning of their linear response functions. We also study the effects of mechanical overstimulation on the oscillatory behavior.
Millisecond-Scale Motor Encoding in a Cortical Vocal Area
NASA Astrophysics Data System (ADS)
Nemenman, Ilya; Tang, Claire; Chehayeb, Diala; Srivastava, Kyle; Sober, Samuel
2015-03-01
Studies of motor control have almost universally examined firing rates to investigate how the brain shapes behavior. In principle, however, neurons could encode information through the precise temporal patterning of their spike trains as well as (or instead of) through their firing rates. Although the importance of spike timing has been demonstrated in sensory systems, it is largely unknown whether timing differences in motor areas could affect behavior. We tested the hypothesis that significant information about trial-by-trial variations in behavior is represented by spike timing in the songbird vocal motor system. We found that neurons in motor cortex convey information via spike timing far more often than via spike rate and that the amount of information conveyed at the millisecond timescale greatly exceeds the information available from spike counts. These results demonstrate that information can be represented by spike timing in motor circuits and suggest that timing variations evoke differences in behavior. This work was supported in part by the National Institutes of Health, National Science Foundation, and James S. McDonnell Foundation
Coplanar Doppler Lidar Retrieval of Rotors from T-REX
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hill, Michael; Calhoun, Ron; Fernando, H. J. S.
2010-03-01
Two coherent Doppler lidars were deployed during the Terrain-induced Rotor EXperiment (T-REX). Coplanar Range Height Indicator (RHI) scans by the lidars (along the same azimuthal angle) allowed retrieval of two-dimensional velocity vectors on a vertical/cross-barrier plane using the least squares method. Vortices are shown to evolve and advect in the flow field, allowing analysis of their behavior in the mountain-wave-boundary layer system. The locations, magnitudes, and evolution of the vortices can be studied through calculated fields of velocity, vorticity, streamlines, and swirl. Two classes of vortical motions are identified: rotors and sub-rotors, which differ in scale and behavior. The levelmore » of coordination of the two lidars and the nature of the output (i.e., in range-gates) creates inherent restrictions on the spatial and temporal resolution of retrieved fields.« less
Brzosko, Zuzanna; Zannone, Sara; Schultz, Wolfram
2017-01-01
Spike timing-dependent plasticity (STDP) is under neuromodulatory control, which is correlated with distinct behavioral states. Previously, we reported that dopamine, a reward signal, broadens the time window for synaptic potentiation and modulates the outcome of hippocampal STDP even when applied after the plasticity induction protocol (Brzosko et al., 2015). Here, we demonstrate that sequential neuromodulation of STDP by acetylcholine and dopamine offers an efficacious model of reward-based navigation. Specifically, our experimental data in mouse hippocampal slices show that acetylcholine biases STDP toward synaptic depression, whilst subsequent application of dopamine converts this depression into potentiation. Incorporating this bidirectional neuromodulation-enabled correlational synaptic learning rule into a computational model yields effective navigation toward changing reward locations, as in natural foraging behavior. Thus, temporally sequenced neuromodulation of STDP enables associations to be made between actions and outcomes and also provides a possible mechanism for aligning the time scales of cellular and behavioral learning. DOI: http://dx.doi.org/10.7554/eLife.27756.001 PMID:28691903
Mathematical model for rhythmic protoplasmic movement in the true slime mold.
Kobayashi, Ryo; Tero, Atsushi; Nakagaki, Toshiyuki
2006-08-01
The plasmodium of the true slime mold Physarum polycephalum is a large amoeboid organism that displays "smart" behavior such as chemotaxis and the ability to solve mazes and geometrical puzzles. These amoeboid behaviors are based on the dynamics of the viscoelastic protoplasm and its biochemical rhythms. By incorporating both these aspects, we constructed a mathematical model for the dynamics of the organism as a first step towards understanding the relation between protoplasmic movement and its unusual abilities. We tested the validity of the model by comparing it with physiological observation. Our model reproduces fundamental characteristics of the spatio-temporal pattern of the rhythmic movement: (1) the antiphase oscillation between frontal tip and rear when the front is freely extending; (2) the asynchronous oscillation pattern when the front is not freely extending; and (3) the formation of protoplasmic mounds over a longer time scale. Both our model and physiological observation suggest that cell stiffness plays a primary role in plasmodial behaviors, in contrast to the conventional theory of coupled oscillator systems.
Albouy, Philippe; Weiss, Aurélien; Baillet, Sylvain; Zatorre, Robert J
2017-04-05
The implication of the dorsal stream in manipulating auditory information in working memory has been recently established. However, the oscillatory dynamics within this network and its causal relationship with behavior remain undefined. Using simultaneous MEG/EEG, we show that theta oscillations in the dorsal stream predict participants' manipulation abilities during memory retention in a task requiring the comparison of two patterns differing in temporal order. We investigated the causal relationship between brain oscillations and behavior by applying theta-rhythmic TMS combined with EEG over the MEG-identified target (left intraparietal sulcus) during the silent interval between the two stimuli. Rhythmic TMS entrained theta oscillation and boosted participants' accuracy. TMS-induced oscillatory entrainment scaled with behavioral enhancement, and both gains varied with participants' baseline abilities. These effects were not seen for a melody-comparison control task and were not observed for arrhythmic TMS. These data establish theta activity in the dorsal stream as causally related to memory manipulation. VIDEO ABSTRACT. Copyright © 2017 Elsevier Inc. All rights reserved.
Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)
NASA Astrophysics Data System (ADS)
Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.
2013-12-01
Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.
SCOPE : Future Formation-Flying Magnetospheric Satellite Mission
NASA Astrophysics Data System (ADS)
Saito, Yoshifumi
A formation flight satellite mission "SCOPE" is now under study aiming at launching in 2017. "SCOPE" stands for ‘cross Scale COupling in the Plasma universE'. The main purpose of this mission is to investigate the dynamic behaviors of plasma in the terrestrial magnetosphere that range over magnitudes of both temporal and spatial scales. The basic idea of the SCOPE mission is to distinguish temporal and spatial variations of physical processes by putting five formation flight spacecraft into the key regions of the Earth's magnetosphere. The formation consists of one large mother satellite and four small daughter satellites. Three of the four daughter satellites surround the mother satellite 3-dimensionally maintaining the mutual distances of variable ranges between 5 km and 5000 km. The fourth daughter satellite stays near the mother satellite with the distance between 5 km and 100 km. By this configuration, we can obtain both the macro-scale (1000 km - 5000 km) and micro-scale (¡ 100 km) information about the plasma disturbances at the same time. The launcher for SCOPE has been assumed to be M-V rocket (or its succession rocket) of JAXA. However, due to the termination of M-V rocket, we are now considering to use HIIA. The orbits of SCOPE satellites are all highly elliptical with its apogee 30Re from the Earth center. The inter-satellite link is used for telemetry/command operation as well as ranging to determine the relative orbits of the 5 satellites in small distances. The SCOPE mission is designed such that observational studies from the new perspective, the crossscale coupling, should be conducted. The orbit of the formation flight are designed such that the spacecraft will visit most of the key regions in the magnetosphere, including the bow shock, the magnetospheric boundary, the inner-magnetosphere, and the near-Earth magnetotail. The key issues for the realization of this mission are: (1) The need for high temporal resolution of electron measurements and quantitative wave field measurements at electron scales; (2) The need for full coverage over the energy range of interests with mass spectroscopy; (3) The need for coordinated space plasma observations by intercommunicated formation flying satellites; and (4) The need to resolve more than one-scale simultaneously. In order to cover the multiple (more than two) scales simultaneously, SCOPE and esa's Cross-Scale have started detailed discussion for the future collaboration. By this collaboration, SCOPE can reduce the number of the daughter satellites that can stay within 100 km throughout the mission life.
Consciousness and epilepsy: why are complex-partial seizures complex?
Englot, Dario J.; Blumenfeld, Hal
2010-01-01
Why do complex-partial seizures in temporal lobe epilepsy (TLE) cause a loss of consciousness? Abnormal function of the medial temporal lobe is expected to cause memory loss, but it is unclear why profoundly impaired consciousness is so common in temporal lobe seizures. Recent exciting advances in behavioral, electrophysiological, and neuroimaging techniques spanning both human patients and animal models may allow new insights into this old question. While behavioral automatisms are often associated with diminished consciousness during temporal lobe seizures, impaired consciousness without ictal motor activity has also been described. Some have argued that electrographic lateralization of seizure activity to the left temporal lobe is most likely to cause impaired consciousness, but the evidence remains equivocal. Other data correlates ictal consciousness in TLE with bilateral temporal lobe involvement of seizure spiking. Nevertheless, it remains unclear why bilateral temporal seizures should impair responsiveness. Recent evidence has shown that impaired consciousness during temporal lobe seizures is correlated with large-amplitude slow EEG activity and neuroimaging signal decreases in the frontal and parietal association cortices. This abnormal decreased function in the neocortex contrasts with fast polyspike activity and elevated cerebral blood flow in limbic and other subcortical structures ictally. Our laboratory has thus proposed the “network inhibition hypothesis,” in which seizure activity propagates to subcortical regions necessary for cortical activation, allowing the cortex to descend into an inhibited state of unconsciousness during complex-partial temporal lobe seizures. Supporting this hypothesis, recent rat studies during partial limbic seizures have shown that behavioral arrest is associated with frontal cortical slow waves, decreased neuronal firing, and hypometabolism. Animal studies further demonstrate that cortical deactivation and behavioral changes depend on seizure spread to subcortical structures including the lateral septum. Understanding the contributions of network inhibition to impaired consciousness in TLE is an important goal, as recurrent limbic seizures often result in cortical dysfunction during and between epileptic events that adversely affects patients’ quality of life. PMID:19818900
Casarrubea, M; Jonsson, G K; Faulisi, F; Sorbera, F; Di Giovanni, G; Benigno, A; Crescimanno, G; Magnusson, M S
2015-01-15
A basic tenet in the realm of modern behavioral sciences is that behavior consists of patterns in time. For this reason, investigations of behavior deal with sequences that are not easily perceivable by the unaided observer. This problem calls for improved means of detection, data handling and analysis. This review focuses on the analysis of the temporal structure of behavior carried out by means of a multivariate approach known as T-pattern analysis. Using this technique, recurring sequences of behavioral events, usually hard to detect, can be unveiled and carefully described. T-pattern analysis has been successfully applied in the study of various aspects of human or animal behavior such as behavioral modifications in neuro-psychiatric diseases, route-tracing stereotypy in mice, interaction between human subjects and animal or artificial agents, hormonal-behavioral interactions, patterns of behavior associated with emesis and, in our laboratories, exploration and anxiety-related behaviors in rodents. After describing the theory and concepts of T-pattern analysis, this review will focus on the application of the analysis to the study of the temporal characteristics of behavior in different species from rodents to human beings. This work could represent a useful background for researchers who intend to employ such a refined multivariate approach to the study of behavior. Copyright © 2014 Elsevier B.V. All rights reserved.
Examining Neural Correlates of Psychopathology Using a Lesion-Based Approach.
Calamia, Matthew; Markon, Kristian E; Sutterer, Matthew J; Tranel, Daniel
2018-06-22
Studies of individuals with focal brain damage have long been used to expand understanding of the neural basis of psychopathology. However, most previous studies were conducted using small sample sizes and relatively coarse methods for measuring psychopathology or mapping brain-behavior relationships. Here, we examined the factor structure and neural correlates of psychopathology in 232 individuals with focal brain damage, using their responses to the Minnesota Multiphasic Personality Inventory-2-Restructured Form (MMPI-2-RF). Factor analysis and voxel-based lesion symptom mapping were used to examine the structure and neural correlates of psychopathology in this sample. Consistent with existing MMPI-2-RF literature, separate internalizing, externalizing, and psychotic symptom dimensions were found. In addition, a somatic dimension likely reflecting neurological symptoms was identified. Damage to the medial temporal lobe, including the hippocampus, was associated with scales related to both internalizing problems and psychoticism. Damage to the medial temporal lobe and orbitofrontal cortex was associated with both a general distrust of others and beliefs that one is being personally targeted by others. These findings provide evidence for the critical role of dysfunction in specific frontal and temporal regions in the development of psychopathology. Copyright © 2018. Published by Elsevier Ltd.
Riley, Kristen E; Lee, Jasper S; Safren, Steven A
2017-10-01
Depression in people living with HIV/AIDS (PLWHA) is highly prevalent and related to worse adherence to antiretroviral therapy, but is amenable to change via CBT. Cognitive-behavioral therapy for adherence and depression (CBT-AD) specifically addresses negative automatic thoughts (ATs) as one component of the treatment. There is little research on the temporal nature of the relation between ATs and depression. HIV-positive adults with depression (N=240) were randomized to CBT-AD, information/supportive psychotherapy for adherence and depression (ISP-AD), or one session of adherence counseling alone (ETAU). ATs were self-reported (Automatic Thoughts Questionnaire; ATQ) and depression was assessed by blinded interview (Montgomery-Asberg Depression Rating Scale; MADRS) at baseline, and 4-, 8-, and 12-months. We performed autoregressive cross-lagged panel models. Broadly, decreases in ATs were followed by decreases in depression, but decreases in depression were not followed by decreases in ATs. In CBT-AD, decreases in ATs were followed by decreases in depression, and vice versa. However, in the ISP group, while depression and ATs both significantly influenced each other, not all relations were in the direction expected. This study adds to the evidence base for cognitive interventions to decrease depression in individuals with a chronic medical condition, HIV/AIDS.
Neural correlates of attributing causes to the self, another person and the situation
Ma, Ning; Baetens, Kris; Clément, Nikki; Van Overwalle, Frank; Vandekerckhove, Marie
2015-01-01
This study compares brain activation during causal attribution to three different loci, the self, another person and the situation; and further explores correlations with clinical scales (i.e. depression, anxiety and autism) in a typical population. While they underwent functional magnetic resonance imaging, 20 participants read short sentences about another person (‘someone’) who engaged in behaviors with the participant or made comments about the participant. The participants then attributed these behaviors to three attribution loci: themselves, the other person or the situation. The results revealed common activation across the three attribution loci in the bilateral temporo-parietal junction (TPJ), left posterior superior temporal sulcus, precuneus and right temporal pole (TP). Comparisons between the attribution loci revealed very little differences, except for increased activation of the right TP while making attributions to the situation compared with the self. In addition, when making attributions to the situation or other persons for negative events, there were reliable correlations between low activity in the left TPJ and high levels of anxiety and problematic social interaction in autism. The results indicate that attributions to different loci are based on the same underlying brain process, which might be atypical among persons with anxiety or autism symptoms. PMID:24633532
Spatio-Temporal Dynamics of Impulse Responses to Figure Motion in Optic Flow Neurons
Lee, Yu-Jen; Jönsson, H. Olof; Nordström, Karin
2015-01-01
White noise techniques have been used widely to investigate sensory systems in both vertebrates and invertebrates. White noise stimuli are powerful in their ability to rapidly generate data that help the experimenter decipher the spatio-temporal dynamics of neural and behavioral responses. One type of white noise stimuli, maximal length shift register sequences (m-sequences), have recently become particularly popular for extracting response kernels in insect motion vision. We here use such m-sequences to extract the impulse responses to figure motion in hoverfly lobula plate tangential cells (LPTCs). Figure motion is behaviorally important and many visually guided animals orient towards salient features in the surround. We show that LPTCs respond robustly to figure motion in the receptive field. The impulse response is scaled down in amplitude when the figure size is reduced, but its time course remains unaltered. However, a low contrast stimulus generates a slower response with a significantly longer time-to-peak and half-width. Impulse responses in females have a slower time-to-peak than males, but are otherwise similar. Finally we show that the shapes of the impulse response to a figure and a widefield stimulus are very similar, suggesting that the figure response could be coded by the same input as the widefield response. PMID:25955416
The neuropsychology of the Klüver-Bucy syndrome in children.
Lippe, S; Gonin-Flambois, C; Jambaqué, I
2013-01-01
The Klüver-Bucy syndrome (KBS) is characterized by a number of peculiar behavioral symptoms. The syndrome was first observed in 1939 by Heinrich Klüver and Paul Bucy in the rhesus monkey following removal of the greater portion of the monkey's temporal lobes and rhinencephalon. The animal showed (a) visual agnosia (inability to recognize objects without general loss of visual discrimination), (b) excessive oral tendency (oral exploration of objects), (c) hypermetamorphosis (excessive visual attentiveness), (d) placidity with loss of normal fear and anger responses, (e) altered sexual behavior manifesting mainly as marked and indiscriminate hypersexuality, and (f) changes in eating behavior. In humans, KBS can be complete or incomplete. It occurs as a consequence of neurological disorders that essentially cause destruction or dysfunction of bilateral mesial temporal lobe structures (i.e., Pick disease, Alzheimer disease, cerebral trauma, cerebrovascular accidents, temporal lobe epilepsy, herpetic encephalopathy, heat stroke). As for epilepsy, complete and incomplete KBS are well documented in temporal lobe epilepsy, temporal lobectomy, and partial status epilepticus. KBS can occur at any age. Children seem to show similar symptoms to adults, although some differences in the manifestations of symptoms may be related to the fact that children have not yet learned certain behaviors. Copyright © 2013 Elsevier B.V. All rights reserved.
Musical Scales in Tone Sequences Improve Temporal Accuracy.
Li, Min S; Di Luca, Massimiliano
2018-01-01
Predicting the time of stimulus onset is a key component in perception. Previous investigations of perceived timing have focused on the effect of stimulus properties such as rhythm and temporal irregularity, but the influence of non-temporal properties and their role in predicting stimulus timing has not been exhaustively considered. The present study aims to understand how a non-temporal pattern in a sequence of regularly timed stimuli could improve or bias the detection of temporal deviations. We presented interspersed sequences of 3, 4, 5, and 6 auditory tones where only the timing of the last stimulus could slightly deviate from isochrony. Participants reported whether the last tone was 'earlier' or 'later' relative to the expected regular timing. In two conditions, the tones composing the sequence were either organized into musical scales or they were random tones. In one experiment, all sequences ended with the same tone; in the other experiment, each sequence ended with a different tone. Results indicate higher discriminability of anisochrony with musical scales and with longer sequences, irrespective of the knowledge of the final tone. Such an outcome suggests that the predictability of non-temporal properties, as enabled by the musical scale pattern, can be a factor in determining the sensitivity of time judgments.
Multiscale Magnetic Underdense Regions on the Solar Surface: Granular and Mesogranular Scales
NASA Astrophysics Data System (ADS)
Berrilli, F.; Scardigli, S.; Giordano, S.
2013-02-01
The Sun is a non-equilibrium, dissipative system subject to an energy flow that originates in its core. Convective overshooting motions create temperature and velocity structures that show a temporal and spatial multiscale evolution. As a result, photospheric structures are generally considered to be a direct manifestation of convective plasma motions. The plasma flows in the photosphere govern the motion of single magnetic elements. These elements are arranged in typical patterns, which are observed as a variety of multiscale magnetic patterns. High-resolution magnetograms of the quiet solar surface revealed the presence of multiscale magnetic underdense regions in the solar photosphere, commonly called voids, which may be considered to be a signature of the underlying convective structure. The analysis of such patterns paves the way for the investigation of all turbulent convective scales, from granular to global. In order to address the question of magnetic structures driven by turbulent convection at granular and mesogranular scales, we used a voids-detection method. The computed distribution of void length scales shows an exponential behavior at scales between 2 and 10 Mm and the absence of features at mesogranular scales. The absence of preferred scales of organization in the 2 - 10 Mm range supports the multiscale nature of flows on the solar surface and the absence of a mesogranular convective scale.
A note on the temporal behavior of bucket hydrologies
NASA Technical Reports Server (NTRS)
Suarez, M. J.
1984-01-01
The use of a "canopy' bucket to more accurately represent evapotranspiration over land surfaces is explained. The temporal behavior of the traditional bucket model is compared with one that mimics the effects of interception loss. Results are presented in terms of the spectral response of the parameterization to a hypothetical white noise forcing.
Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard
2016-01-01
To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable. PMID:26872333
Zhong, Chen; Batty, Michael; Manley, Ed; Wang, Jiaqiu; Wang, Zijia; Chen, Feng; Schmitt, Gerhard
2016-01-01
To discover regularities in human mobility is of fundamental importance to our understanding of urban dynamics, and essential to city and transport planning, urban management and policymaking. Previous research has revealed universal regularities at mainly aggregated spatio-temporal scales but when we zoom into finer scales, considerable heterogeneity and diversity is observed instead. The fundamental question we address in this paper is at what scales are the regularities we detect stable, explicable, and sustainable. This paper thus proposes a basic measure of variability to assess the stability of such regularities focusing mainly on changes over a range of temporal scales. We demonstrate this by comparing regularities in the urban mobility patterns in three world cities, namely London, Singapore and Beijing using one-week of smart-card data. The results show that variations in regularity scale as non-linear functions of the temporal resolution, which we measure over a scale from 1 minute to 24 hours thus reflecting the diurnal cycle of human mobility. A particularly dramatic increase in variability occurs up to the temporal scale of about 15 minutes in all three cities and this implies that limits exist when we look forward or backward with respect to making short-term predictions. The degree of regularity varies in fact from city to city with Beijing and Singapore showing higher regularity in comparison to London across all temporal scales. A detailed discussion is provided, which relates the analysis to various characteristics of the three cities. In summary, this work contributes to a deeper understanding of regularities in patterns of transit use from variations in volumes of travellers entering subway stations, it establishes a generic analytical framework for comparative studies using urban mobility data, and it provides key points for the management of variability by policy-makers intent on for making the travel experience more amenable.
Agent-Based Modeling in Molecular Systems Biology.
Soheilypour, Mohammad; Mofrad, Mohammad R K
2018-07-01
Molecular systems orchestrating the biology of the cell typically involve a complex web of interactions among various components and span a vast range of spatial and temporal scales. Computational methods have advanced our understanding of the behavior of molecular systems by enabling us to test assumptions and hypotheses, explore the effect of different parameters on the outcome, and eventually guide experiments. While several different mathematical and computational methods are developed to study molecular systems at different spatiotemporal scales, there is still a need for methods that bridge the gap between spatially-detailed and computationally-efficient approaches. In this review, we summarize the capabilities of agent-based modeling (ABM) as an emerging molecular systems biology technique that provides researchers with a new tool in exploring the dynamics of molecular systems/pathways in health and disease. © 2018 WILEY Periodicals, Inc.
Microfluidics Expanding the Frontiers of Microbial Ecology
Rusconi, Roberto; Garren, Melissa; Stocker, Roman
2014-01-01
The ability afforded by microfluidics to observe the behaviors of microbes in highly controlled and confined microenvironments, across scales from a single cell to mixed communities, has significantly contributed to expand the frontiers of microbial ecology over the last decade. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. Here we review applications of microfluidics that have resulted in highly insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible, multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control phenomena such as biofilm formation and antibiotic resistance. PMID:24773019
Gravity Duals of Lifshitz-Like Fixed Points
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kachru, Shamit; /Stanford U., Phys. Dept. /SLAC; Liu, Xiao
2008-11-05
We find candidate macroscopic gravity duals for scale-invariant but non-Lorentz invariant fixed points, which do not have particle number as a conserved quantity. We compute two-point correlation functions which exhibit novel behavior relative to their AdS counterparts, and find holographic renormalization group flows to conformal field theories. Our theories are characterized by a dynamical critical exponent z, which governs the anisotropy between spatial and temporal scaling t {yields} {lambda}{sup z}t, x {yields} {lambda}x; we focus on the case with z = 2. Such theories describe multicritical points in certain magnetic materials and liquid crystals, and have been shown to arisemore » at quantum critical points in toy models of the cuprate superconductors. This work can be considered a small step towards making useful dual descriptions of such critical points.« less
Microfluidics expanding the frontiers of microbial ecology.
Rusconi, Roberto; Garren, Melissa; Stocker, Roman
2014-01-01
Microfluidics has significantly contributed to the expansion of the frontiers of microbial ecology over the past decade by allowing researchers to observe the behaviors of microbes in highly controlled microenvironments, across scales from a single cell to mixed communities. Spatially and temporally varying distributions of organisms and chemical cues that mimic natural microbial habitats can now be established by exploiting physics at the micrometer scale and by incorporating structures with specific geometries and materials. In this article, we review applications of microfluidics that have resulted in insightful discoveries on fundamental aspects of microbial life, ranging from growth and sensing to cell-cell interactions and population dynamics. We anticipate that this flexible multidisciplinary technology will continue to facilitate discoveries regarding the ecology of microorganisms and help uncover strategies to control microbial processes such as biofilm formation and antibiotic resistance.
Exploring the Spatiotemporal Organization of Membrane Proteins in Living Plant Cells.
Wang, Li; Xue, Yiqun; Xing, Jingjing; Song, Kai; Lin, Jinxing
2018-04-29
Plasma membrane proteins have important roles in transport and signal transduction. Deciphering the spatiotemporal organization of these proteins provides crucial information for elucidating the links between the behaviors of different molecules. However, monitoring membrane proteins without disrupting their membrane environment remains difficult. Over the past decade, many studies have developed single-molecule techniques, opening avenues for probing the stoichiometry and interactions of membrane proteins in their native environment by providing nanometer-scale spatial information and nanosecond-scale temporal information. In this review, we assess recent progress in the development of labeling and imaging technology for membrane protein analysis. We focus in particular on several single-molecule techniques for quantifying the dynamics and assembly of membrane proteins. Finally, we provide examples of how these new techniques are advancing our understanding of the complex biological functions of membrane proteins.
Orjuela-Rojas, Juan Manuel; Martínez-Juárez, Iris E; Ruiz-Chow, Angel; Crail-Melendez, Daniel
2015-10-01
There is a high prevalence of depression in patients with epilepsy, which negatively impacts their quality of life (QOL) and seizure control. Currently, the first-line of treatment for depression in patients with epilepsy is based on selective serotonin reuptake inhibitors (SSRIs). The main objective of this pilot study was to compare cognitive behavioral therapy (CBT) versus SSRIs for the treatment of major depressive disorder (MDD) in patients with temporal lobe epilepsy (TLE). Seven patients who received group CBT were compared with eight patients treated with SSRIs. All were diagnosed with MDD and TLE. Patients were assessed at baseline before treatment and at six and 12weeks during treatment with the Quality of Life in Epilepsy Scale of 31 items (QOLIE 31), the Beck Depression Inventory (BDI), and the Hospital Anxiety and Depression Scale (HADS). Seizure records were also taken on a monthly basis. After 12weeks of treatment, both groups showed improved QOL and reduced severity of depression symptoms. There were no statistically significant group differences in the final scores for the BDI (p=0.40) and QOLIE 31 (p=0.72), although the effect size on QOL was higher for the group receiving CBT. In conclusion, the present study suggests that both CBT and SSRIs may improve MDD and QOL in patients with TLE. We found no significant outcome differences between both treatment modalities. These findings support further study using a double-blind controlled design to demonstrate the efficacy of CBT and SSRIs in the treatment of MDD and QOL in patients with TLE. Copyright © 2015 Elsevier Inc. All rights reserved.
Multi-time resolution analysis of speech: evidence from psychophysics
Chait, Maria; Greenberg, Steven; Arai, Takayuki; Simon, Jonathan Z.; Poeppel, David
2015-01-01
How speech signals are analyzed and represented remains a foundational challenge both for cognitive science and neuroscience. A growing body of research, employing various behavioral and neurobiological experimental techniques, now points to the perceptual relevance of both phoneme-sized (10–40 Hz modulation frequency) and syllable-sized (2–10 Hz modulation frequency) units in speech processing. However, it is not clear how information associated with such different time scales interacts in a manner relevant for speech perception. We report behavioral experiments on speech intelligibility employing a stimulus that allows us to investigate how distinct temporal modulations in speech are treated separately and whether they are combined. We created sentences in which the slow (~4 Hz; Slow) and rapid (~33 Hz; Shigh) modulations—corresponding to ~250 and ~30 ms, the average duration of syllables and certain phonetic properties, respectively—were selectively extracted. Although Slow and Shigh have low intelligibility when presented separately, dichotic presentation of Shigh with Slow results in supra-additive performance, suggesting a synergistic relationship between low- and high-modulation frequencies. A second experiment desynchronized presentation of the Slow and Shigh signals. Desynchronizing signals relative to one another had no impact on intelligibility when delays were less than ~45 ms. Longer delays resulted in a steep intelligibility decline, providing further evidence of integration or binding of information within restricted temporal windows. Our data suggest that human speech perception uses multi-time resolution processing. Signals are concurrently analyzed on at least two separate time scales, the intermediate representations of these analyses are integrated, and the resulting bound percept has significant consequences for speech intelligibility—a view compatible with recent insights from neuroscience implicating multi-timescale auditory processing. PMID:26136650
An investigation of Hebbian phase sequences as assembly graphs
Almeida-Filho, Daniel G.; Lopes-dos-Santos, Vitor; Vasconcelos, Nivaldo A. P.; Miranda, José G. V.; Tort, Adriano B. L.; Ribeiro, Sidarta
2014-01-01
Hebb proposed that synapses between neurons that fire synchronously are strengthened, forming cell assemblies and phase sequences. The former, on a shorter scale, are ensembles of synchronized cells that function transiently as a closed processing system; the latter, on a larger scale, correspond to the sequential activation of cell assemblies able to represent percepts and behaviors. Nowadays, the recording of large neuronal populations allows for the detection of multiple cell assemblies. Within Hebb's theory, the next logical step is the analysis of phase sequences. Here we detected phase sequences as consecutive assembly activation patterns, and then analyzed their graph attributes in relation to behavior. We investigated action potentials recorded from the adult rat hippocampus and neocortex before, during and after novel object exploration (experimental periods). Within assembly graphs, each assembly corresponded to a node, and each edge corresponded to the temporal sequence of consecutive node activations. The sum of all assembly activations was proportional to firing rates, but the activity of individual assemblies was not. Assembly repertoire was stable across experimental periods, suggesting that novel experience does not create new assemblies in the adult rat. Assembly graph attributes, on the other hand, varied significantly across behavioral states and experimental periods, and were separable enough to correctly classify experimental periods (Naïve Bayes classifier; maximum AUROCs ranging from 0.55 to 0.99) and behavioral states (waking, slow wave sleep, and rapid eye movement sleep; maximum AUROCs ranging from 0.64 to 0.98). Our findings agree with Hebb's view that assemblies correspond to primitive building blocks of representation, nearly unchanged in the adult, while phase sequences are labile across behavioral states and change after novel experience. The results are compatible with a role for phase sequences in behavior and cognition. PMID:24782715
The social competence and behavioral problem substrate of new- and recent-onset childhood epilepsy.
Almane, Dace; Jones, Jana E; Jackson, Daren C; Seidenberg, Michael; Hermann, Bruce P
2014-02-01
This study examined patterns of syndrome-specific problems in behavior and competence in children with new- or recent-onset epilepsy compared with healthy controls. Research participants consisted of 205 children aged 8-18, including youth with recent-onset epilepsy (n=125, 64 localization-related epilepsy [LRE] and 61 idiopathic generalized epilepsy [IGE]) and healthy first-degree cousin controls (n=80). Parents completed the Child Behavior Checklist for children aged 6-18 (CBCL/6-18) from the Achenbach System of Empirically Based Assessment (ASEBA). Dependent variables included Total Competence, Total Problems, Total Internalizing, Total Externalizing, and Other Problems scales. Comparisons of children with LRE and IGE with healthy controls were examined followed by comparisons of healthy controls with those having specific epilepsy syndromes of LRE (BECTS, Frontal/Temporal Lobe, and Focal NOS) and IGE (Absence, Juvenile Myoclonic, and IGE NOS). Children with LRE and/or IGE differed significantly (p<0.05) from healthy controls, but did not differ from each other, across measures of behavior (Total Problems, Total Internalizing, Total Externalizing, and Other Problems including Thought and Attention Problems) or competence (Total Competence including School and Social). Similarly, children with specific syndromes of LRE and IGE differed significantly (p<0.05) from controls across measures of behavior (Total Problems, Total Internalizing, and Other Problems including Attention Problems) and competence (Total Competence including School). Only on the Thought Problems scale were there syndrome differences. In conclusion, children with recent-onset epilepsy present with significant behavioral problems and lower competence compared with controls, with little syndrome specificity whether defined broadly (LRE and IGE) or narrowly (specific syndromes of LRE and IGE). Copyright © 2013 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jiali; Swati, F. N. U.; Stein, Michael L.
Regional climate models (RCMs) are a standard tool for downscaling climate forecasts to finer spatial scales. The evaluation of RCMs against observational data is an important step in building confidence in the use of RCMs for future prediction. In addition to model performance in climatological means and marginal distributions, a model’s ability to capture spatio-temporal relationships is important. This study develops two approaches: (1) spatial correlation/variogram for a range of spatial lags, with total monthly precipitation and non-seasonal precipitation components used to assess the spatial variations of precipitation; and (2) spatio-temporal correlation for a wide range of distances, directions, andmore » time lags, with daily precipitation occurrence used to detect the dynamic features of precipitation. These measures of spatial and spatio-temporal dependence are applied to a high-resolution RCM run and to the National Center for Environmental Prediction (NCEP)-U.S. Department of Energy (DOE) AMIP II reanalysis data (NCEP-R2), which provides initial and lateral boundary conditions for the RCM. The RCM performs better than NCEP-R2 in capturing both the spatial variations of total and non-seasonal precipitation components and the spatio-temporal correlations of daily precipitation occurrences, which are related to dynamic behaviors of precipitating systems. The improvements are apparent not just at resolutions finer than that of NCEP-R2, but also when the RCM and observational data are aggregated to the resolution of NCEP-R2.« less
NASA Astrophysics Data System (ADS)
Bevilacqua, Andrea; Flandoli, Franco; Neri, Augusto; Isaia, Roberto; Vitale, Stefano
2016-11-01
After the large-scale event of Neapolitan Yellow Tuff ( 15 ka B.P.), intense and mostly explosive volcanism has occurred within and along the boundaries of the Campi Flegrei caldera (Italy). Eruptions occurred closely spaced in time, over periods from a few centuries to a few millennia, and were alternated with periods of quiescence lasting up to several millennia. Often events also occurred closely in space, thus generating a cluster of events. This study had two main objectives: (1) to describe the uncertainty in the geologic record by using a quantitative model and (2) to develop, based on the uncertainty assessment, a long-term subdomain specific temporal probability model that describes the temporal and spatial eruptive behavior of the caldera. In particular, the study adopts a space-time doubly stochastic nonhomogeneous Poisson-type model with a local self-excitation feature able to generate clustering of events which are consistent with the reconstructed record of Campi Flegrei. Results allow the evaluation of similarities and differences between the three epochs of activity as well as to derive eruptive base rate of the caldera and its capacity to generate clusters of events. The temporal probability model is also used to investigate the effect of the most recent eruption of Monte Nuovo (A.D. 1538) in a possible reactivation of the caldera and to estimate the time to the next eruption under different volcanological and modeling assumptions.
Affective traits and history of depression are related to ventral striatum connectivity.
DelDonno, Sophie R; Jenkins, Lisanne M; Crane, Natania A; Nusslock, Robin; Ryan, Kelly A; Shankman, Stewart A; Phan, K Luan; Langenecker, Scott A
2017-10-15
Studying remitted Major Depressive Disorder (rMDD) facilitates a better understanding of neural mechanisms for risk, given that confounding effects of active symptoms are removed. Disrupted functional connectivity has been reported in multiple networks in MDD. However, no study to date of rMDD has specifically examined connectivity of the ventral striatum (VS), a region highly implicated in reward and motivation. We investigated functional connectivity of the VS in individuals with and without a history of MDD, and in relation to affective personality traits. Forty-two individuals with rMDD and 28 healthy controls across two sites completed resting-state fMRI and the Behavioral Inhibition System/Behavioral Activation System Scale. Voxel-wise, whole-brain comparisons were conducted across and between groups for four seeds: left and right inferior VS (VSi), left and right superior VS (VSs). VSs connectivity to temporal and subcortical regions including the putamen and amygdala was positive and greater in HCs compared to rMDD individuals. Across groups, VSi connectivity was positively correlated with trait reward-responsiveness in somatomotor regions. Across groups, VSs connectivity was positively correlated with trait drive, particularly in the putamen, parahippocampal, and inferior temporal gyrus, and was negatively associated with trait behavioral inhibition in the anterior cingulate, frontal gyri, and insula. Limitations include scanning at two sites and using multiple comparisons. Group connectivity differences emerged from the VSs rather than VSi. VSs showed associations with trait drive and behavioral inhibition, whereas VSi corrrelated with reward-responsiveness. Depression history and affective traits contribute meaningful and specific information about VS connectivity in understanding risk for MDD. Copyright © 2017 Elsevier B.V. All rights reserved.
Carolyn B. Meyer; Sherri L. Miller; C. John Ralph
2004-01-01
The scale at which habitat variables are measured affects the accuracy of resource selection functions in predicting animal use of sites. We used logistic regression models for a wide-ranging species, the marbled murrelet, (Brachyramphus marmoratus) in a large region in California to address how much changing the spatial or temporal scale of...
NASA Astrophysics Data System (ADS)
Li, Shuangcai; Duffy, Christopher J.
2011-03-01
Our ability to predict complex environmental fluid flow and transport hinges on accurate and efficient simulations of multiple physical phenomenon operating simultaneously over a wide range of spatial and temporal scales, including overbank floods, coastal storm surge events, drying and wetting bed conditions, and simultaneous bed form evolution. This research implements a fully coupled strategy for solving shallow water hydrodynamics, sediment transport, and morphological bed evolution in rivers and floodplains (PIHM_Hydro) and applies the model to field and laboratory experiments that cover a wide range of spatial and temporal scales. The model uses a standard upwind finite volume method and Roe's approximate Riemann solver for unstructured grids. A multidimensional linear reconstruction and slope limiter are implemented, achieving second-order spatial accuracy. Model efficiency and stability are treated using an explicit-implicit method for temporal discretization with operator splitting. Laboratory-and field-scale experiments were compiled where coupled processes across a range of scales were observed and where higher-order spatial and temporal accuracy might be needed for accurate and efficient solutions. These experiments demonstrate the ability of the fully coupled strategy in capturing dynamics of field-scale flood waves and small-scale drying-wetting processes.
On temporal stochastic modeling of precipitation, nesting models across scales
NASA Astrophysics Data System (ADS)
Paschalis, Athanasios; Molnar, Peter; Fatichi, Simone; Burlando, Paolo
2014-01-01
We analyze the performance of composite stochastic models of temporal precipitation which can satisfactorily reproduce precipitation properties across a wide range of temporal scales. The rationale is that a combination of stochastic precipitation models which are most appropriate for specific limited temporal scales leads to better overall performance across a wider range of scales than single models alone. We investigate different model combinations. For the coarse (daily) scale these are models based on Alternating renewal processes, Markov chains, and Poisson cluster models, which are then combined with a microcanonical Multiplicative Random Cascade model to disaggregate precipitation to finer (minute) scales. The composite models were tested on data at four sites in different climates. The results show that model combinations improve the performance in key statistics such as probability distributions of precipitation depth, autocorrelation structure, intermittency, reproduction of extremes, compared to single models. At the same time they remain reasonably parsimonious. No model combination was found to outperform the others at all sites and for all statistics, however we provide insight on the capabilities of specific model combinations. The results for the four different climates are similar, which suggests a degree of generality and wider applicability of the approach.
Dynamical Adaptation in Photoreceptors
Clark, Damon A.; Benichou, Raphael; Meister, Markus; Azeredo da Silveira, Rava
2013-01-01
Adaptation is at the heart of sensation and nowhere is it more salient than in early visual processing. Light adaptation in photoreceptors is doubly dynamical: it depends upon the temporal structure of the input and it affects the temporal structure of the response. We introduce a non-linear dynamical adaptation model of photoreceptors. It is simple enough that it can be solved exactly and simulated with ease; analytical and numerical approaches combined provide both intuition on the behavior of dynamical adaptation and quantitative results to be compared with data. Yet the model is rich enough to capture intricate phenomenology. First, we show that it reproduces the known phenomenology of light response and short-term adaptation. Second, we present new recordings and demonstrate that the model reproduces cone response with great precision. Third, we derive a number of predictions on the response of photoreceptors to sophisticated stimuli such as periodic inputs, various forms of flickering inputs, and natural inputs. In particular, we demonstrate that photoreceptors undergo rapid adaptation of response gain and time scale, over ∼ 300 ms—i. e., over the time scale of the response itself—and we confirm this prediction with data. For natural inputs, this fast adaptation can modulate the response gain more than tenfold and is hence physiologically relevant. PMID:24244119
Disentangling how landscape spatial and temporal heterogeneity affects Savanna birds.
Price, Bronwyn; McAlpine, Clive A; Kutt, Alex S; Ward, Doug; Phinn, Stuart R; Ludwig, John A
2013-01-01
In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1-100 ha) and landscape (100-1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes.
Disentangling How Landscape Spatial and Temporal Heterogeneity Affects Savanna Birds
Price, Bronwyn; McAlpine, Clive A.; Kutt, Alex S.; Ward, Doug; Phinn, Stuart R.; Ludwig, John A.
2013-01-01
In highly seasonal tropical environments, temporal changes in habitat and resources are a significant determinant of the spatial distribution of species. This study disentangles the effects of spatial and mid to long-term temporal heterogeneity in habitat on the diversity and abundance of savanna birds by testing four competing conceptual models of varying complexity. Focussing on sites in northeast Australia over a 20 year time period, we used ground cover and foliage projected cover surfaces derived from a time series of Landsat Thematic Mapper imagery, rainfall data and site-level vegetation surveys to derive measures of habitat structure at local (1–100 ha) and landscape (100–1000s ha) scales. We used generalised linear models and an information theoretic approach to test the independent effects of spatial and temporal influences on savanna bird diversity and the abundance of eight species with different life-history behaviours. Of four competing models defining influences on assemblages of savanna birds, the most parsimonious included temporal and spatial variability in vegetation cover and site-scale vegetation structure, suggesting savanna bird species respond to spatial and temporal habitat heterogeneity at both the broader landscape scale and at the fine-scale. The relative weight, strength and direction of the explanatory variables changed with each of the eight species, reflecting their different ecology and behavioural traits. This study demonstrates that variations in the spatial pattern of savanna vegetation over periods of 10 to 20 years at the local and landscape scale strongly affect bird diversity and abundance. Thus, it is essential to monitor and manage both spatial and temporal variability in avian habitat to achieve long-term biodiversity outcomes. PMID:24066138
Navigational strategies underlying phototaxis in larval zebrafish
Chen, Xiuye; Engert, Florian
2014-01-01
Understanding how the brain transforms sensory input into complex behavior is a fundamental question in systems neuroscience. Using larval zebrafish, we study the temporal component of phototaxis, which is defined as orientation decisions based on comparisons of light intensity at successive moments in time. We developed a novel “Virtual Circle” assay where whole-field illumination is abruptly turned off when the fish swims out of a virtually defined circular border, and turned on again when it returns into the circle. The animal receives no direct spatial cues and experiences only whole-field temporal light changes. Remarkably, the fish spends most of its time within the invisible virtual border. Behavioral analyses of swim bouts in relation to light transitions were used to develop four discrete temporal algorithms that transform the binary visual input (uniform light/uniform darkness) into the observed spatial behavior. In these algorithms, the turning angle is dependent on the behavioral history immediately preceding individual turning events. Computer simulations show that the algorithms recapture most of the swim statistics of real fish. We discovered that turning properties in larval zebrafish are distinctly modulated by temporal step functions in light intensity in combination with the specific motor history preceding these turns. Several aspects of the behavior suggest memory usage of up to 10 swim bouts (~10 sec). Thus, we show that a complex behavior like spatial navigation can emerge from a small number of relatively simple behavioral algorithms. PMID:24723859
CMAQ MODELING FOR AIR TOXICS AT FINE SCALES: A PROTOTYPE STUDY
Toxic air pollutants (TAPs) or hazardous air pollutants (HAPs) exhibit considerable spatial and temporal variability across urban areas. Therefore, the ability of chemical transport models (CTMs), e.g. Community Multi-scale Air Quality (CMAQ), to reproduce the spatial and tempor...
Central Presbycusis: A Review and Evaluation of the Evidence
Humes, Larry E.; Dubno, Judy R.; Gordon-Salant, Sandra; Lister, Jennifer J.; Cacace, Anthony T.; Cruickshanks, Karen J.; Gates, George A.; Wilson, Richard H.; Wingfield, Arthur
2018-01-01
Background The authors reviewed the evidence regarding the existence of age-related declines in central auditory processes and the consequences of any such declines for everyday communication. Purpose This report summarizes the review process and presents its findings. Data Collection and Analysis The authors reviewed 165 articles germane to central presbycusis. Of the 165 articles, 132 articles with a focus on human behavioral measures for either speech or nonspeech stimuli were selected for further analysis. Results For 76 smaller-scale studies of speech understanding in older adults reviewed, the following findings emerged: (1) the three most commonly studied behavioral measures were speech in competition, temporally distorted speech, and binaural speech perception (especially dichotic listening); (2) for speech in competition and temporally degraded speech, hearing loss proved to have a significant negative effect on performance in most of the laboratory studies; (3) significant negative effects of age, unconfounded by hearing loss, were observed in most of the studies of speech in competing speech, time-compressed speech, and binaural speech perception; and (4) the influence of cognitive processing on speech understanding has been examined much less frequently, but when included, significant positive associations with speech understanding were observed. For 36 smaller-scale studies of the perception of nonspeech stimuli by older adults reviewed, the following findings emerged: (1) the three most frequently studied behavioral measures were gap detection, temporal discrimination, and temporal-order discrimination or identification; (2) hearing loss was seldom a significant factor; and (3) negative effects of age were almost always observed. For 18 studies reviewed that made use of test batteries and medium-to-large sample sizes, the following findings emerged: (1) all studies included speech-based measures of auditory processing; (2) 4 of the 18 studies included nonspeech stimuli; (3) for the speech-based measures, monaural speech in a competing-speech background, dichotic speech, and monaural time-compressed speech were investigated most frequently; (4) the most frequently used tests were the Synthetic Sentence Identification (SSI) test with Ipsilateral Competing Message (ICM), the Dichotic Sentence Identification (DSI) test, and time-compressed speech; (5) many of these studies using speech-based measures reported significant effects of age, but most of these studies were confounded by declines in hearing, cognition, or both; (6) for nonspeech auditory-processing measures, the focus was on measures of temporal processing in all four studies; (7) effects of cognition on nonspeech measures of auditory processing have been studied less frequently, with mixed results, whereas the effects of hearing loss on performance were minimal due to judicious selection of stimuli; and (8) there is a paucity of observational studies using test batteries and longitudinal designs. Conclusions Based on this review of the scientific literature, there is insufficient evidence to confirm the existence of central presbycusis as an isolated entity. On the other hand, recent evidence has been accumulating in support of the existence of central presbycusis as a multifactorial condition that involves age- and/or disease-related changes in the auditory system and in the brain. Moreover, there is a clear need for additional research in this area. PMID:22967738
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas
NASA Astrophysics Data System (ADS)
Eigen, Christoph; Glidden, Jake A. P.; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P.
2017-12-01
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N . In the degenerate and thermal regimes, the per-particle loss rate is ∝N2 /3 and N26 /9, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
Universal Scaling Laws in the Dynamics of a Homogeneous Unitary Bose Gas.
Eigen, Christoph; Glidden, Jake A P; Lopes, Raphael; Navon, Nir; Hadzibabic, Zoran; Smith, Robert P
2017-12-22
We study the dynamics of an initially degenerate homogeneous Bose gas after an interaction quench to the unitary regime at a magnetic Feshbach resonance. As the cloud decays and heats, it exhibits a crossover from degenerate- to thermal-gas behavior, both of which are characterized by universal scaling laws linking the particle-loss rate to the total atom number N. In the degenerate and thermal regimes, the per-particle loss rate is ∝N^{2/3} and N^{26/9}, respectively. The crossover occurs at a universal kinetic energy per particle and at a universal time after the quench, in units of energy and time set by the gas density. By slowly sweeping the magnetic field away from the resonance and creating a mixture of atoms and molecules, we also map out the dynamics of correlations in the unitary gas, which display a universal temporal scaling with the gas density, and reach a steady state while the gas is still degenerate.
F/A-18 1/9th scale model tail buffet measurements
NASA Technical Reports Server (NTRS)
Martin, C. A.; Glaister, M. K.; Maclaren, L. D.; Meyn, L. A.; Ross, J.
1991-01-01
Wind tunnel tests were carried out on a 1/9th scale model of the F/A-18 at high angles of attack to investigate the characteristics of tail buffet due to bursting of the wing leading edge extension (LEX) vortices. The tests were carried out at the Aeronautical Research Laboratory low-speed wind tunnel facility and form part of a collaborative activity with NASA Ames Research Center, organized by The Technical Cooperative Program (TTCP). Information from the program will be used in the planning of similar collaborative tests, to be carried out at NASA Ames, on a full-scale aircraft. The program covered the measurement of unsteady pressures and fin vibration for cases with and without the wing LEX fences fitted. Fourier transform methods were used to analyze the unsteady data, and information on the spatial and temporal content of the vortex burst pressure field was obtained. Flow visualization of the vortex behavior was carried out using smoke and a laser light sheet technique.
NASA Astrophysics Data System (ADS)
Lin, Aijing; Shang, Pengjian
2016-04-01
Considering the diverse application of multifractal techniques in natural scientific disciplines, this work underscores the versatility of multiscale multifractal detrended fluctuation analysis (MMA) method to investigate artificial and real-world data sets. The modified MMA method based on cumulative distribution function is proposed with the objective of quantifying the scaling exponent and multifractality of nonstationary time series. It is demonstrated that our approach can provide a more stable and faithful description of multifractal properties in comprehensive range rather than fixing the window length and slide length. Our analyzes based on CDF-MMA method reveal significant differences in the multifractal characteristics in the temporal dynamics between US and Chinese stock markets, suggesting that these two stock markets might be regulated by very different mechanism. The CDF-MMA method is important for evidencing the stable and fine structure of multiscale and multifractal scaling behaviors and can be useful to deepen and broaden our understanding of scaling exponents and multifractal characteristics.
Temporal horizon: modulation by smoking status and gender
Jones, Bryan A.; Landes, Reid D.; Yi, Richard; Bickel, Warren K.
2009-01-01
Recently, delay discounting has been argued to be conceptually consistent with the notion of temporal horizon (Bickel et al., 2008). Temporal horizon refers to the temporal distance over which behavioral events or objects can influence behavior. Here we examine the results on two putative measures of temporal horizon, future time perspective (FTP) and delay discounting, collected over three separate studies (n = 227), to determine the influence of smoking and gender on temporal horizon. By comparing the results on these temporal horizon measures we address our population of interest: women who smoke. One of the measures of FTP indicates that smoking women have a shorter temporal horizon than their nonsmoking counterparts. Additionally, the story completion measures of FTP are positively correlated with delay discounting. In contrast, results of delay discounting measures showed no difference between smoking women and nonsmoking women, while results of delay discounting measures indicated smoking men have a shorter temporal horizon than non-smoking men. Additionally, the results of the FTP story completion measure indicated that lower third income earners had a shortened temporal horizon compared to upper third income earners. A possible explanation for these results is explored, and the implications of the modulation of temporal horizon by gender and smoking are discussed. PMID:19446407
Watanabe, Hayafumi; Sano, Yukie; Takayasu, Hideki; Takayasu, Misako
2016-11-01
To elucidate the nontrivial empirical statistical properties of fluctuations of a typical nonsteady time series representing the appearance of words in blogs, we investigated approximately 3×10^{9} Japanese blog articles over a period of six years and analyze some corresponding mathematical models. First, we introduce a solvable nonsteady extension of the random diffusion model, which can be deduced by modeling the behavior of heterogeneous random bloggers. Next, we deduce theoretical expressions for both the temporal and ensemble fluctuation scalings of this model, and demonstrate that these expressions can reproduce all empirical scalings over eight orders of magnitude. Furthermore, we show that the model can reproduce other statistical properties of time series representing the appearance of words in blogs, such as functional forms of the probability density and correlations in the total number of blogs. As an application, we quantify the abnormality of special nationwide events by measuring the fluctuation scalings of 1771 basic adjectives.
Scaling of seismicity induced by nonlinear fluid-rock interaction after an injection stop
NASA Astrophysics Data System (ADS)
Johann, L.; Dinske, C.; Shapiro, S. A.
2016-11-01
Fluid injections into unconventional reservoirs, performed for fluid-mobility enhancement, are accompanied by microseismic activity also after the injection. Previous studies revealed that the triggering of seismic events can be effectively described by nonlinear diffusion of pore fluid pressure perturbations where the hydraulic diffusivity becomes pressure dependent. The spatiotemporal distribution of postinjection-induced microseismicity has two important features: the triggering front, corresponding to early and distant events, and the back front, representing the time-dependent spatial envelope of the growing seismic quiescence zone. Here for the first time, we describe analytically the temporal behavior of these two fronts after the injection stop in the case of nonlinear pore fluid pressure diffusion. We propose a scaling law for the fronts and show that they are sensitive to the degree of nonlinearity and to the Euclidean dimension of the dominant growth of seismicity clouds. To validate the theoretical finding, we numerically model nonlinear pore fluid pressure diffusion and generate synthetic catalogs of seismicity. Additionally, we apply the new scaling relation to several case studies of injection-induced seismicity. The derived scaling laws describe well synthetic and real data.
NASA Astrophysics Data System (ADS)
Grasso, J. R.; Bachèlery, P.
Self-organized systems are often used to describe natural phenomena where power laws and scale invariant geometry are observed. The Piton de la Fournaise volcano shows power-law behavior in many aspects. These include the temporal distribution of eruptions, the frequency-size distributions of induced earthquakes, dikes, fissures, lava flows and interflow periods, all evidence of self-similarity over a finite scale range. We show that the bounds to scale-invariance can be used to derive geomechanical constraints on both the volcano structure and the volcano mechanics. We ascertain that the present magma bodies are multi-lens reservoirs in a quasi-eruptive condition, i.e. a marginally critical state. The scaling organization of dynamic fluid-induced observables on the volcano, such as fluid induced earthquakes, dikes and surface fissures, appears to be controlled by underlying static hierarchical structure (geology) similar to that proposed for fluid circulations in human physiology. The emergence of saturation lengths for the scalable volcanic observable argues for the finite scalability of complex naturally self-organized critical systems, including volcano dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Akiba, M., E-mail: akiba@nict.go.jp; Tsujino, K.
This paper offers a theoretical explanation of the temperature and temporal dependencies of transient dark count rates (DCRs) measured for a linear-mode silicon avalanche photodiode (APD) and the dependencies of afterpulsing that were measured in Geiger-mode Si and InGaAs/InP APDs. The temporal dependencies exhibit power-law behavior, at least to some extent. For the transient DCR, the value of the DCR for a given time period increases with decreases in temperature, while the power-law behavior remains unchanged. The transient DCR is attributed to electron emissions from traps in the multiplication layer of the APD with a high electric field, and itsmore » temporal dependence is explained by a continuous change in the electron emission rate as a function of the electric field strength. The electron emission rate is calculated using a quantum model for phonon-assisted tunnel emission. We applied the theory to the temporal dependence of afterpulsing that was measured for Si and InGaAs/InP APDs. The power-law temporal dependence is attributed to the power-law function of the electron emission rate from the traps as a function of their position across the p–n junction of the APD. Deviations from the power-law temporal dependence can be derived from the upper and lower limits of the electric field strength.« less
High-resolution Temporal Representations of Alcohol and Tobacco Behaviors from Social Media Data
Huang, Tom; Elghafari, Anas; Relia, Kunal; Chunara, Rumi
2017-01-01
Understanding tobacco- and alcohol-related behavioral patterns is critical for uncovering risk factors and potentially designing targeted social computing intervention systems. Given that we make choices multiple times per day, hourly and daily patterns are critical for better understanding behaviors. Here, we combine natural language processing, machine learning and time series analyses to assess Twitter activity specifically related to alcohol and tobacco consumption and their sub-daily, daily and weekly cycles. Twitter self-reports of alcohol and tobacco use are compared to other data streams available at similar temporal resolution. We assess if discussion of drinking by inferred underage versus legal age people or discussion of use of different types of tobacco products can be differentiated using these temporal patterns. We find that time and frequency domain representations of behaviors on social media can provide meaningful and unique insights, and we discuss the types of behaviors for which the approach may be most useful. PMID:29264592
Audiovisual Temporal Processing and Synchrony Perception in the Rat.
Schormans, Ashley L; Scott, Kaela E; Vo, Albert M Q; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L
2016-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer's ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats ( n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats ( n = 7) perceived the synchronous audiovisual stimuli to be "visual first" for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20-40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level.
Audiovisual Temporal Processing and Synchrony Perception in the Rat
Schormans, Ashley L.; Scott, Kaela E.; Vo, Albert M. Q.; Tyker, Anna; Typlt, Marei; Stolzberg, Daniel; Allman, Brian L.
2017-01-01
Extensive research on humans has improved our understanding of how the brain integrates information from our different senses, and has begun to uncover the brain regions and large-scale neural activity that contributes to an observer’s ability to perceive the relative timing of auditory and visual stimuli. In the present study, we developed the first behavioral tasks to assess the perception of audiovisual temporal synchrony in rats. Modeled after the parameters used in human studies, separate groups of rats were trained to perform: (1) a simultaneity judgment task in which they reported whether audiovisual stimuli at various stimulus onset asynchronies (SOAs) were presented simultaneously or not; and (2) a temporal order judgment task in which they reported whether they perceived the auditory or visual stimulus to have been presented first. Furthermore, using in vivo electrophysiological recordings in the lateral extrastriate visual (V2L) cortex of anesthetized rats, we performed the first investigation of how neurons in the rat multisensory cortex integrate audiovisual stimuli presented at different SOAs. As predicted, rats (n = 7) trained to perform the simultaneity judgment task could accurately (~80%) identify synchronous vs. asynchronous (200 ms SOA) trials. Moreover, the rats judged trials at 10 ms SOA to be synchronous, whereas the majority (~70%) of trials at 100 ms SOA were perceived to be asynchronous. During the temporal order judgment task, rats (n = 7) perceived the synchronous audiovisual stimuli to be “visual first” for ~52% of the trials, and calculation of the smallest timing interval between the auditory and visual stimuli that could be detected in each rat (i.e., the just noticeable difference (JND)) ranged from 77 ms to 122 ms. Neurons in the rat V2L cortex were sensitive to the timing of audiovisual stimuli, such that spiking activity was greatest during trials when the visual stimulus preceded the auditory by 20–40 ms. Ultimately, given that our behavioral and electrophysiological results were consistent with studies conducted on human participants and previous recordings made in multisensory brain regions of different species, we suggest that the rat represents an effective model for studying audiovisual temporal synchrony at both the neuronal and perceptual level. PMID:28119580
High resolution modeling of a small urban catchment
NASA Astrophysics Data System (ADS)
Skouri-Plakali, Ilektra; Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel
2016-04-01
Flooding is one of the most complex issues that urban environments have to deal with. In France, flooding remains the first natural risk with 72% of decrees state of natural disaster issued between October 1982 and mid-November 2014. Flooding is a result of meteorological extremes that are usually aggravated by the hydrological behavior of urban catchments and human factors. The continuing urbanization process is indeed changing the whole urban water cycle by limiting the infiltration and promoting runoff. Urban environments are very complex systems due to their extreme variability, the interference between human activities and natural processes but also the effect of the ongoing urbanization process that changes the landscape and hardly influences their hydrologic behavior. Moreover, many recent works highlight the need to simulate all urban water processes at their specific temporal and spatial scales. However, considering urban catchments heterogeneity still challenging for urban hydrology, even after advances noticed in term of high-resolution data collection and computational resources. This issue is more to be related to the architecture of urban models being used and how far these models are ready to take into account the extreme variability of urban catchments. In this work, high spatio-temporal resolution modeling is performed for a small and well-equipped urban catchment. The aim of this work is to identify urban modeling needs in terms of spatial and temporal resolution especially for a very small urban area (3.7 ha urban catchment located in the Perreux-sur-Marne city at the southeast of Paris) MultiHydro model was selected to carry out this work, it is a physical based and fully distributed model that interacts four existing modules each of them representing a portion of the water cycle in urban environments. MultiHydro was implemented at 10m, 5m and 2m resolution. Simulations were performed at different spatio-temporal resolutions and analyzed with respect to real flow measurements. First Results coming out show improvements obtained in terms of the model performance at high spatio-temporal resolution.
Seeber, Martin; Scherer, Reinhold; Müller-Putz, Gernot R
2016-11-16
Sequencing and timing of body movements are essential to perform motoric tasks. In this study, we investigate the temporal relation between cortical oscillations and human motor behavior (i.e., rhythmic finger movements). High-density EEG recordings were used for source imaging based on individual anatomy. We separated sustained and movement phase-related EEG source amplitudes based on the actual finger movements recorded by a data glove. Sustained amplitude modulations in the contralateral hand area show decrease for α (10-12 Hz) and β (18-24 Hz), but increase for high γ (60-80 Hz) frequencies during the entire movement period. Additionally, we found movement phase-related amplitudes, which resembled the flexion and extension sequence of the fingers. Especially for faster movement cadences, movement phase-related amplitudes included high β (24-30 Hz) frequencies in prefrontal areas. Interestingly, the spectral profiles and source patterns of movement phase-related amplitudes differed from sustained activities, suggesting that they represent different frequency-specific large-scale networks. First, networks were signified by the sustained element, which statically modulate their synchrony levels during continuous movements. These networks may upregulate neuronal excitability in brain regions specific to the limb, in this study the right hand area. Second, movement phase-related networks, which modulate their synchrony in relation to the movement sequence. We suggest that these frequency-specific networks are associated with distinct functions, including top-down control, sensorimotor prediction, and integration. The separation of different large-scale networks, we applied in this work, improves the interpretation of EEG sources in relation to human motor behavior. EEG recordings provide high temporal resolution suitable to relate cortical oscillations to actual movements. Investigating EEG sources during rhythmic finger movements, we distinguish sustained from movement phase-related amplitude modulations. We separate these two EEG source elements motivated by our previous findings in gait. Here, we found two types of large-scale networks, representing the right fingers in distinction from the time sequence of the movements. These findings suggest that EEG source amplitudes reconstructed in a cortical patch are the superposition of these simultaneously present network activities. Separating these frequency-specific networks is relevant for studying function and possible dysfunction of the cortical sensorimotor system in humans as well as to provide more advanced features for brain-computer interfaces. Copyright © 2016 the authors 0270-6474/16/3611671-11$15.00/0.
Emotions induced by intracerebral electrical stimulation of the temporal lobe.
Meletti, Stefano; Tassi, Laura; Mai, Roberto; Fini, Nicola; Tassinari, Carlo Alberto; Russo, Giorgio Lo
2006-01-01
To assess the quality and frequency of emotions induced by intracerebral electrical stimulation of the temporal lobe. Behavioral responses were obtained by electrical stimulation in 74 patients undergoing presurgical video-stereo-EEG monitoring for drug-resistant epilepsy. Intracerebral electrical stimulation was performed by delivering trains of electrical stimuli of alternating polarity; the intensity could vary from 0.2 to 3 mA. Stimulation frequency was 1 Hz or 50 Hz. Nine hundred thirty-eight stimulation procedures were performed. Seventy-nine emotional responses (ERs) were obtained (8.4%). Of these, 67 were "fear responses." Sad feelings were evoked 3 times, happy-pleasant feelings 9 times. Anger and disgust were never observed. The following variables affected the incidence of ER: (a) Anatomical site of stimulation. ERs (always fear) were maximal at the amygdala (12%) and minimal for lateral neocortical stimulation (3%, p < 0.01). (b) Pathology. Stimulation of a temporal lobe with hippocampal sclerosis was associated with a lower frequency of ERs compared with stimulation of a temporal lobe with no evidence of atrophy in the medial temporal structures. (c) Stimulation frequency. ERs were 12% at 50 Hz versus 6.0% at 1 Hz (p < 0.01). (d) Gender. In women fear responses were 16% compared with 3% in men (p < 0.01). There were no gender differences when analyzing nonemotional responses. These data confirm the role of the medial temporal lobe region in the expression of emotions, especially fear-related behaviors. Fear was observed more frequently in the absence of medial temporal sclerosis, supporting the hypothesis that emotional behaviors induced by stimulation are positive phenomena, strictly related to the physiological function of these regions. Further investigations should address why women express fear behaviors more frequently than men.
NASA Astrophysics Data System (ADS)
Zreihan, Noam; Faran, Eilon; Vives, Eduard; Planes, Antoni; Shilo, Doron
2018-01-01
It is generally claimed that physical processes which display scale-invariant power-law distributions are subjected to a dynamic criticality that prohibits a well-defined kinetic law. In this paper, we demonstrate the coexistence of these two apparently contradicting behaviors during the same physical process—the motion of type-II twin boundaries in martensite Ni-Mn-Ga. The process is investigated by combined measurements of the temporal twin-boundary velocity and the acoustic emitted energy. Velocity values are extracted from high-resolution force measurements taken during displacement-driven mechanical tests, as well as from force-driven magnetic tests, and cover an overall range of six orders of magnitude. Acoustic emission (AE) is measured during mechanical tests. Velocity values follow a normal distribution whose characteristic value is determined by the material's kinetic relation, and its width scales with the average velocity. In addition, it is observed that velocity distributions are characterized by a heavy tail at the right (i.e., faster) end that exhibits a power law over more than one and a half orders of magnitude. At the same time, the AE signals follow a scale-invariant power-law distribution, which is not sensitive to the average twin-boundary velocity. The coexistence of these two different statistical behaviors reflects the complex nature of twin-boundary motion and suggests the possibility that the transformation proceeds through physical subprocesses that are close to criticality alongside other processes that are not.
Temporal and spatial neural dynamics in the perception of basic emotions from complex scenes
Costa, Tommaso; Cauda, Franco; Crini, Manuella; Tatu, Mona-Karina; Celeghin, Alessia; de Gelder, Beatrice
2014-01-01
The different temporal dynamics of emotions are critical to understand their evolutionary role in the regulation of interactions with the surrounding environment. Here, we investigated the temporal dynamics underlying the perception of four basic emotions from complex scenes varying in valence and arousal (fear, disgust, happiness and sadness) with the millisecond time resolution of Electroencephalography (EEG). Event-related potentials were computed and each emotion showed a specific temporal profile, as revealed by distinct time segments of significant differences from the neutral scenes. Fear perception elicited significant activity at the earliest time segments, followed by disgust, happiness and sadness. Moreover, fear, disgust and happiness were characterized by two time segments of significant activity, whereas sadness showed only one long-latency time segment of activity. Multidimensional scaling was used to assess the correspondence between neural temporal dynamics and the subjective experience elicited by the four emotions in a subsequent behavioral task. We found a high coherence between these two classes of data, indicating that psychological categories defining emotions have a close correspondence at the brain level in terms of neural temporal dynamics. Finally, we localized the brain regions of time-dependent activity for each emotion and time segment with the low-resolution brain electromagnetic tomography. Fear and disgust showed widely distributed activations, predominantly in the right hemisphere. Happiness activated a number of areas mostly in the left hemisphere, whereas sadness showed a limited number of active areas at late latency. The present findings indicate that the neural signature of basic emotions can emerge as the byproduct of dynamic spatiotemporal brain networks as investigated with millisecond-range resolution, rather than in time-independent areas involved uniquely in the processing one specific emotion. PMID:24214921
NASA Astrophysics Data System (ADS)
Adam, Claudia; Vidal, Valerie; Escartín, Javier
2007-09-01
Walvis and St. Helena are the only long-lived hotspot chains in the South Atlantic. Therefore, their characterization is important to constrain the processes associated with mantle plume formation, their temporal evolution, and the interaction with plate and mantle dynamics in the region. We study the temporal evolution of plume buoyancy and magma production rate along both hotspot chains, which are constrained from the swell and volume of volcanic materials emplaced along the chain. The regional depth anomaly is calculated by correcting the 2' bathymetry grid of Smith and Sandwell [W.H.F. Smith, D.T. Sandwell, Global sea floor topography from satellite altimetry and ship depth soundings, Science 277 (1997) 1956-1962] for thermal subsidence and sediment loading. We separate the topography associated with volcanism and the swell surrounding the hotspot chains using the MiFil filtering method [C. Adam, V. Vidal, A. Bonneville, MiFil: A method to characterize seafloor swells with application to the south central Pacific, Geochem. Geophys. Geosyst. 6 (1) (2005) Q01003, doi: 10.1029/2004GC000814]. We then estimate the temporal variations associated with both parameters by computing volumes along the hotspot tracks. Neither Walvis nor St. Helena show a 'classical' hotspot behavior. We find that two plumes are at the origin of the St. Helena chain. This study also shows a swell associated with the Circe seamount, supporting the existence of a hotspot NW of the St. Helena trail. The variation in swell and volcanic fluxes suggests temporal variability in the plume behavior at time scales of 10-20 m.y. and 5 m.y., which may be related to oscillations and instabilities of the plume conduit, respectively. Cumulative fluxes in the area are largest for Walvis and weakest for Circe, and all are significantly lower than that reported for the Hawai'i hotspot.
1976-01-01
Experimental and Pre- 9 dieted Temporal Behavior of the Laser Output Pulse for a 20% CO and 80% N2 Mixture 3 Comparison of the Normalized Experimental...and Pre- 10 dieted Temporal Behavior of the Laser Output Pulse for a 20% CO and 80% A~ Mixture 4 Predictions of the Temporal Variation of Small...Z o < z CD o o ÜJ 10 -7 .1 D4862 II i i r~rT"T pco (Torr) ♦ 700 O 350 A 200 O 100 + i & i J I \\ I I I 1.0 AVERAUü
Frequency Dependent Macro-dispersion Induced by Oscillatory Inputs and Spatial Heterogeneity
NASA Astrophysics Data System (ADS)
Rajabi, F.; Battiato, I.
2017-12-01
Elucidating flow and transport processes at the pore scale is the cornerstone of most hydrologic studies in the subsurface. This becomes even more imperative when the system is subject to a cyclic forcing. Such temporal variations with evolving heterogeneity of time scales spanning from days to years can influence transport phenomena at the pore level, e.g. yearly freeze/thaw in the thin active layer of soil above permafrost zone whose thickness increases throughout the thaw season. Moreover, understanding the interactions of different physical phenomena at the pore scale is key to predict the behavior at the continuum scale. Yet, the connection between periodic inputs at the pore scale and macrotransport is to a great extent unknown. In the spirit of homogenization technique, we derived a macrotime continuum-scale equation as well as expressions for the effective transport coefficients. The macrodispersion arises from contributions of molecular diffusion, spatial heterogeneity and time-dependent fluctuations. Moreover, we have quantified the solute spreading by effective dispersion in terms of dimensionless numbers (Pe, Da, and Strouhal), i.e. expressing the interplay of molecular diffusion, advection, reaction and signal frequency. Yet, as every macroscopic model, spatiotemporally averaged models can breakdown when certain criteria are violated. This makes the continuum scale equation a poor approximation for the processes at the pore scale. To this end, we also provide the conditions under which the space-time averaged equations accurately describe pore-scale processes. In addition, this study gives a robust evidence that transverse mixing can in fact benefit from fluctuating boundary forcing due to the interaction of temporal fluctuations and molecular diffusion. Furthermore, it provides a robust quantitative foundation for designing the desired systems since the interplay of geometry and external forcing has been directly connected to each other in terms of dimensionless (St) number. We compare our theoretical framework with data from an experiment performed on several micro-channels with different geometry and different frequencies of injection at the inlet. The proposed formulation is found to provide remarkably good predictions and correctly explain the experimental mixing dynamics.
ERIC Educational Resources Information Center
Martin, Paul R.; Forsyth, Michael R.; Reece, John
2007-01-01
Sixty-four headache sufferers were allocated randomly to cognitive-behavioral therapy (CBT), temporal pulse amplitude (TPA) biofeedback training, or waiting-list control. Fifty-one participants (14M/37F) completed the study, 30 with migraine and 21 with tension-type headache. Treatment consisted of 8, 1-hour sessions. CBT was highly effective,…
A challenge to chaotic itinerancy from brain dynamics
NASA Astrophysics Data System (ADS)
Kay, Leslie M.
2003-09-01
Brain hermeneutics and chaotic itinerancy proposed by Tsuda are attractive characterizations of perceptual dynamics in the mammalian olfactory system. This theory proposes that perception occurs at the interface between itinerant neural representation and interaction with the environment. Quantifiable application of these dynamics has been hampered by the lack of definable history and action processes which characterize the changes induced by behavioral state, attention, and learning. Local field potentials measured from several brain areas were used to characterize dynamic activity patterns for their use as representations of history and action processes. The signals were recorded from olfactory areas (olfactory bulb, OB, and pyriform cortex) and hippocampal areas (entorhinal cortex and dentate gyrus, DG) in the brains of rats. During odor-guided behavior the system shows dynamics at three temporal scales. Short time-scale changes are system-wide and can occur in the space of a single sniff. They are predictable, associated with learned shifts in behavioral state and occur periodically on the scale of the intertrial interval. These changes occupy the theta (2-12 Hz), beta (15-30 Hz), and gamma (40-100 Hz) frequency bands within and between all areas. Medium time-scale changes occur relatively unpredictably, manifesting in these data as alterations in connection strength between the OB and DG. These changes are strongly correlated with performance in associated trial blocks (5-10 min) and may be due to fluctuations in attention, mood, or amount of reward received. Long time-scale changes are likely related to learning or decline due to aging or disease. These may be modeled as slow monotonic processes that occur within or across days or even weeks or years. The folding of different time scales is proposed as a mechanism for chaotic itinerancy, represented by dynamic processes instead of static connection strengths. Thus, the individual maintains continuity of experience within the stability of fast periodic and slow monotonic processes, while medium scale events alter experience and performance dramatically but temporarily. These processes together with as yet to be determined action effects from motor system feedback are proposed as an instantiation of brain hermeneutics and chaotic itinerancy.
Dissociating movement from movement timing in the rat primary motor cortex.
Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A
2014-11-19
Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.
Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less
Gershenzon, Naum I.; Soltanian, Mohamad Reza; Ritzi, Robert W.; ...
2015-10-23
Understanding multi-phase fluid flow and transport processes within aquifers, candidate reservoirs for CO 2 sequestration, and petroleum reservoirs requires understanding a diverse set of geologic properties of the aquifer or reservoir, over a wide range of spatial and temporal scales. We focus on multiphase flow dynamics with wetting (e.g., water) and non-wetting (e.g., gas or oil) fluids, with one invading another. This problem is of general interest in a number of fields and is illustrated here by considering the sweep efficiency of oil during a waterflood. Using a relatively fine-resolution grid throughout a relatively large domain in these simulations andmore » probing the results with advanced scientific visualization tools (Reservoir Visualization Analysis [RVA]/ ParaView software) promote a better understanding of how smaller-scale features affect the aggregate behavior at larger scales. We studied the effects on oil-sweep efficiency of the proportion, hierarchical organization, and connectivity of high-permeability open-framework conglomerate (OFC) cross-sets within the multi-scale stratal architecture found in fluvial deposits. We further analyzed oil production rate, water breakthrough time, and spatial and temporal distribution of residual oil saturation. As expected, the effective permeability of the reservoir exhibits large-scale anisotropy created by the organization of OFC cross-sets within unit bars, and the organization of unit bars within compound- bars. As a result, oil-sweep efficiency critically depends on the direction of the pressure gradient. However, contrary to expectations, the total amount of trapped oil due to the effect of capillary trapping does not depend on the magnitude of the pressure gradient within the examined range. Hence the pressure difference between production and injection wells does not affect sweep efficiency; although the spatial distribution of oil remaining in the reservoir depends on this value. Whether or not clusters of connected OFC span the domain affects only the absolute rate of oil production—not sweep efficiency.« less
Basson, Christine H; Clusella-Trullas, Susana
2015-01-01
Environmental variability occurring at different timescales can significantly reduce performance, resulting in evolutionary fitness costs. Shifts in thermoregulatory behavior, metabolism, and water loss via phenotypic plasticity can compensate for thermal variation, but the relative contribution of each mechanism and how they may influence each other are largely unknown. Here, we take an ecologically relevant experimental approach to dissect these potential responses at two temporal scales: weather transients and seasons. Using acclimation to cold, average, or warm conditions in summer and winter, we measure the direction and magnitude of plasticity of resting metabolic rate (RMR), water loss rate (WLR), and preferred body temperature (Tpref) in the lizard Cordylus oelofseni within and between seasons. In summer, lizards selected lower Tpref when acclimated to warm versus cold but had no plasticity of either RMR or WLR. By contrast, winter lizards showed partial compensation of RMR but no behavioral compensation. Between seasons, both behavioral and physiological shifts took place. By integrating ecological reality into laboratory assays, we demonstrate that behavioral and physiological responses of C. oelofseni can be contrasting, depending on the timescale investigated. Incorporating ecologically relevant scenarios and the plasticity of multiple traits is thus essential when attempting to forecast extinction risk to climate change.
Kim, Minah; Cho, Kang Ik Kevin; Yoon, Youngwoo Bryan; Lee, Tae Young; Kwon, Jun Soo
2017-02-01
Although disconnection syndrome has been considered a core pathophysiologic mechanism of schizophrenia, little is known about the temporal behavior of mismatch negativity (MMN) generators in individuals with schizophrenia or clinical high risk (CHR) for psychosis. MMN was assessed in 29 schizophrenia patients, 40 CHR subjects, and 47 healthy controls (HCs). Individual realistic head models and the minimum L2 norm algorithm were used to generate a current source density (CSD) model of MMN. The strength and time course of MMN CSD activity were calculated separately for the frontal and temporal cortices and were compared across brain regions and groups. Schizophrenia patients and CHR subjects displayed lower MMN CSD strength than HCs in both the temporal and frontal cortices. We found a significant time delay in MMN generator activity in the frontal cortex relative to that in the temporal cortex in HCs. However, the sequential temporo-frontal activities of MMN generators were disrupted in both the schizophrenia and CHR groups. Impairments and altered temporal behavior of MMN multiple generators were observed even in individuals at risk for psychosis. These findings suggest that aberrant MMN generator activity might be helpful in revealing the pathophysiology of schizophrenia. Copyright © 2016 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.
Temporal Variation of HCO+ 1_0 Galactic Absorption Lines Toward NRAO 150 and BL Lac
NASA Astrophysics Data System (ADS)
Han, Junghwan; Yun, Youngjoo; Park, Yong-Sun
2017-12-01
We present observations of HCO^+ 1-0 absorption lines toward two extragalactic compact radio sources, NRAO 150 and BL Lac with the Korean VLBI Network in order to investigate their time variation over 20 years by Galactic foreground clouds. It is found that the line shape of -17 km s^{-1} component changed marginally during 1993-1998 period and has remained unaltered thereafter for NRAO 150. Its behavior is different from that of H_2CO 1_{10}-1_{11}, suggesting chemical differentiation on ˜ 20 AU scale, the smallest ever seen. On the other hand, BL Lac exhibits little temporal variation for the HCO^+ and H_2CO lines. Our observation also suggests that Korea VLBI Network performs reliably in the spectrum mode in that the shapes of the new HCO^+ 1-0 spectra are in good agreement with the previous ones to an accuracy of a few percent except the time varying component toward NRAO 150.
Quantitative Characterization of Tissue Microstructure with Temporal Diffusion Spectroscopy
Xu, Junzhong; Does, Mark D.; Gore, John C.
2009-01-01
The signals recorded by diffusion-weighted magnetic resonance imaging (DWI) are dependent on the micro-structural properties of biological tissues, so it is possible to obtain quantitative structural information non-invasively from such measurements. Oscillating gradient spin echo (OGSE) methods have the ability to probe the behavior of water diffusion over different time scales and the potential to detect variations in intracellular structure. To assist in the interpretation of OGSE data, analytical expressions have been derived for diffusion-weighted signals with OGSE methods for restricted diffusion in some typical structures, including parallel planes, cylinders and spheres, using the theory of temporal diffusion spectroscopy. These analytical predictions have been confirmed with computer simulations. These expressions suggest how OGSE signals from biological tissues should be analyzed to characterize tissue microstructure, including how to estimate cell nuclear sizes. This approach provides a model to interpret diffusion data obtained from OGSE measurements that can be used for applications such as monitoring tumor response to treatment in vivo. PMID:19616979
Ecological Insights from Pelagic Habitats Acquired Using Active Acoustic Techniques.
Benoit-Bird, Kelly J; Lawson, Gareth L
2016-01-01
Marine pelagic ecosystems present fascinating opportunities for ecological investigation but pose important methodological challenges for sampling. Active acoustic techniques involve producing sound and receiving signals from organisms and other water column sources, offering the benefit of high spatial and temporal resolution and, via integration into different platforms, the ability to make measurements spanning a range of spatial and temporal scales. As a consequence, a variety of questions concerning the ecology of pelagic systems lend themselves to active acoustics, ranging from organism-level investigations and physiological responses to the environment to ecosystem-level studies and climate. As technologies and data analysis methods have matured, the use of acoustics in ecological studies has grown rapidly. We explore the continued role of active acoustics in addressing questions concerning life in the ocean, highlight creative applications to key ecological themes ranging from physiology and behavior to biogeography and climate, and discuss emerging avenues where acoustics can help determine how pelagic ecosystems function.
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O.
2014-01-01
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases. PMID:25022440
Wesolowski, Amy; Stresman, Gillian; Eagle, Nathan; Stevenson, Jennifer; Owaga, Chrispin; Marube, Elizabeth; Bousema, Teun; Drakeley, Christopher; Cox, Jonathan; Buckee, Caroline O
2014-07-14
Human travel impacts the spread of infectious diseases across spatial and temporal scales, with broad implications for the biological and social sciences. Individual data on travel patterns have been difficult to obtain, particularly in low-income countries. Travel survey data provide detailed demographic information, but sample sizes are often small and travel histories are hard to validate. Mobile phone records can provide vast quantities of spatio-temporal travel data but vary in spatial resolution and explicitly do not include individual information in order to protect the privacy of subscribers. Here we compare and contrast both sources of data over the same time period in a rural area of Kenya. Although both data sets are able to quantify broad travel patterns and distinguish regional differences in travel, each provides different insights that can be combined to form a more detailed picture of travel in low-income settings to understand the spread of infectious diseases.
Effect of bioparticle size on dispersion and retention in monolithic and perfusive beds
Trilisky, Egor I.; Lenhoff, Abraham M.
2010-01-01
Single-component pulse response studies were used to compare the retention and transport behavior of small molecules, proteins, and a virus on commercially available monolithic and perfusive ion-exchangers. Temporal distortion and extra-column effects were corrected for using a simple algorithm based on the method of moments. It was found that temporal distortion is inversely related to the number of theoretical plates. With increasing bioparticle size, retention increased and the transition from a non-eluting to a non-adsorbing state with increasing ionic strength became more abrupt. Both of these observations are qualitatively explained by calculations of particle-surface electrostatic attractive energy. Calculations also show that, for sufficiently large bioparticles, such as viruses or cells, hydrodynamic drag can promote elution. Under non-adsorbing conditions, plate height increased only weakly with flow rate and the skew remained unchanged. With increasing retention, plate height increased dramatically for proteins. Plate height was scaled by permeability rather than bead diameter to enable comparison among different stationary phases. PMID:20951383
Cerebral coherence between communicators marks the emergence of meaning
Stolk, Arjen; Noordzij, Matthijs L.; Verhagen, Lennart; Volman, Inge; Schoffelen, Jan-Mathijs; Oostenveld, Robert; Hagoort, Peter; Toni, Ivan
2014-01-01
How can we understand each other during communicative interactions? An influential suggestion holds that communicators are primed by each other’s behaviors, with associative mechanisms automatically coordinating the production of communicative signals and the comprehension of their meanings. An alternative suggestion posits that mutual understanding requires shared conceptualizations of a signal’s use, i.e., “conceptual pacts” that are abstracted away from specific experiences. Both accounts predict coherent neural dynamics across communicators, aligned either to the occurrence of a signal or to the dynamics of conceptual pacts. Using coherence spectral-density analysis of cerebral activity simultaneously measured in pairs of communicators, this study shows that establishing mutual understanding of novel signals synchronizes cerebral dynamics across communicators’ right temporal lobes. This interpersonal cerebral coherence occurred only within pairs with a shared communicative history, and at temporal scales independent from signals’ occurrences. These findings favor the notion that meaning emerges from shared conceptualizations of a signal’s use. PMID:25489093
Spatiotemporal earthquake clusters along the North Anatolian fault zone offshore Istanbul
Bulut, Fatih; Ellsworth, William L.; Bohnhoff, Marco; Aktar, Mustafa; Dresen, Georg
2011-01-01
We investigate earthquakes with similar waveforms in order to characterize spatiotemporal microseismicity clusters within the North Anatolian fault zone (NAFZ) in northwest Turkey along the transition between the 1999 ??zmit rupture zone and the Marmara Sea seismic gap. Earthquakes within distinct activity clusters are relocated with cross-correlation derived relative travel times using the double difference method. The spatiotemporal distribution of micro earthquakes within individual clusters is resolved with relative location accuracy comparable to or better than the source size. High-precision relative hypocenters define the geometry of individual fault patches, permitting a better understanding of fault kinematics and their role in local-scale seismotectonics along the region of interest. Temporal seismic sequences observed in the eastern Sea of Marmara region suggest progressive failure of mostly nonoverlapping areas on adjacent fault patches and systematic migration of microearthquakes within clusters during the progressive failure of neighboring fault patches. The temporal distributions of magnitudes as well as the number of events follow swarmlike behavior rather than a mainshock/aftershock pattern.
NASA Astrophysics Data System (ADS)
Lasky, Jesse R.; Uriarte, María; Muscarella, Robert
2016-11-01
Interspecific variation in phenology is a key axis of functional diversity, potentially mediating how communities respond to climate change. The diverse drivers of phenology act across multiple temporal scales. For example, abiotic constraints favor synchronous reproduction (positive covariance among species), while biotic interactions can favor synchrony or compensatory dynamics (negative covariance). We used wavelet analyses to examine phenology of community flower and seed production for 45 tree species across multiple temporal scales in a tropical dry forest in Puerto Rico with marked rainfall seasonality. We asked three questions: (1) do species exhibit synchronous or compensatory temporal dynamics in reproduction, (2) do interspecific differences in phenology reflect variable responses to rainfall, and (3) is interspecific variation in phenology and response to a major drought associated with functional traits that mediate responses to moisture? Community-level flowering was synchronized at seasonal scales (˜5-6 mo) and at short scales (˜1 mo, following rainfall). However, seed rain exhibited significant compensatory dynamics at intraseasonal scales (˜3 mo), suggesting interspecific variation in temporal niches. Species with large leaves (associated with sensitivity to water deficit) peaked in reproduction synchronously with the peak of seasonal rainfall (˜5 mo scale). By contrast, species with high wood specific gravity (associated with drought resistance) tended to flower in drier periods. Flowering of tall species and those with large leaves was most tightly linked to intraseasonal (˜2 mo scale) rainfall fluctuations. Although the 2015 drought dramatically reduced community-wide reproduction, functional traits were not associated with the magnitude of species-specific declines. Our results suggest opposing drivers of synchronous versus compensatory dynamics at different temporal scales. Phenology associations with functional traits indicated that distinct strategies for coping with seasonality underlie phenological diversity. Observed drought responses highlight the importance of non-linear community responses to climate. Community phenology exhibits scale-specific patterns highlighting the need for multi-scale approaches to community dynamics.
Desert Dust Properties, Modelling, and Monitoring
NASA Technical Reports Server (NTRS)
Kaskaoutis, Dimitris G.; Kahn, Ralph A.; Gupta, Pawan; Jayaraman, Achuthan; Bartzokas, Aristides
2013-01-01
This paper is just the three-page introduction to a Special Issue of Advances in Meteorology focusing on desert dust. It provides a paragraph each on 13 accepted papers, most relating to the used of satellite data to assess attributes or distribution of airborne desert dust. As guest Associate Editors of this issue, we organized the papers into a systematic whole, beginning with large-scale transport and seasonal behavior, then to regional dust transport, transport history, and climate impacts, first in the Mediterranean region, then India and central Asia, and finally focusing on transport model assessment and the use of lidar as a technique to constrain dust spatial-temporal distribution.
Study of optical microvariability in the blazar 1ES1011+496
NASA Astrophysics Data System (ADS)
Sosa, M. S.; von Essen, C.; Cellone, S. A.; Andruchow, I.; Schmitt, J. H. M. M.
We carried out a study of photometric variability of the blazar 1ES1011+496 using the 1.20 m Oskar Lühning telescope located at Ham- burger Sternwarte Institute, Germany. This object has been detected at hight energies ( 200 GeV), so it is of interest to characterize its behavior in the optical range. We obtained the light curves in B, V and R bands through dif- ferential photometry, with a time resolution of 15 minutes over 8 nights. We did not detect inter-night variability, but we detected a marginally sig- nificant variability in temporal scales of a few days.
Freestone, Amy L; Inouye, Brian D
2015-01-01
A persistent challenge for ecologists is understanding the ecological mechanisms that maintain global patterns of biodiversity, particularly the latitudinal diversity gradient of peak species richness in the tropics. Spatial and temporal variation in community composition contribute to these patterns of biodiversity, but how this variation and its underlying processes change across latitude remains unresolved. Using a model system of sessile marine invertebrates across 25 degrees of latitude, from the temperate zone to the tropics, we tested the prediction that spatial and temporal patterns of taxonomic richness and composition, and the community assembly processes underlying these patterns, will differ across latitude. Specifically, we predicted that high beta diversity (spatial variation in composition) and high temporal turnover contribute to the high species richness of the tropics. Using a standardized experimental approach that controls for several confounding factors that hinder interpretation of prior studies, we present results that support our predictions. In the temperate zone, communities were more similar across spatial scales from centimeters to tens of kilometers and temporal scales up to one year than at lower latitudes. Since the patterns at northern latitudes were congruent with a null model, stochastic assembly processes are implicated. In contrast, the communities in the tropics were a dynamic spatial and temporal mosaic, with low similarity even across small spatial scales and high temporal turnover at both local and regional scales. Unlike the temperate zone, deterministic community assembly processes such as predation likely contributed to the high beta diversity in the tropics. Our results suggest that community assembly processes and temporal dynamics vary across latitude and help structure and maintain latitudinal patterns of diversity.
NASA Astrophysics Data System (ADS)
Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.
2018-03-01
Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.
Bergadano, Alessandra; Andersen, Ole K; Arendt-Nielsen, Lars; Spadavecchia, Claudia
2007-08-01
To investigate the facilitation of the nociceptive withdrawal reflex (NWR) by repeated electrical stimuli and the associated behavioral response scores in conscious, nonmedicated dogs as a measure of temporal summation and analyze the influence of stimulus intensity and frequency on temporal summation responses. 8 adult Beagles. Surface electromyographic responses evoked by transcutaneous constant-current electrical stimulation of ulnaris and digital plantar nerves were recorded from the deltoideus, cleidobrachialis, biceps femoris, and cranial tibial muscles. A repeated stimulus was given at 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, and 1.1 x I(t) (the individual NWR threshold intensity) at 2, 5, and 20 Hz. Threshold intensity and relative amplitude and latency of the reflex were analyzed for each stimulus configuration. Behavioral reactions were subjectively scored. Repeated sub-I(t) stimuli summated and facilitated the NWR. To elicit temporal summation, significantly lower intensities were needed for the hind limb, compared with the forelimb. Stimulus frequency did not influence temporal summation, whereas increasing intensity resulted in significantly stronger electromyographic responses and nociception (determined via behavioral response scoring) among the dogs. In dogs, it is possible to elicit nociceptive temporal summation that correlates with behavioral reactions. These data suggest that this experimental technique can be used to evaluate nociceptive system excitability and efficacy of analgesics in canids.
NASA Astrophysics Data System (ADS)
Chen, X.; Song, X.; Shuai, P.; Hammond, G. E.; Ren, H.; Zachara, J. M.
2017-12-01
Hydrologic exchange flows (HEFs) in rivers play vital roles in watershed ecological and biogeochemical functions due to their strong capacity to attenuate contaminants and process significant quantities of carbon and nutrients. While most of existing HEF studies focus on headwater systems with the assumption of steady-state flow, there is lack of understanding of large-scale HEFs in high-order regulated rivers that experience high-frequency stage fluctuations. The large variability of HEFs is a result of interactions between spatial heterogeneity in hydrogeologic properties and temporal variation in river discharge induced by natural or anthropogenic perturbations. Our 9-year spatially distributed dataset (water elevation, specific conductance, and temperature) combined with mechanistic hydrobiogeochemical simulations have revealed complex spatial and temporal dynamics in km-scale HEFs and their significant impacts on contaminant plume mobility and hyporheic biogeochemical processes along the Hanford Reach. Extended multidirectional flow behaviors of unconfined, river corridor groundwater were observed hundreds of meters inland from the river shore resulting from discharge-dependent HEFs. An appropriately sized modeling domain to capture the impact of regional groundwater flow as well as knowledge of subsurface structures controlling intra-aquifer hydrologic connectivity were essential to realistically model transient storage in this large-scale river corridor. This work showed that both river water and mobile groundwater contaminants could serve as effective tracers of HEFs, thus providing valuable information for evaluating and validating the HEF models. Multimodal residence time distributions with long tails were resulted from the mixture of long and short exchange pathways, which consequently impact the carbon and nutrient cycling within the river corridor. Improved understanding of HEFs using integrated observational and modeling approaches sheds light on developing fundamental understanding of the influences of HEFs on water quality, nutrient dynamics, and ecosystem health in dynamic river corridor systems.
Soloff, Paul; White, Richard; Diwadkar, Vaibhav A
2014-06-30
Impulsivity and aggressiveness are trait dispositions associated with the vulnerability to suicidal behavior across diagnoses. They are associated with structural and functional abnormalities in brain networks involved in regulation of mood, impulse and behavior. They are also core characteristics of borderline personality disorder (BPD), a disorder defined, in part, by recurrent suicidal behavior. We assessed the relationships between personality traits, brain structure and lethality of suicide attempts in 51 BPD attempters using multiple regression analyses on structural MRI data. BPD was diagnosed by the Diagnostic Interview for Borderline Patients-revised, impulsivity by the Barratt Impulsiveness Scale (BIS), aggression by the Brown-Goodwin Lifetime History of Aggression (LHA), and high lethality by a score of 4 or more on the Lethality Rating Scale (LRS). Sixteen High Lethality attempters were compared to 35 Low Lethality attempters, with no significant differences noted in gender, co-morbidity, childhood abuse, BIS or LHA scores. Degree of medical lethality (LRS) was negatively related to gray matter volumes across multiple fronto-temporal-limbic regions. Effects of impulsivity and aggression on gray matter volumes discriminated High from Low Lethality attempters and differed markedly within lethality groups. Lethality of suicide attempts in BPD may be related to the mediation of these personality traits by specific neural networks. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Leue, Anja; Chavanon, Mira-Lynn; Wacker, Jan; Stemmler, Gerhard
2009-11-01
Task- and personality-related modulations of the N2 were probed within the framework of the revised Reinforcement Sensitivity Theory (RST). Using an appetitive choice task, we investigated 58 students with extreme scores on the behavioral inhibition system and behavioral approach system (BIS/BAS) scales. The baseline-to-peak N2 amplitude was sensitive to the strength of decision conflict and demonstrated RST-related personality differences. In addition to the baseline N2 amplitude, temporal PCA results suggested two N2 components accounting for a laterality effect and capturing different N2 patterns for BIS/BAS groups with increasing conflict level. Evidence for RST-related personality differences was obtained for baseline-to-peak N2 and tPCA components in the present task. The results support the RST prediction that BAS sensitivity modulates conflict processing and confirm the cognitive-motivational conflict concept of RST.
A toolbox to explore the mechanics of living embryonic tissues
Campàs, Otger
2016-01-01
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. PMID:27061360
A toolbox to explore the mechanics of living embryonic tissues.
Campàs, Otger
2016-07-01
The sculpting of embryonic tissues and organs into their functional morphologies involves the spatial and temporal regulation of mechanics at cell and tissue scales. Decades of in vitro work, complemented by some in vivo studies, have shown the relevance of mechanical cues in the control of cell behaviors that are central to developmental processes, but the lack of methodologies enabling precise, quantitative measurements of mechanical cues in vivo have hindered our understanding of the role of mechanics in embryonic development. Several methodologies are starting to enable quantitative studies of mechanics in vivo and in situ, opening new avenues to explore how mechanics contributes to shaping embryonic tissues and how it affects cell behavior within developing embryos. Here we review the present methodologies to study the role of mechanics in living embryonic tissues, considering their strengths and drawbacks as well as the conditions in which they are most suitable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Mechem, David B.; Giangrande, Scott E.; Wittman, Carly S.; ...
2015-03-13
A case of shallow cumulus and precipitating cumulus congestus sampled at the Atmospheric Radiation Measurement (ARM) Program Southern Great Plains (SGP) supersite is analyzed using a multi-sensor observational approach and numerical simulation. Observations from a new radar suite surrounding the facility are used to characterize the evolving statistical behavior of the precipitating cloud system. This is accomplished using distributions of different measures of cloud geometry and precipitation properties. Large-eddy simulation (LES) with size-resolved (bin) microphysics is employed to determine the forcings most important in producing the salient aspects of the cloud system captured in the radar observations. Our emphasis ismore » on assessing the importance of time-varying vs. steady-state large-scale forcing on the model's ability to reproduce the evolutionary behavior of the cloud system. Additional consideration is given to how the characteristic spatial scale and homogeneity of the forcing imposed on the simulation influences the evolution of cloud system properties. Results indicate that several new scanning radar estimates such as distributions of cloud top are useful to differentiate the value of time-varying (or at least temporally well-matched) forcing on LES solution fidelity.« less
NASA Astrophysics Data System (ADS)
Fraile-Nuez, E.; Santana-Casiano, J. M.; González-Dávila, M.
2016-12-01
One year after the ceasing of magmatic activity in the shallow submarine volcano of the island of El Hierro, significant physical-chemical anomalies produced by the degassing process as: (i) thermal anomalies increase of +0.44 °C, (ii) pH decrease of -0.034 units, (iii) total dissolved inorganic carbon, CT increase by +43.5 µmol kg-1 and (iv) total alkalinity, AT by +12.81 µmol kg-1 were still present in the area. These evidences highlight the potential role of the shallow degassing processes as a natural ecosystem-scale experiments for the study of significant effects of global change stressors on marine environments. Additionally, thermal time series obtained from a temporal yo-yo CTD study, in isopycnal components, over one of the most active points of the submarine volcano have been analyzed in order to investigate the behavior of the system. Signal processing of the thermal time series highlights a strong cyclic temperature period of 125-150 min at 99.9% confidence, due to characteristic time-scales revealed in the periodogram. These long cycles might reflect dynamics occurring within the shallow magma supply system below the island of El Hierro.
Li, Ruijie; Wang, Meng; Yao, Jiwei; Liang, Shanshan; Liao, Xiang; Yang, Mengke; Zhang, Jianxiong; Yan, Junan; Jia, Hongbo; Chen, Xiaowei; Li, Xingyi
2018-01-01
In vivo two-photon Ca 2+ imaging is a powerful tool for recording neuronal activities during perceptual tasks and has been increasingly applied to behaving animals for acute or chronic experiments. However, the auditory cortex is not easily accessible to imaging because of the abundant temporal muscles, arteries around the ears and their lateral locations. Here, we report a protocol for two-photon Ca 2+ imaging in the auditory cortex of head-fixed behaving mice. By using a custom-made head fixation apparatus and a head-rotated fixation procedure, we achieved two-photon imaging and in combination with targeted cell-attached recordings of auditory cortical neurons in behaving mice. Using synthetic Ca 2+ indicators, we recorded the Ca 2+ transients at multiple scales, including neuronal populations, single neurons, dendrites and single spines, in auditory cortex during behavior. Furthermore, using genetically encoded Ca 2+ indicators (GECIs), we monitored the neuronal dynamics over days throughout the process of associative learning. Therefore, we achieved two-photon functional imaging at multiple scales in auditory cortex of behaving mice, which extends the tool box for investigating the neural basis of audition-related behaviors.