Specific heats of lunar surface materials from 90 to 350 degrees Kelvin
Robie, R.A.; Hemingway, B.S.; Wilson, W.H.
1970-01-01
The specific heats of lunar samples 10057 and 10084 returned by the Apollo 11 mission have been measured between 90 and 350 degrees Kelvin by use of an adiabatic calorimeter. The samples are representative of type A vesicular basalt-like rocks and of finely divided lunar soil. The specific heat of these materials changes smoothly from about 0.06 calorie per gram per degree at 90 degrees Kelvin to about 0.2 calorie per gram per degree at 350 degrees Kelvin. The thermal parameter ??=(k??C)-1/2 for the lunar surface will accordingly vary by a factor of about 2 between lunar noon and midnight.
NASA Astrophysics Data System (ADS)
Machin, Graham
2018-02-01
On 20 May 2019 it is anticipated that the most radical revision of the International System of Units (the SI), since its inception, will come into force. From that point, all the SI units will be based on defined values of fundamental constants of nature. In this paper the redefinition of the kelvin and its implications are considered. The topic will be introduced by discussing how the wording of the new definition of the kelvin developed. The kelvin redefinition is reliant on a secure low-uncertainty value of the Boltzmann constant; its determination by different physical methods and how the final definitive value for the kelvin redefinition was arrived at is discussed. The redefined kelvin will be implemented through a document known as the mise en pratique (i.e. the ‘practical realisation’) for the definition of the kelvin (MeP-K). The development and contents of the MeP-K will be described. There follows a discussion of contemporary primary thermometry, which is the bedrock on which a secure kelvin redefinition will be founded. Finally the paper ends with a discussion of the implications of the redefinition, for traceability, and, more widely, the practice of thermometry in general.
Phase locking of convectively coupled equatorial atmospheric Kelvin waves over Indian Ocean basin
NASA Astrophysics Data System (ADS)
Baranowski, Dariusz; Flatau, Maria; Flatau, Piotr; Matthews, Adrian
2015-04-01
The properties of convectively coupled Kelvin waves in the Indian Ocean and their propagation over the Maritime Continent are studied. It is shown that Kelvin waves are longitude - diurnal cycle phase locked over the Maritime Continent, Africa and the Indian Ocean. Thus, it is shown that they tend to propagate over definite areas during specific times of the day. Over the Maritime Continent, longitude-diurnal cycle phase locking is such that it agrees with mean, local diurnal cycle of convection. The strength of the longitude-diurnal cycle phase locking differs between 'non-blocked' Kelvin waves, which make successful transition over the Maritime Continent, and 'blocked' waves that terminated within it. It is shown that a specific combination of Kelvin wave phase speed and time of the day at which a wave approaches the Maritime Continent influence the chance of successful transition into the Western Pacific. Kelvin waves that maintain phase speed of 10 to 11 degrees per day over the central-eastern Indian Ocean and arrive at 90E between 9UTC and 18UTC have the highest chance of being 'non-blocked' by the Maritime Continent. The distance between the islands of Sumatra and Borneo agrees with the distance travelled by an average convectively coupled Kelvin wave in one day. This suggests that the Maritime Continent may act as a 'filter' for Kelvin waves favoring successful propagation of those waves for which propagation is in phase with the local diurnal cycle of precipitation. The AmPm index, a simple measure of local diurnal cycle for propagating disturbances, is introduced and shown to be useful metric depicting key characteristics of the convection associated with propagating Kelvin waves.
A special MJO event with a double Kelvin wave structure
NASA Astrophysics Data System (ADS)
Zhu, Lili; Li, Tim
2017-04-01
The second Madden-Julian Oscillation (MJO) event during the field campaign of the Dynamics of the MJO/Cooperative Indian Ocean Experiment on Intraseasonal Variability in the Year 2011 (DYNAMO/CINDY2011) exhibi ted an unusual double rainband structure. Using a wavenumber-frequency spectral filtering method, we unveil that this double rainband structure arises primarily from the Kelvin wave component. The zonal phase speed of the double rainbands is about 7.9 degree per day in the equatorial Indian Ocean, being in the range of convectively coupled Kelvin wave phase speeds. The convection and circulation anomalies associated with the Kelvin wave component are characterized by two anomalous convective cells, with low-level westerly (easterly) and high (low) pressure anomalies to the west (east) of the convective centers, and opposite wind and pressure anomalies in the upper troposphere. Such a zonal wind-pressure phase relationship is consistent with the equatorial free-wave dynamics. While the free-atmospheric circulation was dominated by the first baroclinic mode vertical structure, moisture and vertical motion in the boundary layer led the convection. The convection and circulation structures derived based on the conventional MJO filter show a different characteristic. For example, the phase speed is slower (about 5.9 degree per day), and there were no double convective branches. This suggests that MJO generally involves multi-scales and it is incomplete to extract its signals by using the conventional filtering technique.
NASA Astrophysics Data System (ADS)
Flood, Raymond; McCartney, Mark; Whitaker, Andrew
2009-07-01
Sir Joseph Larmor unveiling the Kelvin memorial in the Botanic Gardens, Belfast on a rainy day in 1913 Sir Joseph Larmor unveiling the Kelvin memorial in the Botanic Gardens, Belfast on a rainy day in 1913 © The Ulster Museum: Hogg collection William Thomson, later Lord Kelvin, was born in Belfast in 1824, and his family had lived near Ballynahinch in the north of Ireland, quite close to Belfast, from the seventeenth century. At the time of Kelvin's birth, James Thomson, his father, was Professor of Mathematics at the Belfast Royal Academical Institution (Inst). However, following the death of his wife in 1830, James took up a new position as Professor at the University of Glasgow, and he and his children moved there in 1832. Apart from three years studying at Cambridge, and a very brief period immediately afterwards travelling and teaching in Cambridge, Kelvin was to spend the rest of his life in Glasgow, where he occupied the Chair of Natural Philosophy (or Physics) for 53 years. The natural assumption might be that his birth in Ireland was irrelevant to Kelvin's life and work, and that the fine monument erected in his honour in Belfast's Botanic Gardens, which is pictured on the front cover of this volume, was more a demonstration of civic pride than a recognition of an aspect of Kelvin's life which was important to him. The purpose of the meeting was to demon strate that this was not the case, that, great Glaswegian as he undoubtedly became, Kelvin always delighted in the title of Irishman. The influence of his father, very much an Ulsterman, was immense, and Kelvin and his siblings were to follow his non-sectarian and reforming approach. Also important for Kelvin was his Christian upbringing, which began in Belfast, and his beliefs were to play a role of importance in his life and indeed in much of his most important work, in particular that on thermodynamics. Two of his siblings returned to Belfast and spent much of their lives there, and Kelvin was a
Equatorial Kelvin waves: A UARS MLS view
NASA Technical Reports Server (NTRS)
Canziani, Pablo O.; Holton, James R.; Fishbein, Evan; Froidevaux, Lucien; Waters, Joe W.
1994-01-01
Data from the Microwave Limb Sounder (MLS) instrument on the Upper Atmosphere Research Satellite (UARS) are used to compare two periods of Kelvin wave activity during different stages of the equatorial quasi-biennial oscillation. The analysis is carried out using an asynoptic mapping technique. A wide bandpass filter is used to isolate the frequency bands where Kelvin waves have been identified in previous studies. Time-height and time-latitude plots of the bandpassed data are used to identify Kelvin wave activity in the temperature and ozone fields. Frequency spectra of temperature and ozone amplitudes are constructed to further analyze the latitudinal and meridional distribution of Kelvin wave activity in zonal wavenumbers 1 and 2. The characteristics identified in these plots agree well with theoretical predictions and previous observations of middle atmosphere Kelvin waves. The time-height and time-latitude plots support the existence of Kelvin waves in discrete frequency bands; the slow, fast, and ultrafast Kelvin modes are all identified in the data. The characteristics of these modes do not vary much despite different mean flow conditions in the two periods examined. For the Kelvin wave-induced perturbations in ozone, the change from a transport-dominated regime below 10 hPa to a photochemically controlled regime above 10 hPa is clearly apparent in the height dependence of the phase difference between temperature and ozone. The ratios of the ozone perturbation amplitude to the temperature perturbation amplitude for the various observed Kelvin wave modes are in agreement with model estimates and LIMS (Limb Infrared Monitor of the Stratosphere) observations in the lower half of the region sampled but appear to be too large in the upper stratosphere and lower mesosphere.
Lord Kelvin's atmospheric electricity measurements
NASA Astrophysics Data System (ADS)
Aplin, Karen; Harrison, R. Giles; Trainer, Matthew; Hough, James
2013-04-01
Lord Kelvin (William Thomson), one of the greatest Victorian scientists, made a substantial but little-recognised contribution to geophysics through his work on atmospheric electricity. He developed sensitive instrumentation for measuring the atmospheric electric field, including invention of a portable electrometer, which made mobile measurements possible for the first time. Kelvin's measurements of the atmospheric electric field in 1859, made during development of the portable electrometer, can be used to deduce the substantial levels of particulate pollution blown over the Scottish island of Arran from the industrial mainland. Kelvin was also testing the electrometer during the largest solar flare ever recorded, the "Carrington event" in the late summer of 1859. Subsequently, Lord Kelvin also developed a water dropper sensor, and employed photographic techniques for "incessant recording" of the atmospheric electric field, which led to the long series of measurements recorded at UK observatories for the remainder of the 19th and much of the 20th century. These data sets have been valuable in both studies of historical pollution and cosmic ray effects on atmospheric processes.
A 10 Kelvin Magnet for Space-Flight ADRs
NASA Technical Reports Server (NTRS)
Tuttle, James; Pourrahimi, Shahin; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara
2003-01-01
Future NASA missions will include detectors cooled by adiabatic demagnetization refrigerators (ADRs) coupled with mechanical cryocoolers. A lightweight, low-current 10 Kelvin magnet would allow the interface between these devices to be at temperatures as high as 10 Kelvin, adding flexibility to the instrument design. We report on the testing of a standard-technology Nb3Sn magnet and the development of a lightweight, low-current 10 Kelvin magnet. We also discuss the outlook for flying a 10 Kelvin magnet as part of an ADR system.
Midya, Uday Sankar; Bandyopadhyay, Sanjoy
2018-03-29
Ice growth and melting inhibition activities of antifreeze proteins (AFPs) are better explained by the adsorption-inhibition mechanism. Inhibition occurs as a result of the Kelvin effect induced by adsorbed protein molecules onto the surface of seed ice crystal. However, the Kelvin effect has not been explored by the state-of-the-art experimental techniques. In this work, atomistic molecular dynamics simulations have been carried out with Tenebrio molitor antifreeze protein ( TmAFP) placed at ice-water interface to probe the Kelvin effect in the mechanism of AFPs. Simulations show that, below equilibrium melting temperature, ice growth is inhibited through the convex ice-water interface formation toward the water phase and, above equilibrium melting temperature, ice melting is inhibited through the concave ice-water interface formation inward to ice phase. Simulations further reveal that the radius of curvature of the interface formed to stop the ice growth increases with decrease in the degree of supercooling. Our results are in qualitative agreement with the theoretical prediction of the Kelvin effect and thus reveal its operation in the activities of AFPs.
A sub-Kelvin cryogen-free EPR system.
Melhuish, Simon J; Stott, Chloe; Ariciu, Ana-Maria; Martinis, Lorenzo; McCulloch, Mark; Piccirillo, Lucio; Collison, David; Tuna, Floriana; Winpenny, Richard
2017-09-01
We present an EPR instrument built for operation at Q band below 1K. Our cryogen-free Dewar integrates with a commercial electro-magnet and bridge. A description of the cryogenic and RF systems is given, along with the adaptations to the standard EPR experiment for operation at sub-Kelvin temperatures. As a first experiment, the EPR spectra of powdered Cr 12 O 9 (OH) 3 [Formula: see text] were measured. The sub-Kelvin EPR spectra agree well with predictions, and the performance of the sub-Kelvin system at 5K is compared to that of a commercial spectrometer. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
The LiteBIRD Satellite Mission: Sub-Kelvin Instrument
NASA Astrophysics Data System (ADS)
Suzuki, A.; Ade, P. A. R.; Akiba, Y.; Alonso, D.; Arnold, K.; Aumont, J.; Baccigalupi, C.; Barron, D.; Basak, S.; Beckman, S.; Borrill, J.; Boulanger, F.; Bucher, M.; Calabrese, E.; Chinone, Y.; Cho, S.; Crill, B.; Cukierman, A.; Curtis, D. W.; de Haan, T.; Dobbs, M.; Dominjon, A.; Dotani, T.; Duband, L.; Ducout, A.; Dunkley, J.; Duval, J. M.; Elleflot, T.; Eriksen, H. K.; Errard, J.; Fischer, J.; Fujino, T.; Funaki, T.; Fuskeland, U.; Ganga, K.; Goeckner-Wald, N.; Grain, J.; Halverson, N. W.; Hamada, T.; Hasebe, T.; Hasegawa, M.; Hattori, K.; Hattori, M.; Hayes, L.; Hazumi, M.; Hidehira, N.; Hill, C. A.; Hilton, G.; Hubmayr, J.; Ichiki, K.; Iida, T.; Imada, H.; Inoue, M.; Inoue, Y.; Irwin, K. D.; Ishino, H.; Jeong, O.; Kanai, H.; Kaneko, D.; Kashima, S.; Katayama, N.; Kawasaki, T.; Kernasovskiy, S. A.; Keskitalo, R.; Kibayashi, A.; Kida, Y.; Kimura, K.; Kisner, T.; Kohri, K.; Komatsu, E.; Komatsu, K.; Kuo, C. L.; Kurinsky, N. A.; Kusaka, A.; Lazarian, A.; Lee, A. T.; Li, D.; Linder, E.; Maffei, B.; Mangilli, A.; Maki, M.; Matsumura, T.; Matsuura, S.; Meilhan, D.; Mima, S.; Minami, Y.; Mitsuda, K.; Montier, L.; Nagai, M.; Nagasaki, T.; Nagata, R.; Nakajima, M.; Nakamura, S.; Namikawa, T.; Naruse, M.; Nishino, H.; Nitta, T.; Noguchi, T.; Ogawa, H.; Oguri, S.; Okada, N.; Okamoto, A.; Okamura, T.; Otani, C.; Patanchon, G.; Pisano, G.; Rebeiz, G.; Remazeilles, M.; Richards, P. L.; Sakai, S.; Sakurai, Y.; Sato, Y.; Sato, N.; Sawada, M.; Segawa, Y.; Sekimoto, Y.; Seljak, U.; Sherwin, B. D.; Shimizu, T.; Shinozaki, K.; Stompor, R.; Sugai, H.; Sugita, H.; Suzuki, J.; Tajima, O.; Takada, S.; Takaku, R.; Takakura, S.; Takatori, S.; Tanabe, D.; Taylor, E.; Thompson, K. L.; Thorne, B.; Tomaru, T.; Tomida, T.; Tomita, N.; Tristram, M.; Tucker, C.; Turin, P.; Tsujimoto, M.; Uozumi, S.; Utsunomiya, S.; Uzawa, Y.; Vansyngel, F.; Wehus, I. K.; Westbrook, B.; Willer, M.; Whitehorn, N.; Yamada, Y.; Yamamoto, R.; Yamasaki, N.; Yamashita, T.; Yoshida, M.
2018-05-01
Inflation is the leading theory of the first instant of the universe. Inflation, which postulates that the universe underwent a period of rapid expansion an instant after its birth, provides convincing explanation for cosmological observations. Recent advancements in detector technology have opened opportunities to explore primordial gravitational waves generated by the inflation through "B-mode" (divergent-free) polarization pattern embedded in the cosmic microwave background anisotropies. If detected, these signals would provide strong evidence for inflation, point to the correct model for inflation, and open a window to physics at ultra-high energies. LiteBIRD is a satellite mission with a goal of detecting degree-and-larger-angular-scale B-mode polarization. LiteBIRD will observe at the second Lagrange point with a 400 mm diameter telescope and 2622 detectors. It will survey the entire sky with 15 frequency bands from 40 to 400 GHz to measure and subtract foregrounds. The US LiteBIRD team is proposing to deliver sub-Kelvin instruments that include detectors and readout electronics. A lenslet-coupled sinuous antenna array will cover low-frequency bands (40-235 GHz) with four frequency arrangements of trichroic pixels. An orthomode-transducer-coupled corrugated horn array will cover high-frequency bands (280-402 GHz) with three types of single frequency detectors. The detectors will be made with transition edge sensor (TES) bolometers cooled to a 100 milli-Kelvin base temperature by an adiabatic demagnetization refrigerator. The TES bolometers will be read out using digital frequency multiplexing with Superconducting QUantum Interference Device (SQUID) amplifiers. Up to 78 bolometers will be multiplexed with a single SQUID amplifier. We report on the sub-Kelvin instrument design and ongoing developments for the LiteBIRD mission.
Baron Kelvin of Largs: an economical engineer.
Fara, Patricia
2007-12-01
William Thomson--honoured as Baron Kelvin of Largs--was Victorian Britain's most famous physicist, especially celebrated for laying the trans-Atlantic telegraph cable. As well as profiting financially from his many engineering projects, Kelvin introduced influential theories about energy and electromagnetism, all strongly coloured by his industrial experiences and the thrifty attitudes of Scottish Christians. Never accepting radioactivity as an additional energy source to the sun, he insisted that the Earth's life span was far too short for evolution to have taken place.
Kelvin wave-induced trace constituent oscillations in the equatorial stratosphere
NASA Technical Reports Server (NTRS)
Randel, William J.
1990-01-01
Kelvin wave induced oscillations in ozone (O3), water vapor (H2O), nitric acid (HNO3) and nitrogen dioxide (NO2) in the equatorial stratosphere are analyzed using Limb Infrared Monitor of the Stratosphere (LIMS) data. Power and cross-spectrum analyses reveal coherent eastward propagating zonal wave 1 and 2 constituent fluctuations, due to the influence of Kelvin waves previously documented in the LIMS data. Comparison is made between a preliminary and the archival versions of the LIMS data; significant differences are found, demonstrating the sensitivity of constituent retrievals to derived temperature profiles. Because Kelvin waves have vanishing meridional velocity, analysis of tracer transport in the meridional plane is substantially simplified. Kelvin wave vertical advection is demonstrated by coherent, in-phase temperature-tracer oscillations, co-located near regions of strong background vertical gradients.
Modified Kelvin Equations for Capillary Condensation in Narrow and Wide Grooves
NASA Astrophysics Data System (ADS)
Malijevský, Alexandr; Parry, Andrew O.
2018-03-01
We consider the location and order of capillary condensation transitions occurring in deep grooves of width L and depth D . For walls that are completely wet by liquid (contact angle θ =0 ) the transition is continuous and its location is not sensitive to the depth of the groove. However, for walls that are partially wet by liquid, where the transition is first order, we show that the pressure at which it occurs is determined by a modified Kelvin equation characterized by an edge contact angle θE describing the shape of the meniscus formed at the top of the groove. The dependence of θE on the groove depth D relies, in turn, on whether corner menisci are formed at the bottom of the groove in the low density gaslike phase. While for macroscopically wide grooves these are always present when θ <45 ° we argue that their formation is inhibited in narrow grooves. This has a number of implications including that the local pinning of the meniscus and location of the condensation transition is different depending on whether the contact angle is greater or less than a universal value θ*≈31 °. Our arguments are supported by detailed microscopic density functional theory calculations that show that the modified Kelvin equation remains highly accurate even when L and D are of the order of tens of molecular diameters.
The Kelvin-Thomson Atom. Part 2: The Many-Electron Atoms
ERIC Educational Resources Information Center
Walton, Alan J.
1977-01-01
Presents part two of a two-part article describing the Kelvin-Thomson atom. This part discusses the arrangement of electrons within the atom and examines some of the properties predicted for elements in the Kelvin-Thomson model. (SL)
The Occurrence of Tidal Hybrid Kelvin-Edge Waves in the Global Ocean
NASA Astrophysics Data System (ADS)
Kaur, H.; Buijsman, M. C.; Yankovsky, A. E.; Zhang, T.; Jeon, C. H.
2017-12-01
This study presents the analysis of hybrid Kelvin-edge waves on the continental shelves in a global ocean model. Our objective is to find areas where the transition occurs from Kelvin waves to hybrid Kelvin-edge waves. The change in continental shelf width may convert a Kelvin wave into a hybrid Kelvin-edge wave. In this process the group velocity reaches a minimum and tidal energy is radiated on and/or offshore [Zhang 2016]. We extract M2 SSH (Sea Surface Height) and velocity from the Hybrid Coordinate Ocean Model (HYCOM) and calculate barotropic energy fluxes. We analyze these three areas: the Bay of Biscay, the Amazon Shelf and North West Africa. In these three regions, the continental shelf widens in the propagation direction and the alongshore flux changes its direction towards the coast. A transect is taken at different points in these areas to compute the dispersion relations of the waves on the continental shelf. In model simulations, we change the bathymetry of the Bay of Biscay to study the behavior of the hybrid Kelvin-edge waves. BibliographyZhang, T., and A. E Yankovsky. (2016), On the nature of cross-isobath energy fluxes in topographically modified barotropic semidiurnal Kelvin waves, J. Geophys. Res. Oceans, 121, 3058-3074, doi:10.1002/2015JC011617.
Estimation of the Kelvin wave contribution to the semiannual oscillation
NASA Technical Reports Server (NTRS)
Hitchman, Matthew H.; Leovy, Conway B.
1988-01-01
Daily temperature data acquired during the Limb Infrared Monitor of the Stratosphere experiment are used to study the behavior of Kelvin waves in the equatorial middle atmosphere. It is suggested that Kelvin wave packets of different zonal wave numbers propagate separately and may be forced separately. Two Kelvin wave regimes were identified during the October 1978 to May 1979 data period. Most of the properties of the observed waves are shown to be consistent with slowly-varying theory. Results suggest that gravity waves may contribute significantly to the equatorial stratopause semiannual oscillation.
A 10 Kelvin 3 Tesla Magnet for Space Flight ADR Systems
NASA Technical Reports Server (NTRS)
Tuttle, Jim; Shirron, Peter; Canavan, Edgar; DiPirro, Michael; Riall, Sara; Pourrahimi, Shahin
2003-01-01
Many future space flight missions are expected to use adiabatic demagnetization refrigerators (ADRs) to reach detector operating temperatures well below one Kelvin. The goal is to operate each ADR with a mechanical cooler as its heat sink, thus avoiding the use of liquid cryogens. Although mechanical coolers are being developed to operate at temperatures of 6 Kelvin and below, there is a large efficiency cost associated with operating them at the bottom of their temperature range. For the multi-stage ADR system being developed at Goddard Space Flight Center, the goal is to operate with a 10 Kelvin mechanical cooler heat sink. With currently available paramagnetic materials, the highest temperature ADR stage in such a system will require a magnetic field of approximately three Tesla. Thus the goal is to develop a small, lightweight three Tesla superconducting magnet for operation at 10 Kelvin. It is important that this magnet have a low current/field ratio. Because traditional NbTi magnets do not operate safely above about six Kelvin, a magnet with a higher Tc is required. The primary focus has been on Nb3Sn magnets. Since standard Nb3Sn wire must be coated with thick insulation, wound on a magnet mandrel and then reacted, standard Nb,Sn magnets are quite heavy and require high currents Superconducting Systems developed a Nb3Sn wire which can be drawn down to small diameter, reacted, coated with thin insulation and then wound on a small diameter coil form. By using this smaller wire and operating closer to the wire s critical current, it should be possible to reduce the mass and operating current of 10 Kelvin magnets. Using this "react-then-wind" technology, Superconducting Systems has produced prototype 10 Kelvin magnets. This paper describes the development and testing of these magnets and discusses the outlook for including 10 Kelvin magnets on space-flight missions.
Reconnection properties in Kelvin-Helmholtz instabilities
NASA Astrophysics Data System (ADS)
Vernisse, Y.; Lavraud, B.; Eriksson, S.; Gershman, D. J.; Dorelli, J.; Pollock, C. J.; Giles, B. L.; Aunai, N.; Avanov, L. A.; Burch, J.; Chandler, M. O.; Coffey, V. N.; Dargent, J.; Ergun, R.; Farrugia, C. J.; Genot, V. N.; Graham, D.; Hasegawa, H.; Jacquey, C.; Kacem, I.; Khotyaintsev, Y. V.; Li, W.; Magnes, W.; Marchaudon, A.; Moore, T. E.; Paterson, W. R.; Penou, E.; Phan, T.; Retino, A.; Schwartz, S. J.; Saito, Y.; Sauvaud, J. A.; Schiff, C.; Torbert, R. B.; Wilder, F. D.; Yokota, S.
2017-12-01
Kelvin-Helmholtz instabilities are particular laboratories to study strong guide field reconnection processes. In particular, unlike the usual dayside magnetopause, the conditions across the magnetopause in KH vortices are quasi-symmetric, with low differences in beta and magnetic shear angle. We study these properties by means of statistical analysis of the high-resolution data of the Magnetospheric Multiscale mission. Several events of Kelvin-Helmholtz instabilities pas the terminator plane and a long lasting dayside instabilities event where used in order to produce this statistical analysis. Early results present a consistency between the data and the theory. In addition, the results emphasize the importance of the thickness of the magnetopause as a driver of magnetic reconnection in low magnetic shear events.
Multitip scanning bio-Kelvin probe
NASA Astrophysics Data System (ADS)
Baikie, I. D.; Smith, P. J. S.; Porterfield, D. M.; Estrup, P. J.
1999-03-01
We have developed a novel multitip scanning Kelvin probe which can measure changes in biological surface potential ΔVs to within 2 mV and, quasisimultaneously monitor displacement to <1 μm. The control and measurement subcomponents are PC based and incorporate a flexible user interface permitting software control of each individual tip, measurement, and scan parameters. We review the mode of operation and design features of the scanning bio-Kelvin probe including tip steering, signal processing, tip calibration, and novel tip tracking/dithering routines. This system uniquely offers both tip-to-sample spacing control (which is essential to avoid spurious changes in ΔVs due to variations in mean spacing) and a dithering routine to maintain tip orientation to the biological specimen, irrespective of the latter's movement. These features permit long term (>48 h) "active" tracking of the displacement and biopotentials developed along and around a plant shoot in response to an environmental stimulus, e.g., differential illumination (phototropism) or changes in orientation (gravitropism).
A validated non-linear Kelvin-Helmholtz benchmark for numerical hydrodynamics
NASA Astrophysics Data System (ADS)
Lecoanet, D.; McCourt, M.; Quataert, E.; Burns, K. J.; Vasil, G. M.; Oishi, J. S.; Brown, B. P.; Stone, J. M.; O'Leary, R. M.
2016-02-01
The non-linear evolution of the Kelvin-Helmholtz instability is a popular test for code verification. To date, most Kelvin-Helmholtz problems discussed in the literature are ill-posed: they do not converge to any single solution with increasing resolution. This precludes comparisons among different codes and severely limits the utility of the Kelvin-Helmholtz instability as a test problem. The lack of a reference solution has led various authors to assert the accuracy of their simulations based on ad hoc proxies, e.g. the existence of small-scale structures. This paper proposes well-posed two-dimensional Kelvin-Helmholtz problems with smooth initial conditions and explicit diffusion. We show that in many cases numerical errors/noise can seed spurious small-scale structure in Kelvin-Helmholtz problems. We demonstrate convergence to a reference solution using both ATHENA, a Godunov code, and DEDALUS, a pseudo-spectral code. Problems with constant initial density throughout the domain are relatively straightforward for both codes. However, problems with an initial density jump (which are the norm in astrophysical systems) exhibit rich behaviour and are more computationally challenging. In the latter case, ATHENA simulations are prone to an instability of the inner rolled-up vortex; this instability is seeded by grid-scale errors introduced by the algorithm, and disappears as resolution increases. Both ATHENA and DEDALUS exhibit late-time chaos. Inviscid simulations are riddled with extremely vigorous secondary instabilities which induce more mixing than simulations with explicit diffusion. Our results highlight the importance of running well-posed test problems with demonstrated convergence to a reference solution. To facilitate future comparisons, we include as supplementary material the resolved, converged solutions to the Kelvin-Helmholtz problems in this paper in machine-readable form.
Edge contact angle and modified Kelvin equation for condensation in open pores.
Malijevský, Alexandr; Parry, Andrew O; Pospíšil, Martin
2017-08-01
We consider capillary condensation transitions occurring in open slits of width L and finite height H immersed in a reservoir of vapor. In this case the pressure at which condensation occurs is closer to saturation compared to that occurring in an infinite slit (H=∞) due to the presence of two menisci that are pinned near the open ends. Using macroscopic arguments, we derive a modified Kelvin equation for the pressure p_{cc}(L;H) at which condensation occurs and show that the two menisci are characterized by an edge contact angle θ_{e} that is always larger than the equilibrium contact angle θ, only equal to it in the limit of macroscopic H. For walls that are completely wet (θ=0) the edge contact angle depends only on the aspect ratio of the capillary and is well described by θ_{e}≈sqrt[πL/2H] for large H. Similar results apply for condensation in cylindrical pores of finite length. We test these predictions against numerical results obtained using a microscopic density-functional model where the presence of an edge contact angle characterizing the shape of the menisci is clearly visible from the density profiles. Below the wetting temperature T_{w} we find very good agreement for slit pores of widths of just a few tens of molecular diameters, while above T_{w} the modified Kelvin equation only becomes accurate for much larger systems.
Kelvin waves: a comparison study between SABER and normal mode analysis of ECMWF data
NASA Astrophysics Data System (ADS)
Blaauw, Marten; Garcia, Rolando; Zagar, Nedjeljka; Tribbia, Joe
2014-05-01
Equatorial Kelvin waves spectra are sensitive to the multi-scale variability of their source of tropical convective forcing. Moreover, Kelvin wave spectra are modified upward by changes in the background winds and stability. Recent high resolution data from observations as well as analyses are capable of resolving the slower Kelvin waves with shorter vertical wavelength near the tropical tropopause. In this presentation, results from a quantitive comparison study of stratospheric Kelvin waves in satellite data (SABER) and analysis data from the ECMWF operational archive will be shown. Temperature data from SABER is extracted over a six year period (2007-2012) with an effective vertical resolution of 2 km. Spectral power of stratospheric Kelvin waves in SABER data is isolated by selecting symmetric and eastward spectral components in the 8-20 days range. Global data from ECMWF operational analysis is extracted for the same six years on 91 model levels (top level at 0.01 hPa) and 25 km horizontal resolution. Using three-dimensional orthogonal normal-mode expansions, the input mass and wind data from ECMWF is projected onto balanced rotational modes and unbalanced inertia-gravity modes, including spectral data for pure Kelvin waves. The results show good agreement between Kelvin waves in SABER and ECMWF analyses data for: (i) the frequency shift of Kelvin wave variance with height and (ii) vertical wavelengths. Variability with respect to QBO will also be discussed. In a previous study, discrepancies in the upper stratosphere were found to be 60% and are found here to be 10% (8-20 day averaged value), which can be explained by the better stratosphere representation in the 91 model level version of the ECMWF operational model. New discrepancies in Kelvin wave variance are found in the lower stratosphere at 20 km. Averaged spectral power over the 8-20 day range is found to be 35% higher in ECMWF compared to SABER data. We compared results at 20 km with additional
Kelvin-wave cascade in the vortex filament model
NASA Astrophysics Data System (ADS)
Baggaley, Andrew W.; Laurie, Jason
2014-01-01
The small-scale energy-transfer mechanism in zero-temperature superfluid turbulence of helium-4 is still a widely debated topic. Currently, the main hypothesis is that weakly nonlinear interacting Kelvin waves (KWs) transfer energy to sufficiently small scales such that energy is dissipated as heat via phonon excitations. Theoretically, there are at least two proposed theories for Kelvin-wave interactions. We perform the most comprehensive numerical simulation of weakly nonlinear interacting KWs to date and show, using a specially designed numerical algorithm incorporating the full Biot-Savart equation, that our results are consistent with the nonlocal six-wave KW interactions as proposed by L'vov and Nazarenko.
SDO/AIA Observation of Kelvin-Helmholtz Instability in the Solar Corona
NASA Technical Reports Server (NTRS)
Ofman, L.; Thompson, B. J.
2011-01-01
We present observations of the formation, propagation and decay of vortex-shaped features in coronal images from the Solar Dynamics Observatory (SDO) associated with an eruption starting at about 2:30UT on Apr 8, 2010. The series of vortices formed along the interface between an erupting (dimming) region and the surrounding corona. They ranged in size from several to ten arcseconds, and traveled along the interface at 6-14 km s-1. The features were clearly visible in six out of the seven different EUV wavebands of the Atmospheric Imaging Assembly (AIA). Based on the structure, formation, propagation and decay of these features, we identified these features as the first observations of the Kelvin- Helmholtz (KH) instability in the corona in EUV. The interpretation is supported by linear analysis and by MHD model of KH instability. We conclude that the instability is driven by the velocity shear between the erupting and closed magnetic field of the Coronal Mass Ejection (CME).
Kelvin-Helmholtz versus Hall magnetoshear instability in astrophysical flows.
Gómez, Daniel O; Bejarano, Cecilia; Mininni, Pablo D
2014-05-01
We study the stability of shear flows in a fully ionized plasma. Kelvin-Helmholtz is a well-known macroscopic and ideal shear-driven instability. In sufficiently low-density plasmas, also the microscopic Hall magnetoshear instability can take place. We performed three-dimensional simulations of the Hall-magnetohydrodynamic equations where these two instabilities are present, and carried out a comparative study. We find that when the shear flow is so intense that its vorticity surpasses the ion-cyclotron frequency of the plasma, the Hall magnetoshear instability is not only non-negligible, but it actually displays growth rates larger than those of the Kelvin-Helmholtz instability.
Kelvin-Helmholtz instability in a single-component atomic superfluid
NASA Astrophysics Data System (ADS)
Baggaley, A. W.; Parker, N. G.
2018-05-01
We demonstrate an experimentally feasible method for generating the classical Kelvin-Helmholtz instability in a single-component atomic Bose-Einstein condensate. By progressively reducing a potential barrier between two counterflowing channels, we seed a line of quantized vortices, which precede to form progressively larger clusters, mimicking the classical roll-up behavior of the Kelvin-Helmholtz instability. This cluster formation leads to an effective superfluid shear layer, formed through the collective motion of many quantized vortices. From this we demonstrate a straightforward method to measure the effective viscosity of a turbulent quantum fluid in a system with a moderate number of vortices, within the range of current experimental capabilities.
Erratum: SDO-AIA Observation of Kelvin-helmholtz Instability in the Solar Corona
NASA Technical Reports Server (NTRS)
Ofman, Leon; Thompson, Barbara J.
2012-01-01
The first SDOAIA observation of the KelvinHelmholtz instability in the solar corona in the 2010 April 8 event was reported by Ofman Thompson (2010, 2011). Foullon et al. (2011), which was published prior to Ofman Thompson (2011), claimed the detection of the KelvinHelmholtz instability in a later event (2010 November 3), and should have been cited in Ofman Thompson (2011).
Exact solution for the energy spectrum of Kelvin-wave turbulence in superfluids
NASA Astrophysics Data System (ADS)
Boué, Laurent; Dasgupta, Ratul; Laurie, Jason; L'Vov, Victor; Nazarenko, Sergey; Procaccia, Itamar
2011-08-01
We study the statistical and dynamical behavior of turbulent Kelvin waves propagating on quantized vortices in superfluids and address the controversy concerning the energy spectrum that is associated with these excitations. Finding the correct energy spectrum is important because Kelvin waves play a major role in the dissipation of energy in superfluid turbulence at near-zero temperatures. In this paper, we show analytically that the solution proposed by [L’vov and Nazarenko, JETP Lett.JTPLA20021-364010.1134/S002136401008014X 91, 428 (2010)] enjoys existence, uniqueness, and regularity of the prefactor. Furthermore, we present numerical results of the dynamical equation that describes to leading order the nonlocal regime of the Kelvin-wave dynamics. We compare our findings with the analytical results from the proposed local and nonlocal theories for Kelvin-wave dynamics and show an agreement with the nonlocal predictions. Accordingly, the spectrum proposed by L’vov and Nazarenko should be used in future theories of quantum turbulence. Finally, for weaker wave forcing we observe an intermittent behavior of the wave spectrum with a fluctuating dissipative scale, which we interpreted as a finite-size effect characteristic of mesoscopic wave turbulence.
Cavitation and bubble dynamics: the Kelvin impulse and its applications
Blake, John R.; Leppinen, David M.; Wang, Qianxi
2015-01-01
Cavitation and bubble dynamics have a wide range of practical applications in a range of disciplines, including hydraulic, mechanical and naval engineering, oil exploration, clinical medicine and sonochemistry. However, this paper focuses on how a fundamental concept, the Kelvin impulse, can provide practical insights into engineering and industrial design problems. The pathway is provided through physical insight, idealized experiments and enhancing the accuracy and interpretation of the computation. In 1966, Benjamin and Ellis made a number of important statements relating to the use of the Kelvin impulse in cavitation and bubble dynamics, one of these being ‘One should always reason in terms of the Kelvin impulse, not in terms of the fluid momentum…’. We revisit part of this paper, developing the Kelvin impulse from first principles, using it, not only as a check on advanced computations (for which it was first used!), but also to provide greater physical insights into cavitation bubble dynamics near boundaries (rigid, potential free surface, two-fluid interface, flexible surface and axisymmetric stagnation point flow) and to provide predictions on different types of bubble collapse behaviour, later compared against experiments. The paper concludes with two recent studies involving (i) the direction of the jet formation in a cavitation bubble close to a rigid boundary in the presence of high-intensity ultrasound propagated parallel to the surface and (ii) the study of a ‘paradigm bubble model’ for the collapse of a translating spherical bubble, sometimes leading to a constant velocity high-speed jet, known as the Longuet-Higgins jet. PMID:26442141
Investigation of Kelvin wave periods during Hai-Tang typhoon using Empirical Mode Decomposition
NASA Astrophysics Data System (ADS)
Kishore, P.; Jayalakshmi, J.; Lin, Pay-Liam; Velicogna, Isabella; Sutterley, Tyler C.; Ciracì, Enrico; Mohajerani, Yara; Kumar, S. Balaji
2017-11-01
Equatorial Kelvin waves (KWs) are fundamental components of the tropical climate system. In this study, we investigate Kelvin waves (KWs) during the Hai-Tang typhoon of 2005 using Empirical Mode Decomposition (EMD) of regional precipitation, zonal and meridional winds. For the analysis, we use daily precipitation datasets from the Global Precipitation Climatology Project (GPCP) and wind datasets from the European Centre for Medium-Range Weather Forecasts (ECMWF) Interim Re-analysis (ERA-Interim). As an additional measurement, we use in-situ precipitation datasets from rain-gauges over the Taiwan region. The maximum accumulated precipitation was approximately 2400 mm during the period July 17-21, 2005 over the southwestern region of Taiwan. The spectral analysis using the wind speed at 950 hPa found in the 2nd, 3rd, and 4th intrinsic mode functions (IMFs) reveals prevailing Kelvin wave periods of ∼3 days, ∼4-6 days, and ∼6-10 days, respectively. From our analysis of precipitation datasets, we found the Kelvin waves oscillated with periods between ∼8 and 20 days.
Topographic coupling of surface and internal Kelvin waves. [of ocean
NASA Technical Reports Server (NTRS)
Chao, S.-Y.
1980-01-01
An analysis is presented for computing the diffraction of barotropic Kelvin waves by a localized topographical irregularity on flat-bottom ocean with an arbitrary vertical stratification. It was shown that all baroclinic Kelvin waves will be generated downstream of the bump, with the first baroclinic mode having the largest amplitude. The Poincare waves predominate in the lowest modes, and are more directionally anisotropic. It was concluded that baroclinic Poincare waves radiating offshore from the bump topography could contribute to the internal wave field in the open ocean and provide an alternative mechanism to dissipate the barotropic tides.
Magnetic field generation in core-sheath jets via the kinetic Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishikawa, K.-I.; Hardee, P. E.; Duţan, I.
2014-09-20
We have investigated magnetic field generation in velocity shears via the kinetic Kelvin-Helmholtz instability (kKHI) using a relativistic plasma jet core and stationary plasma sheath. Our three-dimensional particle-in-cell simulations consider plasma jet cores with Lorentz factors of 1.5, 5, and 15 for both electron-proton and electron-positron plasmas. For electron-proton plasmas, we find generation of strong large-scale DC currents and magnetic fields that extend over the entire shear surface and reach thicknesses of a few tens of electron skin depths. For electron-positron plasmas, we find generation of alternating currents and magnetic fields. Jet and sheath plasmas are accelerated across the shearmore » surface in the strong magnetic fields generated by the kKHI. The mixing of jet and sheath plasmas generates a transverse structure similar to that produced by the Weibel instability.« less
The Kelvin water-drop experiment
NASA Technical Reports Server (NTRS)
Shull, Robert D.
1990-01-01
This experiment was originally designed and performed by Lord Kelvin (William Thomson) in the late 1800's to demonstrate the creation of an electric potential simply by means of dividing up a body of flowing water. The objective is to demonstrate the power of electrical forces in a material as common as water and to help teach the student that even simple, well understood phenomena sometimes present unexpected results that, at first thought, defeat explanation. The experimental equipment and procedure are explained.
Kelvin Wave Influence on the Shallow-to-Deep Transition Over the Amazon
NASA Astrophysics Data System (ADS)
Rowe, A.; Serra, Y. L.
2017-12-01
The suite of observations from GOAmazon and CHUVA offers a unique opportunity to examine land-based convective processes in the tropics, including the poorly represented shallow-to-deep transition. This study uses these data to investigate impacts of Kelvin waves on the the shallow-to-deep transition over the Central Amazon. The Kelvin waves that propagate over the region often originate over the tropical central and east Pacific, with local generation over the Andes also observed. The observed 15 m s-1 phase speed and 4500 km wave length during the two-year campaign are in agreement with previously published studies of these waves across the tropics. Also in agreement with previous studies, we find the waves are most active during the wet season (November-May) for this region. Using four separate convective event classes (clear-sky, nonprecipitating cumulus congestus, afternoon deep convection, and mesoscale convective systems), we examine how the convection preferentially develops for different phases of the Kelvin waves seen during GOAmazon. We additionally examine surface meteorological variables, the vertical thermodynamic and dynamic structure of the troposphere, vertical moist static stability, integrated column water vapor and liquid water, and surface energy fluxes within the context of these convective classes to identify the important environmental factors contributing to observed periods of enhanced deep convection related to the waves. Results suggest that the waves significantly modify the local environment, such as creating a deep layer of moisture throughout the troposphere, favoring more organized convection in the active than in the suppressed phase of the wave. The significance of wave-related environmental modifications are assessed by comparing local rainfall accumulations during Kelvin wave activity to that when the waves are not present. Future work will further explore the shallow-to-deep transition and its modulation by Kelvin wave activity
Noise performance of frequency modulation Kelvin force microscopy
Deresmes, Dominique; Mélin, Thierry
2014-01-01
Summary Noise performance of a phase-locked loop (PLL) based frequency modulation Kelvin force microscope (FM-KFM) is assessed. Noise propagation is modeled step by step throughout the setup using both exact closed loop noise gains and an approximation known as “noise gain” from operational amplifier (OpAmp) design that offers the advantage of decoupling the noise performance study from considerations of stability and ideal loop response. The bandwidth can be chosen depending on how much noise is acceptable and it is shown that stability is not an issue up to a limit that will be discussed. With thermal and detector noise as the only sources, both approaches yield PLL frequency noise expressions equal to the theoretical value for self-oscillating circuits and in agreement with measurement, demonstrating that the PLL components neither modify nor contribute noise. Kelvin output noise is then investigated by modeling the surrounding bias feedback loop. A design rule is proposed that allows choosing the AC modulation frequency for optimized sharing of the PLL bandwidth between Kelvin and topography loops. A crossover criterion determines as a function of bandwidth, temperature and probe parameters whether thermal or detector noise is the dominating noise source. Probe merit factors for both cases are then established, suggesting how to tackle noise performance by probe design. Typical merit factors of common probe types are compared. This comprehensive study is an encouraging step toward a more integral performance assessment and a remedy against focusing on single aspects and optimizing around randomly chosen key values. PMID:24455457
Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system.
Drozdov, A P; Eremets, M I; Troyan, I A; Ksenofontov, V; Shylin, S I
2015-09-03
A superconductor is a material that can conduct electricity without resistance below a superconducting transition temperature, Tc. The highest Tc that has been achieved to date is in the copper oxide system: 133 kelvin at ambient pressure and 164 kelvin at high pressures. As the nature of superconductivity in these materials is still not fully understood (they are not conventional superconductors), the prospects for achieving still higher transition temperatures by this route are not clear. In contrast, the Bardeen-Cooper-Schrieffer theory of conventional superconductivity gives a guide for achieving high Tc with no theoretical upper bound--all that is needed is a favourable combination of high-frequency phonons, strong electron-phonon coupling, and a high density of states. These conditions can in principle be fulfilled for metallic hydrogen and covalent compounds dominated by hydrogen, as hydrogen atoms provide the necessary high-frequency phonon modes as well as the strong electron-phonon coupling. Numerous calculations support this idea and have predicted transition temperatures in the range 50-235 kelvin for many hydrides, but only a moderate Tc of 17 kelvin has been observed experimentally. Here we investigate sulfur hydride, where a Tc of 80 kelvin has been predicted. We find that this system transforms to a metal at a pressure of approximately 90 gigapascals. On cooling, we see signatures of superconductivity: a sharp drop of the resistivity to zero and a decrease of the transition temperature with magnetic field, with magnetic susceptibility measurements confirming a Tc of 203 kelvin. Moreover, a pronounced isotope shift of Tc in sulfur deuteride is suggestive of an electron-phonon mechanism of superconductivity that is consistent with the Bardeen-Cooper-Schrieffer scenario. We argue that the phase responsible for high-Tc superconductivity in this system is likely to be H3S, formed from H2S by decomposition under pressure. These findings raise hope for the
Influence of QBO on stratospheric Kelvin and Mixed Rossby gravity waves in high-top CMIP5 models
NASA Astrophysics Data System (ADS)
Indah Solihah, Karina; Lubis, Sandro W.; Setiawan, Sonni
2018-05-01
It is well established that quasi-biennial oscillation (QBO) has a substantial influence on Kelvin and mixed Rossby gravity (MRG) wave activity in the tropical lower stratosphere. In this study, we examined how QBO influences Kelvin and MRG wave activity in the lower stratosphere, based on nine high-top CMIP5 models. The results show that the Kelvin and MRG wave signals are stronger in the models with QBO, and relatively weaker in the models without QBO. The results are consistent with established theory, whereby upward-propagating Kelvin waves occurs more frequently during the easterly QBO phase, while upward-propagating MRG waves occurs during the westerly QBO phase. Without the QBO, the mean flow exhibits a near-zero easterly wind, which prevents the waves from propagating and penetrating into the stratosphere. Our analysis also shows that models with the QBO tend to have more robust signatures (in terms of amplitude and phase speed) of Kelvin and MRG waves.
Variability of Kelvin wave momentum flux from high-resolution radiosonde and radio occultation data
NASA Astrophysics Data System (ADS)
Sjoberg, J. P.; Zeng, Z.; Ho, S. P.; Birner, T.; Anthes, R. A.; Johnson, R. H.
2017-12-01
Direct measurement of momentum flux from Kelvin waves in the stratosphere remains challenging. Constraining this flux from observations is an important step towards constraining the flux from models. Here we present results from analyses using linear theory to estimate the Kelvin wave amplitudes and momentum fluxes from both high-resolution radiosondes and from radio occultation (RO) data. These radiosonde data are from a contiguous 11-year span of soundings performed at two Department of Energy Atmospheric Radiation Measurement sites, while the RO data span 14 years from multiple satellite missions. Daily time series of the flux from both sources are found to be in quantitative agreement with previous studies. Climatological analyses of these data reveal the expected seasonal cycle and variability associated with the quasi-biennial oscillation. Though both data sets provide measurements on distinct spatial and temporal scales, the estimated flux from each provides insight into separate but complimentary aspects of how the Kelvin waves affect the stratosphere. Namely, flux derived from radiosonde sites provide details on the regional Kelvin wave variability, while the flux from RO data are zonal mean estimates.
Observations of Convectively Coupled Kelvin Waves forced by Extratropical Wave Activity
NASA Astrophysics Data System (ADS)
Kiladis, G. N.; Biello, J. A.; Straub, K. H.
2012-12-01
It is well established by observations that deep tropical convection can in certain situations be forced by extratropical Rossby wave activity. Such interactions are a well-known feature of regions of upper level westerly flow, and in particular where westerlies and equatorward wave guiding by the basic state occur at low enough latitudes to interact with tropical and subtropical moisture sources. In these regions convection is commonly initiated ahead of upper level troughs, characteristic of forcing by quasi-geostrophic dynamics. However, recent observational evidence indicates that extratropical wave activity is also associated with equatorial convection even in regions where there is a "critical line" to Rossby wave propagation at upper levels, that is, where the zonal phase speed of the wave is equal to the zonal flow speed. A common manifestation of this type of interaction involves the initiation of convectively coupled Kelvin waves, as well as mixed Rossby-gravity (MRG) waves. These waves are responsible for a large portion of the convective variability within the ITCZ over the Indian, Pacific, and Atlantic sectors, as well as within the Amazon Basin of South America. For example, Kelvin waves originating within the western Pacific ITCZ are often triggered by Rossby wave activity propagating into the Australasian region from the South Indian Ocean extratropics. At other times, Kelvin waves are seen to originate along the eastern slope of the Andes. In the latter case the initial forcing is sometimes linked to a low-level "pressure surge," initiated by wave activity propagating equatorward from the South Pacific storm track. In yet other cases, such as over Africa, the forcing appears to be related to wave activity in the extratropics which is not necessarily propagating into low latitudes, but appears to "project" onto the Kelvin structure, in line with past theoretical and modeling studies. Observational evidence for extratropical forcing of Kelvin and MRG
ecoSPEARS License Signing with Kelvin Manning
2017-12-19
NASA Kennedy Space Center's Associate Director Kelvin Manning, center, signs a license agreement with the President and CEO of ecoSPEARS, which allows the company to commercially sell a soil remediation technology developed by a research team at Kennedy. The technology, known as Sorbent Polymer Extraction And Remediation System, is designed to capture and remove polychlorinated biphenyls (PCBs) from contaminated sediments in waterways and wetlands.
Temperature Scales: Celsius, Fahrenheit, Kelvin, Reamur, and Romer.
ERIC Educational Resources Information Center
Romer, Robert H.
1982-01-01
Traces the history and development of temperature scales which began with the 17th-century invention of the liquid-in-glass thermometer. Focuses on the work of Olaf Romer, Daniel Fahrenheit, Rene-Antoine de Reamur, Anders Celsius, and William Thomson (Lord Kelvin). Includes experimental work and consideration of high/low fixed points on the…
A multidimensional anisotropic strength criterion based on Kelvin modes
NASA Astrophysics Data System (ADS)
Arramon, Yves Pierre
A new theory for the prediction of multiaxial strength of anisotropic elastic materials was proposed by Biegler and Mehrabadi (1993). This theory is based on the premise that the total elastic strain energy of an anisotropic material subjected to multiaxial stress can be decomposed into dilatational and deviatoric modes. A multidimensional strength criterion may thus be formulated by postulating that the failure would occur when the energy stored in one of these modes has reached a critical value. However, the logic employed by these authors to formulate a failure criterion based on this theory could not be extended to multiaxial stress. In this thesis, an alternate criterion is presented which redresses the biaxial restriction by reformulating the surfaces of constant modal energy as surfaces of constant eigenstress magnitude. The resulting failure envelope, in a multidimensional stress space, is piecewise smooth. Each facet of the envelope is expected to represent the locus of failure data by a particular Kelvin mode. It is further shown that the Kelvin mode theory alone provides an incomplete description of the failure of some materials, but that this weakness can be addressed by the introduction of a set of complementary modes. A revised theory which combines both Kelvin and complementary modes is thus proposed and applied seven example materials: an isotropic concrete, tetragonal paperboard, two orthotropic softwoods, two orthotropic hardwoods and an orthotropic cortical bone. The resulting failure envelopes for these examples were plotted and, with the exception of concrete, shown to produce intuitively correct failure predictions.
Kelvin-Helmholtz Instability: Lessons Learned and Ways Forward
NASA Astrophysics Data System (ADS)
Masson, A.; Nykyri, K.
2018-06-01
The Kelvin-Helmholtz instability (KHI) is a ubiquitous phenomenon across the Universe, observed from 500 m deep in the oceans on Earth to the Orion molecular cloud. Over the past two decades, several space missions have enabled a leap forward in our understanding of this phenomenon at the Earth's magnetopause. Key results obtained by these missions are first presented, with a special emphasis on Cluster and THEMIS. In particular, as an ideal instability, the KHI was not expected to produce mass transport. Simulations, later confirmed by spacecraft observations, indicate that plasma transport in Kelvin-Helmholtz (KH) vortices can arise during non-linear stage of its development via secondary process. In addition to plasma transport, spacecraft observations have revealed that KHI can also lead to significant ion heating due to enhanced ion-scale wave activity driven by the KHI. Finally, we describe what are the upcoming observational opportunities in 2018-2020, thanks to a unique constellation of multi-spacecraft missions including: MMS, Cluster, THEMIS, Van Allen Probes and Swarm.
Pump-probe Kelvin-probe force microscopy: Principle of operation and resolution limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murawski, J.; Graupner, T.; Milde, P., E-mail: peter.milde@tu-dresden.de
Knowledge on surface potential dynamics is crucial for understanding the performance of modern-type nanoscale devices. We describe an electrical pump-probe approach in Kelvin-probe force microscopy that enables a quantitative measurement of dynamic surface potentials at nanosecond-time and nanometer-length scales. Also, we investigate the performance of pump-probe Kelvin-probe force microscopy with respect to the relevant experimental parameters. We exemplify a measurement on an organic field effect transistor that verifies the undisturbed functionality of our pump-probe approach in terms of simultaneous and quantitative mapping of topographic and electronic information at a high lateral and temporal resolution.
NASA Astrophysics Data System (ADS)
Suzuki, J.; Nishi, N.; Fujiwara, M.; Yoneyama, K.
2016-12-01
We investigated the influence of the background wind regime on interannual variability in equatorial Kelvin waves in the upper troposphere and lower stratosphere using the European Centre for Medium-Range Weather Forecasts 40-year reanalysis data. We focused on variability in the number of Kelvin wave events as a function of the background westerly wind, given by the zonal wind index (ZWI) in the equatorial western hemisphere. The ZWI measures the strength of the upper branch of the Walker circulation in the western hemisphere. Although the ZWI is well correlated with the sea surface temperature in the Niño-3.4 region, nearly half of the peaks of positive (negative) ZWI cases occurred outside of the typical La Niña (El Niño) season (December to February), respectively. In the positive ZWI (stronger westerly) cases, both convective activity over the western Pacific and extratropical Rossby waves were enhanced. Kelvin waves over the western hemisphere appeared frequently at 200 hPa but barely reached 100 hPa due to the strong westerly wind under this level. In the negative ZWI period, on the other hand, the number of Kelvin waves at 200 hPa decreased due to the weaker convection; Kelvin waves reached 100 hPa and propagated even farther upward. We also investigated the relationship between the ZWI and the phase speed of Kelvin waves. Kelvin waves with relatively slow phase speeds are found in negative ZWI cases, but are not found in positive ZWI cases due to the westerly background wind below the altitudes where Kelvin waves commonly propagate.
NASA Technical Reports Server (NTRS)
Fairfield, Donald H.; Otto, A.
1999-01-01
On March 24, 1995 the Geotail spacecraft observed large fluctuations of the magnetic field and plasma properties in the Low Latitude Boundary Layer (LLBL) about 15 R(sub E) tailward of the dusk meridian. Although the magnetospheric and the magnetosheath field were strongly northward, the B(sub z) component showed strong short duration fluctuations in which B(sub z) could even reach negative values. We have used two-dimensional magnetohydrodynamic simulations with magnetospheric and magnetosheath input parameters specifically chosen for this. Geotail event to identify the processes which cause the observed boundary properties. It is shown that these fluctuations can be explained by the Kelvin-Helmholtz instability if the k vector of the instability has a component along the magnetic field direction. The simulation results show many of the characteristic properties of the Geotail observations. In particular, the quasi-periodic strong fluctuations are well explained by satellite crossings through the Kelvin-Helmholtz vortices. It is illustrated how the interior structure of the Kelvin-Helmholtz vortices leads to the rapid fluctuations in the Geotail observations. Our results suggest an average Kelvin-Helmholtz wavelength of about 5 R(sub E) with a vortex size of close to 2 R(sub E) for an average repetition time of 2.5 minutes. The growth time for these waves implies a source region of about 10 to 16 R(sub E) upstream from the location of the Geotail spacecraft (i.e., near the dusk meridian). The results also indicate a considerable mass transport of magnetosheath material into the magnetosphere by magnetic reconnection in the Kelvin-Helmholtz vortices.
Progress on 10 Kelvin cryo-cooled sapphire oscillator
NASA Technical Reports Server (NTRS)
Wang, Rabi T.; Dick, G. John; Diener, William A.
2004-01-01
We present recent progress on the 10 Kelvin Cryocooled Sapphire Oscillator (10K CSO). Included are incorporation of a new pulse tube cryocooler, cryocooler vibration comparisons between G-M and pulse-tube types, phase noise, and frequency stability tests. For the advantage of a single stage pulse tube cryocooler, we also present results for a 40K Compensated Sapphire Oscillator (40K CSO).
Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow
Wan, W. C.; Malamud, Guy; Shimony, A.; ...
2015-10-01
This manuscript reports the first observations of the Kelvin-Helmholtz instability evolving from well-characterized seed perturbations in a steady, supersonic flow. The Kelvin-Helmholtz instability occurs when two fluids move parallel to one another at different velocities, and contributes to an intermixing of fluids and transition to turbulence. It is ubiquitous in nature and engineering, including terrestrial systems such as cloud formations, astrophysical systems such as supernovae, and laboratory systems such as fusion experiments. In a supersonic flow, the growth rate of the instability is inhibited due to effects of compressibility. These effects are still not fully understood, and hold the motivationmore » for the current work. The data presented here were obtained by developing a novel experimental platform capable of sustaining a steady shockwave over a precision-machined interface for unprecedented durations. The chosen interface was a well-characterized, single-mode sine wave, allowing us to document the evolution of individual vortices at high resolution. Understanding the behavior of individual vortices is the first of two fundamental steps towards developing a comprehensive model for the Kelvin-Helmholtz instability in a compressible flow. The results of this experiment were well reproduced with 2D hydrodynamic simulations. The platform has been extended to additional experiments, which study the evolution of different hydrodynamic instabilities in steady, supersonic flows.« less
Observation of single-mode, Kelvin-Helmholtz instability in a supersonic flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, W. C.; Malamud, Guy; Shimony, A.
This manuscript reports the first observations of the Kelvin-Helmholtz instability evolving from well-characterized seed perturbations in a steady, supersonic flow. The Kelvin-Helmholtz instability occurs when two fluids move parallel to one another at different velocities, and contributes to an intermixing of fluids and transition to turbulence. It is ubiquitous in nature and engineering, including terrestrial systems such as cloud formations, astrophysical systems such as supernovae, and laboratory systems such as fusion experiments. In a supersonic flow, the growth rate of the instability is inhibited due to effects of compressibility. These effects are still not fully understood, and hold the motivationmore » for the current work. The data presented here were obtained by developing a novel experimental platform capable of sustaining a steady shockwave over a precision-machined interface for unprecedented durations. The chosen interface was a well-characterized, single-mode sine wave, allowing us to document the evolution of individual vortices at high resolution. Understanding the behavior of individual vortices is the first of two fundamental steps towards developing a comprehensive model for the Kelvin-Helmholtz instability in a compressible flow. The results of this experiment were well reproduced with 2D hydrodynamic simulations. The platform has been extended to additional experiments, which study the evolution of different hydrodynamic instabilities in steady, supersonic flows.« less
Detection of the fast Kelvin wave teleconnection due to El Niño-Southern Oscillation
NASA Astrophysics Data System (ADS)
Meyers, Steven D.; Melsom, Arne; Mitchum, Gary T.; O'Brien, James J.
1998-11-01
Previous analyses of the ocean state along the western American coast have often indicated unexpectedly slow and limited propagation of coastally trapped Kelvin waves associated with the El Niño-Southern Oscillation. In contrast, theoretical and numerical ocean models demonstrate that these Kelvin waves are a rapid and long-range teleconnection between the low- and high-latitude Pacific Ocean, strongly impacting both the surface coastal currents and nutrient upwelling. Sea level variations along the western coast of North America are reexamined under the assumption that tropically forced Kelvin waves are produced in bursts of several months duration. A cross-correlation analysis, restricted to mid-1982 to mid-1983, is performed between Galapagos Island and stations along western Central and North America. A coastally trapped Kelvin wave is revealed to propagate at a speed of 2-3 m s-1 from the tropical Pacific to the Aleutian Island Chain. The observed phase speed agrees with the estimated speed of a Kelvin wave based on the average density profile of the ocean near the coast. Weaker El Niño events in 1986/1987 and 1991/1992 appear to contain a combination of this remote signal and local wind forcing. The wave propagation speed calculated from the spectral phase is shown to be sensitive to the presence of other (noise) processes in the observations. This is demonstrated through an analysis of a synthetic sea level data set that contains many of the essential features of the real sea level data. A relatively small level of red noise can give a 100% expected error in the estimated propagation speed. This suggests a new explanation for this important inconsistency within dynamical oceanography.
The Evolution of the Celsius and Kelvin Temperature Scales and the State of the Art
NASA Astrophysics Data System (ADS)
Pellicer, Julio; Amparo Gilabert, M.; Lopez-Baeza, Ernesto
1999-07-01
A physical analysis is given of the evolution undergone by the Celsius and Kelvin temperature scales, from their definition to the present day. It is shown that in the temperature interval between the melting point of ice and the boiling point of water, the Celsius and Kelvin scales, both born centigrade by definition and actually become so afterwards by experimental determination as well, are not so any longer, either by definition or by experimental determination.
Coupled Kelvin-Helmholtz and Tearing Mode Instabilities at the Mercury's Magnetopause
NASA Astrophysics Data System (ADS)
Ivanovski, S. L.; Milillo, A.; Kartalev, M.; Massetti, S.
2018-05-01
A MHD approach for numerical simulations of coupled Kelvin-Helmholtz and tearing mode instabilities has been applied to Mercury’s magnetopause and used to perform a physical parameters study constrained by the MESSENGER data.
Single-Mode, Supersonic Kelvin-Helmholtz Instability Experiment on OMEGA-EP
NASA Astrophysics Data System (ADS)
Wan, Wesley; Malamud, G.; Di Stefano, C.; Kuranz, C. C.; Drake, R.
2013-06-01
Laboratory laser experiments are able to produce and study phenomena that occur in astrophysical systems, allowing us to study mechanisms relevant to the formation, interaction, and destruction processes of stars and planets. These dynamic processes are strongly affected by hydrodynamic instabilities such as the Kelvin-Helmholtz instability, which arises when shear flow at an interface causes mixing between fluid layers. This instability is commonly observed at the boundary of cloud bands among gas planets, and can act as an atmospheric loss mechanism on planets with little to no intrinsic magnetic field. It is also observed in simulations of astrophysical systems including supernovae and wind-driven clumps. This poster discusses an upcoming experiment for the OMEGA-EP system that will produce a supersonic Kelvin-Helmholtz instability in the high-energy-density regime. This experiment will use a long laser pulse to create a sustained shock through two stratified layers separated by a seeded, single-mode perturbation. A high Mach number is believed to suppress the growth of the Kelvin-Helmholtz instability and, if sufficiently high, prevent growth entirely. We will be quantifying these effects using x-ray radiography. This work is funded by the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, grant number DE-FG52-09NA29548, and by the National Laser User Facility Program, grant number DE-NA0000850, with additional support provided under Cooperative Agreement No. DE-FC52-08NA28302 through the Laboratory for Laser Energetics, University of Rochester.
Equatorial atmospheric Kelvin waves during El Niño episodes and their effect on stratospheric QBO.
Das, Uma; Pan, C J
2016-02-15
Equatorial atmospheric Kelvin waves are investigated during a positive El Niño Southern Oscillation (ENSO) episode using temperature data retrieved from GPS Radio Occultation (RO) observations of FORMOSAT-3/COSMIC during the period from August 2006 to December 2013. Enhanced Kelvin wave amplitudes are observed during the El Niño episode of 2009-2010 and it is also observed that these amplitudes correlate with the Niño 3.4 index and also with outgoing longwave radiation and trade wind index. This study indicates that the enhanced equatorial atmospheric Kelvin wave amplitudes might be produced by geophysical processes that were involved in the onset and development of the El Niño episode. Further, easterly winds above the tropopause during this period favored the vertically upward propagation of these waves that induced a fast descending westerly regime by the end of 2010, where the zero-wind line is observed to take only 5 months to descend from 10 to 50 hPa. The current study presents observational evidence of enhanced Kelvin wave amplitudes during El Niño that has affected the stratospheric quasi-biennial oscillation (QBO) through wave-mean flow interactions. Earlier El Niño episodes of 1987 and 1998 are also qualitatively investigated, using reanalysis data. It is found that there might have been an enhancement in the equatorial Kelvin wave amplitudes during almost all El Niño episodes, however, an effect of a fast descending westerly is observed in the QBO only when the ambient zonal winds in the lower stratosphere favor the upward propagation of the Kelvin waves and consequently they interact with the mean flow. This study indicates that the El Niño and QBO are not linearly related and wave mean flow interactions play a very important role in connecting these two geophysical phenomena. Copyright © 2015 Elsevier B.V. All rights reserved.
Can Hall effect trigger Kelvin-Helmholtz instability in sub-Alfvénic flows?
NASA Astrophysics Data System (ADS)
Pandey, B. P.
2018-05-01
In the Hall magnetohydrodynamics, the onset condition of the Kelvin-Helmholtz instability is solely determined by the Hall effect and is independent of the nature of shear flows. In addition, the physical mechanism behind the super- and sub-Alfvénic flows becoming unstable is quite different: the high-frequency right circularly polarized whistler becomes unstable in the super-Alfvénic flows whereas low-frequency, left circularly polarized ion-cyclotron wave becomes unstable in the presence of sub-Alfvénic shear flows. The growth rate of the Kelvin-Helmholtz instability in the super-Alfvénic case is higher than the corresponding ideal magnetohydrodynamic rate. In the sub-Alfvénic case, the Hall effect opens up a new, hitherto inaccessible (to the magnetohydrodynamics) channel through which the partially or fully ionized fluid can become Kelvin-Helmholtz unstable. The instability growth rate in this case is smaller than the super-Alfvénic case owing to the smaller free shear energy content of the flow. When the Hall term is somewhat smaller than the advection term in the induction equation, the Hall effect is also responsible for the appearance of a new overstable mode whose growth rate is smaller than the purely growing Kelvin-Helmholtz mode. On the other hand, when the Hall diffusion dominates the advection term, the growth rate of the instability depends only on the Alfvén -Mach number and is independent of the Hall diffusion coefficient. Further, the growth rate in this case linearly increases with the Alfvén frequency with smaller slope for sub-Alfvénic flows.
Note: Sub-Kelvin refrigeration with dry-coolers on a rotating system.
Oguri, S; Ishitsuka, H; Choi, J; Kawai, M; Tajima, O
2014-08-01
We developed a cryogenic system on a rotating table that achieves sub-Kelvin conditions. The cryogenic system consists of a helium sorption cooler and a pulse tube cooler in a cryostat mounted on a rotating table. Two rotary-joint connectors for electricity and helium gas circulation enable the coolers to be operated and maintained with ease. We performed cool-down tests under a condition of continuous rotation at 20 rpm. We obtained a temperature of 0.23 K with a holding time of more than 24 h, thus complying with catalog specifications. We monitored the system's performance for four weeks; two weeks with and without rotation. A few-percent difference in conditions was observed between these two states. Most applications can tolerate such a slight difference. The technology developed is useful for various scientific applications requiring sub-Kelvin conditions on rotating platforms.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dhuley, R. C.; Hollister, M. I.; Ruschman, M. K.
The detectors of the Super Cryogenic Dark Matter Search experiment at SNOLAB (SuperCDMS SNOLAB) will operate in a seven-layered cryostat with thermal stages between room temperature and the base temperature of 15 mK. The inner three layers of the cryostat, which are to be nominally maintained at 1 K, 250 mK, and 15 mK, will be cooled by a dilution refrigerator via conduction through long copper stems. Bolted and mechanically pressed contacts, at and cylindrical, as well as exible straps are the essential stem components that will facilitate assembly/dismantling of the cryostat. These will also allow for thermal contractions/movements duringmore » cooldown of the sub-Kelvin system. To ensure that these components and their contacts meet their design thermal conductance, prototypes were fabricated and cryogenically tested. The present paper gives an overview of the SuperCDMS SNOLAB sub-Kelvin architecture and its conductance requirements. Results from the conductance measurements tests and from sub-Kelvin thermal modeling are discussed.« less
NASA Astrophysics Data System (ADS)
Kehayias, Christopher E.; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-01
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Kehayias, Christopher E; MacNaughton, Samuel; Sonkusale, Sameer; Staii, Cristian
2013-06-21
Reduced graphene oxide (RGO) is an electronically hybrid material that displays remarkable chemical sensing properties. Here, we present a quantitative analysis of the chemical gating effects in RGO-based chemical sensors. The gas sensing devices are patterned in a field-effect transistor geometry, by dielectrophoretic assembly of RGO platelets between gold electrodes deposited on SiO2/Si substrates. We show that these sensors display highly selective and reversible responses to the measured analytes, as well as fast response and recovery times (tens of seconds). We use combined electronic transport/Kelvin probe microscopy measurements to quantify the amount of charge transferred to RGO due to chemical doping when the device is exposed to electron-acceptor (acetone) and electron-donor (ammonia) analytes. We demonstrate that this method allows us to obtain high-resolution maps of the surface potential and local charge distribution both before and after chemical doping, to identify local gate-susceptible areas on the RGO surface, and to directly extract the contact resistance between the RGO and the metallic electrodes. The method presented is general, suggesting that these results have important implications for building graphene and other nanomaterial-based chemical sensors.
Modeling Kelvin Wave Cascades in Superfluid Helium
NASA Astrophysics Data System (ADS)
Boffetta, G.; Celani, A.; Dezzani, D.; Laurie, J.; Nazarenko, S.
2009-09-01
We study two different types of simplified models for Kelvin wave turbulence on quantized vortex lines in superfluids near zero temperature. Our first model is obtained from a truncated expansion of the Local Induction Approximation (Truncated-LIA) and it is shown to possess the same scalings and the essential behaviour as the full Biot-Savart model, being much simpler than the later and, therefore, more amenable to theoretical and numerical investigations. The Truncated-LIA model supports six-wave interactions and dual cascades, which are clearly demonstrated via the direct numerical simulation of this model in the present paper. In particular, our simulations confirm presence of the weak turbulence regime and the theoretically predicted spectra for the direct energy cascade and the inverse wave action cascade. The second type of model we study, the Differential Approximation Model (DAM), takes a further drastic simplification by assuming locality of interactions in k-space via using a differential closure that preserves the main scalings of the Kelvin wave dynamics. DAMs are even more amenable to study and they form a useful tool by providing simple analytical solutions in the cases when extra physical effects are present, e.g. forcing by reconnections, friction dissipation and phonon radiation. We study these models numerically and test their theoretical predictions, in particular the formation of the stationary spectra, and closeness of numerics for the higher-order DAM to the analytical predictions for the lower-order DAM.
Subcritical Kelvin-Helmholtz instability in a Hele-Shaw cell.
Meignin, L; Gondret, P; Ruyer-Quil, C; Rabaud, M
2003-06-13
We investigate experimentally the subcritical behavior of the Kelvin-Helmholtz instability for a gas-liquid shearing flow in a Hele-Shaw cell. The subcritical curve separating the solutions of a stable plane interface and a fully saturated nonlinear wave train is determined. Experimental results are fitted by a fifth order complex Ginzburg-Landau equation whose linear coefficients are compared to theoretical ones.
Kelvin-Helmholtz instabilities as the source of inhomogeneous mixing in nova explosions.
Casanova, Jordi; José, Jordi; García-Berro, Enrique; Shore, Steven N; Calder, Alan C
2011-10-19
Classical novae are thermonuclear explosions in binary stellar systems containing a white dwarf accreting material from a close companion star. They repeatedly eject 10(-4)-10(-5) solar masses of nucleosynthetically enriched gas into the interstellar medium, recurring on intervals of decades to tens of millennia. They are probably the main sources of Galactic (15)N, (17)O and (13)C. The origin of the large enhancements and inhomogeneous distribution of these species observed in high-resolution spectra of ejected nova shells has, however, remained unexplained for almost half a century. Several mechanisms, including mixing by diffusion, shear or resonant gravity waves, have been proposed in the framework of one-dimensional or two-dimensional simulations, but none has hitherto proven successful because convective mixing can only be modelled accurately in three dimensions. Here we report the results of a three-dimensional nuclear-hydrodynamic simulation of mixing at the core-envelope interface during nova outbursts. We show that buoyant fingering drives vortices from the Kelvin-Helmholtz instability, which inevitably enriches the accreted envelope with material from the outer white-dwarf core. Such mixing also naturally produces large-scale chemical inhomogeneities. Both the metallicity enhancement and the intrinsic dispersions in the abundances are consistent with the observed values.
NASA Astrophysics Data System (ADS)
Blanco, Joaquín. E.; Nolan, David S.; Mapes, Brian E.
2016-10-01
This second part of a two-part study uses Weather Research and Forecasting simulations with aquachannel and aquapatch domains to investigate the time evolution of convectively coupled Kelvin waves (CCKWs). Power spectra, filtering, and compositing are combined with object-tracking methods to assess the structure and phase speed propagation of CCKWs during their strengthening, mature, and decaying phases. In this regard, we introduce an innovative approach to more closely investigate the wave (Kelvin) versus entity (super cloud cluster or "SCC") dualism. In general, the composite CCKW structures represent a dynamical response to the organized convective activity. However, pressure and thermodynamic fields in the boundary layer behave differently. Further analysis of the time evolution of pressure and low-level moist static energy finds that these fields propagate eastward as a "moist" Kelvin wave (MKW), faster than the envelope of organized convection or SCC. When the separation is sufficiently large the SCC dissipates, and a new SCC generates to the east, in the region of strongest negative pressure perturbations. We revisit the concept itself of the "coupling" between convection and dynamics, and we also propose a conceptual model for CCKWs, with a clear distinction between the SCC and the MKW components.
Pumping liquid metal at high temperatures up to 1,673 kelvin
NASA Astrophysics Data System (ADS)
Amy, C.; Budenstein, D.; Bagepalli, M.; England, D.; Deangelis, F.; Wilk, G.; Jarrett, C.; Kelsall, C.; Hirschey, J.; Wen, H.; Chavan, A.; Gilleland, B.; Yuan, C.; Chueh, W. C.; Sandhage, K. H.; Kawajiri, Y.; Henry, A.
2017-10-01
Heat is fundamental to power generation and many industrial processes, and is most useful at high temperatures because it can be converted more efficiently to other types of energy. However, efficient transportation, storage and conversion of heat at extreme temperatures (more than about 1,300 kelvin) is impractical for many applications. Liquid metals can be very effective media for transferring heat at high temperatures, but liquid-metal pumping has been limited by the corrosion of metal infrastructures. Here we demonstrate a ceramic, mechanical pump that can be used to continuously circulate liquid tin at temperatures of around 1,473-1,673 kelvin. Our approach to liquid-metal pumping is enabled by the use of ceramics for the mechanical and sealing components, but owing to the brittle nature of ceramics their use requires careful engineering. Our set-up enables effective heat transfer using a liquid at previously unattainable temperatures, and could be used for thermal storage and transport, electric power production, and chemical or materials processing.
Magnetic moment of solar plasma and the Kelvin force: -The driving force of plasma up-flow -
NASA Astrophysics Data System (ADS)
Shibasaki, Kiyoto
2017-04-01
Thermal plasma in the solar atmosphere is magnetized (diamagnetic). The magnetic moment does not disappear by collisions because complete gyration is not a necessary condition to have magnetic moment. Magnetized fluid is subjected to Kelvin force in non-uniform magnetic field. Generally, magnetic field strength decreases upwards in the solar atmosphere, hence the Kelvin force is directed upwards along the field. This force is not included in the fluid treatment of MHD. By adding the Kelvin force to the MHD equation of motion, we can expect temperature dependent plasma flows along the field which are reported by many observations. The temperature dependence of the flow speed is explained by temperature dependence of magnetic moment. From the observed parameters, we can infer physical parameters in the solar atmosphere such as scale length of the magnetic field strength and the friction force acting on the flowing plasma. In case of closed magnetic field lines, loop-top concentration of hot plasma is expected which is frequently observed.
Kelvin-Helmholtz instability of the Dirac fluid of charge carriers on graphene
NASA Astrophysics Data System (ADS)
Coelho, Rodrigo C. V.; Mendoza, Miller; Doria, Mauro M.; Herrmann, Hans J.
2017-11-01
We provide numerical evidence that a Kelvin-Helmholtz instability occurs in the Dirac fluid of electrons in graphene and can be detected in current experiments. This instability appears for electrons in the viscous regime passing though a micrometer-scale obstacle and affects measurements on the time scale of nanoseconds. A possible realization with a needle-shaped obstacle is proposed to produce and detect this instability by measuring the electric potential difference between contact points located before and after the obstacle. We also show that, for our setup, the Kelvin-Helmholtz instability leads to the formation of whirlpools similar to the ones reported in Bandurin et al. [Science 351, 1055 (2016), 10.1126/science.aad0201]. To perform the simulations, we develop a lattice Boltzmann method able to recover the full dissipation in a fluid of massless particles.
El Ni?o Pumping Up, Warm Kelvin Wave Surges Toward South America
2009-11-12
ElNi?o is experiencing a late-fall resurgence. Sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the equatorial Pacific has triggered a wave of warm water, known as a Kelvin wave.
El Niño Surges; Warm Kelvin Wave Headed for South America
2009-12-17
The most recent sea-level height data from the NASA/European Ocean Surface Topography Mission/Jason-2 oceanography satellite show the continued eastward progression of a strong wave of warm water, known as a Kelvin wave, now approaching South America.
Assessing the role of the Kelvin-Helmholtz instability at the QCD cosmological transition
NASA Astrophysics Data System (ADS)
Mourão Roque, V. R. C.; Lugones, G.
2018-03-01
We performed numerical simulations with the PLUTO code in order to analyze the non-linear behavior of the Kelvin-Helmholtz instability in non-magnetized relativistic fluids. The relevance of the instability at the cosmological QCD phase transition was explored using an equation of state based on lattice QCD results with the addition of leptons. The results of the simulations were compared with the theoretical predictions of the linearized theory. For small Mach numbers up to Ms ~ 0.1 we find that both results are in good agreement. However, for higher Mach numbers, non-linear effects are significant. In particular, many initial conditions that look stable according to the linear analysis are shown to be unstable according to the full calculation. Since according to lattice calculations the cosmological QCD transition is a smooth crossover, violent fluid motions are not expected. Thus, in order to assess the role of the Kelvin-Helmholtz instability at the QCD epoch, we focus on simulations with low shear velocity and use monochromatic as well as random perturbations to trigger the instability. We find that the Kelvin-Helmholtz instability can strongly amplify turbulence in the primordial plasma and as a consequence it may increase the amount of primordial gravitational radiation. Such turbulence may be relevant for the evolution of the Universe at later stages and may have an impact in the stochastic gravitational wave background.
Magnetic Reconnection and the Kelvin-Helmholtz Instability
NASA Astrophysics Data System (ADS)
Knoll, D. A.; Chacon, L.; Brackbill, J. U.; Lapenta, G.
2002-11-01
Results are presented from a continuing study of magnetic reconnection caused by the evolution of a Kelvin-Helmholtz instability. To date we have studied 3-D compressible, subsonic and and sub-Alfvenic flow, with differential rotation (a gradient in vorticity parallel to the initial magnetic field) [1,2], as well as 2-D incompressible super-Alfvenic flow [3]. In both cases localized transient reconnection is observed on the Kelvin-Helmholtz time scale, and results indicate that the observed reconnection rate is insensitive to resistivity. In the present study we extend both the 2-D and the 3-D results found in [1,2,3]. In the extension of the 2-D work we focus on the fundamental differences in the nonlinear evolution of a low S simulation (S = 200) and a higher S simulation (S = 10,000). In the 3-D work we study the effects of a density discontinuity (present in [1] and not in [2]), along with study the effects of initial curved field lines in the absence of differential rotation. This basic plasma physics problem has possible application to dayside magnetosphere reconnection as a theoretical model for flux transfer events [1]. The general problem also has possible application to solar physics as it could provide a trigger mechanism for some class of coronal mass ejections. Both applications will be briefly discussed. [1] J.U. Brackbill and D.A. Knoll, Phys. Rev. Lett., vol. 86 (2001). [2] D.A. Knoll and J.U. Brackbill, Physics of Plasmas, to appear (2002) [3] D.A. Knoll and L. Chacon, Phys. Rev. Lett., vol. 88 (2002).
Epitaxial growth of pentacene on alkali halide surfaces studied by Kelvin probe force microscopy.
Neff, Julia L; Milde, Peter; León, Carmen Pérez; Kundrat, Matthew D; Eng, Lukas M; Jacob, Christoph R; Hoffmann-Vogel, Regina
2014-04-22
In the field of molecular electronics, thin films of molecules adsorbed on insulating surfaces are used as the functional building blocks of electronic devices. Control of the structural and electronic properties of the thin films is required for reliably operating devices. Here, noncontact atomic force and Kelvin probe force microscopies have been used to investigate the growth and electrostatic landscape of pentacene on KBr(001) and KCl(001) surfaces. We have found that, together with molecular islands of upright standing pentacene, a new phase of tilted molecules appears near step edges on KBr. Local contact potential differences (LCPD) have been studied with both Kelvin experiments and density functional theory calculations. Our images reveal that differently oriented molecules display different LCPD and that their value is independent of the number of molecular layers. These results point to the formation of an interface dipole, which may be explained by a partial charge transfer from the pentacene to the surface. Moreover, the monitoring of the evolution of the pentacene islands shows that they are strongly affected by dewetting: Multilayers build up at the expense of monolayers, and in the Kelvin images, previously unknown line defects appear, which reveal the epitaxial growth of pentacene crystals.
NASA Astrophysics Data System (ADS)
Conry, Patrick; Fernando, H. J. S.; Leo, Laura; Blomquist, Byron; Amelie, Vincent; Lalande, Nelson; Creegan, Ed; Hocut, Chris; MacCall, Ben; Wang, Yansen; Jinadasa, S. U. P.; Wang, Chien; Yeo, Lik-Khian
2016-11-01
Intraseasonal disturbances with their genesis in the equatorial Indian Ocean (IO) are an important component of global climate. The disturbances, which include Madden-Julian Oscillation and equatorial Kelvin and Rossby waves in the atmosphere and ocean, carry energy which affects El Niño, cyclogenesis, and monsoons. A recent field experiment in IO (ASIRI-RAWI) observed disturbances at three sites across IO with arrays of instruments probing from surface layer to lower stratosphere. During the field campaign the most pronounced planetary-scale disturbances were Kelvin waves in tropical tropopause layer. In Seychelles, quasi-biweekly westerly wind bursts were documented and linked to the Kelvin waves aloft, which breakdown in the upper troposphere due to internal shear instabilities. Convective coupling between waves' phase in upper troposphere and surface initiates rapid (turbulent) vertical transport and resultant wind bursts at surface. Such phenomena reveal linkages between planetary-scale waves and small-scale turbulence in the surface layer that can affect air-sea property exchanges and should be parameterized in atmosphere-ocean general circulation models. Funded by ONR Grants N00014-14-1-0279 and N00014-13-1-0199.
Fractional Generalizations of Maxwell and Kelvin-Voigt Models for Biopolymer Characterization
Jóźwiak, Bertrand; Orczykowska, Magdalena; Dziubiński, Marek
2015-01-01
The paper proposes a fractional generalization of the Maxwell and Kelvin-Voigt rheological models for a description of dynamic behavior of biopolymer materials. It was found that the rheological models of Maxwell-type do not work in the case of modeling of viscoelastic solids, and the model which significantly better describes the nature of changes in rheological properties of such media is the modified fractional Kelvin-Voigt model with two built-in springpots (MFKVM2). The proposed model was used to describe the experimental data from the oscillatory and creep tests of 3% (w/v) kuzu starch pastes, and to determine the values of their rheological parameters as a function of pasting time. These parameters provide a lot of additional information about structure and viscoelastic properties of the medium in comparison to the classical analysis of dynamic curves G’ and G” and shear creep compliance J(t). It allowed for a comprehensive description of a wide range of properties of kuzu starch pastes, depending on the conditions of pasting process. PMID:26599756
Cooling the Origins Space Telescope
NASA Technical Reports Server (NTRS)
Dipirro, M.; Canavan, E.; Fantano, L.
2017-01-01
The NASA Astrophysics Division has commissioned 4 studies for consideration by the 2020 Decadal Survey to be the next flagship mission following WFIRST (Wide Field Infrared Survey Telescope). One of the four studies is the Origins Space Telescope (OST), which will cover wavelengths from 6 microns to 600 microns. To perform at the level of the zodiacal, galactic, and cosmic background, the telescope must be cooled to 4 degrees Kelvin. 4 degrees Kelvin multi-stage mechanical cryocoolers will be employed along with a multilayer sunshield/thermal shield to achieve this temperature with a manageable parasitic heat load. Current state-of-the-art cryocoolers can achieve close to 4 degrees Kelvin, providing about 50 megawatts of cooling at 4 degrees Kelvin with an input power of 500 watts. Multiple coolers at this power level will be used in parallel. These coolers also provide extra cooling power at intermediate temperature stages of 15-20 degrees Kelvin and 50-70 degrees Kelvin . This upper stage cooling will be used to limit the heat conducted to 4 degrees Kelvin . The multi-layer sunshield will limit the radiated thermal energy to the 4 degrees Kelvin volume. This paper will describe the architecture of the cryogenic system for OST along with preliminary thermal models.
NASA Astrophysics Data System (ADS)
Zhong, Z. H.; Tang, R. X.; Zhou, M.; Deng, X. H.; Pang, Y.; Paterson, W. R.; Giles, B. L.; Burch, J. L.; Tobert, R. B.; Ergun, R. E.; Khotyaintsev, Y. V.; Lindquist, P.-A.
2018-02-01
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
Zhong, Z H; Tang, R X; Zhou, M; Deng, X H; Pang, Y; Paterson, W R; Giles, B L; Burch, J L; Tobert, R B; Ergun, R E; Khotyaintsev, Y V; Lindquist, P-A
2018-02-16
Secondary flux ropes are suggested to play important roles in energy dissipation and particle acceleration during magnetic reconnection. However, their generation mechanism is not fully understood. In this Letter, we present the first direct evidence that a secondary flux rope was generated due to the evolution of an electron vortex, which was driven by the electron Kelvin-Helmholtz instability in an ion diffusion region as observed by the Magnetospheric Multiscale mission. The subion scale (less than the ion inertial length) flux rope was embedded within the electron vortex, which contained a secondary electron diffusion region at the trailing edge of the flux rope. We propose that intense electron shear flow produced by reconnection generated the electron Kelvin-Helmholtz vortex, which induced a secondary reconnection in the exhaust of the primary X line and then led to the formation of the flux rope. This result strongly suggests that secondary electron Kelvin-Helmholtz instability is important for reconnection dynamics.
NASA Technical Reports Server (NTRS)
Boardsen, Scott A.; Sundberg, Torgjoern; Slavin, James A.; Anderson, Brian J.; Korth, Haje; Solomon, Sean C.; Blomberg, Lars G.
2010-01-01
During the third MESSENGER flyby of Mercury on 29 September 2009, 15 crossings of the dusk-side magnetopause were observed in the magnetic field data over a 2-min period, during which the spacecraft traveled a distance of 0.2 R(sub M) (where R(sub M) is Mercury's radius). The quasi-periodic nature of the magnetic field variations during the crossings, the characteristic time separations of approx.16 s between pairs of crossings, and the variations of the magnetopause normal directions indicate that the signals are likely the signature of surface waves highly steepened at their leading edge that arose from the Kelvin-Helmholtz instability. At Earth, the Kelvin- Helmholtz instability is believed to lead to the turbulent transport of solar wind plasma into Earth's plasma sheet. This solar wind entry mechanism could also be important at Mercury. Citation: Boardsen, S. A., T. Sundberg, J. A.Slavin, B. J. Anderson, H. Korth, S. C. Solomon, and L. G. Blomberg (2010), Observations of Kelvin-Helmholtz waves along the dusk-side boundary of Mercury s magnetosphere during MESSENGER's third flyby,
A transverse Kelvin-Helmholtz instability in a magnetized plasma
NASA Technical Reports Server (NTRS)
Kintner, P.; Dangelo, N.
1977-01-01
An analysis is conducted of the transverse Kelvin-Helmholtz instability in a magnetized plasma for unstable flute modes. The analysis makes use of a two-fluid model. Details regarding the instability calculation are discussed, taking into account the ion continuity and momentum equations, the solution of a zero-order and a first-order component, and the properties of the solution. It is expected that the linear calculation conducted will apply to situations in which the plasma has experienced no more than a few growth periods.
NASA Technical Reports Server (NTRS)
Choi, Michael K.
2017-01-01
An innovative thermal design concept to maintain comet surface samples cold (for example, 263 degrees Kelvin, 243 degrees Kelvin or 223 degrees Kelvin) from Earth approach through retrieval is presented. It uses paraffin phase change material (PCM), Cryogel insulation and thermoelectric cooler (TEC), which are commercially available.
NASA Technical Reports Server (NTRS)
Scola, D. A.
1982-01-01
Bisimide amines (BIAs), which are presently used as curing agents in a state-of-the-art epoxy resin, are oligomeric and polymeric mixtures. A series of composites consisting of the novel BIA-cured epoxy resin reinforced with Celion 6000 graphite fibers were fabricated and evaluated, and the ten-degree, off-axis uniaxial tensile and shear properties of these composites were determined. The use of the intralaminar shear strain-to-failure was used in the calculation of resin shear strain-to-failure. Study results indicate that several of these novel composite systems exhibit shear strain properties that are superior to those of the control composite system of the present experiments, which employed a sulfone curing agent.
Viscoelastic Mapping of the Arterial Ovine System using a Kelvin Model
2007-03-19
University Campus Box 8205 Raleigh, NC 27695. 2) Department of Physiology School of Medicine Universidad de la Republica General Flores 2125, PC: 11800...not differ significantly across locations. We also showed that for all locations, the inclusion of viscoelastic behavior, e.g., using the Kelvin model...All protocols were approved by the Research and Development Council of the Universidad de la Republica, and were conducted in accordance with the
Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian
2018-01-01
We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.
NASA Astrophysics Data System (ADS)
Milotti, Valeria; Pietsch, Manuel; Strunk, Karl-Philipp; Melzer, Christian
2018-01-01
We report a Kelvin-probe method to investigate the lateral charge-transport properties of semiconductors, most notably the charge-carrier mobility. The method is based on successive charging and discharging of a pre-biased metal-insulator-semiconductor stack by an alternating voltage applied to one edge of a laterally confined semiconductor layer. The charge carriers spreading along the insulator-semiconductor interface are directly measured by a Kelvin-probe, following the time evolution of the surface potential. A model is presented, describing the device response for arbitrary applied biases allowing the extraction of the lateral charge-carrier mobility from experimentally measured surface potentials. The method is tested using the organic semiconductor poly(3-hexylthiophene), and the extracted mobilities are validated through current voltage measurements on respective field-effect transistors. Our widely applicable approach enables robust measurements of the lateral charge-carrier mobility in semiconductors with weak impact from the utilized contact materials.
NASA Astrophysics Data System (ADS)
Wong, Sarah N. P.; Whitehead, Hal
2014-09-01
Sperm whales (Physeter macrocephalus) are widely distributed in all oceans, but they are clumped geographically, generally in areas associated with high primary and secondary productivity. The warm, clear waters of the Sargasso Sea are traditionally thought to be low in productivity, however recent surveys have found large numbers of sperm whales there. The New England Seamount Chain bisects the north-western portion of the Sargasso Sea, and might influence the mesoscale eddies associated with the Gulf Stream; creating areas of higher productivity within the Sargasso Sea. We investigated the seasonal occurrence of sperm whales over Kelvin Seamount (part of the New England Seamount Chain) and how it is influenced by oceanographic variables. An autonomous recording device was deployed over Kelvin Seamount from May to June 2006 and November 2006 to June 2007. A total of 6505 hourly two-minute recordings were examined for the presence of sperm whale echolocation clicks. Sperm whales were more prevalent around Kelvin in the spring (April to June: mean=51% of recordings contained clicks) compared to the winter (November to March: mean=16% of recordings contained clicks). Sperm whale prevalence at Kelvin was related to chlorophyll-a concentration four weeks previous, eddy kinetic energy and month. The mesoscale activity associated with the Gulf Stream and the Gulf Stream's interaction with the New England Seamount Chain likely play an important role in sperm whale occurrence in this area, by increasing productivity and perhaps concentration of cephalopod species.
ERIC Educational Resources Information Center
Ampaw, Frim D.; Jaeger, Audrey J.
2011-01-01
The rate of doctoral degree completion, compared to all other degrees, is the lowest in the academy, with only 57 percent of doctoral students completing their degree within a ten-year period. In the science, engineering, and mathematics (SEM) fields, 62 percent of the male students complete their doctoral degree in ten years, which is better than…
Fractional order creep model for dam concrete considering degree of hydration
NASA Astrophysics Data System (ADS)
Huang, Yaoying; Xiao, Lei; Bao, Tengfei; Liu, Yu
2018-05-01
Concrete is a material that is an intermediate between an ideal solid and an ideal fluid. The creep of concrete is related not only to the loading age and duration, but also to its temperature and temperature history. Fractional order calculus is a powerful tool for solving physical mechanics modeling problems. Using a software element based on the generalized Kelvin model, a fractional order creep model of concrete considering the loading age and duration is established. Then, the hydration rate of cement is considered in terms of the degree of hydration, and the fractional order creep model of concrete considering the degree of hydration is established. Moreover, uniaxial tensile creep tests of dam concrete under different curing temperatures were conducted, and the results were combined with the creep test data and complex optimization method to optimize the parameters of a new creep model. The results show that the fractional tensile creep model based on hydration degree can better describe the tensile creep properties of concrete, and this model involves fewer parameters than the 8-parameter model.
Current Trends in Associate Degree Nursing Programs.
ERIC Educational Resources Information Center
Blackstone, Elaine Grant
This study was designed to ascertain current trends in associate degree nursing programs and to discover innovative ideas and techniques which could be applied to the existing program at Miami-Dade Community College (Florida). Data was compiled from interviews with representatives of ten associate degree nursing programs in six states. Information…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moestl, U. V.; Temmer, M.; Veronig, A. M., E-mail: ute.moestl@uni-graz.at
2013-03-20
The Atmospheric Imaging Assembly on board the Solar Dynamics Observatory observed a coronal mass ejection with an embedded filament on 2011 February 24, revealing quasi-periodic vortex-like structures at the northern side of the filament boundary with a wavelength of approximately 14.4 Mm and a propagation speed of about 310 {+-} 20 km s{sup -1}. These structures could result from the Kelvin-Helmholtz instability occurring on the boundary. We perform 2.5D numerical simulations of the Kelvin-Helmholtz instability and compare the simulated characteristic properties of the instability with the observations, where we obtain qualitative as well as quantitative accordance. We study the absencemore » of Kelvin-Helmholtz vortex-like structures on the southern side of the filament boundary and find that a magnetic field component parallel to the boundary with a strength of about 20% of the total magnetic field has stabilizing effects resulting in an asymmetric development of the instability.« less
On the role of the Kelvin wave in the westerly phase of the semiannual zonal wind oscillation
NASA Technical Reports Server (NTRS)
Dunkerton, T.
1979-01-01
The role of the Kelvin wave, discovered by Hirota (1978), in producing the westerly accelerations of the semiannual zonal wind oscillation in the tropical upper stratosphere is examined quantitatively. It is shown that, for reasonable values of the wave parameters, this Kelvin wave could indeed give rise to the observed accelerations. For the thermal damping rates of Dickinson (1973), the most likely range of phase speeds for a wavenumber 1 disturbance is from 45 to 60 m/sec. For 'photochemically accelerated' damping rates (Blake and Lindzen, 1973), a phase speed in excess of 70 m/sec would be required. The possibility of a significant modulation of the semiannual westerlies by the quasi-biennial oscillation is also suggested.
The three-dimensional evolution of a plane mixing layer. Part 1: The Kelvin-Helmholtz roll-up
NASA Technical Reports Server (NTRS)
Rogers, Michael M.; Moser, Robert D.
1991-01-01
The Kelvin Helmholtz roll up of three dimensional, temporally evolving, plane mixing layers were simulated numerically. All simulations were begun from a few low wavenumber disturbances, usually derived from linear stability theory, in addition to the mean velocity profile. The spanwise disturbance wavelength was taken to be less than or equal to the streamwise wavelength associated with the Kelvin Helmholtz roll up. A standard set of clean structures develop in most of the simulations. The spanwise vorticity rolls up into a corrugated spanwise roller, with vortex stretching creating strong spanwise vorticity in a cup shaped region at the vends of the roller. Predominantly streamwise rib vortices develop in the braid region between the rollers. For sufficiently strong initial three dimensional disturbances, these ribs collapse into compact axisymmetric vortices. The rib vortex lines connect to neighboring ribs and are kinked in the opposite direction of the roller vortex lines. Because of this, these two sets of vortex lines remain distinct. For certain initial conditions, persistent ribs do not develop. In such cases the development of significant three dimensionality is delayed. When the initial three dimensional disturbance energy is about equal to, or less than, the two dimensional fundamental disturbance energy, the evolution of the three dimensional disturbance is nearly linear (with respect to the mean and the two dimensional disturbances), at least until the first Kelvin Helmholtz roll up is completed.
Why Was Kelvin's Estimate of the Earth's Age Wrong?
ERIC Educational Resources Information Center
Lovatt, Ian; Syed, M. Qasim
2014-01-01
This is a companion to our previous paper in which we give a published example, based primarily on Perry's work, of a graph of ln "y" versus "t" when "y" is an exponential function of "t". This work led us to the idea that Lord Kelvin's (William Thomson's) estimate of the Earth's age was…
Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer
NASA Astrophysics Data System (ADS)
Liu, Y.; Chen, Z. H.; Zhang, H. H.; Lin, Z. Y.
2018-04-01
The Kelvin-Helmholtz instability of a parallel shear flow with a hyperbolic-tangent velocity profile has been simulated numerically at a high Reynolds number. The fluid is perfectly conducting with low viscosity, and the strength of the applied magnetic field varies from weak to strong. We found that the magnetic field parallel to the mainstream direction has a stabilizing effect on the shear flow. The magnetic field mainly stabilizes short-wave perturbations. Small viscosity and/or slight compressibility could introduce some instability even in the presence of a strong magnetic field in a certain circumstance. The suppressing effect of the magnetic field on the instability is accomplished by two parts: the separating effect of the transverse magnetic pressure and the anti-bending effect of magnetic tension pointing to the center of curvature. The former shows prevailingly stronger effect on the fluid interface than the latter does, which is different from the conventional opinion that magnetic tension dominates. Essentially it is mainly the Maxwell stress that weakens and balances the momentum transport conducted by the Reynolds stress, reducing the mixing degree of the upper fluid and the lower fluid.
NASA Astrophysics Data System (ADS)
Priyadarshini, Lakshmi
Frequently transported packaging goods are more prone to damage due to impact, jolting or vibration in transit. Fragile goods, for example, glass, ceramics, porcelain are susceptible to mechanical stresses. Hence ancillary materials like cushions play an important role when utilized within package. In this work, an analytical model of a 3D cellular structure is established based on Kelvin model and lattice structure. The research will provide a comparative study between the 3D printed Kelvin unit structure and 3D printed lattice structure. The comparative investigation is based on parameters defining cushion performance such as cushion creep, indentation, and cushion curve analysis. The applications of 3D printing is in rapid prototyping where the study will provide information of which model delivers better form of energy absorption. 3D printed foam will be shown as a cost-effective approach as prototype. The research also investigates about the selection of material for 3D printing process. As cushion development demands flexible material, three-dimensional printing with material having elastomeric properties is required. Further, the concept of cushion design is based on Kelvin model structure and lattice structure. The analytical solution provides the cushion curve analysis with respect to the results observed when load is applied over the cushion. The results are reported on basis of attenuation and amplification curves.
Collision-Induced Infrared Absorption by Hydrogen-Helium gas mixtures at Thousands of Kelvin
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2010-10-01
The interaction-induced absorption by collisional pairs of H2 molecules is an important opacity source in the atmospheres of the outer planets and cool stars ^[1]. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H2--H2, H2--He, and H2--H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin ^[2]. Laboratory measurements of interaction-induced absorption spectra by H2 pairs exist only at room temperature and below. We show that our results reproduce these measurements closely ^[2], so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures ^[2]. [1] L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 [2] Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, ``Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin'', International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201
NASA Technical Reports Server (NTRS)
Boulanger, Jean-Philippe; Fu, Lee-Lueng
1996-01-01
The TOPEX/POSEIDON sea level data lead to new opportunities to investigate some theoretical mechanisms suggested to be involved in the El Nino-Southern Oscillation phenomenon in the tropical Pacific ocean. In particular, we are interested in studying the western boundary reflection, a process crucial for the delayed action oscillator theory, by using the TOPEX/POSEIDON data from November 1992 to May 1995. We first projected the sea level data onto Kelvin and first-mode Ross waves. Then we estimated the contribution of wind forcing to these waves by using a single baroclinic mode simple wave model forced by the ERS-1 wind data. Wave propagation was clearly observed with amplitudes well explained by the wind forcing in the ocean interior. Evidence of wave reflection was detected at both the western and eastern boundaries of the tropical Pacific ocean. At the eastern boundary, Kelvin waves were seen to reflect as first-mode Rossby waves during the entire period. The reflection efficiency (in terms of wave amplitude) of the South American coasts was estimated to be 80% of that of an infinite meridional wall. At the western boundary, reflection was observed in April-August 1993, in January-June 1994, and, later, in December 1994 to February 1995. Although the general roles of these reflection events in the variability observed in the equatorial Pacific ocean are not clear, the data suggest that the reflections in January-June 1994 have played a role in the onset of the warm conditions observed in late 1994 to early 1995. Indeed, during the January-June 1994 period, as strong downwelling first-mode Rossby waves reflected into downwelling Kelvin waves, easterly wind and cold sea surface temperature anomalies located near the date line weakened and eventually reversed in June-July 1994. The presence of the warm anomalies near the date line then favored convection and westerly wind anomalies that triggered strong downwelling Kelvin waves propagating throughout the basin
The Fourier-Kelvin Stellar Interferometer
NASA Astrophysics Data System (ADS)
Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.; Mumma, M.; Mundy, L. G.; Noecker, C.; Rajagopal, J.; Seager, S.; Traub, W. A.
2003-10-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5- 28 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as the NASA Vision Missions SAFIR and SPECS. It will also be a high angular resolution infrared space observatory complementary to JWST. The scientific emphasis of the mission is on detection and spectroscopy of the atmospheres of Extra-solar Giant Planets (EGPs), the search for Brown Dwarfs and other low mass stellar companions, and the evolution of protostellar systems. FKSI can observe these systems from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We present the major results of a set of detailed design studies for the FKSI mission that were performed as a method of understanding major trade-offs pertinent to schedule, cost, and risk in preparation for submission of a Discovery proposal.
Kelvin-Helmholtz instability of counter-rotating discs
NASA Astrophysics Data System (ADS)
Quach, Dan; Dyda, Sergei; Lovelace, Richard V. E.
2015-01-01
Observations of galaxies and models of accreting systems point to the occurrence of counter-rotating discs where the inner part of the disc (r < r0) is corotating and the outer part is counter-rotating. This work analyses the linear stability of radially separated co- and counter-rotating thin discs. The strong instability found is the supersonic Kelvin-Helmholtz instability. The growth rates are of the order of or larger than the angular rotation rate at the interface. The instability is absent if there is no vertical dependence of the perturbation. That is, the instability is essentially three dimensional. The non-linear evolution of the instability is predicted to lead to a mixing of the two components, strong heating of the mixed gas, and vertical expansion of the gas, and annihilation of the angular momenta of the two components. As a result, the heated gas will free-fall towards the disc's centre over the surface of the inner disc.
NASA Astrophysics Data System (ADS)
Kikuchi, Kazuyoshi; Kiladis, George N.; Dias, Juliana; Nasuno, Tomoe
2018-06-01
This study examines the relationship between the MJO and convectively coupled equatorial waves (CCEWs) during the CINDY2011/DYNAMO field campaign using satellite-borne infrared radiation data, in order to better understand the interaction between convection and the large-scale circulation. The spatio-temporal wavelet transform (STWT) enables us to document the convective signals within the MJO envelope in terms of CCEWs in great detail, through localization of space-time spectra at any given location and time. Three MJO events that occurred in October, November, and December 2011 are examined. It is, in general, difficult to find universal relationships between the MJO and CCEWs, implying that MJOs are diverse in terms of the types of disturbances that make up its convective envelope. However, it is found in all MJO events that the major convective body of the MJO is made up mainly by slow convectively coupled Kelvin waves. These Kelvin waves have relatively fast phase speeds of 10-13 m s-1 outside of, and slow phase speeds of 8-9 m s-1 within the MJO. Sometimes even slower eastward propagating signals with 3-5 m s-1 phase speed show up within the MJO, which, as well as the slow Kelvin waves, appear to comprise major building blocks of the MJO. It is also suggested that these eastward propagating waves often occur coincident with n = 1 WIG waves, which is consistent with the schematic model from Nakazawa in 1988. Some practical aspects that facilitate use of the STWT are also elaborated upon and discussed.
Resolution and contrast in Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Jacobs, H. O.; Leuchtmann, P.; Homan, O. J.; Stemmer, A.
1998-08-01
The combination of atomic force microscopy and Kelvin probe technology is a powerful tool to obtain high-resolution maps of the surface potential distribution on conducting and nonconducting samples. However, resolution and contrast transfer of this method have not been fully understood, so far. To obtain a better quantitative understanding, we introduce a model which correlates the measured potential with the actual surface potential distribution, and we compare numerical simulations of the three-dimensional tip-specimen model with experimental data from test structures. The observed potential is a locally weighted average over all potentials present on the sample surface. The model allows us to calculate these weighting factors and, furthermore, leads to the conclusion that good resolution in potential maps is obtained by long and slender but slightly blunt tips on cantilevers of minimal width and surface area.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukhanova, T. E., E-mail: tat-sukhanova@mail.ru; Vylegzhanina, M. E.; Valueva, S. V.
The morphology and electrical properties of biogenic selenium-containing nanosystems based on polyelectrolyte complexes (PECs) were examined using AFM, Kelvin Probe Force and electron microscopy methods. It has been found, that prepared nanostructures significantly differed in their morphological types and parameters. In particular, multilayers capsules can be produced via varying synthesis conditions, especially, the selenium–PEC mass ratio ν. At the “special point” (ν = 0.1), filled and hollow nano- and microcapsules are formed in the system. The multilayer character of the capsules walls is visible in the phase images. Kelvin Probe Force images showed the inhomogeneity of potential distribution in capsulesmore » and outside them.« less
Kelvin waves in the tropical stratosphere observed in OMPS-LP ozone measurements
NASA Astrophysics Data System (ADS)
Randel, W. J.; Park, M.
2017-12-01
We investigate equatorial waves in the tropical stratosphere using OMPS limb profiler (LP) ozone measurements spanning 2012-2017. The OMPS-LP data show clear evidence of eastward propagating planetary-scale Kelvin waves with periods near 15-20 days, and these feature are strongly modulated by the background winds linked to the quasi-biennial oscillation (QBO). We study coherence between OMPS-LP ozone and GPS radio occultation temperature measurements, and use these analyses to evaluate data quality and variability in the tropical stratosphere.
Kelvin-Helmholtz instability of stratified jets.
NASA Astrophysics Data System (ADS)
Hanasz, M.; Sol, H.
1996-11-01
We investigate the Kelvin-Helmholtz instability of stratified jets. The internal component (core) is made of a relativistic gas moving with a relativistic bulk speed. The second component (sheath or envelope) flows between the core and external gas with a nonrelativistic speed. Such a two-component jet describes a variety of possible astrophysical jet configurations like e.g. (1) a relativistic electron-positron beam penetrating a classical electron-proton disc wind or (2) a beam-cocoon structure. We perform a linear stability analysis of such a configuration in the hydrodynamic, plane-parallel, vortex-sheet approximation. The obtained solutions of the dispersion relation show very apparent differences with respect to the single-jet solutions. Due to the reflection of sound waves at the boundary between sheet and external gas, the growth rate as a function of wavenumber presents a specific oscillation pattern. Overdense sheets can slow down the growth rate and contribute to stabilize the configuration. Moreover, we obtain the result that even for relatively small sheet widths the properties of sheet start to dominate the jet dynamics. Such effects could have important astrophysical implications, for instance on the origin of the dichotomy between radio-loud and radio-quiet objects.
NASA Astrophysics Data System (ADS)
Zhang, B.; Delamere, P. A.; Ma, X.; Burkholder, B.; Wiltberger, M.; Lyon, J. G.; Merkin, V. G.; Sorathia, K. A.
2018-01-01
The multifluid Lyon-Fedder-Mobarry (MFLFM) global magnetosphere model is used to study the interactions between solar wind and rapidly rotating, internally driven Jupiter magnetosphere. The MFLFM model is the first global simulation of Jupiter magnetosphere that captures the Kelvin-Helmholtz instability (KHI) in the critically important subsolar region. Observations indicate that Kelvin-Helmholtz vortices are found predominantly in the dusk sector. Our simulations explain that this distribution is driven by the growth of KHI modes in the prenoon and subsolar region (e.g., >10 local time) that are advected by magnetospheric flows to the dusk sector. The period of density fluctuations at the dusk terminator flank (18 magnetic local time, MLT) is roughly 1.4 h compared with 7.2 h at the dawn flank (6 MLT). Although the simulations are only performed using parameters of the Jupiter's magnetosphere, the results may also have implications for solar wind-magnetosphere interactions at other corotation-dominated systems such as Saturn. For instance, the simulated average azimuthal speed of magnetosheath flows exhibit significant dawn-dusk asymmetry, consistent with recent observations at Saturn. The results are particularly relevant for the ongoing Juno mission and the analysis of dawnside magnetopause boundary crossings for other planetary missions.
Observational evidence of the downstream impact on tropical rainfall from stratospheric Kelvin waves
NASA Astrophysics Data System (ADS)
Zhang, Lei; Karnauskas, Kristopher B.; Weiss, Jeffrey B.; Polvani, Lorenzo M.
2017-08-01
Analysis of one continuous decade of daily, high-vertical resolution sounding data from five proximate islands in the western equatorial Pacific region reveals eastward and downward propagating Kelvin waves in the tropical stratosphere, with a zonal wave number one structure and a period of 15 days. By defining an initiation index, we find that these waves are primarily generated over the western Pacific warm pool and South America-tropical Atlantic sector, consistent with regions of frequent deep convection. The zonal phase speed of the stratospheric Kelvin waves (SKWs) is relatively slow ( 10 m s-1) over the initiation region due to coupling with deep convection, and becomes much faster ( 30-40 m s-1) once decoupled from the downstream troposphere. SKWs have significant impacts on downstream tropical rainfall through modulation of tropopause height. The cold phase of SKWs at tropopause leads to higher tropopause heights and more convection in tropics—with opposite impacts associated with the warm phase. Downstream tropical precipitation anomalies associated with these SKWs also propagate eastward with the same speed and zonal scale as observed SKWs. Interannual variability of the amplitude of the SKWs is shown to be associated with the Quasi-Biennial oscillation (QBO); implications for predictability are discussed.
NASA Astrophysics Data System (ADS)
Ostrosablin, N. I.
2017-05-01
The anisotropy matrices (tensors) of quasielastic (Cauchy-elastic) materials were obtained for all classes of crystallographic symmetries in explicit form. The fourth-rank anisotropy tensors of such materials do not have the main symmetry, in which case the anisotropy matrix is not symmetric. As a result of introducing various bases in the space of symmetric stress and strain tensors, the linear relationship between stresses and strains is represented in invariant form similar to the form in which generalized Hooke's law is written for the case of anisotropic hyperelastic materials and contains six positive Kelvin eigen moduli. It is shown that the introduction of modified rotation-induced deformation in the strain space can cause a transition to the symmetric anisotropy matrix observed in the case of hyperelasticity. For the case of transverse isotropy, there are examples of determination of the Kelvin eigen moduli and eigen bases and the rotation matrix in the strain space. It is shown that there is a possibility of existence of quasielastic media with a skew-symmetric anisotropy matrix with no symmetric part. Some techniques for the experimental testing of the quasielasticity model are proposed.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility inspect the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) on its handling fixture. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
Jason Celebrates 5th Anniversary as El Niño Builds, Warm Kelvin Wave Surges Toward South America
2006-12-07
Recent sea-level height data from NASA Jason-1 altimetric satellite show that continuing weaker-than-normal trade winds in the western and central equatorial Pacific have triggered another strong, eastward moving, warm Kelvin wave.
Determining Absolute Zero Using a Tuning Fork
ERIC Educational Resources Information Center
Goldader, Jeffrey D.
2008-01-01
The Celsius and Kelvin temperature scales, we tell our students, are related. We explain that a change in temperature of 1 degree C corresponds to a change of 1 Kelvin and that atoms and molecules have zero kinetic energy at zero Kelvin, -273 degrees C. In this paper, we will show how students can derive the relationship between the Celsius and…
NASA Astrophysics Data System (ADS)
Abel, Martin; Frommhold, Lothar; Li, Xiaoping; Hunt, Katharine L. C.
2011-06-01
The interaction-induced absorption by collisional pairs of H{_2} molecules is an important opacity source in the atmospheres of the outer planets and cool stars. The emission spectra of cool white dwarf stars differ significantly in the infrared from the expected blackbody spectra of their cores, which is largely due to absorption by collisional H{_2}-H{_2}, H{_2}-He, and H{_2}-H complexes in the stellar atmospheres. Using quantum-chemical methods we compute the atmospheric absorption from hundreds to thousands of kelvin. Laboratory measurements of interaction-induced absorption spectra by H{_2} pairs exist only at room temperature and below. We show that our results reproduce these measurements closely, so that our computational data permit reliable modeling of stellar atmosphere opacities even for the higher temperatures. L. Frommhold, Collision-Induced Absorption in Gases, Cambridge University Press, Cambridge, New York, 1993 and 2006 Xiaoping Li, Katharine L. C. Hunt, Fei Wang, Martin Abel, and Lothar Frommhold, "Collision-Induced Infrared Absorption by Molecular Hydrogen Pairs at Thousands of Kelvin", International Journal of Spectroscopy, vol. 2010, Article ID 371201, 11 pages, 2010. doi: 10.1155/2010/371201 M. Abel, L. Frommhold, X. Li, and K. L. C. Hunt, "Collision-induced absorption by H{_2} pairs: From hundreds to thousands of Kelvin," J. Phys. Chem. A, published online, DOI: 10.1021/jp109441f L. Frommhold, M. Abel, F. Wang, M. Gustafsson, X. Li, and K. L. C. Hunt, "Infrared atmospheric emission and absorption by simple molecular complexes, from first principles", Mol. Phys. 108, 2265, 2010
NASA Technical Reports Server (NTRS)
Kuhlman, John; Gray, Donald D.; Barnard, Austin; Hazelton, Jennifer; Lechliter, Matthew; Starn, Andrew; Battleson, Charles; Glaspell, Shannon; Kreitzer, Paul; Leichliter, Michelle
2002-01-01
The magnetic Kelvin force has been proposed as an artificial gravity to control the orientation of paramagnetic liquid propellants such as liquid oxygen in a microgravity environment. This paper reports experiments performed in the NASA "Weightless Wonder" KC-135 aircraft, through the Reduced Gravity Student Flight Opportunities Program. The aircraft flies through a series of parabolic arcs providing about 25 s of microgravity in each arc. The experiment was conceived, designed, constructed, and performed by the undergraduate student team and their two faculty advisors. Two types of tanks were tested: square-base prismatic tanks 5 cm x 5 cm x 8.6 cm and circular cylinders 5 cm in diameter and 8.6 cm tall. The paramagnetic liquid was a 3.3 molar solution of MnCl2 in water. Tests were performed with each type of tank filled to depths of 1 cm and 4 cm. Each test compared a pair of tanks that were identical except that the base of one was a pole face of a 0.6 Tesla permanent magnet. The Kelvin force attracts paramagnetic materials toward regions of higher magnetic field. It was hypothesized that the Kelvin force would hold the liquid in the bottom of the tanks during the periods of microgravity. The tanks were installed in a housing that could slide on rails transverse to the flight direction. By manually shoving the housing, an identical impulse could be provided to each tank at the beginning of each period of microgravity. The resulting fluid motions were videotaped for later analysis.
SAO and Kelvin Waves in the EuroGRIPS GCMS and the UK Meteorological Offices Analyses
NASA Technical Reports Server (NTRS)
Amodei, M.; Pawson, S.; Scaife, A. A.; Lahoz, W.; Langematz, U.; Li, Ding Min; Simon, P.
2000-01-01
This work is an intercomparison of four tropospheric-stratospheric climate models, the Unified Model (UM) of the U.K. Meteorological Office (UKMO), the model of the Free University in Berlin (FUB). the ARPEGE-climat model of the National Center for Meteorological Research (CNRM), and the Extended UGAMP GCM (EUGCM) of the Center for Global Atmospheric Modelling (CGAM), against the UKMO analyses. This comparison has been made in the framework of the "GSM-Reality Intercomparison Project for SPARC" (GRIPS). SPARC (Stratospheric Processes and their Role in Climate) aims are to investigate the effects of the middle atmosphere on climate and the GRIPS purpose is to organized a comprehensive assessment of current Middle Atmosphere-Climate Models (MACMs). The models integrations were made without identical contraints e.g. boundary conditions, incoming solar radiation). All models are able to represent the dominant features of the extratropical circulation. In this paper, the structure of the tropical winds and the strengths of the Kelvin waves are examined. Explanations for the differences exhibited. between the models. as well as between models and analyses, are also proposed. In the analyses a rich spectrum of waves (eastward and westward) is present and contributes to drive the SAO (SemiAnnual Oscillation) and the QBO (Quasi-Biennal Oscillation). The amplitude of the Kelvin waves is close to the one observed in UARS (Upper Atmosphere Research Satellite) data. In agreement with observations, the Kelvin waves generated in the models propagate into the middle atmosphere as wave packets which underlines convective forcing origin. In most models, slow Kelvin waves propagate too high and are hence overestimated in the upper stratosphere and in the mesosphere, except for the UM which is more diffusive. These waves are not sufficient to force realistic westerlies of the QBO or SAO westerly phases. If the SAO is represented by all models only two of them are able to generate
A Systematic Study of Kelvin-Helmholtz Instability in Galaxy Clusters
NASA Astrophysics Data System (ADS)
Su, Yuanyuan
2017-09-01
Kelvin-Helmholtz instabilities (KHI) were observed at cold fronts in a handful of clusters. KHI are predicted at all cold fronts in hydro simulation of intracluster medium (ICM). Their presence and absence provides a unique probe of transport processes in the hot plasma, which are essential to the dissipation and redistribution of the energy in the ICM. We propose the first systematic study of the prevalence of KHI in galaxy clusters by analyzing the archived Chandra observations of a sample of 50 nearby galaxy clusters. We will associate the occurrence and properties of KHI rolls with various cluster parameters such as their gas temperature and density, and put constraints on effective transport coefficients in the ICM
Design Enhancements of the Fourier Kelvin Stellar Interferometer to Enable Detection of Earth Twins
NASA Technical Reports Server (NTRS)
Barry, Richard K.; Danchi, William C.; Lopez, Bruno; Rinehart, Stephan; Augereau, Jean-Charles; Beust, Herve; Bonfils, Xavier; Borde, Pascal; Kern, Pierre; Leger, Alain;
2009-01-01
During the last few years, considerable effort has been directed towards very large-scale (> $5 billion) missions to detect and characterize Mars-radius to Earth-radius planets around nearby stars; such as the Terrestrial Planet Finder Interferometer and Darwin missions. However, technological issues such as formation flying and control of systematic noise sources will likely prevent these missions from entering Phase A until at least the end of the next decade. Presently more than 350 planets have been discovered by a variety of techniques, and little is known about the majority of them other than their approximate mass. However, a simplified nulling interferometer operating in the near- to mid-infrared (e.g. approx. 5-15 microns), like the enhanced version of the Fourier Kelvin Stellar Interferometer (FKSI), can characterize the atmospheres of a large sample of the known planets - including Earth twins. Many other scientific problems can be addressed with a system like FKSI, including the studies of debris disks, active galactic nuclei, and low mass companions around nearby stars. We report results of a recent engineering study on an enhanced version of FKSI that includes 1-meter primary mirrors, 20-meter boom length, and an advanced sun shield that will provide a 45-degree FOR and 40K operating temperature for all optics including siderostats.
NASA Astrophysics Data System (ADS)
Dawidczyk, T. J.; Johns, G. L.; Ozgun, R.; Alley, O.; Andreou, A. G.; Markovic, N.; Katz, H. E.
2012-02-01
Charge carriers trapped in polystyrene (PS) were investigated with Kelvin probe microscopy (KPM) and thermally stimulated discharge current (TSDC). Lateral heterojunctions of pentacene/PS were scanned using KPM, effectively observing polarization along a side view of a lateral nonvolatile organic field-effect transistor dielectric interface. TSDC was used to observe charge migration out of PS films and to estimate the trap energy level inside the PS, using the initial rise method.
Kelvin-Helmholtz instability: the ``atom'' of geophysical turbulence?
NASA Astrophysics Data System (ADS)
Smyth, William
2017-11-01
Observations of small-scale turbulence in Earth's atmosphere and oceans have most commonly been interpreted in terms of the Kolmogorov theory of isotropic turbulence, despite the fact that the observed turbulence is significantly anisotropic due to density stratification and sheared large-scale flows. I will describe an alternative picture in which turbulence consists of distinct events that occur sporadically in space and time. The simplest model for an individual event is the ``Kelvin-Helmholtz (KH) ansatz'', in which turbulence relieves the dynamic instability of a localized shear layer. I will summarize evidence that the KH ansatz is a valid description of observed turbulence events, using microstructure measurements from the equatorial Pacific ocean as an example. While the KH ansatz has been under study for many decades and is reasonably well understood, the bigger picture is much less clear. How are the KH events distributed in space and time? How do different events interact with each other? I will describe some tentative steps toward a more thorough understanding.
The Fourier Kelvin Stellar Interferometer (FKSI): A Progress Report and Update
NASA Technical Reports Server (NTRS)
Danchi, William C.; Barry, R. K.; Traub, W. A.; Unwin, S.
2008-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) mission is a two-telescope infrared space interferometer with a 12.5 meter baseline on a boom, operating from 3-8 (or 10) microns, and passively cooled to about 60 K. The main goals for the mission are the measurement an characterization of the exozodiacal light around nearby stars, debris disks, and characterization of the atmospheres of known exoplanets. We discuss progress on this mission in the context of the recent call from NASA for mission concepts for the upcoming National Academy of Sciences Decadal Survey, where it is considered a medium class mission ($600-800 million) in terms of the overall budget.
NASA Astrophysics Data System (ADS)
Kölsch, S.; Fritz, F.; Fenner, M. A.; Kurch, S.; Wöhrl, N.; Mayne, A. J.; Dujardin, G.; Meyer, C.
2018-01-01
Hydrogen-terminated diamond is known for its unusually high surface conductivity that is ascribed to its negative electron affinity. In the presence of acceptor molecules, electrons are expected to transfer from the surface to the acceptor, resulting in p-type surface conductivity. Here, we present Kelvin probe force microscopy (KPFM) measurements on carbon nanotubes and C60 adsorbed onto a hydrogen-terminated diamond(001) surface. A clear reduction in the Kelvin signal is observed at the position of the carbon nanotubes and C60 molecules as compared with the bare, air-exposed surface. This result can be explained by the high positive electron affinity of carbon nanotubes and C60, resulting in electron transfer from the surface to the adsorbates. When an oxygen-terminated diamond(001) is used instead, no reduction in the Kelvin signal is obtained. While the presence of a charged adsorbate or a difference in work function could induce a change in the KPFM signal, a charge transfer effect of the hydrogen-terminated diamond surface, by the adsorption of the carbon nanotubes and the C60 fullerenes, is consistent with previous theoretical studies.
Photoassisted Kelvin probe force microscopy at GaN surfaces: The role of polarity
NASA Astrophysics Data System (ADS)
Wei, J. D.; Li, S. F.; Atamuratov, A.; Wehmann, H.-H.; Waag, A.
2010-10-01
The behavior of GaN surfaces during photoassisted Kelvin probe force microscopy is demonstrated to be strongly dependant on surface polarity. The surface photovoltage of GaN surfaces illuminated with above-band gap light is analyzed as a function of time and light intensity. Distinct differences between Ga-polar and N-polar surfaces could be identified, attributed to photoinduced chemisorption of oxygen during illumination. These differences can be used for a contactless, nondestructive, and easy-performable analysis of the polarity of GaN surfaces.
Shear Modulus for Nonisotropic, Open-Celled Foams Using a General Elongated Kelvin Foam Model
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.
2008-01-01
An equation for the shear modulus for nonisotropic, open-celled foams in the plane transverse to the elongation (rise) direction is derived using an elongated Kelvin foam model with the most general geometric description. The shear modulus was found to be a function of the unit cell dimensions, the solid material properties, and the cell edge cross-section properties. The shear modulus equation reduces to the relation derived by others for isotropic foams when the unit cell is equiaxed.
Million-degree plasma pervading the extended Orion Nebula.
Güdel, Manuel; Briggs, Kevin R; Montmerle, Thierry; Audard, Marc; Rebull, Luisa; Skinner, Stephen L
2008-01-18
Most stars form as members of large associations within dense, very cold (10 to 100 kelvin) molecular clouds. The nearby giant molecular cloud in Orion hosts several thousand stars of ages less than a few million years, many of which are located in or around the famous Orion Nebula, a prominent gas structure illuminated and ionized by a small group of massive stars (the Trapezium). We present x-ray observations obtained with the X-ray Multi-Mirror satellite XMM-Newton, revealing that a hot plasma with a temperature of 1.7 to 2.1 million kelvin pervades the southwest extension of the nebula. The plasma flows into the adjacent interstellar medium. This x-ray outflow phenomenon must be widespread throughout our Galaxy.
Equivalence of the Kelvin-Planck statement of the second law and the principle of entropy increase
NASA Astrophysics Data System (ADS)
Sarasua, L. G.; Abal, G.
2016-09-01
We present a demonstration of the equivalence between the Kelvin-Planck statement of the second law and the principle of entropy increase. Despite the fundamental importance of these two statements, a rigorous treatment to establish their equivalence is missing in standard physics textbooks. The argument is valid under very general conditions, but is simple and suited to an undergraduate course.
NASA Astrophysics Data System (ADS)
Thomson, Richard E.; Davis, Earl E.
2017-07-01
Sequences of correlated seafloor temperature, current velocity, and acoustic backscatter events recorded at Ocean Drilling Program (ODP) sites at 4300 m depth in the Middle America Trench have been inferred to result from tidally induced turbidity currents generated in the vicinity of the 3300 m deep sill at the southern end of the trench. New data from the borehole observatories extend the temperature records to 11 years (November 2002 to December 2013) and confirm the highly episodic nature of the events. We present satellite altimetry data and ocean circulation model results to show that event timing is correlated with intraseasonal Kelvin wave motions in the equatorial Pacific. The observed temperature events had a mean (±1 standard deviation) occurrence interval of 61 (±24) days, which spans the periods of the first two baroclinic modes. Lag times between peak bottom water temperatures at the ODP sites and the passage of eastward-propagating Kelvin wave crests at locations in the eastern equatorial Pacific are consistent with the time for mode-1 waves to propagate to the southern end of the trench at a mean phase speed of 2.0 m s-1. Findings indicate that Kelvin wave currents augment tidal motions in the vicinity of the sill, triggering turbidity currents that travel northwestward along the trench axis at mean speeds of ˜0.1 m s-1. We conclude that mode-1 (or, possibly, mixed mode-1 and mode-2) baroclinic Kelvin waves generated by large-scale atmospheric processes in the western tropical Pacific lead to heat and mass transport deep within Middle America Trench in the eastern tropical Pacific.
Note: Switching crosstalk on and off in Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polak, Leo, E-mail: l.polak@vu.nl; Wijngaarden, Rinke J.; Man, Sven de
2014-04-15
In Kelvin Probe Force Microscopy (KPFM) electronic crosstalk can occur between the excitation signal and probe deflection signal. Here, we demonstrate how a small modification to our commercial instrument enables us to literally switch the crosstalk on and off. We study in detail the effect of crosstalk on open-loop KPFM and compare with closed-loop KPFM. We measure the pure crosstalk signal and verify that we can correct for it in the data-processing required for open-loop KPFM. We also demonstrate that open-loop KPFM results are independent of the frequency and amplitude of the excitation signal, provided that the influence of crosstalkmore » has been eliminated.« less
Band Excitation Kelvin probe force microscopy utilizing photothermal excitation
Collins, Liam; Jesse, Stephen; Balke, Nina; ...
2015-03-13
A multifrequency open loop Kelvin probe force microscopy (KPFM) approach utilizing photothermal as opposed to electrical excitation is developed. Photothermal band excitation (PthBE)-KPFM is implemented here in a grid mode on a model test sample comprising a metal-insulator junction with local charge-patterned regions. Unlike the previously described open loop BE-KPFM, which relies on capacitive actuation of the cantilever, photothermal actuation is shown to be highly sensitive to the electrostatic force gradient even at biases close to the contact potential difference (CPD). PthBE-KPFM is further shown to provide a more localized measurement of true CPD in comparison to the gold standardmore » ambient KPFM approach, amplitude modulated KPFM. In conclusion, PthBE-KPFM data contain information relating to local dielectric properties and electronic dissipation between tip and sample unattainable using conventional single frequency KPFM approaches.« less
Kelvin-Mach Wake in a Two-Dimensional Fermi Sea
NASA Astrophysics Data System (ADS)
Kolomeisky, Eugene B.; Straley, Joseph P.
2018-06-01
The dispersion law for plasma oscillations in a two-dimensional electron gas in the hydrodynamic approximation interpolates between Ω ∝√{q } and Ω ∝q dependences as the wave vector q increases. As a result, downstream of a charged impurity in the presence of a uniform supersonic electric current flow, a wake pattern of induced charge density and potential is formed whose geometry is controlled by the Mach number M . For 1
Calibrated work function mapping by Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Fernández Garrillo, Pablo A.; Grévin, Benjamin; Chevalier, Nicolas; Borowik, Łukasz
2018-04-01
We propose and demonstrate the implementation of an alternative work function tip calibration procedure for Kelvin probe force microscopy under ultrahigh vacuum, using monocrystalline metallic materials with known crystallographic orientation as reference samples, instead of the often used highly oriented pyrolytic graphite calibration sample. The implementation of this protocol allows the acquisition of absolute and reproducible work function values, with an improved uncertainty with respect to unprepared highly oriented pyrolytic graphite-based protocols. The developed protocol allows the local investigation of absolute work function values over nanostructured samples and can be implemented in electronic structures and devices characterization as demonstrated over a nanostructured semiconductor sample presenting Al0.7Ga0.3As and GaAs layers with variable thickness. Additionally, using our protocol we find that the work function of annealed highly oriented pyrolytic graphite is equal to 4.6 ± 0.03 eV.
Effects of the Kelvin-Helmholtz surface instability on supersonic jets
NASA Technical Reports Server (NTRS)
Hardee, P. E.
1982-01-01
An exact numerical calculation is provided for of linear growth and phase velocity of Kelvin-Helmholtz unstable wave modes on a supersonic jet of cylindrical cross section. An expression for the maximally unstable wavenumber of each wave mode is found. Provided a sharp velocity discontinuity exists all wave modes are unstable. A combination of rapid jet expansion and velocity shear across a jet can effectively stabilize all wave modes. The more likely case of slow jet expansion and of velocity shear at the jet surface allows wave modes with maximally unstable wavelength longer than or on the order of the jet radius to grow. The relative energy in different wave modes and effect on the jet is investigated. Energy input into a jet resulting from surface instability is discussed.
Influence of a density increase on the evolution of the Kelvin-Helmholtz instability and vortices
DOE Office of Scientific and Technical Information (OSTI.GOV)
Amerstorfer, U. V.; Erkaev, N. V.; Institute of Computational Modelling, 660036 Krasnoyarsk
2010-07-15
Results of two-dimensional nonlinear numerical simulations of the magnetohydrodynamic Kelvin-Helmholtz instability are presented. A boundary layer of a certain width is assumed, which separates the plasma in the upper layer from the plasma in the lower layer. A special focus is given on the influence of a density increase toward the lower layer. The evolution of the Kelvin-Helmholtz instability can be divided into three different phases, namely, a linear growth phase at the beginning, followed by a nonlinear phase with regular structures of the vortices, and finally, a turbulent phase with nonregular structures. The spatial scales of the vortices aremore » about five times the initial width of the boundary layer. The considered configuration is similar to the situation around unmagnetized planets, where the solar wind (upper plasma layer) streams past the ionosphere (lower plasma layer), and thus the plasma density increases toward the planet. The evolving vortices might detach around the terminator of the planet and eventually so-called plasma clouds might be formed, through which ionospheric material can be lost. For the special case of a Venus-like planet, loss rates are estimated, which are of the order of estimated loss rates from observations at Venus.« less
Kelvin wave coupling from TIMED and GOCE: Inter/intra-annual variability and solar activity effects
NASA Astrophysics Data System (ADS)
Gasperini, Federico; Forbes, Jeffrey M.; Doornbos, Eelco N.; Bruinsma, Sean L.
2018-06-01
The primary mechanism through which energy and momentum are transferred from the lower atmosphere to the thermosphere is through the generation and propagation of atmospheric waves. It is becoming increasingly evident that a few waves from the tropical wave spectrum preferentially propagate into the thermosphere and contribute to modify satellite drag. Two of the more prominent and well-established tropical waves are Kelvin waves: the eastward-propagating 3-day ultra-fast Kelvin wave (UFKW) and the eastward-propagating diurnal tide with zonal wave number 3 (DE3). In this work, Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperatures at 110 km and Gravity field and steady-state Ocean Circulation Explorer (GOCE) neutral densities and cross-track winds near 260 km are used to demonstrate vertical coupling in this height regime due to the UFKW and DE3. Significant inter- and intra-annual variability is found in DE3 and the UFKW, with evidence of latitudinal broadening and filtering of the latitude structures with height due to the effect of dissipation and mean winds. Additionally, anti-correlation between the vertical penetration of these waves to the middle thermosphere and solar activity level is established and explained through the effect of molecular dissipation.
NASA Astrophysics Data System (ADS)
Eckhardt, Matt
2014-03-01
Tunneling spectroscopy is an important technique used to measure the superconducting energy gap, a feature that is at the heart of the nature of superconductivity in various materials. In this presentation, we report the progress and results in developing high-resolution tunneling spectroscopy experimental platforms in a helium three cryostat, a 3 Kelvin cryocooler and a helium dip-tester. The experimental team working in a liberal arts university is a multi-disciplinary group consisting of one physics major, chemisty majors and a biology major. Students including non-physics majors learned and implemented current-voltage measurement techniques, vacuum system engineering, built electronic boxes and amplifier circuits from scratch, built custom multi-conductor cables for thermometry and current-voltage measurements, and performed conductance measurements. We report preliminary results. Acknowledgments: We acknowledge support from National Science Foundation Grant # DMR-1206561.
1997-01-18
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lift the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) prior to its installation in the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument — its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
MAVEN Observations of Partially Developed Kelvin-Helmholtz Vortices at Mars.
NASA Technical Reports Server (NTRS)
Ruhunusiri, Suranga; Halekas, J. S.; McFadden, J. P.; Connerney, J. E. P.; Espley, J. R.; Harada, Y.; Livi, R.; Seki, C.; Mazelle, C.; Brain, D.
2016-01-01
We present preliminary results and interpretations for Mars Atmospheric and Volatile EvolutioN,(MAVEN) observations of magnetosheath-ionospheric boundary oscillations at Mars. Using centrifugal force arguments, we first predict that a signature of fully rolled up Kelvin-Helmholtz vortices at Mars is sheath ions that have a bulk motion toward the Sun. The sheath ions adjacent to a vortex should also accelerate to speeds higher than the mean sheath velocity. We also predict that while the ionospheric ions that are in the vortex accelerate antisunward, they never attain speeds exceeding that of the sheath ions, in stark contrast to KH vortices that arise at the Earths magnetopause. We observe accelerated sheath and ionospheric ions, but we do not observe sheath ions that have a bulk motion toward the Sun. Thus, we interpret these observations as KH vortices that have not fully rolled up.
2009-01-01
spheric quasi-biennial oscillation ( QBO ). In this paper we combine several measured data sets with the Gravity wave Regional Or Global RAy Tracer (GROGRAT...equatorial wave modes and a broad spectrum of gravity waves (GWs) Kelvin waves are one of the main drivers of the quasi-biennial oscil- lation ( QBO ) of the...and dy- namics in the stratosphere and mesosphere (even at high lati- tudes) are modulated or influenced by the QBO , showing the importance of the
Business Administration and Computer Science Degrees: Earnings, Job Security, and Job Satisfaction
ERIC Educational Resources Information Center
Mehta, Kamlesh; Uhlig, Ronald
2017-01-01
This paper examines the potential of business administration vs. computer science degrees in terms of earnings, job security, and job satisfaction. The paper focuses on earnings potential five years and ten years after the completion of business administration and computer science degrees. Moreover, the paper presents the income changes with…
Stochastic volatility models and Kelvin waves
NASA Astrophysics Data System (ADS)
Lipton, Alex; Sepp, Artur
2008-08-01
We use stochastic volatility models to describe the evolution of an asset price, its instantaneous volatility and its realized volatility. In particular, we concentrate on the Stein and Stein model (SSM) (1991) for the stochastic asset volatility and the Heston model (HM) (1993) for the stochastic asset variance. By construction, the volatility is not sign definite in SSM and is non-negative in HM. It is well known that both models produce closed-form expressions for the prices of vanilla option via the Lewis-Lipton formula. However, the numerical pricing of exotic options by means of the finite difference and Monte Carlo methods is much more complex for HM than for SSM. Until now, this complexity was considered to be an acceptable price to pay for ensuring that the asset volatility is non-negative. We argue that having negative stochastic volatility is a psychological rather than financial or mathematical problem, and advocate using SSM rather than HM in most applications. We extend SSM by adding volatility jumps and obtain a closed-form expression for the density of the asset price and its realized volatility. We also show that the current method of choice for solving pricing problems with stochastic volatility (via the affine ansatz for the Fourier-transformed density function) can be traced back to the Kelvin method designed in the 19th century for studying wave motion problems arising in fluid dynamics.
Harwell, J R; Baikie, T K; Baikie, I D; Payne, J L; Ni, C; Irvine, J T S; Turnbull, G A; Samuel, I D W
2016-07-20
The field of organo-lead halide perovskite solar cells has been rapidly growing since their discovery in 2009. State of the art devices are now achieving efficiencies comparable to much older technologies like silicon, while utilising simple manufacturing processes and starting materials. A key parameter to consider when optimising solar cell devices or when designing new materials is the position and effects of the energy levels in the materials. We present here a comprehensive study of the energy levels present in a common structure of perovskite solar cell using an advanced macroscopic Kelvin probe and UV air photoemission setup. By constructing a detailed map of the energy levels in the system we are able to predict the importance of each layer to the open circuit voltage of the solar cell, which we then back up through measurements of the surface photovoltage of the cell under white illumination. Our results demonstrate the effectiveness of air photoemission and Kelvin probe contact potential difference measurements as a method of identifying the factors contributing to the open circuit voltage in a solar cell, as well as being an excellent way of probing the physics of new materials.
Conditions for the existence of Kelvin-Helmholtz instability in a CME
NASA Astrophysics Data System (ADS)
Páez, Andrés; Jatenco-Pereira, Vera; Falceta-Gonçcalves, Diego; Opher, Merav
The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of Coronal Mass Ejections (CMEs) has been proposed and observed by several authors in the literature. In the present work, we assume their existence and propose a method to constrain the local properties, like the CME magnetic field intensity for the development of KHI. We study a CME in the initiation phase interacting with the slow solar wind (Zone I) and with the fast solar wind (Zone II). Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) we found the radial heliocentric interval for the KHI existence, in particular we constrain it with the CME magnetic field intensity. We conclude that KHI may exist in both CME Zones but it is perceived that Zone I is more appropriated for the KHI formation.
Vector electric field measurement via position-modulated Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Dwyer, Ryan P.; Smieska, Louisa M.; Tirmzi, Ali Moeed; Marohn, John A.
2017-10-01
High-quality spatially resolved measurements of electric fields are critical to understanding charge injection, charge transport, and charge trapping in semiconducting materials. Here, we report a variation of frequency-modulated Kelvin probe force microscopy that enables spatially resolved measurements of the electric field. We measure electric field components along multiple directions simultaneously by employing position modulation and lock-in detection in addition to numeric differentiation of the surface potential. We demonstrate the technique by recording linescans of the in-plane electric field vector in the vicinity of a patch of trapped charge in a 2,7-diphenyl[1]benzothieno[3,2-b][1]benzothiophene (DPh-BTBT) organic field-effect transistor. This technique is simple to implement and should be especially useful for studying electric fields in spatially inhomogeneous samples like organic transistors and photovoltaic blends.
Requirements Formulation and Dynamic Jitter Analysis for Fourier-Kelvin Stellar Interferometer
NASA Technical Reports Server (NTRS)
Liu, Kuo-Chia; Hyde, Tristram; Blaurock, Carl; Bolognese, Jeff; Howard, Joseph; Danchi, William
2004-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) has been proposed to detect and characterize extra solar giant planets. The baseline configuration for FKSI is a two- aperture, structurally connected nulling interferometer, capable of providing null depth less than lo4 in the infrared. The objective of this paper is to summarize the process for setting the top level requirements and the jitter analysis performed on FKSI to date. The first part of the paper discusses the derivation of dynamic stability requirements, necessary for meeting the FKSI nulling demands. An integrated model including structures, optics, and control systems has been developed to support dynamic jitter analysis and requirements verification. The second part of the paper describes how the integrated model is used to investigate the effects of reaction wheel disturbances on pointing and optical path difference stabilities.
Evolution of the magnetic field generated by the Kelvin-Helmholtz instability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Modestov, M.; Bychkov, V.; Brodin, G.
2014-07-15
The Kelvin-Helmholtz instability in an ionized plasma is studied with a focus on the magnetic field generation via the Biermann battery (baroclinic) mechanism. The problem is solved by using direct numerical simulations of two counter-directed flows in 2D geometry. The simulations demonstrate the formation of eddies and their further interaction and merging resulting in a large single vortex. In contrast to general belief, it is found that the instability generated magnetic field may exhibit significantly different structures from the vorticity field, despite the mathematically identical equations controlling the magnetic field and vorticity evolution. At later stages of the nonlinear instabilitymore » development, the magnetic field may keep growing even after the hydrodynamic vortex strength has reached its maximum and started decaying due to dissipation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rani, Kavita; Sharma, Suresh C.
2015-02-15
An ion beam propagating through a magnetized dusty plasma drives Kelvin Helmholtz Instability (KHI) via Cerenkov interaction. The frequency of the unstable wave increases with the relative density of negatively charged dust grains. It is observed that the beam has stabilizing effect on the growth rate of KHI for low shear parameter, but for high shear parameter, the instability is destabilized with relative density of negatively charged dust grains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eren, B.; Material Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720; Gysin, U.
2016-01-25
Few layer graphene and graphite are simultaneously grown on a ∼100 nm thick polycrystalline nickel film. The work function of few layer graphene/Ni is found to be 4.15 eV with a variation of 50 meV by local measurements with Kelvin probe force microscopy. This value is lower than the work function of free standing graphene due to peculiar electronic structure resulting from metal 3d-carbon 2p(π) hybridization.
From cosmic chirality to protein structure: Lord Kelvin's legacy.
Barron, Laurence D
2012-11-01
A selection of my work on chirality is sketched in two distinct parts of this lecture. Symmetry and Chirality explains how the discrete symmetries of parity P, time reversal T, and charge conjugation C may be used to characterize the properties of chiral systems. The concepts of true chirality (time-invariant enantiomorphism) and false chirality (time-noninvariant enantiomorphism) that emerge provide an extension of Lord Kelvin's original definition of chirality to situations where motion is an essential ingredient thereby clarifying, inter alia, the nature of physical influences able to induce absolute enantioselection. Consideration of symmetry violations reveals that strict enantiomers (exactly degenerate) are interconverted by the combined CP operation. Raman optical activity surveys work, from first observation to current applications, on a new chiroptical spectroscopy that measures vibrational optical activity via Raman scattering of circularly polarized light. Raman optical activity provides incisive information ranging from absolute configuration and complete solution structure of smaller chiral molecules and oligomers to protein and nucleic acid structure of intact viruses. Copyright © 2012 Wiley Periodicals, Inc., A Wiley Company.
Infrared Spectra and Band Strengths of CH3SH, an Interstellar Molecule
NASA Technical Reports Server (NTRS)
Hudson, R. L.
2016-01-01
Three solid phases of CH3SH (methanethiol or methyl mercaptan) have been prepared and their mid-infrared spectra recorded at 10-110 degrees Kelvin, with an emphasis on the 17-100 degrees Kelvin region. Refractive indices have been measured at two temperatures and used to estimate ice densities and infrared band strengths. Vapor pressures for the two crystalline phases of CH3SH at 110 degrees Kelvin are estimated. The behavior of amorphous CH3SH on warming is presented and discussed in terms of Ostwald's step rule. Comparisons to CH3OH under similar conditions are made, and some inconsistencies and ambiguities in the CH3SH literature are examined and corrected.
A milliKelvin scanning Hall probe microscope for high resolution magnetic imaging
NASA Astrophysics Data System (ADS)
Khotkevych, V. V.; Bending, S. J.
2009-02-01
The design and performance of a novel scanning Hall probe microscope for milliKelvin magnetic imaging with submicron lateral resolution is presented. The microscope head is housed in the vacuum chamber of a commercial 3He-refrigerator and operates between room temperature and 300 mK in magnetic fields up to 10 T. Mapping of the local magnetic induction at the sample surface is performed by a micro-fabricated 2DEG Hall probe equipped with an integrated STM tip. The latter provides a reliable mechanism of surface tracking by sensing and controlling the tunnel currents. We discuss the results of tests of the system and illustrate its potential with images of suitable reference samples captured in different modes of operation.
P-TEN, the tumor suppressor from human chromosome 10q23, is a dual-specificity phosphatase
Myers, Michael P.; Stolarov, Javor P.; Eng, Charis; Li, Jing; Wang, Steven I.; Wigler, Michael H.; Parsons, Ramon; Tonks, Nicholas K.
1997-01-01
Protein tyrosine phosphatases (PTPs) have long been thought to play a role in tumor suppression due to their ability to antagonize the growth promoting protein tyrosine kinases. Recently, a candidate tumor suppressor from 10q23, termed P-TEN, was isolated, and sequence homology was demonstrated with members of the PTP family, as well as the cytoskeletal protein tensin. Here we show that recombinant P-TEN dephosphorylated protein and peptide substrates phosphorylated on serine, threonine, and tyrosine residues, indicating that P-TEN is a dual-specificity phosphatase. In addition, P-TEN exhibited a high degree of substrate specificity, showing selectivity for extremely acidic substrates in vitro. Furthermore, we demonstrate that mutations in P-TEN, identified from primary tumors, tumor cells lines, and a patient with Bannayan–Zonana syndrome, resulted in the ablation of phosphatase activity, demonstrating that enzymatic activity of P-TEN is necessary for its ability to function as a tumor suppressor. PMID:9256433
Kinetic Evidence of Magnetic Reconnection Due to Kelvin-Helmholtz Waves
NASA Technical Reports Server (NTRS)
Li, W.; Andre, M.; Khotainstev, Yu. V.; Vaivads, A.; Graham, D. B.; Toledo-Redondo, S.; Norgren, C.; Henri, P.; Wang, C.; Tang, B. B.;
2016-01-01
The Kelvin-Helmholtz (ICH) instability at the Earth's magnetopause is predominantly excited during northward interplanetary magnetic field (IMF). Magnetic reconnection due to KH waves has been suggested as one of the mechanisms to transfer solar wind plasma into the magnetosphere. We investigate KH waves observed at the magnetopause by the Magnetospheric Multlscale (MMS) mission; in particular, we study the trailing edges of KH waves with Alfvenic ion jets. We observe gradual mixing of magnetospheric and magnetosheath ions at the boundary layer. The magnetospheric electrons with energy up to 80 keV are observed on the magnetosheath side of the jets, which indicates that they escape into the magnetosheath through reconnected magnetic field lines. At the same time, the low-energy (below 100eV) magnetosheath electrons enter the magnetosphere and are heated in the field-aligned direction at the high-density edge of the jets. Our observations provide unambiguous kinetic evidence for ongoing reconnection due to KH waves.
NASA Astrophysics Data System (ADS)
Sturner, Andrew P.; Eriksson, Stefan; Nakamura, Takuma; Gershman, Daniel J.; Plaschke, Ferdinand; Ergun, Robert E.; Wilder, Frederick D.; Giles, Barbara; Pollock, Craig; Paterson, William R.; Strangeway, Robert J.; Baumjohann, Wolfgang; Burch, James L.
2018-02-01
Two magnetopause current sheet crossings with tripolar guide magnetic field signatures were observed by multiple Magnetosphere Multiscale (MMS) spacecraft during Kelvin-Helmholtz wave activity. The two out-of-plane magnetic field depressions of the tripolar guide magnetic field are largely supported by the observed in-plane electron currents, which are reminiscent of two clockwise Hall current loop systems. A comparison with a three-dimensional kinetic simulation of Kelvin-Helmholtz waves and vortex-induced reconnection suggests that MMS likely encountered the two Hall magnetic field depressions on either side of a magnetic reconnection X-line. Moreover, MMS observed an out-of-plane current reversal and a corresponding in-plane magnetic field rotation at the center of one of the current sheets, suggesting the presence of two adjacent flux ropes. The region inside one of the ion-scale flux ropes was characterized by an observed decrease of the total magnetic field, a strong axial current, and significant enhancements of electron density and parallel electron temperature. The flux rope boundary was characterized by currents opposite this axial current, strong in-plane and converging electric fields, parallel electric fields, and weak electron-frame Joule dissipation. These return current region observations may reflect a need to support the axial current rather than representing local reconnection signatures in the absence of any exhausts.
NASA Astrophysics Data System (ADS)
Sohrab, Siavash
Thermodynamic equilibrium between matter and radiation leads to de Broglie wavelength λdβ = h /mβvrβ and frequency νdβ = k /mβvrβ of matter waves and stochastic definitions of Planck h =hk =mk <λrk > c and Boltzmann k =kk =mk <νrk > c constants, λrkνrk = c , that respectively relate to spatial (λ) and temporal (ν) aspects of vacuum fluctuations. Photon massmk =√{ hk /c3 } , amu =√{ hkc } = 1 /No , and universal gas constant Ro =No k =√{ k / hc } result in internal Uk = Nhνrk = Nmkc2 = 3 Nmkvmpk2 = 3 NkT and potential pV = uN\\vcirc / 3 = N\\ucirc / 3 = NkT energy of photon gas in Casimir vacuum such that H = TS = 4 NkT . Therefore, Kelvin absolute thermodynamic temperature scale [degree K] is identified as length scale [meter] and related to most probable wavelength and de Broglie thermal wavelength as Tβ =λmpβ =λdβ / 3 . Parallel to Wien displacement law obtained from Planck distribution, the displacement law λwS T =c2 /√{ 3} is obtained from Maxwell -Boltzmann distribution of speed of ``photon clusters''. The propagation speeds of sound waves in ideal gas versus light waves in photon gas are described in terms of vrβ in harmony with perceptions of Huygens. Newton formula for speed of long waves in canals √{ p / ρ } is modified to √{ gh } =√{ γp / ρ } in accordance with adiabatic theory of Laplace.
Using "Kaizen" to Improve Graduate Business School Degree Programs
ERIC Educational Resources Information Center
Emiliani, M. L.
2005-01-01
Purpose: To illustrate the applicability of "kaizen" in higher education. Design/methodology/approach: "Kaizen" process was used for ten courses contained in a part-time executive MS degree program in management. Findings: "Kaizen" was found to be an effective process for improving graduate business school courses and the value proposition for…
LAPD Studies on Kelvin-Helmholtz turbulence and Transport
NASA Astrophysics Data System (ADS)
Perez, Jean; Horton, Wendel; Carter, Troy; Gekelman, Walter; Bengtson, Roger; Gentle, Kenneth
2004-11-01
New results on the partial transport barrier and turbulence produced by a strong E×B jet of plasma shear flow are reported. By controlled biasing of the cathode-anode structure of the 20 m long, 1 m diameter Large Plasma Device at UCLA, a strongly localized shear flow is driven in the steady state. The fluctuations are shown to be well described by 2D electrostatic potential simulations of the Kelvin-Helmholtz instability in preprint IFSR-1002. Now, we exam the transport of particles and report the particle flux data for transport across the plasma jet. The mean ion saturation current shows that there is a steep density gradient on the core side of the jet with the foot of the density gradient near the shear layer . We consider the motion of test particles launched from the core side of the layer and calculate the probablity distribution of the first exit times. The density gradient of driven drift waves is also discussed. Experimentally, we propose to use optical tagging and laser induced fluorescence to follow particle trajectories across the shear layer in LAPD. Work supported by DOE grant DE-FG02-04ER54742. Experimental work was performed at the UCLA Basic Plasma Science Facility which is funded by NSF and DOE.
Rito, Rosane Valéria Viana Fonseca; Oliveira, Maria Inês Couto de; Brito, Alexandre dos Santos
2013-01-01
To analyze the association between the degree of compliance with the ten steps of the Breastfeeding-Friendly Primary Care Initiative (BFPCI) and the prevalence of exclusive breastfeeding (EBF) in infants younger than six months in the city of Rio de Janeiro. This was a cross-sectional study conducted in a representative sample of 56 primary health care units of this municipality. The assessment of compliance with the ten steps of the BFPCI was carried out by interviewing health care professionals, pregnant women, and mothers; the generated performance scores were classified into tertiles. To obtain the outcome, i.e., the EBF, a data collection questionnaire was applied to mothers of children younger than six months who were followed up at these units in November of 2007. Prevalence ratios were obtained for the EBF using Poisson regression with robust variance. The prevalence of EBF was 47.6%. In the multivariate analysis, the upper tertile of performance showed a 34% higher prevalence of EBF (PR=1.34, 95% CI: 1.24 to 1.44) and the second tertile was 17% higher (PR=1.17, 95% CI: 1.08 to 1.27) than the first tertile. Mothers who did not work outside home had a 75% higher prevalence of EBF (PR=1.75, 95% CI: 1.53 to 2.01); assistance in a basic health unit, as opposed to a family health unit, implied a 10% higher prevalence (PR=1.10, 95% CI: 1.03 to 1.19). The prevalence of EBF decreased 1% for each day of the infant's life (PR=0.993, 95% CI: 0.992 to 0.993). Given the contribution of BFPCI to the practice of EBF, a greater investment in the expansion and sustainability of this initiative is recommended, as well as its association with other strategies to promote, protect, and support breastfeeding. Copyright © 2013 Sociedade Brasileira de Pediatria. Published by Elsevier Editora Ltda. All rights reserved.
NASA Astrophysics Data System (ADS)
Tsuei, C. C.; Gupta, A.; Trafas, G.; Mitzi, D.
1994-03-01
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O_2 environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa_2CaCu_2O6+δ films has been achieved.
Tsuei, C C; Gupta, A; Trafas, G; Mitzi, D
1994-03-04
The synthesis of high-quality films of the recently discovered mercury-based cuprate films with high transition temperatures has been plagued by problems such as the air sensitivity of the cuprate precursor and the volatility of Hg and HgO. These processing difficulties have been circumvented by a technique of atomic-scale mixing of the HgO and cuprate precursors, use of a protective cap layer, and annealing in an appropriate Hg and O(2) environment. With this procedure, a zero-resistance transition temperature as high as 124 kelvin in c axis-oriented epitaxial HgBa(2)CaCu(2)O(6+delta) films has been achieved.
Thermal Structure and Energy Influx to the Day-and Nightside Venus Ionosphere.
Knudsen, W C; Spenner, K; Whitten, R C; Spreiter, J R; Miller, K L; Novak, V
1979-07-06
Pioneer Venus in situ measurements made with the retarding potential analyzer reveal strong variations in the nightside ionospheric plasma density from location to location in some orbits and from orbit to orbit. The ionopause is evident at night as a relatively abrupt decrease in the thermal plasma concentration from a few hundred to ten or fewer ions per cubic centimeter. The nightside ion and electron temperatures above an altitude of 250 kilometers, within the ionosphere and away from the terminator, are comparable in magnitude and have a value at the ionopause of approximately 8000 K. The electron temperature increases from a few tens of thousands of degrees Kelvin just outside the ionopause to several hundreds of thoussands of degrees Kelvin further into the shocked solar wind. The coldest ion temperatures measured at an altitude of about 145 kilometers are 140 to 150 K and are still evidently above the neutral temperature. Preliminary day-and nightside model ion and electron temperature height profiles are compared with measured profiles. To raise the model ion temperature to the measured ion temperature on both day-and nightsides, it was necessary to include an ion energy source of the order of 4 x 10(-3) erg per square centimeter per second, presumably Joule heating. The heat flux through the electron gas from the solar wind into the neutral atmosphere averaged over day and night may be as large as 0.05 erg per square centimeter per second. Integrated over the planet surface, this heat flux represents one-tenth of the solar wind energy expended in drag on the sunward ionopause hemisphere.
Kelvin-Helmholtz instability in an active region jet observed with Hinode
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Chandra, R.; Srivastava, A. K.
2016-02-01
Over past ten years a variety of jet-like phenomena were detected in the solar atmosphere, including plasma ejections over a range of coronal temperatures being observed as extreme ultraviolet (EUV) and X-ray jets. We study the possibility for the development of Kelvin-Helmholtz (KH) instability of transverse magnetohydrodynamic (MHD) waves traveling along an EUV jet situated on the west side of NOAA AR 10938 and observed by three instruments on board Hinode on 2007 January 15/16 (Chifor et al. in Astron. Astrophys. 481:L57, 2008b). The jet was observed around log Te = 6.2 with up-flow velocities exceeded 150 km s^{-1}. Using Fe xii λ186 and λ195 line ratios, the measured densities were found to be above log Ne = 11. We have modeled that EUV jet as a vertically moving magnetic flux tube (untwisted and weakly twisted) and have studied the propagation characteristics of the kink (m = 1) mode and the higher m modes with azimuthal mode numbers m = 2, 3, 4. It turns out that all these MHD waves can become unstable at flow velocities in the range of 112-114.8 km s^{-1}. The lowest critical jet velocity of 112 km s^{-1} is obtained when modeling the jet as compressible plasma contained in an untwisted magnetic flux tube. When the jet and its environments are treated as incompressible media, the critical jet velocity becomes higher, namely 114.8 km s^{-1}. A weak twist of the equilibrium magnetic field in the same approximation of incompressible plasmas slightly decreases the threshold Alfvén Mach number, MA^{cr}, and consequently the corresponding critical velocities, notably to 114.4 km s^{-1} for the kink mode and to 112.4 km s^{-1} for the higher m modes. We have also compared two analytically found criteria for predicting the threshold Alfvén Mach number for the onset of KH instability and have concluded that one of them yields reliable values for MA^{cr}. Our study of the nature of stable and unstable MHD modes propagating on the jet shows that in a stable regime
ERIC Educational Resources Information Center
Milani, Manuela; Papini, Sabrina; Scaccia, Daniela; Scarabottolo, Nello
2014-01-01
This paper is aimed at presenting some reflections on organisation and management of SSRI online: an e-learning initiative started at the University of Milan (Italy) in the academic year 2004/05 and offered to students over the last ten years. The initiative consisted in implementing the online version of an already existing three-year bachelor…
USDA-ARS?s Scientific Manuscript database
Limited data are available for comparing light-emitting diode (LED) bulbs that are currently available in commercial broiler production facilities. We evaluated the effects of color temperatures (Kelvin) of LED bulbs on growth performance, carcass characteristics, and ocular welfare indices of broil...
Kelvin-Helmholtz Instability at Dayside Magnetopause, View from Local 3-D MHD Simulations
NASA Astrophysics Data System (ADS)
Ma, X.; Otto, A.; Delamere, P. A.
2014-12-01
During the past decade, Kelvin-Helmholtz (KH) modes have gained increasing attention for the interaction between the magnetosphere and the solar wind particularly for northward IMF. Recently, several studies showed that the KH mode may also operate near the equatorial plane under southward IMF conditions as well as at high latitudes for IMF mostly along the GSE y direction. It was also demonstrated that three-dimensional aspects are of critical importance for this process. This presentation will particularly address the mass transport rate and the amount of open magnetic flux created by reconnection driven by nonlinear KH modes as a function of IMF orientation. We will also discuss the plausible in situ and ground auroral observation signatures of the interaction between the KH waves and magnetic reconnection.
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wan, W. C.; Malamud, Guy; Shimony, A.
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Observation of dual-mode, Kelvin-Helmholtz instability vortex merger in a compressible flow
Wan, W. C.; Malamud, Guy; Shimony, A.; ...
2017-04-25
Here, we report the first observations of Kelvin-Helmholtz vortices evolving from well-characterized, dual-mode initial conditions in a steady, supersonic flow. The results provide the first measurements of the instability's vortex merger rate and supplement data on the inhibition of the instability's growth rate in a compressible flow. These experimental data were obtained by sustaining a shockwave over a foam-plastic interface with a precision-machined seed perturbation. This technique produced a strong shear layer between two plasmas at high-energy-density conditions. The system was diagnosed using x-ray radiography and was well-reproduced using hydrodynamic simulations. Experimental measurements imply that we observed the anticipated vortexmore » merger rate and growth inhibition for supersonic shear flow.« less
Clinical experience with TENS and TENS combined with nitrous oxide-oxygen. Report of 371 patients.
Quarnstrom, F. C.; Milgrom, P.
1989-01-01
Transcutaneous electrical nerve stimulation (TENS) alone or TENS combined with nitrous oxide-oxygen (N2O) was administered for restorative dentistry without local anesthesia to 371 adult patients. A total of 55% of TENS alone and 84% of TENS/N2O visits were rated successful. A total of 53% of TENS alone and 82% of TENS/N2O patients reported slight or no pain. In multivariable analyses, pain reports were related to the anesthesia technique and patient fear and unrelated to sex, race, age, tooth, or depth of preparation. PMID:2604059
NASA Technical Reports Server (NTRS)
Danchi, W.
2010-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a structurally connected infrared space interferometer with 0.5 m diameter telescopes on a 12.5 m baseline, and is passively cooled to approx.60K. The FKSI operates in the thermal infrared from 3-8 microns in a nulling (or starlight suppressing) mode for the detection and characterization of exoplanets, debris disks, extrasolar zodiacal dust levels. The FKSI will have the highest angular resolution of any infrared space instrument ever made with its nominal resolution of 40 mas at a 5 micron center wavelength. This resolution exceeds that of Spitzer by a factor of 38 and JWST by a factor of 5. The FKSI mission is conceived as a "probe class" or "mid-sized" strategic mission that utilizes technology advances from flagship projects like JWST, SIM, Spitzer, and the technology programs of TPF-I/Darwin. During the past year we began investigating an enhanced version of FKSI with 1-2 m diameter telescopes, passively cooled to 40K, on a 20-m baseline, with a sunshade giving a +/- 45 degree Field-of-Regard. This enhanced design is capable of detecting and characterizing the atmospheres of many 2 Earth-radius super-Earths and a few Earth-twins. We will report progress on the design of the enhanced mission concept and current status of the technologies needed for this mission.
NASA Technical Reports Server (NTRS)
Kimball, Mark 0.; Shirron, Peter J.
2011-01-01
The requirements levied upon the cooling system for the soft X-ray spectrometer (SXS) aboard the Astro-H satellite are demanding: Provide an operating temperature of 0.050 degrees Kelvin for a minimum of 24 hours, recycle in less than 2 hours (less than 1 hour in some cases), produce a dipole moment of less than 10 amperes per square meter at the detector location, and do all this with a mass less than 15 kilograms. This is further complicated by the availability of both a 1.3 degrees Kelvin helium bath and a 4.5 degrees Kelvin JT (Joule-Thomson) cooler to recycle the refrigerator. Here we detail the performance of the adiabatic demagnetization refrigerator (ADR) built specifically for SXS that is capable of meeting, and often significantly exceeding, the requirements placed upon it.
NASA Astrophysics Data System (ADS)
Baek, Seung Ki; Minnhagen, Petter; Kim, Beom Jun
2011-07-01
In Korean culture, the names of family members are recorded in special family books. This makes it possible to follow the distribution of Korean family names far back in history. It is shown here that these name distributions are well described by a simple null model, the random group formation (RGF) model. This model makes it possible to predict how the name distributions change and these predictions are shown to be borne out. In particular, the RGF model predicts that for married women entering a collection of family books in a certain year, the occurrence of the most common family name 'Kim' should be directly proportional to the total number of married women with the same proportionality constant for all the years. This prediction is also borne out to a high degree. We speculate that it reflects some inherent social stability in the Korean culture. In addition, we obtain an estimate of the total population of the Korean culture down to the year 500 AD, based on the RGF model, and find about ten thousand Kims.
Ten per cent polarized optical emission from GRB 090102.
Steele, I A; Mundell, C G; Smith, R J; Kobayashi, S; Guidorzi, C
2009-12-10
The nature of the jets and the role of magnetic fields in gamma-ray bursts (GRBs) remains unclear. In a baryon-dominated jet only weak, tangled fields generated in situ through shocks would be present. In an alternative model, jets are threaded with large-scale magnetic fields that originate at the central engine and that accelerate and collimate the material. To distinguish between the models the degree of polarization in early-time emission must be measured; however, previous claims of gamma-ray polarization have been controversial. Here we report that the early optical emission from GRB 090102 was polarized at 10 +/- 1 per cent, indicating the presence of large-scale fields originating in the expanding fireball. If the degree of polarization and its position angle were variable on timescales shorter than our 60-second exposure, then the peak polarization may have been larger than ten per cent.
Method of producing encapsulated thermonuclear fuel particles
Smith, Warren H.; Taylor, William L.; Turner, Harold L.
1976-01-01
A method of producing a fuel particle is disclosed, which comprises forming hollow spheroids which have a mass number greater than 50, immersing said spheroids while under the presence of pressure and heat in a gaseous atmosphere containing an isotope, such as deuterium and tritium, so as to diffuse the gas into the spheroid and thereafter cooling said spheroids up to about 77.degree. Kelvin to about 4.degree. Kelvin.
SPICA sub-Kelvin cryogenic chains
NASA Astrophysics Data System (ADS)
Duband, L.; Duval, J. M.; Luchier, N.; Prouve, T.
2012-04-01
the sorption cooler has extremely low mass for a sub-Kelvin cooler, it allows the stringent mass budget to be met. These concepts are discussed in this paper.
The importance of cantilever dynamics in the interpretation of Kelvin probe force microscopy.
Satzinger, Kevin J; Brown, Keith A; Westervelt, Robert M
2012-09-15
A realistic interpretation of the measured contact potential difference (CPD) in Kelvin probe force microscopy (KPFM) is crucial in order to extract meaningful information about the sample. Central to this interpretation is a method to include contributions from the macroscopic cantilever arm, as well as the cone and sharp tip of a KPFM probe. Here, three models of the electrostatic interaction between a KPFM probe and a sample are tested through an electrostatic simulation and compared with experiment. In contrast with previous studies that treat the KPFM cantilever as a rigid object, we allow the cantilever to bend and rotate; accounting for cantilever bending provides the closest agreement between theory and experiment. We demonstrate that cantilever dynamics play a major role in CPD measurements and provide a simulation technique to explore this phenomenon.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borgogno, D.; Califano, F.; Pegoraro, F.
2015-03-15
In an almost collisionless magnetohydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted, e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae (see, e.g., A. F. Rappazzo and E. N. Parker, Astrophys. J. 773, L2 (2013) and references therein) is a paradigmatic case. Here, we investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated doublemore » magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere.« less
Reconstruction of Propagating Kelvin-Helmholtz Vortices at Mercury's Magnetopause
NASA Technical Reports Server (NTRS)
Sundberg, Torbjoern; Boardsen, Scott A.; Slavin, James A.; Blomberg, Lars G.; Cumnock, Judy A.; Solomon, Sean C.; Anderson, Brian J.; Korth, Haje
2011-01-01
A series of quasi-periodic magnetopause crossings were recorded by the MESSENGER spacecraft during its third flyby of Mercury on 29 September 2009, likely caused by a train of propagating Kelvin-Helmholtz (KH) vortices. We here revisit the observations to study the internal structure of the waves. Exploiting MESSENGER s rapid traversal of the magnetopause, we show that the observations permit a reconstruction of the structure of a rolled-up KH vortex directly from the spacecraft s magnetic field measurements. The derived geometry is consistent with all large-scale fluctuations in the magnetic field data, establishes the non-linear nature of the waves, and shows their vortex-like structure. In several of the wave passages, a reduction in magnetic field strength is observed in the middle of the wave, which is characteristic of rolled-up vortices and is related to the increase in magnetic pressure required to balance the centrifugal force on the plasma in the outer regions of a vortex, previously reported in computer simulations. As the KH wave starts to roll up, the reconstructed geometry suggests that the vortices develop two gradual transition regions in the magnetic field, possibly related to the mixing of magnetosheath and magnetospheric plasma, situated at the leading edges from the perspectives of both the magnetosphere and the magnetosheath.
Kelvin-Helmholtz evolution in subsonic cold streams feeding galaxies
NASA Astrophysics Data System (ADS)
Angulo, Adrianna; Coffing, S.; Kuranz, C.; Drake, R. P.; Klein, S.; Trantham, M.; Malamud, G.
2017-10-01
The most prolific star formers in cosmological history lie in a regime where dense filament structures carried substantial mass into the galaxy to sustain star formation without producing a shock. However, hydrodynamic instabilities present on the filament surface limit the ability of such structures to deliver dense matter deeply enough to sustain star formation. Simulations lack the finite resolution necessary to allow fair treatment of the instabilities present at the stream boundary. Using the Omega EP laser, we simulate this mode of galaxy formation with a cold, dense, filament structure within a hotter, subsonic flow and observe the interface evolution. Machined surface perturbations stimulate the development of the Kelvin-Helmholtz (KH) instability due to the resultant shear between the two media. A spherical crystal imaging system produces high-resolution radiographs of the KH structures along the filament surface. The results from the first experiments of this kind, using a rod with single-mode, long-wavelength modulations, will be discussed. This work is funded by the U.S. Department of Energy, through the NNSA-DS and SC-OFES Joint Program in High-Energy-Density Laboratory Plasmas, Grant Number DE-NA0002956, and the National Laser User Facility Program, Grant Number DE-NA0002719, and through.
Contribution to reconstruction of third degree rectovestibular lacerations in mares
Elkasapy, A.H.; Ibrahim, I.M.
2015-01-01
The study was conducted on ten mares suffering from third degree rectovestibular laceration. Four uterine washes were performed in all cases by using diluted betadine (mixing 5ml of betadine antiseptic solution in 1 liter of sterile saline) to control vaginal and uterine infections before surgery. Surgical repair of third degree rectovestibular laceration was done by one-stage Goetz technique after four to six weeks of initial injury, with the lateral dissection continued extensively until the two flaps were created and brought to the midline without any tension. Primary healing occurred in all cases without significant complications. The obtained results indicate that mares with third degree rectovestibular lacerations are candidates for uterine wash and one-stage Goetz technique with excessive lateral continuation of the flap. PMID:26623358
ERIC Educational Resources Information Center
Kuh, George; O'Donnell, Ken; Schneider, Carol Geary
2017-01-01
2017 is the anniversary of the introduction of what are now commonly known as high-impact practices (HIPs). Many of the specific activities pursued under the HIPs acronym have been around in some form for decades, such as study abroad, internships, and student-faculty research. It was about ten years ago that, after conferring HIPs at Ten with…
Anomalous surface potential behavior observed in InN by photoassisted Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Sun, Xiaoxiao; Wei, Jiandong; Wang, Xinqiang; Wang, Ping; Li, Shunfeng; Waag, Andreas; Li, Mo; Zhang, Jian; Ge, Weikun; Shen, Bo
2017-05-01
Lattice-polarity dependence of InN surface photovoltage has been identified by an anomalous surface potential behavior observed via photoassisted Kelvin probe force microscopy. Upon above bandgap light illumination in the ambient atmosphere, the surface photovoltage of the In-polar InN shows a pronounced decrease, while that of the N-polar one keeps almost constant. Those different behaviors between N-polar and In-polar surfaces are attributed to a polarity-related surface reactivity, which is found not to be influenced by Mg-doping. These findings provide a simple and non-destructive approach to determine the lattice polarity and allow us to suggest that the In-polar InN, especially that with buried p-type conduction, should be chosen for sensing application.
1997-01-22
KENNEDY SPACE CENTER, FLA. - STS-82 crew members and workers at KSC's Vertical Processing Facility get a final look at the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) in its flight configuration for the STS-82 mission. The crew is participating in the Crew Equipment Integration Test (CEIT). NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS also is HST's first cryogenic instrument - its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 degrees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is scheduled Feb. 11 aboard Discovery with a crew of seven.
Breaking Kelvin-Helmholtz waves and cloud-top entrainment as revealed by K-band Doppler radar
NASA Technical Reports Server (NTRS)
Martner, Brooks E.; Ralph, F. Martin
1993-01-01
Radars have occasionally detected breaking Kelvin-Helmholtz (KH) waves under clear-air conditions in the atmospheric boundary layer and in the free troposphere. However, very few direct measurements of such waves within clouds have previously been reported and those have not clearly documented wave breaking. In this article, we present some of the most detailed and striking radar observations to date of breaking KH waves within clouds and at cloud top and discuss their relevance to the issue of cloud-top entrainment, which is believed to be important in convective and stratiform clouds. Aircraft observations reported by Stith suggest that vortex-like circulations near cloud top are an entrainment mechanism in cumuliform clouds. Laboratory and modeling studies have examined possibility that KH instability may be responsible for mixing at cloud top, but direct observations have not yet been presented. Preliminary analyses shown here may help fill this gap. The data presented in this paper were obtained during two field projects in 1991 that included observations from the NOAA Wave Propagation Laboratory's K-band Doppler radar (wavelength = 8.7 mm) and special rawinsonde ascents. The sensitivity (-30 dBZ at 10 km range), fine spatial resolution (375-m pulse length and 0.5 degrees beamwidth), velocity measurement precision (5-10 cm s-1), scanning capability, and relative immunity to ground clutter make it sensitive to non-precipitating and weakly precipitating clouds, and make it an excellent instrument to study gravity waves in clouds. In particular, the narrow beam width and short pulse length create scattering volumes that are cylinders 37.5 m long and 45 m (90 m) in diameter at 5 km (10 km) range. These characteristics allow the radar to resolve the detailed structure in breaking KH waves such as have been seen in photographic cloud images.
NASA Astrophysics Data System (ADS)
Yamamoto, Takafumi D.; Taniguchi, Hiroki; Yasui, Yukio; Iguchi, Satoshi; Sasaki, Takahiko; Terasaki, Ichiro
2017-10-01
We have measured the resistivity, the thermopower, and the specific heat of the weak ferromagnetic oxide CaRu0.8Sc0.2O3 in external magnetic fields up to 140 kOe below 80 K. We have observed that the thermopower Q is significantly suppressed by magnetic fields at around the ferromagnetic transition temperature of 30 K, and have further found that the magneto-thermopower Δ Q(H,T) = Q(H,T) - Q(0,T) is roughly proportional to the magneto-entropy Δ S(H,T) = S(H,T) - S(0,T). We discuss this relationship between the two quantities in terms of the Kelvin formula, and find that the observed ΔQ is quantitatively consistent with the values expected from the Kelvin formula, a possible physical meaning of which is discussed.
Transport of solar wind into Earth's magnetosphere through rolled-up Kelvin-Helmholtz vortices.
Hasegawa, H; Fujimoto, M; Phan, T-D; Rème, H; Balogh, A; Dunlop, M W; Hashimoto, C; Tandokoro, R
2004-08-12
Establishing the mechanisms by which the solar wind enters Earth's magnetosphere is one of the biggest goals of magnetospheric physics, as it forms the basis of space weather phenomena such as magnetic storms and aurorae. It is generally believed that magnetic reconnection is the dominant process, especially during southward solar-wind magnetic field conditions when the solar-wind and geomagnetic fields are antiparallel at the low-latitude magnetopause. But the plasma content in the outer magnetosphere increases during northward solar-wind magnetic field conditions, contrary to expectation if reconnection is dominant. Here we show that during northward solar-wind magnetic field conditions-in the absence of active reconnection at low latitudes-there is a solar-wind transport mechanism associated with the nonlinear phase of the Kelvin-Helmholtz instability. This can supply plasma sources for various space weather phenomena.
NASA Astrophysics Data System (ADS)
Faganello, Matteo; Borgogno, Dario; Califano, Francesco; Pegoraro, Francesco
2015-11-01
In an almost collisionless MagnetoHydrodynamic plasma in a relatively strong magnetic field, stresses can be conveyed far from the region where they are exerted e.g., through the propagation of Alfvèn waves. The forced dynamics of line-tied magnetic structures in solar and stellar coronae is a paradigmatic case. We investigate how this action at a distance develops from the equatorial region of the Kelvin-Helmholtz unstable flanks of the Earth's magnetosphere leading to the onset, at mid latitude in both hemispheres, of correlated double magnetic field line reconnection events that can allow the solar wind plasma to enter the Earth's magnetosphere. This mid-latitude double reconnection process, first investigated in, has been confirmed here by following a large set of individual field lines using a method similar to a Poincarè map.
Conditions for the existence of Kelvin-Helmholtz instability in a CME
NASA Astrophysics Data System (ADS)
Jatenco-Pereira, Vera; Páez, Andrés; Falceta-Gonçalves, Diego; Opher, Merav
2015-08-01
The presence of Kelvin-Helmholtz instability (KHI) in the sheaths of the Coronal Mass Ejection (CME) has motivated several analysis and simulations to test their existence. In the present work we assume the existence of the KHI and propose a method to identify the regions where it is possible the development of KHI for a CME propagating in a fast and slow solar wind. We build functions for the velocities, densities and magnetic fields for two different zones of interaction between the solar wind and a CME. Based on the theory of magnetic KHI proposed by Chandrasekhar (1961) and we found conditions for the existence of KHI in the CME sheaths. Using this method it is possible to determine the range of parameters, in particular CME magnetic fields in which the KHI could exist. We conclude that KHI may exist in the two CME flanks and it is perceived that the zone with boundaries with the slow solar wind is more appropriated for the formation of the KHI.
Surface potential extraction from electrostatic and Kelvin-probe force microscopy images
NASA Astrophysics Data System (ADS)
Xu, Jie; Chen, Deyuan; Li, Wei; Xu, Jun
2018-05-01
A comprehensive comparison study of electrostatic force microscopy (EFM) and Kelvin probe force microscopy (KPFM) is conducted in this manuscript. First, it is theoretically demonstrated that for metallic or semiconductor samples, both the EFM and KPFM signals are a convolution of the sample surface potential with their respective transfer functions. Then, an equivalent point-mass model describing cantilever deflection under distributed loads is developed to reevaluate the cantilever influence on detection signals, and it is shown that the cantilever has no influence on the EFM signal, while it will affect the KPFM signal intensity but not change the resolution. Finally, EFM and KPFM experiments are carried out, and the surface potential is extracted from the EFM and KPFM images by deconvolution processing, respectively. The extracted potential intensity is well consistent with each other and the detection resolution also complies with the theoretical analysis. Our work is helpful to perform a quantitative analysis of EFM and KPFM signals, and the developed point-mass model can also be used for other cantilever beam deflection problems.
Electron Debye scale Kelvin-Helmholtz instability: Electrostatic particle-in-cell simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Sang-Yun; Lee, Ensang, E-mail: eslee@khu.ac.kr; Kim, Khan-Hyuk
2015-12-15
In this paper, we investigated the electron Debye scale Kelvin-Helmholtz (KH) instability using two-dimensional electrostatic particle-in-cell simulations. We introduced a velocity shear layer with a thickness comparable to the electron Debye length and examined the generation of the KH instability. The KH instability occurs in a similar manner as observed in the KH instabilities in fluid or ion scales producing surface waves and rolled-up vortices. The strength and growth rate of the electron Debye scale KH instability is affected by the structure of the velocity shear layer. The strength depends on the magnitude of the velocity and the growth ratemore » on the velocity gradient of the shear layer. However, the development of the electron Debye scale KH instability is mainly determined by the electric field generated by charge separation. Significant mixing of electrons occurs across the shear layer, and a fraction of electrons can penetrate deeply into the opposite side fairly far from the vortices across the shear layer.« less
Epidermal cell turnover across tight junctions based on Kelvin's tetrakaidecahedron cell shape
Yokouchi, Mariko; Atsugi, Toru; van Logtestijn, Mark; Tanaka, Reiko J; Kajimura, Mayumi; Suematsu, Makoto; Furuse, Mikio; Amagai, Masayuki; Kubo, Akiharu
2016-01-01
In multicellular organisms, cells adopt various shapes, from flattened sheets of endothelium to dendritic neurons, that allow the cells to function effectively. Here, we elucidated the unique shape of cells in the cornified stratified epithelia of the mammalian epidermis that allows them to achieve homeostasis of the tight junction (TJ) barrier. Using intimate in vivo 3D imaging, we found that the basic shape of TJ-bearing cells is a flattened Kelvin's tetrakaidecahedron (f-TKD), an optimal shape for filling space. In vivo live imaging further elucidated the dynamic replacement of TJs on the edges of f-TKD cells that enables the TJ-bearing cells to translocate across the TJ barrier. We propose a spatiotemporal orchestration model of f-TKD cell turnover, where in the classic context of 'form follows function', cell shape provides a fundamental basis for the barrier homeostasis and physical strength of cornified stratified epithelia. DOI: http://dx.doi.org/10.7554/eLife.19593.001 PMID:27894419
On the Influence of Convectively Coupled Kelvin Waves on African Easterly waves
NASA Astrophysics Data System (ADS)
Thorncroft, C. D.; Brammer, A.
2015-12-01
While Convectively Coupled Kelvin Waves (CCKWs) are generally weaker in Boreal Summer than in Boreal Spring in the tropical West African region, previous reseach has shown that they can have a significant impact on African Easterly Waves (AEWs) in the West African and tropical Atlantic regions. This talk will highlight the significance of CCKWs in determining variability in AEW behaviour including how they impact: (i) Initiation of AEWs, (ii) Convection within existing AEWs and (iii) Development of favorable AEW structures for tropical cyclogenesis in the tropical Atlantic. Reanalysis and satellite datasets will be combined to shed light on these interactions from both a climatological and a case-study perspective. A major conclusion from this work is the strong recognition that forecasters in the region should be closely monitoring the propagation of CCKWs into the region and that medium-range weather prediction efforts in the tropics should be paying close attention to the fidelity of models to represent CCKWs.
Evolution of inviscid Kelvin-Helmholtz instability from a piecewise linear shear layer
NASA Astrophysics Data System (ADS)
Guha, Anirban; Rahmani, Mona; Lawrence, Gregory
2012-11-01
Here we study the evolution of 2D, inviscid Kelvin-Helmholtz instability (KH) ensuing from a piecewise linear shear layer. Although KH pertaining to smooth shear layers (eg. Hyperbolic tangent profile) has been thorough investigated in the past, very little is known about KH resulting from sharp shear layers. Pozrikidis and Higdon (1985) have shown that piecewise shear layer evolves into elliptical vortex patches. This non-linear state is dramatically different from the well known spiral-billow structure of KH. In fact, there is a little acknowledgement that elliptical vortex patches can represent non-linear KH. In this work, we show how such patches evolve through the interaction of vorticity waves. Our work is based on two types of computational methods (i) Contour Dynamics: a boundary-element method which tracks the evolution of the contour of a vortex patch using Lagrangian marker points, and (ii) Direct Numerical Simulation (DNS): an Eulerian pseudo-spectral method heavily used in studying hydrodynamic instability and turbulence.
The Kelvin-Helmholtz instability of boundary-layer plasmas in the kinetic regime
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steinbusch, Benedikt, E-mail: b.steinbusch@fz-juelich.de; Gibbon, Paul, E-mail: p.gibbon@fz-juelich.de; Department of Mathematics, Centre for Mathematical Plasma Astrophysics, Katholieke Universiteit Leuven
2016-05-15
The dynamics of the Kelvin-Helmholtz instability are investigated in the kinetic, high-frequency regime with a novel, two-dimensional, mesh-free tree code. In contrast to earlier studies which focused on specially prepared equilibrium configurations in order to compare with fluid theory, a more naturally occurring plasma-vacuum boundary layer is considered here with relevance to both space plasma and linear plasma devices. Quantitative comparisons of the linear phase are made between the fluid and kinetic models. After establishing the validity of this technique via comparison to linear theory and conventional particle-in-cell simulation for classical benchmark problems, a quantitative analysis of the more complexmore » magnetized plasma-vacuum layer is presented and discussed. It is found that in this scenario, the finite Larmor orbits of the ions result in significant departures from the effective shear velocity and width underlying the instability growth, leading to generally slower development and stronger nonlinear coupling between fast growing short-wavelength modes and longer wavelengths.« less
Use of Kelvin probe force microscopy for identification of CVD grown graphene flakes on copper foil
NASA Astrophysics Data System (ADS)
Kumar, Rakesh; Mehta, B. R.; Kanjilal, D.
2017-05-01
Graphene flakes have been grown by chemical vapour deposition (CVD) method on Cu foils. The obtained graphene flakes have been characterized by optical microscopy, field emission scanning electron microscopy, Kelvin probe force microscopy (KPFM) and Raman spectroscopy. The graphene flakes grown on Cu foil comprise mainly single layer graphene and confirm that the nucleation for graphene growth starts very quickly. Moreover, KPFM has been found to be a valuable technique to differentiate between covered and uncovered portion of Cu foil by graphene flakes deposited for shorter duration. The results show that KPFM can be a very useful technique in understanding the mechanism of graphene growth.
DOT National Transportation Integrated Search
1997-09-16
What will GPS look like in ten years? This paper discusses improvements to the overall GPS system planned over the next ten years and examines their impact on system performance for several applications. The Presidential Decision Directive (PDD) rele...
NASA Astrophysics Data System (ADS)
Odaka, Akihiro; Satoh, Nobuo; Katori, Shigetaka
2017-08-01
We partially deposited fullerene (C60) and phenyl-C61-butyric acid methyl ester thin films that are typical n-type semiconductor materials on indium-tin oxide by mist deposition at various substrate temperatures. The topographic and surface potential images were observed via dynamic force microscopy/Kelvin probe force microscopy with the frequency modulation detection method. We proved that the area where a thin film is deposited depends on the substrate temperature during deposition from the topographic images. It was also found that the surface potential depends on the substrate temperature from the surface potential images.
Analysis of parametric drift of a MESFET-based GaAs MMIC due to 125[degrees]C storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreike, P.L.; Barton, D.L.; Sandoval, C.E.
1992-01-01
Microwave parameters drifted significantly for two out of twenty- nine GaAs MESFET-based MMICs during ten weeks of storage at 125[degrees]C and 150[degrees]C. Analysis using measured, post- storage, FET characteristics and the microwave behavior indicates that all of the FETs in the MMICs drifted, most likely due to contamination.
Analysis of parametric drift of a MESFET-based GaAs MMIC due to 125{degrees}C storage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dreike, P.L.; Barton, D.L.; Sandoval, C.E.
1992-10-01
Microwave parameters drifted significantly for two out of twenty- nine GaAs MESFET-based MMICs during ten weeks of storage at 125{degrees}C and 150{degrees}C. Analysis using measured, post- storage, FET characteristics and the microwave behavior indicates that all of the FETs in the MMICs drifted, most likely due to contamination.
de Sica-Chapman, A; Williams, G; Soni, N; Bunker, C B
2010-04-01
Toxic epidermal necrolysis (TEN) is a rare but life-threatening, allergic drug reaction. Skin blistering with epidermal and mucosal necrolysis with subsequent detachment from an inflamed underlying dermis is a hallmark of the condition. The pathogenesis of TEN is not well understood, accounting for controversies about its management and significant delay in initiating potentially beneficial therapy. There are no management protocols based on a robust evidence base. Prompt recognition of the diagnosis and consensus on early management initiatives are necessary in order to improve outcomes and survival in TEN. To date, TEN management has been directed at arresting the allergic reaction and treating the complications. We have identified a need for specific medical interventions to accelerate wound regeneration. This approach has not previously been adopted in the management of TEN. We observed that in two cases of severe TEN, dramatic re-epithelialization and recovery coincided with the introduction of granulocyte colony-stimulating factor (G-CSF) for neutropenia. We explain how addition of the G-CSF promotes recovery from TEN by enhanced bioregeneration of the damaged tissues through accelerated re-epithelialization. G-CSF has been used for severe neutropenia in TEN, but we recommend and explain why, as in our Chelsea and Westminster protocol, G-CSF should be considered in treating severe TEN irrespective of the severity of neutropenia.
Double Magnetic Reconnection Driven by Kelvin-Helmholtz Vortices
NASA Astrophysics Data System (ADS)
Horton, W., Jr.; Faganello, M.; Califano, F.; Pegoraro, F.
2017-12-01
Simulations and theory for the solar wind driven magnetic reconnection in the flanks of the magnetopause is shown to be intrinsically 3D with the secular growth of couple pairs of reconnection regions off the equatorial plane. We call the process double mid-latitude reconnection and show supporting 3D simulations and theory descripting the secular growth of the magnetic reconnection with the resulting mixing of the solar wind plasma with the magnetosphere plasma. The initial phase develops Kelvin-Helmholtz vortices at low-latitude and, through the propagation of Alfven waves far from the region where the stresses are generated, creates a standard quasi-2D low latitude boundary layer magnetic reconnection but off the equatorial plane and with a weak guide field component. The reconnection exponential growth is followed by a secularly growing nonlinear phase that gradually closes the solar wind field lines on the Earth. The nonlinear field line structure provides a channel for penetration of the SW plasma into the MS as observed by spacecraft [THEMIS and Cluster]. The simulations show the amount of solar wind plasma brought into the magnetosphere by tracing the time evolution of the areas corresponding to double reconnected field lines with Poincare maps. The results for the solar wind plasma brought into the magnetosphere seems consistent with the observed plasma transport. Finally, we have shown how the intrinsic 3D nature of the doubly reconnected magnetic field lines leads to the generation of twisted magnetic spatial structures that differ from the quasi-2D magnetic islands structures.
Unstable domains of tearing and Kelvin-Helmholtz instabilities in a rotating cylindrical plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fan, D. M.; Wei, L.; Wang, Z. X., E-mail: zxwang@dlut.edu.cn
2014-09-15
Effects of poloidal rotation profile on tearing and Kelvin-Helmholtz (KH) instabilities in a cylindrical plasma are investigated by using a reduced magnetohydrodynamic model. Since the poloidal rotation has different effects on the tearing and KH modes in different rotation regimes, four unstable domains are numerically identified, i.e., the destabilized tearing mode domain, stabilized tearing mode domain, stable-window domain, and unstable KH mode domain. It is also found that when the rotation layer is in the outer region of the rational surface, the stabilizing role of the rotation can be enhanced so significantly that the stable window domain is enlarged. Moreover,more » Alfvén resonances can be induced by the tearing and KH modes in such rotating plasmas. Radially wide profiles of current and vorticity perturbations can be formed when multiple current sheets on different resonance positions are coupled together.« less
Emmerich, F; Thielemann, C
2016-05-20
Multilayers of silicon oxide/silicon nitride/silicon oxide (ONO) are known for their good electret properties due to deep energy traps near the material interfaces, facilitating charge storage. However, measurement of the space charge distribution in such multilayers is a challenge for conventional methods if layer thickness dimensions shrink below 1 μm. In this paper, we propose an atomic force microscope based method to determine charge distributions in ONO layers with spatial resolution below 100 nm. By applying Kelvin probe force microscopy (KPFM) on freshly cleaved, corona-charged multilayers, the surface potential is measured directly along the z-axis and across the interfaces. This new method gives insights into charge distribution and charge movement in inorganic electrets with a high spatial resolution.
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
NASA Astrophysics Data System (ADS)
Palmer, A.; Silevitch, D. M.; Feng, Yejun; Wang, Yishu; Jaramillo, R.; Banerjee, A.; Ren, Y.; Rosenbaum, T. F.
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, while at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.
Childlessness up among All Women; Down among Women with Advanced Degrees
ERIC Educational Resources Information Center
Livingston, Gretchen; Cohn, D'Vera
2010-01-01
Nearly one-in-five American women ends her childbearing years without having borne a child, compared with one-in-ten in the 1970s. While childlessness has risen for all racial and ethnic groups, and most education levels, it has fallen over the past decade for women with advanced degrees. The most educated women still are among the most likely…
Ten Commandments Revisited: A Ten-Year Perspective on the Industrial Application of Formal Methods
NASA Technical Reports Server (NTRS)
Bowen, Jonathan P.; Hinchey, Michael G.
2005-01-01
Ten years ago, our 1995 paper Ten Commandments of Formal Methods suggested some guidelines to help ensure the success of a formal methods project. It proposed ten important requirements (or "commandments") for formal developers to consider and follow, based on our knowledge of several industrial application success stories, most of which have been reported in more detail in two books. The paper was surprisingly popular, is still widely referenced, and used as required reading in a number of formal methods courses. However, not all have agreed with some of our commandments, feeling that they may not be valid in the long-term. We re-examine the original commandments ten years on, and consider their validity in the light of a further decade of industrial best practice and experiences.
NASA Astrophysics Data System (ADS)
Moore, T. W.; Nykyri, K.; Dimmock, A. P.
2017-11-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn sector, the cold-component ions are more abundant and hotter by 30-40% when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contributes to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to Kelvin-Helmholtz instability (KHI): hot and tenuous magnetospheric, cold and dense magnetosheath, and mixed (Hasegawa et al., 2004). These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz (KH) vortex centered ion heating (Moore et al., 2016). The statistical analysis shows that during KH events there is enhanced nonadiabatic heating calculated during ion scale wave intervals when compared to non-KH events. This suggests that during KH events there is more free energy for ion-scale wave generation, which in turn can heat ions more effectively when compared to cases when KH waves are absent. This may contribute to the dawn favored temperature asymmetry of the plasma sheet; recent studies suggest KH waves favor the dawn flank during Parker-Spiral interplanetary magnetic field.
Kelvin-Helmholtz instability of a thin liquid sheet: Effect of the gas-boundary layer
NASA Astrophysics Data System (ADS)
Tirumkudulu, Mahesh
2017-11-01
It is well known that when a thin liquid sheet moves with respect to a surrounding gas phase, the liquid sheet is susceptible to the Kelvin-Helmholtz instability. Here, flow in both the liquid and the gas phases are assumed to be inviscid. In this work, we include exactly via a perturbation analysis, the influence of the growing boundary layer in the gas phase in the base flow and show that both temporal and spatial growth rates obtained from the linear stability analysis are significantly reduced due to the presence of the boundary layer. These results are in line with the simulation results of Lozano et al. and Tammisola et al.. We conclude with the implication of these results on the break-up of radially expanding liquid sheets. Funding from IIT Bombay, CSIR India, and Trinity College, Cambridge University is acknowledged.
Interaction of Kelvin waves and nonlocality of energy transfer in superfluids
NASA Astrophysics Data System (ADS)
Laurie, Jason; L'Vov, Victor S.; Nazarenko, Sergey; Rudenko, Oleksii
2010-03-01
We argue that the physics of interacting Kelvin Waves (KWs) is highly nontrivial and cannot be understood on the basis of pure dimensional reasoning. A consistent theory of KW turbulence in superfluids should be based upon explicit knowledge of their interactions. To achieve this, we present a detailed calculation and comprehensive analysis of the interaction coefficients for KW turbuelence, thereby, resolving previous mistakes stemming from unaccounted contributions. As a first application of this analysis, we derive a local nonlinear (partial differential) equation. This equation is much simpler for analysis and numerical simulations of KWs than the Biot-Savart equation, and in contrast to the completely integrable local induction approximation (in which the energy exchange between KWs is absent), describes the nonlinear dynamics of KWs. Second, we show that the previously suggested Kozik-Svistunov energy spectrum for KWs, which has often been used in the analysis of experimental and numerical data in superfluid turbulence, is irrelevant, because it is based upon an erroneous assumption of the locality of the energy transfer through scales. Moreover, we demonstrate the weak nonlocality of the inverse cascade spectrum with a constant particle-number flux and find resulting logarithmic corrections to this spectrum.
Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeda, Takayuki, E-mail: taka.umeda@nagoya-u.jp; Yamauchi, Natsuki; Wada, Yasutaka
2016-05-15
In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropicmore » pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.« less
Work function measurement of multilayer electrodes using Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Peres, L.; Bou, A.; Cornille, C.; Barakel, D.; Torchio, P.
2017-04-01
The workfunction of dielectric|metal|dielectric transparent and conductive electrodes, promising candidates for replacing ITO in thin film solar cells, is measured by Kelvin probe force microscopy (KPFM). Measurement on commercial ITO gives a workfunction of 4.74 eV, which is in agreement with the values reported in the literature. Measurements are then performed on optically optimised multilayer electrodes fabricated on glass by e-beam evaporation, using three different dielectrics. For TiO2(37 nm)|Ag(13 nm)|TiO2(42 nm), SnO x (45 nm)|Ag(10 nm)|SnO x (45 nm), and ZnS(47 nm)|Ag(12 nm)|ZnS(42 nm), workfunctions of 4.83 eV, 4.75 eV, and 4.48 eV are measured respectively. These values suggest that these transparent and conductive electrodes are well adapted to extract photo-generated charge carriers in photovoltaic devices in which ITO is normally used. Furthermore, the KPFM technique proves to be an efficient and relatively fast way to determine the work function values of such electrodes.
[Kelvin-Helmholtz instability in protostellar jets
NASA Technical Reports Server (NTRS)
Stone, James; Hardee, Philip
1996-01-01
NASA grant NAG 5 2866, funded by the Astrophysics Theory Program, enabled the study the Kelvin-Helmholtz instability in protostellar jets. In collaboration with co-investigator Philip Hardee, the PI derived the analytic dispersion relation for the instability in including a cooling term in the energy equation which was modeled as one of two different power laws. Numerical solutions to this dispersion relation over a wide range of perturbation frequencies, and for a variety of parameter values characterizing the jet (such as Mach number, and density ratio) were found It was found that the growth rates and wavelengths associated with unstable roots of the dispersion relation in cooling jets are significantly different than those associated with adiabatic jets, which have been studied previously. In collaboration with graduate student Jianjun Xu (funded as a research associate under this grant), hydrodynamical simulations were used to follow the growth of the instability into the nonlinear regime. It was found that asymmetric surface waves lead to large amplitude, sinusoidal distortions of the jet, and ultimately to disruption Asymmetric body waves, on the other hand, result in the formation of shocks in the jet beam in the nonlinear regime. In cooling jets, these shocks lead to the formation of dense knots and filaments of gas within the jet. For sufficiently high perturbation frequencies, however, the jet cannot respond and it remains symmetric. Applying these results to observed systems, such as the Herbig-Haro jets HH34, HH111 and HH47 which have been observed with the Hubble Space Telescope, we predicted that some of the asymmetric structures observed in these systems could be attributed to the K-H modes, but that perturbations on timescales associated with the inner disk (about 1 year) would be too rapid to cause disruption. Moreover, it was discovered that weak shock 'spurs' in the ambient gas produced by ripples in the jet surface due to nonlinear, modes of
Trains of large Kelvin-Helmholtz billows observed in the Kuroshio above a seamount
NASA Astrophysics Data System (ADS)
Chang, Ming-Huei; Jheng, Sin-Ya; Lien, Ren-Chieh
2016-08-01
Trains of large Kelvin-Helmholtz (KH) billows within the Kuroshio current at ~230 m depth off southeastern Taiwan and above a seamount were observed by shipboard instruments. The trains of large KH billows were present in a strong shear band along the 0.55 m s-1 isotach within the Kuroshio core; they are presumably produced by flow interactions with the rapidly changing topography. Each individual billow, resembling a cat's eye, had a horizontal length scale of 200 m, a vertical scale of 100 m, and a timescale of 7 min, near the local buoyancy frequency. Overturns were observed frequently in the billow cores and the upper eyelids. The turbulent kinetic energy dissipation rates estimated using the Thorpe scale had an average value of O(10-4) W kg-1 and a maximum value of O(10-3) W kg-1. The turbulence mixing induced by the KH billows may exchange Kuroshio water with the surrounding water masses.
Elemental Identification by Combining Atomic Force Microscopy and Kelvin Probe Force Microscopy.
Schulz, Fabian; Ritala, Juha; Krejčí, Ondrej; Seitsonen, Ari Paavo; Foster, Adam S; Liljeroth, Peter
2018-06-01
There are currently no experimental techniques that combine atomic-resolution imaging with elemental sensitivity and chemical fingerprinting on single molecules. The advent of using molecular-modified tips in noncontact atomic force microscopy (nc-AFM) has made it possible to image (planar) molecules with atomic resolution. However, the mechanisms responsible for elemental contrast with passivated tips are not fully understood. Here, we investigate elemental contrast by carrying out both nc-AFM and Kelvin probe force microscopy (KPFM) experiments on epitaxial monolayer hexagonal boron nitride (hBN) on Ir(111). The hBN overlayer is inert, and the in-plane bonds connecting nearest-neighbor boron and nitrogen atoms possess strong covalent character and a bond length of only ∼1.45 Å. Nevertheless, constant-height maps of both the frequency shift Δ f and the local contact potential difference exhibit striking sublattice asymmetry. We match the different atomic sites with the observed contrast by comparison with nc-AFM image simulations based on the density functional theory optimized hBN/Ir(111) geometry, which yields detailed information on the origin of the atomic-scale contrast.
Artifacts in time-resolved Kelvin probe force microscopy
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
2018-04-24
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
Artifacts in time-resolved Kelvin probe force microscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sadewasser, Sascha; Nicoara, Nicoleta; Solares, Santiago D.
Kelvin probe force microscopy (KPFM) has been used for the characterization of metals, insulators, and semiconducting materials on the nanometer scale. Especially in semiconductors, the charge dynamics are of high interest. Recently, several techniques for time-resolved measurements with time resolution down to picoseconds have been developed, many times using a modulated excitation signal, e.g. light modulation or bias modulation that induces changes in the charge carrier distribution. For fast modulation frequencies, the KPFM controller measures an average surface potential, which contains information about the involved charge carrier dynamics. Here, we show that such measurements are prone to artifacts due tomore » frequency mixing, by performing numerical dynamics simulations of the cantilever oscillation in KPFM subjected to a bias-modulated signal. For square bias pulses, the resulting time-dependent electrostatic forces are very complex and result in intricate mixing of frequencies that may, in some cases, have a component at the detection frequency, leading to falsified KPFM measurements. Additionally, we performed fast Fourier transform (FFT) analyses that match the results of the numerical dynamics simulations. Small differences are observed that can be attributed to transients and higher-order Fourier components, as a consequence of the intricate nature of the cantilever driving forces. These results are corroborated by experimental measurements on a model system. In the experimental case, additional artifacts are observed due to constructive or destructive interference of the bias modulation with the cantilever oscillation. Also, in the case of light modulation, we demonstrate artifacts due to unwanted illumination of the photodetector of the beam deflection detection system. Lastly, guidelines for avoiding such artifacts are given.« less
NASA Technical Reports Server (NTRS)
2005-01-01
These side-by-side false-color images show Saturn's heat emission. The data were taken on Feb. 4, 2004, from the W. M. Keck I Observatory, Mauna Kea, Hawaii. Both images were taken with infrared radiation. The image on the left was taken at a wavelength near 17.65 microns and is sensitive to temperatures in Saturn's upper troposphere. The image on the right was taken at a wavelength of 8 microns and is sensitive to temperatures in Saturn's stratosphere. The prominent hot spot at the bottom of each image is at Saturn's south pole. The warming of the southern hemisphere was expected, as Saturn was just past southern summer solstice, but the abrupt changes in temperature with latitude were not expected. The troposphere temperature increases toward the pole abruptly near 70 degrees latitude from 88 to 89 Kelvin (-301 to -299 degrees Fahrenheit) and then to 91 Kelvin (-296 degrees Fahrenheit) right at the pole. Near 70 degrees latitude, the stratospheric temperature increases even more abruptly from 146 to 150 Kelvin (-197 to -189 degrees Fahrenheit) and then again to 151 Kelvin (-188 degrees Fahrenheit) right at the pole. While the rings are too faint to be detected at 8 microns (right), they show up at 17.65 microns. The ring particles are orbiting Saturn to the left on the bottom and to the right on the top. The lower left ring is colder than the lower right ring, because the particles are just moving out of Saturn's shadow where they have cooled off. As they orbit Saturn, they warm up to a maximum just before passing behind Saturn again in shadow.Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in situ tunability
DOE Office of Scientific and Technical Information (OSTI.GOV)
Palmer, A; Silevitch, D M; Feng, Yejun
2015-09-01
We discuss techniques for performing continuous measurements across a wide range of pressure–field–temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide range of pressure, whilemore » at the same time making possible precise steps across abrupt phase transitions such as those from insulator to metal.« less
Sub-Kelvin magnetic and electrical measurements in a diamond anvil cell with in-situ tunability
Palmer, Alexander; Silevitch, Daniel; Feng, Yejun; ...
2015-09-04
We discuss techniques for performing continuous measurements across a wide range of pressure-field-temperature phase space, combining the milli-Kelvin temperatures of a helium dilution refrigerator with that of the giga-Pascal pressures of a diamond anvil cell and the Tesla magnetic fields of a superconducting magnet. With a view towards minimizing remnant magnetic fields and background magnetic susceptibility, we then characterize high-strength superalloy materials for the pressure cell assembly, which allows high fidelity measurements of low-field phenomena such as superconductivity below 100 mK at pressures above 10 GPa. In situ tunability and measurement of the pressure permit experiments over a wide rangemore » of pressure, while at the same time making possible precise steps across abrupt phase transitions such as that from insulator to metal.« less
A Cloud Greenhouse Effect on Mars: Significant Climate Change in the Recent Past
NASA Technical Reports Server (NTRS)
Haberle, Robert M.; Kahre, Melinda A.; Schaeffer, James R.; Montmessin, Frank; Phillips, R J.
2012-01-01
The large variations in Mars orbit parameters are known to be significant drivers of climate change on the Red planet. The recent discovery of buried CO2 ice at the South Pole adds another dimension to climate change studies. In this paper we present results from the Ames GCM that show within the past million years it is possible that clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold clouds form, reduce the outgoing longwave radiation, and drive up surface temperatures to maintain global energy balance.
TENS (transcutaneous electrical nerve stimulation) for labour pain.
Francis, Richard
2012-05-01
Because TENS is applied inconsistently and not always in line with optimal TENS application theory, this may explain why TENS for labour pain appears to be effective in some individuals and not in others. This article reviews TENS theory, advises upon optimal TENS application for labour pain and discusses some of the limitations of TENS research on labour pain. TENS application for labour pain may include TENS applied to either side of the lower spine, set to 200 mus pulse duration and 100 pulses per second. As pain increases, TENS intensity should be increased and as pain decreases, TENS intensity should be reduced to maintain a strong but pain free intensity of stimulation. This application may particularly reduce back pain during labour.
NASA Astrophysics Data System (ADS)
Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-12-01
We investigate through high-resolution three-dimensional simulations the nonlinear evolution of compressible magnetohydrodynamic flows subject to the Kelvin-Helmholtz instability. As in our earlier work, we have considered periodic sections of flows that contain a thin, transonic shear layer but are otherwise uniform. The initially uniform magnetic field is parallel to the shear plane but oblique to the flow itself. We confirm in three-dimensional flows the conclusion from our two-dimensional work that even apparently weak magnetic fields embedded in Kelvin-Helmholtz unstable plasma flows can be fundamentally important to nonlinear evolution of the instability. In fact, that statement is strengthened in three dimensions by this work because it shows how field-line bundles can be stretched and twisted in three dimensions as the quasi-two-dimensional Cat's Eye vortex forms out of the hydrodynamical motions. In our simulations twisting of the field may increase the maximum field strength by more than a factor of 2 over the two-dimensional effect. If, by these developments, the Alfvén Mach number of flows around the Cat's Eye drops to unity or less, our simulations suggest that magnetic stresses will eventually destroy the Cat's Eye and cause the plasma flow to self-organize into a relatively smooth and apparently stable flow that retains memory of the original shear. For our flow configurations, the regime in three dimensions for such reorganization is 4<~MAx<~50, expressed in terms of the Alfvén Mach number of the original velocity transition and the initial Alfvén speed projected to the flow plan. When the initial field is stronger than this, the flow either is linearly stable (if MAx<~2) or becomes stabilized by enhanced magnetic tension as a result of the corrugated field along the shear layer before the Cat's Eye forms (if MAx>~2). For weaker fields the instability remains essentially hydrodynamic in early stages, and the Cat's Eye is destroyed by the
The Fourier-Kelvin Stellar Interferometer Mission Concept
NASA Technical Reports Server (NTRS)
Danchi, W. C.; Allen, R.; Benford, D.; Gezari, D.; Leisawitz, D.; Mundy, L.; Oegerle, William (Technical Monitor)
2002-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological precursor to TPF as well as Space Infrared Interferometric Telescope (SPIRIT), Submillimeter Probe Evolution of Cosmic Structure (SPECS), and Single Aperture for Infrared Observatory (SAFIR). It will also be a high angular resolution system complementary to Next Generation Space Telescope (NGST). The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We are in the process of studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. The goal of the design study is to determine if a mid-infrared interferometry mission can be performed within the cost and schedule requirements of a Discovery class mission. At the present time we envision the FKSI as comprised of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral
Application of an Elongated Kelvin Model to Space Shuttle Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2009-01-01
The space shuttle foams are rigid closed-cell polyurethane foams. The two foams used most-extensively oil space shuttle external tank are BX-265 and NCFL4-124. Because of the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a nonisotropic mechanical behavior. A detailed microstructural characterization of the two foams is presented. Key features of the foam cells are described and the average cell dimensions in the two foams are summarized. Experimental studies are also conducted to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise). The measured elastic modulus, proportional limit stress, ultimate tensile strength, and Poisson's ratios are reported. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are summarized. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson's ratios are predicted for both foams and are compared with the experimental data. The predicted tensile strength ratio is in close agreement with the measured strength ratio for both BX-265 and NCFI24-124. The comparison between the predicted Poisson's ratios and the measured values is not as favorable.
Investigation of surface potentials in reduced graphene oxide flake by Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Negishi, Ryota; Takashima, Kai; Kobayashi, Yoshihiro
2018-06-01
The surface potential (SP) of reduced graphene oxide (rGO) flakes prepared by thermal treatments of GO under several conditions was analyzed by Kelvin probe force microscopy. The low-crystalline rGO flakes in which a significant amount of oxygen functional groups and structural defects remain have a much lower SP than mechanically exfoliated graphene free from oxygen and defects. On the other hand, the highly crystalline rGO flake after a thermal treatment for the efficient removal of oxygen functional groups and healing of structural defects except for domain boundary shows SP equivalent to that of the mechanically exfoliated graphene. These results indicate that the work function of rGO is sensitively modulated by oxygen functional groups and structural defects remaining after the thermal reduction process, but is not affected significantly by the domain boundary remaining after the healing of structural defects through the thermal treatment at high temperature.
The evolution of a localized nonlinear wave of the Kelvin-Helmholtz instability with gravity
NASA Astrophysics Data System (ADS)
Orazzo, Annagrazia; Hoepffner, Jérôme
2012-11-01
At the interface between two fluids of different density and in the presence of gravity, there are well known periodic surface waves which can propagate for long distances with little attenuation, as it is for instance the case at the surface of the sea. If wind is present, these waves progressively accumulate energy as they propagate and grow to large sizes—this is the Kelvin-Helmholtz instability. On the other hand, we show in this paper that for a given wind strength, there is potential for the growth of a localized nonlinear wave. This wave can reach a size such that the hydrostatic pressure drop from top to bottom equals the stagnation pressure of the wind. This process for the disruption of the flat interface is localized and nonlinear. We study the properties of this wave using numerical simulations of the Navier-Stokes equations.
A map of the large day-night temperature gradient of a super-Earth exoplanet.
Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier
2016-04-14
Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths--exoplanets with masses of one to ten times that of Earth--have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.
A map of the large day-night temperature gradient of a super-Earth exoplanet
NASA Astrophysics Data System (ADS)
Demory, Brice-Olivier; Gillon, Michael; de Wit, Julien; Madhusudhan, Nikku; Bolmont, Emeline; Heng, Kevin; Kataria, Tiffany; Lewis, Nikole; Hu, Renyu; Krick, Jessica; Stamenković, Vlada; Benneke, Björn; Kane, Stephen; Queloz, Didier
2016-04-01
Over the past decade, observations of giant exoplanets (Jupiter-size) have provided key insights into their atmospheres, but the properties of lower-mass exoplanets (sub-Neptune) remain largely unconstrained because of the challenges of observing small planets. Numerous efforts to observe the spectra of super-Earths—exoplanets with masses of one to ten times that of Earth—have so far revealed only featureless spectra. Here we report a longitudinal thermal brightness map of the nearby transiting super-Earth 55 Cancri e (refs 4, 5) revealing highly asymmetric dayside thermal emission and a strong day-night temperature contrast. Dedicated space-based monitoring of the planet in the infrared revealed a modulation of the thermal flux as 55 Cancri e revolves around its star in a tidally locked configuration. These observations reveal a hot spot that is located 41 ± 12 degrees east of the substellar point (the point at which incident light from the star is perpendicular to the surface of the planet). From the orbital phase curve, we also constrain the nightside brightness temperature of the planet to 1,380 ± 400 kelvin and the temperature of the warmest hemisphere (centred on the hot spot) to be about 1,300 kelvin hotter (2,700 ± 270 kelvin) at a wavelength of 4.5 micrometres, which indicates inefficient heat redistribution from the dayside to the nightside. Our observations are consistent with either an optically thick atmosphere with heat recirculation confined to the planetary dayside, or a planet devoid of atmosphere with low-viscosity magma flows at the surface.
Opening Doors to Nursing Degrees: Time for Action. A Proposal from Ontario's Colleges
ERIC Educational Resources Information Center
Colleges Ontario, 2015
2015-01-01
This report argues that Ontario must expand the educational options for people who want to become registered nurses (RNs). It argues that the change Ontario requires is to authorize colleges to offer their own high-quality nursing degrees. Until 2005, about 70 per cent of Ontario's RNs were educated at colleges. Today, tens of thousands of RNs who…
Experimental Ten-Photon Entanglement.
Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-18
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12 MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
NASA Astrophysics Data System (ADS)
Sturner, A. P.; Eriksson, S.; Newman, D. L.; Lapenta, G.; Gershman, D. J.; Plaschke, F.; Ergun, R.; Wilder, F. D.; Torbert, R. B.; Giles, B. L.; Strangeway, R. J.; Russell, C. T.; Burch, J. L.
2016-12-01
Kinetic simulations and observations of magnetic reconnection suggest the Hall term of Ohm's Law is necessary for understanding fast reconnection in the Earth's magnetosphere. During high (>1) guide field plasma conditions in the solar wind and in Earth's magnetopause, tripolar variations in the guide magnetic field are often observed during current sheet crossings, and have been linked to reconnection Hall magnetic fields. Two proposed mechanisms for these tripolar variations are the presence of multiple nearby X-lines and magnetic island coalescence. We present results of an investigation into the structure of the electron currents supporting tripolar guide magnetic field variations during Kelvin-Helmholtz wave current sheet crossings using the Magnetosphere Multiscale (MMS) Mission, and compare with bipolar magnetic field structures and with kinetic simulations to understand how these tripolar structures may be used as tracers for magnetic islands.
NASA Astrophysics Data System (ADS)
Wodlinger, B.; Downey, J. E.; Tyler-Kabara, E. C.; Schwartz, A. B.; Boninger, M. L.; Collinger, J. L.
2015-02-01
Objective. In a previous study we demonstrated continuous translation, orientation and one-dimensional grasping control of a prosthetic limb (seven degrees of freedom) by a human subject with tetraplegia using a brain-machine interface (BMI). The current study, in the same subject, immediately followed the previous work and expanded the scope of the control signal by also extracting hand-shape commands from the two 96-channel intracortical electrode arrays implanted in the subject’s left motor cortex. Approach. Four new control signals, dictating prosthetic hand shape, replaced the one-dimensional grasping in the previous study, allowing the subject to control the prosthetic limb with ten degrees of freedom (three-dimensional (3D) translation, 3D orientation, four-dimensional hand shaping) simultaneously. Main results. Robust neural tuning to hand shaping was found, leading to ten-dimensional (10D) performance well above chance levels in all tests. Neural unit preferred directions were broadly distributed through the 10D space, with the majority of units significantly tuned to all ten dimensions, instead of being restricted to isolated domains (e.g. translation, orientation or hand shape). The addition of hand shaping emphasized object-interaction behavior. A fundamental component of BMIs is the calibration used to associate neural activity to intended movement. We found that the presence of an object during calibration enhanced successful shaping of the prosthetic hand as it closed around the object during grasping. Significance. Our results show that individual motor cortical neurons encode many parameters of movement, that object interaction is an important factor when extracting these signals, and that high-dimensional operation of prosthetic devices can be achieved with simple decoding algorithms. ClinicalTrials.gov Identifier: NCT01364480.
[Contact dermatitis from polyacrylate in TENS electrode].
Weber-Muller, F; Reichert-Penetrat, S; Schmutz, J-L; Barbaud, A
2004-05-01
Transcutaneous electric nerve stimulation (TENS) is useful for many chronic pains. It induces few serious side effects, but skin reactions are not rare. We report on two cases of contact dermatitis due to TENS electrodes by sensitization to the acrylate in TENS conductive gel. A 50 year-old man suffered from post-traumatic lumbar pair. He developed eczematous lesions on the sites where the TENS electrodes were applied. Patch tests were positive with the TENS gel, with ethylene glycol dimethylacrylate (2 p. 100 petrolatum) and ethyl-acrylate (2 p. 100 petrolatum) on day 2 and 4 readings. A 54 Year-old man had a paralysis of the foot elevator following rupture of an aneurysm. After 2 months, he had an eczema on the sites where the TENS electrodes were applied. Patch tests were negative with the TENS electrodes but positive with 2-hydroxyethyl acrylate (0.1 p. 100 petrolatum), triethyleneglycol diacrylate (0.1 p. 100 petrolatum), 2-hydroxyethyl methacrylate (2 p. 100 petrolatum) and 2-hydroxypropyl methacrylate (2 p. 100 petrolatum) on day 2 and 4 readings. TENS transmits small electrical currents through the skin that induce the depolarization of the affected sensory nerve endings. They have few serious side effects but skin reactions such as irritation, burns or allergy to propylene glycol in the electrode gel, to the rubber of the electrodes (mercaptobenzothiazole) or to the metallic part of the electrodes, i.e. nickel, are not uncommon. To our knowledge, only one case of an allergy to the polyacrylates of TENS electrode gel has been previously reported in the literature. We emphasize that acrylate could be the main sensitizer in the more recently commercialized TENS electrodes and will propose alternative ways of treating patients sensitized to acrylate and who require treatment with TENS.
Linear growth of the Kelvin-Helmholtz instability with an adiabatic cosmic-ray gas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suzuki, Akihiro; Takahashi, Hiroyuki R.; Kudoh, Takahiro
2014-06-01
We investigate effects of cosmic rays on the linear growth of the Kelvin-Helmholtz instability. Cosmic rays are treated as an adiabatic gas and allowed to diffuse along magnetic field lines. We calculated the dispersion relation of the instability for various sets of two free parameters, the ratio of the cosmic-ray pressure to the thermal gas pressure, and the diffusion coefficient. Including cosmic-ray effects, a shear layer is more destabilized and the growth rates can be enhanced in comparison with the ideal magnetohydrodynamical case. Whether the growth rate is effectively enhanced or not depends on the diffusion coefficient of cosmic rays.more » We obtain the criterion for effective enhancement by comparing the growing timescale of the instability with the diffusion timescale of cosmic rays. These results can be applied to various astrophysical phenomena where a velocity shear is present, such as outflows from star-forming galaxies, active galactic nucleus jet, channel flows resulting from the nonlinear development of the magnetorotational instability, and galactic disks.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tsukahara, D.; Baba, M.; Honda, S.
2014-09-28
Potential variations around the grain boundaries (GBs) in antimony (Sb)-doped n-type and boron (B)-doped p-type BaSi₂ epitaxial films on Si(111) were evaluated by Kelvin probe force microscopy. Sb-doped n-BaSi₂ films exhibited positively charged GBs with a downward band bending at the GBs. The average barrier height for holes was approximately 10 meV for an electron concentration n ≈ 10¹⁷ cm⁻³. This downward band bending changed to upward band bending when n was increased to n = 1.8 × 10¹⁸cm⁻³. In the B-doped p-BaSi₂ films, the upward band bending was observed for a hole concentration p ≈ 10¹⁸cm⁻³. The average barriermore » height for electrons decreased from approximately 25 to 15 meV when p was increased from p = 2.7 × 10¹⁸ to p = 4.0 × 10¹⁸ cm⁻³. These results are explained under the assumption that the position of the Fermi level E{sub f} at GBs depends on the degree of occupancy of defect states at the GBs, while E{sub f} approached the bottom of the conduction band or the top of the valence band in the BaSi₂ grain interiors with increasing impurity concentrations. In both cases, such small barrier heights may not deteriorate the carrier transport properties. The electronic structures of impurity-doped BaSi₂ are also discussed using first-principles pseudopotential method to discuss the insertion sites of impurity atoms and clarify the reason for the observed n-type conduction in the Sb-doped BaSi₂ and p-type conduction in the B-doped BaSi₂.« less
Mechanical stability of a microscope setup working at a few kelvins for single-molecule localization
NASA Astrophysics Data System (ADS)
Hinohara, Takuya; Hamada, Yuki I.; Nakamura, Ippei; Matsushita, Michio; Fujiyoshi, Satoru
2013-06-01
A great advantage of single-molecule fluorescence imaging is the localization precision of molecule beyond the diffraction limit. Although longer signal-acquisition yields higher precision, acquisition time at room temperature is normally limited by photobleaching, thermal diffusion, and so on. At low temperature of a few kelvins, much longer acquisition is possible and will improve precision if the sample and the objective are held stably enough. The present work examined holding stability of the sample and objective at 1.5 K in superfluid helium in the helium bath. The stability was evaluated by localization precision of a point scattering source of a polymer bead. Scattered light was collected by the objective, and imaged by a home-built rigid imaging unit. The standard deviation of the centroid position determined for 800 images taken continuously in 17 min was 0.5 nm in the horizontal and 0.9 nm in the vertical directions.
Progress toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike laser
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Aglitskiy, Y.; Weaver, J. L.; Velikovich, A. L.; Plewa, T.; Dwarkadas, V. V.
2008-04-01
In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities of concern: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been readily observed and diagnosed in the laboratory, the KH instability remains relatively unexplored in HED plasmas. Unlike the RT and RM instabilities, the KH instability is driven by a lifting force generated by a strong velocity gradient in a stratified fluid. Understanding the KH instability mechanism in HED plasmas will provide essential insight into oblique shock systems, jets, mass stripping, and detailed RT-spike development. In addition, our KH experiment will help provide the groundwork for future transition to turbulence experiments. We present 2D FLASH simulations and experimental data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.
Lushnikov, Pavel M; Zubarev, Nikolay M
2018-05-18
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Lushnikov, Pavel M.; Zubarev, Nikolay M.
2018-05-01
Relative motion of the normal and superfluid components of helium II results in the quantum Kelvin-Helmholtz instability (KHI) at their common free surface. We found the integrability and exact growing solutions for the nonlinear stage of the development of that instability. Contrary to the usual KHI of the interface between two classical fluids, the dynamics of a helium II free surface allows reduction to the Laplace growth equation, which has an infinite number of exact solutions, including the generic formation of sharp cusps at the free surface in a finite time.
NASA Astrophysics Data System (ADS)
Huo, Zongliang; Jin, Lei; Han, Yulong; Li, Xinkai; Ye, Tianchun; Liu, Ming
2015-01-01
The influence of post-deposition annealing (PDA) temperature condition on charge distribution behavior of HfO2 thin films was systematically investigated by various-temperature Kelvin probe force microscopy technology. Contact potential difference profiles demonstrated that charge storage capability shrinks with decreasing annealing temperature from 1,000 to 500 °C and lower. Compared to 1,000 °C PDA, it was found that 500 °C PDA causes deeper effective trap energy level, suppresses lateral charge spreading, and improves the retention characteristics. It is concluded that low-temperature PDA can be adopted in 3D HfO2-based charge trap flash memory to improve the thermal treatment compatibility of the bottom peripheral logic and upper memory arrays.
NASA Technical Reports Server (NTRS)
Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Newman, D. L.; Eriksson, S.; Stawarz, J. E.; Goldman, M. V.; Goodrich, K. A.; Gershman, D. J.; Malaspina, D.;
2016-01-01
On 8 September 2015, the four Magnetospheric Multiscale spacecraft encountered a Kelvin-Helmholtz unstable magnetopause near the dusk flank. The spacecraft observed periodic compressed current sheets, between which the plasma was turbulent. We present observations of large-amplitude (up to 100 mVm) oscillations in the electric field. Because these oscillations are purely parallel to the background magnetic field, electrostatic, and below the ion plasma frequency, they are likely to be ion acoustic-like waves. These waves are observed in a turbulent plasma where multiple particle populations are intermittently mixed, including cold electrons with energies less than 10 eV. Stability analysis suggests a cold electron component is necessary for wave growth.
Ten Myths about Spanking Children.
ERIC Educational Resources Information Center
Straus, Murray A.
One of a series of studies on corporal punishment of children, this paper argues that the reasons provided for the strong support of spanking are myths. Ten myths about spanking children are discussed by offering arguments that support the action and by quoting findings from studies that refute the arguments. The ten myths are: (1) spanking works…
String universality in ten dimensions.
Adams, Allan; Taylor, Washington; Dewolfe, Oliver
2010-08-13
We show that the N=1 supergravity theories in ten dimensions with gauge groups U(1){496} and E{8}×U(1){248} are not consistent quantum theories. Cancellation of anomalies cannot be made compatible with supersymmetry and Abelian gauge invariance. Thus, in ten dimensions all supersymmetric theories of gravity without known inconsistencies are realized in string theory.
University degrees consistent with agricultural production in the European Union
NASA Astrophysics Data System (ADS)
Perdigones, Alicia; del Cerro, Jesus; Tarquis, Ana Maria; Benedicto, Susana; García, Jose Luis
2013-04-01
Degrees clearly oriented to rural and agricultural engineering are distinguished from the rest of the engineering areas by the need to involve the biological phenomena of engineering calculations. These degrees, which include subjects such as crop production, biotechnology and physics, among others, have evolved tremendously over the last ten years, implanting new curricula and introducing new specialties such as those dedicated to the environment or rural development, thereby adapting new social, economic and environmental aspects of each country. Currently being finalized to implement new titles in most Spanish universities, and in rest of Europe, following the guidelines set by Bologna. The process of elaboration of these degrees is complicated precisely because of the great variety of areas and subjects involved in these degrees. In this paper we study, for several countries of the European Union, the core subjects of the university degrees of agricultural engineering and the correlations between the core contents and the importance of the related uses of the soil in the different sectors of crop production (arable crops, horticulture, fruit growing, gardening, etc.) as well as other socio-economic criteria. The objective is to detect if the design of the core content is consistent in each country with the importance of the related socio-economic sector. Key-words: curriculum, crop production, agricultural engineer.
40 CFR 1065.1005 - Symbols, abbreviations, acronyms, and units of measure.
Code of Federal Regulations, 2011 CFR
2011-07-01
... β ratio of diameters meter per meter m/m 1 β atomic oxygen to carbon ratio mole per mole mol/mol 1 C... Sutherland constant kelvin K K SEE standard estimate of error T absolute temperature kelvin K K T Celsius temperature degree Celsius °C K-273.15 T torque (moment of force) newton meter N.m m2 .kg.s−2 t time second s...
40 CFR 1065.1005 - Symbols, abbreviations, acronyms, and units of measure.
Code of Federal Regulations, 2010 CFR
2010-07-01
... β ratio of diameters meter per meter m/m 1 β atomic oxygen to carbon ratio mole per mole mol/mol 1 C... Sutherland constant kelvin K K SEE standard estimate of error T absolute temperature kelvin K K T Celsius temperature degree Celsius °C K-273.15 T torque (moment of force) newton meter N.m m2 .kg.s−2 t time second s...
Cross-scale transport processes in the three-dimensional Kelvin-Helmholtz instability
NASA Astrophysics Data System (ADS)
Delamere, P. A.; Burkholder, B. L.; Ma, X.; Nykyri, K.
2017-12-01
The Kelvin-Helmholtz (KH) instability is a crucial aspect of the solar wind interaction with the giant magnetospheres. Rapid internal rotation of the magnetodisc produces conditions favorable for the growth of KH vortices along much of the equatorial magnetopause boundary. Pronounced dawn/dusk asymmetries at Jupiter and Saturn indicate a robust interaction with the solar wind. Using three-dimensional hybrid simulations we investigate the transport processes associated with the flow shear-driven KH instability. Of particular importance is small-scale and intermittent reconnection generated by the twisting of the magnetic field into configurations with antiparallel components. In three-dimensions strong guide field reconnection can occur even for initially parallel magnetic field configurations. Often the twisting motion leads to pairs of reconnection sites that can operate asynchronously, generating intermittent open flux and Maxwell stresses at the magnetopause boundary. We quantify the generation of open flux using field line tracing methods, determine the Reynolds and Maxwell stresses, and evaluate the mass transport as functions of magnetic shear, velocity shear, electron pressure and plasma beta. These results are compared with magnetohydrodynamic simulations (Ma et al., 2017). In addition, we present preliminary results for the role of cross-scale coupling processes, from fluid to ion scales. In particular, we characterize small-scale waves and the their role in mixing, diffusing and heating plasma at the magnetopause boundary.
NASA Technical Reports Server (NTRS)
Daggerhart, J. A.
1972-01-01
The use of cryopumping techniques to obtain a contamination free vacuum is discussed. Of those gases that are normally present in an initially air filled vacuum system, only carbon dioxide and water vapor will be effectively pumped at 77 degrees Kelvin. In order to circumvent this restriction on the types of gases that are pumped at this temperature, it is postulated that a gas which is easily condensable at 77 degrees K be injected into the system in the form of a directed stream. The stream would then entrain the normally noncondensable species by a momentum transfer mechanism. After sweeping through the volume to be pumped, the injected gas stream would then be condensed on a cryopumping surface maintained at 77 degrees Kelvin.
The ten-ecosystem study investigation plan
NASA Technical Reports Server (NTRS)
Kan, E. P.
1976-01-01
With the continental United States divided into ten forest and grassland ecosystems, the Ten Ecosystem Study (TES) is designed to investigate the feasibility and applicability of state-of-the-art automatic data processing remote sensing technology to inventory forest, grassland, and water resources by using Land Satellite data. The study will serve as a prelude to a possible future nationwide remote sensing application to inventory forest and rangeland renewable resources. This plan describes project design and phases, the ten ecosystem, data utilization and output, personnel organization, resource requirements, and schedules and milestones.
Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy.
Collins, Liam; Belianinov, Alex; Somnath, Suhas; Rodriguez, Brian J; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen
2016-03-11
Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General mode (G-Mode) KPFM works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction-required for quantitative CPD mapping. The KPFM approach outlined in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.
Multifrequency spectrum analysis using fully digital G Mode-Kelvin probe force microscopy
Collins, Liam F.; Jesse, Stephen; Belianinov, Alex; ...
2016-02-11
Since its inception over two decades ago, Kelvin probe force microscopy (KPFM) has become the standard technique for characterizing electrostatic, electrochemical and electronic properties at the nanoscale. In this work, we present a purely digital, software-based approach to KPFM utilizing big data acquisition and analysis methods. General Mode (G-Mode) KPFM, works by capturing the entire photodetector data stream, typically at the sampling rate limit, followed by subsequent de-noising, analysis and compression of the cantilever response. We demonstrate that the G-Mode approach allows simultaneous multi-harmonic detection, combined with on-the-fly transfer function correction required for quantitative CPD mapping. The KPFM approach outlinedmore » in this work significantly simplifies the technique by avoiding cumbersome instrumentation optimization steps (i.e. lock in parameters, feedback gains etc.), while also retaining the flexibility to be implemented on any atomic force microscopy platform. We demonstrate the added advantages of G-Mode KPFM by allowing simultaneous mapping of CPD and capacitance gradient (C') channels as well as increased flexibility in data exploration across frequency, time, space, and noise domains. As a result, G-Mode KPFM is particularly suitable for characterizing voltage sensitive materials or for operation in conductive electrolytes, and will be useful for probing electrodynamics in photovoltaics, liquids and ionic conductors.« less
Large Kelvin-Helmholtz Billow Trains Observed in the Kuroshio above a Seamount
NASA Astrophysics Data System (ADS)
Chang, M. H.; Jheng, S. Y.; Lien, R. C.
2016-02-01
Trains of large Kelvin-Helmholtz (KH) billows were observed within the Kuroshio core, off southeastern Taiwan, at 230-m depth above a seamount in shipboard echo sounder, ADCP, and LADCP/CTD profiling, and moored ADCP measurements. The large KH billow trains were present in a strong shear band along 0.55 ms-1 isotach within the Kuroshio core as a result of the Kuroshio current interacting with the rapid changing topography. Each individual billow, resembling a cats' eye, had a horizontal length scale of 200 m and a vertical amplitude scale of 100 m, and a propagation timescale of 7 minutes, near local buoyancy period. Overturns were frequently observed in both the billow core and the upper eyelid. The shear instability criterion (Ri < 0.25) was reached in the billow core. The dissipation rate of turbulent kinetic energy in the core and in the eyelid is comparable at an average value of O(10-4) WKg-1 and a maximum value of O(10-3) WKg-1. The KH billows derive energy from the Kuroshio kinetic energy. The corresponding turbulence mixing allows the water mass exchange between the Kuroshio and the surrounding water. These small-scale processes play an important role in the energy and water mass budgets within the Kuroshio.
The Kelvin-Helmhotz instability and thin current sheets in the MHD and Hall MHD formalisms
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D.
2005-12-01
Sheared magnetic fields and sheared flows co-exist in many space, astrophysical, and laboratory plasmas. In such situations the evolution of the Kelvin-Helmhotz instability (KHI) can have a significant impact on the topology of the magnetic field. In particular, it can result in current sheet thinning [2,3], which may allow Hall scales to become relevant and result in fast reconnection rates [1]. There are a number of interesting applications of this phenomena in the magnetosphere. We will discuss some of our recent work in this area [1,2,3] with special focus on Hall MHD effects on the KHI [1]. As an example, we will discuss the parameter regime in which the 2-D parallel KHI can evolve for sub-Alfvenic flows [1]. This may have important implication for dayside reconnection in the magnetopause. [1] Chacon, Knoll, and Finn, Phys. Lett. A, vol. 308, 2003 [2] Knoll and Chacon, PRL, vol. 88, 2002 [3] Brackbill and Knoll, PRL, vol. 86, 2001
Lin, Chun-Ting; Chen, Yu-Wei; Su, James; Wu, Chien-Ting; Hsiao, Chien-Nan; Shiao, Ming-Hua; Chang, Mao-Nan
2015-12-01
In this study, we propose an ultra-facile approach to prepare a platinum silicide nanoparticle-modified tip apex (PSM tip) used for scanning Kelvin probe microscopy (SKPM). We combined a localized fluoride-assisted galvanic replacement reaction (LFAGRR) and atmospheric microwave annealing (AMA) to deposit a single platinum silicide nanoparticle with a diameter of 32 nm on the apex of a bare silicon tip of atomic force microscopy (AFM). The total process was completed in an ambient environment in less than 3 min. The improved potential resolution in the SKPM measurement was verified. Moreover, the resolution of the topography is comparable to that of a bare silicon tip. In addition, the negative charges found on the PSM tips suggest the possibility of exploring the use of current PSM tips to sense electric fields more precisely. The ultra-fast and cost-effective preparation of the PSM tips provides a new direction for the preparation of functional tips for scanning probe microscopy.
Progress Toward Kelvin-Helmholtz instabilities in a High-Energy-Density Plasma on the Nike Laser
NASA Astrophysics Data System (ADS)
Harding, E. C.; Drake, R. P.; Aglitskiy, Y.; Dwarkadas, V. V.; Gillespie, R. S.; Grosskopf, M. J.; Huntington, C. M.; Gjeci, N.; Campbell, D. A.; Marion, D. C.
2007-11-01
In the realm of high-energy-density (HED) plasmas, there exist three primary hydrodynamic instabilities: Rayleigh-Taylor (RT), Richtmyer-Meshkov (RM), and Kelvin-Helmholtz (KH). Although the RT and the RM instabilities have been observed in the laboratory, no experiment to our knowledge has cleanly diagnosed the KH instability. While the RT instability results from the acceleration of a more dense fluid into a less dense fluid and the RM instability is due to shock deposited vorticity onto an interface, the KH instability is driven by a lifting force generated by velocity shear at a perturbed fluid interface. Understanding the KH instability mechanism in HED plasmas will provide essential insight into detailed RT-spike development, mass stripping, many astrophysical processes, as well as laying the groundwork for future transition to turbulence experiments. We present 2D simulations and data from our initial attempts to create a pure KH system using the Nike laser at the Naval Research Laboratory.
Understanding Kelvin-Helmholtz instability in paraffin-based hybrid rocket fuels
NASA Astrophysics Data System (ADS)
Petrarolo, Anna; Kobald, Mario; Schlechtriem, Stefan
2018-04-01
Liquefying fuels show higher regression rates than the classical polymeric ones. They are able to form, along their burning surface, a low viscosity and surface tension liquid layer, which can become unstable (Kelvin-Helmholtz instability) due to the high velocity gas flow in the fuel port. This causes entrainment of liquid droplets from the fuel surface into the oxidizer gas flow. To better understand the droplets entrainment mechanism, optical investigations on the combustion behaviour of paraffin-based hybrid rocket fuels in combination with gaseous oxygen have been conducted in the framework of this research. Combustion tests were performed in a 2D single-slab burner at atmospheric conditions. High speed videos were recorded and analysed with two decomposition techniques. Proper orthogonal decomposition (POD) and independent component analysis (ICA) were applied to the scalar field of the flame luminosity. The most excited frequencies and wavelengths of the wave-like structures characterizing the liquid melt layer were computed. The fuel slab viscosity and the oxidizer mass flow were varied to study their influence on the liquid layer instability process. The combustion is dominated by periodic, wave-like structures for all the analysed fuels. Frequencies and wavelengths characterizing the liquid melt layer depend on the fuel viscosity and oxidizer mass flow. Moreover, for very low mass flows, no wavelength peaks are detected for the higher viscosity fuels. This is important to better understand and predict the onset and development of the entrainment process, which is connected to the amplification of the longitudinal waves.
Efficient rotational cooling of Coulomb-crystallized molecular ions by a helium buffer gas.
Hansen, A K; Versolato, O O; Kłosowski, L; Kristensen, S B; Gingell, A; Schwarz, M; Windberger, A; Ullrich, J; López-Urrutia, J R Crespo; Drewsen, M
2014-04-03
The preparation of cold molecules is of great importance in many contexts, such as fundamental physics investigations, high-resolution spectroscopy of complex molecules, cold chemistry and astrochemistry. One versatile and widely applied method to cool molecules is helium buffer-gas cooling in either a supersonic beam expansion or a cryogenic trap environment. Another more recent method applicable to trapped molecular ions relies on sympathetic translational cooling, through collisional interactions with co-trapped, laser-cooled atomic ions, into spatially ordered structures called Coulomb crystals, combined with laser-controlled internal-state preparation. Here we present experimental results on helium buffer-gas cooling of the rotational degrees of freedom of MgH(+) molecular ions, which have been trapped and sympathetically cooled in a cryogenic linear radio-frequency quadrupole trap. With helium collision rates of only about ten per second--that is, four to five orders of magnitude lower than in typical buffer-gas cooling settings--we have cooled a single molecular ion to a rotational temperature of 7.5(+0.9)(-0.7) kelvin, the lowest such temperature so far measured. In addition, by varying the shape of, or the number of atomic and molecular ions in, larger Coulomb crystals, or both, we have tuned the effective rotational temperature from about 7 kelvin to about 60 kelvin by changing the translational micromotion energy of the ions. The extremely low helium collision rate may allow for sympathetic sideband cooling of single molecular ions, and eventually make quantum-logic spectroscopy of buffer-gas-cooled molecular ions feasible. Furthermore, application of the present cooling scheme to complex molecular ions should enable single- or few-state manipulations of individual molecules of biological interest.
Ten major trends now emerging in the United States
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naisbitt, J.
1978-01-01
Using a special analytical procedure for tracking and assessing events reported in the nation's newspapers, the Center for Policy Process has identified ten emerging trends in the United States that are having a major impact on all our lives and on all businesses and industries--and especially on the electric utility industry. Although the trends may move in contradictory directions and have different degrees of significance, all have been carefully monitored for a considerable length of time. All are firmly established--and are not to be viewed as the momentary interests of certain radical elements of the population. The ten trends are:more » the fast-emerging clash between nuclear fuel and coal as an environmental health issue; displacement of racism and sexism by ''ageism'' as society's most prominent anti-discrimination preoccupation, and the complete elimination soon of mandatory retirement; in government and technology, the phenomenon of ''appropriate scale'' replacing economies of scale, emergence of single-issue political organizations; coming-of-age of the recycling ethic; emergence of ''access to capital'' as the new equity issue--the new rights issue; continuing shift from centralization to decentralization; movement of society in the dual directions of high technology/high touch; business' increasing involvement with the well-established accountability trend; and shift from a representative democracy to a participatory democracy--this profound change in American democracy actually began about a decade or so ago.« less
A Reversible Thermally Driven Pump for Use in a Sub-Kelvin Magnetic Refrigerator
NASA Technical Reports Server (NTRS)
Miller, Franklin K.
2012-01-01
A document describes a continuous magnetic refrigerator that is suited for cooling astrophysics detectors. This refrigerator has the potential to provide efficient, continuous cooling to temperatures below 50 mK for detectors, and has the benefits over existing magnetic coolers of reduced mass because of faster cycle times, the ability to pump the cooled fluid to remote cooling locations away from the magnetic field created by the superconducting magnet, elimination of the added complexity and mass of heat switches, and elimination of the need for a thermal bus and single crystal paramagnetic materials due to the good thermal contact between the fluid and the paramagnetic material. A reliable, thermodynamically efficient pump that will work at 1.8 K was needed to enable development of the new magnetic refrigerator. The pump consists of two canisters packed with pieces of gadolinium gallium garnet (GGG). The canisters are connected by a superleak (a porous piece of VYCOR glass). A superconducting magnetic coil surrounds each of the canisters. The configuration enables driving of cyclic thermodynamic cycles (such as the sub-Kelvin Active Magnetic Regenerative Refrigerator) without using pistons or moving parts.
NASA Technical Reports Server (NTRS)
Taylor, M. G. G. T.; Hasegawa, H.; Lavraud, B.; Phan, T.; Escoubet, C. P.; Dunlop, M. W.; Bogdanova, Y. V.; Borg, A. L.; Volwerk, M.; Berchem, J.;
2012-01-01
The Kelvin-Helmholtz Instability (KHI) can drive waves at the magnetopause. These waves can grow to form rolled-up vortices and facilitate transfer of plasma into the magnetosphere. To investigate the persistence and frequency of such waves at the magnetopause we have carried out a survey of all Double Star 1 magnetopause crossings, using a combination of ion and magnetic field measurements. Using criteria originally used in a Geotail study made by Hasegawa et al. (2006) (forthwith referred to as H2006), 17 candidate events were identified from the entire TC-1 mission (covering 623 orbits where the magnetopause was sampled), a majority of which were on the dayside of the terminator. The relationship between density and shear velocity was then investigated, to identify the predicted signature of a rolled up vortex from H2006 and all 17 events exhibited some level of rolled up behavior. The location of the events had a clear dawn-dusk asymmetry, with 12 (71 %) on the post noon, dusk flank suggesting preferential growth in this region.
Kelvin-Helmholtz instability in a twisting solar polar coronal hole jet observed by SDO/AIA
NASA Astrophysics Data System (ADS)
Zhelyazkov, I.; Zaqarashvili, T. V.; Ofman, L.; Chandra, R.
2018-01-01
We investigate the conditions under which the fluting (m = 2), m = 3 , and m = 12 magnetohydrodynamic (MHD) modes in a uniformly twisted flux tube moving along its axis become unstable in order to model the Kelvin-Helmholtz (KH) instability in a twisting solar coronal hole jet near the northern pole of the Sun. We employed the dispersion relations of MHD modes derived from the linearized MHD equations. We assumed real wavenumbers and complex angular wave frequencies, namely complex wave phse velocities. The dispersion relations were solved numerically at fixed input parameters (taken from observational data) and varying degrees of torsion of the internal magnetic field. It is shown that the stability of the modes depends upon five parameters: the density contrast between the flux tube and its environment, the ratio of the external and internal axial magnetic fields, the twist of the magnetic field lines inside the tube, the ratio of transverse and axial jet's velocities, and the value of the Alfvén Mach number (the ratio of the tube axial velocity to Alfvén speed inside the flux tube). Using a twisting jet of 2010 August 21 by SDO/AIA and other observations of coronal jets we set the parameters of our theoretical model and have obtained that in a twisted magnetic flux tube of radius of 9.8 Mm, at a density contrast of 0.474 and fixed Alfvén Mach number of ≅ 0.76 , for the three MHD modes there exist instability windows whose width crucially depends upon the internal magnetic field twist. It is found that for the considered modes an azimuthal magnetic field of 1.3 - 1.4 G (computed at the tube boundary) makes the width of the instability windows equal to zero, that is, it suppress the KH instability onset. On the other hand, the times for developing KH instability of the m = 12 MHD mode at instability wavelengths between 15 and 12 Mm turn out to be in the range of 1.9 - 4.7 min that is in agreement with the growth rates estimated from the temporal evolution of
ERIC Educational Resources Information Center
Goodman Lerner, Debbie
2017-01-01
A critical review and structured analysis of data spanning a ten-year period will be provided. The chapter submitted will present a descriptive analysis of the conversion of the 2-year to 4-year Criminal Justice Baccalaureate degree program at the Miami Dade College, School of Justice. Miami Dade College, the largest degree-granting educational…
NASA Astrophysics Data System (ADS)
Okamoto, Kazuhisa; Nonaka, Chiho
2017-06-01
We construct a new relativistic viscous hydrodynamics code optimized in the Milne coordinates. We split the conservation equations into an ideal part and a viscous part, using the Strang spitting method. In the code a Riemann solver based on the two-shock approximation is utilized for the ideal part and the Piecewise Exact Solution (PES) method is applied for the viscous part. We check the validity of our numerical calculations by comparing analytical solutions, the viscous Bjorken's flow and the Israel-Stewart theory in Gubser flow regime. Using the code, we discuss possible development of the Kelvin-Helmholtz instability in high-energy heavy-ion collisions.
NASA Astrophysics Data System (ADS)
Hut, R.; Poot, A.
2017-12-01
To train the young ones to become people that make stuff, I present the five times ten things we use a lot that everyone should have used before they are ten and two years old. I will bring at least two times ten of these things and show them live to you! And: I will bring a large paper for you to bring home with those five times ten things on it to put in the hands of your kids!
1997-01-16
KENNEDY SPACE CENTER, FLA. - Workers in KSC's Vertical Processing Facility lower the Near Infrared Camera and Multi-Object Spectrometer (NICMOS) into the Second Axial Carrier. NICMOS is one of two new scientific instruments that will replace two outdated instruments on the Hubble Space Telescope (HST). NICMOS will provide HST with the capability for infrared imaging and spectroscopic observations of astronomical targets. The refrigerator-sized NICMOS is HST's first cryogenic instrument -- its sensitive infrared detectors must operate at very cold temperatures of minus 355 degrees Fahrenheit or 58 derees Kelvin. NICMOS will be installed in Hubble during STS-82, the second Hubble Space Telescope servicing mission. Liftoff is targeted Feb. 11 aboard Discovery with a crew of seven.
Preventing probe induced topography correlated artifacts in Kelvin Probe Force Microscopy.
Polak, Leo; Wijngaarden, Rinke J
2016-12-01
Kelvin Probe Force Microscopy (KPFM) on samples with rough surface topography can be hindered by topography correlated artifacts. We show that, with the proper experimental configuration and using homogeneously metal coated probes, we are able to obtain amplitude modulation (AM) KPFM results on a gold coated sample with rough topography that are free from such artifacts. By inducing tip inhomogeneity through contact with the sample, clear potential variations appear in the KPFM image, which correlate with the surface topography and, thus, are probe induced artifacts. We find that switching to frequency modulation (FM) KPFM with such altered probes does not remove these artifacts. We also find that the induced tip inhomogeneity causes a lift height dependence of the KPFM measurement, which can therefore be used as a check for the presence of probe induced topography correlated artifacts. We attribute the observed effects to a work function difference between the tip and the rest of the probe and describe a model for such inhomogeneous probes that predicts lift height dependence and topography correlated artifacts for both AM and FM-KPFM methods. This work demonstrates that using a probe with a homogeneous work function and preventing tip changes is essential for KPFM on non-flat samples. From the three investigated probe coatings, PtIr, Au and TiN, the latter appears to be the most suitable, because of its better resistance against coating damage. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Jahromi, Amir E.; Miller, Franklin K.
2016-03-01
A sub Kelvin Active Magnetic Regenerative Refrigerator (AMRR) is being developed at the University of Wisconsin - Madison. This AMRR consists of two circulators, two regenerators, one superleak, one cold heat exchanger, and two warm heat exchangers. The circulators are novel non-moving part pumps that reciprocate a superfluid mixture of 4He-3He in the system. Heat from the mixture is removed within the two regenerators of this tandem system. An accurate model of the regenerators in this AMRR is necessary in order to predict the performance of these components, which in turn helps predicting the overall performance of the AMRR system. This work presents modeling methodology along with results from a 1-D transient numerical model of the regenerators of an AMRR capable of removing 2.5 mW at 850 mK at cyclic steady state.
Increasing intensity of TENS prevents analgesic tolerance in rats
Sato, Karina L.; Sanada, Luciana S.; Rakel, Barbara A.; Sluka, Kathleen A.
2012-01-01
Transcutaneous electrical nerve stimulation (TENS) reduces hyperalgesia and pain. Both low frequency (LF) and high frequency (HF) TENS, delivered at the same intensity (90% motor threshold (MT)) daily, result in analgesic tolerance with repeated use by the 5th day of treatment. Thecurrentstudytestedif 1) increasingintensityby 10% per daypreventsthedevelopmentoftolerance to repeated TENS, and 2) iflowerintensity TENS (50 % MT) produces an equivalentreduction in hyperalgesia when compared to 90% MT TENS. Sprague-Dawley rats with unilateral knee joint inflammation (3% carrageenan) were separated according to the intensity of TENS used: Sham, 50% LF, 50% HF, 90% LF, 90% HF, and increased intensity by 10% per day (LF and HF). The reduced mechanical withdrawal threshold following the induction of inflammation was reversed by application of TENS applied at 90% MT and increasing intensity for the first 4 days. On the 5th day, the groups that received 90% MT intensity showed tolerance. Nevertheless, the group that received an increased intensity on each day still showed a reversal of the mechanical withdrawal threshold with TENS. These results show that the development of tolerance can be delayed by increasing intensity of TENS. PMID:22858165
NASA Technical Reports Server (NTRS)
Hwang, K.-J.; Goldstein, M. L.; Kuznetsova, M. M.; Wang, Y.; Vinas, A. F.; Sibeck, D. G.
2012-01-01
We report the first in situ observation of high-latitude magnetopause (near the northern duskward cusp) Kelvin-Helmholtz waves (KHW) by Cluster on January 12, 2003, under strongly dawnward interplanetary magnetic field (IMF) conditions. The fluctuations unstable to Kelvin-Helmholtz instability (KHI) are found to propagate mostly tailward, i.e., along the direction almost 90 deg. to both the magnetosheath and geomagnetic fields, which lowers the threshold of the KHI. The magnetic configuration across the boundary layer near the northern duskward cusp region during dawnward IMF is similar to that in the low-latitude boundary layer under northward IMF, in that (1) both magnetosheath and magnetospheric fields across the local boundary layer constitute the lowest magnetic shear and (2) the tailward propagation of the KHW is perpendicular to both fields. Approximately 3-hour-long periods of the KHW during dawnward IMF are followed by the rapid expansion of the dayside magnetosphere associated with the passage of an IMF discontinuity that characterizes an abrupt change in IMF cone angle, Phi = acos (B(sub x) / absolute value of Beta), from approx. 90 to approx. 10. Cluster, which was on its outbound trajectory, continued observing the boundary waves at the northern evening-side magnetopause during sunward IMF conditions following the passage of the IMF discontinuity. By comparing the signatures of boundary fluctuations before and after the IMF discontinuity, we report that the frequencies of the most unstable KH modes increased after the discontinuity passed. This result demonstrates that differences in IMF orientations (especially in f) are associated with the properties of KHW at the high-latitude magnetopause due to variations in thickness of the boundary layer, and/or width of the KH-unstable band on the surface of the dayside magnetopause.
Progress on ten-meter optical receiver telescope
NASA Technical Reports Server (NTRS)
Shaik, Kamran
1992-01-01
A ten-meter hexagonally segmented Cassegrain optical telescope is being considered at the Jet Propulsion Laboratory for use as a research and development facility for optical communications technology. The goal of the study is to demonstrate technology which can eventually be used to develop a network of such telescopes to continuously track and communicate with the spacecraft. Hence, the technology has to be economical enough to allow replication for a ground or space based network. As we need to collect signal photons only, the telescope cost can be substantially reduced by accepting lower image quality. An important design consideration for the telescope is its ability to look very close to the sun. The telescope for optical communications must function during the daytime. Indeed, for some planetary missions it may be necessary that the system be capable of looking within a few degrees of the sun. To enable this, a unique sunshade consisting of hexagonal tubes in precise alignment with the mirror segments has been proposed which will also serve as the support for the secondary. Recent progress on the design and analysis of such an optical reception station is discussed here.
NASA Astrophysics Data System (ADS)
Kim, Min Hyung; Park, Heekyeong; Lee, Hyungbeen; Nam, Kihwan; Jeong, Seokhwan; Omkaram, Inturu; Yoon, Dae Sung; Lee, Sei Young; Kim, Sunkook; Lee, Sang Woo
2016-10-01
We used high-resolution Kelvin probe force microscopy (KPFM) to investigate the immobilization of a prostate specific antigen (PSA) antibody by measuring the surface potential (SP) on a MoS2 surface over an extensive concentration range (1 pg/ml-100 μg/ml). After PSA antibody immobilization, we demonstrated that the SP on the MoS2 surface characterized by KPFM strongly correlated to the electrical signal of a MoS2 bioFET. This demonstration can not only be used to optimize the immobilization conditions for captured molecules, but can also be applied as a diagnostic tool to complement the electrical detection of a MoS2 FET biosensor.
Climate Change on Mars: Cloud Greenhouse Effects in the Recent Past
NASA Astrophysics Data System (ADS)
Haberle, Robert M.; Kahre, Melinda A.; Hollingsorth, Jeffery L.
2014-11-01
The large variations in Mars’ orbit parameters are known to be significant drivers of climate change. We present results from an updated version of the Ames GCM that shows at times of high obliquity it is possible that water ice clouds from a greatly intensified Martian hydrological cycle may have produced a greenhouse effect strong enough to raise global mean surface temperatures by several tens of degrees Kelvin. It is made possible by the ability of the Martian atmosphere to transport water to high altitudes where cold water ice clouds form, reduce the outgoing long wave radiation, and cause surface temperatures to rise to maintain global energy balance. Since Mars spends much of its time at high obliquity, these results suggest that Mars undergoes even more significant climate change due to orbital variations than previously thought.
1989-08-21
The bright cirrus-like clouds of Neptune change rapidly, often forming and dissipation over periods of several to tens of hours. In this sequence spanning two rotations of Neptune (about 36 hours) Voyager 2 observed cloud evolution in the region around the Great Dark Spot (GDS) at an effective resolution of about 100 km (62 miles) per pixel. The surprisingly rapid changes which occur over the 18 hours separating each panel shows that in this region Neptune's weather is perhaps as dynamic and variable as that of the Earth. However, the scale is immense by our standards--the Earth and the GDS are of similar size -- and in Neptune's frigid atmosphere, where temperatures are as low as 55 degree Kelvin (-360F), the cirrus clouds are composed of frozen methane rather than Earth's crystalse of water ice.
Self-assembled monolayers of alkyl-thiols on InAs: A Kelvin probe force microscopy study
NASA Astrophysics Data System (ADS)
Szwajca, A.; Wei, J.; Schukfeh, M. I.; Tornow, M.
2015-03-01
We report on the preparation and characterization of self-assembled monolayers from aliphatic thiols with different chain length and termination on InAs (100) planar surfaces. This included as first step the development and investigation of a thorough chemical InAs surface preparation step using a dedicated bromine/NH4OH-based etching process. Ellipsometry, contact angle measurements and atomic force microscopy (AFM) indicated the formation of smooth, surface conforming monolayers. The molecular tilt angles were obtained as 30 ± 10° with respect to the surface normal. Kelvin probe force microscopy (KPFM) measurements in hand with Parameterized Model number 5 (PM5) calculations of the involved molecular dipoles allowed for an estimation of the molecular packing densities on the surface. We obtained values of up to n = 1014 cm- 2 for the SAMs under study. These are close to what is predicted from a simple geometrical model that would calculate a maximum density of about n = 2.7 × 1014 cm- 2. We take this as additional conformation of the substrate smoothness and quality of our InAs-SAM hybrid layer systems.
Advanced degrees in astronautical engineering for the space industry
NASA Astrophysics Data System (ADS)
Gruntman, Mike
2014-10-01
Ten years ago in the summer of 2004, the University of Southern California established a new unique academic unit focused on space engineering. Initially known as the Astronautics and Space Technology Division, the unit operated from day one as an independent academic department, successfully introduced the full set of degrees in Astronautical Engineering, and was formally renamed the Department of Astronautical Engineering in 2010. The largest component of Department's educational programs has been and continues to be its flagship Master of Science program, specifically focused on meeting engineering workforce development needs of the space industry and government space research and development centers. The program successfully grew from a specialization in astronautics developed in mid-1990s and expanded into a large nationally-visible program. In addition to on-campus full-time students, it reaches many working students on-line through distance education. This article reviews the origins of the Master's degree program and its current status and accomplishments; outlines the program structure, academic focus, student composition, and enrollment dynamics; and discusses lessons learned and future challenges.
Quantifying charge carrier concentration in ZnO thin films by Scanning Kelvin Probe Microscopy
Maragliano, C.; Lilliu, S.; Dahlem, M. S.; Chiesa, M.; Souier, T.; Stefancich, M.
2014-01-01
In the last years there has been a renewed interest for zinc oxide semiconductor, mainly triggered by its prospects in optoelectronic applications. In particular, zinc oxide thin films are being widely used for photovoltaic applications, in which the determination of the electrical conductivity is of great importance. Being an intrinsically doped material, the quantification of its doping concentration has always been challenging. Here we show how to probe the charge carrier density of zinc oxide thin films by Scanning Kelvin Probe Microscopy, a technique that allows measuring the contact potential difference between the tip and the sample surface with high spatial resolution. A simple electronic energy model is used for correlating the contact potential difference with the doping concentration in the material. Limitations of this technique are discussed in details and some experimental solutions are proposed. Two-dimensional doping concentration images acquired on radio frequency-sputtered intrinsic zinc oxide thin films with different thickness and deposited under different conditions are reported. We show that results inferred with this technique are in accordance with carrier concentration expected for zinc oxide thin films deposited under different conditions and obtained from resistivity and mobility measurements. PMID:24569599
12 CFR 329.104 - Ten-day grace period.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Ten-day grace period. 329.104 Section 329.104... INTEREST ON DEPOSITS § 329.104 Ten-day grace period. This interpretive rule provides for 10-day grace periods during which interest may be paid on a deposit without violating § 329.2. (a) During the ten...
Transcutaneous electrical nerve stimulation (TENS) for pain relief in labour.
Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P
2009-04-15
Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. The TENS unit is frequently operated by women, which may increase sense of control in labour. To assess the effects of TENS on pain in labour. We searched the Cochrane Pregnancy and Childbirth Group's Trials Register (November 2008). Randomised controlled trials comparing women receiving TENS for pain relief in labour versus routine care, alternative pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. The search identified 25 studies; we excluded six and included 19 studies including 1671 women. Fifteen examined TENS applied to the back, two to acupuncture points and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (risk ratio 0.41, 95% confidence interval 0.32 to 0.55). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No adverse events were reported. There is only limited evidence that TENS reduces pain in labour and it does not seem to have any impact (either positive or
NASA Technical Reports Server (NTRS)
Miura, A.; Pritchett, P. L.
1982-01-01
A general stability analysis is given of the Kevin-Helmholtz instability, for the case of sheared MHD flow of finite thickness in a compressible plasma which allows for the arbitrary orientation of the magnetic field, velocity flow, and wave vector in the plane perpendicular to the velocity gradient. The stability problem is reduced to the solution of a single second-order differential equation including a gravitational term to represent the coupling between the Kelvin-Helmholtz mode and the interchange mode. Compressibility and a magnetic field component parallel to the flow are found to be stabilizing effects, with destabilization of only the fast magnetosonic mode in the transverse case, and the presence of both Alfven and slow magnetosonic components in the parallel case. Analysis results are used in a discussion of the stability of sheared plasma flow at the magnetopause boundary and in the solar wind.
Numerical studies of the Kelvin-Hemholtz instability in a coronal jet
NASA Astrophysics Data System (ADS)
Zhao, Tian-Le; Ni, Lei; Lin, Jun; Ziegler, Udo
2018-04-01
Kelvin-Hemholtz (K-H) instability in a coronal EUV jet is studied via 2.5D MHD numerical simulations. The jet results from magnetic reconnection due to the interaction of the newly emerging magnetic field and the pre-existing magnetic field in the corona. Our results show that the Alfvén Mach number along the jet is about 5–14 just before the instability occurs, and it is even higher than 14 at some local areas. During the K-H instability process, several vortex-like plasma blobs with high temperature and high density appear along the jet, and magnetic fields have also been rolled up and the magnetic configuration including anti-parallel magnetic fields forms, which leads to magnetic reconnection at many X-points and current sheet fragments inside the vortex-like blob. After magnetic islands appear inside the main current sheet, the total kinetic energy of the reconnection outflows decreases, and cannot support the formation of the vortex-like blob along the jet any longer, then the K-H instability eventually disappears. We also present the results about how the guide field and flux emerging speed affect the K-H instability. We find that a strong guide field inhibits shock formation in the reconnecting upward outflow regions but helps secondary magnetic islands appear earlier in the main current sheet, and then apparently suppresses the K-H instability. As the speed of the emerging magnetic field decreases, the K-H instability appears later, the highest temperature inside the vortex blob gets lower and the vortex structure gets smaller.
Boonhong, Jariya; Suntornpiyapan, Phitsanu; Piriyajarukul, Apatchanee
2018-02-02
Ultrasound combined with transcutaneous electrical nerve stimulation (UltraTENS) and phonophoresis of piroxicam (PhP) are combined modality therapy that frequently used in musculoskeletal pain including knee osteoarthritis (OA). But it is lack of a good clinical trial to prove and compare their effects. To compare the effects of UltraTENS with PhP on mild to moderate degree of symptomatic knee OA. Sixty-one patients (55 women), mean age of 63.4 ± 8.1 y, 50-90 mm VAS of knee pain and Kellgren-Lawrence score of grade I-III were randomly allocated into UltraTENS and PhP (N = 31 and 30, respectively). The UltraTENS group received a combined ultrasound with TENS program and a non-drug gel, whereas the PhP group got an ultrasound program with piroxicam gel and sham TENS. All patients were treated for a total of 10 sessions, consisting of five times per week and 10 min per session. Before and after treatment, patients were evaluated knee pain by using the 100-mm VAS and functional performance by Western Ontario and McMaster Universities Osteoarthritis (WOMAC) index. The UltraTENS and PhP groups experienced considerable improvement in both VAS and total WOMAC scores post-treatment (P< 0.001). The PhP had better VAS of pain and WOMAC scores but no statistical significance. Results show that UltraTENS and PhP were effective for relieving pain and improve functionality knee OA without significant differences between their effects.
Ten Commandments of Formal Methods...Ten Years Later
NASA Technical Reports Server (NTRS)
Bowen, Jonathan P.; Hinchey, Michael G.
2006-01-01
More than a decade ago, in "Ten Commandments of Formal Methods," we offered practical guidelines for projects that sought to use formal methods. Over the years, the article, which was based on our knowledge of successful industrial projects, has been widely cited and has generated much positive feedback. However, despite this apparent enthusiasm, formal methods use has not greatly increased, and some of the same attitudes about the infeasibility of adopting them persist. Formal methodists believe that introducing greater rigor will improve the software development process and yield software with better structure, greater maintainability, and fewer errors.
Characterization of MgB2 Superconducting Hot Electron Bolometers
NASA Technical Reports Server (NTRS)
Cunnane, D.; Kawamura, J. H.; Wolak, M. A.; Acharya, N.; Tan, T.; Xi, X. X.; Karasik, B. S.
2014-01-01
Hot-Electron Bolometer (HEB) mixers have proven to be the best tool for high-resolution spectroscopy at the Terahertz frequencies. However, the current state of the art NbN mixers suffer from a small intermediate frequency (IF) bandwidth as well as a low operating temperature. MgB2 is a promising material for HEB mixer technology in view of its high critical temperature and fast thermal relaxation allowing for a large IF bandwidth. In this work, we have fabricated and characterized thin-film (approximately 15 nanometers) MgB2-based spiral antenna-coupled HEB mixers on SiC substrate. We achieved the IF bandwidth greater than 8 gigahertz at 25 degrees Kelvin and the device noise temperature less than 4000 degrees Kelvin at 9 degrees Kelvin using a 600 gigahertz source. Using temperature dependencies of the radiation power dissipated in the device we have identified the optical loss in the integrated microantenna responsible as a cause of the limited sensitivity of the current mixer devices. From the analysis of the current-voltage (IV) characteristics, we have derived the effective thermal conductance of the mixer device and estimated the required local oscillator power in an optimized device to be approximately 1 microwatts.
Transcutaneous electrical nerve stimulation (TENS) for pain management in labour
Dowswell, Therese; Bedwell, Carol; Lavender, Tina; Neilson, James P
2014-01-01
Background Transcutaneous nerve stimulation (TENS) has been proposed as a means of reducing pain in labour. The TENS unit emits low-voltage electrical impulses which vary in frequency and intensity. During labour, TENS electrodes are generally placed on the lower back, although TENS may be used to stimulate acupuncture points or other parts of the body. The physiological mechanisms whereby TENS relieves pain are uncertain. TENS machines are frequently operated by women, which may increase a sense of control in labour. Objectives To assess the effects of TENS on pain in labour. Search methods We searched the Cochrane Pregnancy and Childbirth Group’s Trials Register (30 April 2011) and reference lists of retrieved papers. Selection criteria Randomised controlled trials comparing women receiving TENS for pain management in labour versus routine care, alternative non-pharmacological methods of pain relief, or placebo devices. We included all types of TENS machines. Data collection and analysis Two review authors assessed for inclusion all trials identified by the search strategy, carried out data extraction and assessed risk of bias. We have recorded reasons for excluding studies. Main results Seventeen trials with 1466 women contribute data to the review. Thirteen examined TENS applied to the back, two to acupuncture points, and two to the cranium. Overall, there was little difference in pain ratings between TENS and control groups, although women receiving TENS to acupuncture points were less likely to report severe pain (average risk ratio 0.41, 95% confidence interval 0.31 to 0.54; measured in two studies). The majority of women using TENS said they would be willing to use it again in a future labour. Where TENS was used as an adjunct to epidural analgesia there was no evidence that it reduced pain. There was no consistent evidence that TENS had any impact on interventions and outcomes in labour. There was little information on outcomes for mothers and babies. No
NASA Astrophysics Data System (ADS)
Heinzmann, U.; Gryzia, A.; Volkmann, T.; Brechling, A.; Hoeke, V.; Glaser, T.
2014-04-01
Single molecule magnets (SMM) deposited in submonolayers and monolayers have been analyzed with respect to their structures by means of non-contact AFM (topographic as well as damping mode) and Kelvin Probe Force Microscopy with molecular resolution.
Kelvin Probe Force Microscopy in liquid using Electrochemical Force Microscopy
Collins, Liam; Jesse, Stephen; Kilpatrick, J.; ...
2015-01-19
Conventional closed loop-Kelvin probe force microscopy (KPFM) has emerged as a powerful technique for probing electric and transport phenomena at the solid-gas interface. The extension of KPFM capabilities to probe electrostatic and electrochemical phenomena at the solid–liquid interface is of interest for a broad range of applications from energy storage to biological systems. However, the operation of KPFM implicitly relies on the presence of a linear lossless dielectric in the probe-sample gap, a condition which is violated for ionically-active liquids (e.g., when diffuse charge dynamics are present). Here, electrostatic and electrochemical measurements are demonstrated in ionically-active (polar isopropanol, milli-Q watermore » and aqueous NaCl) and ionically-inactive (non-polar decane) liquids by electrochemical force microscopy (EcFM), a multidimensional (i.e., bias- and time-resolved) spectroscopy method. In the absence of mobile charges (ambient and non-polar liquids), KPFM and EcFM are both feasible, yielding comparable contact potential difference (CPD) values. In ionically-active liquids, KPFM is not possible and EcFM can be used to measure the dynamic CPD and a rich spectrum of information pertaining to charge screening, ion diffusion, and electrochemical processes (e.g., Faradaic reactions). EcFM measurements conducted in isopropanol and milli-Q water over Au and highly ordered pyrolytic graphite electrodes demonstrate both sample- and solvent-dependent features. Finally, the feasibility of using EcFM as a local force-based mapping technique of material-dependent electrostatic and electrochemical response is investigated. The resultant high dimensional dataset is visualized using a purely statistical approach that does not require a priori physical models, allowing for qualitative mapping of electrostatic and electrochemical material properties at the solid–liquid interface.« less
Use of tens in pain management: part two--how to use tens.
Poole, Debbie
Transcutaneous electrical nerve stimulation is widely used in pain management but its effectiveness depends on the stimulation being targeted appropriately. This article, the second in a two-part series, outlines how to set up and use a TENS machine to achieve the most effective results.
Narchi, Paul; Alvarez, Jose; Chrétien, Pascal; Picardi, Gennaro; Cariou, Romain; Foldyna, Martin; Prod'homme, Patricia; Kleider, Jean-Paul; I Cabarrocas, Pere Roca
2016-12-01
Both surface photovoltage and photocurrent enable to assess the effect of visible light illumination on the electrical behavior of a solar cell. We report on photovoltage and photocurrent measurements with nanometer scale resolution performed on the cross section of an epitaxial crystalline silicon solar cell, using respectively Kelvin probe force microscopy and conducting probe atomic force microscopy. Even though two different setups are used, the scans were performed on locations within 100-μm distance in order to compare data from the same area and provide a consistent interpretation. In both measurements, modifications under illumination are observed in accordance with the theory of PIN junctions. Moreover, an unintentional doping during the deposition of the epitaxial silicon intrinsic layer in the solar cell is suggested from the comparison between photovoltage and photocurrent measurements.
NASA Astrophysics Data System (ADS)
Yurtsever, Ayhan; Sugimoto, Yoshiaki; Fukumoto, Masaki; Abe, Masayuki; Morita, Seizo
2012-08-01
We investigate thin insulating CaF2 films on a Si (111) surface using a combination of noncontact atomic force microscopy (NC-AFM) and Kelvin probe force microscopy (KPFM). Atomic-scale NC-AFM and KPFM images are obtained in different imaging modes by employing two different tip polarities. The KPFM image contrast and the distance-dependent variation of the local contact potential difference (LCPD) give rise to a tip-polarity-dependent contrast inversion. Ca2+ cations had a higher LCPD contrast than F- anions for a positively terminated tip, while the LCPD provided by a negatively charged tip gave a higher contrast for F- anions. Thus, this result implies that it is essential to determine the tip apex polarity to correctly interpret LCPD signals acquired by KPFM.
Kelvin-Voigt model of wave propagation in fragmented geomaterials with impact damping
NASA Astrophysics Data System (ADS)
Khudyakov, Maxim; Pasternak, Elena; Dyskin, Arcady
2017-04-01
When a wave propagates through real materials, energy dissipation occurs. The effect of loss of energy in homogeneous materials can be accounted for by using simple viscous models. However, a reliable model representing the effect in fragmented geomaterials has not been established yet. The main reason for that is a mechanism how vibrations are transmitted between the elements (fragments) in these materials. It is hypothesised that the fragments strike against each other, in the process of oscillation, and the impacts lead to the energy loss. We assume that the energy loss is well represented by the restitution coefficient. The principal element of this concept is the interaction of two adjacent blocks. We model it by a simple linear oscillator (a mass on an elastic spring) with an additional condition: each time the system travels through the neutral point, where the displacement is equal to zero, the velocity reduces by multiplying itself by the restitution coefficient, which characterises an impact of the fragments. This additional condition renders the system non-linear. We show that the behaviour of such a model averaged over times much larger than the system period can approximately be represented by a conventional linear oscillator with linear damping characterised by a damping coefficient expressible through the restitution coefficient. Based on this the wave propagation at times considerably greater than the resonance period of oscillations of the neighbouring blocks can be modelled using the Kelvin-Voigt model. The wave velocities and the dispersion relations are obtained.
Transcutaneous electric nerve stimulation (TENS) in dentistry- A review.
Kasat, Vikrant; Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara
2014-12-01
Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS.
Transcutaneous electric nerve stimulation (TENS) in dentistry- A review
Gupta, Aditi; Ladda, Ruchi; Kathariya, Mitesh; Saluja, Harish; Farooqui, Anjum-Ara
2014-01-01
Transcutaneous electric nerve stimulation (TENS) is a non-pharmacological method which is widely used by medical and paramedical professionals for the management of acute and chronic pain in a variety of conditions. Similarly, it can be utilized for the management of pain during various dental procedures as well as pain due to various conditions affecting maxillofacial region. This review aims to provide an insight into clinical research evidence available for the analgesic and non analgesic uses of TENS in pediatric as well as adult patients related to the field of dentistry. Also, an attempt is made to briefly discuss history of therapeutic electricity, mechanism of action of TENS, components of TENs equipment, types, techniques of administration, advantages and contradictions of TENS. With this we hope to raise awareness among dental fraternity regarding its dental applications thereby increasing its use in dentistry. Key words:Dentistry, pain, TENS. PMID:25674327
Smith, A M; Harris, K B; Haneklaus, A N; Savell, J W
2011-10-01
This study evaluated the influence of various degrees of doneness on proximate composition and energy content of beef. Ten steaks were obtained from each of five USDA Prime, five USDA Choice, and five USDA Select strip loins and assigned to one of five degree of doneness treatments (two sets of treatments per strip loin): raw, medium rare (63 °C), medium (71 °C), well done (77 °C), and very well done (82 °C). After cooking, steaks were dissected into separable tissue components consisting of lean, fat, and refuse. Lean tissue was used to obtain proximate analyses of protein, moisture, fat, and ash. Degree of doneness did influence (P<0.05) the nutrient composition of beef steaks. As the degree of doneness increased, percent fat and protein increased, while percent moisture decreased. Cooking steaks to a higher degree of doneness resulted in a higher caloric value when reported per 100g basis. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Technical Reports Server (NTRS)
Frey, B. J.; Barry, R. K.; Danchi, W. C.; Hyde, T. T.; Lee, K. Y.; Martino, A. J.; Zuray, M. S.
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer in the near to mid-infrared spectral region (3-8 microns), and will be a scientific and technological pathfinder for upcoming missions including TPF-I/DARWIN, SPECS, and SPIRIT. At NASA's Goddard Space Flight Center, we have constructed a symmetric Mach-Zehnder nulling testbed to demonstrate techniques and algorithms that can be used to establish and maintain the 10(exp 4) null depth that will be required for such a mission. Among the challenges inherent in such a system is the ability to acquire and track the null fringe to the desired depth for timescales on the order of hours in a laboratory environment. In addition, it is desirable to achieve this stability without using conventional dithering techniques. We describe recent testbed metrology and control system developments necessary to achieve these goals and present our preliminary results.
NASA Technical Reports Server (NTRS)
Stawarz, J. E.; Eriksson, S.; Wilder, F. D.; Ergun, R. E.; Schwartz, S. J.; Pouquet, A.; Burch, J. L.; Giles, B. L.; Khotyaintsev, Y.; Le Contel, O.;
2016-01-01
Spatial and high-time-resolution properties of the velocities, magnetic field, and 3-D electric field within plasma turbulence are examined observationally using data from the Magnetospheric Multiscale mission. Observations from a Kelvin-Helmholtz instability (KHI) on the Earth's magnetopause are examined, which both provides a series of repeatable intervals to analyze, giving better statistics, and provides a first look at the properties of turbulence in the KHI. For the first time direct observations of both the high-frequency ion and electron velocity spectra are examined, showing differing ion and electron behavior at kinetic scales. Temporal spectra exhibit power law behavior with changes in slope near the ion gyrofrequency and lower hybrid frequency. The work provides the first observational evidence for turbulent intermittency and anisotropy consistent with quasi two-dimensional turbulence in association with the KHI. The behavior of kinetic-scale intermittency is found to have differences from previous studies of solar wind turbulence, leading to novel insights on the turbulent dynamics in the KHI.
Ten steps to successful software process improvement
NASA Technical Reports Server (NTRS)
Kandt, R. K.
2003-01-01
This paper identifies ten steps for managing change that address organizational and cultural issues. Four of these steps are critical, that if not done, will almost guarantee failure. This ten-step program emphasizes the alignment of business goals, change process goals, and the work performed by the employees of an organization.
ERIC Educational Resources Information Center
Howe, Eleanor B.
2001-01-01
Discusses ten attributes of leadership and offers suggestions for school librarians to implement them. Highlights include communicating vision and ideas; ethical values and integrity; self-awareness and self-knowledge; context; cooperation; diverse skills and flexibility; organizational development; personal growth; and taking action. (LRW)
Rocket Observations of Kelvin Waves in the Upper Stratosphere over India.
NASA Astrophysics Data System (ADS)
Devarajan, M.; Reddy, C. A.; Ragrava Reddi, C.
1985-09-01
The upper atmospheric winds (20-40 km) at two Indian stations, Sriharikota Range (SHAR 13.7°N, 80.2°E) and Balasore (2 1.5°N, 86.93°E) during the years 1979-80 were analyzed for short scale vertical variations (6-16 km) of the zonal wind. The analysis involves high-pass filtering of the wind profiles to extract the short-scale wavelike perturbations and Fourier analysis of the wave disturbances.The results of the analysis are presented. The dominant vertical wavelengths are in the 6-12 km range in 67% of the observed cases, and the amplitudes are significantly larger during the easterly background wind. The amplitudes are systematically larger by about a factor of 2 at Sriharikota (13.7°N) than at 1Wasore (21.5°N). Corresponding wave perturbations are absent in the meridional wind in as much as 70% of the observations. These characteristics lead to the conclusion that the observed wavelike disturbances are the manifestation of Kelvin waves in the upper stratosphere. In some cases, the periods of the waves are inferred to be in the range of 4-8 days. The short vertical wavelengths, together with the shorter periods, indicate the possible dominance of zonal wavenumber 2 during many disturbance events.The observations of the wave activity in relation to the semiannual oscillation (SAO) and the annual oscillation (AO) show that 1) the more active periods correspond to the easterly phase of the SAO in the middle stratosphere and that 2) the wave activity persists for a longer duration when both the AO and SAO are in easterly phase.
Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy.
Minj, Albert; Cros, Ana; Auzelle, Thomas; Pernot, Julien; Daudin, Bruno
2016-09-23
Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analyzing the response of NW segments with p- and n-type doping under illumination. Our results show that the shifts of the Fermi levels, and not the changes in surface band bending, are the most important effects under above band-gap illumination. The quantitative electrical information obtained here is important for the use of NW p-n junctions as photovoltaic or rectifying devices at the nanoscale, and is especially relevant since the technique does not require the formation of ohmic contacts to the NW junction.
Direct assessment of p-n junctions in single GaN nanowires by Kelvin probe force microscopy
NASA Astrophysics Data System (ADS)
Minj, Albert; Cros, Ana; Auzelle, Thomas; Pernot, Julien; Daudin, Bruno
2016-09-01
Making use of Kelvin probe force microscopy, in dark and under ultraviolet illumination, we study the characteristics of p-n junctions formed along the axis of self-organized GaN nanowires (NWs). We map the contact potential difference of the single NW p-n junctions to locate the space charge region and directly measure the depletion width and the junction voltage. Simulations indicate a shrinkage of the built-in potential for NWs with small diameter due to surface band bending, in qualitative agreement with the measurements. The photovoltage of the NW/substrate contact is studied by analyzing the response of NW segments with p- and n-type doping under illumination. Our results show that the shifts of the Fermi levels, and not the changes in surface band bending, are the most important effects under above band-gap illumination. The quantitative electrical information obtained here is important for the use of NW p-n junctions as photovoltaic or rectifying devices at the nanoscale, and is especially relevant since the technique does not require the formation of ohmic contacts to the NW junction.
Bias stress in PDI-CN2 and P3HT studied with Kelvin Probe Force Microscopy
NASA Astrophysics Data System (ADS)
Cao, Minxuan; Moscatello, Jason; Castaneda, Chloe; Xue, Binglan; Usluer, Ozlem; Briseno, Alejandro; Aidala, Katherine
We have developed a technique that uses scanning probe microscopy (SPM) to study the real-time injection and extraction of charge carriers in organic semiconductor devices. We investigate PDI-CN2 and P3HT in a back gate field effect transistor geometry with gold electrodes. By positioning the SPM tip at an individual location and using Kelvin probe microscopy to record the potential over time, we can record how the charge carriers respond to changing the gate voltage while the source and drain electrodes are grounded. We see relatively fast screening when carriers are injected into the film. The screening is slower when carriers must escape from traps to exit the film. By incrementally stepping the gate voltage, we can probe different trap depths. By repeating the measurement, we observe the development of longer lived trap states, shown by the longer time recorded to fully screen the gate voltage. This work is supported by NSF Grant DMR-0955348, and the Center for Heirarchical Manufacturing at the University of Massachusetts, Amherst (NSF CMMI-1025020).
Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults.
Gibson, William; Wand, Benedict M; O'Connell, Neil E
2017-09-14
Neuropathic pain, which is due to nerve disease or damage, represents a significant burden on people and society. It can be particularly unpleasant and achieving adequate symptom control can be difficult. Non-pharmacological methods of treatment are often employed by people with neuropathic pain and may include transcutaneous electrical nerve stimulation (TENS). This review supersedes one Cochrane Review 'Transcutaneous electrical nerve stimulation (TENS) for chronic pain' (Nnoaham 2014) and one withdrawn protocol 'Transcutaneous electrical nerve stimulation (TENS) for neuropathic pain in adults' (Claydon 2014). This review replaces the original protocol for neuropathic pain that was withdrawn. To determine the analgesic effectiveness of TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. We searched CENTRAL, MEDLINE, Embase, PsycINFO, AMED, CINAHL, Web of Science, PEDro, LILACS (up to September 2016) and various clinical trials registries. We also searched bibliographies of included studies for further relevant studies. We included randomised controlled trials where TENS was evaluated in the treatment of central or peripheral neuropathic pain. We included studies if they investigated the following: TENS versus placebo (sham) TENS, TENS versus usual care, TENS versus no treatment and TENS in addition to usual care versus usual care alone in the management of neuropathic pain in adults. Two review authors independently screened all database search results and identified papers requiring full-text assessment. Subsequently, two review authors independently applied inclusion/exclusion criteria to these studies. The same review authors then independently extracted data, assessed for risk of bias using the Cochrane standard tool and rated the quality of evidence using GRADE. We included 15 studies with 724 participants. We found a
Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air
NASA Astrophysics Data System (ADS)
Abdellatif, M. H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco
2017-05-01
The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Moore, T.; Dimmock, A. P.
2017-12-01
In the Earth's magnetosphere, the magnetotail plasma sheet ions are much hotter than in the shocked solar wind. On the dawn-sector, the cold-component ions are more abundant and hotter by 30-40 percent when compared to the dusk sector. Recent statistical studies of the flank magnetopause and magnetosheath have shown that the level of temperature asymmetry of the magnetosheath is unable to account for this, so additional physical mechanisms must be at play, either at the magnetopause or plasma sheet that contribute to this asymmetry. In this study, we perform a statistical analysis on the ion-scale wave properties in the three main plasma regimes common to flank magnetopause boundary crossings when the boundary is unstable to KHI: hot and tenuous magnetospheric, cold and dense magnetosheath and mixed [Hasegawa 2004 et al., 2004]. These statistics of ion-scale wave properties are compared to observations of fast magnetosonic wave modes that have recently been linked to Kelvin-Helmholtz vortex centered ion heating [Moore et al., 2016]. The statistical analysis shows that during KH events there is enhanced non-adiabatic heating calculated during (temporal) ion scale wave intervals when compared to non-KH events.
Clouds on Hot Jupiters Illustration
2016-10-18
Hot Jupiters are exoplanets that orbit their stars so tightly that their temperatures are extremely high, reaching over 2,400 degrees Fahrenheit (1600 Kelvin). They are also tidally locked, so one side of the planet always faces the sun and the other is in permanent darkness. Research suggests that the "dayside" is largely free of clouds, while the "nightside" is heavily clouded. This illustration represents how hot Jupiters of different temperatures and different cloud compositions might appear to a person flying over the dayside of these planets on a spaceship, based on computer modeling. Cooler planets are entirely cloudy, whereas hotter planets have morning clouds only. Clouds of different composition have different colors, whereas the clear sky is bluer than on Earth. For the hottest planets, the atmosphere is hot enough on the evening side to glow like a charcoal. Figure 1 shows an approximation of what various hot Jupiters might look like based on a combination of computer modeling and data from NASA's Kepler Space Telescope. From left to right it shows: sodium sulfide clouds (1000 to 1200 Kelvin), manganese sulfide clouds (1200 to 1600 Kelvin), magnesium silicate clouds (1600 to 1800 Kelvin), magnesium silicate and aluminum oxide clouds (1800 Kelvin) and clouds composed of magnesium silicate, aluminum oxide, iron and calcium titanate (1900 to 2200 Kelvin). http://photojournal.jpl.nasa.gov/catalog/PIA21074
40 CFR 87.2 - Acronyms and abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
...) CONTROL OF AIR POLLUTION FROM AIRCRAFT AND AIRCRAFT ENGINES General Provisions § 87.2 Acronyms and... pressure ratio sec.Seconds SPShaft power SNSmoke number TTemperature, degrees Kelvin TIMTime in mode WWatt...
2015-11-03
The galaxy cluster called MOO J1142+1527 can be seen here as it existed when light left it 8.5 billion years ago. The red galaxies at the center of the image make up the heart of the galaxy cluster. This color image is constructed from multi-wavelength observations: Infrared observations from NASA's Spitzer Space Telescope are shown in red; near-infrared and visible light captured by the Gemini Observatory atop Mauna Kea in Hawaii is green and blue; and radio light from the Combined Array for Research in Millimeter-wave Astronomy (CARMA), near Owens Valley in California, is purple. In addition to galaxies, clusters also contain a reservoir of hot gas with temperatures in the tens of millions of degrees Celsius/Kelvin. CARMA was used to detect this gas, and to determine the mass of this cluster. http://photojournal.jpl.nasa.gov/catalog/PIA20052
Differences in STEM degree attainment by region, ethnicity, and degree type
NASA Astrophysics Data System (ADS)
Koledoye, Kimberly A.
Purpose One purpose of this study was to determine the extent to which a difference was present in the STEM degree attainment of all students and particularly of URMs between the 2001 and the 2009 academic year. The second purpose of this study was to determine the extent to which a difference was present in the attainment of STEM associate degrees and bachelor degrees of all students and particularly of URMs awarded between the 2001 and the 2009 academic year. Another purpose of this study was to determine the extent to which a difference existed in STEM associate degree and STEM bachelor degree attainment among geographic regions between the 2001 and the 2009 academic years. The extent to which a difference existed in the STEM bachelor degree and associate degree attainment of URMs among geographic regions between the 2001 to the 2009 academic year was ascertained. The final purpose of this study was to determine the extent to which a difference was present in STEM associate degree and bachelor degree attainment of all students and particularly URMs as a function of degree type between the 2001 academic year and the 2009 academic year. Methodology Archival data from the Integrated Postsecondary Education Data System were utilized to compare STEM degree attainment for regions, regions for URMs, STEM degree attainment overall and for URMs, STEM degree attainment classified by associate degrees and bachelor degrees for all students and URMs, and STEM degree attainment of associate degrees and bachelor degrees for all students and URMs by specific degree type between 2001 and 2009. Findings In this non-experimental causal comparative investigation, statistically significant differences were revealed in 95 of the 165 comparisons. Declining associate degree attainment was concerning, particularly in the computer and information sciences and engineering and engineering technologies. Moderate increases were determined in bachelor degree attainment with statistically
Transcutaneous electrical nerve stimulation (TENS) for chronic low back pain.
Milne, S; Welch, V; Brosseau, L; Saginur, M; Shea, B; Tugwell, P; Wells, G
2001-01-01
Low back pain (LBP) affects a large proportion of the population. Transcutaneous electrical nerve stimulation (TENS) was introduced more than 30 years ago as an alternative therapy to pharmacological treatments for chronic pain. However, despite its widespread use, the effectiveness of TENS is still controversial. The aim of this systematic review was to determine the efficacy of TENS in the treatment of chronic LBP. We searched MEDLINE, EMBASE, PEDro and the Cochrane Controlled Trials Register up to June 1, 2000. Only randomized controlled clinical trials of TENS for the treatment of patients with a clinical diagnosis of chronic LBP were included. Abstracts were excluded unless further data could be obtained from the authors. Two reviewers independently selected trials and extracted data using predetermined forms. Heterogeneity was tested with Cochran's Q test. A fixed effects model was used throughout for continuous variables, except where heterogeneity existed, in which case, a random effects model was used. Results are presented as weighted mean differences (WMD) with 95% confidence intervals (95% CI), where the difference between the treated and control groups was weighted by the inverse of the variance. Standardized mean differences (SMD) were calculated by dividing the difference between the treated and control by the baseline variance. SMD were used when different scales were used to measure the same concept. Dichotomous outcomes were analyzed with odds ratios. Five trials were included, with 170 subjects randomized to the placebo group receiving sham-TENS and 251 subjects receiving active TENS (153 for conventional mode, 98 for acupuncture-like TENS). The schedule of treatments varied greatly between studies ranging from one treatment/day for two consecutive days, to three treatments/day for four weeks. There were no statistically significant differences between the active TENS group when compared to the placebo TENS group for any outcome measures
ERIC Educational Resources Information Center
Phillip, Cyndi
2016-01-01
Five initiatives launched during Cyndi Phillip's term as American Association of School Librarians (AASL) President (2006-2007) continue to have an impact on school librarians ten years later. They include the rewriting of AASL's learning standards, introduction of the SKILLS Act, the presentation of the Crystal Apple Award to Scholastic Library…
The Ten Information Commandments.
ERIC Educational Resources Information Center
Kirby, Michael D.
1986-01-01
In response to fears that current institutions and laws may not adapt to rapid technological change with the necessary alacrity, a justice of the Supreme Court of New South Wales presents and briefly discusses ten information commandmants, summarized as follows: (1) contemporary technological developments endanger human rights and civil liberties…
When Graduate Degrees Prostitute the Educational Process: Degrees Gone Wild
ERIC Educational Resources Information Center
Lumadue, Richard T.
2006-01-01
Graduate degrees prostitute the educational process when they are sold to consumers by unaccredited degree/diploma mills as being equivalent to legitimate, bona-fide degrees awarded by accredited graduate schools. This article carefully analyzes the serious problems of bogus degrees and their association with the religious higher education…
Application of an Elongated Kelvin Model to Space Shuttle Foams
NASA Technical Reports Server (NTRS)
Sullivan, Roy M.; Ghosn, Louis J.; Lerch, Bradley A.
2008-01-01
Spray-on foam insulation is applied to the exterior of the Space Shuttle s External Tank to limit propellant boil-off and to prevent ice formation. The Space Shuttle foams are rigid closed-cell polyurethane foams. The two foams used most extensively on the Space Shuttle External Tank are BX-265 and NCFI24-124. Since the catastrophic loss of the Space Shuttle Columbia, numerous studies have been conducted to mitigate the likelihood and the severity of foam shedding during the Shuttle s ascent to space. Due to the foaming and rising process, the foam microstructures are elongated in the rise direction. As a result, these two foams exhibit a non-isotropic mechanical behavior. In this paper, a detailed microstructural characterization of the two foams is presented. The key features of the foam cells are summarized and the average cell dimensions in the two foams are compared. Experimental studies to measure the room temperature mechanical response of the two foams in the two principal material directions (parallel to the rise and perpendicular to the rise) are also reported. The measured elastic modulus, proportional limit stress, ultimate tensile stress and the Poisson s ratios for the two foams are compared. The generalized elongated Kelvin foam model previously developed by the authors is reviewed and the equations which result from this model are presented. The resulting equations show that the ratio of the elastic modulus in the rise direction to that in the perpendicular-to-rise direction as well as the ratio of the strengths in the two material directions is only a function of the microstructural dimensions. Using the measured microstructural dimensions and the measured stiffness ratio, the foam tensile strength ratio and Poisson s ratios are predicted for both foams. The predicted tensile strength ratio is in close agreement with the measured strength ratios for both BX-265 and NCFI24-124. The comparison between the predicted Poisson s ratios and the measured
The Magnetohydrodynamic Kelvin-Helmholtz Instability: A Two-dimensional Numerical Study
NASA Astrophysics Data System (ADS)
Frank, Adam; Jones, T. W.; Ryu, Dongsu; Gaalaas, Joseph B.
1996-04-01
We have carried out two-dimensional simulations of the nonlinear evolution of unstable sheared magnetohydrodynamic flows. These calculations extend the earlier work of Miura (1984) and consider periodic sections of flows containing aligned magnetic fields. Two equal density, compressible fluids are separated by a shear layer with a hyperbolic tangent velocity profile. We considered two cases: a strong magnetic field (Alfvén Mach number, MA = 2.5) and a weak field (MA = 5). Each flow rapidly evolves until it reaches a nearly steady condition, which is fundamentally different from the analogous gas- dynamic state. Both MHD flows relax to a stable, laminar flow on timescales less than or of the order of 15 linear growth times, measured from saturation of the instability. That timescale is several orders of magnitude less than the nominal dissipation time for these simulated flows, so this condition represents an quasi-steady relaxed state analogous to the long-lived single vortex, known as "Kelvin's Cat's Eye," formed in two-dimensional nearly ideal gasdynamic simulations of a vortex sheet. The strong magnetic field case reaches saturation as magnetic tension in the displaced flow boundary becomes sufficient to stabilize it. That flow then relaxes in a straightforward way to the steady, laminar flow condition. The weak magnetic field case, on the other hand, begins development of the vortex expected for gasdynamics, but that vortex is destroyed by magnetic stresses that locally become strong. Magnetic topologies lead to reconnection and dynamical alignment between magnetic and velocity fields. Together these processes produce a sequence of intermittent vortices and subsequent relaxation to a nearly laminar flow condition in which the magnetic cross helicity is nearly maximized. Remaining irregularities show several interesting properties. A pair of magnetic flux tubes are formed that straddle the boundary between the oppositely moving fluids. Velocity and magnetic
NASA Astrophysics Data System (ADS)
Boumenou, C. Kameni; Urgessa, Z. N.; Djiokap, S. R. Tankio; Botha, J. R.; Nel, J.
2018-04-01
In this study, cross-sectional surface potential imaging of n+/semi-insulating GaAs junctions is investigated by using amplitude mode kelvin probe force microscopy. The measurements have shown two different potential profiles, related to the difference in surface potential between the semi-insulating (SI) substrate and the epilayers. It is shown that the contact potential difference (CPD) between the tip and the sample is higher on the semi-insulating substrate side than on the n-type epilayer side. This change in CPD across the interface has been explained by means of energy band diagrams indicating the relative Fermi level positions. In addition, it has also been found that the CPD values across the interface are much smaller than the calculated values (on average about 25% of the theoretical values) and increase with the electron density. Therefore, the results presented in study are only in qualitative agreement with the theory.
ERIC Educational Resources Information Center
Brown, Jill P.; Stillman, Gloria
2014-01-01
Ten years ago the construct, affordance, was rising in prominence in scholarly literature. A proliferation of different uses and meanings was evident. Beginning with its origin in the work of Gibson, we traced its development and use in various scholarly fields. This paper revisits our original question with respect to its utility in mathematics…
ERIC Educational Resources Information Center
McLester, Susan
2008-01-01
In this article, the author discusses the major technical issues, products, and practices of the day. The top ten tech trends are listed and discussed. These include: (1) data mining; (2) cyberbullying; (3) 21st century skills; (4) digital content; (5) learning at leisure; (6) personal responders; (7) mobile tools; (8) bandwidth; (9) open-source…
Moran, Fidelma; Leonard, Tracey; Hawthorne, Stephanie; Hughes, Ciara M; McCrum-Gardner, Evie; Johnson, Mark I; Rakel, Barbara A; Sluka, Kathleen A; Walsh, Deirdre M
2011-08-01
Transcutaneous electrical nerve stimulation (TENS) is an electrophysical modality used for pain management. This study investigated the dose response of different TENS intensities on experimentally induced pressure pain. One hundred and thirty TENS naïve healthy individuals (18-64 years old; 65 males, 65 females) were randomly allocated to 5 groups (n = 26 per group): Strong Non Painful TENS; Sensory Threshold TENS; Below Sensory Threshold TENS; No Current Placebo TENS; and Transient Placebo TENS. Active TENS (80 Hz) was applied to the forearm for 30 minutes. Transient Placebo TENS was applied for 42 seconds after which the current amplitude automatically reset to 0 mA. Pressure pain thresholds (PPT) were recorded from 2 points on the hand and forearm before and after TENS to measure hypoalgesia. There were significant differences between groups at both the hand and forearm (ANOVA; P = .005 and .002). At 30 minutes, there was a significant hypoalgesic effect in the Strong Non Painful TENS group compared to: Below Sensory Threshold TENS, No Current Placebo TENS and Transient Placebo TENS groups (P < .0001) at the forearm; Transient Placebo TENS and No Current Placebo TENS groups at the hand (P = .001). There was no significant difference between Strong Non Painful TENS and Sensory Threshold TENS groups. The area under the curve for the changes in PPT significantly correlated with the current amplitude (r(2) = .33, P = .003). These data therefore show that there is a dose-response effect of TENS with the largest effect occurring with the highest current amplitudes. This study shows a dose response for the intensity of TENS for pain relief with the strongest intensities showing the greatest effect; thus, we suggest that TENS intensity should be titrated to achieve the strongest possible intensity to achieve maximum pain relief. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.
Hurricane, O A; Smalyuk, V A; Raman, K; Schilling, O; Hansen, J F; Langstaff, G; Martinez, D; Park, H-S; Remington, B A; Robey, H F; Greenough, J A; Wallace, R; Di Stefano, C A; Drake, R P; Marion, D; Krauland, C M; Kuranz, C C
2012-10-12
Following the successful demonstration of an OMEGA laser-driven platform for generating and studying nearly two-dimensional unstable plasma shear layers [Hurricane et al., Phys. Plasmas 16, 056305 (2009); Harding et al., Phys. Rev. Lett. 103, 045005 (2009)], this Letter reports on the first quantitative measurement of turbulent mixing in a high-energy-density plasma. As a blast wave moves parallel to an unperturbed interface between a low-density foam and a high-density plastic, baroclinic vorticity is deposited at the interface and a Kelvin-Helmholtz instability-driven turbulent mixing layer is created in the postshock flow due to surface roughness. The spatial scale and density profile of the turbulent layer are diagnosed using x-ray radiography with sufficiently small uncertainty so that the data can be used to ~0.17 μm) in the postshock plasma flow are consistent with an "inertial subrange," within which a Kolmogorov turbulent energy cascade can be active. An illustration of comparing the data set with the predictions of a two-equation turbulence model in the ares radiation hydrodynamics code is also presented.
NASA Astrophysics Data System (ADS)
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-01
We investigate the surface potential distribution on a TiO2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Kou, Lili; Li, Yan Jun; Kamijyo, Takeshi; Naitoh, Yoshitaka; Sugawara, Yasuhiro
2016-12-16
We investigate the surface potential distribution on a TiO 2 (110)-1 × 1 surface by Kelvin probe force microscopy (KPFM) and atom-dependent bias-distance spectroscopic mapping. The experimental results demonstrate that the local contact potential difference increases on twofold-coordinated oxygen sites, and decreases on OH defects and fivefold-coordinated Ti sites. We propose a qualitative model to explain the origin of the surface potential of TiO 2 (110). We qualitatively calculate the surface potential induced by chemical potential and permanent surface dipole. The calculated results agree with our experimental ones. Therefore, we suggest that the surface potential of TiO 2 (110) is dominated not only by the permanent surface dipole between the tip apex atom and surface, but also by the dipoles induced by the chemical interaction between the tip and sample. The KPFM technique demonstrate the possibility of investigation of the charge transfer phenomenon on TiO 2 surface under gas conditions. It is useful for the elucidation of the mechanism of the catalytic reactions.
Ten Things Every Professor Should Know about Assessment
ERIC Educational Resources Information Center
Wolf, Kenneth; Dunlap, Joanna; Stevens, Ellen
2012-01-01
This article describes ten key assessment practices for advancing student learning that all professors should be familiar with and strategically incorporate in their classrooms and programs. Each practice or concept is explained with examples and guidance for putting it into practice. The ten are: learning outcomes, performance assessments,…
NASA Astrophysics Data System (ADS)
Slobodian, Oleksandr M.; Lytvyn, Peter M.; Nikolenko, Andrii S.; Naseka, Victor M.; Khyzhun, Oleg Yu.; Vasin, Andrey V.; Sevostianov, Stanislav V.; Nazarov, Alexei N.
2018-05-01
Graphene oxide (GO) films were formed by drop-casting method and were studied by FTIR spectroscopy, micro-Raman spectroscopy (mRS), X-ray photoelectron spectroscopy (XPS), four-points probe method, atomic force microscopy (AFM), and scanning Kelvin probe force (SKPFM) microscopy after low-temperature annealing at ambient conditions. It was shown that in temperature range from 50 to 250 °C the electrical resistivity of the GO films decreases by seven orders of magnitude and is governed by two processes with activation energies of 6.22 and 1.65 eV, respectively. It was shown that the first process is mainly associated with water and OH groups desorption reducing the thickness of the film by 35% and causing the resistivity decrease by five orders of magnitude. The corresponding activation energy is the effective value determined by desorption and electrical connection of GO flakes from different layers. The second process is mainly associated with desorption of oxygen epoxy and alkoxy groups connected with carbon located in the basal plane of GO. AFM and SKPFM methods showed that during the second process, first, the surface of GO plane is destroyed forming nanostructured surface with low work function and then at higher temperature a flat carbon plane is formed that results in an increase of the work function of reduced GO.
Myra, James R.; D'Ippolito, Daniel A.; Russell, David A.; ...
2016-04-11
Sheared flows perpendicular to the magnetic field can be driven by the Reynolds stress or ion pressure gradient effects and can potentially influence the stability and turbulent saturation level of edge plasma modes. On the other hand, such flows are subject to the transverse Kelvin- Helmholtz (KH) instability. Here, the linear theory of KH instabilities is first addressed with an analytic model in the asymptotic limit of long wavelengths compared with the flow scale length. The analytic model treats sheared ExB flows, ion diamagnetism (including gyro-viscous terms), density gradients and parallel currents in a slab geometry, enabling a unified summarymore » that encompasses and extends previous results. In particular, while ion diamagnetism, density gradients and parallel currents each individually reduce KH growth rates, the combined effect of density and ion pressure gradients is more complicated and partially counteracting. Secondly, the important role of realistic toroidal geometry is explored numerically using an invariant scaling analysis together with the 2DX eigenvalue code to examine KH modes in both closed and open field line regions. For a typical spherical torus magnetic geometry, it is found that KH modes are more unstable at and just outside the separatrix as a result of the distribution of magnetic shear. Lastly implications for reduced edge turbulence modeling codes are discussed.« less
Near-field refrigeration and tunable heat exchange through four-wave mixing
NASA Astrophysics Data System (ADS)
Khandekar, Chinmay; Messina, Riccardo; Rodriguez, Alejandro W.
2018-05-01
We modify and extend a recently proposed four-wave mixing scheme [C. Khandekar and A. Rodriguez, Opt. Express 25(19), 23164 (2017)] for achieving near-field thermal upconversion and energy transfer, to demonstrate efficient thermal refrigeration at low intensities ˜ 109W/m2 over a wide range of gap sizes (from tens to hundreds of nanometers) and operational temperatures (from tens to hundreds of Kelvins). We further exploit the scheme to achieve magnitude and directional tunability of near-field heat exchange between bodies held at different temperatures.
28 CFR 5.800 - Ten-day filing requirement.
Code of Federal Regulations, 2010 CFR
2010-07-01
... 28 Judicial Administration 1 2010-07-01 2010-07-01 false Ten-day filing requirement. 5.800 Section 5.800 Judicial Administration DEPARTMENT OF JUSTICE ADMINISTRATION AND ENFORCEMENT OF FOREIGN AGENTS REGISTRATION ACT OF 1938, AS AMENDED § 5.800 Ten-day filing requirement. The 10-day filing requirement provided...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vandenboomgaerde, M.; Bonnefille, M.; Gauthier, P.
Highly resolved radiation-hydrodynamics FCI2 simulations have been performed to model laser experiments on the National Ignition Facility. In these experiments, cylindrical gas-filled hohlraums with gold walls are driven by a 20 ns laser pulse. For the first time, simulations show the appearance of Kelvin-Helmholtz (KH) vortices at the interface between the expanding wall material and the gas fill. In this paper, we determine the mechanisms which generate this instability: the increase of the gas pressure around the expanding gold plasma leads to the aggregation of an over-dense gold layer simultaneously with shear flows. At the surface of this layer, all themore » conditions are met for a KH instability to grow. Later on, as the interface decelerates, the Rayleigh-Taylor instability also comes into play. A potential scenario for the generation of a mixing zone at the gold-gas interface due to the KH instability is presented. Our estimates of the Reynolds number and the plasma diffusion width at the interface support the possibility of such a mix. The key role of the first nanosecond of the laser pulse in the instability occurrence is also underlined.« less
NASA Technical Reports Server (NTRS)
Berry, Richard; Rajagopa, J.; Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezari, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.
2005-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the near-infrared to mid-infrared spectral region (3-8 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to JWST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We report additional studies of the imaging capabilities of the FKSI with various configurations of two to five telescopes, studies of the capabilities of FKSI assuming an increase in long wavelength response to 10 or 12 microns (depending on availability of detectors), and preliminary results from our nulling testbed.
ERIC Educational Resources Information Center
Romano, Carlin
2008-01-01
If an honorary degree lacks values to begin with, does withdrawing it deliver a rebuke to the recipient? Is whatever honor that comes with the distinction embedded in the fancy paper, or is it wholly in the eye of the degree holder? Are honorary degrees really such silly things that individuals should mock their bestowal or withdrawal? The case of…
Collins, Liam; Belianinov, Alex; Somnath, Suhas; Balke, Nina; Kalinin, Sergei V; Jesse, Stephen
2016-08-12
Kelvin probe force microscopy (KPFM) has provided deep insights into the local electronic, ionic and electrochemical functionalities in a broad range of materials and devices. In classical KPFM, which utilizes heterodyne detection and closed loop bias feedback, the cantilever response is down-sampled to a single measurement of the contact potential difference (CPD) per pixel. This level of detail, however, is insufficient for materials and devices involving bias and time dependent electrochemical events; or at solid-liquid interfaces, where non-linear or lossy dielectrics are present. Here, we demonstrate direct recovery of the bias dependence of the electrostatic force at high temporal resolution using General acquisition Mode (G-Mode) KPFM. G-Mode KPFM utilizes high speed detection, compression, and storage of the raw cantilever deflection signal in its entirety at high sampling rates. We show how G-Mode KPFM can be used to capture nanoscale CPD and capacitance information with a temporal resolution much faster than the cantilever bandwidth, determined by the modulation frequency of the AC voltage. In this way, G-Mode KPFM offers a new paradigm to study dynamic electric phenomena in electroactive interfaces as well as a promising route to extend KPFM to the solid-liquid interface.
NASA Astrophysics Data System (ADS)
Horton, W.; Perez, J. C.; Bengtson, R. D.; Carter, T. A.; Gekelman, W.; Fassler, M.
2003-10-01
A new five-pin probe design called the Vorticity Probe is presented that explicitly measures the vorticity in the ExB flow from the floating potentials independent on any absolute calibration errors. The five Tantulum probe tips are arranged in a diamond pattern with 5mm tip spacing. The fluctuating floating potential at each tip is measured and used to compute a finite-difference approximation of the ExB vorticity. The probe is tested in the LAPD device run with a variable bias between the anode and the chamber wall that creates a sharply localized Er-profile at 30cm from the axis of the 100cm diameter chamber. The fluctuations observed are peaked in the shear flow layer and are being correlated with theoretical calculations of the Kelvin-Helmholtz instability for this plasma. Nonlinear calculations are presented and test particle motion in the mixture of waves and vortices are described. The spectrum at 15 to 30 kHz matches the theoretical prediction from the measured dEr/dr gradient that reaches 17kV/m^2 in the B=0.2T axial magnetic field. The parallel wavelength and azimuthal mode numbers are being measured for further comfirmation of the of the mode classification.
Cramer, Tobias; Travaglini, Lorenzo; Lai, Stefano; Patruno, Luca; de Miranda, Stefano; Bonfiglio, Annalisa; Cosseddu, Piero; Fraboni, Beatrice
2016-01-01
The development of new materials and devices for flexible electronics depends crucially on the understanding of how strain affects electronic material properties at the nano-scale. Scanning Kelvin-Probe Microscopy (SKPM) is a unique technique for nanoelectronic investigations as it combines non-invasive measurement of surface topography and surface electrical potential. Here we show that SKPM in non-contact mode is feasible on deformed flexible samples and allows to identify strain induced electronic defects. As an example we apply the technique to investigate the strain response of organic thin film transistors containing TIPS-pentacene patterned on polymer foils. Controlled surface strain is induced in the semiconducting layer by bending the transistor substrate. The amount of local strain is quantified by a mathematical model describing the bending mechanics. We find that the step-wise reduction of device performance at critical bending radii is caused by the formation of nano-cracks in the microcrystal morphology of the TIPS-pentacene film. The cracks are easily identified due to the abrupt variation in SKPM surface potential caused by a local increase in resistance. Importantly, the strong surface adhesion of microcrystals to the elastic dielectric allows to maintain a conductive path also after fracture thus providing the opportunity to attenuate strain effects. PMID:27910889
Radio interferometry: Techniques for Geodesy. [conference
NASA Technical Reports Server (NTRS)
1980-01-01
Progress in the development and application of radio interferometry as a tool for geophysical research is reported and discussed. Among the topics reviewed are: Surveys of is the Seventies, Movements, Terrestrial and Celestial, Degrees Kelvin and Degrees of Phase, the Mark 3 VLBI System, Waves of the Future and other Emissions, and Adherence and Coherence in Networks, and Plans.
Your College Degree: The External Degree Way.
ERIC Educational Resources Information Center
Haponski, William C.; And Others
Information on undertaking an external degree program to obtain a college education is presented. An external degree program is one that has no, or minimal requirements for residence (on-campus attendance). Most often it can be entered at any time of the year and usually grants credit for documented learning already acquired. An external degree…
ERIC Educational Resources Information Center
American Association of Community and Junior Colleges, Washington, DC.
The policy statements contained in this document present the position of the American Association of Community and Junior Colleges (AACJC) on the Associate Degree, the Associate in Applied Science Degree (AAS), and the Associate Degree in Nursing. In its statement on the Associate Degree, the AACJC: (1) stresses the responsibility of faculty and…
Duration of Analgesia Induced by Acupuncture-Like TENS on Experimental Heat Pain.
Tousignant-Laflamme, Yannick; Brochu, Marilyne; Dupuis-Michaud, Cynthia; Pagé, Catherine; Popovic, Draga; Simard, Marie-Eve
2013-01-01
Background. Acupuncture-like TENS (AL-TENS) is a treatment modality that can be used to temporarily reduce pain. However, there is no clear data in the literature regarding the specific duration of analgesia induced by AL-TENS. Objectives. To describe and quantify the duration and magnitude of AL-TENS analgesia on experimental heat pain in healthy subjects and verify if the duration or magnitude of analgesia induced by the AL-TENS was influenced by the duration of the application of the AL-TENS (15 versus 30 minutes). Methods. A repeated-measures, intrasubject randomized experimental design was used, where each participant was his/her own control. 22 healthy volunteers underwent heat pain stimulations with a contact thermode before (pretest) and after (posttest) AL-TENS application (15 and 30 minutes). Outcome measures included subjective pain during AL-TENS, duration, and magnitude of AL-TENS-induced analgesia. Results. Survival analysis showed that the median duration of AL-TENS analgesia was 10 minutes following the application of either 15 or 30 minutes of AL-TENS. The magnitude of analgesia following either application was comparable at all points in time (P values > 0.05) and ranged between -20% and -36% pain reduction. Conclusion. Only half of the participants still had heat-pain analgesia induced by the AL-TENS at 15 minutes postapplication.
EEG Correlates of Ten Positive Emotions
Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan
2017-01-01
Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants’ ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as ‘encouragement’ for awe, gratitude, hope, inspiration, pride, ‘playfulness’ for amusement, joy, interest, and ‘harmony’ for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions. PMID:28184194
EEG Correlates of Ten Positive Emotions.
Hu, Xin; Yu, Jianwen; Song, Mengdi; Yu, Chun; Wang, Fei; Sun, Pei; Wang, Daifa; Zhang, Dan
2017-01-01
Compared with the well documented neurophysiological findings on negative emotions, much less is known about positive emotions. In the present study, we explored the EEG correlates of ten different positive emotions (joy, gratitude, serenity, interest, hope, pride, amusement, inspiration, awe, and love). A group of 20 participants were invited to watch 30 short film clips with their EEGs simultaneously recorded. Distinct topographical patterns for different positive emotions were found for the correlation coefficients between the subjective ratings on the ten positive emotions per film clip and the corresponding EEG spectral powers in different frequency bands. Based on the similarities of the participants' ratings on the ten positive emotions, these emotions were further clustered into three representative clusters, as 'encouragement' for awe, gratitude, hope, inspiration, pride, 'playfulness' for amusement, joy, interest, and 'harmony' for love, serenity. Using the EEG spectral powers as features, both the binary classification on the higher and lower ratings on these positive emotions and the binary classification between the three positive emotion clusters, achieved accuracies of approximately 80% and above. To our knowledge, our study provides the first piece of evidence on the EEG correlates of different positive emotions.
Electronic Disorder in Organic Semiconducting Films Observed with Kelvin Probe Force Microscopy
NASA Astrophysics Data System (ADS)
Hoffman, Benjamin Carl
This work is a study into electronic disorder within organic semiconducting (OSC) films from a scan-probe perspective. Organic electronics are an exciting technology poised for use in next generation devices with unique applications such as transparent displays and ultrathin flexible solar cells. Understanding and mapping electronic disorder in OSC has a high degree of relevance towards recognizing the properties of charge trapping that hinders transport and diminishes device performance. Evidence of surface potential inhomogeneity is identified by using Kelvin probe force microscopy (KPFM) to measure the contact potential difference (CPD) between probe and sample. OSC films are grown via organic molecular beam deposition (OMBD) to create well-ordered crystals with precise control of nominal thickness. Further research methods involve the study of diffraction peaks from grazing-incidence wide-angle x-ray scattering (GIWAXS) for crystallographic analysis as well as use of a probe station for transfer characteristics of fabricated thin film transistors. Initial research into this subject involved thin films of the novel organic molecule 2,8- diflouro-5,11-bis(triethylsilylethynyl)-anthradithiophene (diF-TES-ADT) that were grown on silicon substrates with a native oxide layer and analyzed with GIWAXS and KPFM. The crystallography of the films is that of a uniform (001) orientation. Variations in surface potential in diF-TES-ADT crystallites are observed to be unique from variations in the substrate. Nevertheless, surface potential variations in thick films are influenced by chemical passivation of the substrate and so the source of CPD variations are assigned to be intrinsic defects. Chemical treatment and processing methods control the growth kinetics which are linked to charge traps locally distorting the surface potential in OSC films. To continue the research into identifying charge trapping in ultra-thin films, 1.5 monolayer thick films of alpha-sexithiophene (6T
Using TENS for pain control: the state of the evidence
Vance, Carol GT; Dailey, Dana L; Rakel, Barbara A; Sluka, Kathleen A
2014-01-01
Summary Transcutaneous electrical nerve stimulation (TENS) is a nonpharmacological intervention that activates a complex neuronal network to reduce pain by activating descending inhibitory systems in the central nervous system to reduce hyperalgesia. The evidence for TENS efficacy is conflicting and requires not only description but also critique. Population-specific systemic reviews and meta-analyses are emerging, indicating both HF and LF TENS being shown to provide analgesia, specifically when applied at a strong, nonpainful intensity. The purpose of this article is to provide a critical review of the latest basic science and clinical evidence for TENS. Additional research is necessary to determine if TENS has effects specific to mechanical stimuli and/or beyond reduction of pain and will improve activity levels, function and quality of life. PMID:24953072
ERIC Educational Resources Information Center
Hingsburger, Dave
1986-01-01
Ten guidelines for effective use of positive reinforcement as a parenting technique are described. Practical examples are used to illustrate such principles as consistency, immediacy, and specificity in giving praise. A distinction is made between giving reinforcement and giving love. (JW)
NASA Astrophysics Data System (ADS)
Barbulescu, M.; Erdélyi, R.
2018-06-01
Recent observations have shown that bulk flow motions in structured solar plasmas, most evidently in coronal mass ejections (CMEs), may lead to the formation of Kelvin-Helmholtz instabilities (KHIs). Analytical models are thus essential in understanding both how the flows affect the propagation of magnetohydrodynamic (MHD) waves, and what the critical flow speed is for the formation of the KHI. We investigate both these aspects in a novel way: in a steady magnetic slab embedded in an asymmetric environment. The exterior of the slab is defined as having different equilibrium values of the background density, pressure, and temperature on either side. A steady flow and constant magnetic field are present in the slab interior. Approximate solutions to the dispersion relation are obtained analytically and classified with respect to mode and speed. General solutions and the KHI thresholds are obtained numerically. It is shown that, generally, both the KHI critical value and the cut-off speeds for magnetoacoustic waves are lowered by the external asymmetry.
Second-degree Stokes coefficients from multi-satellite SLR
NASA Astrophysics Data System (ADS)
Bloßfeld, Mathis; Müller, Horst; Gerstl, Michael; Štefka, Vojtěch; Bouman, Johannes; Göttl, Franziska; Horwath, Martin
2015-09-01
The long wavelength part of the Earth's gravity field can be determined, with varying accuracy, from satellite laser ranging (SLR). In this study, we investigate the combination of up to ten geodetic SLR satellites using iterative variance component estimation. SLR observations to different satellites are combined in order to identify the impact of each satellite on the estimated Stokes coefficients. The combination of satellite-specific weekly or monthly arcs allows to reduce parameter correlations of the single-satellite solutions and leads to alternative estimates of the second-degree Stokes coefficients. This alternative time series might be helpful for assessing the uncertainty in the impact of the low-degree Stokes coefficients on geophysical investigations. In order to validate the obtained time series of second-degree Stokes coefficients, a comparison with the SLR RL05 time series of the Center of Space Research (CSR) is done. This investigation shows that all time series are comparable to the CSR time series. The precision of the weekly/monthly and coefficients is analyzed by comparing mass-related equatorial excitation functions with geophysical model results and reduced geodetic excitation functions. In case of , the annual amplitude and phase of the DGFI solution agrees better with three of four geophysical model combinations than other time series. In case of , all time series agree very well to each other. The impact of on the ice mass trend estimates for Antarctica are compared based on CSR GRACE RL05 solutions, in which different monthly time series are used for replacing. We found differences in the long-term Antarctic ice loss of Gt/year between the GRACE solutions induced by the different SLR time series of CSR and DGFI, which is about 13 % of the total ice loss of Antarctica. This result shows that Antarctic ice mass loss quantifications must be carefully interpreted.
A Robust Cooling Platform for NIS Junction Refrigeration and sub-Kelvin Cryogenic Systems
NASA Astrophysics Data System (ADS)
Wilson, B.; Atlas, M.; Lowell, P.; Moyerman, S.; Stebor, N.; Ullom, J.; Keating, B.
2014-08-01
Recent advances in Normal metal-insulator-superconductor (NIS) tunnel junctions (Clark et al. Appl Phys Lett 86: 173508, 2005, Appl Phys Lett 84: 4, 2004) have proven these devices to be a viable technology for sub-Kelvin refrigeration. NIS junction coolers, coupled to a separate cold stage, provide a flexible platform for cooling a wide range of user-supplied payloads. Recently, a stage was cooled from 290 to 256 mK (Lowell et al. Appl Phys Lett 102: 082601 2013), but further mechanical and electrical improvements are necessary for the stage to reach its full potential. We have designed and built a new Kevlar suspended cooling platform for NIS junction refrigeration that is both lightweight and well thermally isolated; the calculated parasitic loading is pW from 300 to 100 mK. The platform is structurally rigid with a measured deflection of 25 m under a 2.5 kg load and has an integrated mechanical heat switch driven by a superconducting stepper motor with thermal conductivity G W/K at 300 mK. An integrated radiation shield limits thermal loading and a modular platform accommodates enough junctions to provide nanowatts of continuous cooling power. The compact stage size of 7.6 cm 8.6 cm 4.8 cm and overall radiation shield size of 8.9 cm 10.0 cm 7.0 cm along with minimal electrical power requirements allow easy integration into a range of cryostats. We present the design, construction, and performance of this cooling platform as well as projections for coupling to arrays of NIS junctions and other future applications.
Hecq, J-D; Godet, M; Gillet, P; Jamart, J; Galanti, L
2014-01-01
The aim of this study was to investigate the long-term stability of morphine hydrochloride in 0.9% NaCI infusion polyolefin bags and polypropylene syringes after storage at 5 degrees C + 3 degrees C and to evaluate the influence of initial freezing and microwave thawing on this stability. Ten polyolefin bags and five polypropylene syringes containing 100 mL of 1 mg/mL of morphine hydrochloride solution in 0.9% NaCI were prepared under aseptic conditions. Five polyolefin bags were frozen at -20 degrees C for 90 days before storage. Immediately after the preparation and after thawing, 2 mL of each bag were withdrawn for the initial concentration measurements. All polyolefin bags and polypropylene syringes were then refrigerated at 5 degrees C + 3 degrees C for 58 days during which the morphine concentrations were measured periodically by high-performance liquid chromatography using a reversed-phase column, naloxone as internal standard, a mobile phase consisting of 5% acetonitrile and 95% of KH2PO4 buffer (pH 3.50), and detection with diode array detector at 254 nm. Visual and microscopic observations and spectrophotometric and pH measurements were also performed. Solutions were considered stable if the concentration remained superior to 90% of the initial concentration. The degradation products peaks were not quantitatively significant and were resolved from the native drug. Polyolefin bag and polypropylene syringe solutions were stable when stored at 5 degrees C + 3 degrees C during these 58 days. No color change or precipitation in the solutions was observed. The physical stability was confirmed by visual, microscopic, and spectrophotometric inspection. There was no significant change in pH during storage. Freezing and microwave thawing didn't influence the infusion stability. Morphine hydrochloride infusions may be prepared in advance by centralized intravenous additive service, frozen in polyolefin bags, and microwave thawed before storage under refrigeration
Lehto, Elviira; Ray, Carola; Te Velde, Saskia; Petrova, Stefka; Duleva, Vesselka; Krawinkel, Michael; Behrendt, Isabel; Papadaki, Angeliki; Kristjansdottir, Asa; Thorsdottir, Inga; Yngve, Agneta; Lien, Nanna; Lynch, Christel; Ehrenblad, Bettina; Vaz de Almeida, Maria Daniel; Ribic, Cirila Hlastan; Simčic, Irena; Roos, Eva
2015-01-01
To examine which factors act as mediators between parental educational level and children's fruit and vegetable (F&V) intake in ten European countries. Cross-sectional data were collected in ten European countries participating in the PRO GREENS project (2009). Schoolchildren completed a validated FFQ about their daily F&V intake and filled in a questionnaire about availability of F&V at home, parental facilitation of F&V intake, knowledge of recommendations about F&V intake, self-efficacy to eat F&V and liking for F&V. Parental educational level was determined from a questionnaire given to parents. The associations were examined with multilevel mediation analyses. Schools in Bulgaria, Finland, Germany, Greece, Iceland, the Netherlands, Norway, Portugal, Slovenia and Sweden. Eleven-year-old children (n 8159, response rate 72%) and their parents. In five of the ten countries, children with higher educated parents were more likely to report eating fruits daily. This association was mainly mediated by knowledge but self-efficacy, liking, availability and facilitation also acted as mediators in some countries. Parents' education was positively associated with their children's daily vegetable intake in seven countries, with knowledge and availability being the strongest mediators and self-efficacy and liking acting as mediators to some degree. Parental educational level correlated positively with children's daily F&V intake in most countries and the pattern of mediation varied among the participating countries. Future intervention studies that endeavour to decrease the educational-level differences in F&V intake should take into account country-specific features in the relevant determinants of F&V intake.
Hu, Yuanyuan; Berdunov, Nikolai; Di, Chong-an; Nandhakumar, Iris; Zhang, Fengjiao; Gao, Xike; Zhu, Daoben; Sirringhaus, Henning
2014-07-22
We have investigated the influence of the symmetry of the side chain substituents in high-mobility, solution processable n-type molecular semiconductors on the performance of organic field-effect transistors (OFETs). We compare two molecules with the same conjugated core, but either symmetric or asymmetric side chain substituents, and investigate the transport properties and thin film growth mode using scanning Kelvin probe microscopy (SKPM) and atomic force microscopy (AFM). We find that asymmetric side chains can induce a favorable two-dimensional growth mode with a bilayer structure, which enables ultrathin films with a single bilayer to exhibit excellent transport properties, while the symmetric molecules adopt an unfavorable three-dimensional growth mode in which transport in the first monolayer at the interface is severely hindered by high-resistance grain boundaries.
NASA Astrophysics Data System (ADS)
Masson, A.; Nykyri, K.
2017-12-01
The Cluster and the Themis missions have shed a total new light on the Kelvin-Helmholtz Instability (KHI) mechanism at the magnetopause. To name a few, these missions have enabled the observation of KHI rolled-up vortices, for the first time with four spacecraft (Hasegawa et al., 2004). They revealed its presence under any Interplanetary Magnetic Field (IMF) conditions (Hwang et al., 2011, 2012). They also revealed that their occurence may have been largely underestimated (Kavosi and Raeder, 2015). Very recently, the presence of ion magnetosonic waves with sufficient energy to account for the observed level of ion heating within a KHI vortex may be the first evidence of cross-scale energy transport (Moore et al., 2016). After presenting some the main highlights of Cluster and Themis on this phenomenon, we will present upcoming new observations with MMS, Cluster and Themis in 2017-2020 timeframe. Together, they will form a unique constellation of spacecraft constellations to study this phenomenon for the first time. We will present some of the key scientific questions these new data will enable to tackle.
Two Universities, Two Degrees: A Dual Degree Program for Pharmacists.
ERIC Educational Resources Information Center
Milio, Frank
2001-01-01
Describes a dual degree program between Towson University and the University of Maryland School of Pharmacy, which allows a student to receive both a B.S. degree in Medicinal Chemistry and a Doctor of Pharmacy degree in a combined 7-year program. It also allows flexibility in pursuing alternate career goals. (EV)
Modeling ramp-hold indentation measurements based on Kelvin-Voigt fractional derivative model
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; zhe Zhang, Qing; Ruan, Litao; Duan, Junbo; Wan, Mingxi; Insana, Michael F.
2018-03-01
Interpretation of experimental data from micro- and nano-scale indentation testing is highly dependent on the constitutive model selected to relate measurements to mechanical properties. The Kelvin-Voigt fractional derivative model (KVFD) offers a compact set of viscoelastic features appropriate for characterizing soft biological materials. This paper provides a set of KVFD solutions for converting indentation testing data acquired for different geometries and scales into viscoelastic properties of soft materials. These solutions, which are mostly in closed-form, apply to ramp-hold relaxation, load-unload and ramp-load creep-testing protocols. We report on applications of these model solutions to macro- and nano-indentation testing of hydrogels, gastric cancer cells and ex vivo breast tissue samples using an atomic force microscope (AFM). We also applied KVFD models to clinical ultrasonic breast data using a compression plate as required for elasticity imaging. Together the results show that KVFD models fit a broad range of experimental data with a correlation coefficient typically R 2 > 0.99. For hydrogel samples, estimation of KVFD model parameters from test data using spherical indentation versus plate compression as well as ramp relaxation versus load-unload compression all agree within one standard deviation. Results from measurements made using macro- and nano-scale indentation agree in trend. For gastric cell and ex vivo breast tissue measurements, KVFD moduli are, respectively, 1/3-1/2 and 1/6 of the elasticity modulus found from the Sneddon model. In vivo breast tissue measurements yield model parameters consistent with literature results. The consistency of results found for a broad range of experimental parameters suggest the KVFD model is a reliable tool for exploring intrinsic features of the cell/tissue microenvironments.
NASA Astrophysics Data System (ADS)
Stober, Gunter; Sommer, Svenja; Schult, Carsten; Latteck, Ralph; Chau, Jorge L.
2018-05-01
We present observations obtained with the Middle Atmosphere Alomar Radar System (MAARSY) to investigate short-period wave-like features using polar mesospheric summer echoes (PMSEs) as a tracer for the neutral dynamics. We conducted a multibeam experiment including 67 different beam directions during a 9-day campaign in June 2013. We identified two Kelvin-Helmholtz instability (KHI) events from the signal morphology of PMSE. The MAARSY observations are complemented by collocated meteor radar wind data to determine the mesoscale gravity wave activity and the vertical structure of the wind field above the PMSE. The KHIs occurred in a strong shear flow with Richardson numbers Ri < 0.25. In addition, we observed 15 wave-like events in our MAARSY multibeam observations applying a sophisticated decomposition of the radial velocity measurements using volume velocity processing. We retrieved the horizontal wavelength, intrinsic frequency, propagation direction, and phase speed from the horizontally resolved wind variability for 15 events. These events showed horizontal wavelengths between 20 and 40 km, vertical wavelengths between 5 and 10 km, and rather high intrinsic phase speeds between 45 and 85 m s-1 with intrinsic periods of 5-10 min.
NASA Astrophysics Data System (ADS)
Kandpal, Praveen; Kaur, Rajbir; Pandey, R. S.
2018-01-01
In this paper parallel flow velocity shear Kelvin-Helmholtz instability has been studied in two different extended regions of the inner magnetosphere of Saturn. The method of the characteristic solution and kinetic approach has been used in the mathematical calculation of dispersion relation and growth rate of K-H waves. Effect of magnetic field (B), inhomogeneity (P/a), velocity shear scale length (Ai), temperature anisotropy (T⊥ /T||), electric field (E), ratio of electron to ion temperature (Te /Ti), density gradient (εnρi) and angle of propagation (θ) on the dimensionless growth rate of K-H waves in the inner magnetosphere of Saturn has been observed with respect to k⊥ρi . Calculations of this theoretical analysis have been done taking the data from the Cassini in the inner magnetosphere of Saturn in the two extended regions of Rs ∼4.60-4.01 and Rs ∼4.82-5.0. In our study velocity shear, temperature anisotropy and magnitude of the electric field are observed to be the major sources of free energy for the K-H instability in both the regions considered. The inhomogeneity of electric field, electron-ion temperature ratio, and density gradient have been observed playing stabilizing effect on K-H instability. This study also indicates the effect of the vicinity of icy moon Enceladus on the growth of K-H instability.
Villeneuve-Faure, C; Boudou, L; Makasheva, K; Teyssedre, G
2017-12-15
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson's equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
NASA Astrophysics Data System (ADS)
Villeneuve-Faure, C.; Boudou, L.; Makasheva, K.; Teyssedre, G.
2017-12-01
To understand the physical phenomena occurring at metal/dielectric interfaces, determination of the charge density profile at nanoscale is crucial. To deal with this issue, charges were injected applying a DC voltage on lateral Al-electrodes embedded in a SiN x thin dielectric layer. The surface potential induced by the injected charges was probed by Kelvin probe force microscopy (KPFM). It was found that the KPFM frequency mode is a better adapted method to probe accurately the charge profile. To extract the charge density profile from the surface potential two numerical approaches based on the solution to Poisson’s equation for electrostatics were investigated: the second derivative model method, already reported in the literature, and a new 2D method based on the finite element method (FEM). Results highlight that the FEM is more robust to noise or artifacts in the case of a non-flat initial surface potential. Moreover, according to theoretical study the FEM appears to be a good candidate for determining charge density in dielectric films with thicknesses in the range from 10 nm to 10 μm. By applying this method, the charge density profile was determined at nanoscale, highlighting that the charge cloud remains close to the interface.
ERIC Educational Resources Information Center
Agee, Anne Scrivener; Yang, Catherine
2009-01-01
This article presents the top-ten IT-related issues in terms of strategic importance to the institution, as revealed by the tenth annual EDUCAUSE Current Issues Survey. These IT-related issues include: (1) Funding IT; (2) Administrative/ERP Information Systems; (3) Security; (4) Infrastructure/Cyberinfrastructure; (5) Teaching and Learning with…
The Complex Case of Positioning the Foundation Degree: Making Sense of a Degree That Is Not a Degree
ERIC Educational Resources Information Center
Kadembo, Ernest
2008-01-01
The Foundation degree was launched in 2001 and has enjoyed growth but remains a controversial qualification. Foundation Degree Forward, the body charged by the UK government with providing a "national network or expertise to support the development and validation of high-quality Foundation degrees" is championing the marketing of the…
Graduate Physics Degrees: Largest Departments and Degree Distribution. Focus On
ERIC Educational Resources Information Center
Mulvey, Patrick J.; Nicholson, Starr
2014-01-01
In the 2011-12 academic year there were 751 degree-granting physics departments in the U.S. Of these, 195 offered a PhD and 62 departments offered a master's as the highest physics degree. The remaining 494 departments offered a bachelor's as their highest physics degree. There were six universities that had two doctoral-granting physics…
Evaluation of third-degree and fourth-degree laceration rates as quality indicators.
Friedman, Alexander M; Ananth, Cande V; Prendergast, Eri; D'Alton, Mary E; Wright, Jason D
2015-04-01
To examine the patterns and predictors of third-degree and fourth-degree laceration in women undergoing vaginal delivery. We identified a population-based cohort of women in the United States who underwent a vaginal delivery between 1998 and 2010 using the Nationwide Inpatient Sample. Multivariable log-linear regression models were developed to account for patient, obstetric, and hospital factors related to lacerations. Between-hospital variability of laceration rates was calculated using generalized log-linear mixed models. Among 7,096,056 women who underwent vaginal delivery in 3,070 hospitals, 3.3% (n=232,762) had a third-degree laceration and 1.1% (n=76,347) had a fourth-degree laceration. In an adjusted model for fourth-degree lacerations, important risk factors included shoulder dystocia and forceps and vacuum deliveries with and without episiotomy. Other demographic, obstetric, medical, and hospital variables, although statistically significant, were not major determinants of lacerations. Risk factors in a multivariable model for third-degree lacerations were similar to those in the fourth-degree model. Regression analysis of hospital rates (n=3,070) of lacerations demonstrated limited between-hospital variation. Risk of third-degree and fourth-degree laceration was most strongly related to operative delivery and shoulder dystocia. Between-hospital variation was limited. Given these findings and that the most modifiable practice related to lacerations would be reduction in operative vaginal deliveries (and a possible increase in cesarean delivery), third-degree and fourth-degree laceration rates may be a quality metric of limited utility.
NASA Technical Reports Server (NTRS)
Barry, R. K.; Danchi, W. C.; Deming, L. D.; Richardson, L. J.; Kuchner, M. J.; Seager, S.; Frey, B. J.; Martino, A. J.; Lee, K. A.; Zuray, M.;
2006-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for a spacecraft-borne nulling interferometer for high-resolution astronomy and the direct detection of exoplanets and assay of their environments and atmospheres. FKSI is a high angular resolution system operating in the near to midinfrared spectral region and is a scientific and technological pathfinder to the Darwin and Terrestrial Planet Finder (TPF) missions. The instrument is configured with an optical system consisting, depending on configuration, of two 0.5 - 1.0 m telescopes on a 12.5 - 20 m boom feeding a symmetric, dual Mach- Zehnder beam combiner. We report on progress on our nulling testbed including the design of an optical pathlength null-tracking control system and development of a testing regime for hollow-core fiber waveguides proposed for use in wavefront cleanup. We also report results of integrated simulation studies of the planet detection performance of FKSI and results from an in-depth control system and residual optical pathlength jitter analysis.
NASA Astrophysics Data System (ADS)
Jeong, Hyunju; Ryu, Dongsu; Jones, T. W.; Frank, Adam
2000-01-01
We have carried out simulations of the nonlinear evolution of the magnetohydrodynamic (MHD) Kelvin-Helmholtz (KH) instability for compressible fluids in 2.5 dimensions, extending our previous work by Frank et al. and Jones et al. In the present work we have simulated flows in the x-y plane in which a ``sheared'' magnetic field of uniform strength smoothly rotates across a thin velocity shear layer from the z-direction to the x-direction, aligned with the flow field. The sonic Mach number of the velocity transition is unity. Such flows containing a uniform field in the x-direction are linearly stable if the magnetic field strength is great enough that the Alfvénic Mach number MA=U0/cA<2. That limit does not apply directly to sheared magnetic fields, however, since the z-field component has almost no influence on the linear stability. Thus, if the magnetic shear layer is contained within the velocity shear layer, the KH instability may still grow, even when the field strength is quite large. So, here we consider a wide range of sheared field strengths covering Alfvénic Mach numbers, MA=142.9 to 2. We focus on dynamical evolution of fluid features, kinetic energy dissipation, and mixing of the fluid between the two layers, considering their dependence on magnetic field strength for this geometry. There are a number of differences from our earlier simulations with uniform magnetic fields in the x-y plane. For the latter, simpler case we found a clear sequence of behaviors with increasing field strength ranging from nearly hydrodynamic flows in which the instability evolves to an almost steady cat's eye vortex with enhanced dissipation, to flows in which the magnetic field disrupts the cat's eye once it forms, to, finally, flows that evolve very little before field-line stretching stabilizes the velocity shear layer. The introduction of magnetic shear can allow a cat's eye-like vortex to form, even when the field is stronger than the nominal linear instability limit
TENS attenuates response to colon distension in paraplegic and quadriplegic rats.
Collins, Heidi L; DiCarlo, Stephen E
2002-10-01
Individuals with spinal cord injuries above thoracic level 6 experience episodic bouts of life-threatening hypertension as part of a condition termed autonomic dysreflexia (AD). The hypertension can be caused by stimulation of the skin, distension of the urinary bladder or colon, and/or muscle spasms. Transcutaneous electrical nerve stimulation (TENS) may reduce the severity of AD because TENS has been used to inhibit second-order neurons in the dorsal horn. Therefore, we tested the hypothesis that TENS attenuates the hemodynamic responses to colon distension. Eleven Wistar rats underwent spinal cord transection between thoracic vertebrae 4 and 5 (paraplegic, n = 6) or between cervical vertebra 7 and thoracic vertebra 1 (quadriplegic, n = 5). After recovery, all rats were instrumented with a radiotelemetry device for recording arterial pressure. Subsequently, the hemodynamic responses to graded colon distension were determined before and during TENS. During TENS the hemodynamic responses to colon distension were significantly attenuated. Thus TENS may be a preventive approach to reduce the severity of AD in paraplegic and quadriplegic individuals.
Nonlinear evolution of the Kelvin-Helmholtz instability in the double current sheet configuration
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mao, Aohua; Li, Jiquan, E-mail: lijq@energy.kyoto-u.ac.jp; Kishimoto, Yasuaki
2016-03-15
The nonlinear evolution of the Kelvin-Helmholtz (KH) instability driven by a radially antisymmetric shear flow in the double current sheet configuration is numerically investigated based on a reduced magnetohydrodynamic model. Simulations reveal different nonlinear fate of the KH instability depending on the amplitude of the shear flow, which restricts the strength of the KH instability. For strong shear flows far above the KH instability threshold, the linear electrostatic-type KH instability saturates and achieves a vortex flow dominated quasi-steady state of the electromagnetic (EM) KH turbulence with large-amplitude zonal flows as well as zonal fields. The magnetic surfaces are twisted significantlymore » due to strong vortices but without the formation of magnetic islands. However, for the shear flow just over the KH instability threshold, a weak EM-type KH instability is saturated and remarkably damped by zonal flows through modifying the equilibrium shear flow. Interestingly, a secondary double tearing mode (DTM) is excited subsequently in highly damped KH turbulence, behaving as a pure DTM in a flowing plasma as described in Mao et al. [Phys. Plasmas 21, 052304 (2014)]. However, the explosive growth phenomenon is replaced by a gradually growing oscillation due to the extremely twisted islands. As a result, the release of the magnetic energy becomes slow and the global magnetic reconnection tends to be gentle. A complex nonlinear interaction between the EM KH turbulence and the DTMs occurs for the medium shear flows above the KH instability threshold, turbulent EM fluctuations experience oscillatory nonlinear growth of the DTMs, finally achieves a quasi-steady state with the interplay of the fluctuations between the DTMs and the EM KH instability.« less
Lattice Boltzmann study on Kelvin-Helmholtz instability: roles of velocity and density gradients.
Gan, Yanbiao; Xu, Aiguo; Zhang, Guangcai; Li, Yingjun
2011-05-01
A two-dimensional lattice Boltzmann model with 19 discrete velocities for compressible fluids is proposed. The fifth-order weighted essentially nonoscillatory (5th-WENO) finite difference scheme is employed to calculate the convection term of the lattice Boltzmann equation. The validity of the model is verified by comparing simulation results of the Sod shock tube with its corresponding analytical solutions [G. A. Sod, J. Comput. Phys. 27, 1 (1978).]. The velocity and density gradient effects on the Kelvin-Helmholtz instability (KHI) are investigated using the proposed model. Sharp density contours are obtained in our simulations. It is found that the linear growth rate γ for the KHI decreases by increasing the width of velocity transition layer D(v) but increases by increasing the width of density transition layer D(ρ). After the initial transient period and before the vortex has been well formed, the linear growth rates γ(v) and γ(ρ), vary with D(v) and D(ρ) approximately in the following way, lnγ(v)=a-bD(v) and γ(ρ)=c+elnD(ρ)(D(ρ)
The MHD Kelvin-Helmholtz Instability. II. The Roles of Weak and Oblique Fields in Planar Flows
NASA Astrophysics Data System (ADS)
Jones, T. W.; Gaalaas, Joseph B.; Ryu, Dongsu; Frank, Adam
1997-06-01
We have carried out high-resolution MHD simulations of the nonlinear evolution of Kelvin-Helmholtz unstable flows in 21/2 dimensions. The modeled flows and fields were initially uniform except for a thin shear layer with a hyperbolic tangent velocity profile and a small, normal mode perturbation. These simulations extend work by Frank et al. and Malagoli, Bodo, & Rosner. They consider periodic sections of flows containing magnetic fields parallel to the shear layer, but projecting over a full range of angles with respect to the flow vectors. They are intended as preparation for fully three-dimensional calculations and to address two specific questions raised in earlier work: (1) What role, if any, does the orientation of the field play in nonlinear evolution of the MHD Kelvin-Helmholtz instability in 21/2 dimensions? (2) Given that the field is too weak to stabilize against a linear perturbation of the flow, how does the nonlinear evolution of the instability depend on strength of the field? The magnetic field component in the third direction contributes only through minor pressure contributions, so the flows are essentially two-dimensional. In Frank et al. we found that fields too weak to stabilize a linear perturbation may still be able to alter fundamentally the flow so that it evolves from the classical ``Cat's Eye'' vortex expected in gasdynamics into a marginally stable, broad laminar shear layer. In that process the magnetic field plays the role of a catalyst, briefly storing energy and then returning it to the plasma during reconnection events that lead to dynamical alignment between magnetic field and flow vectors. In our new work we identify another transformation in the flow evolution for fields below a critical strength. That we found to be ~10% of the critical field needed for linear stabilization in the cases we studied. In this ``very weak field'' regime, the role of the magnetic field is to enhance the rate of energy dissipation within and around
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J.; Solares, Santiago D.
2017-03-08
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, andmore » is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules.« less
Noh, Hanaul; Diaz, Alfredo J
2017-01-01
Organic photovoltaic systems comprising donor polymers and acceptor fullerene derivatives are attractive for inexpensive energy harvesting. Extensive research on polymer solar cells has provided insight into the factors governing device-level efficiency and stability. However, the detailed investigation of nanoscale structures is still challenging. Here we demonstrate the analysis and modification of unidentified surface aggregates. The aggregates are characterized electrically by Kelvin probe force microscopy and conductive atomic force microscopy (C-AFM), whereby the correlation between local electrical potential and current confirms a defective charge transport. Bimodal AFM modification confirms that the aggregates exist on top of the solar cell structure, and is used to remove them and to reveal the underlying active layer. The systematic analysis of the surface aggregates suggests that the structure consists of PCBM molecules. PMID:28382247
Cheng, Ching-Lung; Lee, Li-Hui; Cheng, Yu-Ting
2017-01-01
This study aims to design a transcutaneous electrical nerve stimulation Application (TENS App) according to the suggestions from potential users. To the best of our knowledge, this is the first App including meridian and acupoints for TENS. After its development, there are eight participants recruited for evaluating the usability. Despite two out of eight users reporting that the typical TENS system requires lower cost and has better functionality than TENS App, the results show that almost seventy percent of participants have a better perception of TENS App on price, functionality, convenience, operational ability, and quality. However, participants still reported concerns about the safety issue of adopting TENS App. Therefore, for people who are the first time or unfamiliar with TENS App, instructions from occupational or physical therapists are recommended. We conclude that by using TENS App, users can not only use the portable electrotherapy devices at anyplace, but also reduce their outpatient visits.
Transcutaneous electrical nerve stimulation (TENS) for chronic low-back pain.
Khadilkar, A; Milne, S; Brosseau, L; Robinson, V; Saginur, M; Shea, B; Tugwell, P; Wells, G
2005-07-20
Chronic low-back pain (LBP) affects a significant proportion of the population. Transcutaneous electrical nerve stimulation (TENS) was introduced more than 30 years ago as an adjunct to the pharmacological management of pain. However, despite its widespread use, the usefulness of TENS in chronic LBP is still controversial. The aim of this systematic review was to determine the effectiveness of TENS in the management of chronic LBP. We searched the Cochrane Central Register of Controlled Trials (Issue 2, 2005), MEDLINE, EMBASE and PEDro up to April 1, 2005. Only randomized controlled clinical trials (RCTs) evaluating the effect of TENS on chronic LBP were included. Abstracts were excluded unless further data could be obtained from the authors. Two reviewers independently selected trials and extracted data using predetermined forms. Heterogeneity was tested with Cochrane's Q test. A fixed effect model was used throughout for calculating continuous variables, except where heterogeneity existed, in which case, a random effects model was used. Results are presented as weighted mean differences (WMD) with 95% confidence intervals (95% CI), where the difference between the treated and control groups was weighted by the inverse of the variance. Standardized mean differences (SMD) were calculated by dividing the difference between the treated and control by the baseline variance. SMD were used when different scales were used to measure the same concept. Dichotomous outcomes were analyzed with odds ratios. The only two RCTs (175 patients) meeting eligibility criteria differed in study design, methodological quality, inclusion and exclusion criteria, type and method of TENS application, treatment schedule, co-interventions and final outcomes. In one RCT, TENS produced significantly greater pain relief than the placebo control. However, in the other RCT, no statistically significant differences between treatment and control groups were shown for multiple outcome measures. Pre
NASA Astrophysics Data System (ADS)
Nitopi, Marie
During the last 30 years, women have made tremendous advances in educational attainment especially in post-secondary education. Despite these advances, recent researchers have revealed that women continue to remain underrepresented in attainment of graduate degrees in the sciences. The researcher's purpose in this study was to extend previous research and to develop a model of variables that significantly contribute to persistence in and attainment of a graduate degree and an eventual career in the science, mathematics, or technology professions. Data were collected from the Baccalaureate and Beyond Longitudinal Study (B&B:93/03). Variables in the categories of demographics, academics, finances, values and attitudes toward educational experiences, and future employment were analyzed by t tests and logistic regressions to determine gender differences in graduate degree attainment and career goals by male and female who majored in science, technology and mathematics. Findings supported significant gender differences in expectations for a graduate degree, age at baccalaureate degree attainment, number of science and engineering credits taken, and the value of faculty interactions. Father's education had a significant effect on degree attainment. Women and men had similar expectations at the beginning of their educational career, but women tended to fall short of their degree expectations ten years later. A large proportion of women dropped out of the science pipeline by choosing different occupations after degree completion. Additionally, women earned fewer science and math credits than men. The professions of science and technology are crucial for the nation's economic growth and competitiveness; therefore, additional researchers should focus on retaining both men and women in the STEM professions.
NASA Astrophysics Data System (ADS)
Kieokaew, Rungployphan; Foullon, Claire; Lavraud, Benoit
2018-01-01
Four-spacecraft missions are probing the Earth's magnetospheric environment with high potential for revealing spatial and temporal scales of a variety of in situ phenomena. The techniques allowed by these four spacecraft include the calculation of vorticity and the magnetic curvature analysis (MCA), both of which have been used in the study of various plasma structures. Motivated by curved magnetic field and vortical structures induced by Kelvin- Helmholtz (KH) waves, we investigate the robustness of the MCA and vorticity techniques when increasing (regular) tetrahedron sizes, to interpret real data. Here for the first time, we test both techniques on a 2.5-D MHD simulation of KH waves at the magnetopause. We investigate, in particular, the curvature and flow vorticity across KH vortices and produce time series for static spacecraft in the boundary layers. The combined results of magnetic curvature and vorticity further help us to understand the development of KH waves. In particular, first, in the trailing edge, the magnetic curvature across the magnetopause points in opposite directions, in the wave propagation direction on the magnetosheath side and against it on the magnetospheric side. Second, the existence of a "turnover layer" in the magnetospheric side, defined by negative vorticity for the duskside magnetopause, which persists in the saturation phase, is reminiscent of roll-up history. We found significant variations in the MCA measures depending on the size of the tetrahedron. This study lends support for cross-scale observations to better understand the nature of curvature and its role in plasma phenomena.
Xue, Weiqi; Sales, Salvador; Capmany, José; Mørk, Jesper
2010-03-15
In this work we demonstrate for the first time, to the best of our knowledge, a continuously tunable 360 degrees microwave phase shifter spanning a microwave bandwidth of several tens of GHz (up to 40 GHz). The proposed device exploits the phenomenon of coherent population oscillations, enhanced by optical filtering, in combination with a regeneration stage realized by four-wave mixing effects. This combination provides scalability: three hybrid stages are demonstrated but the technology allows an all-integrated device. The microwave operation frequency limitations of the suggested technique, dictated by the underlying physics, are also analyzed.
Top Ten Technology Breakthroughs for Schools.
ERIC Educational Resources Information Center
Bateman, Bill; Crystal, Jerry; Davidson, Hall; Holzberg, Carol S.; McIntire, Todd; McLester, Susan; Ohler, Jason; Rose, Ray; Shields, Jean; Warlick, David
2001-01-01
Contributors discuss the top ten technologies that allow for thinking in new and innovative ways about the concept of "school": virtual learning; wireless networking; collaboration tools; digital video; Application Service Providers; handheld devices; optical networking; videoconferencing; XML; and simulations. (AEF)
Is TENS purely a placebo effect? A controlled study on chronic low back pain.
Marchand, S; Charest, J; Li, J; Chenard, J R; Lavignolle, B; Laurencelle, L
1993-07-01
Although high-frequency low-intensity transcutaneous electric nerve stimulation (TENS) has been extensively used to relieve low back pain, experimental studies of its effectiveness have yielded contradictory findings mainly due to methodological problems in pain evaluation and placebo control. In the present study, separate visual analog scales (VAS) were used to measure the sensory-discriminative and motivational-affective components of low back pain. Forty-two subjects were randomly assigned to 1 of 3 groups: TENS, placebo-TENS, and no treatment (control). In order to measure the short-term effect of TENS, VAS pain ratings were taken before and after each treatment session. Also, to measure long-term effects, patients rated their pain at home every 2 h throughout a 3-day period before and 1 week, 3 months and 6 months after the treatment sessions. In comparing the pain evaluations made immediately before and after each treatment session, TENS and placebo-TENS significantly reduced both the intensity and unpleasantness of chronic low back pain. TENS was significantly more efficient than placebo-TENS in reducing pain intensity but not pain unpleasantness. TENS also produced a significant additive effect over repetitive treatment sessions for pain intensity and relative pain unpleasantness. This additive effect was not found for placebo-TENS. When evaluated at home, pain intensity was significantly reduced more by TENS than placebo-TENS 1 week after the end of treatment, but not 3 months and 6 months later. At home evaluation of pain unpleasantness in the TENS group was never different from the placebo-TENS group.(ABSTRACT TRUNCATED AT 250 WORDS)
Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.
Robb, Karen A; Bennett, Michael I; Johnson, Mark I; Simpson, Karen J; Oxberry, Stephen G
2008-07-16
Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominately used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role for a significant number of patients but the effectiveness of TENS is currently unknown. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. We searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases (11/04/08). Only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults were included. The search strategy identified 37 possible published studies which were divided between two pairs of review authors that decided on study selection. A study eligibility form was used to screen each abstract and where study eligibility could not be determined from the abstract, the full paper was obtained and assessed by one pair of review authors. A standardised data extraction sheet was used to collect information on the studies and the quality of the studies was assessed independently by two review authors using the validated five-point Oxford Quality Scale. Final scores were discussed and agreed between all four review authors. The small sample sizes and differences in patient study populations of the two included studies prevented meta-analysis. Only two RCTs met the eligibility criteria (64 participants). These studies were heterogenous with respect to study population, sample size, study design, methodological quality, mode of TENS, treatment duration, method of administration and outcome measures used. In one RCT, there were no significant differences between TENS and placebo in women with chronic pain secondary to breast cancer treatment. In the other RCT, there were no significant differences between acupuncture-type TENS and sham in palliative care
[Very late but too early... prof. Angelo Chiavaro and the Italian degree in dentistry].
Eramo, Stefano; Bensi, Caterina; Belli, Stefano; Pagano, Stefano
2017-12-01
The birth of the Degree in Dentistry in Italy has been very troubled, and only in 1980 saw its effective implementation. Very "instructive" in this regard is the history on the establishment in 1924 (the period of the seizure of power by Fascism) of a "National School of Dentistry" at the University of Rome, which was withdrawn after only ten months. The biggest supporter and proponent of the School, Prof. Angelo Chiavaro, after a few years, was "punished" with the transfer from the University of Rome to that of Genoa. We present some brief notes on the biography of this courageous pioneer and the matter of which he was the protagonist.
NASA Astrophysics Data System (ADS)
Tsubouchi, K.
2017-12-01
A discovery of "IBEX ribbon", localized bright emission of energetic neutral atoms, has brought new insights into the plasma environment of its source region beyond the heliosphere. It has been basically established that its geometrical property is associated with the local interstellar magnetic field draped on the heliopause, and pickup ions (PUIs) in the outer heliosheath (OHS) must be its primary source particles. Understanding the PUI dynamics in OHS more in detail is our motivation for this study. We performed two-dimensional hybrid simulations to evaluate the response of PUIs to the structural variation in the heliosheath. We assumed the simulation system such that the background plasma is hot solar wind in the inner heliosheath and cold interstellar plasma in OHS, and the directions of these flows are tangential to the heliopause. Such a situation leads to the growth of Kelvin-Helmholtz instability (KHI), where the plasma mixing and turbulence excitation takes place. We identified that non-stationarity and non-uniformity emerges in the PUI density structure in a specific energy range as KHI process advances. Relevance of these results to the expected observation like IBEX ribbon will be discussed.
Linear and nonlinear regimes of the 2-D Kelvin-Helmholtz/Tearing instability in Hall MHD.
NASA Astrophysics Data System (ADS)
Chacon, L.; Knoll, D. A.; Finn, J. M.
2002-11-01
The study to date of the magnetic field effects on the Kelvin-Helmholtz instability (KHI) within the framework of Hall MHD has been limited to configurations with uniform magnetic fields and/or with the magnetic field perpendicular to the sheared ion flow (( B_0⊥ v0 )).(E. N. Opp et al., Phys. Fluids B), 3, 885 (1990)^,(M. Fujimoto et al., J. Geophys. Res.), 96, 15725 (1991)^,(J. D. Huba, Phys. Rev. Lett.), 72, 2033 (1994) Here, we are concerned with the effects of Hall physics in configurations in which (B_0allel v0 ) and both are sheared.(L. Chacon et al, Phys. Lett. A), submitted (2002) In resistive MHD, and for this configuration, either the tearing mode instability (TMI) or the KHI instability dominates depending upon their relative strength.( R. B. Dahlburg et al., Phys. Plasmas), 4, 1213 (1997) In Hall MHD, however, Hall physics decouples the ion and electron flows in a boundary layer of thickness (d_i=c/ω_pi) (ion skin depth), within which electrons are the only magnetized species. Hence, while KHI essentially remains an ion instability, TMI becomes an electron instability. As a result, both KHI and TMI can be unstable simultaneously and interact, creating a very rich linear and nonlinear behavior. This is confirmed by a linear study of the Hall MHD equations. Nonlinearly, both saturated regimes and highly dynamic regimes (with vortex and magnetic island merging) are observed.
Rojas, Geoffrey A; Wu, Yanfei; Haugstad, Greg; Frisbie, C Daniel
2016-03-09
Scanning Kelvin probe microscopy was used to measure band-bending at the model donor/acceptor heterojunction poly(3-hexylthiophene) (P3HT)/fullerene (C60). Specifically, we measured the variation in the surface potential of C60 films with increasing thicknesses grown on P3HT to produce a surface potential profile normal to the substrate both in the dark and under illumination. The results confirm a space-charge carrier region with a thickness of 10 nm, consistent with previous observations. We discuss the possibility that the domain size in bulk heterojunction organic solar cells, which is comparable to the space-charge layer thickness, is actually partly responsible for less than expected electron/hole recombination rates.
High degree of genetic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus).
Defaveri, Jacquelin; Shikano, Takahito; Shimada, Yukinori; Merilä, Juha
2013-09-01
Populations of widespread marine organisms are typically characterized by a low degree of genetic differentiation in neutral genetic markers, but much less is known about differentiation in genes whose functional roles are associated with specific selection regimes. To uncover possible adaptive population divergence and heterogeneous genomic differentiation in marine three-spined sticklebacks (Gasterosteus aculeatus), we used a candidate gene-based genome-scan approach to analyse variability in 138 microsatellite loci located within/close to (<6 kb) functionally important genes in samples collected from ten geographic locations. The degree of genetic differentiation in markers classified as neutral or under balancing selection-as determined with several outlier detection methods-was low (F(ST) = 0.033 or 0.011, respectively), whereas average FST for directionally selected markers was significantly higher (F(ST) = 0.097). Clustering analyses provided support for genomic and geographic heterogeneity in selection: six genetic clusters were identified based on allele frequency differences in the directionally selected loci, whereas four were identified with the neutral loci. Allelic variation in several loci exhibited significant associations with environmental variables, supporting the conjecture that temperature and salinity, but not optic conditions, are important drivers of adaptive divergence among populations. In general, these results suggest that in spite of the high degree of physical connectivity and gene flow as inferred from neutral marker genes, marine stickleback populations are strongly genetically structured in loci associated with functionally relevant genes. © 2013 John Wiley & Sons Ltd.
Rates of arsenopyrite oxidation by oxygen and Fe(III) at pH 1.8-12.6 and 15-45 degrees C.
Yu, Yunmei; Zhu, Yongxuan; Gao, Zhenmin; Gammons, Christopher H; Li, Denxian
2007-09-15
The oxidation rate of arsenopyrite by dissolved oxygen was measured using a mixed flow reactor at dissolved O2 concentrations of 0.007-0.77 mM, pH 1.8-12.6, and temperatures of 15-45 degrees C. As(III) was the dominant redox species (>75%) in the experimental system, and the As(III)/As(V) ratio of effluent waters did not change with pH. The results were used to derive the following rate law expression (valid between pH 1.8 and 6.4): r = 10((-2211 +/- 57)T) (mO2)(0.45 +/- 0.05), where r is the rate of release of dissolved As in mol m(-2) s(-1) and T is in Kelvin. Activation energies (Ea) for oxidation of arsenopyrite by 02 at pH 1.8 and 5.9 are 43 and 57 kJ/mol, respectively, and they compare to an Ea value of 16 kJ/mol for oxidation by Fe(III) at pH 1.8. Apparent As release rates passed through a minimum in the pH range 7-8, which may have been due to oxidation of Fe2+ to hydrous ferric oxide (HFO) with attenuation of dissolved As onto the freshly precipitated HFO.
Sjoberg, Jeremiah P.; Birner, Thomas; Johnson, Richard H.
2017-07-26
Observational estimates of Kelvin wave momentum fluxes in the tropical lower stratosphere remain challenging. Here we extend a method based on linear wave theory to estimate daily time series of these momentum fluxes from high-resolution radiosonde data. Daily time series are produced for sounding sites operated by the US Department of Energy (DOE) and from the recent Dynamics of the Madden–Julian Oscillation (DYNAMO) field campaign. Our momentum flux estimates are found to be robust to different data sources and processing and in quantitative agreement with estimates from prior studies. Testing the sensitivity to vertical resolution, our estimated momentum fluxes aremore » found to be most sensitive to vertical resolution greater than 1 km, largely due to overestimation of the vertical wavelength. Climatological analysis is performed over a selected 11-year span of data from DOE Atmospheric Radiation Measurement (ARM) radiosonde sites. Analyses of this 11-year span of data reveal the expected seasonal cycle of momentum flux maxima in boreal winter and minima in boreal summer, and variability associated with the quasi-biennial oscillation of maxima during easterly phase and minima during westerly phase. Comparison between periods with active convection that is either strongly or weakly associated with the Madden–Julian Oscillation (MJO) suggests that the MJO provides a nontrivial increase in the lowermost stratospheric momentum fluxes.« less
Benchmark Dose Software Development and Maintenance Ten Berge Cxt Models
This report is intended to provide an overview of beta version 1.0 of the implementation of a concentration-time (CxT) model originally programmed and provided by Wil ten Berge (referred to hereafter as the ten Berge model). The recoding and development described here represent ...
Ten-year global distribution of downwelling longwave radiation
NASA Astrophysics Data System (ADS)
Pavlakis, K. G.; Hatzidimitriou, D.; Matsoukas, C.; Drakakis, E.; Hatzianastassiou, N.; Vardavas, I.
2004-01-01
Downwelling longwave fluxes, DLFs, have been derived for each month over a ten year period (1984-1993), on a global scale with a spatial resolution of 2.5x2.5 degrees and a monthly temporal resolution. The fluxes were computed using a deterministic model for atmospheric radiation transfer, along with satellite and reanalysis data for the key atmospheric input parameters, i.e. cloud properties, and specific humidity and temperature profiles. The cloud climatologies were taken from the latest released and improved International Satellite Climatology Project D2 series. Specific humidity and temperature vertical profiles were taken from three different reanalysis datasets; NCEP/NCAR, GEOS, and ECMWF (acronyms explained in main text). DLFs were computed for each reanalysis dataset, with differences reaching values as high as 30 Wm-2 in specific regions, particularly over high altitude areas and deserts. However, globally, the agreement is good, with the rms of the difference between the DLFs derived from the different reanalysis datasets ranging from 5 to 7 Wm-2. The results are presented as geographical distributions and as time series of hemispheric and global averages. The DLF time series based on the different reanalysis datasets show similar seasonal and inter-annual variations, and similar anomalies related to the 86/87 El Niño and 89/90 La Niña events. The global ten-year average of the DLF was found to be between 342.2 Wm-2 and 344.3 Wm-2, depending on the dataset. We also conducted a detailed sensitivity analysis of the calculated DLFs to the key input data. Plots are given that can be used to obtain a quick assessment of the sensitivity of the DLF to each of the three key climatic quantities, for specific climatic conditions corresponding to different regions of the globe. Our model downwelling fluxes are validated against available data from ground-based stations distributed over the globe, as given by the Baseline Surface Radiation Network. There is a
Ferreira, Fabiana Cristina; Issy, Adriana Machado; Sakata, Rioko Kimiko
2011-01-01
Transcutaneous electrical nerve stimulation (TENS) is commonly used to treat musculoskeletal pain, but it may also be indicated for postoperative analgesia. The objective of this study was to evaluate the analgesic effects of TENS on post-thoracotomy. Thirty patients between 18 and 60 years of age undergoing thoracotomy for lung cancer resection on the second postoperative day were included in this study. Patients were divided into two groups (G1 and G2). G1 patients were treated with TENS; and in G2 (without TENS) electrodes were placed but the equipment was not turned on. TENS was maintained for one hour. The visual analogue scale was used to evaluate the analgesic effects on three moments: before TENS (M0), immediately after TENS (M1), and one hour later (M2), with the patient at rest, elevation of the upper limbs, change in decubitus, and coughing. The intensity of pain at rest was higher in G2 immediately after TENS, but not one hour after the procedure. There was no difference between both groups with elevation of the upper limbs, decubitus change, and coughing. With the use of TENS for one hour on the second post-thoracotomy day in patients who received fentanyl (50 μg) associated with bupivacaine (5 mL), a reduction in pain intensity was observed at rest immediately after TENS; with elevation of the upper limbs, change in decubitus, and coughing, a reduction in pain severity was not observed. Copyright © 2011 Elsevier Editora Ltda. All rights reserved.
15 CFR 732.3 - Steps regarding the ten general prohibitions.
Code of Federal Regulations, 2010 CFR
2010-01-01
... 15 Commerce and Foreign Trade 2 2010-01-01 2010-01-01 false Steps regarding the ten general... (Continued) BUREAU OF INDUSTRY AND SECURITY, DEPARTMENT OF COMMERCE EXPORT ADMINISTRATION REGULATIONS STEPS FOR USING THE EAR § 732.3 Steps regarding the ten general prohibitions. (a) Introduction. If your item...
Second-Degree Learners in Associate Degree Nursing Programs: Characteristics and Progression Success
ERIC Educational Resources Information Center
McGinley, Patricia M.
2013-01-01
Second degree learners are attending associate (ADN), accelerated baccalaureate (BSN), and entry level masters (ELM) degree nursing programs. There is limited data related to the socio-demographic characteristics and graduation success rates of students attending accelerated BSN or ELM programs and no data related to second-degree learners…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmutz, P.; Frankel, G.S.
1998-07-01
The localized corrosion of AA2024-T3, and the behavior of intermetallic particles in particular, were studied using different capabilities of the atomic force microscope (AFM). The role of intermetallic particles in determining the locations and rates of localized corrosion was determined using scanning Kelvin probe force microscopy in air after exposure to chloride solutions. Al-Cu-Mg particles, which have a noble Volta potential in air because of an altered surface film, are actively dissolved in chloride solution after a certain induction time. Al-Cu(Fe, Mn) particles are heterogeneous in nature and exhibit nonuniform dissolution in chloride solution as well as trenching of themore » matrix around the particles. Light scratching of the surface by rastering with the AFM tip in contact mode in chloride solution results in accelerated dissolution of both pure Al and alloy 2024-T3. The abrasion associated with contact AFM in situ resulted in the immediate dissolution of the Al-Cu-Mg particles because of a destabilization of the surface film.« less
Transcutaneous electric nerve stimulation (TENS) for cancer pain in adults.
Hurlow, Adam; Bennett, Michael I; Robb, Karen A; Johnson, Mark I; Simpson, Karen H; Oxberry, Stephen G
2012-03-14
Cancer-related pain is complex and multi-dimensional but the mainstay of cancer pain management has predominantly used a biomedical approach. There is a need for non-pharmacological and innovative approaches. Transcutaneous Electric Nerve Stimulation (TENS) may have a role in pain management but the effectiveness of TENS is currently unknown. This is an update of the original review published in Issue 3, 2008. The aim of this systematic review was to determine the effectiveness of TENS for cancer-related pain in adults. The initial review searched The Cochrane Library, MEDLINE, EMBASE, CINAHL, PsychINFO, AMED and PEDRO databases in April 2008. We performed an updated search of CENTRAL, MEDLINE, EMBASE, CINAHL and PEDRO databases in November 2011. We included only randomised controlled trials (RCTS) investigating the use of TENS for the management of cancer-related pain in adults. The search strategy identified a further two studies for possible inclusion. One of the review authors screened each abstract using a study eligibility tool. Where eligibility could not be determined, a second author assessed the full paper. One author used a standardised data extraction sheet to collect information on the studies and independently assess the quality of the studies using the validated five-point Oxford Quality Scale. The small sample sizes and differences in patient study populations of the three included studies (two from the original review and a third included in this update) prevented meta-analysis. For the original review the search strategy identified 37 possible published studies; we divided these between two pairs of review authors who decided on study selection; all four review authors discussed and agreed final scores. Only one additional RCT met the eligibility criteria (24 participants) for this updated review. Although this was a feasibility study, not designed to investigate intervention effect, it suggested that TENS may improve bone pain on movement in a
Temperature Map, "Bonneville Crater" (1:35 p.m.)
2004-05-17
Rates of change in surface temperatures during a martian day indicate differences in particle size in and near "Bonneville Crater." This image is the third in a series of five with color-coded temperature information from different times of day. This one is from 1:35 p.m. local solar time at the site where NASA's Mars Exploration Rover Spirit is exploring Mars. Temperature information from Spirit's miniature thermal emission spectrometer is overlaid onto a view of the site from Spirit's panoramic camera. In this color-coded map, quicker reddening during the day suggests sand or dust. (Red is about 270 Kelvin or 27 degrees Fahrenheit.) An example of this is in the shallow depression in the right foreground. Areas that stay blue longer into the day have larger rocks. (Blue indicates about 230 Kelvin or minus 45 Degrees F.) An example is the rock in the left foreground. http://photojournal.jpl.nasa.gov/catalog/PIA05930
Managing mountain hardwoods - a ten-year appraisal
George R., Jr. Trimble
1961-01-01
Ten years ago - in 1949 - four 5-acre plots were established on the Fernow Experimental Forest near Parsons, West Virginia, to show the effects upon mountain hardwoods of each of four management treatments.
Ten Principles of Effective School Design
ERIC Educational Resources Information Center
New Visions for Public Schools, 2006
2006-01-01
This brief document offers ten principles of effective school design. They are: (1) Clear Focus and High Expectations for staff and students are defining features of an effective school; (2) A Rigorous Instructional Program provides equitable opportunities to learn and enables every student to master challenging content, skills, and learning…
Fabron, Eliana Maria Gradim; Petrini, Andressa Schweitzer; Cardoso, Vanessa de Moraes; Batista, João Carlos Torgal; Motonaga, Suely Mayumi; Marino, Viviane Cristina de Castro
2017-06-08
To investigate vocal quality variability after applying tongue trills associated with transcutaneous electrical nerve stimulation (TENS) on the larynx of women with normal laryngeal function. Additionally, to verify the effect of this technique over time on voice quality. Participants were 40 women (average 23.4 years) without vocal complaints. The procedure involved tongue trills with or without TENS for 3 minutes, rest and repeating the technique for another 2 minutes. The participants' voices were recorded before (Pre), after three minutes (Post 3min) and after two additional minutes (Post 5min) applying the technique. TENS with two electrodes was used on the thyroid cartilage. Self-assessment, acoustic and perceptual analysis were performed. When comparing tongue trills in isolation and associated with TENS, a greater sense of stability in phonation (self-assessment) and improvement in voice quality (perceptual evaluation) was observed in the combination technique. There was no statistical difference in acoustics findings between tongue trills in isolation and associated with TENS. When comparing the time effect of tongue trills with TENS in self-assessment there was a perception of less muscle tension (3min) and greater comfort during phonation (5 min); in the acoustic analysis, there was an increase of F0 (3 and 5 min) and intensity (5 min) when compared to Pre-moment; in the perceptual evaluation, better voice quality (3min). Comparing tongue trills in isolation and associated with TENS, there were changes in the comfort and muscle tension perception, as well as in vocal quality. On the other hand, tongue trills associated with TENS performed in 3 or 5 minutes resulted in beneficial effects on the voice identified in the assessments.
Feasibility study of Transcutaneous Electrical Nerve Stimulation (TENS) for cancer bone pain.
Bennett, Michael I; Johnson, Mark I; Brown, Sarah R; Radford, Helen; Brown, Julia M; Searle, Robert D
2010-04-01
This multicenter study assessed the feasibility of conducting a phase III trial of transcutaneous electrical nerve stimulation (TENS) in patients with cancer bone pain recruited from palliative care services. Eligible patients received active and placebo TENS for 1 hour at site of pain in a randomized crossover design; median interval between applications 3 days. Responses assessed at 30 and 60 minutes included numerical and verbal ratings of pain at rest and on movement, and pain relief. Recruitment, tolerability, adverse events, and effectiveness of blinding were also evaluated. Twenty-four patients were randomised and 19 completed both applications. The intervention was well tolerated. Five patients withdrew: 3 due to deteriorating performance status, and 2 due to increased pain (1 each following active and placebo TENS). Confidence interval estimation around the differences in outcomes between active and placebo TENS suggests that TENS has the potential to decrease pain on movement more than pain on rest. Nine patients did not consider that a placebo was used; the remaining 10 correctly identified placebo TENS. Feasibility studies are important in palliative care prior to undertaking clinical trials. Our findings suggest that further work is required on recruitment strategies and refining the control arm before evaluating TENS in cancer bone pain. Cancer bone pain is common and severe, and partly mediated by hyperexcitability. Animal studies suggest that Transcutaneous Electrical Nerve Stimulation can reduce hyperalgesia. This study examined the feasibility of evaluating TENS in patients with cancer bone pain in order to optimize methods before a phase III trial. Copyright 2010 American Pain Society. Published by Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Degree-day benchmarks indicate discrete biological events in the development of insect pests. For the Sparganothis fruitworm, we have isolated all key development events and linked them to degree-day accumulations. These degree-day accumulations can greatly improve treatment timings for cranberry IP...
2004-08-30
This image shows Hurricane Frances in August 2004 as captured by instruments onboard two different NASA satellites: the AIRS infrared instrument onboard Aqua, and the SeaWinds scatterometer onboard QuikSCAT. Both are JPL-managed instruments. AIRS data are used to create global three-dimensional maps of temperature, humidity and clouds, while scatterometers measure surface wind speed and direction over the ocean. The red vectors in the image show Frances' surface winds as measured by SeaWinds on QuikSCAT. The background colors show the temperature of clouds and surface as viewed in the infrared by AIRS, with cooler areas pushing to purple and warmer areas are pushing to red. The color scale on the right gives the temperatures in degrees Kelvin. (The top of the scale, 320 degrees Kelvin, corresponds to 117 degrees Fahrenheit, and the bottom, 180 degrees K is -135 degrees F.) The powerful circulation of this storm is evident from the combined data as well as the development of a clearly-defined central "eye." The infrared signal does not penetrate through clouds, so the light blue areas reveal the cold clouds tops associated with strong thunderstorms embedded within the storm. In cloud-free areas the infrared signal comes from Earth's surface, revealing warmer temperatures. http://photojournal.jpl.nasa.gov/catalog/PIA00435
Ten Leading Causes of Death and Injury
... Brain Injury Violence Prevention Ten Leading Causes of Death and Injury Recommend on Facebook Tweet Share Compartir ... Emergency Departments, United States – 2014 Leading Causes of Death Charts Causes of Death by Age Group 2016 [ ...
Evolution of Kelvin-Helmholtz instability at Venus in the presence of the parallel magnetic field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, H. Y.; Key Laboratory of Planetary Sciences, Chinese Academy of Sciences, Nanjing 210008; Cao, J. B.
2015-06-15
Two-dimensional MHD simulations were performed to study the evolution of the Kelvin-Helmholtz (KH) instability at the Venusian ionopause in response to the strong flow shear in presence of the in-plane magnetic field parallel to the flow direction. The physical behavior of the KH instability as well as the triggering and occurrence conditions for highly rolled-up vortices are characterized through several physical parameters, including Alfvén Mach number on the upper side of the layer, the density ratio, and the ratio of parallel magnetic fields between two sides of the layer. Using these parameters, the simulations show that both the high densitymore » ratio and the parallel magnetic field component across the boundary layer play a role of stabilizing the instability. In the high density ratio case, the amount of total magnetic energy in the final quasi-steady status is much more than that in the initial status, which is clearly different from the case with low density ratio. We particularly investigate the nonlinear development of the case that has a high density ratio and uniform magnetic field. Before the instability saturation, a single magnetic island is formed and evolves into two quasi-steady islands in the non-linear phase. A quasi-steady pattern eventually forms and is embedded within a uniform magnetic field and a broadened boundary layer. The estimation of loss rates of ions from Venus indicates that the stabilizing effect of the parallel magnetic field component on the KH instability becomes strong in the case of high density ratio.« less
Spicher, G; Peters, J; Borchers, U
1999-02-01
For the spores of Bacillus subtilis and Bacillus stearothermophilus as well as for spore earth (acc. DIN 58,946 Part 4 of August 1982), the dependence of resistance on the superheating of the steam used to kill germs was determined. A material (glass fibre fleece) was used as the germ carrier which does not superheat on contact with steam. The temperature of the saturated steam was 100 degrees C (B. subtilis) and 120 degrees C (B. stearothermophilus and spore earth). The yardstick for the resistance of the spores or bioindicators was the exposure period of the saturated or superheated steam at which 50% of the treated test objects no longer showed any viable test germs. The spores of Bacillus subtilis were far more sensitive to superheating of steam and reacted far more than the spores of Bacillus stearothermophilus and the germs in the spore earth. When superheating by 4 Kelvin the spores of Bacillus subtilis were approximately 2.5 times more resistant than they were to saturated steam. The resistance of Bacillus stearothermophilus and spore earth was only slightly higher up to superheating by 10 Kelvin. The spores of Bacillus subtilis had the highest resistance during superheating by 29 Kelvin; they were 119 times more resistant than they were to saturated steam. The resistance maximum of the spores of Bacillus stearothermophilus was at an superheating by around 22 Kelvin. However, the spores were only 4.1 times more resistant than they were to saturated steam. When using steam to kill germs, we must expect superheated steam. This raises the question whether the spores of Bacillus stearothermophilus, with their weaker reaction to the superheating of steam, are suitable as test germs for sterilisation with steam in all cases.
Currently available medical engineering degrees in the UK. Part 1: Undergraduate degrees.
Joyce, T
2009-05-01
This paper reviews mechanical-engineering-based medical engineering degrees which are currently provided at undergraduate level in the UK. At present there are 14 undergraduate degree programmes in medical engineering, offered by the University of Bath, University of Birmingham, University of Bradford, Cardiff University, University of Hull, Imperial College London, University of Leeds, University of Nottingham, University of Oxford, Queen Mary University of London, University of Sheffield, University of Southampton, University of Surrey, and Swansea University. All these undergraduate courses are delivered on a full-time basis, both 3 year BEng and 4 year MEng degrees. Half of the 14 degree courses share a core first 2 years with a mechanical engineering stream. The other seven programmes include medical engineering modules earlier in their degrees. Within the courses, a very wide range of medical-engineering-related modules are offered, although more common modules include biomaterials, biomechanics, and anatomy and physiology.
NASA Astrophysics Data System (ADS)
Nykyri, K.; Dimmock, A. P.; Pulkkinen, T. I.; Otto, A.; Ma, X.
2014-12-01
Our statistical study of magnetosheath velocity fluctuations using 6+ years of THEMIS spacecraft measurements in Magnetosheath InterPlanetary Medium (MIPM) reference frame show that amplitudes of the velocity fluctuations are enhanced in the magnetosheath downstream of the quasi-parallel shock. The fluctuation amplitudes can be substantial and frequencies of these flcutuations can vary. We have examined the role of the i) amplitude, ii) frequency, iii) number of the modes, iv) as well as mode combinations of magnetosheath velocity fluctuations on the growth of Kelvin-Helmholtz Instability (KHI) using high-resolution macro-scale MHD simulations in magnetospheric inertial frame. The results show that even for the same magnetic field and plasma parameters across the magnetopause there can be major differences due to 'magnetosheath fluctuation state' on the growth and dynamical evolution of the KHI. This may provide the missing link how foreshock fluctuations couple to the magnetosphere and into the ionosphere
42 CFR 414.232 - Special payment rules for transcutaneous electrical nerve stimulators (TENS).
Code of Federal Regulations, 2010 CFR
2010-10-01
... nerve stimulators (TENS). 414.232 Section 414.232 Public Health CENTERS FOR MEDICARE & MEDICAID SERVICES... Special payment rules for transcutaneous electrical nerve stimulators (TENS). (a) General payment rule. Except as provided in paragraph (b) of this section, payment for TENS is made on a purchase basis with...
2017-06-06
environments may be injured or killed from the primary blast wave, thermal pulse and ionizing radiation . Burn casualties surviving the initial blast wave are...32]/1.8 degree Celsius (oC) degree Fahrenheit (oF) [T(oF) + 459.67]/1.8 kelvin (K) Radiation activity of radionuclides [curie (Ci)] 3.7 × 1010...develop casualty estimation models for improvised nuclear device (IND) scenarios. The HSRDIPT team has developed health effects models of radiation , burn
Redundant Sensors for Mobile Robot Navigation
1985-09-01
represent a probability that the area is empty, while positive numbers mcan it’s probably occupied. Zero reprtsents the unknown. The basic idea is that...room to give it absolute positioning information. This works by using two infrared emitters and detectors on the robot. Measurements of anglcs are made...meters (T in Kelvin) 273 sec Distances returned when assuming 80 degrees Farenheit , but where. actual temperature is 60 degrees, will be seven inches
The Currie Report: Ten Years Later.
ERIC Educational Resources Information Center
Ewing, John L.
1972-01-01
The Currie Report, or the Report of the Commission on Education in New Zealand, which appeared in 1962, has been generating changes on a broad front within the New Zealand educational system throughout the last ten years. Eight areas of concern were identified by that Commission. The "most clamant" was the recruitment and training of…
Domestic violence in Singapore: a ten year comparison of victim profile.
Foo, C L; Seow, E
2005-02-01
To investigate whether the profile of female victims of domestic violence in Singapore has changed over the past ten years. 163 female victims of domestic violence presenting to an emergency department in Singapore were surveyed. The survey included information on the victims' demographics, assault characteristics and knowledge of help services. The results were compared against a similar survey done locally ten years ago, which involved 233 victims. There were no significant differences in the racial composition, marital status, weapon use and admission rates of victims ten years on. However, a significantly higher proportion of female victims in 2002 knew where to seek help, compared to a decade ago (50.9 percent versus 20.6 percent, p-value is less than 0.0001). The proportion of victims with an awareness of community and legal help services has more than doubled over the past ten years.
Nielsen, H B; Mladenovska, Z; Westermann, P; Ahring, B K
2004-05-05
A two-stage 68 degrees C/55 degrees C anaerobic degradation process for treatment of cattle manure was studied. In batch experiments, an increase of the specific methane yield, ranging from 24% to 56%, was obtained when cattle manure and its fractions (fibers and liquid) were pretreated at 68 degrees C for periods of 36, 108, and 168 h, and subsequently digested at 55 degrees C. In a lab-scale experiment, the performance of a two-stage reactor system, consisting of a digester operating at 68 degrees C with a hydraulic retention time (HRT) of 3 days, connected to a 55 degrees C reactor with 12-day HRT, was compared with a conventional single-stage reactor running at 55 degrees C with 15-days HRT. When an organic loading of 3 g volatile solids (VS) per liter per day was applied, the two-stage setup had a 6% to 8% higher specific methane yield and a 9% more effective VS-removal than the conventional single-stage reactor. The 68 degrees C reactor generated 7% to 9% of the total amount of methane of the two-stage system and maintained a volatile fatty acids (VFA) concentration of 4.0 to 4.4 g acetate per liter. Population size and activity of aceticlastic methanogens, syntrophic bacteria, and hydrolytic/fermentative bacteria were significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. The density levels of methanogens utilizing H2/CO2 or formate were, however, in the same range for all reactors, although the degradation of these substrates was significantly lower in the 68 degrees C reactor than in the 55 degrees C reactors. Temporal temperature gradient electrophoresis profiles (TTGE) of the 68 degrees C reactor demonstrated a stable bacterial community along with a less divergent community of archaeal species. Copyright 2004 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Kelinson, Jonathan W.
1998-01-01
Charts depict trends in bachelor's, master's, and doctoral degrees awarded by subject between 1982-83 and 1994-95, with projections to 2006. The data show the total number of degrees earned by women increased 35%; women now earn more degrees than men. By 1994, 21% of college students were over age 35. (SK)
Magnetic Anomalies over the Mid-Atlantic Ridge near 27{degrees}N.
Phillips, J D
1967-08-25
Ten magnetic profiles across the mid-Atlantic ridge near 27 degrees N show trends that are parallel to the ridge axis and symmetrical about the ridge axis. The configuration of magnetic bodies that could account for the pattern supports the Vine and Matthews hypothesis for the origin of magnetic anomalies over oceanic ridges. A polarity-reversal time scale inferred from models for sea-floor spreading in the Pacific-Antarctic ridge and radiometrically dated reversals of the geomagnetic field indicates a spreading rate of 1.25 centimeters per year during the last 6 million years and a rate of 1.65 centimeters per year between 6 and 10 million years ago. A similar analysis of more limited data over the mid-Atlantic ridge near 22 degrees N also indicates a change in the spreading rate. Here a rate of 1.4 centimeters per year appears to have been in effect during the last 5 million years; between 5 and 9 million years ago, an increased rate of 1.7 centimeters per year is indicated. The time of occurrence and relative magnitude of these changes in the spreading rate, about 5 to 6 million years ago and 18 to 27 percent, respectively, accords with the spreading rate change implied for the Juan de Fuca ridge in the northeast Pacific.
Ten-year urban forestry action plan
J.W." Jerry" Van Sambeek
2017-01-01
The Ten-year Urban Forestry Action Plan: 2016-2026 was published in September, 2015 (see http://www.urbanforestry.subr.edu/FinalActionPlan_Complete_11_17_15.pdf). This 260 page heavily illustrated document was prepared by the National Urban and Community Forestry Advisory Council (NUCFAC) under leadership and funding from the USDA Forest Service. The Plan's...
Dailey, Dana L; Rakel, Barbara A; Vance, Carol GT; Liebano, Richard E; Anand, Amrit S; Bush, Heather M; Lee, Kyoung S; Lee, Jennifer E; Sluka, Kathleen A
2014-01-01
Because TENS works by reducing central excitability and activating central inhibition pathways, we tested the hypothesis that TENS would reduce pain and fatigue and improve function and hyperalgesia in people with fibromyalgia who have enhanced central excitability and reduced inhibition. The current study used a double-blinded randomized, placebo controlled cross-over design to test effects of a single treatment of TENS in people with fibromyalgia. Three treatments were assessed in random order: active TENS, placebo TENS, no TENS. The following measures were assessed before and after each TENS treatment: pain and fatigue at rest and movement, pressure pain thresholds (PPTs), 6 minute walk test (6MWT), range of motion (ROM), five time sit to stand test (FTSTS), and single leg stance (SLS). Conditioned pain modulation (CPM) was completed at end of testing. There was a significant decrease in pain and fatigue with movement for active TENS compared to placebo and no TENS. PPTs increased at site of TENS (spine) and outside site of TENS (leg) when compared to placebo TENS or no TENS. During Active TENS CPM was significantly stronger compared to placebo TENS and no TENS. No changes in functional tasks were observed with TENS. Thus, the current study suggests TENS has short-term efficacy in relieving symptoms of fibromyalgia while the stimulator is active. Future clinical trials should examine the effects of repeated daily delivery of TENS, similar to how TENS is used clinically, on pain, fatigue, function and quality of life in individuals with fibromyalgia. PMID:23900134
Ten key issues in modern flow chemistry.
Wegner, Jens; Ceylan, Sascha; Kirschning, Andreas
2011-04-28
Ten essentials of synthesis in the flow mode, a new enabling technology in organic chemistry, are highlighted as flashlighted providing an insight into current and future issues and developments in this field. © The Royal Society of Chemistry 2011
French, Jess
2016-10-01
During her first degree, Jess French founded a programme in which university students taught primary school children about environmental issues. She recently qualified as a vet and, when not studying, teaching, writing or looking for bugs, she enjoys adventure sports and travel, learning new languages and playing the saxophone and drums. She is also a presenter on CBeebies. British Veterinary Association.
Age Group Comparisons of TENS Response Among Individuals With Chronic Axial Low Back Pain.
Simon, Corey B; Riley, Joseph L; Fillingim, Roger B; Bishop, Mark D; George, Steven Z
2015-12-01
Chronic low back pain (CLBP) is a highly prevalent and disabling musculoskeletal pain condition among older adults. Transcutaneous electrical nerve stimulation (TENS) is commonly used to treat CLBP, however response to TENS in older adults compared with younger adults is untested. In a dose-response study stratified by age, 60 participants with axial CLBP (20 young, 20 middle-aged, 20 older) received four 20-minute sessions of high-frequency high-intensity TENS over a 2- to 3-week period in a laboratory-controlled setting. Experimental measures of pain sensitivity (mechanical pressure pain detection threshold) and central pain excitability (phasic heat temporal summation and heat aftersensations) were assessed before and after TENS. Episodic or immediate axial CLBP relief was assessed after TENS via measures of resting pain, movement-evoked-pain, and self-reported disability. Cumulative or prolonged axial CLBP relief was assessed by comparing daily pain reports across sessions. Independent of age, individuals experienced episodic increase in the pressure pain detection threshold and reduction in aftersensation after TENS application. Similarly, all groups, on average, experienced episodic axial CLBP relief via improved resting pain, movement-evoked pain, and disability report. Under this design, no cumulative effect was observed as daily pain did not improve for any age group across the 4 sessions. However, older adults received higher TENS amplitude across all sessions to achieve TENS responses similar to those in younger adults. These findings suggest that older adults experience similar episodic axial CLBP relief to that of younger individuals after high-frequency, high-intensity TENS when higher dose parameters are used. This study examined age group differences in experimental and axial CLBP response to TENS, delivered under the current recommended parameters of strong, but tolerable amplitude. Older adults had comparable TENS response although at higher TENS
Ten reasons to embrace scientism.
Peels, Rik
2017-06-01
A strong version of scientism, such as that of Alex Rosenberg, says, roughly, that natural science reliably delivers rational belief or knowledge, whereas common sense sources of belief, such as moral intuition, memory, and introspection, do not. In this paper I discuss ten reasons that adherents of scientism have or might put forward in defence of scientism. The aim is to show which considerations could plausibly count in favour of scientism and what this implies for the way scientism ought to be formulated. I argue that only three out of these ten reasons potentially hold water and that the evidential weight is, therefore, on their shoulders. These three reasons for embracing scientism are, respectively, particular empirical arguments to the effect that there are good debunking explanations for certain common sense beliefs, that there are incoherences and biases in the doxastic outputs of certain common sense sources of belief, and that beliefs that issue from certain common sense doxastic sources are illusory. From what I argue, it follows that only a version of scientism that is significantly weaker than many versions of scientism that we find in the literature is potentially tenable. I conclude the paper by stating what such a significantly weaker version of scientism could amount to. Copyright © 2017 Elsevier Ltd. All rights reserved.
Why do different people choose different university degrees? Motivation and the choice of degree
Skatova, Anya; Ferguson, Eamonn
2014-01-01
Different people choose undergraduate degrees to study at university for different reasons. To date, there have been limited attempts to identify individual differences in motivation that drive undergraduate degree choice. We identified that people choose university degrees for four reasons: career concerns (Career), intrinsic interest in the subject (Interest), an opportunity to help others (Helping) and because they are looking for an easy option to get into higher education (Loafing). We investigated whether these motivations apply to the choice of undergraduate degree in two samples: (1) undergraduate (N = 989) and (2) prospective (N = 896) students. We developed the Motivations Influencing Course Choice (MICC) questionnaire to measure these motivations. Scales of Helping, Career, Loafing, and Interest showed good psychometric properties, showed validity with respect to general life goals and personality traits, and predicted actual and prospective degree choices. We demonstrated that medical degrees were chosen due to a mixture of Helping and Career, while engineering degrees were associated with Career and low Interest in the degree. The choice of arts and humanities degrees was driven by Interest and low concern about future career, accompanied with high Loafing. We also demonstrated gender differences: females were high in Helping (both samples) and Interest (only in the undergraduate sample) motivation, while males scored higher in Career (only in the undergraduate sample) and Loafing (both samples). The findings can feed into both theoretical accounts of proximal motivation as well as provide help to improve degree programmes at universities and support better career advice. PMID:25431561
2015-11-30
Membrane Liner FEA Model ........................................................15 Rectangular PCQS with Embedded Air Beams FEA Model...2 2 Component Air Volumes of the Rectangular PCQS Concept with Inner Membrane Liner ...GCR Galactic cosmic rays or radiation HPF High-performance fibers IML Inner membrane liner K Degree Kelvin LaRC Langley Research Center m Mass
NASA Astrophysics Data System (ADS)
Leroy, Matthieu; Keppens, Rony
2016-04-01
The transfer of matter from the solar-wind to the Earth's magnetosphere during southward solar wind is mostly well understood but the processes governing the same phenomenon during northward solar wind remains to be fully apprehended. Numerous numerical studies have investigated the topic with many interesting results but most of these were considering two-dimensional situations with simplified magnetic configuration and often neglecting the inhomogeneities for the sake of clarity. Given the typical parameters at the magnetosphere-solar wind interface, the situation must be considered in the frame of Hall-MHD, due to the fact that the current layers widths and the gradient lengths can be in the order of the ion inertial length. As a consequence of Hall-MHD creating a third vector component from two planar ones, and also because magnetic perturbations can affect the field configuration at a distance in all directions and not only locally, three-dimensional treatment is necessary. In this spirit three-dimensional simulations of a configuration approaching the conditions leading to the development of Kelvin-Helmholtz instabilities at the flank of the magnetosphere during northward oriented solar-wind are performed as means to study the entry of solar-wind matter into Earth's magnetic field. In the scope of assessing the effect of the Hall-term in the physical processes, the simulations are also performed in the MHD frame. Furthermore the influence of the density and velocity jump through the shear layer on the rate of mass entering the magnetosphere is explored. Indeed, depending on the exact values of the physical quantities, the Kelvin-Helmholtz instability may have to compete with secondary instabilities and the non-linear phase may exhibit vortex merging and large-scale structures reorganisation, creating very different mixing layers, or generate different reconnection sites, locally and at a distance. These different configurations may have discernible signatures
Ten Essential Concepts for Remediation in Mathematics.
ERIC Educational Resources Information Center
Roseman, Louis
1985-01-01
Ten crucial mathematical concepts with which errors are made are listed, with methods used to teach them to high school students. The concepts concern order, place values, inverse operations, multiplication and division, remainders, identity elements, fractions, conversions, decimal points, and percentages. (MNS)
Importance of small-degree nodes in assortative networks with degree-weight correlations
NASA Astrophysics Data System (ADS)
Ma, Sijuan; Feng, Ling; Monterola, Christopher Pineda; Lai, Choy Heng
2017-10-01
It has been known that assortative network structure plays an important role in spreading dynamics for unweighted networks. Yet its influence on weighted networks is not clear, in particular when weight is strongly correlated with the degrees of the nodes as we empirically observed in Twitter. Here we use the self-consistent probability method and revised nonperturbative heterogenous mean-field theory method to investigate this influence on both susceptible-infective-recovered (SIR) and susceptible-infective-susceptible (SIS) spreading dynamics. Both our simulation and theoretical results show that while the critical threshold is not significantly influenced by the assortativity, the prevalence in the supercritical regime shows a crossover under different degree-weight correlations. In particular, unlike the case of random mixing networks, in assortative networks, the negative degree-weight correlation leads to higher prevalence in their spreading beyond the critical transmissivity than that of the positively correlated. In addition, the previously observed inhibition effect on spreading velocity by assortative structure is not apparent in negatively degree-weight correlated networks, while it is enhanced for that of the positively correlated. Detailed investigation into the degree distribution of the infected nodes reveals that small-degree nodes play essential roles in the supercritical phase of both SIR and SIS spreadings. Our results have direct implications in understanding viral information spreading over online social networks and epidemic spreading over contact networks.
Stimulating Base-Ten Reasoning with Context
ERIC Educational Resources Information Center
Bray, Wendy S.; Blais, Tanya Vik
2017-01-01
When asked to determine the number of tens in twenty-five, most second graders who have had instruction on place value can quickly provide the correct answer of two. However, when asked to show how the numeral 2 is represented in a set of twenty-five objects, many children struggle to draw a connection between the digit 2 and twenty objects in the…
Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels
and Energy-Efficient Vehicle Technologies Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies to someone by E-mail Share Alternative Fuels Data Center: Ten Ways You Can Implement Alternative Fuels and Energy-Efficient Vehicle Technologies on Facebook Tweet about
Community Politics and Educational Change. Ten School Systems Under Court Order.
ERIC Educational Resources Information Center
Willie, Charles V., Ed.; Greenblath, Susan L., Ed.
This book contains reports on ten school districts' responses to court ordered desegregation. The book begins with an historical background and a discussion of racial politics and community conflict. Following the introduction are the ten case studies, whose titles reveal the city and issues under examination: (1) "Boston, Massachusetts:…
Upscale Impact of Mesoscale Disturbances of Tropical Convection on Convectively Coupled Kelvin Waves
NASA Astrophysics Data System (ADS)
Yang, Q.; Majda, A.
2017-12-01
Tropical convection associated with convectively coupled Kelvin waves (CCKWs) is typically organized by an eastward-moving synoptic-scale convective envelope with numerous embedded westward-moving mesoscale disturbances. It is of central importance to assess upscale impact of mesoscale disturbances on CCKWs as mesoscale disturbances propagate at various tilt angles and speeds. Here a simple multi-scale model is used to capture this multi-scale structure, where mesoscale fluctuations are directly driven by mesoscale heating and synoptic-scale circulation is forced by mean heating and eddy transfer of momentum and temperature. The two-dimensional version of the multi-scale model drives the synoptic-scale circulation, successfully reproduces key features of flow fields with a front-to-rear tilt and compares well with results from a cloud resolving model. In the scenario with an elevated upright mean heating, the tilted vertical structure of synoptic-scale circulation is still induced by the upscale impact of mesoscale disturbances. In a faster propagation scenario, the upscale impact becomes less important, while the synoptic-scale circulation response to mean heating dominates. In the unrealistic scenario with upward/westward tilted mesoscale heating, positive potential temperature anomalies are induced in the leading edge, which will suppress shallow convection in a moist environment. In its three-dimensional version, results show that upscale impact of mesoscale disturbances that propagate at tilt angles (110o 250o) induces negative lower-tropospheric potential temperature anomalies in the leading edge, providing favorable conditions for shallow convection in a moist environment, while the remaining tilt angle cases have opposite effects. Even in the presence of upright mean heating, the front-to-rear tilted synoptic-scale circulation can still be induced by eddy terms at tilt angles (120o 240o). In the case with fast propagating mesoscale heating, positive
Thermodynamic Behavior of Nano-sized Gold Clusters on the (001) Surface
NASA Technical Reports Server (NTRS)
Paik, Sun M.; Yoo, Sung M.; Namkung, Min; Wincheski, Russell A.; Bushnell, Dennis M. (Technical Monitor)
2001-01-01
We have studied thermal expansion of the surface layers of the hexagonally reconstructed Au (001) surface using a classical Molecular Dynamics (MD) simulation technique with an Embedded Atomic Method (EAM) type many-body potential. We find that the top-most hexagonal layer contracts as temperature increases, whereas the second layer expands or contracts depending on the system size. The magnitude of expansion coefficient of the top layer is much larger than that of the other layers. The calculated thermal expansion coefficients of the top-most layer are about -4.93 x 10(exp -5)Angstroms/Kelvin for the (262 x 227)Angstrom cluster and -3.05 x 10(exp -5)Angstroms/Kelvin for (101 x 87)Angstrom cluster. The Fast Fourier Transform (FFT) image of the atomic density shows that there exists a rotated domain of the top-most hexagonal cluster with rotation angle close to 1 degree at temperature T less than 1000Kelvin. As the temperature increases this domain undergoes a surface orientational phase transition. These predictions are in good agreement with previous phenomenological theories and experimental studies.
Top Ten Concerns for Trustees in 1988.
ERIC Educational Resources Information Center
Meyerson, Joel W.
1988-01-01
Ten issues most likely to influence institutions this year include tuition policy and financing, capital renewal and replacement, charitable giving, scientific equipment and laboratories, endowment management and spending policy, research funding, corporate contributions, minority enrollment and hiring, debt financing and debt capacity, and cost…
Claydon, Leica S; Chesterton, Linda S; Barlas, Panos; Sim, Julius
2011-09-01
To determine the hypoalgesic effects of transcutaneous electrical nerve stimulation (TENS) parameter combinations on experimental models in healthy humans. Searches were performed using the electronic databases Ovid MEDLINE, CINAHL, AMED, and Web of Science (from inception to December 2009). Manual searches of journals and reference lists of retrieved trials were also performed. Randomized controlled trials (RCTs) were included in the review if they compared the hypoalgesic effect of TENS relative with placebo and control, using an experimental pain model in healthy human participants. Two reviewers independently selected the trials, assessed their methodologic quality and extracted data. Forty-three RCTs were eligible for inclusion. A best evidence synthesis revealed: Overall "conflicting" (inconsistent findings in multiple RCTs) evidence of TENS efficacy on experimental pain irrespective of TENS parameters used. Overall intense TENS has "moderate" evidence of efficacy (1 high-quality and 2 low-quality trials). Conventional TENS has overall conflicting evidence of efficacy, this is derived from "strong" evidence of efficacy (generally consistent findings in multiple high-quality RCTs) on pressure pain but strong evidence of inefficacy on other pain models. "Limited" evidence (positive findings from 1 RCT) of hypoalgesia exists for some novel parameters. Low-intensity, low-frequency, local TENS has strong evidence of inefficacy. Inappropriate TENS (using "barely perceptible" intensities) has moderate evidence of inefficacy. The level of hypoalgesic efficacy of TENS is clearly dependent on TENS parameter combination selection (defined in terms of intensity, frequency, and stimulation site) and experimental pain model. Future clinical RCTs may consider these TENS dose responses.
[Smoking among psychology students over a ten-year period (1996-2006)].
Míguez Varela, María del Carmen; Becoña Iglesias, Elisardo
2009-11-01
The purpose of this study was to analyze the evolution of smoking among Psychology students at the University of Santiago de Compostela (Spain) over a ten-year period (1986-2006). We also assessed the extent of knowledge of the Spanish health legislation on tobacco (Ley 28/2005) and its effect on smoking. We administered a questionnaire to representative samples of students from the 1st year of their Psychology course to the 5th year, on four occasions. In the academic year 1996-1997 (N = 835), 34% of the sample claimed to be daily smokers; in 1999-2000 (N = 842), the figure was 35.2%; in 2003-2004 (N = 835) it was 31.9%; and in 2006-2007 (N = 688), it was 22.8%. Moreover, in the last assessment, 97.1% of the sample reported being aware of the legislation (Ley 28/2005) and 41.9% of the smokers claimed that it had some degree of influence on their smoking. It can be stated that, although overall current prevalence of smoking is similar to that of 10 years ago, a significant change is observed in the profile of smokers. This change is expressed in lower levels of nicotine dependence and a decrease in the percentage of daily smokers, together with an increase in occasional smokers.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moatimid, Galal M.; Obied Allah, M. H.; Hassan, Mohamed A.
2013-10-15
In this paper, the Kelvin-Helmholtz instability of viscous incompressible magnetic fluid fully saturated porous media is achieved through the viscous potential theory. The flow is considered to be through semi-permeable boundaries above and below the fluids through which the fluid may either be blown in or sucked out, in a direction normal to the main streaming direction of the fluid flow. An oblique magnetic field, mass, heat transfer, and surface tension are present across the interface. Through the linear stability analysis, a general dispersion relation is derived and the natural curves are plotted. Therefore, the linear stability condition is discussedmore » in some depth. In view of the multiple time scale technique, the Ginzburg–Landau equation, which describes the behavior of the system in the nonlinear approach, is obtained. The effects of the orientation of the magnetic fields on the stability configuration in linear, as well as nonlinear approaches, are discussed. It is found that the Darcy's coefficient for the porous layers plays a stabilizing role. The injection of the fluids at both boundaries has a stabilizing effect, in contrast with the suction at both boundaries.« less
NASA Astrophysics Data System (ADS)
Das, Subrata Kumar; Das, Siddarth Shankar; Saha, Korak; Murali Krishna, U. V.; Dani, K. K.
2018-04-01
Characteristics of Kelvin Helmholtz Instability (KHI) using Doppler wind lidar observation have rarely been reported during the Indian summer monsoon season. In this paper, we present a case study of KHI near planetary boundary layer using Doppler wind lidar and radiosonde measurements at Mahabubnagar, a tropical Indian station. The data was collected during the Integrated Ground Observation Campaign (June-October 2011) under the Cloud Aerosol Interaction and Precipitation Enhancement EXperiment-2011. The continuous wind lidar observation during 10-16 August 2011 shows there is an increase in carrier-to-noise ratio values near planetary boundary layer from 03:00 to 11:00 LT on 13 August; reveals the formation of KHI. There is a strong power bursts pattern corresponding to high turbulence characteristics in the early half of the day. The KHI temporal evolution from initial to dissipating stage is observed with clear variation in the carrier-to-noise ratio values. The observed KHI billows are in the height between 600 and 1200 m and lasted for about 7.5 h. The vertical velocity from Doppler lidar measurement shows the presence of updrafts after breaking of KHI in the boundary layer. The presence of strong wind shear, high stability parameter, low Richardson number and high relative humidity during the enhanced carrier-to-noise ratio period indicates the ideal condition for the formation and persistence of this dynamic instability. A typical characteristic of trapped humidity above the KHI billows suggest the presence of strong inversion. A wavelet analysis of 3-dimensional wind components show dominant periodicity of 45-65 min and the periodicity in vertical wind is more prominent.
Age Group Comparisons of TENS Response among Individuals with Chronic Axial Low Back Pain
Simon, Corey B.; Riley, Joseph L.; Fillingim, Roger B.; Bishop, Mark D.; George, Steven Z.
2015-01-01
Chronic low back pain (CLBP) is a highly prevalent and disabling musculoskeletal pain condition among older adults. Transcutaneous electrical nerve stimulation (TENS) is commonly used to treat CLBP, however, TENS response for older adults compared to younger adults is untested. In a dose-response study stratified by age, sixty participants with axial CLBP (20 young, 20 middle-aged, 20 older) received four 20-minute sessions of high frequency, high intensity TENS over a two to three-week period in a laboratory-controlled setting. Experimental measures of pain sensitivity (mechanical pressure pain detection threshold, PPT) and central pain excitability (phasic heat temporal summation, TS; heat aftersensations, AS) were assessed before and after TENS. Episodic or immediate axial CLBP relief was assessed after TENS via measures of resting pain, movement-evoked-pain, and self-reported disability. Cumulative or prolonged axial CLBP relief was assessed by comparing daily pain report across sessions. Independent of age, individuals experienced episodic increase in PPT and reduction in AS following TENS application. Similarly, all groups, on average, experienced episodic axial CLBP relief via improved resting pain, movement-evoked pain, and disability report. Under this design, no cumulative effect was observed as daily pain did not improve for any age group across the four sessions. However, older adults received higher TENS amplitude across all sessions in achieving similar TENS responses to younger adults. These findings suggest that older adults experience similar episodic axial CLBP relief as younger individuals following high frequency, high intensity TENS when higher dosage parameters are used. PMID:26342650
Chemistry on the world-wide-web: a ten year experiment.
Goodman, Jonathan M
2004-11-21
The server logs for access to the Cambridge Chemistry webserver show how use of the server has increased over the last ten years, with access doubling every year and a half. This growth has started to slow, and extrapolation of the data suggests that the current rate of access is close to a plateau of ten million downloads a year. The transition for chemists from no internet access to saturation coverage, therefore, appears almost complete.
Five degrees of freedom linear state-space representation of electrodynamic thrust bearings
NASA Astrophysics Data System (ADS)
Van Verdeghem, J.; Kluyskens, V.; Dehez, B.
2017-09-01
Electrodynamic bearings can provide stable and contactless levitation of rotors while operating at room temperatures. Depending solely on passive phenomena, specific models have to be developed to study the forces they exert and the resulting rotordynamics. In recent years, models allowing us to describe the axial dynamics of a large range of electrodynamic thrust bearings have been derived. However, these bearings being devised to be integrated into fully magnetic suspensions, the existing models still suffer from restrictions. Indeed, assuming the spin speed as varying slowly, a rigid rotor is characterised by five independent degrees of freedom whereas early models only considered the axial degree. This paper presents a model free of the previous limitations. It consists in a linear state-space representation describing the rotor's complete dynamics by considering the impact of the rotor axial, radial and angular displacements as well as the gyroscopic effects. This set of ten equations depends on twenty parameters whose identification can be easily performed through static finite element simulations or quasi-static experimental measurements. The model stresses the intrinsic decoupling between the axial dynamics and the other degrees of freedom as well as the existence of electrodynamic angular torques restoring the rotor to its nominal position. Finally, a stability analysis performed on the model highlights the presence of two conical whirling modes related to the angular dynamics, namely the nutation and precession motions. The former, whose intrinsic stability depends on the ratio between polar and transverse moments of inertia, can be easily stabilised through external damping whereas the latter, which is stable up to an instability threshold linked to the angular electrodynamic cross-coupling stiffness, is less impacted by that damping.
Yoshimoto, Sazu; Babygirija, Reji; Dobner, Anthony; Ludwig, Kirk; Takahashi, Toku
2012-05-01
Disorders of colonic motility may contribute to symptoms in patients with irritable bowel syndrome (IBS), and stress is widely believed to play a major role in developing IBS. Stress increases corticotropin releasing factor (CRF) of the hypothalamus, resulting in acceleration of colonic transit in rodents. In contrast, hypothalamic oxytocin (OXT) has an anti-stress effect via inhibiting CRF expression and hypothalamic-pituitary-adrenal axis activity. Although transcutaneous electrical nerve stimulation (TENS) and acupuncture have been shown to have anti-stress effects, the mechanism of the beneficial effects remains unknown. We tested the hypothesis that TENS upregulates hypothalamic OXT expression resulting in reduced CRF expression and restoration of colonic dysmotility in response to chronic stress. Male SD rats received different types of stressors for seven consecutive days (chronic heterotypic stress). TENS was applied to the bilateral hind limbs every other day before stress loading. Another group of rats did not receive TENS treatment. TENS significantly attenuated accelerated colonic transit induced by chronic heterotypic stress, which was antagonized by a central injection of an OXT antagonist. Immunohistochemical study showed that TENS increased OXT expression and decreased CRF expression at the paraventricular nucleus (PVN) following chronic heterotypic stress. It is suggested that TENS upregulates hypothalamic OXT expression which acts as an anti-stressor agent and mediates restored colonic dysmotility following chronic stress. TENS may be useful to treat gastrointestinal symptoms associated with stress.
High School Biology Today: What the Committee of Ten Actually Said
ERIC Educational Resources Information Center
Sheppard, Keith; Robbins, Dennis M.
2007-01-01
This essay describes how in the 1890s the Committee of Ten arrived at their recommendations about the organization of the high school biological sciences and seeks to correct the frequently held, but erroneous view that the Committee of Ten was the initiator of the Biology-Chemistry-Physics order of teaching sciences prevalent in high schools…
Ebrahimi, Sirous; Gabus, Sébastien; Rohrbach-Brandt, Emmanuelle; Hosseini, Maryam; Rossi, Pierre; Maillard, Julien; Holliger, Christof
2010-07-01
Two bubble column sequencing batch reactors fed with an artificial wastewater were operated at 20 degrees C, 30 degrees C, and 35 degrees C. In a first stage, stable granules were obtained at 20 degrees C, whereas fluffy structures were observed at 30 degrees C. Molecular analysis revealed high abundance of the operational taxonomic unit 208 (OTU 208) affiliating with filamentous bacteria Leptothrix spp. at 30 degrees C, an OTU much less abundant at 20 degrees C. The granular sludge obtained at 20 degrees C was used for the second stage during which one reactor was maintained at 20 degrees C and the second operated at 30 degrees C and 35 degrees C after prior gradual increase of temperature. Aerobic granular sludge with similar physical properties developed in both reactors but it had different nutrient elimination performances and microbial communities. At 20 degrees C, acetate was consumed during anaerobic feeding, and biological phosphorous removal was observed when Rhodocyclaceae-affiliating OTU 214 was present. At 30 degrees C and 35 degrees C, acetate was mainly consumed during aeration and phosphorous removal was insignificant. OTU 214 was almost absent but the Gammaproteobacteria-affiliating OTU 239 was more abundant than at 20 degrees C. Aerobic granular sludge at all temperatures contained abundantly the OTUs 224 and 289 affiliating with Sphingomonadaceae indicating that this bacterial family played an important role in maintaining stable granular structures.
Hingne, Priyanka M.; Sluka, Kathleen A.
2008-01-01
Repeated daily application transcutaneous electrical nerve stimulation (TENS) results in tolerance, at spinal opioid receptors, to the anti-hyperalgesia produced by TENS. Since N-Methyl-D-Aspartate (NMDA) receptor antagonists prevent analgesic tolerance to opioid agonists we hypothesized that blockade of NMDA receptors will prevent tolerance to TENS. In rats with knee joint inflammation, TENS was applied for 20 minute daily at high frequency (100 Hz), low frequency (4 Hz), or sham TENS. Rats were treated with the NMDA antagonist MK-801 (0.01 mg/kg-0.1 mg/kg) or vehicle daily before TENS. Paw withdrawal thresholds were tested before and after inflammation, and before and after TENS treatment for 4 days. On day 1 TENS reversed the decreased mechanical withdrawal threshold induced by joint inflammation. On day 4 TENS had no effect on the decreased withdrawal threshold in the group treated with vehicle demonstrating development of tolerance. However, in the group treated with 0.1 mg/kg MK-801, TENS significantly reversed the mechanical withdrawal thresholds on day 4 demonstrating that tolerance did not develop. Vehicle treated animals developed cross-tolerance at spinal opioid receptors. Treatment with MK-801 reversed this cross-tolerance at spinal opioid receptors. In summary, blockade of NMDA receptors prevents analgesic tolerance to daily TENS by preventing tolerance at spinal opioid receptors. Perspective Tolerance observed to the clinical treatment of TENS could be prevented by administration of pharmaceutical agents with NMDA receptors activity such as ketamine or dextromethorphan. PMID:18061543
Performance analysis of ten brands of batteries for hearing aids
Penteado, Silvio Pires; Bento, Ricardo Ferreira
2013-01-01
Summary Introduction: Comparison of the performance of hearing instrument batteries from various manufacturers can enable otologists, audiologists, or final consumers to select the best products, maximizing the use of these materials. Aim: To analyze the performance of ten brands of batteries for hearing aids available in the Brazilian marketplace. Methods: Hearing aid batteries in four sizes were acquired from ten manufacturers and subjected to the same test conditions in an acoustic laboratory. Results: The results obtained in the laboratory contrasted with the values reported by manufacturers highlighted significant discrepancies, besides the fact that certain brands in certain sizes perform better on some tests, but does not indicate which brand is the best in all sizes. Conclusions: It was possible to investigate the performance of ten brands of hearing aid batteries and describe the procedures to be followed for leakage, accidental intake, and disposal. PMID:25992026
An Investigation of the Hypoalgesic Effects of TENS Delivered by a Glove Electrode
Cowan, Stephen; McKenna, Joanne; McCrum-Gardner, Evie; Johnson, Mark I.; Sluka, Kathleen A.; Walsh, Deirdre M.
2009-01-01
This randomized, placebo-controlled, blinded study investigated the hypoalgesic effects of high-frequency transcutaneous electrical nerve stimulation (TENS) delivered via a glove electrode compared with standard self-adhesive electrodes. Fifty-six TENS-naïve, healthy individuals (18 to 50 years old; 28 men, 28 women) were randomly allocated to 1 of 4 groups (n = 14 per group): glove electrode; placebo TENS using a glove electrode; standard electrode; and no treatment control. Active TENS (continuous stimulus, 100 Hz, strong but comfortable intensity) was applied to the dominant forearm/hand for 30 minutes. Placebo TENS was applied using a burst stimulus, 100-Hz frequency, 5-second cycle time for 42 seconds, after which the current amplitude was automatically reset to 0 mA. Pressure pain thresholds (PPTs) were recorded from 3 points on the dominant and nondominant upper limbs before and after TENS. Statistical analyses of dominant PPT data using between-within groups ANOVA showed significant differences between groups at all 3 recording points (P = .01). Post hoc Scheffe tests indicated no significant difference between the standard electrode and glove electrode groups. There was a significant hypoalgesic effect in the standard electrode group compared with the control group and between the glove electrode group and both the control and placebo TENS groups. There was no significant interactive effect between time and group at any of the recording points (P > .05). Perspective This study presents a comparison of the hypoalgesic effects of 2 different types of TENS electrode, a novel glove electrode and standard self-adhesive rectangular electrodes. The glove electrode provides a larger contact area with the skin, thereby stimulating a greater number of nerve fibers. The results show that both electrodes have similar hypoalgesic effects and therefore give the clinician another choice in electrode. PMID:19398378
Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C
2012-01-01
Summary Recently, the compound semiconductor Cu3BiS3 has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu3BiS3 absorber layer and the junction formation with CdS, ZnS and In2S3 buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20–100 nm, and a considerably smaller work-function distribution for In2S3 compared to that of CdS and ZnS. For In2S3 and CdS buffer layers the KPFM experiments indicate negatively charged Cu3BiS3 grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In2S3 buffer layer. Our findings indicate that Cu3BiS3 may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased. PMID:22497001
Mesa, Fredy; Chamorro, William; Vallejo, William; Baier, Robert; Dittrich, Thomas; Grimm, Alexander; Lux-Steiner, Martha C; Sadewasser, Sascha
2012-01-01
Recently, the compound semiconductor Cu(3)BiS(3) has been demonstrated to have a band gap of ~1.4 eV, well suited for photovoltaic energy harvesting. The preparation of polycrystalline thin films was successfully realized and now the junction formation to the n-type window needs to be developed. We present an investigation of the Cu(3)BiS(3) absorber layer and the junction formation with CdS, ZnS and In(2)S(3) buffer layers. Kelvin probe force microscopy shows the granular structure of the buffer layers with small grains of 20-100 nm, and a considerably smaller work-function distribution for In(2)S(3) compared to that of CdS and ZnS. For In(2)S(3) and CdS buffer layers the KPFM experiments indicate negatively charged Cu(3)BiS(3) grain boundaries resulting from the deposition of the buffer layer. Macroscopic measurements of the surface photovoltage at variable excitation wavelength indicate the influence of defect states below the band gap on charge separation and a surface-defect passivation by the In(2)S(3) buffer layer. Our findings indicate that Cu(3)BiS(3) may become an interesting absorber material for thin-film solar cells; however, for photovoltaic application the band bending at the charge-selective contact has to be increased.
Transcutaneous electrical nerve stimulation (TENS) versus placebo for chronic low-back pain.
Khadilkar, Amole; Odebiyi, Daniel Oluwafemi; Brosseau, Lucie; Wells, George A
2008-10-08
Transcutaneous electrical nerve stimulation (TENS) was introduced more than 30 years ago as a therapeutic adjunct to the pharmacological management of pain. However, despite widespread use, its effectiveness in chronic low-back pain (LBP) is still controversial. To determine whether TENS is more effective than placebo for the management of chronic LBP. The Cochrane Central Register of Controlled Trials, MEDLINE, EMBASE, PEDro and CINAHL were searched up to July 19, 2007. Only randomized controlled clinical trials (RCTs) comparing TENS to placebo in patients with chronic LBP were included. Two review authors independently selected the trials, assessed their methodological quality and extracted relevant data. If quantitative meta-analysis was not possible, a qualitative synthesis was performed, taking into consideration 5 levels of evidence as recommended by the Cochrane Collaboration Back Review Group. Four high-quality RCTs (585 patients) met the selection criteria. Clinical heterogeneity prevented the use of meta-analysis. Therefore, a qualitative synthesis was completed. There was conflicting evidence about whether TENS was beneficial in reducing back pain intensity and consistent evidence in two trials (410 patients) that it did not improve back-specific functional status. There was moderate evidence that work status and the use of medical services did not change with treatment. Conflicting results were obtained from two studies regarding generic health status, with one study showing no improvement on the modified Sickness Impact Profile and another study showing significant improvements on several, but not all subsections of the SF-36 questionnaire. Multiple physical outcome measures lacked statistically significant improvement relative to placebo. In general, patients treated with acupuncture-like TENS responded similarly to those treated with conventional TENS. However, in two of the trials, an inadequate stimulation intensity was used for acupuncture
Ten Trends in Marketing Adult and Continuing Education.
ERIC Educational Resources Information Center
Coates, Julie; Dobmeyer, Edward
1990-01-01
Ten trends in marketing adult and continuing education are long-range planning, targeted programs, seasonality, better brochure design, spinoff brochures, tracking, database marketing, alternatives to direct mail, retention, and teachers' image or reputation. (SK)
Degree Attainment. Snapshot™ Report, Winter 2015
ERIC Educational Resources Information Center
National Student Clearinghouse, 2015
2015-01-01
This Snapshot Report presents information on student degree attainment in science and engineering disciplines for 2004 and 2014. It offers data on the following: (1) Science and Engineering Degrees as Percentage of All Degrees; (2) Gender Distribution of Science and Engineering Degrees by Level; (3) Gender Distribution of Bachelor's Degrees in…
Ten Inquiry Methods Used in Curriculum Studies.
ERIC Educational Resources Information Center
Short, Edmund C.
Ten different methods of inquiry are outlined in this overview of research methodologies currently being employed in the field of curriculum studies: (1) philosophical, (2) historical, (3) scientific, (4) artistic, (5) moral, (6) religious, (7) interpretive, (8) instrumental, (9) deliberative, and (10) action oriented. Each of the 10 methods is…
ERIC Educational Resources Information Center
Knox, Daniel
2017-01-01
This study addresses gaps in the theoretical and policy literature by examining the relationship between associate degree program credit requirements and four student outcomes: associate degree attainment, time to degree, final associate degree grade point average, and persistence. Using student unit record data, a longitudinal quantitative study…
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
Bowman, D. C.; Lees, J. M.
2018-04-27
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
Upper Atmosphere Heating From Ocean-Generated Acoustic Wave Energy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bowman, D. C.; Lees, J. M.
We present that colliding sea surface waves generate the ocean microbarom, an acoustic signal that may transmit significant energy to the upper atmosphere. Previous estimates of acoustic energy flux from the ocean microbarom and mountain-wind interactions are on the order of 0.01 to 1 mW/m 2, heating the thermosphere by tens of Kelvins per day. We captured upgoing ocean microbarom waves with a balloon-borne infrasound microphone; the maximum acoustic energy flux was approximately 0.05 mW/m 2. This is about half the average value reported in previous ground-based microbarom observations spanning 8 years. The acoustic flux from the microbarom episode describedmore » here may have heated the thermosphere by several Kelvins per day while the source persisted. Lastly, we suggest that ocean wave models could be used to parameterize acoustically generated heating of the upper atmosphere based on sea state.« less
Ten quick tips for machine learning in computational biology.
Chicco, Davide
2017-01-01
Machine learning has become a pivotal tool for many projects in computational biology, bioinformatics, and health informatics. Nevertheless, beginners and biomedical researchers often do not have enough experience to run a data mining project effectively, and therefore can follow incorrect practices, that may lead to common mistakes or over-optimistic results. With this review, we present ten quick tips to take advantage of machine learning in any computational biology context, by avoiding some common errors that we observed hundreds of times in multiple bioinformatics projects. We believe our ten suggestions can strongly help any machine learning practitioner to carry on a successful project in computational biology and related sciences.
Cloud Top Scanning radiometer (CTS): User's guide
NASA Technical Reports Server (NTRS)
Brown, K. S.
1981-01-01
The CTS maps the Earth's surface with a resolution of 0.1 km from an altitude of 18km with 60km side-to-side coverage of the field. It has three spectral channels. The 0.625 micrometer centered visual channel detects reflectance to within 1 percent. The 6.75 micrometer centered water vapor channel detects changes in temperature of less than one degree Kelvin at 175 K. The 11.5 micrometer centered infrared window channel detects changes of less one half degree Kelvin at 175 K. The data can be converted graphically into three display images of the scene. Values for scene temperature and albedo are calculated from calibration equations. The equations were derived from in-situ and laboratory measurements. Intercomparisons of the flight data temperatures with ground based and other remote sensor results established the certainty of the derived temperature values to within 3 K over a wide temperature range (180 to 320 K). The system performance, calibration, and operation is successful and the engineering information describing this system should prove useful to scientists and potential users of the data.
An Equation of State for Hypersaline Water in Great Salt Lake, Utah, USA
Naftz, D.L.; Millero, F.J.; Jones, B.F.; Green, W.R.
2011-01-01
Great Salt Lake (GSL) is one of the largest and most saline lakes in the world. In order to accurately model limnological processes in GSL, hydrodynamic calculations require the precise estimation of water density (??) under a variety of environmental conditions. An equation of state was developed with water samples collected from GSL to estimate density as a function of salinity and water temperature. The ?? of water samples from the south arm of GSL was measured as a function of temperature ranging from 278 to 323 degrees Kelvin (oK) and conductivity salinities ranging from 23 to 182 g L-1 using an Anton Paar density meter. These results have been used to develop the following equation of state for GSL (?? = ?? 0.32 kg m-3): ?? - ??0 = 184.01062 + 1.04708 * S - 1.21061*T + 3.14721E - 4*S2 + 0.00199T2 where ??0 is the density of pure water in kg m-3, S is conductivity salinity g L-1, and T is water temperature in degrees Kelvin. ?? 2011 U.S. Government.
TEN MASTER TEACHER AND PROGRAM AWARD PROGRAMS.
ERIC Educational Resources Information Center
KOVACH, EDITH M.A.
IN 1966 THE AMERICAN CLASSICAL LEAGUE HONORED THREE TEACHERS WITH ITS MASTER SECONDARY SCHOOL LATIN TEACHER AND PROGRAM AWARD. AMONG THE 32 PROGRAMS CITED FOR RECOGNITION, TEN (INCLUDING THOSE OF THE AWARD WINNERS) POSSESS CLEARLY INNOVATIVE FEATURES. IN BRIEF THEY FEATURE (1) A FIFTH YEAR ADVANCED PLACEMENT PROGRAM, LATIN AS INTRODUCTORY TO…
Deyo, R A; Walsh, N E; Martin, D C; Schoenfeld, L S; Ramamurthy, S
1990-06-07
A number of treatments are widely prescribed for chronic back pain, but few have been rigorously evaluated. We examined the effectiveness of transcutaneous electrical nerve stimulation (TENS), a program of stretching exercises, or a combination of both for low back pain. Patients with chronic low back pain (median duration, 4.1 years) were randomly assigned to receive daily treatment with TENS (n = 36), sham TENS (n = 36), TENS plus a program of exercises (n = 37), or sham TENS plus exercises (n = 36). After one month no clinically or statistically significant treatment effect of TENS was found on any of 11 indicators of outcome measuring pain, function, and back flexion; there was no interactive effect of TENS with exercise. Overall improvement in pain indicators was 47 percent with TENS and 42 percent with sham TENS (P not significant). The 95 percent confidence intervals for group differences excluded a major clinical benefit of TENS for most outcomes. By contrast, after one month patients in the exercise groups had significant improvement in self-rated pain scores, reduction in the frequency of pain, and greater levels of activity as compared with patients in the groups that did not exercise. The mean reported improvement in pain scores was 52 percent in the exercise groups and 37 percent in the nonexercise groups (P = 0.02). Two months after the active intervention, however, most patients had discontinued the exercises, and the initial improvements were gone. We conclude that for patients with chronic low back pain, treatment with TENS is no more effective than treatment with a placebo, and TENS adds no apparent benefit to that of exercise alone.
ERIC Educational Resources Information Center
Geber, Beverly
1987-01-01
The author describes the growing movement toward accreditation for human resources development professionals. She covers the issue of diversity, undergraduate versus graduate degrees, and future trends. (CH)
NASA Astrophysics Data System (ADS)
Mandelker, Nir; Padnos, Dan; Dekel, Avishai; Birnboim, Yuval; Burkert, Andreas; Krumholz, Mark R.; Steinberg, Elad
2016-12-01
Massive galaxies at high redshift are predicted to be fed from the cosmic web by narrow, dense streams of cold gas that penetrate through the hot medium encompassed by a stable shock near the virial radius of the dark-matter halo. Our long-term goal is to explore the heating and dissipation rate of the streams and their fragmentation and possible breakup, in order to understand how galaxies are fed, and how this affects their star formation rate and morphology. We present here the first step, where we analyse the linear Kelvin-Helmholtz instability (KHI) of a cold, dense slab or cylinder in 3D flowing supersonically through a hot, dilute medium. The current analysis is limited to the adiabatic case with no gravity. By analytically solving the linear dispersion relation, we find a transition from a dominance of the familiar rapidly growing surface modes in the subsonic regime to more slowly growing body modes in the supersonic regime. The system is parametrized by three parameters: the density contrast between stream and medium, the Mach number of stream velocity with respect to the medium and the stream width with respect to the halo virial radius. A realistic choice for these parameters places the streams near the mode transition, with the KHI exponential-growth time in the range 0.01-10 virial crossing times for a perturbation wavelength comparable to the stream width. We confirm our analytic predictions with idealized hydrodynamical simulations. Our linear estimates thus indicate that KHI may be effective in the evolution of streams before they reach the galaxy. More definite conclusions await the extension of the analysis to the non-linear regime and the inclusion of cooling, thermal conduction, the halo potential well, self-gravity and magnetic fields.
NASA Astrophysics Data System (ADS)
Zhang, Hongmei; Wang, Yue; Fatemi, Mostafa; Insana, Michael F.
2017-03-01
Kelvin-Voigt fractional derivative (KVFD) model parameters have been used to describe viscoelastic properties of soft tissues. However, translating model parameters into a concise set of intrinsic mechanical properties related to tissue composition and structure remains challenging. This paper begins by exploring these relationships using a biphasic emulsion materials with known composition. Mechanical properties are measured by analyzing data from two indentation techniques—ramp-stress relaxation and load-unload hysteresis tests. Material composition is predictably correlated with viscoelastic model parameters. Model parameters estimated from the tests reveal that elastic modulus E 0 closely approximates the shear modulus for pure gelatin. Fractional-order parameter α and time constant τ vary monotonically with the volume fraction of the material’s fluid component. α characterizes medium fluidity and the rate of energy dissipation, and τ is a viscous time constant. Numerical simulations suggest that the viscous coefficient η is proportional to the energy lost during quasi-static force-displacement cycles, E A . The slope of E A versus η is determined by α and the applied indentation ramp time T r. Experimental measurements from phantom and ex vivo liver data show close agreement with theoretical predictions of the η -{{E}A} relation. The relative error is less than 20% for emulsions 22% for liver. We find that KVFD model parameters form a concise features space for biphasic medium characterization that described time-varying mechanical properties. The experimental work was carried out at the Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA. Methodological development, including numerical simulation and all data analysis, were carried out at the school of Life Science and Technology, Xi’an JiaoTong University, 710049, China.
Ten-year earnings from two small woodlands
Wilfred C. Mitchell; Henry H. Webster
1961-01-01
Ten years ago, management was started on two 30-acre demonstration woodlots on the Fernow Experimental Forest near Parsons, West Virginia. These were designated as Farm Woodlots, on the assumption that there was something significantly different between management incentives and opportunities for small holdings owned by farmers and for those owned by non-farmers.
Childhood herpes zoster: a clustering of ten cases.
Prabhu, Smitha; Sripathi, H; Gupta, Sanjeev; Prabhu, Mukyaprana
2009-01-01
Herpes zoster occurs due to reactivation of the latent varicella zoster virus and is usually a disease of the elderly. Childhood herpes zoster is believed to be rare, though recent studies suggest increasing incidence in children. Here we report ten cases of childhood herpes zoster, seven of which occurred within a short span of six months, at a tertiary care level hospital in Pokhara, Nepal. Only three of the ten children reported previous history of varicella infection and none was immunized against varicella. Though childhood herpes zoster accounted for less than 1% of the total zoster cases in the past, recent reports show an increase in the number of cases in apparently healthy children. So far, no studies have been done linking childhood herpes zoster with HIV, though there are many studies linking it with other immunocompromised conditions.
Assessment of hypoallergenicity of ten skincare products.
Brandt, Staci; Lio, Peter
2014-03-01
Sensitive skin is a common skin complaint frequently associated with skin diseases or adverse reactions to cosmetic products. Manufacturers have produced numerous products targeted for patients with sensitive skin and frequently label these products as being hypoallergenic. This term implies that the product may be less likely to cause an allergic reaction and be better suited for those with sensitive skin. However, there is no federal regulatory definition of this term and products may not have clinical support of their claim. Patch testing ingredients is frequently done to identify potential irritants; however, patch-testing product formulations may provide more realistic expectations about potential skin sensitivity and help support claims of hypoallergenicity. Ten skincare products were assessed for their sensitizing potential and hypoallergenicity in 14 repeat insult patch test clinical studies, involving over 2,000 subjects. In these studies, the products were deemed to be hypoallergenic if there was no evidence of sensitization or allergic reactions. The results from these trials demonstrated that all ten products were well tolerated, showed no sensitization or allergic reactions, and support claims of hypoallergenicity.
Currently available medical engineering degrees in the UK. Part 2: Postgraduate degrees.
Joyce, T
2009-05-01
This paper considers taught medical engineering MSc degrees, based on mechanical engineering, which are provided in the UK. Currently there are 19 institutions which provide such postgraduate degree programmes. These are the University of Aberdeen, University of Bath, University of Bradford, Brunel University, University of Dundee, University of Hull, Imperial College London, Keele University, King's College London, University of Leeds, University of Liverpool, University of Nottingham, University of Oxford, Queen Mary University of London, University of Southampton, University of Strathclyde, University of Surrey, University of Ulster, and University of Warwick. While most courses are delivered on a 1 year full-time basis, other delivery modes are also available. Relatively few modules are offered as distance learning or short courses. A wide range of modules are offered by the various universities for the different taught MSc degrees. Common modules include biomaterials and biomechanics. The medical-engineering-related modules offered by a number of universities are also made available to students on allied MSc programmes and undergraduate degrees in medical engineering.
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2011 CFR
2011-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2014 CFR
2014-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2013 CFR
2013-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2012 CFR
2012-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
40 CFR 63.3 - Units and abbreviations.
Code of Federal Regulations, 2010 CFR
2010-07-01
... defined as follows: (a) System International (SI) units of measure: A = ampere g = gram Hz = hertz J = joule °K = degree Kelvin kg = kilogram l = liter m = meter m3 = cubic meter mg = milligram = 10−3 gram ml = milliliter = 10−3 liter mm = millimeter = 10−3 meter Mg = megagram = 106 gram = metric ton MJ...
NASA Technical Reports Server (NTRS)
Reily, Cary; Kegely, Jeff; Burdine, Robert (Technical Monitor)
2001-01-01
The Space Optics Manufacturing Technology Center's X-ray Calibration Facility has been recently modified to test Next Generation Space Telescope (NGST) developmental mirrors at cryogenic temperatures (35 degrees Kelvin) while maintaining capability for performance testing of x-ray optics and detectors. The facility's current cryo-optical testing capability and potential modifications for future support of NGST will be presented.
The short-term effects of TENS plus therapeutic ultrasound combinations in chronic neck pain.
Sayilir, Selcuk
2018-05-01
To investigate the effects of TENS plus therapeutic ultrasound combinations on symptom relief, physical functionality, perceived stress levels, daytime sleepiness and neck mobility in patients with chronic neck pain (CNP). A total of 64 patients were divided into two groups as the TENS plus ultrasound group (n = 39) and the control CNP group (n = 25). The therapy comprised TENS and therapeutic ultrasound applications for 10 sessions. The control subjects were discouraged from using analgesics but were allowed to use paracetamol daily, if necessary. The Neck Disability Index (NDI), Epworth Sleepiness Scale (ESS), Perceived Stress Scale (PSS), visual analog scale (VAS) and tragus-wall/chin-manubrium distances were recorded at the baseline and after therapy. Significant improvements were detected in the TENS plus ultrasound group compared to the control CNP subjects in respect of VAS, PSS and NDI scores after the TENS plus therapeutic ultrasound therapies (all p < 0.05). The combination of therapeutic ultrasound plus TENS can be an effective modality for relieving pain/stress levels and improving functionality in the short-term of CNP. Copyright © 2018 Elsevier Ltd. All rights reserved.
Students' Perceptions of Foundation Degrees
ERIC Educational Resources Information Center
Ooms, A.; Burke, L. M.; Marks-Maran, D. J.; Webb, M.; Cooper, D.
2012-01-01
In 2008 there were 87,339 people enrolled on foundation degrees (FDs) in the UK (Foundation Degree Forward, 2009), and educational institutions in the UK offered 1700 different foundation degrees in over 25 subjects, with nearly 900 more in development (Action on Access, 2010). In addition, student views are seen to be of importance, as…
Ren, Xiao-Min; Guo, Liang-Hong; Gao, Yu; Zhang, Bin-Tian; Wan, Bin
2013-05-01
Polybrominated diphenyl ethers (PBDEs) have been shown to disrupt thyroid hormone (TH) functions in experimental animals, and one of the proposed disruption mechanisms is direct binding of hydroxylated PBDE (OH-PBDE) to TH receptors (TRs). However, previous data on TH receptor binding and TH activity of OH-PBDEs were very limited and sometimes inconsistent. In the present paper, we examined the binding potency of ten OH-PBDEs with different degrees of bromination to TR using a fluorescence competitive binding assay. The results showed that the ten OH-PBDEs bound to TR with potency that correlated to their bromination level. We further examined their effect on TR using a coactivator binding assay and GH3 cell proliferation assay. Different TR activities of OH-PBDEs were observed depending on their degree of bromination. Four low-brominated OH-PBDEs (2'-OH-BDE-28, 3'-OH-BDE-28, 5-OH-BDE-47, 6-OH-BDE-47) were found to be TR agonists, which recruited the coactivator peptide and enhanced GH3 cell proliferation. However, three high-brominated OH-PBDEs (3-OH-BDE-100, 3'-OH-BDE-154, 4-OH-BDE-188) were tested to be antagonists. Molecular docking was employed to simulate the interactions of OH-PBDEs with TR and identify the structural determinants for TR binding and activity. According to the docking results, low-brominated OH-PBDEs, which are weak binders but TR agonists, bind with TR at the inner side of its binding pocket, whereas high-brominated compounds, which are potent binders but TR antagonists, reside at the outer region. These results indicate that OH-PBDEs have different activities on TR (agonistic or antagonistic), possibly due to their different binding geometries with the receptor. Copyright © 2013 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Danchi, W. C.; Allen, R. J.; Benford, D. J.; Deming, D.; Gezan, D. Y.; Kuchner, M.; Leisawitz, D. T.; Linfield, R.; Millan-Gabet, R.; Monnier, J. D.
2003-01-01
The Fourier-Kelvin Stellar Interferometer (FKSI) is a mission concept for an imaging and nulling interferometer for the mid-infrared spectral region (5-30 microns). FKSI is conceived as a scientific and technological pathfinder to TPF/DARWIN as well as SPIRIT, SPECS, and SAFIR. It will also be a high angular resolution system complementary to NGST. The scientific emphasis of the mission is on the evolution of protostellar systems, from just after the collapse of the precursor molecular cloud core, through the formation of the disk surrounding the protostar, the formation of planets in the disk, and eventual dispersal of the disk material. FKSI will also search for brown dwarfs and Jupiter mass and smaller planets, and could also play a very powerful role in the investigation of the structure of active galactic nuclei and extra-galactic star formation. We have been studying alternative interferometer architectures and beam combination techniques, and evaluating the relevant science and technology tradeoffs. Some of the technical challenges include the development of the cryocooler systems necessary for the telescopes and focal plane array, light and stiff but well-damped truss systems to support the telescopes, and lightweight and coolable optical telescopes. We present results of detailed design studies of the FKSI starting with a design consisting of five one meter diameter telescopes arranged along a truss structure in a linear non-redundant array, cooled to 35 K. A maximum baseline of 20 meters gives a nominal resolution of 26 mas at 5 microns. Using a Fizeau beam combination technique, a simple focal plane camera could be used to obtain both Fourier and spectral data simultaneously for a given orientation of the array. The spacecraft will be rotated to give sufficient Fourier data to reconstruct complex images of a broad range of astrophysical sources. Alternative and simpler three and two telescope designs emphasizing nulling and spectroscopy also have been
Suizu, K; Harada, N
2005-05-01
To compare effects of waterproof covering on finger skin temperature (FST) and subjective hand pain during immersion tests using cold water at 10 degrees C, 12 degrees C and 15 degrees C. In the (Draft International Standard) of the International Organization for Standardization (ISO/DIS 14835-1), a water temperature of 12 degrees C and use of water covering are proposed. Six healthy male subjects took part in the immersion tests and immersed both hands into water at 10 degrees C, 12 degrees C and 15 degrees C for 5 min, repeatedly, with waterproof covering (polyethylene gloves) or without (bare hands). The FST data from middle fingers and subjective pain scores for hand pain were analyzed. Furthermore, the test with water at 12 degrees C was repeated to assess the repeatability of the test. The glove and water temperature factors for FST were significant at every minute from 1 min during immersion up to 2 min after recovery, showing higher values for waterproof covering than for bare hands and showing lowest values for water temperature of 10 degrees C and highest for 15 degrees C. The glove and water temperature factors for subjective pain score were significant at the 1-min and 2-min points during immersion, showing lower scores for waterproof covering than for bare hands and showing highest scores for water temperature of 10 degrees C and lowest for 15 degrees C. The results of the first and second tests using water of 12 degrees C showed no systematic difference in FST and hand pain between the tests, with a few exceptions. Subjective pain during the cold immersion test with polyethylene gloves and water at 12 degrees C can be reduced, while the differences in FST between water temperatures of 10 degrees C and 12 degrees C were small or not apparent at some points during immersion and recovery. The test also seems to be suitable for repeatability. Further investigation on hand-arm vibration syndrome (HAVS) patients to validate the use of the immersion test
Changing Doctoral Degrees: An International Perspective.
ERIC Educational Resources Information Center
Noble, Keith Allan
This book examines the origin and development of doctoral degrees and offers recommendations for the improvement of doctoral programs and degrees. It discusses the birth of universities and doctoral degrees in medieval Europe and reviews the spread of the degree to the United States, Britain, Canada, and Australia. Contemporary concerns about…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roediger, E.; Kraft, R. P.; Machacek, M. E.
2012-08-01
We present results from two {approx}30 ks Chandra observations of the hot atmospheres of the merging galaxy groups centered around NGC 7618 and UGC 12491. Our images show the presence of arc-like sloshing cold fronts (CFs) wrapped around each group center and {approx}100 kpc long spiral tails in both groups. Most interestingly, the CFs are highly distorted in both groups, exhibiting 'wings' along the fronts. These features resemble the structures predicted from non-viscous hydrodynamic simulations of gas sloshing, where Kelvin-Helmholtz instabilities (KHIs) distort the CFs. This is in contrast to the structure seen in many other sloshing and merger CFs,more » which are smooth and featureless at the current observational resolution. Both magnetic fields and viscosity have been invoked to explain the absence of KHIs in these smooth CFs, but the NGC 7618/UGC 12491 pair are two in a growing number of both sloshing and merger CFs that appear distorted. Magnetic fields and/or viscosity may be able to suppress the growth of KHIs at the CFs in some clusters and groups, but clearly not in all. We propose that the presence or absence of KHI distortions in CFs can be used as a measure of the effective viscosity and/or magnetic field strengths in the intracluster medium.« less
Efficacy of the use of two simultaneously TENS devices for fibromyalgia pain.
Lauretti, Gabriela Rocha; Chubaci, Eliana Fazuoli; Mattos, Anita Leocadia
2013-08-01
Fibromyalgia is characterized by a range of symptoms that include muscle pain, fatigue and sleep disorders. Transcutaneous electrical nerve stimulation (TENS) is an established method for pain relief. The purpose of the study was to evaluate the effectiveness and safety of the use of two simultaneously new TENS devices for fibromyalgia pain. After Ethics approval and informed consent, 39 patients were prospectively divided into three groups to evaluate TENS device, applied simultaneously in each patient: (1) at the lower back (perpendicular to the vertebrae canal, at the level of the 5th lumbar vertebrae) and (2) centrally above and below the space between the C7 and T1 spinous processes. The devices were applied for 20 min at 12-h interval during 7 consecutive days. For the placebo group (PG), the devices did not transmitted electrical stimulus. The single-TENS group (STG) (n = 13) had one active and one placebo TENS. The DTG applied both active TENS devices at the low back and cervical areas. Diclofenac was used as rescue analgesic. The efficacy measures were pain relief, reduction in use of daily analgesic tablets, quality of sleep and fatigue. The evaluation within groups revealed that patients from DPG refereed no pain relief when compared to their previous VAS pain score (8 cm, p > 0.05), while patients from the STG refereed improvement of 2.5 cm in the pain VAS (previous 8.5 cm compared to 6 cm after treatment) (p < 0.05), and the DPG refereed daily maintained reduction of 4 cm in the VAS pain (previous 8.5-4.3 cm) (p < 0.02). Concurrent daily consumption of analgesic tablets was reduced in both STG (p < 0.05) and DTG (p < 0.02). Comparison among groups revealed that analgesia, as well as quality of sleep and disposition, was DTG > STG > PG (p < 0.05). Participants subjectively found the active device useful. While the application of a single active TENS improved pain relief in fibromyalgia pain, pain and fatigue were further improved when two active devices
Ten Thousand Years of Solitude
DOE Office of Scientific and Technical Information (OSTI.GOV)
Benford, G.; Kirkwood, C.W.; Harry, O.
1991-03-01
This report documents the authors work as an expert team advising the US Department of Energy on modes of inadvertent intrusion over the next 10,000 years into the Waste Isolation Pilot Project (WIPP) nuclear waste repository. Credible types of potential future accidental intrusion into the WIPP are estimated as a basis for creating warning markers to prevent inadvertent intrusion. A six-step process is used to structure possible scenarios for such intrusion, and it is concluded that the probability of inadvertent intrusion into the WIPP repository over the next ten thousand years lies between one and twenty-five percent. 3 figs., 5more » tabs.« less
GIRAPHE V3.3: A User’s Manual with Examples
1988-09-13
less than one with a decimal (".15"). The correct usage is either to use a leading zero (Ŕ.15"), or to include at least one space or tab before the...where T. is the absolute temperature. The units for the temperature scale may be specified as Kelvin, Rankin, degrees Celsius, or degrees Fahrenheit...follow, so that the number should be represented with a preceding zero (i.e. Ŕ.49") instead. The data columns may be referred to in the GIRAPHE command
ERIC Educational Resources Information Center
Green, Caitlin; Radwin, David
2012-01-01
The number of associate's degrees conferred by U.S. postsecondary institutions increased 30 percent from 1997 to 2007, from 571,000 to 745,000, and is projected to grow another 30 percent by 2020, a faster pace than the actual and projected growth in bachelor's degrees awarded. Despite the growing prevalence of associate's degrees, however, there…
Ten recommendations for software engineering in research.
Hastings, Janna; Haug, Kenneth; Steinbeck, Christoph
2014-01-01
Research in the context of data-driven science requires a backbone of well-written software, but scientific researchers are typically not trained at length in software engineering, the principles for creating better software products. To address this gap, in particular for young researchers new to programming, we give ten recommendations to ensure the usability, sustainability and practicality of research software.
Ten new withanolides from Physalis peruviana.
Fang, Sheng-Tao; Liu, Ji-Kai; Li, Bo
2012-01-01
Ten new withanolides, including four perulactone-type withanolides, perulactones E-H (1-4), three 28-hydroxy-withanolides, withaperuvins I-K (5-7), and three other withanolides, withaperuvins L-N (8-10), together with six known compounds (11-16) were isolated from the aerial parts of Physalis peruviana. The structures of these compounds were elucidated on the basis of extensive spectroscopic analyses (1D and 2D NMR, IR, HR-MS) and chemical methods. Copyright © 2011 Elsevier Inc. All rights reserved.
Maternity Nurses' Perceptions of Implementation of the Ten Steps to Successful Breastfeeding.
Cunningham, Emilie M; Doyle, Eva I; Bowden, Rodney G
The purpose of this study was to determine maternity nurses' perceptions of implementing the Ten Steps to Successful Breastfeeding. An online survey and a focus group were used to evaluate perceptions of maternity nurses of implementing the Ten Steps to Successful Breastfeeding in an urban Texas hospital at the onset of the project initiation. Responses were transcribed and coded using Nvivo software. Thematic analysis was conducted and consensus was reached among the research team to validate themes. Twenty-eight maternity nurses participated. Nurses perceived a number of barriers to implementing the Ten Steps to Successful Breastfeeding including nurse staffing shortages, variations in practice among nurses, different levels of nurse education and knowledge about breastfeeding, lack of parental awareness and knowledge about breastfeeding, culture, and postpartum issues such as maternal fatigue, visitors, and routine required procedures during recovery care that interfered with skin-to-skin positioning. Maternity nurses desired more education about breastfeeding; specifically, a hands-on approach, rather than formal classroom instruction, to be able to promote successful implementation of the Ten Steps. More education on breastfeeding for new mothers, their families, and healthcare providers was recommended. Nurse staffing should be adequate to support nurses in their efforts to promote breastfeeding. Skin-to-skin positioning should be integrated into the recovery period. Hospital leadership support for full implementation and policy adherence is essential. Challenges in implementing the Ten Steps were identified along with potential solutions.
ERIC Educational Resources Information Center
Pagar, Dana
2013-01-01
Manipulatives have the potential to be powerful tools in helping children improve their number sense, develop advanced mathematical strategies, and build an understanding of the base ten number system. Physical manipulatives used in classrooms, however, are often not designed to promote efficient strategy use, such as counting on, and typically do…
Degrees Conferred: 2000-01 Update. Informational Memorandum.
ERIC Educational Resources Information Center
Wisconsin Univ. System, Madison. Office of Policy Analysis and Research.
This memorandum contains facts about degrees conferred by institutions in the University of Wisconsin (UW) System in 2000-2001. Overall, the UW System conferred 28,217 degrees in 2000-2001. Of these, 969 were Associate Degrees, and 20,927 were Bachelors Degrees. There were 4,952 Masters Degrees, and 759 Doctoral Degrees, with 610 professional…
Conde, Mariana de Cásisa Macedo; Siqueira, Larissa Thaís Donalonso; Vendramini, José Eduardo; Brasolotto, Alcione Ghedini; Guirro, Rinaldo Roberto de Jesus; Silverio, Kelly Cristina Alves
2018-05-01
This study aimed to verify the immediate effect of low-frequency transcutaneous electrical nerve stimulation (TENS) and laryngeal manual therapy (LMT) in musculoskeletal pain, voice quality, and self-reported signs in women with dysphonia. Thirty women with behavioral dysphonia were randomly divided into the TENS group and the LMT group. All participants fulfilled the pain survey and had their voices recorded to posterior perceptual and acoustic analysis before and after intervention. The TENS group received a unique low-frequency TENS session (20 minutes). The LMT group received LMT (20 minutes) with soft and superficial massage in the sternocleidomastoid muscle, suprahyoid muscles, and larynx. Afterward, the volunteers reported their voice, larynx, breathing, and articulatory signs. Pre and post data were compared by parametric and nonparametric tests. After TENS, a decrease in pain intensity in the posterior or anterior region of the neck, shoulders, upper or lower back, and masseter was observed. After LMT, a decrease in pain intensity in the neck anterior region, shoulders, lower back, and temporal region was observed. Also, after TENS, there was an improvement in vowel /a/ instability; after LMT, there was a general improvement in voice quality, decrease in tension, and decrease in breathiness in speech. Positive voice and laryngeal signs were reported after TENS, and positive laryngeal signs and articulation were reported after LMT. TENS and LMT may be used in voice treatment of women with behavioral dysphonia, and both may be considered important therapy resources that reduce musculoskeletal pain and cause positive laryngeal signs. Both TENS and LMT are able to partially improve voice quality, but TENS presented better results. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Ten principles of good interdisciplinary team work
2013-01-01
Background Interdisciplinary team work is increasingly prevalent, supported by policies and practices that bring care closer to the patient and challenge traditional professional boundaries. To date, there has been a great deal of emphasis on the processes of team work, and in some cases, outcomes. Method This study draws on two sources of knowledge to identify the attributes of a good interdisciplinary team; a published systematic review of the literature on interdisciplinary team work, and the perceptions of over 253 staff from 11 community rehabilitation and intermediate care teams in the UK. These data sources were merged using qualitative content analysis to arrive at a framework that identifies characteristics and proposes ten competencies that support effective interdisciplinary team work. Results Ten characteristics underpinning effective interdisciplinary team work were identified: positive leadership and management attributes; communication strategies and structures; personal rewards, training and development; appropriate resources and procedures; appropriate skill mix; supportive team climate; individual characteristics that support interdisciplinary team work; clarity of vision; quality and outcomes of care; and respecting and understanding roles. Conclusions We propose competency statements that an effective interdisciplinary team functioning at a high level should demonstrate. PMID:23663329
Ten principles of good interdisciplinary team work.
Nancarrow, Susan A; Booth, Andrew; Ariss, Steven; Smith, Tony; Enderby, Pam; Roots, Alison
2013-05-10
Interdisciplinary team work is increasingly prevalent, supported by policies and practices that bring care closer to the patient and challenge traditional professional boundaries. To date, there has been a great deal of emphasis on the processes of team work, and in some cases, outcomes. This study draws on two sources of knowledge to identify the attributes of a good interdisciplinary team; a published systematic review of the literature on interdisciplinary team work, and the perceptions of over 253 staff from 11 community rehabilitation and intermediate care teams in the UK. These data sources were merged using qualitative content analysis to arrive at a framework that identifies characteristics and proposes ten competencies that support effective interdisciplinary team work. Ten characteristics underpinning effective interdisciplinary team work were identified: positive leadership and management attributes; communication strategies and structures; personal rewards, training and development; appropriate resources and procedures; appropriate skill mix; supportive team climate; individual characteristics that support interdisciplinary team work; clarity of vision; quality and outcomes of care; and respecting and understanding roles. We propose competency statements that an effective interdisciplinary team functioning at a high level should demonstrate.
ERIC Educational Resources Information Center
Marmaras, Judy; Neri, Pat
The Tech-Prep Associate Degree Program (TPAD) at the Community College of Rhode Island (CCRI) in Warwick, is a high school/community college partnership providing high school students with an alternative program of study focused on goal setting, basic academic skills development, and the skills needed to pursue a career in a technical, business or…
Low Noise Amplifiers for 140 Ghz Wide-Band Cryogenic Receivers
NASA Technical Reports Server (NTRS)
Larkoski, Patricia V.; Kangaslahti, Pekka; Samoska, Lorene; Lai, Richard; Sarkozy, Stephen
2013-01-01
We report S-parameter and noise measurements for three different Indium Phosphide 35-nanometer-gate-length High Electron Mobility Transistor (HEMT) Low Noise Amplifier (LNA) designs operating in the frequency range centered on 140 gigahertz. When packaged in a Waveguide Rectangular-6.1 waveguide housing, the LNAs have an average measured noise figure of 3.0 decibels - 3.6 decibels over the 122-170 gigahertz band. One LNA was cooled to 20 degrees Kelvin and a record low noise temperature of 46 Kelvin, or 0.64 decibels noise figure, was measured at 152 gigahertz. These amplifiers can be used to develop receivers for instruments that operate in the 130-170 gigahertz atmospheric window, which is an important frequency band for ground-based astronomy and millimeter-wave imaging applications.
A Design Taxonomy Utilizing Ten Major Evaluation Strategies.
ERIC Educational Resources Information Center
Willis, Barry
This paper discusses ten evaluation strategies selected on the basis of their general acceptance and their relatively unique approach to the field: (1) State, "Countenance of Evaluation"; (2) Stufflebeam, "Decision Centered Evaluation (CIPP)"; (3) Provus, "Discrepancy Evaluation"; (4) Scriven, "Goal Free Evaluation"; (5) Scriven, "Formative and…
Ten-color Gegenschein-zodiacal light photometer. [onboard Skylab
NASA Technical Reports Server (NTRS)
Sparrow, J. G.; Weinberg, J. L.; Hahn, R. C.
1977-01-01
A ten-color Fabry photometer was used during Skylab missions SL-2 and SL-3 to measure sky brightness and polarization associated with zodiacal light, background starlight, F region airglow, and spacecraft corona. A brief description is given of the design, calibration, and performance of the instrument.
Economic Analysis of Earning a PhD Degree After Completion of a PharmD Degree
Murawski, Matthew M.
2011-01-01
Objective To determine the net present value (NPV) and internal rate of return (IRR) for earning a doctor of philosophy (PhD) degree and pursuing careers commonly associated with that degree after completion of a doctor of pharmacy (PharmD) degree compared to entering pharmacy practice directly upon completion of the PharmD degree. Methods Income profiles were constructed based on 2008 annual salary data. NPV and IRR were calculated for careers resulting from the PhD degree and compared to those of the practicing community pharmacist. Trends in IRR also were examined across career paths from 1982 to 2008. A priori assumptions were developed and sensitivity analyses were conducted. Results The NPVs for all careers associated with the PhD degree were negative compared to that of the practicing community pharmacist. IRRs ranged from -1.4% to 1.3% for PhD careers. Longitudinal examination of IRRs indicated a negative trend from 1982 to 2008. Conclusions Economic financial incentives for PharmD graduates to pursue graduate school are lacking. The study illustrates the need to consider financial incentives when developing recruitment methods for PharmD graduates to pharmacy graduate programs. PMID:21451769
Bourne, Victoria J
2008-05-01
This paper examines the relationship between degree of handedness and degree of cerebral lateralization on a task of processing positive facial emotion in right-handed individuals. Three hundred and thirteen right-handed participants (157 women) were given two behavioral tests of lateralization: a handedness questionnaire and a chimeric faces test. Two further handedness measures were taken: familial left-handedness and writing posture. Regression analysis showed that both degree of handedness and sex were predictive of degree of lateralization. Individuals who were strongly right-handed were also more strongly lateralized to the right hemisphere for the task. Men were more strongly lateralized than women. Data were reanalyzed for men and women separately. The relationship between handedness and lateralization remained for men only. Neither familial left-handedness nor writing posture were associated with cerebral lateralization for men or women. The results suggest a positive relationship between degree of handedness and degree of cerebral lateralization, and further that there is a sex difference in this relationship.
Analysis of Uniform Random Numbers Generated by Randu and Urn Ten Different Seeds.
The statistical properties of the numbers generated by two uniform random number generators, RANDU and URN, each using ten different seeds are...The testing is performed on a sequence of 50,000 numbers generated by each uniform random number generator using each of the ten seeds . (Author)
Effect of TENS on pain relief in patients with degenerative disc disease in lumbosacral spine.
Pop, Teresa; Austrup, Heiner; Preuss, Rudolf; Niedziałek, Marta; Zaniewska, Anna; Sobolewski, Marek; Dobrowolski, Tomasz; Zwolińska, Jolanta
2010-01-01
The study sought to evaluate the impact of long-term TENS therapy on pain relief in patients with degenerative disc disease in the lumbosacral spine. The study involved 39 patients with lumbosacral pain who were receiving treatment in the Regional Hospital No 2 in Rzeszów and in Winsen Hospital. The experimental group consisted of 16 patients who were fitted with L-S orthoses with a built-in OmniTens plus mini-device for long-term application (3 times a day, for 20 minutes) of TENS currents with a frequency of 35 Hz and impulse duration of 150µsec. The control group consisted of 23 patients who received conventional TENS therapy once a day for 20 minutes, with a frequency of 35 Hz and impulse duration of 150 µsec. The results were assessed with the Oswestry Questionnaire, a visual analogue scale (VAS), as well as Schober's Test. Tests were performed before and on completion of the therapy. All participants reported pain relief and improved spinal function and mobility. Statistically significant differences were obtained in the group of patients treated with low frequency pulsed TENS currents administered via the orthosis. 1. TENS therapy contributed to pain relief and improvement of function and mobility of the lumbosacral spine 2. Representing an appropriate and effective technique, TENS stimulation via an orthosis should be more commonly prescribed.
Kayman-Kose, Seda; Arioz, Dagistan Tolga; Toktas, Hasan; Koken, Gulengul; Kanat-Pektas, Mine; Kose, Mesut; Yilmazer, Mehmet
2014-10-01
The present study aims to determine the efficiency and reliability of transcutaneous electrical nerve stimulation (TENS) in the management of pain related with uterine contractions after vaginal delivery and the pain related with both abdominal incision uterine contractions after cesarean section. A hundred healthy women who underwent cesarean section under general anesthesia were randomly assigned to the placebo group (Group 1) or the TENS group (Group 2), while 100 women who delivered by vaginal route without episiotomy were randomized into the placebo group (Group 3) or the TENS group (Group 4). The patients in Group 2 had statistically lower visual analog scale (VAS) and verbal numerical scale (VNS) scores than the patients in Group 1 (p < 0.001 for both). The patients in Group 4 had statistically lower VAS and VNS scores than the patients in Group 3 (p = 0.022 and p = 0.005, respectively). The analgesic requirement at the eighth hour of cesarean section was significantly lower in the patients who were treated with TENS (p = 0.006). The need for analgesics at the eighth hour of vaginal delivery was statistically similar in the patients who were treated with TENS and the patients who received placebo (p = 0.830). TENS is an effective, reliable, practical and easily available modality of treatment for postpartum pain.
Defect-induced local variation of crystal phase transition temperature in metal-halide perovskites.
Dobrovolsky, Alexander; Merdasa, Aboma; Unger, Eva L; Yartsev, Arkady; Scheblykin, Ivan G
2017-06-26
Solution-processed organometal halide perovskites are hybrid crystalline semiconductors highly interesting for low-cost and efficient optoelectronics. Their properties are dependent on the crystal structure. Literature shows a variety of crystal phase transition temperatures and often a spread of the transition over tens of degrees Kelvin. We explain this inconsistency by demonstrating that the temperature of the tetragonal-to-orthorhombic phase transition in methylammonium lead triiodide depends on the concentration and nature of local defects. Phase transition in individual nanowires was studied by photoluminescence microspectroscopy and super-resolution imaging. We propose that upon cooling from 160 to 140 K, domains of the crystal containing fewer defects stay in the tetragonal phase longer than highly defected domains that readily transform to the high bandgap orthorhombic phase at higher temperatures. The existence of relatively pure tetragonal domains during the phase transition leads to drastic photoluminescence enhancement, which is inhomogeneously distributed across perovskite microcrystals.Understanding crystal phase transition in materials is of fundamental importance. Using luminescence spectroscopy and super-resolution imaging, Dobrovolsky et al. study the transition from the tetragonal to orthorhombic crystal phase in methylammonium lead triiodide nanowires at low temperature.
Stn1-Ten1 is an Rpa2-Rpa3-like complex at telomeres
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sun, Jia; Yu, Eun Young; Yang, Yuting
2010-09-02
In budding yeast, Cdc13, Stn1, and Ten1 form a heterotrimeric complex (CST) that is essential for telomere protection and maintenance. Previous bioinformatics analysis revealed a putative oligonucleotide/oligosaccharide-binding (OB) fold at the N terminus of Stn1 (Stn1N) that shows limited sequence similarity to the OB fold of Rpa2, a subunit of the eukaryotic ssDNA-binding protein complex replication protein A (RPA). Here we present functional and structural analyses of Stn1 and Ten1 from multiple budding and fission yeast. The crystal structure of the Candida tropicalis Stn1N complexed with Ten1 demonstrates an Rpa2N-Rpa3-like complex. In both structures, the OB folds of the twomore » components pack against each other through interactions between two C-terminal helices. The structure of the C-terminal domain of Saccharomyces cerevisiae Stn1 (Stn1C) was found to comprise two related winged helix-turn-helix (WH) motifs, one of which is most similar to the WH motif at the C terminus of Rpa2, again supporting the notion that Stn1 resembles Rpa2. The crystal structure of the fission yeast Schizosaccharomyces pombe Stn1N-Ten1 complex exhibits a virtually identical architecture as the C. tropicalis Stn1N-Ten1. Functional analyses of the Candida albicans Stn1 and Ten1 proteins revealed critical roles for these proteins in suppressing aberrant telomerase and recombination activities at telomeres. Mutations that disrupt the Stn1-Ten1 interaction induce telomere uncapping and abolish the telomere localization of Ten1. Collectively, our structural and functional studies illustrate that, instead of being confined to budding yeast telomeres, the CST complex may represent an evolutionarily conserved RPA-like telomeric complex at the 3' overhangs that works in parallel with or instead of the well-characterized POT1-TPP1/TEBP{alpha}-{beta} complex.« less
Wang, Zhang-lian; Chen, Li-fang; Zhu, Wei-ming
2007-09-01
To observe on the transient analgesic effect of abdominal points transcutaneous electrical nerve stimulation (TENS) combined with abdominal acupuncture according to the holographic theory on pain of neck, shoulder, loin and legs. One hundred and twenty cases of pain of neck, shoulder, loin and legs were randomly divided into 4 groups: abdominal acupuncture TENS group, acupoints TENS group, electroacupuneture (EA) group, non-abdominal acupuncture TENS group, 30 cases in each group. All the cases were treated by the same stimulation parameters, but different stimulation points. The VAS scores were recorded before and after treatment. The VAS scores were significantly different before and after treatment in abdominal acupuncture TENS group (P < 0.01); the total effective rate of the transient analgesic effec t was 96.7% in the abdominal acupuncture TENS group, 93.3% in the acupoints TENS group, 96.7% in the EA group with no significant difference among the 3 groups, but with a very significant difference between the abdominal acupuncture TENS group and the non-abdominal acupunctureTENS group (10.0%), P < 0.01. Abdominal acupuncture TENS has a better transient analgesic effect and can use less stimulation points to increase the analgesic effect.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Amorphous carbon nanosphere used as the anode material for Li-intercalation in Lithium-ion energy storage. This structure was obtained through a thermal annealing process at a temperature of 3000 degree Kelvin, simulated using the LAMMPS molecular dynamics code on the LCRC Fusion resource. Science: Kah Chun Lau and Larry Curtiss Visualization: Aaron Knoll, Mark Hereld and Michael E. Papka
Ivan Bozovic
2017-12-09
"Atomic-Layer Engineering of Cuprate Superconductors." Copper-oxide compounds, called cuprates, show superconducting properties at 163 degrees Kelvin, the highest temperature of any known superconducting material. Cuprates are therefore among the "high-temperature superconductors" of extreme interest both to scientists and to industry. Research to learn their secrets is one of the hottest topics in the field of materials science.
The New Hampshire Ten Steps to Successful Breastfeeding Collaborative: A Statewide QI Initiative.
Whalen, Bonny L; Kelly, Joyce; Holmes, Alison Volpe
2015-06-01
Despite national recognition for their breastfeeding-friendly practices, many New Hampshire hospitals are still not achieving the Ten Steps to Successful Breastfeeding. To increase achievement of the Ten Steps in New Hampshire's birthing hospitals, facilitate Baby-Friendly Hospital Initiative (BFHI) designation for interested hospitals, and improve rates of in-hospital any and exclusive breastfeeding. After a 2010 needs assessment, we conducted 2 statewide workshops targeting 6 of the Ten Steps found to be most deficient among New Hampshire birthing hospitals. Eighteen of 20 hospitals attended at least 1 workshop, and 6 participated in an intensive collaborative. In 2013, we analyzed interval Ten Step achievement and in-hospital breastfeeding trends. Staff education showed the greatest improvement, increasing step 2 achievement from 1 to 6 hospitals (P=.05). Although the number of hospitals implementing step 6 (breast milk only) and step 9 (no artificial nipples) increased, differences were not statistically significant. Intensive collaborative hospitals achieved an average of 1.5 new steps, whereas non-Baby Friendly hospitals lost 0.7 steps (P=.05). In-hospital breastfeeding rates increased in intensive collaborative hospitals and were significantly higher than those in non-Baby Friendly hospitals by the end of the study (any breastfeeding, 89% vs 73%, P=.03; exclusive breastfeeding, 84% vs 61%, P<.001). A statewide improvement collaborative facilitated increases in Ten Step achievement and in-hospital breastfeeding for hospitals participating in an intensive collaborative. Active work in Ten Step implementation, including staff education, appears to be more effective in increasing in-hospital breastfeeding than does BFHI designation alone. Copyright © 2015 by the American Academy of Pediatrics.
Re-Conceptualizing Research Misconceptions: Top Ten Myths Demystified
ERIC Educational Resources Information Center
Al-Maamari, Faisal S.
2016-01-01
It is generally acknowledged that novice researchers may not be adequately prepared to engage in/with research and that an increasingly widening divide exists between researchers and teachers, and therefore between research and practice. To explore this gap, this paper addresses ten of the most popular misconceptions novice researchers hold in…
Zhang, L; Miyamachi, T; Tomanić, T; Dehm, R; Wulfhekel, W
2011-10-01
We designed a scanning tunneling microscope working at sub-Kelvin temperatures in ultrahigh vacuum (UHV) in order to study the magnetic properties on the nanoscale. An entirely homebuilt three-stage cryostat is used to cool down the microscope head. The first stage is cooled with liquid nitrogen, the second stage with liquid (4)He. The third stage uses a closed-cycle Joule-Thomson refrigerator of a cooling power of 1 mW. A base temperature of 930 mK at the microscope head was achieved using expansion of (4)He, which can be reduced to ≈400 mK when using (3)He. The cryostat has a low liquid helium consumption of only 38 ml/h and standing times of up to 280 h. The fast cooling down of the samples (3 h) guarantees high sample throughput. Test experiments with a superconducting tip show a high energy resolution of 0.3 meV when performing scanning tunneling spectroscopy. The vertical stability of the tunnel junction is well below 1 pm (peak to peak) and the electric noise floor of tunneling current is about 6fA/√Hz. Atomic resolution with a tunneling current of 1 pA and 1 mV was achieved on Au(111). The lateral drift of the microscope at stable temperature is below 20 pm/h. A superconducting spilt-coil magnet allows to apply an out-of-plane magnetic field of up to 3 T at the sample surface. The flux vortices of a Nb(110) sample were clearly resolved in a map of differential conductance at 1.1 K and a magnetic field of 0.21 T. The setup is designed for in situ preparation of tip and samples under UHV condition.
Conejo-Nava, J; Fierro, R; Gutierrez, C G; Betancourt, M
2003-01-01
Preservation of porcine semen in long-term extenders at 15-18 degrees C for more than 5 days results in decreased farrowing rates and reduced litter size after artificial insemination, despite the high progressive motility rates of sperm. To improve this preservation system it is necessary to understand sperm physiology under storage conditions. The purpose of this study was to determine the effect of storing diluted porcine semen (during 0, 2, 4, 6, and 8 days) on the sperm membranes status and the ability of sperm to respond to in vitro capacitation treatment. Ten semen samples from 5 adult boars were analyzed. Two aliquots were obtained from the sperm-rich fraction: one was used to assess fresh semen and the other was diluted in Reading extender and stored at 16 degrees C. Both semen samples were stained with chlortetracycline to assess the status of sperm membranes and with Hoechst 33258 to determine viability. Semen storage for 4-8 days increased the proportion of prematurely capacitated sperm. After 4 days of storage, in vitro capacitation treatment did not increase the percentage of capacitated sperm, but increased the percentage of acrosome reacted sperm. This phenomenon could explain the reduced fertilizing ability of porcine semen stored at 16 degrees C for over 4 days, in spite of the acceptable sperm viability and progressive motility.
Chemical Clarification Methods for Confined Dredged Material Disposal.
1983-07-01
foot second per metre cubic yards 0.7645549 cubic metres Farenheit degrees 5/9 Celsius degrees or Kelvins* feet 0.3048 metres feet per minute 0.3048...unknown in freshwater environments, use zero S.G. = specific gravity of solids; use 2.67 if unknown Wt. H20 [(weight of wet sample and dish, g...62.4 lb/ft v = average velocity, ft/sec Ps= absolute viscosity, 2.36 x 10-5 at 60F The duration t of the mixing is determined by t =L (6) v The net
Helvacioglu, Firat; Yeter, Celal; Tunc, Zeki; Sencan, Sadik
2013-08-01
To compare the safety and efficacy of Ozil Intelligent Phaco torsional microcoaxial phacoemulsification surgeries performed with 12-degree and 22-degree bent tips using the Infiniti Vision System. Maltepe University School of Medicine Department of Ophthalmology, Istanbul, Turkey. Comparative case series. Eyes were assigned to 2.2 mm microcoaxial phacoemulsification using the torsional mode with a 22-degree bent tip (Group 1) or a 12-degree bent tip (Group 2). The primary outcome measures were ultrasound time (UST), cumulative dissipated energy (CDE), longitudinal and torsional ultrasound (US) amplitudes, mean surgical time, mean volume of balanced salt solution used, and surgical complications. Both groups included 45 eyes. The mean UST, CDE, longitudinal US amplitude, and torsional US amplitude were 65 seconds ± 27.23 (SD), 11.53 ± 6.99, 0.22 ± 0.26, and 42.86 ± 15.64, respectively, in Group 1 and 84 ± 45.04 seconds, 16.68 ± 10.66, 0.48 ± 0.68, and 46.27 ± 14.74, respectively, in Group 2. The mean UST, CDE, and longitudinal amplitudes were significantly lower in Group 1 (P=.003, P=.008, and P=.022, respectively). The mean volume of balanced salt solution was 73.33 ± 28.58 cc in Group 1 and 82.08 ± 26.21 cc in Group 2 (P=.134). Torsional phacoemulsification performed with 22-degree bent tips provided more effective lens removal than 12-degree bent tips, with a lower UST and CDE. Copyright © 2013 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.