Sample records for tendon transfer

  1. Treatment of peroneal nerve injuries with simultaneous tendon transfer and nerve exploration.

    PubMed

    Ho, Bryant; Khan, Zubair; Switaj, Paul J; Ochenjele, George; Fuchs, Daniel; Dahl, William; Cederna, Paul; Kung, Theodore A; Kadakia, Anish R

    2014-08-06

    Common peroneal nerve palsy leading to foot drop is difficult to manage and has historically been treated with extended bracing with expectant waiting for return of nerve function. Peroneal nerve exploration has traditionally been avoided except in cases of known traumatic or iatrogenic injury, with tendon transfers being performed in a delayed fashion after exhausting conservative treatment. We present a new strategy for management of foot drop with nerve exploration and concomitant tendon transfer. We retrospectively reviewed a series of 12 patients with peroneal nerve palsies that were treated with tendon transfer from 2005 to 2011. Of these patients, seven were treated with simultaneous peroneal nerve exploration and repair at the time of tendon transfer. Patients with both nerve repair and tendon transfer had superior functional results with active dorsiflexion in all patients, compared to dorsiflexion in 40% of patients treated with tendon transfers alone. Additionally, 57% of patients treated with nerve repair and tendon transfer were able to achieve enough function to return to running, compared to 20% in patients with tendon transfer alone. No patient had full return of native motor function resulting in excessive dorsiflexion strength. The results of our limited case series for this rare condition indicate that simultaneous nerve repair and tendon transfer showed no detrimental results and may provide improved function over tendon transfer alone.

  2. Magnetic resonance imaging-controlled results of the pectoralis major tendon transfer for irreparable anterosuperior rotator cuff tears performed with standard and modified fixation techniques.

    PubMed

    Lederer, Stefan; Auffarth, Alexander; Bogner, Robert; Tauber, Mark; Mayer, Michael; Karpik, Stefanie; Matis, Nicholas; Resch, Herbert

    2011-10-01

    Irreparable ruptures of the subscapularis tendon lead to impaired function of the shoulder joint. In such cases, transfer of the pectoralis major tendon has led to encouraging results. The procedure fails periodically, typically associated with insufficient in-growth of the transferred tissue. We hypothesized that tendon harvest with chips of cancellous bone would improve the tendon-bone interface. Of 62 consecutive pectoralis tendon transfers, 54 shoulders were followed-up at an average of 35 months. In all shoulders, the transferred tendon was rerouted behind the conjoint tendon and fixed by transosseous sutures. In 29 shoulders, the tendon was harvested with a cuff of cancellous bone. In 25 shoulders, the conventional technique with sharp detachment of the tendon was used. Apart from detailed clinical examination of all shoulders, a magnetic resonance image (MRI) was available in 52 shoulders. The overall Constant score had improved from an average of 38.8 points preoperatively to 63.4 points at follow-up. Shoulders treated with the new fixation technique scored 64.4 compared with 62.2 for the conventional fixations. The MRI showed intact tendons and muscles in 80.8% of shoulders. In 7 shoulders (13.5%), the transferred tendon was ruptured. Two of these were treated with the new fixation technique. Mean patient satisfaction score was 8.2 points. A secure method of fixation that avoids secondary ruptures despite insufficiency of the transferred tendon is of great importance. Also the rerouting of the transferred tendon under the conjoined tendon is essential to imitate the natural force vector and the function of an intact subscapularis tendon. Patients in this investigation were also monitored by MRI to verify the integrity of the transferred tendon. As a salvage procedure, the pectoralis major tendon transfer provides good results in most cases. Sufficient in-growth of the transferred tissue is essential for the success of the procedure. This seems to be facilitated by both methods. Copyright © 2011 Journal of Shoulder and Elbow Surgery Board of Trustees. All rights reserved.

  3. Rupture Following Biceps-to-Triceps Tendon Transfer in Adolescents and Young Adults With Spinal Cord Injury:

    PubMed Central

    Merenda, Lisa A.; Rutter, Laure; Curran, Kimberly; Kozin, Scott H.

    2012-01-01

    Background: Tendon transfer surgery can restore elbow extension in approximately 70% of persons with tetraplegia and often results in antigravity elbow extension strength. However, we have noted an almost 15% rupture/attenuation rate. Objective: This investigation was conducted to analyze potential causes in adolescents/young adults with spinal cord injury (SCI) who experienced tendon rupture or attenuation after biceps-to-triceps transfer. Methods: Medical charts of young adults with SCI who underwent biceps-to-triceps transfer and experienced tendon rupture or attenuation were reviewed. Data collected by retrospective chart review included general demographics, surgical procedure(s), use and duration of antibiotic treatment, time from tendon transfer surgery to rupture/attenuation, and method of diagnosis. Results: Twelve subjects with tetraplegia (mean age, 19 years) who underwent biceps-to-triceps reconstruction with subsequent tendon rupture or attenuation were evaluated. Mean age at time of tendon transfer was 18 years (range, 14-21 years). A fluoroquinolone was prescribed for 42% (n=5) of subjects. Tendon rupture was noted in 67% (n=8), and attenuation was noted in 33% (n=4). Average length of time from surgery to tendon rupture/attenuation was 5.7 months (range, 3-10 months). Conclusion: Potential contributing causes of tendon rupture/attenuation after transfer include surgical technique, rehabilitation, co-contraction of the transfer, poor patient compliance, and medications. In this cohort, 5 subjects were prescribed fluoroquinolones that have a US Food and Drug Administration black box concerning tendon ruptures. Currently, all candidates for upper extremity tendon transfer reconstruction are counseled on the effects of fluoroquinolones and the potential risk for tendon rupture. PMID:23459326

  4. Tendon transfer to reconstruct wrist extension in children with obstetric brachial plexus palsy.

    PubMed

    Al-Qattan, M M

    2003-04-01

    This study reports on 20 children with obstetric brachial plexus palsy who underwent a tendon transfer to reconstruct wrist extension. The mean age at the time of tendon transfer was 8 years. There were seven patients with Erb's palsy and the remaining 13 had total palsy. The flexor carpi ulnaris was utilized 15 times and the flexor carpi radialis five times. The transferred tendon was sutured to the tendon of the extensor carpi radialis brevis. The result of the transfer was assessed according to a modified Medical Research Council (MRC) muscle grading system. A good result was obtained in 18 patients (modified MRC grade of 4) and a fair result (modified MRC grade of 3) in two. The choice of tendon transfer to reconstruct the wrist drop deformity in various conditions including adult traumatic brachial plexus injuries is discussed.

  5. Step Cut Lengthening: A Technique for Treatment of Flexor Pollicis Longus Tendon Rupture.

    PubMed

    Chong, Chew-Wei; Chen, Shih-Heng

    2018-04-01

    Reconstruction of a tendon defect is a challenging task in hand surgery. Delayed repair of a ruptured flexor pollicis longus (FPL) tendon is often associated with tendon defect. Primary repair of the tendon is often not possible, particularly after debridement of the unhealthy segment of the tendon. As such, various surgical treatments have been described in the literature, including single-stage tendon grafting, 2-stage tendon grafting, flexor digitorum superficialis tendon transfer from ring finger, and interphalangeal joint arthrodesis. We describe step cut lengthening of FPL tendon for the reconstruction of FPL rupture. This is a single-stage reconstruction without the need for tendon grafting or tendon transfer. To our knowledge, no such technique has been previously described.

  6. Tendon transfer fixation: comparing a tendon to tendon technique vs. bioabsorbable interference-fit screw fixation.

    PubMed

    Sabonghy, Eric Peter; Wood, Robert Michael; Ambrose, Catherine Glauber; McGarvey, William Christopher; Clanton, Thomas Oscar

    2003-03-01

    Tendon transfer techniques in the foot and ankle are used for tendon ruptures, deformities, and instabilities. This fresh cadaver study compares the tendon fixation strength in 10 paired specimens by performing a tendon to tendon fixation technique or using 7 x 20-25 mm bioabsorbable interference-fit screw tendon fixation technique. Load at failure of the tendon to tendon fixation method averaged 279N (Standard Deviation 81N) and the bioabsorbable screw 148N (Standard Deviation 72N) [p = 0.0008]. Bioabsorbable interference-fit screws in these specimens show decreased fixation strength relative to the traditional fixation technique. However, the mean bioabsorbable screw fixation strength of 148N provides physiologic strength at the tendon-bone interface.

  7. Irreparable Rotator Cuff Tears: Restoring Joint Kinematics by Tendon Transfers

    PubMed Central

    Greenspoon, Joshua A.; Millett, Peter J.; Moulton, Samuel G.; Petri, Maximilian

    2016-01-01

    Background: Tendon transfers can be a surgical treatment option in managing younger, active patients with massive irreparable rotator cuff tears. The purpose of this article is to provide an overview of the use of tendon transfers to treat massive irreparable rotator cuff tears and to summarize clinical outcomes. Methods: A selective literature search was performed and personal surgical experiences are reported. Results: Latissimus dorsi transfers have been used for many years in the management of posterosuperior rotator cuff tears with good reported clinical outcomes. It can be transferred without or with the teres major (L’Episcopo technique). Many surgical techniques have been described for latissimus dorsi transfer including single incision, double incision, and arthroscopically assisted transfer. Transfer of the pectoralis major tendon is the most common tendon transfer procedure performed for anterosuperior rotator cuff deficiencies. Several surgical techniques have been described, however transfer of the pectoralis major beneath the coracoid process has been found to most closely replicate the force vector that is normally provided by the intact subscapularis. Conclusion: Tendon transfers can be used successfully in the management of younger patients with massive irreparable rotator cuff tears and minimal glenohumeral arthritis. Improvements in clinical outcomes scores and range of motion have been demonstrated. This can delay arthroplasty, which is of particular importance for younger patients with high functional demands. PMID:27708730

  8. Is tibialis anterior tendon transfer effective for recurrent clubfoot?

    PubMed

    Gray, Kelly; Burns, Joshua; Little, David; Bellemore, Michael; Gibbons, Paul

    2014-02-01

    Tibialis anterior tendon transfer surgery forms a part of Ponseti management for children with congenital talipes equinovarus who, after initial correction, present with residual dynamic supination. Although retrospective studies support good outcomes, prospective longitudinal studies in this population are lacking. We assessed strength, plantar loading, ROM, foot alignment, function, satisfaction, and quality of life in patients with clubfoot that recurred after Ponseti casting who met indications for tibialis anterior tendon transfer surgery, and compared them with a group of patients with clubfoot treated with casting but whose deformity did not recur (therefore who were not indicated for tibialis anterior tendon transfer surgery). Twenty children with idiopathic congenital talipes equinovarus indicated for tibialis anterior tendon transfer surgery were recruited. Assessment at baseline (before surgery), and 3, 6, and 12 months (after surgery) included strength (hand-held dynamometry), plantar loading (capacitance transducer matrix platform), ROM (Dimeglio scale), foot alignment (Foot Posture Index(©)), function and satisfaction (disease-specific instrument for clubfoot), and quality of life (Infant Toddler Quality of Life Questionnaire™). Outcomes were compared with those of 12 age-matched children with congenital talipes equinovarus not indicated for tibialis anterior tendon transfer surgery. Followup was 100% in the control group and 95% (19 of 20) in the tibialis anterior transfer group. At baseline, the tibialis anterior tendon transfer group had a significantly worse eversion-to-inversion strength ratio, plantar loading, ROM, foot alignment, and function and satisfaction. At 3 months after surgery, eversion-to-inversion strength, plantar loading, and function and satisfaction were no longer different between groups. Improvements were maintained at 12 months after surgery (eversion-to-inversion strength mean difference, 8% body weight; 95% CI, -26% to 11%; p = 0.412; plantar loading, p > 0.251; function and satisfaction, p = 0.076). ROM remained less and foot alignment more supinated in the tibialis anterior tendon transfer group between baseline and followup (p < 0.001, p < 0.001). Tibialis anterior tendon transfer surgery was an effective procedure, which at 12-month followup restored the balance of eversion-to-inversion strength and resulted in plantar loading and function and satisfaction outcomes similar to those of age-matched children with congenital talipes equinovarus who after Ponseti casting were not indicated for tibialis anterior tendon transfer.

  9. Tendon Transfer Surgery

    MedlinePlus

    ... Transfer Surgery Find a hand surgeon near you. Videos Figures Figure 2: Example of Tendon Transfer surgery ... or "in." Also, avoid using media types like "video," "article," and "picture." Tip 4: Your results can ...

  10. Tendon Transfers Part II: Transfers for Ulnar Nerve Palsy and Median Nerve Palsy

    PubMed Central

    Sammer, Douglas M.; Chung, Kevin C.

    2009-01-01

    Objectives After reading this article (part II of II), the participant should be able to: 1. Describe the anatomy and function of the median and ulnar nerves in the forearm and hand. 2. Describe the clinical deficits associated with injury to each nerve. 3. Describe the indications, benefits, and drawbacks for various tendon transfer procedures used to treat median and ulnar nerve palsy.4. Describe the treatment of combined nerve injuries. 5. Describe postoperative care and possible complications associated with these tendon transfer procedures. Summary This article discusses the use of tendon transfer procedures for treatment of median and ulnar nerve palsy as well as combined nerve palsies. Postoperative management and potential complications are also discussed. PMID:19730287

  11. Direct Lentiviral-Cyclooxygenase 2 Application to the Tendon-Bone Interface Promotes Osteointegration and Enhances Return of the Pull-Out Tensile Strength of the Tendon Graft in a Rat Model of Biceps Tenodesis

    PubMed Central

    Wergedal, Jon E.; Stiffel, Virginia; Lau, Kin-Hing William

    2014-01-01

    This study sought to determine if direct application of the lentiviral (LV)-cyclooxygenase 2 (COX2) vector to the tendon-bone interface would promote osteointegration of the tendon graft in a rat model of biceps tenodesis. The LV-COX2 gene transfer strategy was chosen for investigation because a similar COX2 gene transfer strategy promoted bony bridging of the fracture gap during bone repair, which involves similar histologic transitions that occur in osteointegration. Briefly, a 1.14-mm diameter tunnel was drilled in the mid-groove of the humerus of adult Fischer 344 rats. The LV-COX2 or βgal control vector was applied directly into the bone tunnel and onto the end of the tendon graft, which was then pulled into the bone tunnel. A poly-L-lactide pin was press-fitted into the tunnel as interference fixation. Animals were sacrificed at 3, 5, or 8 weeks for histology analysis of osteointegration. The LV-COX2 gene transfer strategy enhanced neo-chondrogenesis at the tendon-bone interface but with only marginal effect on de novo bone formation. The tendon-bone interface of the LV-COX2-treated tenodesis showed the well-defined tendon-to-fibrocartilage-to-bone histologic transitions that are indicative of osteointegration of the tendon graft. The LV-COX2 in vivo gene transfer strategy also significantly enhanced angiogenesis at the tendon-bone interface. To determine if the increased osteointegration was translated into an improved pull-out mechanical strength property, the pull-out tensile strength of the LV-COX2-treated tendon grafts was determined with a pull-out mechanical testing assay. The LV-COX2 strategy yielded a significant improvement in the return of the pull-out strength of the tendon graft after 8 weeks. In conclusion, the COX2-based in vivo gene transfer strategy enhanced angiogenesis, osteointegration and improved return of the pull-out strength of the tendon graft. Thus, this strategy has great potential to be developed into an effective therapy to promote tendon-to-bone healing after tenodesis or related surgeries. PMID:24848992

  12. Double Versus Single Tendon Transfers to Improve Shoulder Function in Brachial Plexus Birth Palsy.

    PubMed

    Greenhill, Dustin A; Smith, William R; Ramsey, F V; Kozin, Scott H; Zlotolow, Dan A

    2017-03-27

    In children with brachial plexus birth palsy (BPBP) undergoing tendon transfers to augment shoulder external rotation, it is unclear whether transfer of the latissimus dorsi with its combined latissimus dorsi and teres major (cLT) versus isolated teres major (iTM) tendon transfer yield different outcomes. Records of patients with BPBP who underwent shoulder tendon transfers to augment external rotation were retrospectively reviewed. Transfer type (cLT or iTM) was considered indiscriminate by virtue of surgeon preference. Modified Mallet Scale (mMS) and Active Movement Scale scores were recorded. Patients with <12 months' follow-up, C7 or lower palsy, humeral osteotomy, shoulder procedure(s) within 8 months, microsurgery within 1 year, or recurrent glenohumeral subluxation confirmed by postoperative imaging were excluded. Matched cohorts were identified within each tendon transfer group to yield similar preoperative shoulder function and glenohumeral alignment status. Outcomes for all tendon transfers as well as differences between cLT and iTM cohorts were analyzed. Among 121 cLT and 34 iTM transfers, 49 cLT and 14 iTM met the inclusion criteria. Subsequent matching of cohorts yielded 28 patients (14 cLT and 14 iTM). Average age at time of transfer was 3.0±1.4 years. Follow-up averaged 4.1±3.1 years. There were no statistically significant preoperative differences between cohorts, thus matching criteria were validated. Regardless of tendon(s) transferred, mMS external rotation improved (2.2 to 3.5, P<0.001), whereas mMS internal rotation decreased (3.8 to 3.2, P<0.001). When comparing matched cohorts, cLT transfer produced a greater mMS external rotation improvement than iTM (2.1 vs. 1.5, respectively; P=0.025). Loss of midline function (defined as mMS external rotation <3) occurred in 5 (35.7%) cLT and 2 (14.3%) iTM patients. Both cLT or iTM transfer are effective at augmenting shoulder external rotation in children with C5-C6 BPBP. Furthermore, cLT transfers may yield a larger improvement in external rotation in certain patients. However, both techniques slightly decrease shoulder internal rotation. Given that more total cLT patients lost midline function among matched cohorts, iTM transfer may still be considered when limited midline function is a concern. Level III.

  13. Extensor indicis proprius tendon transfer using shear wave elastography.

    PubMed

    Lamouille, J; Müller, C; Aubry, S; Bensamoun, S; Raffoul, W; Durand, S

    2017-06-01

    The means for judging optimal tension during tendon transfers are approximate and not very quantifiable. The purpose of this study was to demonstrate the feasibility of quantitatively assessing muscular mechanical properties intraoperatively using ultrasound elastography (shear wave elastography [SWE]) during extensor indicis proprius (EIP) transfer. We report two cases of EIP transfer for post-traumatic rupture of the extensor pollicis longus muscle. Ultrasound acquisitions measured the elasticity modulus of the EIP muscle at different stages: rest, active extension, active extension against resistance, EIP section, distal passive traction of the tendon, after tendon transfer at rest and then during active extension. A preliminary analysis was conducted of the distribution of values for this modulus at the various transfer steps. Different shear wave velocity and elasticity modulus values were observed at the various transfer steps. The tension applied during the transfer seemed close to the resting tension if a traditional protocol were followed. The elasticity modulus varied by a factor of 37 between the active extension against resistance step (565.1 kPa) and after the tendon section (15.3 kPa). The elasticity modulus values were distributed in the same way for each patient. The therapeutic benefit of SWE elastography was studied for the first time in tendon transfers. Quantitative data on the elasticity modulus during this test may make it an effective means of improving intraoperative adjustments. Copyright © 2017 SFCM. Published by Elsevier Masson SAS. All rights reserved.

  14. Tendon 'turnover lengthening' technique.

    PubMed

    Cerovac, S; Miranda, B H

    2013-11-01

    Tendon defect reconstruction is amongst the most technically challenging areas in hand surgery. Tendon substance deficiency reconstruction techniques include lengthening, grafting, two-stage reconstruction and tendon transfers, however each is associated with unique challenges over and above direct repair. We describe a novel 'turnover lengthening' technique for hand tendons that has successfully been applied to the repair of several cases, including a case of attritional flexor and traumatic extensor tendon rupture in two presented patients where primary tenorrhaphy was not possible. In both cases a good post-operative outcome was achieved, as the patients were happy having returned back to normal activities of daily living such that they were discharged 12 weeks post-operatively. Our technique avoids the additional morbidity and complications associated with grafting, transfers and two stage reconstructions. It is quick, simple and reproducible for defects not exceeding 3-4 cm, provides a means of immediate one stage reconstruction, no secondary donor site morbidity and does not compromise salvage by tendon transfer and/or two-stage reconstruction in cases of failure. To our knowledge no such technique has been previously been described to reconstruct such hand tendon defects. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  15. State of the art in treatment of facial paralysis with temporalis tendon transfer.

    PubMed

    Sidle, Douglas M; Simon, Patrick

    2013-08-01

    Temporalis tendon transfer is a technique for dynamic facial reanimation. Since its inception, nearly 80 years ago, it has undergone a wealth of innovation to produce the modern operation. The purpose of this review is to update the literature as to the current techniques and perioperative management of patients undergoing temporalis tendon transfer. The modern technique focuses on the minimally invasive approaches and aesthetic refinements to enhance the final product of the operation. The newest techniques as well as preoperative assessment and postoperative rehabilitation are discussed. When temporalis tendon transfer is indicated for facial reanimation, the modern operation offers a refined technique that produces an aesthetically acceptable outcome. Preoperative smile assessment and postoperative smile rehabilitation are necessary and are important adjuncts to a successful operation.

  16. Arthroscopically Assisted Latissimus Dorsi Tendon Transfer in Beach-Chair Position

    PubMed Central

    Jermolajevas, Viktoras; Kordasiewicz, Bartlomiej

    2015-01-01

    Irreparable rotator cuff tears remain a surgical problem. The open technique of latissimus dorsi (LD) tendon transfer to “replace” the irreparable rotator cuff is already well known. The aim of this article is to present a modified arthroscopically assisted LD tendon transfer technique. This technique was adopted to operate on patients in the beach-chair position with several improvements in tendon harvesting and fixation. It can be divided into 6 steps, and only 1 step—LD muscle and tendon release—is performed open. The advantages of the arthroscopic procedure are sparing of the deltoid muscle, the possibility of repairing the subscapularis tendon, and the ability to visualize structures at risk while performing tendon harvesting (radial nerve) and passing into the subacromial space (axillary nerve). It is performed in a similar manner to standard rotator cuff surgery—the beach-chair position does not need any modification, and no sophisticated equipment for either the open or arthroscopic part of the procedure is necessary. Nevertheless, this is a challenging procedure and should only be attempted after training, as well as extensive practice. PMID:26759777

  17. Mechanical Strength of the Side-to-Side Tendon Attachment for Mismatched Tendon Sizes and Shapes

    PubMed Central

    Fridén, Jan; Tirrell, Timothy F.; Bhola, Siddharth; Lieber, Richard L.

    2015-01-01

    Summary Certain combinations are advised against in tendon transfers due to size or shape mismatches between donor and recipient tendons. In this study, ultimate load, stiffness and Young’s modulus were measured in two tendon-to-tendon attachments with intentionally mismatched donor and recipient tendons - pronator teres (PT)-to-extensor carpi radialis brevis (ECRB) and flexor carpi ulnaris (FCU)-to-extensor digitorum communis (EDC). FCU-EDC attachments failed at higher loads than PT-to-ECRB attachments but they had similar modulus and stiffness values. Ultimate tensile strength of the tendon attachments exceeded the maximum predicted contraction force of any of the affected muscles, with safety factors of 4x and 2x for the FCU-to-EDC and PT-to-ECRB constructs, respectively. This implies that size and shape mismatch should not be a contraindication to tendon attachment in transfers. Further, these safety factors strongly suggest that no postoperative immobilization of these attachments is necessary. PMID:24413573

  18. Surgical anatomy of latissimus dorsi muscle in transfers about the shoulder.

    PubMed

    Goldberg, Benjamin A; Elhassan, Bassem; Marciniak, Steven; Dunn, Jonathan H

    2009-03-01

    Transfer of the latissimus dorsi to the greater tuberosity has been used successfully in the treatment of massive rotator-cuff deficiency. For safe release and transfer of the tendon, the variations in the tendinous insertions of the latissimus dorsi and teres major onto the humerus need to be understood. In anatomical dissection of 12 cadavers, mean width of the latissimus tendon was 3.3 cm at its insertion, and mean length was 7.3 cm. In all specimens, there were fascial connections between the latissimus and teres major and between the latissimus and the long head of the triceps. There were 3 insertion patterns of the latissimus dorsi tendon onto the humerus with respect to the tendon of the teres major: completely separate (8 cadavers), loosely bound (3 cadavers), and completely joined (1 cadaver). If the latissimus dorsi were being transferred in the last type, the teres major would need to be transferred with the latissimus dorsi as a common musculotendinous unit.

  19. Latissimus Dorsi Tendon Transfer for Irreparable Rotator Cuff Tears: A Modified Technique Using Arthroscopy

    PubMed Central

    Villacis, Diego; Merriman, Jarrad; Wong, Karlton; Rick Hatch, George F.

    2013-01-01

    Latissimus dorsi transfer is a well-established method for the treatment of posterosuperior massive irreparable rotator cuff tears. We propose using an arthroscopically assisted technique that avoids insult to the deltoid. With the patient in the lateral decubitus position, an L-shaped incision is made along the anterior belly of the latissimus muscle and then along the posterior axillary line. The latissimus and teres major are identified and separated. The tendon insertion of the latissimus is isolated, and a FiberWire traction suture (Arthrex, Naples, FL) is placed, facilitating dissection of the muscle to the thoracodorsal neurovascular pedicle and subsequent mobilization. The interval deep to the deltoid and superficial to the teres minor is developed into a subdeltoid tunnel for arthroscopic tendon transfer. The latissimus tendon is then transferred and stabilized arthroscopically to the lateral aspect of the infraspinatus and supraspinatus footprints by multiple suture anchors. PMID:23767006

  20. [Rheumatic tendon pathologies].

    PubMed

    Thomas, M; Jordan, M

    2014-11-01

    Rheumatoid arthritis is found in approximately 2 % of the total population in Europe and the peak incidence of the disease is during the fourth and fifth decades of life. In approximately 15 % the first symptoms of the disease occur at the level of the foot and ankle. If the early stage-dependent therapy with pharmaceuticals fails isolated surgery of the tendons (e.g. tenosynovectomy) and reconstructive surgery including the tendons (e.g. tendon transfer and tendon readaptation) are performed to keep the patient mobile. The aim of this article is to give an overview of the most commonly used interventions in the reconstruction of tendons in rheumatism patients and the corresponding indications. The conservative therapy options for rheumatic foot and ankle alterations with a special emphasis on tendon pathologies have a well-established importance and are also presented. A selective literature search was carried out for therapeutic options of rheumatic tendon pathologies. If possible attempts should be made to preserve functional qualities using tenosynovectomy, tendon sutures or tendon transfer operations. If joints are already destroyed or dislocated, tendon operations should be carried out only as combined interventions with arthrodesis, endoprostheses or resection arthroplasty. The time window in which these interventions are possible should not be missed. Orthotic devices, bandages or even orthopedic shoes provide external support and splinting but do not represent a causal therapy.

  1. Shear load transfer in high and low stress tendons.

    PubMed

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2015-05-01

    Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructures (helical versus linear) may redistribute loads differently. This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20% to 60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Shear Load Transfer in High and Low Stress Tendons

    PubMed Central

    Kondratko-Mittnacht, Jaclyn; Duenwald-Kuehl, Sarah; Lakes, Roderic; Vanderby, Ray

    2016-01-01

    Background Tendon is an integral part of joint movement and stability, as it functions to transmit load from muscle to bone. It has an anisotropic, fibrous hierarchical structure that is generally loaded in the direction of its fibers/fascicles. Internal load distributions are altered when joint motion rotates an insertion site or when local damage disrupts fibers/fascicles, potentially causing inter-fiber (or inter-fascicular) shear. Tendons with different microstructure (helical versus linear) may redistribute loads differently. Method of Approach This study explored how shear redistributes axial loads in rat tail tendon (low stress tendons with linear microstructure) and porcine flexor tendon (high stress with helical microstructure) by creating lacerations on opposite sides of the tendon, ranging from about 20-60% of the tendon width, to create various magnitudes of shear. Differences in fascicular orientation were quantified using polarized light microscopy. Results and Conclusions Unexpectedly, both tendon types maintained about 20% of pre-laceration stress values after overlapping cuts of 60% of tendon width (no intact fibers end to end) suggesting that shear stress transfer can contribute more to overall tendon strength and stiffness than previously reported. All structural parameters for both tendon types decreased linearly with increasing laceration depth. The tail tendon had a more rapid decline in post-laceration elastic stress and modulus parameters as well as a more linear and less tightly packed fascicular structure, suggesting that positional tendons may be less well suited to redistribute loads via a shear mechanism. PMID:25700261

  3. Viscoelastic shear lag model to predict the micromechanical behavior of tendon under dynamic tensile loading.

    PubMed

    Wu, Jiayu; Yuan, Hong; Li, Longyuan; Fan, Kunjie; Qian, Shanguang; Li, Bing

    2018-01-21

    Owing to its viscoelastic nature, tendon exhibits stress rate-dependent breaking and stiffness function. A Kelvin-Voigt viscoelastic shear lag model is proposed to illustrate the micromechanical behavior of the tendon under dynamic tensile conditions. Theoretical closed-form expressions are derived to predict the deformation and stress transfer between fibrils and interfibrillar matrix while tendon is dynamically stretched. The results from the analytical solutions demonstrate that how the fibril overlap length and fibril volume fraction affect the stress transfer and mechanical properties of tendon. We find that the viscoelastic property of interfibrillar matrix mainly results in collagen fibril failure under fast loading rate or creep rupture of tendon. However, discontinuous fibril model and hierarchical structure of tendon ensure relative sliding under slow loading rate, helping dissipate energy and protecting fibril from damage, which may be a key reason why regularly staggering alignment microstructure is widely selected in nature. According to the growth, injury, healing and healed process of tendon observed by many researchers, the conclusions presented in this paper agrees well with the experimental findings. Additionally, the emphasis of this paper is on micromechanical behavior of tendon, whereas this analytical viscoelastic shear lag model can be equally applicable to other soft or hard tissues, owning the similar microstructure. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Incidence and clinical outcomes of tendon rupture following distal radius fracture.

    PubMed

    White, Brian D; Nydick, Jason A; Karsky, Dawnne; Williams, Bailee D; Hess, Alfred V; Stone, Jeffrey D

    2012-10-01

    To evaluate the incidence of tendon rupture after nonoperative and operative management of distal radius fractures, report clinical outcomes after tendon repair or transfer, and examine volar plate and dorsal screw prominence as a predictor of tendon rupture. We performed a retrospective chart review on patients treated for tendon rupture after distal radius fracture. We evaluated active range of motion, Disabilities of Arm, Shoulder, and Hand score, grip strength, and pain score, and performed radiographic evaluation of volar plate and dorsal screw prominence in both the study group and a matched control group. There were 6 tendon ruptures in 1,359 patients (0.4%) treated nonoperatively and 8 tendon ruptures in 999 patients (0.8%) treated with volar plate fixation. At the time of final follow-up, regardless of treatment, we noted that patients had minimal pain and excellent motion and grip strength. Mean Disabilities of the Shoulder, Arm, and Hand scores were 6 for patients treated nonoperatively and 4 for those treated with volar plating. We were unable to verify volar plate or dorsal screw prominence as independent risk factors for tendon rupture after distal radius fractures. However, we recommend continued follow-up and plate removal for symptomatic patients who have volar plate prominence or dorsal screw prominence. In the event of tendon rupture, we report excellent clinical outcomes after tendon repair or tendon transfer. Therapeutic IV. Copyright © 2012 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  5. Interosseous membrane window size for tibialis posterior tendon transfer-Geometrical and MRI analysis.

    PubMed

    Wagner, Pablo; Ortiz, Cristian; Vela, Omar; Arias, Paul; Zanolli, Diego; Wagner, Emilio

    2016-09-01

    Tibialis posterior (TP) tendon transfer through the interosseous membrane is commonly performed in Charcot-Marie-Tooth disease. In order to avoid entrapment of this tendon, no clear recommendation relative to the interosseous membrane (IOM) incision size has been made. Analyze the TP size at the transfer level and therefore determine the most adequate IOM window size to avoid muscle entrapment. Eleven lower extremity magnetic resonances were analyzed. TP muscle measurements were made in axial views, obtaining the medial-lateral and antero-posterior diameter at various distances from the medial malleolus tip. The distance from the posterior to anterior compartment was also measured. These measurements were applied to a mathematical model to predict the IOM window size necessary to allow an ample TP passage in an oblique direction. The average tendon diameter (confidence-interval) at 15cm proximal to the medial malleolus tip was 19.47mm (17.47-21.48). The deep posterior compartment to anterior compartment distance was 10.97mm (9.03-12.90). Using a mathematical model, the estimated IOM window size ranges from 4.2 to 4.9cm. The IOM window size is of utmost importance in trans-membrane TP transfers, given that if equal or smaller than the transposed tendon oblique diameter, a high entrapment risk exists. A membrane window of 5cm or 2.5 times the size of the tendon diameter should be performed in order to theoretically diminish this complication. Copyright © 2015 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  6. Hand Surgeon Reporting of Tendon Rupture Following Distal Radius Volar Plating

    PubMed Central

    Monaco, Nathan A.; Dwyer, C. Liam; Ferikes, Alex J.; Lubahn, John D.

    2016-01-01

    Background: Volar plate fixation with locked screws has become the preferred treatment of displaced distal radius fractures that cannot be managed nonoperatively. This treatment, however, is not without complication. The purpose of this study was to determine what percentage of hand surgeons, over a 12-month period, have experienced a tendon complication when using volar plates for the treatment of distal radius fractures. Methods: A total of 3022 hand surgeons were e-mailed a link to an online questionnaire regarding their observation and treatment of tendon injuries associated with volar plating of distal radius fractures. Responses were reported using descriptive statistics. Results: Of the 596 (20%) respondents, 199 (33%) surgeons reported encountering at least one flexor tendon injury after distal radius volar plating over the past year of practice. The flexor pollicis longus was the most commonly reported tendon injury (254, 75%). Palmaris longus grafting (118, 37%) and tendon transfer (114, 36%) were the most often reported treatments following this complication. A total of 216 respondents (36%) also encountered 324 cases of extensor tendon rupture after volar plating of distal radius fractures, with tendon transfer (88%) being the preferred treatment option. Conclusions: Both flexor and extensor tendon ruptures can be seen after volar plating of distal radius fractures. Surgeons should be aware of these complications. Critical assessment of hardware position at the time of index procedure is recommended to avoid complications. Long-term studies are needed to standardize approaches to managing tendon rupture following volar plating of distal radius fractures. PMID:27698628

  7. Hand Surgeon Reporting of Tendon Rupture Following Distal Radius Volar Plating.

    PubMed

    Monaco, Nathan A; Dwyer, C Liam; Ferikes, Alex J; Lubahn, John D

    2016-09-01

    Background: Volar plate fixation with locked screws has become the preferred treatment of displaced distal radius fractures that cannot be managed nonoperatively. This treatment, however, is not without complication. The purpose of this study was to determine what percentage of hand surgeons, over a 12-month period, have experienced a tendon complication when using volar plates for the treatment of distal radius fractures. Methods: A total of 3022 hand surgeons were e-mailed a link to an online questionnaire regarding their observation and treatment of tendon injuries associated with volar plating of distal radius fractures. Responses were reported using descriptive statistics. Results: Of the 596 (20%) respondents, 199 (33%) surgeons reported encountering at least one flexor tendon injury after distal radius volar plating over the past year of practice. The flexor pollicis longus was the most commonly reported tendon injury (254, 75%). Palmaris longus grafting (118, 37%) and tendon transfer (114, 36%) were the most often reported treatments following this complication. A total of 216 respondents (36%) also encountered 324 cases of extensor tendon rupture after volar plating of distal radius fractures, with tendon transfer (88%) being the preferred treatment option. Conclusions: Both flexor and extensor tendon ruptures can be seen after volar plating of distal radius fractures. Surgeons should be aware of these complications. Critical assessment of hardware position at the time of index procedure is recommended to avoid complications. Long-term studies are needed to standardize approaches to managing tendon rupture following volar plating of distal radius fractures.

  8. Enhanced tendon-to-bone repair through adhesive films.

    PubMed

    Linderman, Stephen W; Golman, Mikhail; Gardner, Thomas R; Birman, Victor; Levine, William N; Genin, Guy M; Thomopoulos, Stavros

    2018-04-01

    Tendon-to-bone surgical repairs have unacceptably high failure rates, possibly due to their inability to recreate the load transfer mechanisms of the native enthesis. Instead of distributing load across a wide attachment footprint area, surgical repairs concentrate shear stress on a small number of suture anchor points. This motivates development of technologies that distribute shear stresses away from suture anchors and across the enthesis footprint. Here, we present predictions and proof-of-concept experiments showing that mechanically-optimized adhesive films can mimic the natural load transfer mechanisms of the healthy attachment and increase the load tolerance of a repair. Mechanical optimization, based upon a shear lag model corroborated by a finite element analysis, revealed that adhesives with relatively high strength and low stiffness can, theoretically, strengthen tendon-to-bone repairs by over 10-fold. Lap shear testing using tendon and bone planks validated the mechanical models for a range of adhesive stiffnesses and strengths. Ex vivo human supraspinatus repairs of cadaveric tissues using multipartite adhesives showed substantial increase in strength. Results suggest that adhesive-enhanced repair can improve repair strength, and motivate a search for optimal adhesives. Current surgical techniques for tendon-to-bone repair have unacceptably high failure rates, indicating that the initial repair strength is insufficient to prevent gapping or rupture. In the rotator cuff, repair techniques apply compression over the repair interface to achieve contact healing between tendon and bone, but transfer almost all force in shear across only a few points where sutures puncture the tendon. Therefore, we evaluated the ability of an adhesive film, implanted between tendon and bone, to enhance repair strength and minimize the likelihood of rupture. Mechanical models demonstrated that optimally designed adhesives would improve repair strength by over 10-fold. Experiments using idealized and clinically-relevant repairs validated these models. This work demonstrates an opportunity to dramatically improve tendon-to-bone repair strength using adhesive films with appropriate material properties. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. Nerve transfers in tetraplegia I: Background and technique

    PubMed Central

    Brown, Justin M.

    2011-01-01

    Background: The recovery of hand function is consistently rated as the highest priority for persons with tetraplegia. Recovering even partial arm and hand function can have an enormous impact on independence and quality of life of an individual. Currently, tendon transfers are the accepted modality for improving hand function. In this procedure, the distal end of a functional muscle is cut and reattached at the insertion site of a nonfunctional muscle. The tendon transfer sacrifices the function at a lesser location to provide function at a more important location. Nerve transfers are conceptually similar to tendon transfers and involve cutting and connecting a healthy but less critical nerve to a more important but paralyzed nerve to restore its function. Methods: We present a case of a 28-year-old patient with a C5-level ASIA B (international classification level 1) injury who underwent nerve transfers to restore arm and hand function. Intact peripheral innervation was confirmed in the paralyzed muscle groups corresponding to finger flexors and extensors, wrist flexors and extensors, and triceps bilaterally. Volitional control and good strength were present in the biceps and brachialis muscles, the deltoid, and the trapezius. The patient underwent nerve transfers to restore finger flexion and extension, wrist flexion and extension, and elbow extension. Intraoperative motor-evoked potentials and direct nerve stimulation were used to identify donor and recipient nerve branches. Results: The patient tolerated the procedure well, with a preserved function in both elbow flexion and shoulder abduction. Conclusions: Nerve transfers are a technically feasible means of restoring the upper extremity function in tetraplegia in cases that may not be amenable to tendon transfers. PMID:21918736

  10. Anatomical Study of the Neurovascular in Flexor Hallucis Longus Tendon Transfers.

    PubMed

    Mao, Haijiao; Dong, Wenwei; Shi, Zengyuan; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2017-10-27

    The transfer of the flexor hallucis longus tendon or flexor digitorum longus tendon is frequently used for the treatment of posterior tibial tendon insufficiency or chronic Achilles tendinopathy. According to several anatomical studies, harvesting the flexor hallucis longus (FHL) tendon may cause nerve injury. Sixty-eight embalmed feet were dissected and anatomically classified to define the relationship between Henry's knot and the plantar nerves. Two different configurations were identified. In Pattern 1, which was observed in 64 specimens (94.1%), the distance between the medial plantar nerve and Henry's knot was 5.96 mm (range, 3.34 to 7.84, SD = 1.12). In Pattern 2, which was observed in 4 specimens (5.9%), there was no distance between the medial plantar nerve (MPN) and Henry's knot. No statistically significant difference was observed according to gender or side (p > 0.05). A retraction was performed to harvest the FHL through the posteromedial hindfoot incision using a single minimally invasive technique, and the medial and lateral plantar nerve lesions were scrupulously assessed. In conclusion, medial and lateral plantar nerve injuries did not occur more frequently, even after performing a single minimally invasive incision to harvest the FHL tendon, due to the large distance between the FHL tendon and the medial and lateral plantar nerves.

  11. Treatment of the neglected Achilles tendon rupture.

    PubMed

    Bevilacqua, Nicholas J

    2012-04-01

    Achilles tendon ruptures are best managed acutely. Neglected Achilles tendon ruptures are debilitating injuries and the increased complexity of the situation must be appreciated. Surgical management is recommended, and only in the poorest surgical candidate is conservative treatment entertained. Numerous treatment algorithms and surgical techniques have been described. A V-Y advancement flap and flexor halluces longus tendon transfer have been found to be reliable and achieve good clinical outcomes for defects ranging from 2 cm to 8 cm. This article focuses on the treatment options for the neglected Achilles tendon rupture. Copyright © 2012 Elsevier Inc. All rights reserved.

  12. A mini-invasive adductor magnus tendon transfer technique for medial patellofemoral ligament reconstruction: a technical note.

    PubMed

    Sillanpää, Petri J; Mäenpää, Heikki M; Mattila, Ville M; Visuri, Tuomo; Pihlajamäki, Harri

    2009-05-01

    Patellar dislocations are associated with injuries to the medial patellofemoral ligament (MPFL). Several techniques for MPFL reconstruction have been recently published with some disadvantages involved, including large skin incisions and donor site morbidity. Arthroscopic stabilizing techniques carry the potential of inadequate restoration of MPFL function. We present a minimally invasive technique for MPFL reconstruction using adductor magnus tendon autograft. This technique is easily performed, safe, and provides a stabilizing effect equal to current MPFL reconstructions. Skin incision of only 3-4 cm is located at the level of the proximal half of the patella. After identifying the distal insertion of the adductor magnus tendon, a tendon harvester is introduced to harvest the medial two-thirds of the tendon, while the distal insertion is left intact. The adductor magnus tendon is cut at 12-14 cm from its distal insertion and transferred into the patellar medial margin. Two suture anchors are inserted through the same incision at the superomedial aspect of the patella in the anatomic MPFL origin. The graft is tightened at 30 degrees knee flexion. Aftercare includes 4 weeks of brace treatment with restricted range of motion.

  13. Specialization of tendon mechanical properties results from interfascicular differences

    PubMed Central

    Thorpe, Chavaunne T.; Udeze, Chineye P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R. C.

    2012-01-01

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage. PMID:22764132

  14. Specialization of tendon mechanical properties results from interfascicular differences.

    PubMed

    Thorpe, Chavaunne T; Udeze, Chineye P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2012-11-07

    Tendons transfer force from muscle to bone. Specific tendons, including the equine superficial digital flexor tendon (SDFT), also store and return energy. For efficient function, energy-storing tendons need to be more extensible than positional tendons such as the common digital extensor tendon (CDET), and when tested in vitro have a lower modulus and failure stress, but a higher failure strain. It is not known how differences in matrix organization contribute to distinct mechanical properties in functionally different tendons. We investigated the properties of whole tendons, tendon fascicles and the fascicular interface in the high-strain energy-storing SDFT and low-strain positional CDET. Fascicles failed at lower stresses and strains than tendons. The SDFT was more extensible than the CDET, but SDFT fascicles failed at lower strains than CDET fascicles, resulting in large differences between tendon and fascicle failure strain in the SDFT. At physiological loads, the stiffness at the fascicular interface was lower in the SDFT samples, enabling a greater fascicle sliding that could account for differences in tendon and fascicle failure strain. Sliding between fascicles prior to fascicle extension in the SDFT may allow the large extensions required in energy-storing tendons while protecting fascicles from damage.

  15. Intermediate term follow-up of calcaneal osteotomy and flexor digitorum longus transfer for treatment of posterior tibial tendon dysfunction.

    PubMed

    Fayazi, Amir H; Nguyen, Hoan-Vu; Juliano, Paul J

    2002-12-01

    Twenty-three patients with stage II posterior tibial tendon dysfunction who had failed non-surgical therapy were treated with flexor digitorum longus transfer and calcaneal osteotomy. At latest follow-up averaging 35 +/- 7 months (range, 24 to 51 months), 22 patients (96%) were subjectively "better" or "much better." No patient had difficulty with shoe wear; however, four patients (17%) required routine orthotic use consisting of a molded shoe insert. AOFAS scores were available on 21 patients and improved from a preoperative mean of 50 +/- 14 (range, 27 to 85) to a postoperative mean of 89 +/- 10 (range, 70 to 100). Our experience, at an intermediate date follow-up is that calcaneal osteotomy and flexor digitorum longus transfer is a safe and effective form of treatment for stage II posterior tibial tendon dysfunction.

  16. Application of biomechanics to tendon transfers.

    PubMed

    Hoard, A S; Bell-Krotoski, J A; Mathews, R

    1995-01-01

    This article has focused on considerations important in the application of biomechanics to tendon transfers and has used an example protocol. Different surgeries require different protocols. What is most important is that specific protocols are used, and that they are both safe and effective. The communication among the therapist, surgeon, and patient is essential with the use of any protocol. As Brand has stated, "A hand is a very personal thing. It is the interface between the patient and his or her world. It is an emblem of strength, beauty, skill, sexuality, and sensibility. When it is damaged it becomes a symbol of the vulnerability of the whole person." For the patient who has damage from nerve palsy, paralysis, or injury resulting in a dysfunctional hand, a tendon transfer procedure may prove to be a viable option to restore balance and function, especially if the biomechanics of deformity and correction are considered.

  17. Clinical Outcomes and Return to Sports in Patients with Chronic Achilles Tendon Rupture after Minimally Invasive Reconstruction with Semitendinosus Tendon Graft Transfer.

    PubMed

    Usuelli, Federico Giuseppe; D'Ambrosi, Riccardo; Manzi, Luigi; Indino, Cristian; Villafañe, Jorge Hugo; Berjano, Pedro

    2017-12-01

    Objective  The purpose of the study is to evaluate the clinical results and return to sports in patients undergoing reconstruction of the Achilles tendon after minimally invasive reconstruction with semitendinosus tendon graft transfer. Methods  Eight patients underwent surgical reconstruction with a minimally invasive technique and tendon graft augmentation with ipsilateral semitendinosus tendon for chronic Achilles tendon rupture (more than 30 days after the injury and a gap of >6 cm). Patients were evaluated at a minimum follow-up of 24 months after the surgery through the American Orthopaedic Foot and Ankle Society (AOFAS), the Achilles Tendon Total Rupture Scores (ATRS), the Endurance test, the calf circumference of the operated limb, and the contralateral and the eventual return to sports activity performed before the trauma. Results  The mean age at surgery was 50.5 years. Five men and three women underwent the surgery. The average AOFAS was 92, mean Endurance test was 28.1, and the average ATRS was 87. All patients returned to their daily activities, and six out of eight patients have returned to sports activities prior to the accident (two football players, three runners, one tennis player) at a mean of 7.0 (range: 6.7-7.2) months after the surgery. No patient reported complications or reruptures. Conclusion  Our study confirms encouraging results for the treatment of Achilles tendon rupture with a minimally invasive technique with semitendinosus graft augmentation. The technique can be considered safe and allows patients to return to their sports activity. Level of Evidence  Level IV, therapeutic case series.

  18. An overview of structure, mechanical properties, and treatment for age-related tendinopathy.

    PubMed

    Zhou, B; Zhou, Y; Tang, K

    2014-04-01

    Tendons transfer tensile loads from muscle to bone, which enable joint motions and stabilize joints. Tendons sustain large mechanical loads in vivo and as a result, tendons were frequently injured. Aging has been confirmed as a predisposing factor of tendinopathy and bad recovery quality following tendon repair. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal antiinflammatory drugs and physical therapy or surgery when conservative treatments failed. The limitation in treatment options is due to our incomplete knowledge of age-related tendinopathy. Studies over the past decades have uncovered a number of important mechanical and cellular changes of aging tendon. However, the basis of aging as a major risk factor for tendon injury and impaired tendon healing remained poorly understood. The objectives of this review are to provide an overview of the current knowledge about the aging-associated changes of structure, mechanical properties and treatment in tendon and highlight causes and therapies for age-related tendinopathy.

  19. Biomechanical Analysis of Suture Anchor vs Tenodesis Screw for FHL Transfer.

    PubMed

    Drakos, Mark C; Gott, Michael; Karnovsky, Sydney C; Murphy, Conor I; DeSandis, Bridget A; Chinitz, Noah; Grande, Daniel; Chahine, Nadeen

    2017-07-01

    Chronic Achilles injury is often treated with flexor hallucis longus (FHL) tendon transfer to the calcaneus using 1 or 2 incisions. A single incision avoids the risks of extended dissections yet yields smaller grafts, which may limit fixation options. We investigated the required length of FHL autograft and biomechanical profiles for suture anchor and biotenodesis screw fixation. Single-incision FHL transfer with suture anchor or biotenodesis screw fixation to the calcaneus was performed on 20 fresh cadaveric specimens. Specimens were cyclically loaded until maximal load to failure. Length of FHL tendon harvest, ultimate load, stiffness, and mode of failure were recorded. Tendon harvest length needed for suture anchor fixation was 16.8 ± 2.1 mm vs 29.6 ± 2.4 mm for biotenodesis screw ( P = .002). Ultimate load to failure was not significantly different between groups. A significant inverse correlation existed between failure load and donor age when all specimens were pooled (ρ = -0.49, P < .05). Screws in younger specimens (fewer than 70) resulted in significantly greater failure loads ( P < .03). No difference in stiffness was found between groups. Modes of failure for screw fixation were either tunnel pullout (n = 6) or tendon rupture (n = 4). Anchor failure occurred mostly by suture breakage (n = 8). Adequate FHL tendon length could be harvested through a single posterior incision for fixation to the calcaneus with either fixation option, but suture anchor required significantly less graft length. Stiffness, fixation strength, and load to failure were comparable between groups. An inverse correlation existed between failure load and donor age. Younger specimens with screw fixation demonstrated significantly greater failure loads. Adequate harvest length for FHL transfer could be achieved with a single posterior incision. There was no difference in strength of fixation between suture anchor and biotenodesis screw.

  20. Dissection of a single rat muscle-tendon complex changes joint moments exerted by neighboring muscles: implications for invasive surgical interventions.

    PubMed

    Maas, Huub; Baan, Guus C; Huijing, Peter A

    2013-01-01

    The aim of this paper is to investigate mechanical functioning of a single skeletal muscle, active within a group of (previously) synergistic muscles. For this purpose, we assessed wrist angle-active moment characteristics exerted by a group of wrist flexion muscles in the rat for three conditions: (i) after resection of the upper arm skin; (ii) after subsequent distal tenotomy of flexor carpi ulnaris muscle (FCU); and (iii) after subsequent freeing of FCU distal tendon and muscle belly from surrounding tissues (MT dissection). Measurements were performed for a control group and for an experimental group after recovery (5 weeks) from tendon transfer of FCU to extensor carpi radialis (ECR) insertion. To assess if FCU tenotomy and MT dissection affects FCU contributions to wrist moments exclusively or also those of neighboring wrist flexion muscles, these data were compared to wrist angle-moment characteristics of selectively activated FCU. FCU tenotomy and MT dissection decreased wrist moments of the control group at all wrist angles tested, including also angles for which no or minimal wrist moments were measured when activating FCU exclusively. For the tendon transfer group, wrist flexion moment increased after FCU tenotomy, but to a greater extent than can be expected based on wrist extension moments exerted by selectively excited transferred FCU. We conclude that dissection of a single muscle in any surgical treatment does not only affect mechanical characteristics of the target muscle, but also those of other muscles within the same compartment. Our results demonstrate also that even after agonistic-to-antagonistic tendon transfer, mechanical interactions with previously synergistic muscles do remain present.

  1. Functional Outcomes Following Anterior Transfer of the Tibialis Posterior Tendon for Foot Drop Secondary to Peroneal Nerve Palsy.

    PubMed

    Cho, Byung-Ki; Park, Kyoung-Jin; Choi, Seung-Myung; Im, Se-Hyuk; SooHoo, Nelson F

    2017-06-01

    This retrospective comparative study reports the practical function in daily and sports activities after tibialis posterior tendon transfer for foot drop secondary to peroneal nerve palsy. Seventeen patients were followed for a minimum of 3 years after tibialis posterior tendon transfer for foot drop secondary to peroneal nerve palsy. Matched controls were used to evaluate the level of functional restoration. Functional evaluations included American Orthopaedic Foot & Ankle Society (AOFAS) scores, Foot and Ankle Outcome Score (FAOS), Foot and Ankle Ability Measure (FAAM) scores, and isokinetic muscle strength test. Radiographic evaluation for the changes of postoperative foot alignment included Meary angle, calcaneal pitch angle, hindfoot alignment angle, and navicular height. Mean AOFAS, FAOS, and FAAM scores significantly improved from 65.1 to 86.2, 55.6 to 87.8, and 45.7 to 84.4 points at final follow-up, respectively. However, all functional evaluation scores were significantly lower as compared to the control group ( P < .001). Mean peak torque (60 degrees/sec) of ankle dorsiflexors, plantarflexors, invertors, and evertors at final follow-up were 7.1 (deficit ratio of 65.4%), 39.2, 9.8, and 7.3 Nm, respectively. These muscle strengths were significantly lower compared to the control group ( P < .001). No significant differences in radiographic measurements were found, and no patients presented with a postoperative flat foot deformity. One patient (5.9%) needed an ankle-foot orthosis for occupational activity. Anterior transfer of the tibialis posterior tendon appears to be an effective surgical option for paralytic foot drop secondary to peroneal nerve palsy. Although restoration of dorsiflexion strength postoperatively was about 33% of the normal ankle, function in daily activities and gait ability were satisfactorily improved. In addition, tibialis posterior tendon transfer demonstrated no definitive radiographic or clinical progression to postoperative flat foot deformity at intermediate-term follow-up. Level IV, retrospective case series.

  2. Angiogenesis in healing autogenous flexor-tendon grafts.

    PubMed

    Gelberman, R H; Chu, C R; Williams, C S; Seiler, J G; Amiel, D

    1992-09-01

    On the basis of recent evidence that flexor tendon grafts may heal without the ingrowth of vascular adhesions, eighteen autogenous donor tendons of intrasynovial and extrasynovial origin were transferred to the synovial sheaths in the forepaws of nine dogs, and controlled passive mobilization was instituted early in the postoperative period. The angiogenic responses of the tendon grafts were determined with perfusion studies with India ink followed by cleaing of the tissues with the Spalteholz technique at two, four, and six weeks. A consistent pattern of neovascularization was noted in the donor tendons of extrasynovial origin. Vascular adhesions arising from the flexor digitorum superficialis and the tendon sheath enveloped the tendon grafts by two weeks. By six weeks, the vascularity of the tendon grafts of extrasynovial origin appeared completely integrated with that of the surrounding tissues. Examination of cross sections revealed that the segments of tendon had been completely vascularized by obliquely oriented intratendinous vessels. In contrast, the flexor tendon grafts of intrasynovial origin healed without ingrowth of vascular adhesions. Primary intrinsic neovascularization took place from the proximal and, to a lesser extent, distal sites of the sutures. Examination of cross sections revealed vessels extending through the surface layer of the tendon graft, with small vessels penetrating the interior of the tendons at regular intervals.

  3. Treatment of posterior tibial tendon dysfunction without flexor digitorum tendon transfer: a retrospective study of 34 patients.

    PubMed

    Didomenico, Lawrence; Stein, Dawn Y; Wargo-Dorsey, Mari

    2011-01-01

    A retrospective study of patients who underwent gastrocnemius recession, double calcaneal osteotomy (Evans osteotomy and percutaneous calcaneal displacement osteotomy), and medial column fusion for the treatment of posterior tibial tendon dysfunction was conducted. The senior author performed the procedures between November 2002 and January 2009 on 34 patients who displayed at least Johnson and Strom stage II deformity and had undergone 12 months of failed conservative treatment. The coauthors evaluated the patients' radiographs before and after the operation. At a mean of 14 (range 3 to 44) months after surgery, radiographic measurements demonstrated statistically significant changes in the structural alignment of the feet. Based on our experience with these patients, we believe that a double calcaneal osteotomy combined with a gastrocnemius recession and stabilization of the medial column for the treatment of posterior tibial tendon dysfunction provides satisfactory correction, stability, and realignment of the foot. Furthermore, we feel that the use of flexor digitorum longus transfer, as well as triple arthrodesis, can be avoided without compromising the outcome when surgically treating posterior tibial tendon dysfunction. Copyright © 2011 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  4. Outcome of Lateral Transfer of the FHL or FDL for Concomitant Peroneal Tendon Tears.

    PubMed

    Seybold, Jeffrey D; Campbell, John T; Jeng, Clifford L; Short, Kelly W; Myerson, Mark S

    2016-06-01

    Concomitant tears of the peroneus longus and brevis tendons are rare injuries, with literature limited to case reports and small patient series. Only 1 recent study directly compared the results of single-stage lateral deep flexor transfer, and no previous series objectively evaluated power and balance following transfer. The purpose of this study was to evaluate clinical outcomes, patient satisfaction, and objective power and balance data following single-stage flexor hallucis longus (FHL) and flexor digitorum longus (FDL) tendon transfers for treatment of concomitant peroneus longus and brevis tears. Over an 8-year period (2005-2012), 9 patients underwent lateral transfer of the FHL or FDL tendon for treatment of concomitant peroneus longus and brevis tears. All but 1 patient underwent additional procedures to address hindfoot malalignment or other contributing deformity at the time of surgery. Mean age was 56.9 years, and average body mass index was 27.9. Lateral transfer of the FHL was performed in 5 patients, and FDL transfer performed in 4 with mean follow-up 35.7 months (range: 11-94). Eight of 9 patients completed SF-12 and Foot Function Index (FFI) scores, and 7 returned for range of motion (ROM) and manual strength testing of the involved and normal extremities. These 7 patients also completed force plate balance tests, in addition to peak force and power testing on a PrimusRS machine with a certified physical therapist. All patients were satisfied with the results of the procedure. Mean SF-12 physical and mental scores were 32 and 55, respectively; mean FFI total score was 56.7. No postoperative infections were noted. Two patients continued to utilize orthotics or braces, and 2 patients reported occasional pain with weightbearing activity. Three patients noted mild paresthesias in the distribution of the sural nerve and 2 demonstrated tibial neuritis. All patients demonstrated 4/5 eversion strength in the involved extremity. Average loss of inversion and eversion ROM were 24.7% and 27.2% of normal, respectively. Mean postoperative eversion peak force and power were decreased greater than 55% relative to the normal extremity. Patients demonstrated nearly 50% increases in both center-of-pressure tracing length and velocity during balance testing. There were no statistically significant differences between the FHL and FDL transfer groups with regards to clinical examination or objective power and balance tests. The FHL and FDL tendons were both successful options for lateral transfer in cases of concomitant peroneus longus and brevis tears. Objective measurements of strength and balance demonstrated significant deficits in the operative extremity, even years following the procedure. These differences, however, did not appear to alter or inhibit patient activity levels or high satisfaction rates with the procedure. Although anatomic studies have demonstrated benefits of FHL transfer over the FDL tendon, further studies with increased patient numbers are needed to determine if these differences are clinically significant. Level IV, retrospective case series. © The Author(s) 2016.

  5. Peroneal perforator-based peroneus longus tendon and sural neurofasciocutaneous composite flap transfer for a large soft-tissue defect of the forearm: A case report.

    PubMed

    Hayashida, Kenji; Saijo, Hiroto; Fujioka, Masaki

    2018-01-01

    We describe the use of a composite flap composed of a sural neurofasciocutaneous flap and a vascularized peroneus longus tendon for the reconstruction of severe composite forearm tissue defects in a patient. A 43-year-old man had his left arm caught in a conveyor belt resulting in a large soft-tissue defect of 18 × 11 cm over the dorsum forearm. The extensor carpi radialis, superficial radial nerve, and radial artery were severely damaged. A free neurofasciocutaneous composite flap measuring 16 × 11 cm was outlined on the patient's left lower leg to allow simultaneous skin, tendon, nerve, and artery reconstruction. The flap, which included the peroneus longus tendon, was elevated on the subfascial plane. After the flap was transferred to the recipient site, the peroneal artery was anastomosed to the radial artery in a flow-through manner. The vascularized tendon graft with 15 cm in length was used to reconstruct the extensor carpi radialis longus tendon defect using an interlacing suture technique. As the skin paddle of the sural neurofasciocutaneous flap and the vascularized peroneus longus tendon graft were linked by the perforator and minimal fascial tissue, the skin paddle was able to rotate and slide with comparative ease. The flap survived completely without any complications. The length of follow-up was 12 months and was uneventful. Range of motion of his left wrist joint was slightly limited to 75 degrees. This novel composite flap may be useful for reconstructing long tendon defects associated with extensive forearm soft tissue defects. © 2016 Wiley Periodicals, Inc.

  6. Human tendon behaviour and adaptation, in vivo

    PubMed Central

    Magnusson, S Peter; Narici, Marco V; Maganaris, Constantinos N; Kjaer, Michael

    2008-01-01

    Tendon properties contribute to the complex interaction of the central nervous system, muscle–tendon unit and bony structures to produce joint movement. Until recently limited information on human tendon behaviour in vivo was available; however, novel methodological advancements have enabled new insights to be gained in this area. The present review summarizes the progress made with respect to human tendon and aponeurosis function in vivo, and how tendons adapt to ageing, loading and unloading conditions. During low tensile loading or with passive lengthening not only the muscle is elongated, but also the tendon undergoes significant length changes, which may have implications for reflex responses. During active loading, the length change of the tendon far exceeds that of the aponeurosis, indicating that the aponeurosis may more effectively transfer force onto the tendon, which lengthens and stores elastic energy subsequently released during unloading, in a spring-like manner. In fact, data recently obtained in vivo confirm that, during walking, the human Achilles tendon provides elastic strain energy that can decrease the energy cost of locomotion. Also, new experimental evidence shows that, contrary to earlier beliefs, the metabolic activity in human tendon is remarkably high and this affords the tendon the ability to adapt to changing demands. With ageing and disuse there is a reduction in tendon stiffness, which can be mitigated with resistance exercises. Such adaptations seem advantageous for maintaining movement rapidity, reducing tendon stress and risk of injury, and possibly, for enabling muscles to operate closer to the optimum region of the length–tension relationship. PMID:17855761

  7. Neurotized lateral gastrocnemius muscle transfer for persistent traumatic peroneal nerve palsy: Surgical technique.

    PubMed

    Leclère, F M; Badur, N; Mathys, L; Vögelin, E

    2015-08-01

    Persistent traumatic peroneal nerve palsy, following nerve surgery failure, is usually treated by tendon transfer or more recently by tibial nerve transfer. However, when there is destruction of the tibial anterior muscle, an isolated nerve transfer is not possible. In this article, we present the key steps and surgical tips for the Ninkovic procedure including transposition of the neurotized lateral gastrocnemius muscle with the aim of restoring active voluntary dorsiflexion. The transposition of the lateral head of the gastrocnemius muscle to the tendons of the anterior tibial muscle group, with simultaneous transposition of the intact proximal end of the deep peroneal nerve to the tibial nerve of the gastrocnemius muscle by microsurgical neurorrhaphy is performed in one stage. It includes 10 key steps which are described in this article. Since 1994, three clinical series have highlighted the advantages of this technique. Functional and subjective results are discussed. We review the indications and limitations of the technique. Early clinical results after neurotized lateral gastrocnemius muscle transfer appear excellent; however, they still need to be compared with conventional tendon transfer procedures. Clinical studies are likely to be conducted in this area largely due to the frequency of persistant peroneal nerve palsy and the limitations of functional options in cases of longstanding peripheral nerve palsy, anterior tibial muscle atrophy or destruction. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  8. Diabetes Alters Mechanical Properties and Collagen Fiber Re-Alignment in Multiple Mouse Tendons

    PubMed Central

    Connizzo, Brianne K.; Bhatt, Pankti R.; Liechty, Kenneth W.; Soslowsky, Louis J.

    2014-01-01

    Tendons function to transfer load from muscle to bone through their complex composition and hierarchical structure, consisting mainly of type I collagen. Recent evidence suggests that type II diabetes may cause alterations in collagen structure, such as irregular fibril morphology and density, which could play a role in the mechanical function of tendons. Using the db/db mouse model of type II diabetes, the diabetic skin was found to have impaired biomechanical properties when compared to the non-diabetic group. The purpose of this study was to assess the effect of diabetes on biomechanics, collagen fiber re-alignment, and biochemistry in three functionally different tendons (Achilles, supraspinatus, patellar) using the db/db mouse model. Results showed that cross-sectional area and stiffness, but not modulus, were significantly reduced in all three tendons. However, the tendon response to load (transition strain, collagen fiber re-alignment) occurred earlier in the mechanical test, contrary to expectations. In addition, the patellar tendon had an altered response to diabetes when compared to the other two tendons, with no changes in fiber realignment and decreased collagen content at the midsubstance of the tendon. Overall, type II diabetes alters tendon mechanical properties and the dynamic response to load. PMID:24833253

  9. Rupture of the subscapularis tendon after shoulder arthroplasty: diagnosis, treatment, and outcome.

    PubMed

    Miller, Bruce S; Joseph, Thomas A; Noonan, Thomas J; Horan, Marilee P; Hawkins, Richard J

    2005-01-01

    The purpose of this study was to document the diagnosis, surgical treatment, and functional outcome in patients with subscapularis ruptures after shoulder arthroplasty. Prospective objective and subjective data were collected on 7 patients with symptomatic rupture of the subscapularis tendon after shoulder arthroplasty. Presenting signs and symptoms included pain, weakness in internal rotation, increased external rotation, and anterior instability. All patients were treated with surgical repair of the ruptured tendon. Four required repair augmentation with a transfer of the pectoralis major tendon. After subscapularis repair and pectoralis transfer, 2 patients continued to have anterior instability and required an additional operation to address the instability. At a mean follow-up of 2.3 years (range, 18-55 months), the mean American Shoulder and Elbow Surgeons shoulder score in this study group was 63.2. The mean patient satisfaction rating, on a 10-point scale, was 6.2. Factors associated with post-arthroplasty subscapularis ruptures included subscapularis lengthening techniques used to address internal rotation contracture and previous surgery that violated the subscapularis tendon. Symptomatic subscapularis rupture after shoulder arthroplasty introduces the need for additional surgery and a period of protected or delayed rehabilitation after arthroplasty. Although symptoms were adequately addressed with appropriate surgical treatment, decreased functional outcomes were observed.

  10. Extremity salvage with a free musculocutaneous latissimus dorsi flap and free tendon transfer after resection of a large congenital fibro sarcoma in a 15-week-old infant. A case report.

    PubMed

    Germann, G; Waag, K-L; Selle, B; Jester, A

    2006-01-01

    A case of complex microsurgical reconstruction of the dorsum of the foot, including tendon transfer following tumor resection, in a 15-week-old male infant is presented. After birth, a 5.5 x 4 cm large tumor was observed on the dorsum of the right foot. Biopsy showed a congenital malignant fibro sarcoma. After initial chemotherapy a radical excision of the tumor at the age of 14 weeks was followed. To cover the defect a musculocutaneous latissimus dorsi flap was taken, the cutaneous part being large enough to cover the defect. Extensor tendons were reconstructed with free tendon transplants. Amputation is usually indicated in these cases. To the best of our knowledge, microsurgical reconstruction in infants at this age with congenital malignant tumors has not yet been reported. The case shows that Plastic surgery can play an important role in pediatric oncology and should routinely be integrated into the multi-modal treatment concepts. (c) 2006 Wiley-Liss, Inc. Microsurgery, 2006.

  11. [Secondary tendon reconstruction on the thumb].

    PubMed

    Bickert, B; Kremer, T; Kneser, U

    2016-12-01

    Closed tendon ruptures of the thumb that require secondary reconstruction can affect the extensor pollicis longus (EPL), extensor pollicis brevis (EPB) and flexor pollicis longus (FPL) tendons. Treatment of rupture of the EPB tendon consists of refixation to the bone and temporary transfixation of the joint. In the case of preexisting or posttraumatic arthrosis, definitive arthrodesis of the thumb is the best procedure. Closed ruptures of the EPL and FPL tendons at the wrist joint cannot be treated by direct tendon suture. Rupture of the EPL tendon occurs after distal radius fractures either due to protruding screws or following conservative treatment especially in undisplaced fractures. Transfer of the extensor indicis tendon to the distal EPL stump is a good option and free interposition of the palmaris longus tendon is a possible alternative. The tension should be adjusted to slight overcorrection, which can be checked intraoperatively by performing the tenodesis test. Closed FPL ruptures at the wrist typically occur 3-6 months after osteosynthesis of distal radius fractures with palmar plates and are mostly characterized by crepitation and pain lasting for several weeks. They can be prevented by premature plate removal, synovectomy and carpal tunnel release. For treatment of a ruptured FPL tendon in adult patients the options for tendon reconstruction should be weighed up against the less complicated tenodesis or arthrodesis of the thumb interphalangeal joint.

  12. Time-dependent changes after latissimus dorsi transfer: tenodesis or tendon transfer?

    PubMed

    Erşen, Ali; Ozben, Hakan; Demirhan, Mehmet; Atalar, Ata Can; Kapıcıoğlu, Mehmet

    2014-12-01

    Transfer of the latissimus dorsi tendon to the posterosuperior part of the rotator cuff is an option in active patients with massive rotator cuff tears to restore shoulder elevation and external rotation. However, it is unknown whether this treatment prevents progression of cuff tear arthropathy. The purpose of this study was to determine whether the observed improvement in shoulder function in the early postoperative period with latissimus dorsi tendon transfer for irreparable rotator cuff tears will be permanent or will deteriorate in the midterm period (at 1-5 years after surgery). During a 6-year period, we performed 11 latissimus dorsi tendon transfers in 11 patients for patients with massive, irreparable, chronic tears of the posterosuperior part of the rotator cuff (defined as > 5 cm supraspinatus and infraspinatus tendon tears with Goutallier Grade 3 to 4 fatty infiltration on MRI), for patients who were younger than 65 years of age, and had high functional demands and intact subscapularis function. No patients were lost to followup; minimum followup was 12 months (median, 33 months; range, 12-62 months). The mean patient age was 55 years (median, 53 years; range, 47-65 years). Shoulder forward elevation, external rotation, and Constant-Murley and American Shoulder and Elbow Surgeons scores were assessed. Pain was assessed by a 0- to 10-point visual analog scale. Acromiohumeral distance and cuff tear arthropathy (staged according to the Hamada classification) were evaluated on radiographs. Shoulder forward elevation, external rotation, Constant-Murley scores, and American Shoulder and Elbow Surgeons scores improved at 6 months. However, although shoulder motion values and Constant-Murley scores remained unchanged between the 6-month and latest evaluations, American Shoulder and Elbow Surgeons scores decreased in this period (median, 71; range, 33-88 versus median, 68; range, 33-85; p = 0.009). Visual analog scale scores improved between the preoperative and 6-month evaluations but then worsened (representing worse pain) between the 6-month and latest evaluations (median, 2; range, 0-5 versus median, 2; range, 1-6; p = 0.034), but scores at latest followup were still lower than preoperative values (median, 7; range, 4-8; p = 0.003). Although acromiohumeral distance values were increased at 6 months (median, 8 mm; range, 6-10 mm; p = 0.023), the values at latest followup (median, 8 mm; range, 5-10 mm) were no different from the preoperative ones (mean, 7 mm; range, 6-9 mm; p > 0.05). According to Hamada classification, all patients were Grade 1 both pre- and postoperatively, except one who was Grade 3 at latest followup. The latissimus dorsi tendon transfer may improve shoulder function in irreparable massive rotator cuff tears. However, because the tenodesis effect loses its strength with time, progression of the arthropathy should be expected over time. Nevertheless, latissimus dorsi tendon transfer may help to delay the need for reverse shoulder arthroplasty for these patients. Level IV, therapeutic study. See Instructions for Authors for a complete description of levels of evidence.

  13. Postoperative physical therapy program for latissimus dorsi and teres major tendons transfer to rotator cuff in children with obstetrical brachial plexus injury.

    PubMed

    Safoury, Yasser A; Eldesoky, Mohamed T; Abutaleb, Enas E; Atteya, Mohamed R; Gabr, Ahmed M

    2017-04-01

    The transfer of latissimus dorsi and teres major tendons to rotator cuff have been developed to rebalance the muscular dysfunction and improve shoulder range of motion in children with obstetrical brachial plexus palsy (OBPP). No previous study reported the ideal postoperative physical therapy program for these cases. The aim of the present study was to design appropriate postoperative physical therapy (PT) program after latissimus dorsi and teres major tendons transfer to rotator cuff in OBPP to improve upper limb function. Time series design. The patients were recruited from outpatient clinic of Kasr EL Aini Hospital, Cairo, Egypt. Forty seven OBPP infants (4.64±1.21 years with a range of 2.5 to 7 years, 21male and26 female) were allocated to one group. All patients had functional limitation in the involved arm due to muscle paralysis and contracture. Twenty-five patients had C5-C6 nerve root lesions while 22 had C5-C6-C7 nerve root lesions. The children underwent the surgical procedures of the transfer of latissimus dorsi and teres major tendons to rotator cuff. After the surgery the children participated in a designed physical therapy program for 6 months. Active shoulder abduction, flexion and external rotation range of motion (ROM) were assessed by electrogoniometer, and functional assessments were measured using the modified Mallet scale. All measurements were taken preoperative, 6 weeks, 3 months, and 6 months postoperatively after the application of the designed PT program. Repeated measure analysis of variance (ANOVA) followed by Bonferroni post-hoc test were used to show the improvement in all measured variables. Analysis revealed that shoulder abduction, flexion and external rotation ROM and shoulder function measured by modified Mallet scale were significantly improved (P<0.0001) after the designed postoperative PT program. It can be concluded that the combination treatment of surgical procedure and the postoperative physical therapy program seem to be effective in improving shoulder and arm functions in children with OBPP. This study describes a detailed physical therapy program after latissimus dorsi and teres major tendons transfer to rotator cuff in OBPP.

  14. Latissimus dorsi transfer for irreparable subscapularis tendon tears.

    PubMed

    Mun, Sang Won; Kim, Ji Young; Yi, Seung Hoon; Baek, Chang Hee

    2018-06-01

    There are several tendon transfers for reconstruction of irreparable subscapularis tears. The latissimus dorsi (LD) could be used because its direction and function are similar to those of the subscapularis. We performed LD transfers for irreparable subscapularis tears and evaluated clinical outcomes. The study enrolled 24 consecutive patients who underwent LD transfers. Clinical and functional outcomes were evaluated using the Constant score, American Shoulder and Elbow Surgeons score, pain visual analog scale, and range of shoulder motion preoperatively and at last follow-up. The lift-off and belly-press tests were performed to assess subscapularis integrity and function. Magnetic resonance imaging was performed preoperatively and 1 year postoperatively to evaluate tendon integrity. Mean Constant, American Shoulder and Elbow Surgeons, and pain scores improved from 46 ± 6 to 69 ± 5 (P < .001), from 40 ± 3 to 70 ± 5 (P < .001), and from 6 ± 1 to 2 ± 1 (P = .006), respectively. The mean range of motion for forward elevation and internal rotation increased from 135° ± 17° to 166° ± 15° (P = .016) and from L5 to L1 (P = .010), respectively. Improvement in the range of motion for external rotation was not significant (51° ± 7° to 68° ± 7°; P = .062). At final follow-up, the belly-press test results were negative for 18 of 24 patients, and the lift-off test results were negative for 16 of 20 patients. No complications related to tendon transfer, including axillary and radial nerve injuries, were found. No retearing of the transferred LD was observed. LD transfer resulted in pain relief and restoration of shoulder range of motion and function. LD transfer could be considered an effective and safe salvage treatment for irreparable subscapularis tears. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  15. Open surgical treatment for chronic midportion Achilles tendinopathy: faster recovery with the soleus fibres transfer technique.

    PubMed

    Benazzo, Francesco; Zanon, Giacomo; Klersy, Catherine; Marullo, Matteo

    2016-06-01

    The study aimed to compare two methods of open surgical treatment for midportion Achilles tendinopathy in sportsmen. A novel technique consisting in transferring some soleus fibres into the degenerated tendon to improve its vascularization and longitudinal tenotomies are evaluated and compared. From 2006 to 2011, fifty-two competitive and noncompetitive athletes affected by midportion Achilles tendinopathy were surgically treated and prospectively evaluated at 6 months and at a final 4-year mean follow-up. Twenty patients had longitudinal tenotomies, and thirty-two had soleus fibres transfer. Clinical outcome was evaluated by the American Orthopaedic Foot and Ankle Society (AOFAS) score and the Victorian Institute of Sports Assessment-Achilles (VISA-A) score. Time to return to walk and to run and tendon thickening were also recorded. Patients in the soleus transfer group had a higher increase in AOFAS and VISA-A score at 6 months and at the mean 4-year final follow-up (by 5.4 points, 95 % CI 2.9-7.9, p < 0.001 and by 5.7 points, 95 % CI 2.5-8.9, p = 0.001, for AOFAS and VISA, respectively). They also needed less time to return to run: 98.9 ± 17.4 days compared to 122.2 ± 26.3 days for the longitudinal tenotomies group (p = 0.0019). The soleus transfer group had a greater prevalence of tendon thickening (59.4 % compared to 30.0 % in the longitudinal tenotomies group, p = 0.037). Open surgery for midportion Achilles tendinopathy is safe and effective in medium term. Despite similar outcomes in postoperative functional scores, soleus transfer allows a faster recovery but has a higher incidence of tendon thickening. These results should suggest the use of the soleus graft technique in high-level athletes. Prospective comparative study, Level II.

  16. [Rupture of the tendon of the tibialis anterior muscle : Etiology, clinical symptoms and treatment].

    PubMed

    Waizy, H; Bouillon, B; Stukenborg-Colsman, C; Yao, D; Ettinger, S; Claassen, L; Plaass, C; Danniilidis, K; Arbab, D

    2017-12-01

    Ruptures of the tendon of the tibialis anterior muscle tend to occur in the context of degenerative impairments. This mainly affects the distal avascular portion of the tendon. Owing to the good compensation through the extensor hallucis longus and extensor digitorum muscles, diagnosis is often delayed. In addition to the clinical examination, magnetic resonance inaging (MRI) diagnostics are of particular importance, although damage or rupture of the tendon can also be demonstrated sonographically. Therapeutic measures include conservative or operative measures, depending on the clinical symptoms. Conservative stabilization of the ankle can be achieved by avoiding plantar flexion using a peroneal orthosis or an ankle-foot orthosis. Subsequent problems, such as metatarsalgia or overloading of the medial foot edge can be addressed by insoles or a corresponding shoe adjustment. An operative procedure is indicated when there is corresponding suffering due to pressure and functional impairment. The direct end-to-end reconstruction of the tendon is only rarely possible in cases of delayed diagnosis due to the degenerative situation and the retraction of the tendon stumps. Depending on the defect size and the tendon quality, various operative techniques, such as rotationplasty, free transplants or tendon transfer can be used.

  17. Extensor Tendon Injuries and Repairs in the Hand

    PubMed Central

    Kontor, J. A.

    1982-01-01

    Due to their superficial course, the extensor tendons are frequently lacerated over the dorsum of the hand and fingers. Excellent functional results are obtained in repairs of simple tendon lacerations. ‘Open’ mallet lacerations over the distal IP joint or involving the central extensor slip over the proximal IP joint require more precise suturing methods. More proximal extensor tendon divisions near the wrist involve dissection of the retracted finger extensors or long thumb extensor in the distal forearm and more formal tendon repairs, including a possible tendon transfer to the thumb. ‘Closed injuries’, with varying degrees of extensor tendon disruption, occur at three main sites. The mallet injury at the DIP joint and the boutonnière deformity over the PIP joint are sometimes recognized late, but respond to conservative splinting for a minimum of four weeks with guarded motion avoiding secondary stiffening of the remaining small joints of the hand. Surgery of closed injuries most frequently involves the intra-articular traction fracture type of mallet deformities in which the DIP joint has taken the brunt of the injury. PMID:21286174

  18. Tendon rupture associated with excessive smartphone gaming.

    PubMed

    Gilman, Luke; Cage, Dori N; Horn, Adam; Bishop, Frank; Klam, Warren P; Doan, Andrew P

    2015-06-01

    Excessive use of smartphones has been associated with injuries. A 29-year-old, right hand-dominant man presented with chronic left thumb pain and loss of active motion from playing a Match-3 puzzle video game on his smartphone all day for 6 to 8 weeks. On physical examination, the left extensor pollicis longus tendon was not palpable, and no tendon motion was noted with wrist tenodesis. The thumb metacarpophalangeal range of motion was 10° to 80°, and thumb interphalangeal range of motion was 30° to 70°. The clinical diagnosis was rupture of the left extensor pollicis longus tendon. The patient subsequently underwent an extensor indicis proprius (1 of 2 tendons that extend the index finger) to extensor pollicis longus tendon transfer. During surgery, rupture of the extensor pollicis longus tendon was seen between the metacarpophalangeal and wrist joints. The potential for video games to reduce pain perception raises clinical and social considerations about excessive use, abuse, and addiction. Future research should consider whether pain reduction is a reason some individuals play video games excessively, manifest addiction, or sustain injuries associated with video gaming.

  19. Relationship between tendon stiffness and failure: a metaanalysis

    PubMed Central

    LaCroix, Andrew S.; Duenwald-Kuehl, Sarah E.; Lakes, Roderic S.

    2013-01-01

    Tendon is a highly specialized, hierarchical tissue designed to transfer forces from muscle to bone; complex viscoelastic and anisotropic behaviors have been extensively characterized for specific subsets of tendons. Reported mechanical data consistently show a pseudoelastic, stress-vs.-strain behavior with a linear slope after an initial toe region. Many studies report a linear, elastic modulus, or Young's modulus (hereafter called elastic modulus) and ultimate stress for their tendon specimens. Individually, these studies are unable to provide a broader, interstudy understanding of tendon mechanical behavior. Herein we present a metaanalysis of pooled mechanical data from a representative sample of tendons from different species. These data include healthy tendons and those altered by injury and healing, genetic modification, allograft preparation, mechanical environment, and age. Fifty studies were selected and analyzed. Despite a wide range of mechanical properties between and within species, elastic modulus and ultimate stress are highly correlated (R2 = 0.785), suggesting that tendon failure is highly strain-dependent. Furthermore, this relationship was observed to be predictable over controlled ranges of elastic moduli, as would be typical of any individual species. With the knowledge gained through this metaanalysis, noninvasive tools could measure elastic modulus in vivo and reasonably predict ultimate stress (or structural compromise) for diseased or injured tendon. PMID:23599401

  20. Anatomical feasibility study of flexor hallucis longus transfer in treatment of Achilles tendon and posteromedial portal of ankle arthroscopy.

    PubMed

    Mao, Haijiao; Wang, Linger; Dong, Wenwei; Liu, Zhenxin; Yin, Weigang; Xu, Dachuan; Wapner, Keith L

    2018-04-16

    The aim of this study was to evaluate the occurrence of anatomical variations of the musculotendinous junction of the flexor hallucis longus (FHL) muscle, the relationship between FHL tendon or muscle and the tibial neurovascular bundle at the level of the posterior ankle joint in human cadavers. Seventy embalmed feet from 20 male and 15 female cadavers, the cadavers' mean age was 65.4 (range from 14 to 82) years, were dissected and anatomically classified to observe FHL muscle morphology define the relationship between FHL tendon or muscle and the tibial neurovascular bundle. The distance between the musculotendinous junction and the relationship between FHL tendon or muscle and the tibial neurovascular bundle was determined. Three morphology types of FHL muscle were identified: a long lateral and shorter medial muscle belly, which was observed in 63 specimens (90%); equal length medial and lateral muscle bellies, this variant was only observed in five specimens (7.1%); one lateral and no medial muscle belly, which was observed in two specimens (2.9%). No statistically significant difference was observed according to gender or side (p > 0.05). Two patterns were identified and described between FHL tendon or muscle and the tibial neurovascular bundle. Pattern 1, the distance between the neurovascular bundle and FHL tendon was 3.46 mm (range 2.34-8.84, SD = 2.12) which was observed in 66 specimens (94.3%); Pattern 2, there was no distance which was observed in four specimens (5.7%). Knowing FHL muscle morphology, variations provide new important insights into secure planning and execution of a FHL transfer for Achilles tendon defect as well as for the interpretation of ultrasound and magnetic resonance images. With posterior arthroscopic for the treatment of various ankle pathologies, posteromedial portal may be introduced into the posterior aspect of the ankle without gross injury to the tibial neurovascular structures because of the gap between the neurovascular bundle and FHL tendon.

  1. A Comparative Outcome Study of Hamstring Versus Tibialis Anterior and Synthetic Grafts for Deltoid to Triceps Transfers.

    PubMed

    Dunn, Jennifer A; Mohammed, Khalid D; Beadel, Gordon P; Rothwell, Alastair G; Simcock, Jeremy W

    2017-10-01

    To assess elbow extension strength and complications after deltoid-triceps transfers using hamstring tendon graft compared with tibialis anterior and synthetic tendon grafts. A retrospective review of deltoid-triceps transfers in patients with tetraplegia performed between 1983 and 2014. Seventy-five people (136 arms) had surgery performed, with the majority undergoing simultaneous bilateral surgery (n = 61; 81%). Tibialis anterior tendon grafts were used in 68 arms, synthetic grafts in 23 arms, and hamstring tendon grafts in 45 arms. The average age at surgery was 31 years. Sixty-three arms (46%) were assessed between 12 and 24 months after surgery. Seventy percent of the group (n = 54) were able to extend their elbow against gravity (grade 3 of 5 or greater) following surgery. Seventy-nine percent of those with hamstring grafts achieved grade 3 of 5 or more compared with 77% with tibialis anterior and 33% with synthetic grafts. There was a statistically significant difference in postsurgery elbow extension between the tibialis anterior group and the synthetic graft group and the hamstring and the synthetic graft group but not between the tibialis anterior and the hamstring group. Complications occurred in 19 arms (14%), the majority occurring immediately after surgery and associated with the wounds. The remaining complications were with the synthetic graft group in which dehiscence of the proximal attachment occurred in 30% of the arms. Autologous tendon grafting is associated with achievement of antigravity elbow extension in a greater proportion of individuals than with prosthetic grafting. Therapeutic IV. Copyright © 2017 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Experimental evaluation of multiscale tendon mechanics.

    PubMed

    Fang, Fei; Lake, Spencer P

    2017-07-01

    Tendon's primary function is a mechanical link between muscle and bone. The hierarchical structure of tendon and specific compositional constituents are believed to be critical for proper mechanical function. With increased appreciation for tendon importance and the development of various technological advances, this review paper summarizes recent experimental approaches that have been used to study multiscale tendon mechanics, includes an overview of studies that have evaluated the role of specific tissue constituents, and also proposes challenges/opportunities facing tendon study. Tendon has been demonstrated to have specific structural characteristics (e.g., multi-level hierarchy, crimp pattern, helix) and complex mechanical properties (e.g., non-linearity, anisotropy, viscoelasticity). Physical mechanisms including uncrimping, fiber sliding, and collagen reorganization have been shown to govern tendon mechanical responses under both static and dynamic loading. Several tendon constituents with relatively small quantities have been suggested to play a role in its mechanics, although some results are conflicting. Further research should be performed to understand the interplay and communication of tendon mechanical properties across levels of the hierarchical structure, and further show how each of these components contribute to tendon mechanics. The studies summarized and discussed in this review have helped elucidate important aspects of multiscale tendon mechanics, which is a prerequisite for analyzing stress/strain transfer between multiple scales and identifying key principles of mechanotransduction. This information could further facilitate interpreting the functional diversity of tendons from different species, different locations, and even different developmental stages, and then better understand and identify fundamental concepts related to tendon degeneration, disease, and healing. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:1353-1365, 2017. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  3. Surgical anatomy of the lower trapezius tendon transfer.

    PubMed

    Omid, Reza; Cavallero, Matthew J; Granholm, Danielle; Villacis, Diego C; Yi, Anthony M

    2015-09-01

    The precise surgical anatomy of the lower trapezius tendon transfer has not been well described. A precise anatomic description of the different trapezius segments and the associated neurovascular structures is crucial for operative planning and execution. We aimed (1) to establish a reliable demarcation between the middle and lower trapezius, (2) to establish the precise relationship of the main neurovascular pedicle to the muscle belly, and (3) to evaluate the utility of the relationships established in (1) and (2) by using the results of this study to perform cadaveric lower trapezius tendon harvest. In phase 1, a single surgeon performed all measurements using 10 cadavers. In phase 2, 10 cadaveric shoulders were used to harvest the tendon by using the relationships established in phase 1. We found anatomically distinct insertion sites for the lower and middle trapezius. The lower trapezius inserted at the scapular spine dorsum and the middle trapezius inserted broadly along the superior surface of the scapular spine. The distance from tip of tendon insertion to the nearest nerve at the most superior portion of the lower trapezius was 58 mm (standard deviation ± 18). By use of these relationships, there were no cases of neurovascular injury during our cadaveric tendon harvests. The lower trapezius can be reliably and consistently identified without violating fibers of the middle trapezius. Muscle splitting can be performed safely without encountering the spinal accessory nerve (approximately 2 cm medial to the medial scapular border). Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  4. Tendon transfer options about the shoulder in patients with brachial plexus injury.

    PubMed

    Elhassan, Bassem; Bishop, Allen T; Hartzler, Robert U; Shin, Alexander Y; Spinner, Robert J

    2012-08-01

    The purpose of this study was to evaluate the early outcome of shoulder tendon transfer in patients with brachial plexus injury and to determine the factors associated with favorable outcomes. Fifty-two patients with traumatic brachial plexus injury and a paralytic shoulder were included in the study. All patients were evaluated at a mean of nineteen months (range, twelve to twenty-eight months) postoperatively. Twelve patients had a C5-6 injury, twenty-two had a C5-7 injury, five had a C5-8 injury, and thirteen had a C5-T1 injury. Transfer of the lower portion of the trapezius muscle was performed either in isolation or as part of multiple tendon transfers to improve shoulder function. Additional muscles transferred included the middle and upper portions of the trapezius, levator scapulae, upper portion of the serratus anterior, teres major, latissimus dorsi, and pectoralis major. All patients had a stable shoulder postoperatively. Shoulder external rotation improved substantially in all patients from no external rotation (hand-on-belly position) to a mean of 20° (p = 0.001). Patients who underwent additional transfers had marginal improvement of shoulder flexion, from a mean of 10° preoperatively to 60° postoperatively, and of shoulder abduction, from a mean of 10° to 50° (p = 0.01 for each). Mean pain on a visual analog scale improved from 6 points preoperatively to 2 points postoperatively. The mean Disabilities of the Arm, Shoulder and Hand (DASH) score improved from 59 to 47 points (p = 0.001). The mean Subjective Shoulder Value improved from 5% to 40% (p = 0.001). Greater age, higher body mass index, and more extensive nerve injury were associated with a poorer DASH score in a multivariate analysis (p = 0.003). Tendon transfers about the shoulder can improve shoulder function in patients with brachial plexus injury resulting in a paralytic shoulder. Significant improvement of shoulder external rotation but only marginal improvements of shoulder abduction and flexion can be achieved. The outcome can be expected to be better in patients with less severe nerve injury.

  5. Irreparable Radial Nerve Palsy Due to Delayed Diagnostic Management of a Giant Lipoma at the Proximal Forearm Resulting in a Triple Tendon Transfer Procedure: Case report and Brief Review of Literature

    PubMed Central

    Schmidt, Ingo

    2017-01-01

    Background: Non-traumatic radial nerve palsy (RNP) caused by local tumors is a rare and uncommon entity. Methods: A 62-year-old female presented with a left non-traumatic RNP, initially starting with weakness only. It was caused by a benign giant lipoma at the proximal forearm that was misdiagnosed over a period of 2 years. The slowly growth of the tumor led to an irreparable overstretching-related partial nerve disruption. For functional recovery of the patient, a triple tendon transfer procedure had to be performed. Results: Four months after surgery, the patient was completely able to perform her activities of daily living again. At the 10-months follow-up, strength of wrist extension, thumb's extension and abduction, and long fingers II-V extension had all improved to grade 4 in Medical Research Council scale (0-5). In order to restore motion, the patient reported that she would undergo the same triple tendon transfer procedure a second time where necessary. Due to the initially misdiagnosed tumor, there was an overall delayed duration of time for functional recovery of the patient. Conclusion: The triple tendon transfer procedure offers a useful and reliable method to restore functionality for patients sustaining irreparable RNP. However, it must be noted critically with our patient that this procedure probably would have been avoided. Initially, there was weakness only by entrapment of the radial nerve. RNP caused by local tumors are uncommon but known from the literature, and so it should be considered generally in differential diagnosis of non-traumatic RNP. PMID:28979592

  6. Peroneal Tendon Reconstruction and Coverage for Treatment of Septic Peroneal Tenosynovitis: A Devastating Complication of Lateral Ankle Ligament Reconstruction With a Tendon Allograft.

    PubMed

    Schade, Valerie L; Harsha, Wayne; Rodman, Caitlin; Roukis, Thomas S

    2016-01-01

    Septic peroneal tenosynovitis is a rare and significant challenge. A search of peer-reviewed published studies revealed only 5 case reports to guide treatment, none of which resulted in significant loss of both peroneal tendons necessitating reconstruction. No clear guidance is available regarding how to provide reliable reconstruction of both peroneal tendons after a significant loss secondary to septic tenosynovitis. In the present report, we describe the case of a young, active-duty soldier who underwent lateral ankle ligament reconstruction with a tendon allograft whose postoperative course was complicated by septic peroneal tenosynovitis resulting in significant loss of both peroneal tendons. Reconstruction was achieved in a staged fashion with the use of silicone rods and external fixation to maintain physiologic tension and preserve peroneal tendon function, followed by reconstruction of both peroneal tendons and the superior peroneal retinaculum with a tensor fascia lata autograft. Soft tissue coverage was obtained with an anterolateral thigh free tissue transfer and a split-thickness skin graft. The patient returned to full activity as an active-duty soldier with minimal pain and no instability of the right lower extremity. The muscle strength of both peroneal tendons remained at 5 of 5, and no objective findings of ankle instability were seen at 3.5 years postoperatively. Published by Elsevier Inc.

  7. Basic FGF or VEGF gene therapy corrects insufficiency in the intrinsic healing capacity of tendons

    PubMed Central

    Tang, Jin Bo; Wu, Ya Fang; Cao, Yi; Chen, Chuan Hao; Zhou, You Lang; Avanessian, Bella; Shimada, Masaru; Wang, Xiao Tian; Liu, Paul Y.

    2016-01-01

    Tendon injury during limb motion is common. Damaged tendons heal poorly and frequently undergo unpredictable ruptures or impaired motion due to insufficient innate healing capacity. By basic fibroblast growth factor (bFGF) or vascular endothelial growth factor (VEGF) gene therapy via adeno-associated viral type-2 (AAV2) vector to produce supernormal amount of bFGF or VEGF intrinsically in the tendon, we effectively corrected the insufficiency of the tendon healing capacity. This therapeutic approach (1) resulted in substantial amelioration of the low growth factor activity with significant increases in bFGF or VEGF from weeks 4 to 6 in the treated tendons (p < 0.05 or p < 0.01), (2) significantly promoted production of type I collagen and other extracellular molecules (p < 0.01) and accelerated cellular proliferation, and (3) significantly increased tendon strength by 68–91% from week 2 after AAV2-bFGF treatment and by 82–210% from week 3 after AAV2-VEGF compared with that of the controls (p < 0.05 or p < 0.01). Moreover, the transgene expression dissipated after healing was complete. These findings show that the gene transfers provide an optimistic solution to the insufficiencies of the intrinsic healing capacity of the tendon and offers an effective therapeutic possibility for patients with tendon disunion. PMID:26865366

  8. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons

    PubMed Central

    Thorpe, Chavaunne T.; Godinho, Marta S.C.; Riley, Graham P.; Birch, Helen L.; Clegg, Peter D.; Screen, Hazel R.C.

    2015-01-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. PMID:25958330

  9. Technique of Dynamic Flexor Digitorum Superficialis Transfer to Lateral Bands for Proximal Interphalangeal Joint Deformity Correction in Severe Dupuytren Disease.

    PubMed

    Schreck, Michael J; Holbrook, Hayden S; Koman, L Andrew

    2018-02-01

    Pseudo-boutonniere deformity is an uncommon complication from long-standing proximal interphalangeal (PIP) joint contracture in Dupuytren disease. Prolonged flexion contracture of the PIP joint can lead to central slip attenuation and resultant imbalances in the extensor mechanism. We present a technique of flexor digitorum superficialis (FDS) tendon transfer to the lateral bands to correct pseudo-boutonniere deformity at the time of palmar fasciectomy for the treatment of Dupuytren disease. The FDS tendon is transferred from volar to dorsal through the lumbrical canal and sutured into the dorsally mobilized lateral bands. This technique presents an approach to the repair of pseudo-boutonniere deformity in Dupuytren disease. Copyright © 2018 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  10. Late extensor pollicis longus rupture following plate fixation in Galeazzi fracture dislocation

    PubMed Central

    Sabat, Dhananjaya; Dabas, Vineet; Dhal, Anil

    2014-01-01

    Late rupture of extensor pollicis longus (EPL) tendon after Galeazzi fracture dislocation fixation is an unknown entity though it is a well-established complication following distal radius fractures. We report the case of a 55-year old male who presented with late EPL tendon rupture 4 months following internal fixation of Galeazzi fracture dislocation with a Locking Compression Plate (LCP). He was managed with extensor indicis proprius (EIP) transfer to restore thumb extension. At 4 years followup, functional result of the transfer was good. We identify possible pitfalls with this particular patient and discuss how to avoid them in future. PMID:25143650

  11. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats

    PubMed Central

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis. PMID:27078690

  12. Modelling approaches for evaluating multiscale tendon mechanics

    PubMed Central

    Fang, Fei; Lake, Spencer P.

    2016-01-01

    Tendon exhibits anisotropic, inhomogeneous and viscoelastic mechanical properties that are determined by its complicated hierarchical structure and varying amounts/organization of different tissue constituents. Although extensive research has been conducted to use modelling approaches to interpret tendon structure–function relationships in combination with experimental data, many issues remain unclear (i.e. the role of minor components such as decorin, aggrecan and elastin), and the integration of mechanical analysis across different length scales has not been well applied to explore stress or strain transfer from macro- to microscale. This review outlines mathematical and computational models that have been used to understand tendon mechanics at different scales of the hierarchical organization. Model representations at the molecular, fibril and tissue levels are discussed, including formulations that follow phenomenological and microstructural approaches (which include evaluations of crimp, helical structure and the interaction between collagen fibrils and proteoglycans). Multiscale modelling approaches incorporating tendon features are suggested to be an advantageous methodology to understand further the physiological mechanical response of tendon and corresponding adaptation of properties owing to unique in vivo loading environments. PMID:26855747

  13. Structural and Ultrastructural Characteristics of Bone-Tendon Junction of the Calcaneal Tendon of Adult and Elderly Wistar Rats.

    PubMed

    Cury, Diego Pulzatto; Dias, Fernando José; Miglino, Maria Angélica; Watanabe, Ii-sei

    2016-01-01

    Tendons are transition tissues that transfer the contractile forces generated by the muscles to the bones, allowing movement. The region where the tendon attaches to the bone is called bone-tendon junction or enthesis and may be classified as fibrous or fibrocartilaginous. This study aims to analyze the collagen fibers and the cells present in the bone-tendon junction using light microscopy and ultrastructural techniques as scanning electron microscopy and transmission electron microscopy. Forty male Wistar rats were used in the experiment, being 20 adult rats at 4 months-old and 20 elderly rats at 20 months-old. The hind limbs of the rats were removed, dissected and prepared to light microscopy, transmission electron microscopy and scanning electron microscopy. The aging process showed changes in the collagen fibrils, with a predominance of type III fibers in the elderly group, in addition to a decrease in the amount of the fibrocartilage cells, fewer and shorter cytoplasmic processes and a decreased synthetic capacity due to degradation of the organelles involved in synthesis.

  14. Clinical and radiological outcomes after reverse shoulder arthroplasty in patients with failed deltoid or latissimus dorsi transfers. A review of ten cases.

    PubMed

    Valenti, Philippe; Maqdes, Ali; Werthel, Jean-David

    2017-10-01

    The purpose of this study was to report clinical and radiological results of reverse shoulder arthroplasty (RSA) after failure of either a deltoid and/or a latissimus dorsi transfer. Between 2001 and 2011, ten patients (average age, 61 years) underwent primary RSA after a failed tendon transfer for irreparable postero-superior rotator cuff tear (five deltoid muscle transfers, four latissimus dorsi transfers and one both). Average follow-up was 48 months. Outcome measures included pain, range of motion and postoperative Constant-Murley score. Pain score improved significantly from a mean 8.3 to a mean 0.3. Mean shoulder elevation improved from 66 to 134°, and absolute Constant-Murley scores increased from 25.8 to 62.8 The mean improvement in external rotation was limited to 7.5°. Subjectively, six patients rated the result as much better and three rated it as better than before surgery. Failure of the tendon transfer with deterioration of the functional outcomes can be salvaged with a RSA with no impact on the expected outcome.

  15. The study of optical properties and proteoglycan content of tendons by PS-OCT

    NASA Astrophysics Data System (ADS)

    Yang, Ying; Rupani, Asha; Weightman, Alan; Wimpenny, Ian; Bagnaninchi, Pierre; Ahearne, Mark

    2011-03-01

    Tendons are load-bearing collagenous tissues consisting mainly of type I collagen and various proteoglycans (PGs) including decorin and versican. It is widely accepted that highly orientated collagen fibers in tendons a play critical role for transferring tensile stress and demonstrate birefringent optical properties. However, the influence that proteoglycans have on the optical properties of tendons is yet to be fully elucidated. Tendinopathy (defined as a syndrome of tendon pain, tenderness and swelling that affects the normal function of the tissue) is a common disease associated with sporting injuries or degeneration. PG's are the essential components of the tendon extracellular matrix; changes in their quantities and compositions have been associated with tendinopathy. In this study, polarization sensitive optical coherence tomography (PS-OCT) has been used to reveal the relationship between proteoglycan content/location and birefringent properties of tendons. Tendons dissected from freshly slaughtered chickens were imaged at regular intervals by PS-OCT and polarizing light microscope during the extraction of PGs or glycosaminoglycans using established protocols (guanidine hydrochloride (GuHCl) or proteinase K solution). The macroscopic and microscopic time lapsed images are complimentary; mutually demonstrating that there was a higher concentration of PG's in the outer sheath region than in the fascicles; and the integrity of the sheath affected extraction process and the OCT birefringence bands. Extraction of PGs using GuHCl disturbed the organization of local collagen bundles, which corresponded to a reduction in the frequency of birefringence bands and the band width by PS-OCT. The feature of OCT penetration depth helped us to define the heterogeneous distribution of PG's in tendon, which was complimented by polarizing light microscopy. The results provide new insight of tendon structure and also demonstrate a great potential for using PS-OCT as a diagnostic tool to examine tendon pathology.

  16. The interfascicular matrix enables fascicle sliding and recovery in tendon, and behaves more elastically in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Godinho, Marta S C; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2015-12-01

    While the predominant function of all tendons is to transfer force from muscle to bone and position the limbs, some tendons additionally function as energy stores, reducing the cost of locomotion. Energy storing tendons experience extremely high strains and need to be able to recoil efficiently for maximum energy storage and return. In the equine forelimb, the energy storing superficial digital flexor tendon (SDFT) has much higher failure strains than the positional common digital extensor tendon (CDET). However, we have previously shown that this is not due to differences in the properties of the SDFT and CDET fascicles (the largest tendon subunits). Instead, there is a greater capacity for interfascicular sliding in the SDFT which facilitates the greater extensions in this particular tendon (Thorpe et al., 2012). In the current study, we exposed fascicles and interfascicular matrix (IFM) from the SDFT and CDET to cyclic loading followed by a test to failure. The results show that IFM mechanical behaviour is not a result of irreversible deformation, but the IFM is able to withstand cyclic loading, and is more elastic in the SDFT than in the CDET. We also assessed the effect of ageing on IFM properties, demonstrating that the IFM is less able to resist repetitive loading as it ages, becoming stiffer with increasing age in the SDFT. These results provide further indications that the IFM is important for efficient function in energy storing tendons, and age-related alterations to the IFM may compromise function and predispose older tendons to injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  17. Measuring surgeons' treatment preferences and satisfaction with nerve reconstruction techniques for children with unique brachial plexus birth palsies.

    PubMed

    Shah, Amee K; Zurakowski, David; Jessel, Rebecca H; Kuo, Anne; Waters, Peter M

    2006-09-15

    This study surveyed microsurgeons on treatments chosen for infants with brachial plexus birth palsies who have had failure of antigravity biceps and/or triceps function due to nerve surgery or natural history. Questionnaires were sent to surgeons participating in a prospective multicenter brachial plexus birth palsy study. With a response rate of 82 percent, the sample comprised 22 surgeons with extensive experience in treating brachial plexus birth palsy. The survey gathered collective information on two unique clinical groups: (1) infants with no antigravity biceps function but intact antigravity deltoid and radial nerve function and (2) infants with no antigravity radial nerve function (wrist and digital extension, triceps) but intact antigravity biceps and deltoid function. Analysis of data and age-based trends was performed using the Fisher's exact test. With failure of biceps recovery, surgeons preferred microsurgery for children 6 to 18 months old and tendon transfers for children older than 18 months. Both procedures were preferred over observation alone (p < 0.001). With regard to microsurgery techniques, with increasing age, surgeons used nerve transfers more than resected neuroma and grafting. With tendon transfers, regional transfers were performed more than 90 percent of the time at all ages. For patients with no antigravity radial nerve function, most cases at all ages were managed by observation rather than microsurgery or tendon transfers (p < 0.001). The authors' data indicate a general consensus in treatment choices for the two cases of microsurgical failure in infants with brachial plexus birth palsies as well as in satisfaction among experienced surgeons in using these treatments.

  18. Arthroscopic Coracoclavicular Ligament Reconstruction Using a Synthetic Polycaprolactone-Based Polyurethane Urea Tendon Graft: A Report of 5 Cases.

    PubMed

    Ranne, Juha O; Kainonen, Terho U; Lempainen, Lasse L; Kosola, Jussi A; Kajander, Sami A; Niemi, Pekka T

    2018-06-01

    Several techniques have been introduced to treat acromioclavicular (AC) separation using the semitendinosus tendon as a graft for coracoclavicular (CC) ligament reconstruction. However, the tendon may have been used previously or the patient may not want it harvested. Hence, synthetic tendon transfers have become increasingly popular. Five patients with chronic AC separations were treated. A synthetic polyurethane urea tendon graft (Artelon Tissue Reinforcement [ATR]) was chosen for its ability to partially transform into connective tissue. The patient follow-up period lasted 45 to 60 months. The mean preoperative Constant Score increased from 64.8 to 100 postoperatively. The mean preoperative Simple Shoulder Test increased from 7.2 to 12 postoperatively. The mean postoperative increase of the CC distance was 1.5 mm. The mean expansion of the clavicular drill hole from the original was 2.1 mm. According to the postoperative magnetic resonance imaging, the grafts had healed well and the cross-sections of the grafts were up to 10.5 mm between the coracoid and the clavicle. The synthetic ATR tendon strip was a practical method for reconstructing a torn CC ligament complex. The ATR graft appears promising for future CC ligament reconstructions.

  19. [Median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of hand].

    PubMed

    Ma, Shanjun; Zhou, Tianjian

    2014-05-01

    To evaluate the effectiveness of the median nerve constrictive operation combined with tendon transfer to treat the brain paralysis convulsive deformity of the hand. The clinical data from 21 cases with brain paralysis convulsive deformity of the hand were analyzed retrospectively between August 2009 and April 2012. Of them, there were 13 males and 8 females with an average age of 15 years (range, 10-29 years). The causes of the convulsive cerebral palsy included preterm deliveries in 11 cases, hypoxia asphyxia in 7, traumatic brain injury in 2, and encephalitis sequela in 1. The disease duration was 2-26 years (mean, 10.6 years). All the 21 patients had cock waists, crooking fingers, and contracture of adductors pollicis, 12 had the forearm pronation deformity. According to Ashworth criteria, there were 2 cases at level I, 5 cases at level II, 8 cases at level III, 4 cases at level IV, and 2 cases at level V. All patients had no intelligence disturbances. The forearm X-ray film showed no bone architectural changes before operation. The contraction of muscle and innervation was analyzed before operation. The median nerve constrictive operation combined with tendon transfer was performed. The functional activities and deformity improvement were evaluated during follow-up. After operation, all the patients' incision healed by first intension, without muscle atrophy and ischemic spasm. All the 21 cases were followed up 1.5-4.5 years (mean, 2.3 years). No superficial sensory loss occurred. The effectiveness was excellent in 13 cases, good in 6 cases, and poor in 2 cases, with an excellent and good rate of 90.4% at last follow-up. The median nerve constrictive operation combined with tendon transfer to treat brain paralysis convulsive deformity of the hand can remove and prevent the recurrence of spasm, achieve the orthopedic goals, to assure the restoration of motor function and the improvement of the life quality.

  20. Flexor digitorum brevis transfer for floating toe prevention after Weil osteotomy: a cadaveric study.

    PubMed

    Lee, Lydia C; Charlton, Timothy P; Thordarson, David B

    2013-12-01

    A floating toe deformity occurs in many patients who undergo Weil osteotomies. It is likely caused by the failure of the windlass mechanism in shortening the metatarsal. For patients who require a proximal interphalangeal (PIP) joint arthroplasty or fusion in addition to a Weil osteotomy, the transfer of the flexor digitorum brevis (FDB) tendon to the PIP joint might restore the windlass mechanism and decrease the incidence of floating toes. Fourteen cadaveric foot specimens were examined to determine the effects of changing metatarsal length as well as tensioning the FDB tendon on the angle of the metatarsophalangeal (MTP) joint as a measure of a floating toe. Shortening and lengthening the second metatarsal resulted in a significant change in MTP angle (P = .03 and .02, respectively), though there was no clear relationship found between the amount of change in metatarsal length and the change in MTP angle. Transferring the FDB to a PIP arthroplasty site plantarflexed the MTP joint and corrected floating toes; the change in angle was significant compared with the control and shortening groups (P = .0001 and .002, respectively). This study supports the theory that change in length of the metatarsal, possibly via the windlass mechanism, plays a role in the pathophysiology of the floating toe deformity. Tensioning and transferring the FDB tendon into the PIP joint helped prevent the floating toe deformity in this cadaveric model. Continued research in this subject will help to refine methods of prevention and correction of the floating toe deformity.

  1. Fibrocartilage associated with human tendons and their pulleys.

    PubMed Central

    Benjamin, M; Qin, S; Ralphs, J R

    1995-01-01

    The presence of fibrocartilage in tendons that wrap around bony or fibrous pulleys is well known. It is an adaptation to resisting compression or shear, but the extent to which the structure of most human tendons is modified where they contact pulleys is less clear, for there has been no single comprehensive survey of a large number of sites. Less is known of the structure of the corresponding pulleys. In the present study, 38 regions of tendons that wrap around bony pulleys or pass beneath fibrous retinacula have been studied in routine histology sections taken from each of 2 or 3 elderly dissecting room cadavers. Most of the corresponding pulleys have also been examined. Fibrocartilage was present in 22 of the 38 tendon sites and it was most conspicuous where the tendons pressed predominantly against bone rather than retinacula and where they showed a large change in direction. Fibrocartilage was more characteristic of tendons at the ankle than the wrist, probably because the long axis of the foot is at right angles to that of the leg. There was considerable variation in the structure of tendon fibrocartilage. The most fibrocartilaginous tendons had oval or round cells embedded in a highly metachromatic matrix with interwoven or spiralling collagen fibres. At other sites, fibrocartilage cells were arranged in rows between parallel collagen fibres. The differences probably relate to differences in development. A single tendon could be modified at successive points along its length and fibrocartilage could be present in the endotenon and epitenon as well as in the tendon itself. Pathological changes seen in 'wrap around' tendons were fragmentation and partial delamination of the compressed surface, chondrocyte clustering, fatty infiltration and bone formation. Three types of pulleys were described for tendons--bony prominences and grooves, fibrous retinacula and synovial joints. The extent of cartilaginous differentiation on the periosteum of bony pulleys frequently mirrored that in the corresponding tendon. The cartilage or fibrocartilage prevents the tendon from 'sawing' through the bone. Some of the best known retinacula were largely fibrous, though the inferior peroneal retinaculum and the trochlea for the superior oblique were cartilaginous. The results underline the considerable regional heterogeneity in different tendons and their pulleys. They show that one tendon is not like another and that tendons may need to be carefully selected for particular surgical transfers or joint reconstructions. Images Fig. 1 Figs 2-3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 Fig. 8 Fig. 9 Fig. 11 Fig. 12 Fig. 13 Fig. 14 Fig. 15 Fig. 16 Fig. 17 Fig. 18 PMID:8586561

  2. High Ulnar Nerve Injuries: Nerve Transfers to Restore Function.

    PubMed

    Patterson, Jennifer Megan M

    2016-05-01

    Peripheral nerve injuries are challenging problems. Nerve transfers are one of many options available to surgeons caring for these patients, although they do not replace tendon transfers, nerve graft, or primary repair in all patients. Distal nerve transfers for the treatment of high ulnar nerve injuries allow for a shorter reinnervation period and improved ulnar intrinsic recovery, which are critical to function of the hand. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Effect of Footwear Modifications on Oscillations at the Achilles Tendon during Running on a Treadmill and Over Ground: A Cross-Sectional Study.

    PubMed

    Meinert, Ilka; Brown, Niklas; Alt, Wilfried

    2016-01-01

    Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs.

  4. Effect of Footwear Modifications on Oscillations at the Achilles Tendon during Running on a Treadmill and Over Ground: A Cross-Sectional Study

    PubMed Central

    Meinert, Ilka; Brown, Niklas; Alt, Wilfried

    2016-01-01

    Background Achilles tendon injuries are known to commonly occur in runners. During running repeated impacts are transferred in axial direction along the lower leg, therefore possibly affecting the oscillation behavior of the Achilles tendon. The purpose of the present study was to explore the effects of different footwear modifications and different ground conditions (over ground versus treadmill) on oscillations at the Achilles tendon. Methods Oscillations were measured in 20 male runners using two tri-axial accelerometers. Participants ran in three different shoe types on a treadmill and over ground. Data analysis was limited to stance phase and performed in time and frequency space. Statistical comparison was conducted between oscillations in vertical and horizontal direction, between running shoes and between ground conditions (treadmill versus over ground running). Results Differences in the oscillation behavior could be detected between measurement directions with peak accelerations in the vertical being lower than those in the horizontal direction, p < 0.01. Peak accelerations occurred earlier at the distal accelerometer than at the proximal one, p < 0.01. Average normalized power differed between running shoes (p < 0.01) with harder damping material resulting in higher power values. Little to no power attenuation was found between the two accelerometers. Oscillation behavior of the Achilles tendon is not influenced by ground condition. Conclusion Differences in shoe configurations may lead to variations in running technique and impact forces and therefore result in alterations of the vibration behavior at the Achilles tendon. The absence of power attenuation may have been caused by either a short distance between the two accelerometers or high stiffness of the tendon. High stiffness of the tendon will lead to complete transmission of the signal along the Achilles tendon and therefore no attenuation occurs. PMID:27010929

  5. Mechanoactive Scaffold Induces Tendon Remodeling and Expression of Fibrocartilage Markers

    PubMed Central

    Spalazzi, Jeffrey P.; Vyner, Moira C.; Jacobs, Matthew T.; Moffat, Kristen L.

    2008-01-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-α-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-β3 (TGF-β3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts. PMID:18512112

  6. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.

    PubMed

    Spalazzi, Jeffrey P; Vyner, Moira C; Jacobs, Matthew T; Moffat, Kristen L; Lu, Helen H

    2008-08-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-alpha-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-beta3 (TGF-beta3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.

  7. Multiscale mechanical integrity of human supraspinatus tendon in shear after elastin depletion.

    PubMed

    Fang, Fei; Lake, Spencer P

    2016-10-01

    Human supraspinatus tendon (SST) exhibits region-specific nonlinear mechanical properties under tension, which have been attributed to its complex multiaxial physiological loading environment. However, the mechanical response and underlying multiscale mechanism regulating SST behavior under other loading scenarios are poorly understood. Furthermore, little is known about the contribution of elastin to tendon mechanics. We hypothesized that (1) SST exhibits region-specific shear mechanical properties, (2) fiber sliding is the predominant mode of local matrix deformation in SST in shear, and (3) elastin helps maintain SST mechanical integrity by facilitating force transfer among collagen fibers. Through the use of biomechanical testing and multiphoton microscopy, we measured the multiscale mechanical behavior of human SST in shear before and after elastase treatment. Three distinct SST regions showed similar stresses and microscale deformation. Collagen fiber reorganization and sliding were physical mechanisms observed as the SST response to shear loading. Measures of microscale deformation were highly variable, likely due to a high degree of extracellular matrix heterogeneity. After elastase treatment, tendon exhibited significantly decreased stresses under shear loading, particularly at low strains. These results show that elastin contributes to tendon mechanics in shear, further complementing our understanding of multiscale tendon structure-function relationships. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. * Fabrication and Characterization of Biphasic Silk Fibroin Scaffolds for Tendon/Ligament-to-Bone Tissue Engineering.

    PubMed

    Font Tellado, Sònia; Bonani, Walter; Balmayor, Elizabeth R; Foehr, Peter; Motta, Antonella; Migliaresi, Claudio; van Griensven, Martijn

    2017-08-01

    Tissue engineering is an attractive strategy for tendon/ligament-to-bone interface repair. The structure and extracellular matrix composition of the interface are complex and allow for a gradual mechanical stress transfer between tendons/ligaments and bone. Thus, scaffolds mimicking the structural features of the native interface may be able to better support functional tissue regeneration. In this study, we fabricated biphasic silk fibroin scaffolds designed to mimic the gradient in collagen molecule alignment present at the interface. The scaffolds had two different pore alignments: anisotropic at the tendon/ligament side and isotropic at the bone side. Total porosity ranged from 50% to 80% and the majority of pores (80-90%) were <100-300 μm. Young's modulus varied from 689 to 1322 kPa depending on the type of construct. In addition, human adipose-derived mesenchymal stem cells were cultured on the scaffolds to evaluate the effect of pore morphology on cell proliferation and gene expression. Biphasic scaffolds supported cell attachment and influenced cytoskeleton organization depending on pore alignment. In addition, the gene expression of tendon/ligament, enthesis, and cartilage markers significantly changed depending on pore alignment in each region of the scaffolds. In conclusion, the biphasic scaffolds fabricated in this study show promising features for tendon/ligament-to-bone tissue engineering.

  9. Arthroscopic-assisted latissimus dorsi transfer for subscapularis deficiency.

    PubMed

    Kany, Jean; Guinand, Régis; Croutzet, Pierre; Valenti, Philippe; Werthel, Jean David; Grimberg, Jean

    2016-04-01

    Few salvage procedures have been described in case of irreparable subscapularis tear and with variable outcomes. Latissimus dorsi transfer has been widely proposed as a transfer for irreparable posterio-superior rotator cuff tear with good outcomes. The anatomic feasibility of the latissimus dorsi to reconstruct the antero-superior irreparable rotator cuff tear has been suggested, but no clinical study has ever been published. We hypothesized that it was possible to use an arthroscopic-assisted latissimus dorsi transfer to reconstruct the subscapularis function. Five patients were enrolled. A 5-7-cm axillary incision was performed to release the latissimus dorsi tendon from its humeral insertion, the teres major muscle and the apex of the scapula. Afterwards, under arthroscopic control, a 7-mm-diameter tunnel was drilled at the anterior and superior part of the humeral head with an oblique inferior and posterior direction. The tubularized latissimus dorsi tendon was introduced into the tunnel and fixed with a ZipLoop on the posterior humeral cortex. The authors show overall good experience with this technique. Level IV-a, case series.

  10. The First Experience of Triple Nerve Transfer in Proximal Radial Nerve Palsy.

    PubMed

    Emamhadi, Mohammadreza; Andalib, Sasan

    2018-01-01

    Injury to distal portion of posterior cord of brachial plexus leads to palsy of radial and axillary nerves. Symptoms are usually motor deficits of the deltoid muscle; triceps brachii muscle; and extensor muscles of the wrist, thumb, and fingers. Tendon transfers, nerve grafts, and nerve transfers are options for surgical treatment of proximal radial nerve palsy to restore some motor functions. Tendon transfer is painful, requires a long immobilization, and decreases donor muscle strength; nevertheless, nerve transfer produces promising outcomes. We present a patient with proximal radial nerve palsy following a blunt injury undergoing triple nerve transfer. The patient was involved in a motorcycle accident with complete palsy of the radial and axillary nerves. After 6 months, on admission, he showed spontaneous recovery of axillary nerve palsy, but radial nerve palsy remained. We performed triple nerve transfer, fascicle of ulnar nerve to long head of the triceps branch of radial nerve, flexor digitorum superficialis branch of median nerve to extensor carpi radialis brevis branch of radial nerve, and flexor carpi radialis branch of median nerve to posterior interosseous nerve, for restoration of elbow, wrist, and finger extensions, respectively. Our experience confirmed functional elbow, wrist, and finger extensions in the patient. Triple nerve transfer restores functions of the upper limb in patients with debilitating radial nerve palsy after blunt injuries. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Patch-Augmented Rotator Cuff Repair and Superior Capsule Reconstruction

    PubMed Central

    Petri, M.; Greenspoon, J.A.; Moulton, S.G.; Millett, P.J.

    2016-01-01

    Background: Massive rotator cuff tears in active patients with minimal glenohumeral arthritis remain a particular challenge for the treating surgeon. Methods: A selective literature search was performed and personal surgical experiences are reported. Results: For patients with irreparable rotator cuff tears, a reverse shoulder arthroplasty or a tendon transfer are often performed. However, both procedures have rather high complication rates and debatable long-term results, particularly in younger patients. Therefore, patch-augmented rotator cuff repair or superior capsule reconstruction (SCR) have been recently developed as arthroscopically applicable treatment options, with promising biomechanical and early clinical results. Conclusion: For younger patients with irreparable rotator cuff tears wishing to avoid tendon transfers or reverse total shoulder arthroplasty, both patch-augmentation and SCR represent treatment options that may delay the need for more invasive surgery. PMID:27708733

  12. IS THERE ANY ROOM FOR TENDOSCOPY IN THE SURGICAL TREATMENT OF POSTERIOR TIBIAL TENDON INSUFFICIENCY?

    PubMed

    Bojanić, Ivan; Dimnjaković, Damjan; Mahnik, Alan; Smoljanović, Tomislav

    2016-05-01

    Posterior tibial tendon insufficiency (PTTI) is nowadays considered to be the main cause of adult-acquired flatfoot deformity (AAFD). The purpose of this study is to report the outcomes of tendoscopic treatment of tibialis poste- rior tendon (TP) in eleven patients with stage 1 or 2 PTTI and failed prior conservative treatment. Tendoscopy was carried out as a solitary procedure in 8 patients, while in 3 patients additional procedures such as ,,mini-open" tubularization of TP or anterior ankle arthroscopy were necessary. In a single patient transfer of flexor digitorum longus tendon was performed as a second stage surgery due to complete rupture of TP. Related with tendoscopic procedure, no complications were re- ported. TP tendoscopy is a useful and beneficial minimally invasive procedure to treat TP pathology at earlier stages of PTTI. It is a technically demanding procedure that requires extensive experience in arthroscopic management of small ioints and excellent knowledge of repional anatomy.

  13. Arthroscopic-Assisted Latissimus Dorsi Tendon Transfer for Massive, Irreparable Rotator Cuff Tears: Technique and Short-Term Follow-Up of Patients With Pseudoparalysis.

    PubMed

    Kanatlı, Ulunay; Özer, Mustafa; Ataoğlu, Muhammet Baybars; Öztürk, Burak Yağmur; Gül, Orkun; Çetinkaya, Mehmet; Ayanoğlu, Tacettin

    2017-05-01

    To describe a modified technique for arthroscopic-assisted transfer of the latissimus dorsi tendon in a selected group of patients with irreparable rotator cuff tears and pseudoparalysis and to evaluate its short-term results. Fifteen patients with irreparable rotator cuff tears and pseudoparalysis treated by arthroscopic-assisted latissimus dorsi tendon transfer were included. The mean patient age was 61.53 ± 6.24 years (range, 52-71 years). Patients were assessed with physical examination, University of California Los Angeles (UCLA) Score and Constant-Murley score, as well as visual analog scale score at a mean follow-up of 26.4 ± 2.58 months (range, 24-31 months). At final follow-up, mean UCLA score increased to 27.47 ± 6.31 compared with the preoperative UCLA score of 6.53 ± 2.1 (P < .001). Constant-Murley score was 21 ± 7.41 and 59.73 ± 13.62 (P < .001), visual analog scale pain score was 7.47 ± 1.06 and 2.47 ± 0.91 (P < .001), active forward flexion was 58° ± 21.11° and 130° ± 30.05° (P < .001), active abduction was 51° ± 21.64° and 129.67° ± 25.45° (P < .001), and active external rotation was 13.33° ± 21.68° and 32° ± 18.03° (P < .001) preoperatively and postoperatively, respectively. Mean acromiohumeral distance was 3.13 ± 1.40 mm preoperatively, whereas it was 5.67 ± 1.67 mm postoperatively (P < .001). No significant complications requiring a revision surgery was observed during the final follow-up. The modified technique of arthroscopic-assisted transfer of the latissimus dorsi tendon is a feasible, minimally invasive option for the surgical treatment of irreparable rotator cuff tears in a subset of patients with pseudoparalysis. Level IV, therapeutic case series. Copyright © 2016 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  14. Semitendinosus Tendon Autograft for Reconstruction of Large Defects in Chronic Achilles Tendon Ruptures.

    PubMed

    Dumbre Patil, Sampat Shivajirao; Dumbre Patil, Vaishali Sampat; Basa, Vikas Rajeshwarrao; Dombale, Ajay Birappa

    2014-07-01

    Chronic Achilles tendon ruptures are associated with considerable functional morbidity. When treated operatively, debridement of degenerated tendon ends may create large defects. Various procedures to reconstruct large defects have been described. We present a simple technique in which an autologous semitendinosus tendon graft is used to reconstruct defects larger than 5 cm in chronic Achilles tendon ruptures. The purpose of this study was to describe our operative technique and its functional outcome. Achilles ruptures of more than 6 weeks duration were considered for the study. We treated 35 patients (20 males, 15 females) with symptomatic chronic Achilles tendon ruptures. The mean age was 47.4 years (range, 30 to 59). The smallest defect that we had reconstructed was 5 cm, and the largest was 9 cm in length. The average follow-up duration was 30.7 months (range, 20 to 42). Postoperatively, the strength of gastrocsoleus was measured by manual muscle testing (MMT) in non-weight-bearing and weight-bearing positions. All operated patients showed satisfactory functional outcome, good soft tissue healing, and no reruptures. The preoperative weight-bearing MMT of 2/5 improved to 4/5 or 5/5 postoperatively. In all patients, postoperative non-weight-bearing MMT was 5/5. All patients returned to their prerupture daily activity. We present a technique that is simple, with low morbidity. We believe it is a valuable option especially when allografts are not available. It is inexpensive as suture anchors or tenodesis screws are not used. This can be a useful option if other tendons (flexor hallucis longus, peroneus brevis, etc) are not available for transfer. Level IV, retrospective case series. © The Author(s) 2014.

  15. Tendon-to-bone attachment: from development to maturity.

    PubMed

    Zelzer, Elazar; Blitz, Einat; Killian, Megan L; Thomopoulos, Stavros

    2014-03-01

    The attachment between tendon and bone occurs across a complex transitional tissue that minimizes stress concentrations and allows for load transfer between muscles and skeleton. This unique tissue cannot be reconstructed following injury, leading to high incidence of recurrent failure and stressing the need for new clinical approaches. This review describes the current understanding of the development and function of the attachment site between tendon and bone. The embryonic attachment unit, namely, the tip of the tendon and the bone eminence into which it is inserted, was recently shown to develop modularly from a unique population of Sox9- and Scx-positive cells, which are distinct from tendon fibroblasts and chondrocytes. The fate and differentiation of these cells is regulated by transforming growth factor beta and bone morphogenetic protein signaling, respectively. Muscle loads are then necessary for the tissue to mature and mineralize. Mineralization of the attachment unit, which occurs postnatally at most sites, is largely controlled by an Indian hedgehog/parathyroid hormone-related protein feedback loop. A number of fundamental questions regarding the development of this remarkable attachment system require further study. These relate to the signaling mechanism that facilitates the formation of an interface with a gradient of cellular and extracellular phenotypes, as well as to the interactions between tendon and bone at the point of attachment. Copyright © 2014 Wiley Periodicals, Inc.

  16. Transfer of supinator motor branches to the posterior interosseous nerve in C7-T1 brachial plexus palsy.

    PubMed

    Bertelli, Jayme Augusto; Ghizoni, Marcos Flavio

    2010-07-01

    In C7-T1 palsies of the brachial plexus, shoulder and elbow function are preserved, but finger motion is absent. Finger flexion has been reconstructed by tendon or nerve transfers. Finger extension has been restored ineffectively by attaching the extensor tendons to the distal aspect of the dorsal radius (termed tenodesis) or by tendon transfers. In these palsies, supinator muscle function is preserved, because innervation stems from the C-6 root. The feasibility of transferring supinator branches to the posterior interosseous nerve has been documented in a previous anatomical study. In this paper, the authors report the clinical results of supinator motor nerve transfer to the posterior interosseous nerve in 4 patients with a C7-T1 root lesion. Four adult patients with C7-T1 root lesions underwent surgery between 5 and 7 months postinjury. The patients had preserved motion of the shoulder, elbow, and wrist, but they had complete palsy of finger motion. They underwent finger flexion reconstruction via transfer of the brachialis muscle, and finger and thumb extension were restored by transferring the supinator motor branches to the posterior interosseous nerve. This nerve transfer was performed through an incision over the proximal third of the radius. Dissection was carried out between the extensor carpi radialis brevis and the extensor digitorum communis. The patients were followed up as per regular protocol and underwent a final evaluation 12 months after surgery. To document the extent of recovery, the authors assessed the degree of active metacarpophalangeal joint extension of the long fingers. The thumb span was evaluated by measuring the distance between the thumb pulp and the lateral aspect of the index finger. Surgery to transfer the supinator motor branches to the posterior interosseous nerve was straightforward. Twelve months after surgery, all patients were capable of opening their hand and could fully extend their metacarpophalangeal joints. The distance of thumb abduction improved from 0 to 5 cm from the lateral aspect of the index finger. Transferring supinator motor nerves directly to the posterior interosseous nerve is effective in at least partially restoring thumb and finger extension in patients with lower-type injuries of the brachial plexus.

  17. Sensitivity of subject-specific models to errors in musculo-skeletal geometry.

    PubMed

    Carbone, V; van der Krogt, M M; Koopman, H F J M; Verdonschot, N

    2012-09-21

    Subject-specific musculo-skeletal models of the lower extremity are an important tool for investigating various biomechanical problems, for instance the results of surgery such as joint replacements and tendon transfers. The aim of this study was to assess the potential effects of errors in musculo-skeletal geometry on subject-specific model results. We performed an extensive sensitivity analysis to quantify the effect of the perturbation of origin, insertion and via points of each of the 56 musculo-tendon parts contained in the model. We used two metrics, namely a Local Sensitivity Index (LSI) and an Overall Sensitivity Index (OSI), to distinguish the effect of the perturbation on the predicted force produced by only the perturbed musculo-tendon parts and by all the remaining musculo-tendon parts, respectively, during a simulated gait cycle. Results indicated that, for each musculo-tendon part, only two points show a significant sensitivity: its origin, or pseudo-origin, point and its insertion, or pseudo-insertion, point. The most sensitive points belong to those musculo-tendon parts that act as prime movers in the walking movement (insertion point of the Achilles Tendon: LSI=15.56%, OSI=7.17%; origin points of the Rectus Femoris: LSI=13.89%, OSI=2.44%) and as hip stabilizers (insertion points of the Gluteus Medius Anterior: LSI=17.92%, OSI=2.79%; insertion point of the Gluteus Minimus: LSI=21.71%, OSI=2.41%). The proposed priority list provides quantitative information to improve the predictive accuracy of subject-specific musculo-skeletal models. Copyright © 2012 Elsevier Ltd. All rights reserved.

  18. Outcome of lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear.

    PubMed

    Elhassan, Bassem T; Wagner, Eric R; Werthel, Jean-David

    2016-08-01

    Management of massive irreparable posterior-superior rotator cuff tear can be very challenging. This study reports the outcome of the lower trapezius transfer to reconstruct massive irreparable posterior-superior rotator cuff tear. Included were 33 patients with an average age of 53 years (range, 31-66 years). All patients had symptomatic massive irreparable rotator cuff tear that failed conservative or prior surgical treatment and underwent reconstruction with lower trapezius transfer prolonged by Achilles tendon allograft. The tear was considered irreparable based on the magnetic resonance imaging finding of ≥2 full-thickness rotator cuff tears associated with shortening and retraction of the tendon to the level of the glenoid and a high grade of fatty infiltration of the muscles. This was confirmed at the time of the surgery. At an average follow-up of 47 months, 32 patients had significant improvement in pain, subjective shoulder value, and Disabilities of the Arm, Shoulder and Hand score and shoulder range of motion, including flexion, 120°; abduction, 90°; and external rotation 50°. One patient, with a body mass index of 36 kg/m(2), required débridement for an infection and then later underwent shoulder fusion. Patients with >60° of preoperative flexion had more significant gains in their range of motion. Shoulder external rotation improved in all patients regardless of the extent of the preoperative loss of motion. Transfer of the lower trapezius prolonged with Achilles tendon allograft to reconstruct massive irreparable posterior-superior rotator cuff tear may lead to good outcome in most patients, specifically for those who have preoperative flexion of >60°. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Acute Tears of the Tibialis Posterior Tendon Following Ankle Sprain.

    PubMed

    Jackson, Lyle T; Dunaway, Linda J; Lundeen, Gregory A

    2017-07-01

    Traumatic tears of the tibialis posterior (TP) tendon following an ankle sprain are rare. The purpose of this study was to report our case series of TP tendon tears following an ankle sprain. Patients with persistent TP tendon pain after an ankle sprain were retrospectively identified over a 4-year period and reviewed. A comparison of magnetic resonance imaging (MRI) interpretations by a radiologist and surgeon was made. Patients failing conservative management underwent operative repair of the TP tendon tear and concomitant pathology. Failure of the index surgery was defined as TP tendinosis, which was treated with excision and flexor digitorum longus tendon transfer. Outcomes were measured with the Foot Function Index (FFI) and American Orthopaedic Foot & Ankle Society (AOFAS) hindfoot scores. Thirteen patients were found to have a TP tendon tear following an ankle sprain. The incidence for TP tears with sprains presented to our clinic was 1.04%. MRI identified TP tendon pathology in 4 patients by a radiologist review and in 11 patients by a surgeon review. The most common concomitant pathology was a talar osteochondral defect in 13 of 13 patients and ligament instability in 12 of 13 patients (5/13 lateral, 3/13 medial, 4/13 multidirectional instability). Four of 13 patients failed the index surgery. Of the 9 remaining patients, 4 had clinical follow-up at an average of 4.6 years postoperatively. The average FFI subscale scores were the following: pain, 40.4; disability, 28.9; and activity, 23.6. The average AOFAS hindfoot score was 68.8. Despite being rare, a TP tendon tear should be included in the differential diagnosis for persistent medial-sided pain following an ankle sprain. MRI findings can be subtle. Associated pathology was very common and likely confounded the diagnosis and outcomes. Patients should be counseled on the possibility of poor outcomes and long-term pain. Level IV, case series.

  20. Biomechanical evaluation of various suture configurations in side-to-side tenorrhaphy.

    PubMed

    Wagner, Emilio; Ortiz, Cristian; Wagner, Pablo; Guzman, Rodrigo; Ahumada, Ximena; Maffulli, Nicola

    2014-02-05

    Side-to-side tenorrhaphy is increasingly used, but its mechanical performance has not been studied. Two porcine flexor digitorum tendon segments of equal length (8 cm) and thickness (1 cm) were placed side by side. Eight tenorrhaphies (involving sixteen tendons) were performed with each of four suture techniques (running locked, simple eight, vertical mattress, and pulley suture). The resulting constructs underwent cyclic loading on a tensile testing machine, followed by monotonically increasing tensile load if failure during cyclic loading did not occur. Clamps secured the tendons on each side of the repair, and specimens were mounted vertically. Cyclic loading varied between 15 N and 35 N, with a distension rate of 1 mm/sec. Cyclic loading strength was determined by applying a force of 70 N. The cause of failure and tendon distension during loading were recorded. All failures occurred in the monotonic loading phase and resulted from tendon stripping. No suture or knot failure was observed. The mean loads resisted by the configurations ranged from 138 to 398 N. The mean load to failure, maximum load resisted prior to 1 cm of distension, and load resisted at 1 cm of distension were significantly lower for the vertical mattress suture group than for any of the other three groups (p < 0.031). All four groups sustained loads well above the physiologic loads expected to occur in tendons in the foot and ankle (e.g., in tendon transfer for tibialis posterior tendon insufficiency). None of the four side-to-side configurations distended appreciably during the cyclic loading phase. The vertical mattress suture configuration appeared to be weaker than the other configurations. For surgeons who advocate immediate loading or motion of a side-to-side tendon repair, a pulley, running locked, or simple eight suture technique appears to provide a larger safety margin compared with a vertical mattress suture technique.

  1. Diagnostic glenohumeral arthroscopy fails to fully evaluate the biceps-labral complex.

    PubMed

    Taylor, Samuel A; Khair, M Michael; Gulotta, Lawrence V; Pearle, Andrew D; Baret, Nikolas J; Newman, Ashley M; Dy, Christopher J; O'Brien, Stephen J

    2015-02-01

    The purpose of this study was to define the limits of diagnostic glenohumeral arthroscopy and determine the prevalence and frequency of hidden extra-articular "bicipital tunnel" lesions among chronically symptomatic patients. Eight fresh-frozen cadaveric specimens underwent diagnostic glenohumeral arthroscopy with percutaneous tagging of the long head of the biceps tendon (LHBT) during maximal tendon excursion. The percentage of visualized LHBT was calculated relative to the distal margin of subscapularis tendon and the proximal margin of the pectoralis major tendon. Then, a retrospective review of 277 patients who underwent subdeltoid transfer of the LHBT to the conjoint tendon were retrospectively analyzed for lesions of the biceps-labral complex. Lesions were categorized by anatomic location (inside, junctional, or bicipital tunnel). Inside lesions were labral tears. Junctional lesions were LHBT tears visualized during glenohumeral arthroscopy. Bicipital tunnel lesions were extra-articular lesions hidden from view during standard glenohumeral arthroscopy. Seventy-eight percent of LHBT were visualized relative to the distal margin of the subscapularis tendon and only 55% relative to the proximal margin of the pectoralis major tendon. No portion of the LHBT inferior to the subscapularis tendon was visualized. Forty-seven percent of patients had hidden bicipital tunnel lesions. Scarring was most common and accounted for 48% of all such lesions. Thirty-seven percent of patients had multiple lesion locations. Forty-five percent of patients with junctional lesions also had hidden bicipital tunnel lesions. The only offending lesion was in the bicipital tunnel for 18% of patients. Diagnostic glenohumeral arthroscopy fails to fully evaluate the biceps-labral complex because it visualizes only 55% of the LHBT relative to the proximal margin of the pectoralis major tendon and did not identify extra-articular bicipital tunnel lesions present in 47% of chronically symptomatic patients. Level IV, therapeutic case series and cadaveric study. Copyright © 2015 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  2. Cross cultural adaptation of the Achilles tendon Total Rupture Score with reliability, validity and responsiveness evaluation.

    PubMed

    Carmont, Michael R; Silbernagel, Karin Grävare; Nilsson-Helander, Katarina; Mei-Dan, Omer; Karlsson, Jon; Maffulli, Nicola

    2013-06-01

    The Achilles tendon Total Rupture Score (ATRS) was developed because of the need for a reliable, valid and sensitive instrument to evaluate symptoms and their effects on physical activity in patients following either conservative or surgical management of an Achilles tendon rupture. Prior to using the score in larger randomized trial in an English-speaking population, we decided to perform reliability, validity and responsiveness evaluations of the English version of the ATRS. Even though the score was published in English, the actual English version has not be validated and compared to the results of the Swedish version. From 2009 to 2010, all patients who received treatment for Achilles tendon rupture were followed up using the English version of the ATRS. Patients were asked to complete the score at 3, 6 and 12 months following treatment for Achilles tendon rupture. The ATRS was completed on arrival in the outpatient clinic and again following consultation. The outcomes of 49 (13 female and 36 male) patients were assessed. The mean (SD) age was 49 (12) years, and 27 patients had treatment for a left-sided rupture, 22 the right. All patients received treatment for ruptured Achilles tendons: 38 acute percutaneous repair, 1 open repair, 5 an Achilles tendon reconstruction using a Peroneus Brevis tendon transfer for delayed presentation, 1 gracilis augmented repair for re-rupture and 4 non-operative treatment for mid-portion rupture. The English version of ATRS was shown to have overall excellent reliability (ICC = 0.986). There was no significant difference between the results with the English version and the Swedish version when compared at the 6-month- or 12-month (n.s.) follow-up appointments. The effect size was 0.93. The minimal detectable change was 6.75 points. The ATRS was culturally adapted to English and shown to be a reliable, valid and responsive method of testing functional outcome following an Achilles tendon rupture.

  3. Biomechanical evaluation of a novel reverse coracoacromial ligament reconstruction for acromioclavicular joint separation.

    PubMed

    Shu, Beatrice; Johnston, Tyler; Lindsey, Derek P; McAdams, Timothy R

    2012-02-01

    Enhancing anterior-posterior (AP) stability in acromioclavicular (AC) reconstruction may be advantageous. To compare the initial stability of AC reconstructions with and without augmentation by either (1) a novel "reverse" coracoacromial (CA) ligament transfer or (2) an intramedullary AC tendon graft. Reverse CA transfer will improve AP stability compared with isolated coracoclavicular (CC) reconstruction. Controlled laboratory study. Six matched pairs of cadaveric shoulders underwent distal clavicle resection and CC reconstruction. Displacement (mm) was measured during cyclic loading along AP (±25 N) and superior-inferior (SI; 10-N compression, 70-N tension) axes. Pairs were randomized to receive each augmentation and the same loading protocol applied. Reverse CA transfer (3.71 ± 1.3 mm, standard error of the mean [SEM]; P = .03) and intramedullary graft (3.41 ± 1.1 mm; P = .03) decreased AP translation compared with CC reconstruction alone. The SI displacement did not differ. Equivalence tests suggest no difference between augmentations in AP or SI restraint. Addition of either reverse CA transfer or intramedullary graft demonstrates improved AP restraint and provides similar SI stability compared with isolated CC reconstruction. Reverse CA ligament transfer may be a reasonable alternative to a free tendon graft to augment AP restraint in AC reconstruction.

  4. Nerve Transfers to Restore Shoulder Function.

    PubMed

    Leechavengvongs, Somsak; Malungpaishorpe, Kanchai; Uerpairojkit, Chairoj; Ng, Chye Yew; Witoonchart, Kiat

    2016-05-01

    The restoration of shoulder function after brachial plexus injury represents a significant challenge facing the peripheral nerve surgeons. This is owing to a combination of the complex biomechanics of the shoulder girdle, the multitude of muscles and nerves that could be potentially injured, and a limited number of donor options. In general, nerve transfer is favored over tendon transfer, because the biomechanics of the musculotendinous units are not altered. This article summarizes the surgical techniques and clinical results of nerve transfers for restoration of shoulder function. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Functional Attachment of Soft Tissues to Bone: Development, Healing, and Tissue Engineering

    PubMed Central

    Lu, Helen H.; Thomopoulos, Stavros

    2014-01-01

    Connective tissues such as tendons or ligaments attach to bone across a multitissue interface with spatial gradients in composition, structure, and mechanical properties. These gradients minimize stress concentrations and mediate load transfer between the soft and hard tissues. Given the high incidence of tendon and ligament injuries and the lack of integrative solutions for their repair, interface regeneration remains a significant clinical challenge. This review begins with a description of the developmental processes and the resultant structure-function relationships that translate into the functional grading necessary for stress transfer between soft tissue and bone. It then discusses the interface healing response, with a focus on the influence of mechanical loading and the role of cell-cell interactions. The review continues with a description of current efforts in interface tissue engineering, highlighting key strategies for the regeneration of the soft tissue–to-bone interface, and concludes with a summary of challenges and future directions. PMID:23642244

  6. Patch-Augmented Latissimus Dorsi Transfer and Open Reduction–Internal Fixation of Unstable Os Acromiale for Irreparable Massive Posterosuperior Rotator Cuff Tear

    PubMed Central

    Petri, Maximilian; Greenspoon, Joshua A.; Bhatia, Sanjeev; Millett, Peter J.

    2015-01-01

    Latissimus dorsi transfer is a reasonable treatment option for massive posterosuperior rotator cuff tears that can substantially improve chronically painful and dysfunctional shoulders. This report and accompanying video describe the treatment of an active 43-year-old man with severe pain and weakness in the right shoulder after 3 failed rotator cuff repairs. Preoperative imaging showed a massive posterosuperior rotator cuff tear retracted to the glenoid as well as a hypermobile os acromiale likely causing dynamic impingement and recurrent rotator cuff tears. After diagnostic arthroscopy, the latissimus tendon is harvested and augmented with a 3-mm human acellular dermal patch (ArthroFlex; Arthrex, Naples, FL). The native rotator cuff tissue is repaired as much as possible, and the latissimus tendon is passed underneath the deltoid and posterior to the teres minor. The patch-augmented tendon is then integrated into a double-row SpeedBridge repair of eight 4.75-mm BioComposite SwiveLock anchors (Arthrex). The bony surface of the os acromiale is prepared and then fixed to the acromion with 2 cannulated partially threaded screws and additional tension-band wiring. Postoperative rehabilitation initially focuses on early passive range of motion, followed by active and active-assisted motion and a biofeedback program starting at 6 weeks postoperatively. PMID:26697309

  7. Rehabilitation of the elbow extension with motor imagery in a patient with quadriplegia after tendon transfer.

    PubMed

    Grangeon, Murielle; Guillot, Aymeric; Sancho, Pierre-Olivier; Picot, Marion; Revol, Patrice; Rode, Gilles; Collet, Christian

    2010-07-01

    To test the effect of a postsurgical motor imagery program in the rehabilitation of a patient with quadriplegia. Crossover design with kinematic analysis. Rehabilitation Hospital of Lyon. Study approved by the local Human Research Ethics Committee. C6-level injured patient (American Spinal Injury Association Impairment Scale grade A) with no voluntary elbow extension (triceps brachialis score 1). The surgical procedure was to transfer the distal insertion of the biceps brachii onto the triceps tendon of both arms. The postsurgical intervention on the left arm included 10 sessions of physical rehabilitation followed by 10 motor imagery sessions of 30 minutes each. The patient underwent 5 sessions a week during 2 consecutive weeks. The motor imagery content included mental representations based on elbow extension involved in goal-directed movements. The rehabilitation period of the right arm was reversed, with motor imagery performed first, followed by physical therapy. The kinematics of upper-limb movements was recorded (movement time and variability) before and after each type of rehabilitation period. A long-term retention test was performed 1 month later. Motor imagery training enhanced motor recovery by reducing hand trajectory variability-that is, improving smoothness. Motor performance then remained stable over 1 month. Motor imagery improved motor recovery when associated with physical therapy, with motor performance remaining stable over the 1-month period. We concluded that motor imagery should be successfully associated with classic rehabilitation procedure after tendon transfer. Physical sessions may thus be shortened if too stressful or painful. Copyright 2010 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  8. [Hand transplantation and implantation of nerve chips. New developments within hand surgery].

    PubMed

    Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G

    1999-10-06

    Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open up new perspectives in the coming millennium.

  9. [Hand transplantation and implantation of nerve chips. New developments within hand surgery].

    PubMed

    Dahlin, L; Fridén, J; Hagberg, L; Lundborg, G

    2000-03-20

    Injuries and diseases of the hand naturally have an enormous impact on hand function and on quality of life, both occupational and social. The majority of hand-injury patients are under 30 years of age. Hand surgery, an established specialty in Sweden since 1969, is of great importance in terms of clinical developments, education and research. In the coming decade, scientific and clinical advances are to be expected in several fields such as nerve injuries including brachial plexus lesion, microsurgery, flexor tendon injuries and tendon transfer. Bioimplant research and new advances at the biotechnological interface will yield new options in nerve reconstruction, microchip implants in the nervous system, and the restoration of muscle-tendon function following injury. Artificial limbs with advanced motor and sensory functions will be important future aids in the rehabilitation of amputees. Transplantation of human hands is another promising reconstructive procedure which may open iup new perspectives in the coming millennium.

  10. Extended healing validation of an artificial tendon to connect the quadriceps muscle to the Tibia: 180-day study.

    PubMed

    Melvin, Alan J; Litsky, Alan S; Mayerson, Joel L; Stringer, Keith; Juncosa-Melvin, Natalia

    2012-07-01

    Whenever a tendon or its bone insertion is disrupted or removed, existing surgical techniques provide a temporary connection or scaffolding to promote healing, but the interface of living to non-living materials soon breaks down under the stress of these applications, if it must bear the load more than acutely. Patients are thus disabled whose prostheses, defect size, or mere anatomy limit the availability or outcomes of such treatments. Our group developed the OrthoCoupler™ device to join skeletal muscle to prosthetic or natural structures without this interface breakdown. In this study, the goat knee extensor mechanism (quadriceps tendon, patella, and patellar tendon) was removed from the right hind limb in 16 goats. The device connected the quadriceps muscle to a stainless steel bone plate on the tibia. Mechanical testing and histology specimens were collected from each operated leg and contralateral unoperated control legs at 180 days. Maximum forces in the operated leg (vs. unoperated) were 1,400 ± 93 N (vs. 1,179 ± 61 N), linear stiffnesses were 33 ± 3 N/mm (vs. 37 ± 4 N/mm), and elongations at failure were 92.1 ± 5.3 mm (vs. 68.4 ± 3.8 mm; mean ± SEM). Higher maximum forces (p = 0.02) and elongations at failure (p=0.008) of legs with the device versus unoperated controls were significant; linear stiffnesses were not (p=0.3). We believe this technology will yield improved procedures for clinical challenges in orthopedic oncology, revision arthroplasty, tendon transfer, and tendon injury reconstruction. Copyright © 2011 Orthopaedic Research Society.

  11. Functional Consequence of Distal Brachioradialis Tendon Release: A Biomechanical Study

    PubMed Central

    Tirrell, Timothy F.; Franko, Orrin I.; Bhola, Siddharth; Hentzen, Eric R.; Abrams, Reid A.; Lieber, Richard L.

    2013-01-01

    Purpose Open reduction and internal fixation of distal radius fractures often necessitates release of the brachioradialis from the radial styloid. However, this common procedure has the potential to decrease elbow flexion strength. To determine the potential morbidity associated with brachioradialis release, we measured the change in elbow torque as a function of incremental release of the brachioradialis insertion footprint. Methods In 5 upper extremity cadaveric specimens, the brachioradialis tendon was systematically released from the radius, and the resultant effect on brachioradialis elbow flexion torque was measured. Release distance was defined as the distance between the release point and the tip of the radial styloid. Results Brachioradialis elbow flexion torque dropped to 95%, 90% and 86% of its original value at release distances of 27mm, 46mm, and 52mm, respectively. Importantly, brachioradialis torque remained above 80% of its original value at release distances up to 7 centimeters. Conclusions Our data demonstrate that release of the brachioradialis tendon from its insertion has minor effects on its ability to transmit force to the distal radius. Clinical Relevance These data may imply that release of the distal brachioradialis tendon during distal radius open reduction internal fixation can be performed without meaningful functional consequences to elbow flexion torque. Even at large release distances, overall elbow flexion torque loss after brachioradialis release would be expected to be less than 5% due to the much larger contributions of the biceps and brachialis. Use of the brachioradialis as a tendon transfer donor should not be limited by concerns of elbow flexion loss, and the tendon could be considered as an autograft donor. PMID:23528425

  12. Latissimus Dorsi Transfer in Posterior Irreparable Rotator Cuff Tears

    PubMed Central

    Anastasopoulos, Panagiotis P.; Alexiadis, George; Spyridonos, Sarantis; Fandridis, Emmanouil

    2017-01-01

    Background: Massive rotator cuff tears pose a difficult and complex challenge even for the experienced surgeon; inability to repair these tears by conventional means designates them as irreparable, while management becomes quite taxing. Several operative options have been suggested for the management of such lesions with varying degrees of success, while it is imperative to match patient demands and expectations to the predicted outcome. Methods: Research articles are examined and key concepts are discussed, in order to provide an evidence based review of the available literature. The anatomy and pathomechanics along with the indications, contraindications and surgical techniques are reported. Results: Transfer of the Latissimus dorsi has been used with success to restore shoulder function in deficits of the posterior rotator cuff. Although it can be used in a variety of settings, the ideal patient for a Latissimus dorsi tendon transfer is a young and active individual, with no glenohumeral osteoarthritis that has a severe disability and weakness related to an irreparable posterior cuff tear. Conclusion: Tendon transfers have proved to be a successful treatment option in salvaging this difficult problem, providing pain relief and restoring shoulder function. Despite the excellent functional outcomes and pain suppression following operation, a variety of factors may affect the outcome; thus making indications and preoperative assessment a valuable component. PMID:28400877

  13. Latissimus Dorsi Transfer in Posterior Irreparable Rotator Cuff Tears.

    PubMed

    Anastasopoulos, Panagiotis P; Alexiadis, George; Spyridonos, Sarantis; Fandridis, Emmanouil

    2017-01-01

    Massive rotator cuff tears pose a difficult and complex challenge even for the experienced surgeon; inability to repair these tears by conventional means designates them as irreparable, while management becomes quite taxing. Several operative options have been suggested for the management of such lesions with varying degrees of success, while it is imperative to match patient demands and expectations to the predicted outcome. Research articles are examined and key concepts are discussed, in order to provide an evidence based review of the available literature. The anatomy and pathomechanics along with the indications, contraindications and surgical techniques are reported. Transfer of the Latissimus dorsi has been used with success to restore shoulder function in deficits of the posterior rotator cuff. Although it can be used in a variety of settings, the ideal patient for a Latissimus dorsi tendon transfer is a young and active individual, with no glenohumeral osteoarthritis that has a severe disability and weakness related to an irreparable posterior cuff tear. Tendon transfers have proved to be a successful treatment option in salvaging this difficult problem, providing pain relief and restoring shoulder function. Despite the excellent functional outcomes and pain suppression following operation, a variety of factors may affect the outcome; thus making indications and preoperative assessment a valuable component.

  14. Atraumatic bilateral rupture of the peroneus brevis tendon in recreational sport: A case report

    PubMed Central

    Scheidegger, Patric; Weisskopf, Lukas; Hirschmüller, Anja

    2017-01-01

    Issue: Lower extremity tendon injuries often occur in physically active individuals. Most ruptures not involving great force are diagnosed in patients presenting underlying tendon degenerations. This also applies to patients taking medications because of a disease. We have observed several cases of bilateral Achilles tendon ruptures in patients who have been taking cortisone for a long period. We treated a healthy colleague (neurologist) in our clinic who sustained ruptures of the Achilles tendon on the left side (2012) and the peroneus brevis tendon on left side (2015) and right side (2016) after minimal traumata. Aim of this report is to provide a systematic review of this case and a literature review of similar cases, as few such cases have been published. Methods: We reviewed and analysed this patient’s records containing the sport-specific anamnesis, pre-existing condition, anamnesis of medications and therapy. The three injuries were magnetic resonance imaging–proven. Furthermore, the tendon’s condition was examined histologically in the context of the operative treatment through lace technique of the Achilles tendon and transfer of the peroneus brevis to the peroneus longus. We also researched the literature for bilateral ruptures of the peroneal tendons. Results and conclusion: The anamnesis confirmed no underlying disease. The patient took a macrolide antibiotic about half a year prior to the first peroneal injury for an otitis media. He denied having taken any other antibiotics, especially no quinolone antibiotics. However, the patient reported cortisone intake for 2 days some months before the second peroneal injury to treat an allergic reaction. That involved no local cortisone infiltration in the lower extremity. He underwent surgery within the first 2 weeks after each trauma. Each time, postoperative follow-ups revealed a good healing process. Three months after each operation, the patient was free of complaints. Axibal and Anderson described a patient with bilateral peroneus longus and peroneus brevis ruptures, as well as an Achilles tendon rupture on the left side plus tendinopathy of the Achilles tendon on the right side of uncertain aetiology. We detected additional similar cases in patients who had taken medications, especially cortisone and levofloxacine. Further research should be conducted to clarify other risk factors to help prevent such injuries. PMID:29276600

  15. Differences in in vivo muscle fascicle and tendinous tissue behavior between the ankle plantarflexors during running.

    PubMed

    Lai, A K M; Lichtwark, G A; Schache, A G; Pandy, M G

    2018-03-30

    The primary human ankle plantarflexors, soleus (SO), medial gastrocnemius (MG), and lateral gastrocnemius (LG) are typically regarded as synergists and play a critical role in running. However, due to differences in muscle-tendon architecture and joint articulation, the muscle fascicles and tendinous tissue of the plantarflexors may exhibit differences in their behavior and interactions during running. We combined in vivo dynamic ultrasound measurements with inverse dynamics analyses to identify and explain differences in muscle fascicle, muscle-tendon unit, and tendinous tissue behavior of the primary ankle plantarflexors across a range of steady-state running speeds. Consistent with their role as a force generator, the muscle fascicles of the uniarticular SO shortened less rapidly than the fascicles of the MG during early stance. Furthermore, the MG and LG exhibited delays in tendon recoil during the stance phase, reflecting their ability to transfer power and work between the knee and ankle via tendon stretch and storage of elastic strain energy. Our findings add to the growing body of evidence surrounding the distinct mechanistic functions of uni- and biarticular muscles during dynamic movements. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Clinical and Radiographic Outcomes With Assessment of the Learning Curve in Arthroscopically Assisted Latissimus Dorsi Tendon Transfer for Irreparable Posterosuperior Rotator Cuff Tears.

    PubMed

    Yamakado, Kotaro

    2017-12-01

    To evaluate the clinical results of an arthroscopy-assisted latissimus dorsi tendon transfer (aLD) for irreparable posterosuperior cuff tears as a primary surgery. The secondary aim of this study was to quantify the learning curve using the log-linear model. We hypothesized that aLD significantly improved shoulder function and that there was consistent reduction of the operative time in support of a learning-curve effect. After the arthroscopic partial repair was completed, the latissimus dorsi tendon was harvested via axillary mini-open incision and fixed with a knotless anchor arthroscopically. All patients were evaluated preoperatively and postoperatively using a modified University of California Los Angeles (UCLA) scoring system, active range of motion, and the visual analog scale (VAS) for pain. The operative time was recorded to quantify the learning curve using a log-linear model. Thirty patients with a mean age of 67.4 years who underwent aLD were included. At a mean of 34 months after an aLD, the mean UCLA score increased from 15.7 preoperatively to 28.8 postoperatively (P < .001). The mean active forward elevation increased from 105° preoperatively to 149° postoperatively (P < .001). The mean active external rotation increased from 22° preoperatively to 32° postoperatively (P < .001). The VAS improved from 58 mm to 18 mm (P < .001). In all but 2 cases (93%), the preoperative osteoarthritis grade was maintained. The mean operative time was 145 minutes. A significant linear correlation was observed between the operative time and cumulative volume of cases after performing a logarithmic transformation. The learning rate was calculated as 84%. Arthroscopy-assisted latissimus dorsi tendon transfer is a technically demanding procedure; however, it can lead to significant improvements in overall shoulder pain and function. This study also confirmed a learning-curve effect for the aLD. The learning rate was 84%, indicating the existence of a long learning period. Level IV, therapeutic case series. Copyright © 2017 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  17. Local injection of autologous bone marrow cells to regenerate muscle in patients with traumatic brachial plexus injury: a pilot study.

    PubMed

    Hogendoorn, S; Duijnisveld, B J; van Duinen, S G; Stoel, B C; van Dijk, J G; Fibbe, W E; Nelissen, R G H H

    2014-01-01

    Traumatic brachial plexus injury causes severe functional impairment of the arm. Elbow flexion is often affected. Nerve surgery or tendon transfers provide the only means to obtain improved elbow flexion. Unfortunately, the functionality of the arm often remains insufficient. Stem cell therapy could potentially improve muscle strength and avoid muscle-tendon transfer. This pilot study assesses the safety and regenerative potential of autologous bone marrow-derived mononuclear cell injection in partially denervated biceps. Nine brachial plexus patients with insufficient elbow flexion (i.e., partial denervation) received intramuscular escalating doses of autologous bone marrow-derived mononuclear cells, combined with tendon transfers. Effect parameters included biceps biopsies, motor unit analysis on needle electromyography and computerised muscle tomography, before and after cell therapy. No adverse effects in vital signs, bone marrow aspiration sites, injection sites, or surgical wound were seen. After cell therapy there was a 52% decrease in muscle fibrosis (p = 0.01), an 80% increase in myofibre diameter (p = 0.007), a 50% increase in satellite cells (p = 0.045) and an 83% increase in capillary-to-myofibre ratio (p < 0.001) was shown. CT analysis demonstrated a 48% decrease in mean muscle density (p = 0.009). Motor unit analysis showed a mean increase of 36% in motor unit amplitude (p = 0.045), 22% increase in duration (p = 0.005) and 29% increase in number of phases (p = 0.002). Mononuclear cell injection in partly denervated muscle of brachial plexus patients is safe. The results suggest enhanced muscle reinnervation and regeneration. Cite this article: Bone Joint Res 2014;3:38-47.

  18. Three-dimensional study of pectoralis major muscle and tendon architecture.

    PubMed

    Fung, Lillia; Wong, Brian; Ravichandiran, Kajeandra; Agur, Anne; Rindlisbacher, Tim; Elmaraghy, Amr

    2009-05-01

    A thorough understanding of the normal structural anatomy of the pectoralis major (PM) is of paramount importance in the planning of PM tendon transfers or repairs following traumatic PM tears. However, there is little consensus regarding the complex musculotendinous architecture of the PM in the anatomic or surgical literature. The purpose of this study is to model and quantify the three-dimensional architecture of the pectoralis muscle and tendon. Eleven formalin embalmed cadaveric specimens were examined: five (2M/3F) were serially dissected, digitized, and modeled in 3D using Autodesk Maya; six (4M/2F) were dissected and photographed. The PM tendon consisted of longer anterior and shorter posterior layers that were continuous inferiorly. The muscle belly consisted of an architecturally uniform clavicular head (CH) and a segmented sternal head (SH) with 6-7 segments. The most inferior SH segment in all specimens was found to fold anteriorly forming a trough that cradled the inferior aspect of the adjacent superior segment. No twisting of either the PM muscle or tendon was noted. Within the CH, the fiber bundle lengths (FBL) were found to increase from superior to inferior, whereas the mean FBLs of SH were greatest in segments 3-5 found centrally. The mean lateral pennation angle was greater in the CH (29.4 +/- 6.9 degrees ) than in the SH (20.6 +/- 2.7 degrees ). The application of these findings could form the basis of future studies to optimize surgical planning and functional recovery of repair/reconstruction procedures.

  19. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment.

    PubMed

    Schwartz, Andrea G; Long, Fanxin; Thomopoulos, Stavros

    2015-01-01

    Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation. © 2015. Published by The Company of Biologists Ltd.

  20. Enthesis fibrocartilage cells originate from a population of Hedgehog-responsive cells modulated by the loading environment

    PubMed Central

    Schwartz, Andrea G.; Long, Fanxin; Thomopoulos, Stavros

    2015-01-01

    Tendon attaches to bone across a specialized tissue called the enthesis. This tissue modulates the transfer of muscle forces between two materials, i.e. tendon and bone, with vastly different mechanical properties. The enthesis for many tendons consists of a mineralized graded fibrocartilage that develops postnatally, concurrent with epiphyseal mineralization. Although it is well described that the mineralization and development of functional maturity requires muscle loading, the biological factors that modulate enthesis development are poorly understood. By genetically demarcating cells expressing Gli1 in response to Hedgehog (Hh) signaling, we discovered a unique population of Hh-responsive cells in the developing murine enthesis that were distinct from tendon fibroblasts and epiphyseal chondrocytes. Lineage-tracing experiments revealed that the Gli1 lineage cells that originate in utero eventually populate the entire mature enthesis. Muscle paralysis increased the number of Hh-responsive cells in the enthesis, demonstrating that responsiveness to Hh is modulated in part by muscle loading. Ablation of the Hh-responsive cells during the first week of postnatal development resulted in a loss of mineralized fibrocartilage, with very little tissue remodeling 5 weeks after cell ablation. Conditional deletion of smoothened, a molecule necessary for responsiveness to Ihh, from the developing tendon and enthesis altered the differentiation of enthesis progenitor cells, resulting in significantly reduced fibrocartilage mineralization and decreased biomechanical function. Taken together, these results demonstrate that Hh signaling within developing enthesis fibrocartilage cells is required for enthesis formation. PMID:25516975

  1. Mechanical Strength of the Side-to-Side Versus Pulvertaft Weave Tendon Repair

    PubMed Central

    Brown, Stephen H. M.; Hentzen, Eric R.; Kwan, Alan; Ward, Samuel R.; Fridén, Jan; Lieber, Richard L.

    2010-01-01

    Purpose The side-to-side (SS) tendon suture technique was designed to function as a repair that permits immediate post-operative activation and mobilization of a transferred muscle. This study was designed to test the strength and stiffness of the SS technique against a variation of the Pulvertaft (PT) repair technique. Methods Flexor digitorum superficialis (FDS) and flexor digitorum profundus (FDP) tendons were harvested from four fresh cadavers and used as a model system. Seven SS and six PT repairs were performed using the FDS as the donor and the FDP as the recipient tendon. For SS repairs, the FDS was woven through one incision in the FDP, and was joined with four cross-stitch running sutures down both sides, and one double-loop suture at each tendon free end; for PT repairs, FDS was woven through three incisions in FDP, joined with a double-loop suture at both ends of the overlap, and four evenly spaced mattress sutures between the ends. Tendon repairs were placed in a tensile testing machine, pre-conditioned and tested to failure. Results There were no statistically significant differences in cross-sectional area (p=0.99) or initial length (p=0.93) between SS and PT repairs. Therefore, all comparisons between methods were made using measures of loads and deformations, rather than stresses and strains.. All failures occurred in the repair region, rather than at the clamps. However, failure mechanisms were different between the two techniques—PT repairs failed by the suture knots either slipping or pulling through the tendon material, followed by the FDS tendon pulling through the FDP tendon; SS repairs failed by shearing of fibers within the FDS. Load at first failure (p < 0.01), ultimate load (p < 0.001), and repair stiffness (p < 0.05) were all significantly different between SS and PT techniques; in all cases the mean value for SS was higher than for PT. Discussion The SS repair, using a cross-stitch suture technique, was significantly stronger and stiffer compared to the PT repair using a mattress suture technique. This suggests that using SS repairs could enable patients to load the repair soon after surgery. Ultimately, this should reduce the risk of developing adhesions and result in improved functional outcome and fewer complications in the acute post-operative period. Future work will address the specific mechanisms (for example, suture-throw technique, tendon-weave technique) that underlie the improved strength and stiffness of the SS repair. PMID:20223604

  2. Transfer and development length of prestressing tendons in full-scale AASHTO prestressed concrete girders using self-consolidating concrete.

    DOT National Transportation Integrated Search

    2009-03-01

    Self-consolidating concrete (SCC) is a highly workable concrete that flows through densely reinforced or : complex structural elements under its own weight. The benefits of using SCC include: a) Reducing labor costs : by eliminating the need for mech...

  3. Repair of Chronic Tibialis Anterior Tendon Rupture With a Major Defect Using Gracilis Allograft.

    PubMed

    Burton, Alex; Aydogan, Umur

    2016-08-01

    Tibialis anterior tendon (TAT) rupture is an uncommon injury, however, it can cause substantial deficit. Diagnosis is often delayed due to lack of initial symptoms; yet loss of function over time typically causes the patient to present for treatment. This delay usually ends up with major defects creating a great technical challenge for the operating surgeon. We present a novel technique and operative algorithm for the management of chronic TAT ruptures with a major gap after a delayed diagnosis not otherwise correctable with currently described techniques in the literature. This technique has been performed in 4 cases without any complications with fairly successful functional outcomes. For the reconstruction of chronic TAT rupture with an average delay of nine weeks after initial injury and gap of greater than 10 cm, a thorough operative algorithm was implemented in 4 patients using a double bundle gracilis allograft. Patients were then kept nonweightbearing for 6 weeks followed by weightbearing as tolerated. They began physical therapy with a focus on ankle exercises and gradual return to normal activity at 8 weeks, with resistance training exercises allowed at 12 weeks. At a mean follow-up time of 24.5 months, all patients reported significant pain relief with normal gait pattern. There were no reported intra- or postoperative complications. The average Foot and Ankle Ability Measure score increased to 90 from 27.5 in the postoperative period. All patients were able to return their previous activity levels. Gracilis allograft reconstruction as used in this study is a viable and reproducible alternative to primary repair with postoperative results being favorable without using complex tendon transfer techniques or autograft use necessitating the functional sacrifice of transferred or excised tendon. To the best of our knowledge, this is the first study demonstrating a successful technique and operative algorithm of gracilis allograft reconstruction of the TAT with a substantial deficit of greater than 10 cm with favorable results. Level IV: Operative algorithm with case series. © 2016 The Author(s).

  4. The Improvement of Bone-Tendon Fixation by Porous Titanium Interference Screw: A Rabbit Animal Model.

    PubMed

    Tsai, Pei-I; Chen, Chih-Yu; Huang, Shu-Wei; Yang, Kuo-Yi; Lin, Tzu-Hung; Chen, San-Yuan; Sun, Jui-Sheng

    2018-05-04

    The interference screw is a widely used fixation device in the anterior cruciate ligament (ACL) reconstruction surgeries. Despite the generally satisfactory results, problems of using interference screws were reported. By using additive manufacturing (AM) technology, we developed an innovative titanium alloy (Ti 6 Al 4 V) interference screw with rough surface and inter-connected porous structure designs to improve the bone-tendon fixation. An innovative Ti 6 Al 4 V interference screws were manufactured by AM technology. In vitro mechanical tests were performed to validate its mechanical properties. Twenty-seven New Zealand white rabbits were randomly divided into control and AM screw groups for biomechanical analyses and histological analysis at 4, 8 and 12 weeks postoperatively; while micro-CT analysis was performed at 12 weeks postoperatively. The biomechanical tests showed that the ultimate failure load in the AM interference screw group was significantly higher than that in the control group at all tested periods. These results were also compatible with the findings of micro-CT and histological analyses. In micro-CT analysis, the bone-screw gap was larger in the control group; while for the additive manufactured screw, the screw and bone growth was in close contact. In histological study, the bone-screw gaps were wider in the control group and were almost invisible in the AM screw group. The innovative AM interference screws with surface roughness and inter-connected porous architectures demonstrated better bone-tendon-implant integration, and resulted in stronger biomechanical characteristics when compared to traditional screws. These advantages can be transferred to future interference screw designs to improve their clinical performance. The AM interference screw could improve graft fixation and eventually result in better biomechanical performance of the bone-tendon-screw construct. The innovative AM interference screws can be transferred to future interference screw designs to improve the performance of implants. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Outcome of triple-tendon transfer, an Eden-Lange variant, to reconstruct trapezius paralysis.

    PubMed

    Elhassan, Bassem T; Wagner, Eric R

    2015-08-01

    This study describes the technique and evaluates the outcome of the triple-tendon (T3) transfer, an Eden-Lange variant, to the scapula to stabilize the scapulothoracic articulation in the treatment of symptomatic trapezius paralysis. T3 transfers were performed in 22 patients with a history of persistent trapezius paralysis secondary to spinal accessory nerve injury. The indications for surgery included shoulder pain and weakness and limited range of motion of the shoulder. The T3 transfer included transfer of the levator scapulae to the lateral aspect of the spine of the scapula, the rhomboid minor to the spine of the scapula just medial to the levator scapulae insertion, and the rhomboid major to the medial spine of the scapula, including all muscles bony insertions. At an average follow-up of 35 months, winging was corrected in all patients, with improvement of shoulder asymmetry. All patients had significant improvement of pain (P < .01) and range of motion, including active shoulder abduction that improved from an average of 71° preoperatively to 118° postoperatively (P < .02) and shoulder flexion from an average of 102° to 150° (P < .01). There were also significant improvements in aggregate Constant Shoulder Score (P < .01), subjective shoulder value (P < .01), and Disabilities of the Arm, Shoulder and Hand score (P < .01). All patients were very satisfied with the outcome of surgery. This study shows that the T3 transfer is effective in stabilizing the scapulothoracic articulation and restoring the function of the trapezius, and thus, in improving pain and shoulder function in patients with symptomatic trapezius paralysis. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  6. Characterization of calcium and zinc spatial distributions at the fibrocartilage zone of bone-tendon junction by synchrotron radiation-based micro X-ray fluorescence analysis combined with backscattered electron imaging

    NASA Astrophysics Data System (ADS)

    Lu, Hongbin; Chen, Can; Wang, Zhanwen; Qu, Jin; Xu, Daqi; Wu, Tianding; Cao, Yong; Zhou, Jingyong; Zheng, Cheng; Hu, Jianzhong

    2015-09-01

    Tendon attaches to bone through a functionally graded fibrocartilage zone, including uncalcified fibrocartilage (UF), tidemark (TM) and calcified fibrocartilage (CF). This transition zone plays a pivotal role in relaxing load transfer between tendon and bone, and serves as a boundary between otherwise structurally and functionally distinct tissue types. Calcium and zinc are believed to play important roles in the normal growth, mineralization, and repair of the fibrocartilage zone of bone-tendon junction (BTJ). However, spatial distributions of calcium and zinc at the fibrocartilage zone of BTJ and their distribution-function relationship are not totally understood. Thus, synchrotron radiation-based micro X-ray fluorescence analysis (SR-μXRF) in combination with backscattered electron imaging (BEI) was employed to characterize the distributions of calcium and zinc at the fibrocartilage zone of rabbit patella-patellar tendon complex (PPTC). For the first time, the unique distributions of calcium and zinc at the fibrocartilage zone of the PPTC were clearly mapped by this method. The distributions of calcium and zinc at the fibrocartilage zone of the PPTC were inhomogeneous. A significant accumulation of zinc was exhibited in the transition region between UF and CF. The highest zinc content (3.17 times of that of patellar tendon) was found in the TM of fibrocartilage zone. The calcium content began to increase near the TM and increased exponentially across the calcified fibrocartilage region towards the patella. The highest calcium content (43.14 times of that of patellar tendon) was in the transitional zone of calcified fibrocartilage region and the patella, approximately 69 μm from the location with the highest zinc content. This study indicated, for the first time, that there is a differential distribution of calcium and zinc at the fibrocartilage zone of PPTC. These observations reveal new insights into region-dependent changes across the fibrocartilage zone of BTJ and will serve as critical benchmark parameters for current efforts in BTJ repair.

  7. Influence of fixation point of latissimus dorsi tendon transfer for irreparable rotator cuff tear on glenohumeral external rotation: A cadaver study.

    PubMed

    Bargoin, K; Boissard, M; Kany, J; Grimberg, J

    2016-12-01

    Latissimus dorsi tendon transfer is a surgical option for treating irreparable posterosuperior rotator cuff tears, notably when attempting to reconstruct active external rotation. We hypothesized that the positioning of the transfer's point of fixation would differ depending on the desired elbow-to-body external rotation or external rotation with the elbow abducted. Seven shoulders from four whole frozen cadavers were used. We created two systems to install the subject in a semi-seated position to allow external rotation elbow to body and the arm abducted 90°. Traction sutures were positioned on the latissimus dorsi muscle and a massive tear of the rotator cuff was created. We tested six different transfer positions. Muscle contraction of the latissimus dorsi was stimulated using 10-N and 20-N suspended weights. The point of fixation of the latissimus dorsi on the humeral head had an influence on the elbow-to-body external rotation and with 90° abduction (P<0.001). The fixation point for a maximum external rotation with the elbow to the body was the anterolateral position (P<0.016). The fixation point for a maximum external rotation at 90° abduction was the position centered on the infraspinatus footprint (P<0.078). The optimal point of fixation differs depending on whether external rotation is restored at 0° or 90° abduction. Fundamental study, anatomic study. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  8. No prosthetic management of massive and irreparable rotator cuff tears

    PubMed Central

    Garofalo, Raffaele; Cesari, Eugenio

    2014-01-01

    A massive rotator cuff tear is not necessarily irreparable. Number of tendons involved, muscle-tendon unit quality, and decreased acromionhumeral distance (AHD) are as important as tear size in determining reparability of lesion. Massive and irreparable rotator cuff tears cannot be anatomically repaired to the bone and are a common source of pain and disability even in middle-aged patients. In these patients when conservative management has failed, it is possible to perform different surgical techniques. A functional repair can help to restore the horizontal force couple of the cuff on the humeral head and to increase the AHD. Debridement of irreparable tears and biceps tenotomy or tenodesis can have a role in low functional demand patients but results deteriorate over time. Recently, several commercially available tissue-engineered biological and synthetic scaffolds have been developed to augment rotator cuff repairs. The aim is to provide a mechanical improvement in case of poor quality tissue at time zero and give a support to have a better cuff healing. In selected cases, the scaffold can be used also to bridge tendon defect. Patients who not have pseudoparalysis, cuff tear arthropathy and with intact deltoid function can benefit from tendon transfers with satisfactory outcomes. These different procedures should be chosen for each patient with selected criteria and after a satisfactory explanation about the really possible expectation after surgery. PMID:27582930

  9. An Artificial Tendon with Durable Muscle Interface

    PubMed Central

    Melvin, Alan; Litsky, Alan; Mayerson, Joel; Witte, David; Melvin, David; Juncosa-Melvin, Natalia

    2010-01-01

    A coupling mechanism that can permanently fix a forcefully contracting muscle to a bone anchor or any totally inert prosthesis would meet a serious need in orthopaedics. Our group developed the OrthoCoupler™ device to satisfy these demands. The objective of this study was to test OrthoCoupler’s performance in vitro and in vivo in the goat semitendinosus tendon model. For in vitro evaluation, 40 samples were fatigue-tested, cycling at 10 load levels, n=4 each. For in vivo evaluation, the semitendinosus tendon was removed bilaterally in 8 goats. Left sides were reattached with an OrthoCoupler, and right sides were reattached using the Krackow stitch with #5 braided polyester sutures. Specimens were harvested 60 days post-surgery and assigned for biomechanics and histology. Fatigue strength of the devices in vitro was several times the contractile force of the semitendinosus muscle. The in vivo devices were built equivalent to two of the in vitro devices, providing an additional safety factor. In strength testing at necropsy, suture controls pulled out at 120.5 ± 68.3 N, whereas each OrthoCoupler was still holding after the muscle tore, remotely, at 298±111.3N (mean ± SD)(p<0.0003). Muscle tear strength was reached with the fiber-muscle composite produced in healing still soundly intact. This technology may be of value for orthopaedic challenges in oncology, revision arthroplasty, tendon transfer, and sports-injury reconstruction. PMID:19639642

  10. Minimally invasive soft tissue release of foot and ankle contracture secondary to stroke.

    PubMed

    Boffeli, Troy J; Collier, Rachel C

    2014-01-01

    Lower extremity contracture associated with stroke commonly results in a nonreducible, spastic equinovarus deformity of the foot and ankle. Rigid contracture deformity leads to gait instability, pain, bracing difficulties, and ulcerations. The classic surgical approach for stroke-related contracture of the foot and ankle has been combinations of tendon lengthening, tendon transfer, osteotomy, and joint fusion procedures. Recovery after traditional foot and ankle reconstructive surgery requires a period of non-weightbearing that is not typically practical for these patients. Little focus has been given in published studies on minimally invasive soft tissue release of contracture. We present the case of a 61-year-old female with an equinovarus foot contracture deformity secondary to stroke. The patient underwent Achilles tendon lengthening, posterior tibial tendon Z lengthening, and digital flexor tenotomy of each toe with immediate weightbearing in a walking boot, followed by transition to an ankle-foot orthosis. The surgical principles and technique tips are presented to demonstrate our minimally invasive approach to release of foot and ankle contracture secondary to stroke. The main goal of this approach is to improve foot and ankle alignment for ease of bracing, which, in turn, will improve gait, reduce the risk of falls, decrease pain, and avoid the development of pressure sores. Copyright © 2014 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  11. In situ repair of partial articular surface lesions of the supraspinatus tendon.

    PubMed

    Paim, Arildo Eustáquio

    2017-01-01

    To demonstrate the in situ repair technique of high-degree partial-thickness articular surface lesions of the supraspinatus tendon (SS). The procedure consists of the arthroscopic surgical repair of these lesions, without the need to complete the lesion, as occurs in traditional classical technique. A small incision is made in the longitudinal direction of the intact bursal fibers and where bone fixation anchors are introduced, which makes the procedure easier. These anchors are transferred to the tendon and thus enable the repair of the lesion. 48 shoulders were operated in the period 2010-2015. The minimum follow-up was 12 months and maximum 60 months. Ages ranged from 38 years to 75 years (mean 54 years). They were indicated for the repair of high-degree symptomatic lesions and at least 30% intact superior bursal fibers of good quality. Patients were evaluated according to the UCLA criteria, the results were: 69% excellent, 17% good, 7% fair, and 7% poor. Fair results occurred in three patients with associated symptoms of polyarthralgia who remained with residual pain. Three patients developed postoperative joint stiffness (7%). The procedure under study is safe and easy to reproduce. It shows high rates of positive results (86%). The opening made in the bursal side of the SS tendon allowed the arthroscope to remain in the subacromial space, making it easier to perform surgery.

  12. Controlled Bioactive Molecules Delivery Strategies for Tendon and Ligament Tissue Engineering using Polymeric Nanofibers.

    PubMed

    Hiong Teh, Thomas Kok; Hong Goh, James Cho; Toh, Siew Lok

    2015-01-01

    The interest in polymeric nanofibers has escalated over the past decade given its promise as tissue engineering scaffolds that can mimic the nanoscale structure of the native extracellular matrix. With functionalization of the polymeric nanofibers using bioactive molecules, localized signaling moieties can be established for the attached cells, to stimulate desired biological effects and direct cellular or tissue response. The inherently high surface area per unit mass of polymeric nanofibers can enhance cell adhesion, bioactive molecules loading and release efficiencies, and mass transfer properties. In this review article, the application of polymeric nanofibers for controlled bioactive molecules delivery will be discussed, with a focus on tendon and ligament tissue engineering. Various polymeric materials of different mechanical and degradation properties will be presented along with the nanofiber fabrication techniques explored. The bioactive molecules of interest for tendon and ligament tissue engineering, including growth factors and small molecules, will also be reviewed and compared in terms of their nanofiber incorporation strategies and release profiles. This article will also highlight and compare various innovative strategies to control the release of bioactive molecules spatiotemporally and explore an emerging tissue engineering strategy involving controlled multiple bioactive molecules sequential release. Finally, the review article concludes with challenges and future trends in the innovation and development of bioactive molecules delivery using polymeric nanofibers for tendon and ligament tissue engineering.

  13. Percutaneous Needle Tenotomy for the Treatment of Muscle and Tendon Contractures in Adults With Brain Damage: Results and Complications.

    PubMed

    Coroian, Flavia; Jourdan, Claire; Froger, Jérome; Anquetil, Claire; Choquet, Olivier; Coulet, Bertand; Laffont, Isabelle

    2017-05-01

    To study the results and complications of percutaneous needle tenotomy for superficial retracted tendons in patients with brain damage. Prospective observational study. University hospital. Patients with severe brain damage (N=38; mean age, 60.7y; age range, 24-93y; 21 women) requiring surgical management of contractures and eligible for percutaneous needle tenotomy were enrolled between February 2015 and February 2016. The percutaneous needle tenotomy gesture was performed by a physical medicine and rehabilitation physician trained by an orthopedic surgeon, under local or locoregional anesthesia. Treated tendons varied among patients. All patients were evaluated at 1, 3, and 6 months to assess surgical outcomes (joint range of motion [ROM], pain, and functional improvement) while screening for complications. Improvements in ROM (37/38) and contractures-related pain (12/12) were satisfactory. Functional results were satisfactory (Goal Attainment Scale score ≥0) for most patients (37/38): nursing (n=12), putting shoes on (n=8), getting in bed or sitting on a chair (n=6), verticalization (n=7), transfers and gait (n=8), and grip (n=2). Five patients had complications related to the surgical gesture: cast-related complications (n=2), hand hematoma (n=2), and cutaneous necrosis of the Achilles tendon in a patient with previous obliterative arteriopathy of the lower limbs (n=1). Percutaneous needle tenotomy yields good results in the management of selected superficial muscle and tendon contractures. The complications rate is very low, and this treatment can be an alternative to conventional surgery in frail patients with neurologic diseases. Copyright © 2016 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.

  14. [Modification of the Furnas-Vilkki technic in the reconstruction of congenital or traumatic carpal hands].

    PubMed

    Foucher, G

    1995-01-01

    A technique is described for reconstruction of a pincer, by a second toe transfer, in traumatic and congenital deformities, leaving only the wrist. Transfer on the anterior aspect of the radius allows to benefit from the wrist mobility to compensate for the limited range of motion of the second toe. Proximal situation of the toe gives the possibility of harvesting plenty of tendons to balance the toe. Results have been encouraging in two traumatic and 6 congenital cases of peromelic type of symbrachydactyly.

  15. Clinical Investigations Service.

    DTIC Science & Technology

    1979-09-30

    79/42 (M79,O) The Incidence of Visual Motor Perceptual Problems in Persons with Traumatic Hand Injuries ...the Left Lower Lobe. Su-mJ.tted for publication. Youngberg JA: Seizures follw ing a shuntogram performed with diatrizoate meglumine. Accepted for...publication in Anesthesiology Copeland R. Tendon Transfers in the Cerebral Palsy Patient. Presented at the New Mexico Chapter Western Orthopaedic Assoc 1979

  16. Pectoralis major tendon transfer for the treatment of scapular winging due to long thoracic nerve palsy.

    PubMed

    Streit, Jonathan J; Lenarz, Christopher J; Shishani, Yousef; McCrum, Christopher; Wanner, J P; Nowinski, R J; Warner, Jon J P; Gobezie, Reuben

    2012-05-01

    Painful scapular winging due to chronic long thoracic nerve (LTN) palsy is a relatively rare disorder that can be difficult to treat. Pectoralis major tendon (PMT) transfer has been shown to be effective in relieving pain, improving cosmesis, and restoring function. However, the available body of literature consists of few, small-cohort studies, and more outcomes data are needed. Outcomes of 26 consecutive patients with electromyelogram-confirmed LTN palsy who underwent direct (n = 4) or indirect transfer (n = 22) of the PMT for dynamic stabilization of the scapula were reviewed. All patients were followed up clinically for an average of 21.8 months (range, 3-62 months) with evaluations of active forward flexion, active external rotation, American Shoulder and Elbow Surgeons (ASES) score, visual analog scale (VAS) pain score, and observation of scapular winging. Preoperative to postoperative results included increases in the mean active forward flexion from 112° to 149° (P < .001) an in mean active external rotation from 53.8° to 62.8° (P = .045), an improvement in the mean ASES score from 28 to 67.0 (P < .001), and an improvement in the mean VAS pain score from 7.7 to 3.0 (P < .001). Recurrent scapular winging occurred in 5 patients. There was no difference in outcome by length of follow-up. PMT transfer is an effective treatment for painful scapular winging resulting from LTN palsy. This is the largest reported series of consecutive patients treated with PMT transfer for the correction of scapular winging. Copyright © 2012 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Mosby, Inc. All rights reserved.

  17. Using nerve transfer to restore prehension and grasp 12 years following spinal cord injury: a case report.

    PubMed

    Fox, Ida K; Novak, Christine B; Kahn, Lorna C; Mackinnon, Susan E; Ruvinskaya, Rimma; Juknis, Neringa

    2018-01-01

    Nerve transfers are used routinely for reconstruction of hand function following lower motor neuron lesions. In people with cervical spinal cord injury (SCI), this novel and alternate reconstruction option may be useful to restore prehension and grasp, and improve hand function. A 34-year-old male presented 12 years post-mid-cervical SCI. Pre-operative electrodiagnostic studies revealed intact lower motor neurons below the SCI level. He elected to undergo nerve transfer surgery to restore hand function. Intraoperative evaluation led to the transfer of a brachialis nerve to several median nerve recipient branches. Post surgery, he was discharged home and resumed activities of daily living. He achieved independent thumb and finger flexion function and continued to exhibit functional improvement at 4 years post surgery. These results should prompt referral for consideration of nerve transfer surgery-an exciting alternative to tendon transfer and neuroprostheses.

  18. Reverse shoulder arthroplasty combined with latissimus dorsi transfer using the bone-chip technique.

    PubMed

    Ortmaier, Reinhold; Resch, Herbert; Hitzl, Wolfgang; Mayer, Michael; Blocher, Martina; Vasvary, Imre; Mattiassich, Georg; Stundner, Ottokar; Tauber, Mark

    2014-03-01

    Reverse shoulder arthroplasty (RSA) can restore active elevation in rotator-cuff-deficient shoulders. However, RSA cannot restore active external rotation. The combination of latissimus dorsi transfer with RSA has been reported to restore both active elevation and external rotation. We hypothesised that in the combined procedure, harvesting the latissimus dorsi with a small piece of bone, leads to good tendon integrity, low rupture rates and good clinical outcome. Between 2004 and 2010, 13 patients (13 shoulders) were treated with RSA in combination with latissimus dorsi transfer in a modified manner. The mean follow-up was 65.4 months, and the mean age at index surgery was 71.1 years. All patients had external rotation lag sign and positive hornblower's sign, as well as radiological signs of cuff-tear arthropathy (Hamada 3, 4 or 5) and fatty infiltration grade 3 according to Goutallier et al. on magnetic resonance imaging (MRI). The outcome measures included the Constant Murley Score, University of California-Los Angeles (UCLA) shoulder score, Simple Shoulder Test (SST), visual analogue scale (VAS) and the Activities of Daily Living Requiring External Rotation (ADLER) score. Tendon integrity was evaluated with dynamic ultrasound. All patients were asked at final follow-up to rate their satisfaction as excellent, good, satisfied or dissatisfied. The overall mean Constant-Murley Shoulder Outcome Score (CMS) improved from 20.4 to 64.3 points (p < 0.001). Mean VAS pain score decreased from 6.8 to 1.1 (p < 0.001)., mean UCLA score improved from 7.9 to 26.4 (p < 0.001), mean SST score improved from 2.3 to 7.9 (p < 0.001) and mean postoperative ADLER score was 26 points. The average degree of abduction improved from 45° to 129° (p < 0.001), the average degree of anterior flexion improved from 55° to 138° (p < 0.001) and the average degree of external rotation improved from -16° to 21° (p < 0.001). Eight patients rated their results as very satisfied, three as satisfied and two as dissatisfied. This modified technique, which avoids cutting the pectoralis major tendon and involves harvesting the tendon together with a small piece of bone, leads to good or even better functional results compared with the results reported in the literature, and also has high patient satisfaction and low failure rates.

  19. Sonographic differentiation of digital tendon rupture from adhesive scarring after primary surgical repair.

    PubMed

    Budovec, Joseph J; Sudakoff, Gary S; Dzwierzynski, William W; Matloub, Hani S; Sanger, James R

    2006-04-01

    After the surgical repair of finger tendons finger range of motion may be limited by tendon rupture or adhesive scarring. Differentiating tendon rupture from adhesive scarring may be difficult clinically. Digital tendon sonography allows the evaluation of tendon integrity in a dynamic setting. Our objective was to determine if sonography could differentiate tendon rupture from adhesive scarring in patients who have had primary tendon repair. A retrospective review was performed of the radiographic, clinical, and surgical records of patients referred for finger sonography over a 2-year period. Twenty-eight digits in 21 patients were evaluated for finger tendon disruption after primary surgical repair. The diagnosis of complete tendon rupture was made when 1 or more of the following was identified: a gap separating the proximal and distal tendon margins, visualization of only the proximal tendon margin, or visualization of only the distal tendon margin. Adhesive scarring was diagnosed if the tendon appeared intact with abnormal peritendinous soft tissue abutting or partially encasing the tendon, with synovial sheath thickening, or with restricted tendon motion during dynamic evaluation. Sonography correctly identified tendon rupture or adhesive scarring in 27 of 28 digits with 1 false-positive case (sensitivity, 100%; specificity, 93%; positive-predictive value, 93%; negative-predictive value, 100%; accuracy, 96%). Sonography is an accurate modality for differentiating tendon rupture from adhesive scarring in patients with prior surgical tendon repair. Diagnostic, Level I.

  20. Evidence of isometric function of the flexor hallucis longus muscle in normal gait.

    PubMed

    Kirane, Y M; Michelson, J D; Sharkey, N A

    2008-01-01

    Studying mechanics of the muscles spanning multiple joints provides insights into intersegmental dynamics and movement coordination. Multiarticular muscles are thought to function at "near-isometric" lengths to transfer mechanical energy between the adjacent body segments. Flexor hallucis longus (FHL) is a multiarticular flexor of the great toe; however, its potential isometric function has received little attention. We used a robotic loading apparatus to investigate FHL mechanics during simulated walking in cadaver feet, and hypothesized that physiological force transmission across the foot can occur with isometric FHL function. The extrinsic foot tendons, stripped of the muscle fibers, were connected to computer-controlled linear actuators. The FHL activity was controlled using force-feedback (FC) based upon electromyographic data from healthy subjects, and subsequently, isometric positional feedback (PC), maintaining the FHL myotendinous junction stationary during simulated walking. Tendon forces and excursions were recorded, as were the strains within the first metatarsal. Forces in the metatarsal and metatarsophalangeal joint were derived from these strains. The FHL tendon excursion under FC was 6.57+/-3.13mm. The forces generated in the FHL tendon, metatarsal and metatarsophalangeal joint with the FHL under isometric PC were not significantly different in pattern from FC. These observations provide evidence that physiological forces could be generated along the great toe with isometric FHL function. A length servo mechanism such as the stretch reflex could likely control the isometric FHL function during in vivo locomotion; this could have interesting implications regarding the conditions of impaired stretch reflex such as spastic paresis and peripheral neuropathies.

  1. Electromechanical delay of the knee flexor muscles is impaired after harvesting hamstring tendons for anterior cruciate ligament reconstruction.

    PubMed

    Ristanis, Stavros; Tsepis, Elias; Giotis, Dimitrios; Stergiou, Nicholas; Cerulli, Guiliano; Georgoulis, Anastasios D

    2009-11-01

    Changes in electromechanical delay during muscle activation are expected when there are substantial alterations in the structural properties of the musculotendinous tissue. In anterior cruciate ligament reconstruction, specific tendons are being harvested for grafts. Thus, there is an associated scar tissue development at the tendon that may affect the corresponding electromechanical delay. This study was conducted to investigate whether harvesting of semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction will affect the electromechanical delay of the knee flexors. Case-control study; Level of evidence, 3. The authors evaluated 12 patients with anterior cruciate ligament reconstruction with a semitendinosus and gracilis autograft, 2 years after the reconstruction, and 12 healthy controls. Each participant performed 4 maximally explosive isometric contractions with a 1-minute break between contractions. The surface electromyographic activity of the biceps femoris and the semitendinosus was recorded from both legs during the contractions. The statistical comparisons revealed significant increases of the electromechanical delay of the anterior cruciate ligament-reconstructed knee for both investigated muscles. Specifically, the electromechanical delay values were increased for both the biceps femoris (P = .029) and the semitendinosus (P = .005) of the reconstructed knee when compared with the intact knee. Comparing the anterior cruciate ligament-reconstructed knee against healthy controls revealed similar significant differences for both muscles (semitendinosus, P = .011; biceps femoris, P = .024). The results showed that harvesting the semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction significantly increased the electromechanical delay of the knee flexors. Increased hamstring electromechanical delay might impair knee safety and performance by modifying the transfer time of muscle tension to the tibia and therefore affecting muscle response during sudden movements in athletic activities. However, further investigation is required to identify whether the increased electromechanical delay of the hamstrings can actually influence optimal sports performance and increase the risk for knee injury in athletes with anterior cruciate ligament reconstructions.

  2. Incidence and Association of CT Findings of Ankle Tendon Injuries in Patients Presenting With Ankle and Hindfoot Fractures.

    PubMed

    Golshani, Ashkahn; Zhu, Liang; Cai, Chunyan; Beckmann, Nicholas M

    2017-02-01

    Tendon injuries are a commonly encountered finding in ankle CT examinations performed for fractures. This study was designed to identify the incidence and associations of tendon injuries in ankle CT examinations performed for fractures. A retrospective review was performed of 410 patients who underwent ankle CT during a 6-year period. Tendon injuries were common, seen in 25% of all ankle CT examinations. Tendon subluxation-dislocation accounted for most of the tendon injuries (77 of 196 total injuries). Pilon fractures carried 2.2 times increased risk of tibialis posterior tendon injury (p = 0.0094). Calcaneus fractures carried 11.86 times increased risk of peroneus brevis tendon and 10.71 times increased risk of peroneus longus tendon injury (p < 0.0001). Calcaneus fractures also carried 5.21 times increased risk of flexor hallucis longus tendon injury (p = 0.0024). Talus fracture was associated with injury to all flexor compartment tendons. Talus fractures carried 3.43 times increased risk of tibialis posterior tendon injury (p < 0.0001), 4.51 times increased risk of flexor digitorum longus tendon injury (p = 0.0005), and 6.97 times increased risk of flexor hallucis longus tendon injury (p < 0.0001). Calcaneal fractures are prone to peroneal tendon injury, and talus fractures are prone to flexor tendon injury. In patients with pilon fractures, it is important to look for tibialis posterior tendon injury, specifically for entrapment. Overall, the most common type of injury is tendon malalignment, so it is imperative to know the normal tendon paths and associated bony landmarks to identify tendon injury.

  3. Understanding the Importance of the Teres Minor for Shoulder Function: Functional Anatomy and Pathology.

    PubMed

    Williams, Matthew D; Edwards, Thomas Bradley; Walch, Gilles

    2018-03-01

    Although the teres minor is often overlooked in a normal shoulder, it becomes a key component in maintaining shoulder function when other rotator cuff tendons fail. The teres minor maintains a balanced glenohumeral joint and changes from an insignificant to the most significant external rotator in the presence of major rotator cuff pathology. The presence or absence of the teres minor provides prognostic information on the outcomes of reverse total shoulder arthroplasty and tendon transfers. Clinical tests include the Patte test, the Neer dropping sign, the external rotation lag sign, and the Hertel drop sign. Advanced imaging of the teres minor can be used for classification using the Walch system. Understanding the function and pathology surrounding the teres minor is paramount in comprehensive management of the patient with shoulder pathology. Appropriate clinical examination and imaging of the teres minor are important for preoperative stratification and postoperative expectations.

  4. Strategies to engineer tendon/ligament-to-bone interface: Biomaterials, cells and growth factors.

    PubMed

    Font Tellado, Sonia; Balmayor, Elizabeth R; Van Griensven, Martijn

    2015-11-01

    Integration between tendon/ligament and bone occurs through a specialized tissue interface called enthesis. The complex and heterogeneous structure of the enthesis is essential to ensure smooth mechanical stress transfer between bone and soft tissues. Following injury, the interface is not regenerated, resulting in high rupture recurrence rates. Tissue engineering is a promising strategy for the regeneration of a functional enthesis. However, the complex structural and cellular composition of the native interface makes enthesis tissue engineering particularly challenging. Thus, it is likely that a combination of biomaterials and cells stimulated with appropriate biochemical and mechanical cues will be needed. The objective of this review is to describe the current state-of-the-art, challenges and future directions in the field of enthesis tissue engineering focusing on four key parameters: (1) scaffold and biomaterials, (2) cells, (3) growth factors and (4) mechanical stimuli. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. The effect of seprafilm on adhesion formation and tendon healing after flexor tendon repair in chicken.

    PubMed

    Yilmaz, Erhan; Avci, Mustafa; Bulut, Mehmet; Kelestimur, Halidun; Karakurt, Lokman; Ozercan, Ibrahim

    2010-03-01

    Adhesion of the tendon, which can occur during healing of tendon repair, is negatively affected by the outcome of surgery. In this experimental study, we sought to prevent adhesion of the tendon, and determined the mechanical stiffness of repair tissue by wrapping sodium hyaluronate and carboxymethylcellulose (Seprafilm; Genzyme, Cambridge, Massachusetts) around the repaired tendon segments. The study group comprised 2 groups of 20 chickens. In group I, the right gastrocnemius tendons of the chickens were cut smoothly, and after tendon and sheath repair, the skin was sutured. In group II, the right gastrocnemius tendons of the chickens were cut, the tendons were repaired, and before skin closure, Seprafilm was wrapped around the repaired tendon segments. Plastic splints were used for holding the chickens' ankles in a neutral position, and they were allowed weight bearing for 8 weeks. In group II, anatomic space between the tendon-sheath and tendon was clear and the tendon-sheath complex was sliding easily around the repaired tendon segment, and this complex was more functional both biomechanically and histologically. Also, the Seprafilm-applied tendons (group II) were observed to be biomechanically more resistant to the tensile forces in group I. Seprafilm is an easily applied interpositional material that can be used safely to prevent adhesion during the tendon healing process. Copyright 2010, SLACK Incorporated.

  6. Minimally Invasive Posterior Hamstring Harvest

    PubMed Central

    Wilson, Trent J.; Lubowitz, James H.

    2013-01-01

    Autogenous hamstring harvesting for knee ligament reconstruction is a well-established standard. Minimally invasive posterior hamstring harvest is a simple, efficient, reproducible technique for harvest of the semitendinosus or gracilis tendon or both medial hamstring tendons. A 2- to 3-cm longitudinal incision from the popliteal crease proximally, in line with the semitendinosus tendon, is sufficient. The deep fascia is bluntly penetrated, and the tendon or tendons are identified. Adhesions are dissected. Then, an open tendon stripper is used to release the tendon or tendons proximally; a closed, sharp tendon stripper is used to release the tendon or tendons from the pes. Layered, absorbable skin closure is performed, and the skin is covered with a skin sealant, bolster dressing, and plastic adhesive bandage for 2 weeks. PMID:24266003

  7. Tendon biomechanics and mechanobiology - a mini-review of basic concepts and recent advancements

    PubMed Central

    Wang, James H-C.; Guo, Qianping; Li, Bin

    2011-01-01

    Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechano-responsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechano-adaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into non-tenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols in order to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma (PRP), which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. PMID:21925835

  8. Tendon biomechanics and mechanobiology--a minireview of basic concepts and recent advancements.

    PubMed

    Wang, James H-C; Guo, Qianping; Li, Bin

    2012-01-01

    Due to their unique hierarchical structure and composition, tendons possess characteristic biomechanical properties, including high mechanical strength and viscoelasticity, which enable them to carry and transmit mechanical loads (muscular forces) effectively. Tendons are also mechanoresponsive by adaptively changing their structure and function in response to altered mechanical loading conditions. In general, mechanical loading at physiological levels is beneficial to tendons, but excessive loading or disuse of tendons is detrimental. This mechanoadaptability is due to the cells present in tendons. Tendon fibroblasts (tenocytes) are the dominant tendon cells responsible for tendon homeostasis and repair. Tendon stem cells (TSCs), which were recently discovered, also play a vital role in tendon maintenance and repair by virtue of their ability to self-renew and differentiate into tenocytes. TSCs may also be responsible for chronic tendon injury, or tendinopathy, by undergoing aberrant differentiation into nontenocytes in response to excessive mechanical loading. Thus, it is necessary to devise optimal rehabilitation protocols to enhance tendon healing while reducing scar tissue formation and tendon adhesions. Moreover, along with scaffolds that can mimic tendon matrix environments and platelet-rich plasma, which serves as a source of growth factors, TSCs may be the optimal cell type for enhancing repair of injured tendons. Copyright © 2012 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  9. What We Should Know Before Using Tissue Engineering Techniques to Repair Injured Tendons: A Developmental Biology Perspective

    PubMed Central

    Liu, Chia-Feng; Aschbacher-Smith, Lindsey; Barthelery, Nicolas J.; Dyment, Nathaniel; Butler, David

    2011-01-01

    Tendons connect muscles to bones, and serve as the transmitters of force that allow all the movements of the body. Tenocytes are the basic cellular units of tendons, and produce the collagens that form the hierarchical fiber system of the tendon. Tendon injuries are common, and difficult to repair, particularly in the case of the insertion of tendon into bone. Successful attempts at cell-based repair therapies will require an understanding of the normal development of tendon tissues, including their differentiated regions such as the fibrous mid-section and fibrocartilaginous insertion site. Many genes are known to be involved in the formation of tendon. However, their functional roles in tendon development have not been fully characterized. Tissue engineers have attempted to generate functional tendon tissue in vitro. However, a lack of knowledge of normal tendon development has hampered these efforts. Here we review studies focusing on the developmental mechanisms of tendon development, and discuss the potential applications of a molecular understanding of tendon development to the treatment of tendon injuries. PMID:21314435

  10. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair

    PubMed Central

    Guerquin, Marie-Justine; Charvet, Benjamin; Nourissat, Geoffroy; Havis, Emmanuelle; Ronsin, Olivier; Bonnin, Marie-Ange; Ruggiu, Mathilde; Olivera-Martinez, Isabel; Robert, Nicolas; Lu, Yinhui; Kadler, Karl E.; Baumberger, Tristan; Doursounian, Levon; Berenbaum, Francis; Duprez, Delphine

    2013-01-01

    Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1–/– mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates. EGR1 was recruited to the Col1a1 and Col2a1 promoters in postnatal mouse tendons in vivo. Egr1 was required for the normal gene response following tendon injury in a mouse model of Achilles tendon healing. Forced Egr1 expression programmed MSCs toward the tendon lineage and promoted the formation of in vitro–engineered tendons from MSCs. The application of EGR1-producing MSCs increased the formation of tendon-like tissues in a rat model of Achilles tendon injury. We provide evidence that the ability of EGR1 to promote tendon differentiation is partially mediated by TGF-β2. This study demonstrates EGR1 involvement in adult tendon formation, healing, and repair and identifies Egr1 as a putative target in tendon repair strategies. PMID:23863709

  11. Is peroneal nerve injury associated with worse function after knee dislocation?

    PubMed

    Krych, Aaron J; Giuseffi, Steven A; Kuzma, Scott A; Stuart, Michael J; Levy, Bruce A

    2014-09-01

    Peroneal nerve palsy is a frequent and potentially disabling complication of multiligament knee dislocation, but little information exists on the degree to which patients recover motor or sensory function after this injury, and whether having this nerve injury--with or without complete recovery--is a predictor of inferior patient-reported outcome scores. The purposes of this study were to (1) report on motor and sensory recovery as well as patient-reported outcomes scores of patients with peroneal nerve injury from multiligament knee dislocation; (2) compare those endpoints between patients who had partial versus complete nerve injuries; and (3) compare patient-reported outcomes among patients who sustained peroneal nerve injuries after knee dislocation with a matched cohort of multiligament knee injuries without nerve injury. Thirty-two patients were identified, but five did not have 2-year followup and are excluded (16% lost to followup). Twenty-seven patients (24 male, three female) with peroneal nerve injury underwent multiligament knee reconstruction and were followed for 6.3 years (range, 2-18 years). Motor grades were assessed by examination and outcomes by International Knee Documentation Committee (IKDC) and Lysholm scores. Retrospectively, patients were divided into complete (n = 9) and partial nerve palsy (n = 18). Treatment for complete nerve palsy included an ankle-foot orthosis for all patients, nonoperative (one), neurolysis (two), tendon transfer (three), nerve transfer (one), and combined nerve/tendon transfer (one). Treatment for partial nerve palsy included nonoperative (12), neurolysis (four), nerve transfer (one), and combined nerve/tendon transfer (one). Furthermore, patients without nerve injury were matched by Schenck classification, age, and sex. Data were analyzed using univariate and multivariate models. Overall, 18 patients (69%) regained antigravity ankle dorsiflexion after treatment (three complete nerve palsy [38%] versus 15 partial nerve palsy [83%]; p = 0.06). One patient with complete nerve palsy (13%) and 13 patients with partial nerve palsy (72%) regained antigravity extensor hallucis longus strength (p = 0.01). IKDC and Lysholm scores were similar between complete nerve palsy and partial nerve palsy groups. After controlling for confounding variables such as patient age, body mass index, injury interval to surgery, mechanism of injury, bicruciate injury, and popliteal artery injury status, there was no difference between patients with peroneal nerve injury and those without on Lysholm or IKDC scores. With multiligament knee dislocation and associated peroneal nerve injury, patients with partial nerve injury are more likely to regain antigravity strength when compared with those with a complete nerve injury, but their overall function may not improve. After controlling for confounding variables in a multivariate model, there was no difference in Lysholm or IKDC scores between patients with peroneal nerve injury and those without. Level III, therapeutic study. See Guidelines for Authors for a complete description of levels of evidence.

  12. Surface Modification Counteracts Adverse Effects Associated with Immobilization after Flexor Tendon Repair

    PubMed Central

    Zhao, Chunfeng; Sun, Yu-Long; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2012-01-01

    SUMMARY Although post-rehabilitation is routinely performed following flexor tendon repair, in some clinical scenarios post-rehabilitation must be delayed. We investigated modification of the tendon surface using carbodiimide derivatized hyaluronic acid and lubricin (cd-HA-Lub) to maintain gliding function following flexor tendon repair with postoperative immobilization in a in vivo canine model. Flexor digitorum profundus tendons from the 2nd and 5th digits of one forepaw of six dogs were transected and repaired. One tendon in each paw was treated with cd-HA-Lub; the other repaired tendon was not treated. Following tendon repair, a forearm cast was applied to fully immobilize the operated forelimb for 10 days, after which the animals were euthanized. Digit normalized work of flexion (nWOF) and tendon gliding resistance were assessed. The nWOF of the FDP tendons treated with cd-HA-Lub was significantly lower than the nWOF of the untreated tendons (p < 0.01). The gliding resistance of cd-HA-Lub treated tendons was also significantly lower than that of the untreated tendons (p < 0.05). Surface treatment with cd-HA-Lub following flexor tendon repair provides an opportunity to improve outcomes for patients in whom the post-operative therapy must be delayed after flexor tendon repair. PMID:22714687

  13. Decorin expression is important for age-related changes in tendon structure and mechanical properties

    PubMed Central

    Dunkman, Andrew A.; Buckley, Mark R.; Mienaltowski, Michael J.; Adams, Sheila M.; Thomas, Stephen J.; Satchell, Lauren; Kumar, Akash; Pathmanathan, Lydia; Beason, David P.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2013-01-01

    The aging population is at an increased risk of tendon injury and tendinopathy. Elucidating the molecular basis of tendon aging is crucial to understanding the age-related changes in structure and function in this vulnerable tissue. In this study, the structural and functional features of tendon aging are investigated. In addition, the roles of decorin and biglycan in the aging process were analyzed using transgenic mice at both mature and aged time points. Our hypothesis is that the increase in tendon injuries in the aging population is the result of altered structural properties that reduce the biomechanical function of the tendon and consequently increase susceptibility to injury. Decorin and biglycan are important regulators of tendon structure and therefore, we further hypothesized that decreased function in aged tendons is partly the result of altered decorin and biglycan expression. Biomechanical analyses of mature (day 150) and aged (day 570) patellar tendons revealed deteriorating viscoelastic properties with age. Histology and polarized light microscopy demonstrated decreased cellularity, alterations in tenocyte shape, and reduced collagen fiber alignment in the aged tendons. Ultrastructural analysis of fibril diameter distributions indicated an altered distribution in aged tendons with an increase of large diameter fibrils. Aged wild type tendons maintained expression of decorin which was associated with the structural and functional changes seen in aged tendons. Aged patellar tendons exhibited altered and generally inferior properties across multiple assays. However, decorin-null tendons exhibited significantly decreased effects of aging compared to the other genotypes. The amelioration of the functional deficits seen in the absence of decorin in aged tendons was associated with altered tendon fibril structure. Fibril diameter distributions in the decorin-null aged tendons were comparable to those observed in the mature wild type tendon with the absence of the subpopulation containing large diameter fibrils. Collectively, our findings provide evidence for age-dependent alterations in tendon architecture and functional activity, and further show that lack of stromal decorin attenuates these changes. PMID:23178232

  14. Biologics for tendon repair☆

    PubMed Central

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  15. Investigating tendon mineralisation in the avian hindlimb: a model for tendon ageing, injury and disease

    PubMed Central

    Agabalyan, Natacha A; Evans, Darrell J R; Stanley, Rachael L

    2013-01-01

    Mineralisation of the tendon tissue has been described in various models of injury, ageing and disease. Often resulting in painful and debilitating conditions, the processes underlying this mechanism are poorly understood. To elucidate the progression from healthy tendon to mineralised tendon, an appropriate model is required. In this study, we describe the spontaneous and non-pathological ossification and calcification of tendons of the hindlimb of the domestic chicken (Gallus gallus domesticus). The appearance of the ossified avian tendon has been described previously, although there have been no studies investigating the developmental processes and underlying mechanisms leading to the ossified avian tendon. The tissue and cells from three tendons – the ossifying extensor and flexor digitorum longus tendons and the non-ossifying Achilles tendon – were analysed for markers of ageing and mineralisation using histology, immunohistochemistry, cytochemistry and molecular analysis. Histologically, the adult tissue showed a loss of healthy tendon crimp morphology as well as markers of calcium deposits and mineralisation. The tissue showed a lowered expression of collagens inherent to the tendon extracellular matrix and presented proteins expressed by bone. The cells from the ossified tendons showed a chondrogenic and osteogenic phenotype as well as tenogenic phenotype and expressed the same markers of ossification and calcification as the tissue. A molecular analysis of the gene expression of the cells confirmed these results. Tendon ossification within the ossified avian tendon seems to be the result of an endochondral process driven by its cells, although the roles of the different cell populations have yet to be elucidated. Understanding the role of the tenocyte within this tissue and the process behind tendon ossification may help us prevent or treat ossification that occurs in injured, ageing or diseased tendon. PMID:23826786

  16. Effects of celecoxib on proliferation and tenocytic differentiation of tendon-derived stem cells

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Kairui; Zhang, Sheng; Li, Qianqian

    Highlights: • Celecoxib has no effects on TDSCs cell proliferation in various concentrations. • Celecoxib reduced mRNAs levels of tendon associated transcription factor. • Celecoxib reduced mRNAs levels of main tendon associated collagen. • Celecoxib reduced mRNAs levels of tendon associated molecules. - Abstract: NSAIDs are often ingested to reduce the pain and improve regeneration of tendon after tendon injury. Although the effects of NSAIDs in tendon healing have been reported, the data and conclusions are not consistent. Recently, tendon-derived stem cells (TDSCs) have been isolated from tendon tissues and has been suggested involved in tendon repair. Our study aimsmore » to determine the effects of COX-2 inhibitor (celecoxib) on the proliferation and tenocytic differentiation of TDSCs. TDSCs were isolated from mice Achilles tendon and exposed to celecoxib. Cell proliferation rate was investigated at various concentrations (0.1, 1, 10 and 100 μg/ml) of celecoxib by using hemocytometer. The mRNA expression of tendon associated transcription factors, tendon associated collagens and tendon associated molecules were determined by reverse transcription-polymerase chain reaction. The protein expression of Collagen I, Collagen III, Scleraxis and Tenomodulin were determined by Western blotting. The results showed that celecoxib has no effects on TDSCs cell proliferation in various concentrations (p > 0.05). The levels of most tendon associated transcription factors, tendon associated collagens and tendon associated molecules genes expression were significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). Collagen I, Collagen III, Scleraxis and Tenomodulin protein expression were also significantly decreased in celecoxib (10 μg/ml) treated group (p < 0.05). In conclusion, celecoxib inhibits tenocytic differentiation of tendon-derived stem cells but has no effects on cell proliferation.« less

  17. Fos Promotes Early Stage Teno-Lineage Differentiation of Tendon Stem/Progenitor Cells in Tendon.

    PubMed

    Chen, Jialin; Zhang, Erchen; Zhang, Wei; Liu, Zeyu; Lu, Ping; Zhu, Ting; Yin, Zi; Backman, Ludvig J; Liu, Huanhuan; Chen, Xiao; Ouyang, Hongwei

    2017-11-01

    Stem cells have been widely used in tendon tissue engineering. The lack of refined and controlled differentiation strategy hampers the tendon repair and regeneration. This study aimed to find new effective differentiation factors for stepwise tenogenic differentiation. By microarray screening, the transcript factor Fos was found to be expressed in significantly higher amounts in postnatal Achilles tendon tissue derived from 1 day as compared with 7-days-old rats. It was further confirmed that expression of Fos decreased with time in postnatal rat Achilles tendon, which was accompanied with the decreased expression of multiply tendon markers. The expression of Fos also declined during regular in vitro cell culture, which corresponded to the loss of tendon phenotype. In a cell-sheet and a three-dimensional cell culture model, the expression of Fos was upregulated as compared with in regular cell culture, together with the recovery of tendon phenotype. In addition, significant higher expression of tendon markers was found in Fos-overexpressed tendon stem/progenitor cells (TSPCs), and Fos knock-down gave opposite results. In situ rat tendon repair experiments found more normal tendon-like tissue formed and higher tendon markers expression at 4 weeks postimplantation of Fos-overexpressed TSPCs derived nonscaffold engineering tendon (cell-sheet), as compared with the control group. This study identifies Fos as a new marker and functional driver in the early stage teno-lineage differentiation of tendon, which paves the way for effective stepwise tendon differentiation and future tendon regeneration. Stem Cells Translational Medicine 2017;6:2009-2019. © 2017 The Authors Stem Cells Translational Medicine published by Wiley Periodicals, Inc. on behalf of AlphaMed Press.

  18. Hamstring tendon versus patellar tendon anterior cruciate ligament reconstruction using biodegradable interference fit fixation: a prospective matched-group analysis.

    PubMed

    Wagner, Michael; Kääb, Max J; Schallock, Jessica; Haas, Norbert P; Weiler, Andreas

    2005-09-01

    There are still controversies about graft selection for primary anterior cruciate ligament reconstruction, especially with respect to knee stability and functional outcome. Biodegradable interference screw fixation of hamstring tendon grafts provides clinical results similar to those achieved with identical fixation of bone-patellar tendon-bone grafts. Cohort study; Level of evidence, 2. In 1996 and 1997, primary isolated anterior cruciate ligament reconstruction using a bone-patellar tendon-bone autograft was performed in 72 patients. Since 1998, hamstring tendons were used as routine grafts. Matched patients with a hamstring tendon graft were selected from a database (n = 284). All patients were followed prospectively for a minimum of 2 years with KT-1000 arthrometer testing, International Knee Documentation Committee score, and Lysholm score. In the bone-patellar tendon-bone group, 9 patients were excluded because of bilateral rupture of the anterior cruciate ligament, 3 patients (4.2%) had a graft rupture, and 4 patients were lost to follow-up (follow-up rate, 92.1%), leaving 56 patients for a matched-group analysis. In the hamstring tendon database, the graft rupture rate was 5.6% (P = .698). The Lysholm score was 89.7 in the patellar tendon group and 94 in the hamstring tendon group (P = .003). The KT-1000 arthrometer side-to-side difference was 2.6 mm for the patellar tendon group and 2.1 mm for the hamstring tendon group (P = .041). There were significantly less positive pivot-shift test results in the hamstring tendon group (P = .005), and hamstring tendon patients showed lower thigh atrophy (P = .024) and patellofemoral crepitus (P = .003). Overall International Knee Documentation Committee scores were better (P = .001) in the hamstring tendon group (hamstring tendon: 34 x A, 21 x B, 0 x C, 0 x D; bone-patellar tendon-bone: 17 x A, 32 x B, 6 x C, 0 x D). In this comparison of anterior cruciate ligament reconstruction with bone-patellar tendon-bone and anatomical hamstring tendon grafts, the hamstring tendon graft was superior in knee stability and function. These findings are partially contrary to previous studies and might be attributable to the use of an anatomical joint line fixation for hamstring tendon grafts. Thus, hamstring tendons are the authors' primary graft choice for anterior cruciate ligament reconstruction, even in high-level athletes.

  19. Angiopoietin‐like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts

    PubMed Central

    Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G

    2016-01-01

    Key points Angiopoietin‐like 4 (ANGPTL4) modulates tendon neovascularization.Cyclic loading stimulates the activity of transforming growth factor‐β and hypoxia‐inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells.Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. Abstract The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin‐like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor‐β (TGF‐β) and hypoxia‐inducible factor 1α (HIF‐1α) signalling, and the released ANGPTL4 was pro‐angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF‐β and HIF‐1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. PMID:26670924

  20. Fascicles and the interfascicular matrix show decreased fatigue life with ageing in energy storing tendons.

    PubMed

    Thorpe, Chavaunne T; Riley, Graham P; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2017-07-01

    Tendon is composed of rope-like fascicles bound together by interfascicular matrix (IFM). The IFM is critical for the function of energy storing tendons, facilitating sliding between fascicles to allow these tendons to cyclically stretch and recoil. This capacity is required to a lesser degree in positional tendons. We have previously demonstrated that both fascicles and IFM in energy storing tendons have superior fatigue resistance compared with positional tendons, but the effect of ageing on the fatigue properties of these different tendon subunits has not been determined. Energy storing tendons become more injury-prone with ageing, indicating reduced fatigue resistance, hence we tested the hypothesis that the decline in fatigue life with ageing in energy storing tendons would be more pronounced in the IFM than in fascicles. We further hypothesised that tendon subunit fatigue resistance would not alter with ageing in positional tendons. Fascicles and IFM from young and old energy storing and positional tendons were subjected to cyclic fatigue testing until failure, and mechanical properties were calculated. The results show that both IFM and fascicles from the SDFT exhibit a similar magnitude of reduced fatigue life with ageing. By contrast, the fatigue life of positional tendon subunits was unaffected by ageing. The age-related decline in fatigue life of tendon subunits in energy storing tendons is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms resulting in this reduced fatigue life will aid in the development of treatments and interventions to prevent age-related tendinopathy. Understanding the effect of ageing on tendon-structure function relationships is crucial for the development of effective preventative measures and treatments for age-related tendon injury. In this study, we demonstrate for the first time that the fatigue resistance of the interfascicular matrix decreases with ageing in energy storing tendons. This is likely to contribute to the increased risk of injury in aged tendons. Full understanding of the mechanisms that result in this reduced fatigue resistance will aid in the development of treatments and interventions to prevent age-related tendinopathy. Copyright © 2017. Published by Elsevier Ltd.

  1. Biomechanical consequences of subtalar joint arthroereisis in treating posterior tibial tendon dysfunction: a theoretical analysis using finite element analysis.

    PubMed

    Wong, Duo Wai-Chi; Wang, Yan; Chen, Tony Lin-Wei; Leung, Aaron Kam-Lun; Zhang, Ming

    2017-11-01

    Subtalar joint arthroereisis (SJA) has been introduced to control the hyperpronation in cases of flatfoot. The objective of this study is to evaluate the biomechanical consequence of SJA to restore the internal stress and load transfer to the intact state from the attenuated biomechanical condition induced by posterior tibial tendon dysfunction (PTTD). A three-dimensional finite element model of the foot and ankle complex was constructed based on clinical images of a healthy female (age 28 years, height 165 cm, body mass 54 kg). The boundary and loading condition during walking was acquired from the gait experiment of the model subject. Five sets of simulations (conditions) were completed: intact condition, mild PTTD, severe PTTD, mild PTTD with SJA, severe PTTD with SJA. The maximum von Mises stress of the metatarsal shafts and the load transfer along the midfoot during stance were analyzed. Generally, SJA deteriorated the joint force of the medial cuneonavicular and calcaneocuboid joints during late stance, while that of the metatarsocuneiform joints during early stance were over-corrected. Only the calcaneocuboid joint force at 45% stance demonstrated a trend of improvement. Besides, SJA exaggerated the increased stress of the metatarsals compared to the PTTD conditions, except that of the first metatarsal. Our study did not support the hypothesis that SJA can restore the internal load transfer and midfoot stress. SJA cannot compensate the salvage of midfoot stability attributed by PTTD and could be biomechanically insufficient to restore the biomechanical environment. Additional procedures such as orthotic intervention may be necessary.

  2. Treatment of chronic Achilles tendon rupture by shortening suture and free sural triceps aponeurosis graft.

    PubMed

    Khiami, F; Di Schino, M; Sariali, E; Cao, D; Rolland, E; Catonné, Y

    2013-09-01

    The Bosworth technique is old but still widely used. It involves problems of precisely determining the length of the Achilles tendon and of a volume effect in the turndown area. A new reconstruction technique is assessed, based on free sural triceps aponeurosis transfer without turndown, associated to tendon shortening suture. Twenty-three patients were assessed by AOFAS score and clinical examination (plus MRI in 14 cases) at a mean 24.5 months' follow-up. Mean age was 52.1 years. Mean pre-operative AOFAS score was 63.6/100. Mean postoperative AOFAS score was 96.1. Mean graft length was 7.5 cm. Surgical revision was required for one case of postoperative infection. Twelve patients resumed leisure sports at their previous level by a mean 9.4 ± 2 months; three competitive sportsmen resumed sport at their previous level by a mean 7.6 months. None were dissatisfied or disappointed with their operation. MRI performed at 1 year found increased tendon volume without abnormality in 57% of cases; 43% showed abnormal images. Functional results were comparable to literature reports. It can be difficult to determine Achilles length for the Bosworth technique: this is made easier by conserving a fibrous support of a length determined with reference to the healthy side. The technique avoids aponeurosis turndown, and thus avoids the problem of plasty volume effect. The two cases of cutaneous complication occurred in the two most elderly patients, raising the question of the indications for reconstructive surgery in the elderly. The abnormalities found on MRI concerned scar tissue remodeling in patients with good or excellent clinical results. Level IV, retrospective study. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  3. Mechanical Energy and Propulsion in Ergometer Double Poling by Cross-country Skiers.

    PubMed

    Danielsen, Jørgen; Sandbakk, Øyvind; Holmberg, Hans-Christer; Ettema, Gertjan

    2015-12-01

    This study aims to investigate fluctuations in total mechanical energy of the body (Ebody) in relation to external ergometer work (Werg) during the poling and recovery phases of simulated double-poling cross-country skiing. Nine male cross-country skiers (mean ± SD age, 24 ± 5 yr; mean ± SD body mass, 81.7 ± 6.5 kg) performed 4-min submaximal tests at low-intensity, moderate-intensity, and high-intensity levels and a 3-min all-out test on a ski ergometer. Motion capture analysis and load cell recordings were used to measure body kinematics and dynamics. From these, Werg, Ebody (sum of the translational, rotational, and gravitational potential energies of all segments), and their time differentials (power P) were calculated. Ptot--the rate of energy absorption or generation by muscles-tendons--was defined as the sum of Pbody and Perg. Ebody showed large fluctuations over the movement cycle, decreasing during poling and increasing during the recovery phase. The fluctuation in Pbody was almost perfectly out of phase with Perg. Some muscle-tendon energy absorption was observed at the onset of poling. For the rest of poling and throughout the recovery phase, muscles-tendons generated energy to do Werg and to increase Ebody. Approximately 50% of cycle Ptot occurred during recovery for all intensity levels. In double poling, the extensive contribution of the lower extremities and trunk to whole-body muscle-tendon work during recovery facilitates a "direct" transfer of Ebody to Werg during the poling phase. This observation reveals that double poling involves a unique movement pattern different from most other forms of legged terrestrial locomotion, which are characterized primarily by inverted pendulum or spring-mass types of movement.

  4. Tendon injuries

    PubMed Central

    Wu, Fan; Nerlich, Michael; Docheva, Denitsa

    2017-01-01

    Tendons connect muscles to bones, ensuring joint movement. With advanced age, tendons become more prone to degeneration followed by injuries. Tendon repair often requires lengthy periods of rehabilitation, especially in elderly patients. Existing medical and surgical treatments often fail to regain full tendon function. The development of novel treatment methods has been hampered due to limited understanding of basic tendon biology. Recently, it was discovered that tendons, similar to other mesenchymal tissues, contain tendon stem/progenitor cells (TSPCs) which possess the common stem cell properties. The current strategies for enhancing tendon repair consist mainly of applying stem cells, growth factors, natural and artificial biomaterials alone or in combination. In this review, we summarise the basic biology of tendon tissues and provide an update on the latest repair proposals for tendon tears. Cite this article: EFORT Open Rev 2017;2:332-342. DOI: 10.1302/2058-5241.2.160075 PMID:28828182

  5. Tendon injuries of the hand

    PubMed Central

    Schöffl, Volker; Heid, Andreas; Küpper, Thomas

    2012-01-01

    Tendon injuries are the second most common injuries of the hand and therefore an important topic in trauma and orthopedic patients. Most injuries are open injuries to the flexor or extensor tendons, but less frequent injuries, e.g., damage to the functional system tendon sheath and pulley or dull avulsions, also need to be considered. After clinical examination, ultrasound and magnetic resonance imaging have proved to be important diagnostic tools. Tendon injuries mostly require surgical repair, dull avulsions of the distal phalanges extensor tendon can receive conservative therapy. Injuries of the flexor tendon sheath or single pulley injuries are treated conservatively and multiple pulley injuries receive surgical repair. In the postoperative course of flexor tendon injuries, the principle of early passive movement is important to trigger an “intrinsic” tendon healing to guarantee a good outcome. Many substances were evaluated to see if they improved tendon healing; however, little evidence was found. Nevertheless, hyaluronic acid may improve intrinsic tendon healing. PMID:22720265

  6. Microsurgical transfer of the second toe for congenital deficiency of the thumb.

    PubMed

    Lister, G

    1988-10-01

    Twelve second-toe transfers have been performed to substitute for thumbs congenitally deficient through constriction ring syndrome, symbrachydactyly, and true transverse arrest. The children were on average 3 years of age, and the youngest was undertaken at 10 months. Anatomic variations were the rule in the six cases of transverse absence and the three cases of symbrachydactyly, requiring nerves, tendons, and vessels in the toe be connected to whatever appropriate structure could be located. All transfers survived, and only one required exploration. Sensation appeared good in the 11 seen in later review, but interphalangeal motion was achieved in only 3. However, good use was made of the digit by all except one patient, an early patient in whom there was not an adequate skeleton on which to base the transfer. This small series suggests that in appropriate cases toe transfer can be undertaken early for congenital deficiency with little fear of encountering microsurgical problems unique to the infant.

  7. Evolution of the Achilles tendon: The athlete's Achilles heel?

    PubMed

    Malvankar, S; Khan, W S

    2011-12-01

    The Achilles tendon is believed to have first developed two million years ago enabling humans to run twice as fast. However if the Achilles tendon is so important in terms of evolution, then why is this tendon so prone to injury - especially for those more active like athletes. The Achilles tendon had an integral role in evolving apes from a herbivorous diet to early humans who started hunting for food over longer distances, resulting in bipedal locomotion. Evolutionary advantages of the Achilles tendon includes it being the strongest tendon in the body, having an energy-saving mechanism for fast locomotion, allows humans to jump and run, and additionally is a spring and shock absorber during gait. Considering these benefits it is therefore not surprising that studies have shown athletes have thicker Achilles tendons than subjects who are less active. However, contradictory to these findings that show the importance of the Achilles tendon for athletes, it is well known that obtaining an Achilles tendon injury for an athlete can be career-altering. A disadvantage of the Achilles tendon is that the aetiology of its pathology is complicated. Achilles tendon ruptures are believed to be caused by overloading the tensed tendon, like during sports. However studies have also shown athlete Achilles tendon ruptures to have degenerative changes in the tendon. Other flaws of the Achilles tendon are its non-uniform vascularity and incomplete repair system which may suggest the Achilles tendon is on the edge of evolution. Research has shown that there is a genetic influence on the predisposition a person has towards Achilles tendon injuries. So if this tendon is here to stay in our anatomy, and it probably is due to the slow rate of evolution in humans, research in genetic modification could be used to decrease athletes' predisposition to Achilles tendinopathy. Copyright © 2011 Elsevier Ltd. All rights reserved.

  8. It's positive to be negative: Achilles tendon work loops during human locomotion.

    PubMed

    Zelik, Karl E; Franz, Jason R

    2017-01-01

    Ultrasound imaging is increasingly used with motion and force data to quantify tendon dynamics during human movement. Frequently, tendon dynamics are estimated indirectly from muscle fascicle kinematics (by subtracting muscle from muscle-tendon unit length), but there is mounting evidence that this Indirect approach yields implausible tendon work loops. Since tendons are passive viscoelastic structures, when they undergo a loading-unloading cycle they must exhibit a negative work loop (i.e., perform net negative work). However, prior studies using this Indirect approach report large positive work loops, often estimating that tendons return 2-5 J of elastic energy for every 1 J of energy stored. More direct ultrasound estimates of tendon kinematics have emerged that quantify tendon elongations by tracking either the muscle-tendon junction or localized tendon tissue. However, it is unclear if these yield more plausible estimates of tendon dynamics. Our objective was to compute tendon work loops and hysteresis losses using these two Direct tendon kinematics estimates during human walking. We found that Direct estimates generally resulted in negative work loops, with average tendon hysteresis losses of 2-11% at 1.25 m/s and 33-49% at 0.75 m/s (N = 8), alluding to 0.51-0.98 J of tendon energy returned for every 1 J stored. We interpret this finding to suggest that Direct approaches provide more plausible estimates than the Indirect approach, and may be preferable for understanding tendon energy storage and return. However, the Direct approaches did exhibit speed-dependent trends that are not consistent with isolated, in vitro tendon hysteresis losses of about 5-10%. These trends suggest that Direct estimates also contain some level of error, albeit much smaller than Indirect estimates. Overall, this study serves to highlight the complexity and difficulty of estimating tendon dynamics non-invasively, and the care that must be taken to interpret biological function from current ultrasound-based estimates.

  9. Semitendinosus Tendon Transfer Associated With Distal Alignment for Patella Alta in a Patient With Recurrent Dislocations.

    PubMed

    Calderazzi, Filippo; Pellegrini, Andrea; Coviello, Gianluca; Groppi, Giulia; Ceccarelli, Francesco

    2015-10-01

    Patellofemoral instability is characterized by pain during normal daily activities and frequent dislocation events. In the reported case, an adolescent girl, aged 15 years, affected by left patellofemoral instability, underwent surgery with a double technique comprising tibial tubercle distalization and medial patellofemoral ligament reconstruction. In case of patella alta associated with patellofemoral instability, surgical treatment should focus on medial patellofemoral ligament repair and on recurrent instability prevention.

  10. Abductor pollicis longus: a case of mistaken identity.

    PubMed

    Elliott, B G

    1992-08-01

    Abductor pollicis longus, long regarded as a motor for the thumb, is anatomically and functionally a radial deviator of the wrist and should be so named. The abductor carpi is proposed. If the other radial deviators of the wrist are acting this tendon can be selectively utilized as a transfer without loss of function. Reflex spasm of this muscle probably plays an important role in the radial deviation deformity seen in the rheumatoid hand.

  11. Tendon Mineralization Is Progressive and Associated with Deterioration of Tendon Biomechanical Properties, and Requires BMP-Smad Signaling in the Mouse Achilles Tendon Injury Model

    PubMed Central

    Zhang, Kairui; Asai, Shuji; Hast, Michael W.; Liu, Min; Usami, Yu; Iwamoto, Masahiro; Soslowsky, Louis J.; Enomoto-Iwamoto, Motomi

    2016-01-01

    Ectopic tendon mineralization can develop following tendon rupture or trauma surgery. The pathogenesis of ectopic tendon mineralization and its clinical impact have not been fully elucidated yet. In this study, we utilized a mouse Achilles tendon injury model to determine whether ectopic tendon mineralization alters the biomechanical properties of the tendon and whether BMP signaling is involved in this condition. A complete transverse incision was made at the midpoint of the right Achilles tendon in 8-week-old CD1 mice and the gap was left open. Ectopic cartilaginous mass formation was found in the injured tendon by 4 weeks post-surgery and ectopic mineralization was detected at 8–10 weeks post-surgery. Ectopic mineralization grew over time and volume of the mineralized materials of 25-weeks samples was about 2.5 fold bigger than that of 10-weeks samples, indicating that injury-induced ectopic tendon mineralization is progressive. In vitro mechanical testing showed that max force, max stress and mid-substance modulus in the 25-weeks samples were significantly lower than the 10-weeks samples. We observed substantial increases in expression of bone morphogenetic protein family genes in injured tendons 1 week post-surgery. Immunohistochemical analysis showed that phosphorylation of both Smad1 and Smad3 were highly increased in injured tendons as early as 1 week post-injury and remained high in ectopic chondrogenic lesions 4 weeks post-injury. Treatment with the BMP receptor kinase inhibitor (LDN193189) significantly inhibited injury-induced tendon mineralization. These findings indicate that injury-induced ectopic tendon mineralization is progressive, involves BMP signaling and associated with deterioration of tendon biomechanical properties. PMID:26825318

  12. Angiopoietin-like 4 promotes angiogenesis in the tendon and is increased in cyclically loaded tendon fibroblasts.

    PubMed

    Mousavizadeh, Rouhollah; Scott, Alex; Lu, Alex; Ardekani, Gholamreza S; Behzad, Hayedeh; Lundgreen, Kirsten; Ghaffari, Mazyar; McCormack, Robert G; Duronio, Vincent

    2016-06-01

    Angiopoietin-like 4 (ANGPTL4) modulates tendon neovascularization. Cyclic loading stimulates the activity of transforming growth factor-β and hypoxia-inducible factor 1α and thereby increases the expression and release of ANGPTL4 from human tendon cells. Targeting ANGPTL4 and its regulatory pathways is a potential avenue for regulating tendon vascularization to improve tendon healing or adaptation. The mechanisms that regulate angiogenic activity in injured or mechanically loaded tendons are poorly understood. The present study examined the potential role of angiopoietin-like 4 (ANGPTL4) in the angiogenic response of tendons subjected to repetitive mechanical loading or injury. Cyclic stretching of human tendon fibroblasts stimulated the expression and release of ANGPTL4 protein via transforming growth factor-β (TGF-β) and hypoxia-inducible factor 1α (HIF-1α) signalling, and the released ANGPTL4 was pro-angiogenic. Angiogenic activity was increased following ANGPTL4 injection into mouse patellar tendons, whereas the patellar tendons of ANGPTL4 knockout mice displayed reduced angiogenesis following injury. In human rotator cuff tendons, the expression of ANGPTL4 was correlated with the density of tendon endothelial cells. To our knowledge, this is the first study characterizing a role of ANGPTL4 in the tendon. ANGPTL4 may assist in the regulation of vascularity in the injured or mechanically loaded tendon. TGF-β and HIF-1α comprise two signalling pathways that modulate the expression of ANGPTL4 by mechanically stimulated tendon fibroblasts and, in the future, these could be manipulated to influence tendon healing or adaptation. © 2015 The Authors. The Journal of Physiology © 2015 The Physiological Society.

  13. Tendon allograft sterilized by peracetic acid/ethanol combined with gamma irradiation.

    PubMed

    Zhou, Mo; Zhang, Naili; Liu, Xiaoming; Li, Youchen; Zhang, Yumin; Wang, Xusheng; Li, Baoming; Li, Baoxing

    2014-07-01

    Research and clinical applications have demonstrated that the effects of tendon allografts are comparable to those of autografts when reconstructing injured tendons or ligaments, but allograft safety remains problematic. Sterilisation could eliminate or decrease the possibility of disease transmission, but current methods seldom achieve satisfactory sterilisation without affecting the mechanical properties of the tendon. Peracetic acid-ethanol in combination with low-dose gamma irradiation (PE-R) would inactivate potential deleterious microorganisms without affecting mechanical and biocompatible properties of tendon allograft. Controlled laboratory design. HIV, PPV, PRV and BVDV inactivation was evaluated. After verifying viral inactivation, the treated tendon allografts were characterised by optical microscopy, scanning electron microscopy and tensile testing, and the cytocompatibility was assessed with an MTT assay and by subcutaneous implantation. Effective and efficient inactivation of HIV, PPV, PRV and BVDV was observed. Histological structure and ultrastructure were unchanged in the treated tendon allograft, which also exhibited comparable biomechanical properties and good biocompatibility. The preliminary results confirmed our hypothesis and demonstrated that the PE-R tendon allograft has significant potential as an alternative to ligament/tendon reconstruction. Tendon allografts have been extensively used in ligament reconstruction and tendon repair. However, current sterilisation methods have various shortcomings, so PE-R has been proposed. This study suggests that PE-R tendon allograft has great potential as an alternative for ligament/tendon reconstruction. Sterilisation has been a great concern for tendon allografts. However, most sterilisation methods cannot inactivate viruses and bacteria without impairing the mechanical properties of the tendon allograft. Peracetic acid/ethanol with gamma irradiation can effectively inactivate viruses and bacteria. Meanwhile, tendon allografts sterilised by this method maintain their physiological tendon structure, biomechanical integrity and good compatibility.

  14. Structure-function relationships in tendons: a review

    PubMed Central

    Benjamin, M; Kaiser, E; Milz, S

    2008-01-01

    The purpose of the current review is to highlight the structure-function relationship of tendons and related structures to provide an overview for readers whose interest in tendons needs to be underpinned by anatomy. Because of the availability of several recent reviews on tendon development and entheses, the focus of the current work is primarily directed towards what can best be described as the ‘tendon proper’ or the ‘mid-substance’ of tendons. The review covers all levels of tendon structure from the molecular to the gross and deals both with the extracellular matrix and with tendon cells. The latter are often called ‘tenocytes’ and are increasingly recognized as a defined cell population that is functionally and phenotypically distinct from other fibroblast-like cells. This is illustrated by their response to different types of mechanical stress. However, it is not only tendon cells, but tendons as a whole that exhibit distinct structure-function relationships geared to the changing mechanical stresses to which they are subject. This aspect of tendon biology is considered in some detail. Attention is briefly directed to the blood and nerve supply of tendons, for this is an important issue that relates to the intrinsic healing capacity of tendons. Structures closely related to tendons (joint capsules, tendon sheaths, pulleys, retinacula, fat pads and bursae) are also covered and the concept of a ‘supertendon’ is introduced to describe a collection of tendons in which the function of the whole complex exceeds that of its individual members. Finally, attention is drawn to the important relationship between tendons and fascia, highlighted by Wood Jones in his concept of an ‘ectoskeleton’ over half a century ago – work that is often forgotten today. PMID:18304204

  15. Conditioning of the Achilles tendon via ankle exercise improves correlations between sonographic measures of tendon thickness and body anthropometry.

    PubMed

    Wearing, Scott C; Grigg, Nicole L; Hooper, Sue L; Smeathers, James E

    2011-05-01

    Although conditioning is routinely used in mechanical tests of tendon in vitro, previous in vivo research evaluating the influence of body anthropometry on Achilles tendon thickness has not considered its potential effects on tendon structure. This study evaluated the relationship between Achilles tendon thickness and body anthropometry in healthy adults both before and after resistive ankle plantarflexion exercise. A convenience sample of 30 healthy male adults underwent sonographic examination of the Achilles tendon in addition to standard anthropometric measures of stature and body weight. A 10-5 MHz linear array transducer was used to acquire longitudinal sonograms of the Achilles tendon, 20 mm proximal to the tendon insertion. Participants then completed a series (90-100 repetitions) of conditioning exercises against an effective resistance between 100% and 150% body weight. Longitudinal sonograms were repeated immediately on completion of the exercise intervention, and anteroposterior Achilles tendon thickness was determined. Achilles tendon thickness was significantly reduced immediately following conditioning exercise (t = 9.71, P < 0.001), resulting in an average transverse strain of -18.8%. In contrast to preexercise measures, Achilles tendon thickness was significantly correlated with body weight (r = 0.72, P < 0.001) and to a lesser extent height (r = 0.45, P = 0.01) and body mass index (r = 0.63, P < 0.001) after exercise. Conditioning of the Achilles tendon via resistive ankle exercises induces alterations in tendon structure that substantially improve correlations between Achilles tendon thickness and body anthropometry. It is recommended that conditioning exercises, which standardize the load history of tendon, are employed before measurements of sonographic tendon thickness in vivo.

  16. A wrist tendon travel assessment of hand movements associated with industrial repetitive activities.

    PubMed

    Ugbolue, U Chris; Nicol, Alexander C

    2012-01-01

    To investigate slow and fast paced industrial activity hand repetitive movements associated with carpal tunnel syndrome where movements are evaluated based on finger and wrist tendon travel measurements. Nine healthy subjects were recruited for the study aged between 23 and 33 years. Participants mimicked an industrial repetitive task by performing the following activities: wrist flexion and extension task, palm open and close task; and pinch task. Each task was performed for a period of 5 minutes at a slow (0.33 Hz) and fast (1 Hz) pace for a duration of 3 minutes and 2 minutes respectively. Tendon displacement produced higher flexor digitorum superficialis (FDS) tendon travel when compared to the flexor digitorum profundus (FDP) tendons. The left hand mean (SD) tendon travel for the FDS tendon and FDP tendon were 11108 (5188) mm and 9244 (4328) mm while the right hand mean tendon travel (SD) for the FDS tendon and FDP tendon were 9225 (3441) mm and 7670 (2856) mm respectively. Of the three tasks mimicking an industrial repetitive activity, the wrist flexion and extension task produced the most tendon travel. The findings may be useful to researchers in classifying the level of strenuous activity in relation to tendon travel.

  17. Achilles tendon: US examination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fornage, B.D.

    Real-time ultrasonography (US) using linear-array probes and a stand-off pad as a ''waterpath'' was performed to evaluate the Achilles tendon in 67 patients (including 24 athletes) believed to have acute or chronic traumatic or inflammatory pathologic conditions. Tendons in 23 patients appeared normal on US scans. The 44 abnormal tendons comprised five complete and four partial ruptures, seven instances of postoperative change, and 28 cases of tendonitis. US depiction of the inner structure of the tendon resulted in the diagnosis of focal abnormalities, including partial ruptures, nodules, and calcifications. Tendonitis was characterized by enlargement and decreased echogenicity of the tendon.more » The normal US appearance of the Achilles tendon is described.« less

  18. Doppler ultrasonography of the anterior knee tendons in elite badminton players: colour fraction before and after match.

    PubMed

    Koenig, M J; Torp-Pedersen, S; Boesen, M I; Holm, C C; Bliddal, H

    2010-02-01

    Anterior knee tendon problems are seldom reported in badminton players although the game is obviously stressful to the lower extremities. Painful anterior knee tendons are common among elite badminton players. The anterior knee tendons exhibit colour Doppler activity. This activity increases after a match. Painful tendons have more Doppler activity than tendons without pain. Cohort study. 72 elite badminton players were interviewed about training, pain and injuries. The participants were scanned with high-end ultrasound equipment. Colour Doppler was used to examine the tendons of 64 players before a match and 46 players after a match. Intratendinous colour Doppler flow was measured as colour fraction (CF). The tendon complex was divided into three loci: the quadriceps tendon, the proximal patellar tendon and the insertion on the tibial tuberosity. Interview: Of the 72 players, 62 players had problems with 86 tendons in the lower extremity. Of these 86 tendons, 48 were the anterior knee tendons. Ultrasound: At baseline, the majority of players (87%) had colour Doppler flow in at least one scanning position. After a match, the percentage of the knee complexes involved did not change. CF increased significantly in the dominant leg at the tibial tuberosity; single players had a significantly higher CF after a match at the tibial tuberosity and in the patellar tendon both before and after a match. Painful tendons had the highest colour Doppler activity. Most elite badminton players had pain in the anterior knee tendons and intratendinous Doppler activity both before and after match. High levels of Doppler activity were associated with self-reported ongoing pain.

  19. Effects of running on human Achilles tendon length-tension properties in the free and gastrocnemius components.

    PubMed

    Lichtwark, Glen A; Cresswell, Andrew G; Newsham-West, Richard J

    2013-12-01

    The elastic properties of the human Achilles tendon are important for locomotion; however, in vitro tests suggest that repeated cyclic contractions lead to tendon fatigue - an increase in length in response to stress applied. In vivo experiments have not, however, demonstrated mechanical fatigue in the Achilles tendon, possibly due to the limitations of using two-dimensional ultrasound imaging to assess tendon strain. This study used freehand three-dimensional ultrasound (3DUS) to determine whether the free Achilles tendon (calcaneus to soleus) or the gastrocnemius tendon (calcaneus to gastrocnemius) demonstrated tendon fatigue after running exercise. Participants (N=9) underwent 3DUS scans of the Achilles tendon during isometric contractions at four ankle torque levels (passive, and 14, 42 and 70 N m) before and after a 5 km run at a self-selected pace (10-14 km h(-1)). Running had a significant main effect on the length of the free Achilles tendon (P<0.01) with a small increase in length across the torque range. However, the mean lengthening effect was small (<1%) and was not accompanied by a change in free tendon stiffness. There was no significant change in the length of the gastrocnemius tendon or the free tendon cross-sectional area. While the free tendon was shown to lengthen, the lack of change in stiffness suggests the tendon exhibited mechanical creep rather than fatigue. These effects were much smaller than those predicted from in vitro experiments, possibly due to the different loading profile encountered and the ability of the tendon to repair in vivo.

  20. Markers for the identification of tendon-derived stem cells in vitro and tendon stem cells in situ - update and future development.

    PubMed

    Lui, Pauline Po Yee

    2015-06-02

    The efficacy of tendon-derived stem cells (TDSCs) for the promotion of tendon and tendon-bone junction repair has been reported in animal studies. Modulation of the tendon stem cell niche in vivo has also been reported to influence tendon structure. There is a need to have specific and reliable markers that can define TDSCs in vitro and tendon stem cells in situ for several reasons: to understand the basic biology of TDSCs and their subpopulations in vitro; to understand the identity, niches and functions of tendon/progenitor stem cells in vivo; to meet the governmental regulatory requirements for quality of TDSCs when translating the exciting preclinical findings into clinical trial/practice; and to develop new treatment strategies for mobilizing endogenous stem/progenitor cells in tendon. TDSCs were reported to express the common mesenchymal stem cell (MSC) markers and some embryonic stem cell (ESC) markers, and there were attempts to use these markers to label tendon stem cells in situ. Are these stem cell markers useful for the identification of TDSCs in vitro and tracking of tendon stem cells in situ? This review aims to discuss the values of the panel of MSC, ESC and tendon-related markers for the identification of TDSCs in vitro. Important factors influencing marker expression by TDSCs are discussed. The usefulness and limitations of the panel of MSC, ESC and tendon-related markers for tracking stem cells in tendon, especially tendon stem cells, in situ are then reviewed. Future research directions are proposed.

  1. Tendon-Holding Capacities of Two Newly Designed Implants for Tendon Repair: An Experimental Study on the Flexor Digitorum Profundus Tendon of Sheep

    PubMed Central

    Ağır, İsmail; Aytekin, Mahmut Nedim; Başçı, Onur; Çaypınar, Barış; Erol, Bülent

    2014-01-01

    Background: Two main factors determine the strength of tendon repair; the tensile strength of material and the gripping capacity of a suture configuration. Different repair techniques and suture materials were developed to increase the strength of repairs but none of techniques and suture materials seem to provide enough tensile strength with safety margins for early active mobilization. In order to overcome this problem tendon suturing implants are being developed. We designed two different suturing implants. The aim of this study was to measure tendon-holding capacities of these implants biomechanically and to compare them with frequently used suture techniques Materials and Methods: In this study we used 64 sheep flexor digitorum profundus tendons. Four study groups were formed and each group had 16 tendons. We applied model 1 and model 2 implant to the first 2 groups and Bunnell and locking-loop techniques to the 3rd and 4th groups respectively by using 5 Ticron sutures. Results: In 13 tendons in group 1 and 15 tendons in group 2 and in all tendons in group 3 and 4, implants and sutures pulled out of the tendon in longitudinal axis at the point of maximum load. The mean tensile strengths were the largest in group 1 and smallest in group 3. Conclusion: In conclusion, the new stainless steel tendon suturing implants applied from outside the tendons using steel wires enable a biomechanically stronger repair with less tendon trauma when compared to previously developed tendon repair implants and the traditional suturing techniques. PMID:25067965

  2. Initial experience with visualizing hand and foot tendons by dual-energy computed tomography.

    PubMed

    Deng, Kai; Sun, Cong; Liu, Cheng; Ma, Rui

    2009-01-01

    To assess the feasibility of visualizing hand and foot tendons by dual-energy computed tomography (CT). Twenty patients who suffered from hand or feet pains were scanned on dual-source CT (Definition, Forchheim, Germany) with dual-energy mode at tube voltages of 140 and 80 kV and a corresponding ratio of 1:4 between tube currents. The reconstructed images were postprocessed by volume rendering techniques (VRT) and multiplanar reconstruction (MPR). All of the suspected lesions were confirmed by surgery or follow-up studies. Twelve patients (total of 24 hands and feet, respectively) were found to be normal and the other eight patients (total of nine hands and feet, respectively) were found abnormal. Dual-energy techniques are very useful in visualizing tendons of the hands and feet, such as flexor pollicis longus tendon, flexor digitorum superficialis/profundus tendon, Achilles tendon, extensor hallucis longus tendon, and extensor digitorum longus tendon, etc. It can depict the whole shape of the tendons and their fixation points clearly. Peroneus longus tendon in the sole of the foot was not displayed very well. The distal ends of metacarpophalangeal joints with extensor digitoium tendon and extensor pollicis longus tendon were poorly shown. The lesions of tendons such as the circuitry, thickening, and adherence were also shown clearly. Dual-energy CT offers a new method to visualize tendons of the hand and foot. It could clearly display both anatomical structures and pathologic changes of hand and foot tendons.

  3. Quantitative ultrasound method for assessing stress-strain properties and the cross-sectional area of Achilles tendon

    NASA Astrophysics Data System (ADS)

    Du, Yi-Chun; Chen, Yung-Fu; Li, Chien-Ming; Lin, Chia-Hung; Yang, Chia-En; Wu, Jian-Xing; Chen, Tainsong

    2013-12-01

    The Achilles tendon is one of the most commonly observed tendons injured with a variety of causes, such as trauma, overuse and degeneration, in the human body. Rupture and tendinosis are relatively common for this strong tendon. Stress-strain properties and shape change are important biomechanical properties of the tendon to assess surgical repair or healing progress. Currently, there are rather limited non-invasive methods available for precisely quantifying the in vivo biomechanical properties of the tendons. The aim of this study was to apply quantitative ultrasound (QUS) methods, including ultrasonic attenuation and speed of sound (SOS), to investigate porcine tendons in different stress-strain conditions. In order to find a reliable method to evaluate the change of tendon shape, ultrasound measurement was also utilized for measuring tendon thickness and compared with the change in tendon cross-sectional area under different stress. A total of 15 porcine tendons of hind trotters were examined. The test results show that the attenuation and broadband ultrasound attenuation decreased and the SOS increased by a smaller magnitude as the uniaxial loading of the stress-strain upon tendons increased. Furthermore, the tendon thickness measured with the ultrasound method was significantly correlated with tendon cross-sectional area (Pearson coefficient = 0.86). These results also indicate that attenuation of QUS and ultrasonic thickness measurement are reliable and potential parameters for assessing biomechanical properties of tendons. Further investigations are needed to warrant the application of the proposed method in a clinical setting.

  4. Comparison of Autograft and Allograft with Surface Modification for Flexor Tendon Reconstruction: A Canine in Vivo Model.

    PubMed

    Wei, Zhuang; Reisdorf, Ramona L; Thoreson, Andrew R; Jay, Gregory D; Moran, Steven L; An, Kai-Nan; Amadio, Peter C; Zhao, Chunfeng

    2018-04-04

    Flexor tendon injury is common, and tendon reconstruction is indicated clinically if the primary repair fails or cannot be performed immediately after tendon injury. The purpose of the current study was to compare clinically standard extrasynovial autologous graft (EAG) tendon and intrasynovial allogeneic graft (IAG) that had both undergone biolubricant surface modification in a canine in vivo model. Twenty-four flexor digitorum profundus (FDP) tendons from the second and fifth digits of 12 dogs were used for this study. In the first phase, a model of failed FDP tendon repair was created. After 6 weeks, the ruptured FDP tendons with a scarred digit were reconstructed with the use of either EAG or IAG tendons treated with carbodiimide-derivatized hyaluronic acid and lubricin. At 12 weeks after tendon reconstruction, the digits were harvested for functional, biomechanical, and histologic evaluations. The tendon failure model was a clinically relevant and reproducible model for tendon reconstruction. The IAG group demonstrated improved digit function with decreased adhesion formation, lower digit work of flexion, and improved graft gliding ability compared with the EAG group. However, the IAG group had decreased healing at the distal tendon-bone junction. Our histologic findings verified the biomechanical evaluations and, further, showed that cellular repopulation of allograft at 12 weeks after reconstruction is still challenging. FDP tendon reconstruction using IAG with surface modification has some beneficial effects for reducing adhesions but demonstrated inferior healing at the distal tendon-bone junction compared with EAG. These mixed results indicate that vitalization and turnover acceleration are crucial to reducing failure of reconstruction with allograft. Flexor tendon reconstruction is a common surgical procedure. However, postoperative adhesion formation may lead to unsatisfactory clinical outcomes. In this study, we developed a potential flexor tendon allograft using chemical and tissue-engineering approaches. This technology could improve function following tendon reconstruction.

  5. Patellar tendon re-rupture on the opposite end of the previous site of surgical repair

    PubMed Central

    KOH, Bryan Thean Howe; SAYAMPANATHAN, Andrew A; LEE, Keng Thiam

    2017-01-01

    We describe a rare case of a patellar tendon “re-rupture” at the opposite end of a previous proximal tendon repair. A 32-year-old male with a history of surgically repaired right proximal patellar tendon rupture presented with an acute non-traumatic right knee pain and instability during sports. Magnetic resonance imaging confirmed a complete rupture of his distal patellar tendon at the tibial tuberosity. The patellar tendon was repaired using two 5.5 mm BioCorkscrews (Arthrex) inserted into the tibial tuberosity; the tendon was stitched with the No. 2 fiberwires using Krackow technique. As the patellar tendon was degenerative, the repair was augmented with a semitendinosus tendon harvested using an open tendon stripper, leaving the distal attachment intact. At 2.6 years followup he had mild anterior knee pain, range of motion 0-130° and was able to squat. MRI scan done at followup revealed good healing of repaired patellar tendon. PMID:28566788

  6. A Biomechanical Comparison of Allograft Tendons for Ligament Reconstruction.

    PubMed

    Palmer, Jeremiah E; Russell, Joseph P; Grieshober, Jason; Iacangelo, Abigail; Ellison, Benjamin A; Lease, T Dylan; Kim, Hyunchul; Henn, R Frank; Hsieh, Adam H

    2017-03-01

    Allograft tendons are frequently used for ligament reconstruction about the knee, but they entail availability and cost challenges. The identification of other tissues that demonstrate equivalent performance to preferred tendons would improve limitations. Hypothesis/Purpose: We compared the biomechanical properties of 4 soft tissue allograft tendons: tibialis anterior (TA), tibialis posterior (TP), peroneus longus (PL), and semitendinosus (ST). We hypothesized that allograft properties would be similar when standardized by the looped diameter. Controlled laboratory study. This study consisted of 2 arms evaluating large and small looped-diameter grafts: experiment A consisted of TA, TP, and PL tendons (n = 47 each) with larger looped diameters of 9.0 to 9.5 mm, and experiment B consisted of TA, TP, PL, and ST tendons (n = 53 each) with smaller looped diameters of 7.0 to 7.5 mm. Each specimen underwent mechanical testing to measure the modulus of elasticity (E), ultimate tensile force (UTF), maximal elongation at failure, ultimate tensile stress (UTS), and ultimate tensile strain (UTε). Experiment A: No significant differences were noted among tendons for UTF, maximal elongation at failure, and UTϵ. UTS was significantly higher for the PL (54 MPa) compared with the TA (44 MPa) and TP (43 MPa) tendons. E was significantly higher for the PL (501 MPa) compared with the TP (416 MPa) tendons. Equivalence testing showed that the TP and PL tendon properties were equivalent or superior to those of the TA tendons for all outcomes. Experiment B: All groups exhibited a similar E. UTF was again highest in the PL tendons (2294 N) but was significantly different from only the ST tendons (1915 N). UTϵ was significantly higher for the ST (0.22) compared with the TA (0.19) and TP (0.19) tendons. Equivalence testing showed that the TA, TP, and PL tendon properties were equivalent or superior to those of the ST tendons. Compared with TA tendons, TP and PL tendons of a given looped diameter exhibited noninferior initial biomechanical strength and stiffness characteristics. ST tendons were mostly similar to TA tendons but exhibited a significantly higher elongation/UTϵ and smaller cross-sectional area. For smaller looped-diameter grafts, all tissues were noninferior to ST tendons. In contrast to previous findings, PL tendons proved to be equally strong. The results of this study should encourage surgeons to use these soft tissue allografts interchangeably, which is important as the number of ligament reconstructions performed with allografts continues to rise.

  7. Histological study of the influence of plasma rich in growth factors (PRGF) on the healing of divided Achilles tendons in sheep.

    PubMed

    Fernández-Sarmiento, J Andrés; Domínguez, Juan M; Granados, María M; Morgaz, Juan; Navarrete, Rocío; Carrillo, José M; Gómez-Villamandos, Rafael J; Muñoz-Rascón, Pilar; Martín de Las Mulas, Juana; Millán, Yolanda; García-Balletbó, Montserrat; Cugat, Ramón

    2013-02-06

    The use of plasma rich in growth factors (PRGF) has been proposed to improve the healing of Achilles tendon injuries, but there is debate about the effectiveness of this therapy. The objective of the present study was to evaluate the histological effects of PRGF, which is a type of leukocyte-poor platelet-rich plasma, on tendon healing. The Achilles tendons of twenty-eight sheep were divided surgically. The animals were randomly divided into four groups of seven animals each. The repaired tendons in two groups received an infiltration of PRGF intraoperatively and every week for the following three weeks under ultrasound guidance. The tendons in the other two groups received injections with saline solution. The animals in one PRGF group and one saline solution group were killed at four weeks, and the animals in the remaining two groups were killed at eight weeks. The Achilles tendons were examined histologically, and the morphometry of fibroblast nuclei was calculated. The fibroblast nuclei of the PRGF-treated tendons were more elongated and more parallel to the tendon axis than the fibroblast nuclei of the tendons in the saline solution group at eight weeks. PRGF-treated tendons showed more packed and better oriented collagen bundles at both four and eight weeks. In addition to increased maturation of the collagen structure, fibroblast density was significantly lower in PRGF-infiltrated tendons. PRGF-treated tendons exhibited faster vascular regression than tendons in the control groups, as demonstrated by a lower vascular density at eight weeks. PRGF was associated with histological changes consistent with an accelerated early healing process in repaired Achilles tendons in sheep after experimental surgical disruption. PRGF-treated tendons showed improvements in the morphometric features of fibroblast nuclei, suggesting a more advanced stage of healing. At eight weeks, histological examination revealed more mature organization of collagen bundles, lower vascular densities, and decreased fibroblast densities in PRGF-treated tendons than in tendons infiltrated with saline solution. These findings were consistent with a more advanced stage of the healing process. Based on the findings in this animal model, PRGF infiltration may improve the early healing process of surgically repaired Achilles tendons.

  8. A review on animal models and treatments for the reconstruction of Achilles and flexor tendons.

    PubMed

    Bottagisio, Marta; Lovati, Arianna B

    2017-03-01

    Tendon is a connective tissue mainly composed of collagen fibers with peculiar mechanical properties essential to functional movements. The increasing incidence of tendon traumatic injuries and ruptures-associated or not with the loss of tissue-falls on the growing interest in the field of tissue engineering and regenerative medicine. The use of animal models is mandatory to deepen the knowledge of the tendon healing response to severe damages or acute transections. Thus, the selection of preclinical models is crucial to ensure a successful translation of effective and safe innovative treatments to the clinical practice. The current review is focused on animal models of tendon ruptures and lacerations or defective injuries with large tissue loss that require surgical approaches or grafting procedures. Data published between 2000 and 2016 were examined. The analyzed articles were compiled from Pub Med-NCBI using search terms, including animal model(s) AND tendon augmentation OR tendon substitute(s) OR tendon substitution OR tendon replacement OR tendon graft(s) OR tendon defect(s) OR tendon rupture(s). This article presents the existing preclinical models - considering their advantages and disadvantages-in which translational progresses have been made by using bioactive sutures or tissue engineering that combines biomaterials with cells and growth factors to efficiently treat transections or large defects of Achilles and flexor tendons.

  9. Rescue plan for Achilles: Therapeutics steering the fate and functions of stem cells in tendon wound healing.

    PubMed

    Schneider, Magdalena; Angele, Peter; Järvinen, Tero A H; Docheva, Denitsa

    2017-12-24

    Due to the increasing age of our society and a rise in engagement of young people in extreme and/or competitive sports, both tendinopathies and tendon ruptures present a clinical and financial challenge. Tendon has limited natural healing capacity and often responds poorly to treatments, hence it requires prolonged rehabilitation in most cases. Till today, none of the therapeutic options has provided successful long-term solutions, meaning that repaired tendons do not recover their complete strength and functionality. Our understanding of tendon biology and healing increases only slowly and the development of new treatment options is insufficient. In this review, following discussion on tendon structure, healing and the clinical relevance of tendon injury, we aim to elucidate the role of stem cells in tendon healing and discuss new possibilities to enhance stem cell treatment of injured tendon. To date, studies mainly apply stem cells, often in combination with scaffolds or growth factors, to surgically created tendon defects. Deeper understanding of how stem cells and vasculature in the healing tendon react to growth factors, common drugs used to treat injured tendons and promising cellular boosters could help to develop new and more efficient ways to manage tendon injuries. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. Effects of high loading by eccentric triceps surae training on Achilles tendon properties in humans.

    PubMed

    Geremia, Jeam Marcel; Baroni, Bruno Manfredini; Bobbert, Maarten Frank; Bini, Rodrigo Rico; Lanferdini, Fabio Juner; Vaz, Marco Aurélio

    2018-06-01

    To document the magnitude and time course of human Achilles tendon adaptations (i.e. changes in tendon morphological and mechanical properties) during a 12-week high-load plantar flexion training program. Ultrasound was used to determine Achilles tendon cross-sectional area (CSA), length and elongation as a function of plantar flexion torque during voluntary plantar flexion. Tendon force-elongation and stress-strain relationships were determined before the start of training (pre-training) and after 4 (post-4), 8 (post-8) and 12 (post-12) training weeks. At the end of the training program, maximum isometric force had increased by 49% and tendon CSA by 17%, but tendon length, maximal tendon elongation and maximal strain were unchanged. Hence, tendon stiffness had increased by 82%, and so had Young's modulus, by 86%. Significant changes were first detected at post-4 in stiffness (51% increase) and Young's modulus (87% increase), and at post-8 in CSA (15% increase). Achilles tendon material properties already improved after 4 weeks of high-load training: stiffness increased while CSA remained unchanged. Tendon hypertrophy (increased CSA) was observed after 8 training weeks and contributed to a further increase in Achilles tendon stiffness, but tendon stiffness increases were mostly caused by adaptations in tissue properties.

  11. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  12. Multiple tendon ruptures of unknown etiology.

    PubMed

    Axibal, Derek P; Anderson, John G

    2013-10-01

    Tendon ruptures are common findings in foot and ankle practice. The etiology of tendon ruptures tends to be multifactorial-usually due to a combination of trauma, effects of systemic diseases, adverse effects of medications, and obesity. We present an unusual case of right Achilles tendinitis, left Achilles tendon rupture, bilateral peroneus longus tendon rupture, and left peroneus brevis tendon rupture of unknown etiology. This case report highlights the need for research for other possible, lesser known etiologies of tendon pathology. Therapeutic, Level IV, Case Study.

  13. The Effects of Bio-Lubricating Molecules on Flexor Tendon Reconstruction in A Canine Allograft Model In Vivo

    PubMed Central

    Zhao, Chunfeng; Wei, Zhuang; Kirk, Ramona L.; Thoreson, Andrew R.; Jay, Gregory D.; Moran, Steven L.; An, Kai-Nan; Amadio, Peter C.

    2014-01-01

    Background Using allograft is an attractive alternative for flexor tendon reconstruction because of the lack of donor morbidity, and better matching to the intrasynovial environment. The purpose of this study was to use biolubricant molecules to modify the graft surface to decrease adhesions and improve digit function. Methods 28 flexor digitorum profundus (FDP) tendons from the 2nd and 5th digits of 14 dogs were first lacerated and repaired to create a model with repair failure and scar digit for tendon reconstruction. Six weeks after the initial surgery, the tendons were reconstructed with FDP allograft tendons obtained from canine cadavers. One graft tendon in each dog was treated with saline as a control and the other was treated with gelatin, carbodiimide derivatized, hyaluronic acid and lubricin (cd-HA-Lubricin). Six weeks postoperatively, digit function, graft mechanics, and biology were analyzed. Results Allograft tendons treated with cd-HA-Lubricin had decreased adhesions at the proximal tendon/graft repair and within flexor sheath, improved digit function, and increased graft gliding ability. The treatment also reduced the strength at the distal tendon to bone repair, but the distal attachment rupture rate was similar for both graft types. Histology showed that viable cells migrated to the allograft, but these were limited to the tendon surface. Conclusion cd-HA-Lubricin treatment of tendon allograft improves digit functional outcomes after flexor tendon reconstruction. However, delayed bone-tendon healing should be a caution. Furthermore, the cell infiltration into the allograft tendons substance should be a target for future studies, to shorten the allograft self-regeneration period. PMID:24445876

  14. Biomechanical and histological effects of augmented soft tissue mobilization therapy on achilles tendinopathy in a rabbit model.

    PubMed

    Imai, Kan; Ikoma, Kazuya; Chen, Qingshan; Zhao, Chunfeng; An, Kai-Nan; Gay, Ralph E

    2015-02-01

    Augmented soft tissue mobilization (ASTM) has been used to treat Achilles tendinopathy and is thought to promote collagen fiber realignment and hasten tendon regeneration. The objective of this study was to evaluate the biomechanical and histological effects of ASTM therapy on rabbit Achilles tendons after enzymatically induced injury. This study was a non-human bench controlled research study using a rabbit model. Both Achilles tendons of 12 rabbits were injected with collagenase to produce tendon injury simulating Achilles tendinopathy. One side was then randomly allocated to receive ASTM, while the other received no treatment (control). ASTM was performed on the Achilles tendon on postoperative days 21, 24, 28, 31, 35, and 38. Tendons were harvested 10 days after treatment and examined with dynamic viscoelasticity and light microscopy. Cross-sectional area in the treated tendons was significantly greater than in controls. Storage modulus tended to be lower in the treated tendons but elasticity was not significantly increased. Loss modulus was significantly lower in the treated tendons. There was no significant difference found in tangent delta (loss modulus/storage modulus). Microscopy of control tendons showed that the tendon fibers were wavy and type III collagen was well stained. The tendon fibers of the augmented soft tissue mobilization treated tendons were not wavy and type III collagen was not prevalent. Biomechanical and histological findings showed that the Achilles tendons treated with ASTM had better recovery of biomechanical function than did control tendons. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  15. Augmentation of Distal Biceps Repair With an Acellular Dermal Graft Restores Native Biomechanical Properties in a Tendon-Deficient Model.

    PubMed

    Conroy, Christine; Sethi, Paul; Macken, Craig; Wei, David; Kowalsky, Marc; Mirzayan, Raffy; Pauzenberger, Leo; Dyrna, Felix; Obopilwe, Elifho; Mazzocca, Augustus D

    2017-07-01

    The majority of distal biceps tendon injuries can be repaired in a single procedure. In contrast, complete chronic tears with severe tendon substance deficiency and retraction often require tendon graft augmentation. In cases with extensive partial tears of the distal biceps, a human dermal allograft may be used as an alternative to restore tendon thickness and biomechanical integrity. Dermal graft augmentation will improve load to failure compared with nonaugmented repair in a tendon-deficient model. Controlled laboratory study. Thirty-six matched specimens were organized into 1 of 4 groups: native tendon, native tendon with dermal graft augmentation, tendon with an attritional defect, and tendon with an attritional defect repaired with a graft. To mimic a chronic attritional biceps lesion, a defect was created by a complete tear, leaving 30% of the tendon's width intact. The repair technique in all groups consisted of cortical button and interference screw fixation. All specimens underwent cyclical loading for 3000 cycles and were then tested to failure; gap formation and peak load at failure were documented. The mean (±SD) load to failure (320.9 ± 49.1 N vs 348.8 ± 77.6 N, respectively; P = .38) and gap formation (displacement) (1.8 ± 1.4 mm vs 1.6 ± 1.1 mm, respectively; P = .38) did not differ between the native tendon groups with and without graft augmentation. In the tendon-deficient model, the mean load to failure was significantly improved with graft augmentation compared with no graft augmentation (282.1 ± 83.8 N vs 199.7 ± 45.5 N, respectively; P = .04), while the mean gap formation was significantly reduced (1.2 ± 1.0 mm vs 2.7 ± 1.4 mm, respectively; P = .04). The mean load to failure of the deficient tendon with graft augmentation (282.1 N) compared with the native tendon (348.8 N) was not significantly different ( P = .12). This indicates that the native tendon did not perform differently from the grafted deficient tendon. In a tendon-deficient, complete distal biceps rupture model, acellular dermal allograft augmentation restored the native tendon's biomechanical properties at time zero. The grafted tissue-deficient model demonstrated no significant differences in the load to failure and gap formation compared with the native tendon. As expected, dermal augmentation of attritional tendon repair increased the load to failure and stiffness as well as decreased displacement compared with the ungrafted tissue-deficient model. Tendons with their native width showed no statistical difference or negative biomechanical consequences of dermal augmentation. Dermal augmentation of the distal biceps is a biomechanically feasible option for patients with an attritionally thinned-out tendon.

  16. US appearance of partial-thickness supraspinatus tendon tears: Application of the string theory. Pictorial essay.

    PubMed

    Guerini, H; Fermand, M; Godefroy, D; Feydy, A; Chevrot, A; Morvan, G; Gault, N; Drapé, J L

    2012-02-01

    The supraspinatus tendon is composed of 5 different layers consisting of intertwining bundles. On a front portion of the tendon, the layers become coated bundles which insert on the trochanter. At the insertion, the superficial or bursal surface of the tendon corresponding to the tendon fibers in contact with the subacromial bursa can be distinguished from the deep surface corresponding to the fibers in contact with the glenohumeral joint. A tendon tear may involve partial or total disruption of the tendon fibers and is called full-thickness tear if it affects the entire tendon, and partial-thickness tear if it involves only part of the tendon. Partial-thickness tears of the supraspinatus tendon include lesions of the superficial, deep and central surface or tendon delamination.A contrast enhanced examination requires injection of contrast agent into the joint (arthrography followed by computed tomography (CT) or magnetic resonance imaging (MRI)) to study the deep surface, and injection into the subacromial bursa (bursography followed by CT) to study the superficial surface. MRI and ultrasound (US) examination allow the study of these different tendon layers without the use of contrast agent (which is not possible at CT).

  17. Lubricin Surface Modification Improves Tendon Gliding After Tendon Repair in a Canine Model in Vitro

    PubMed Central

    Taguchi, Manabu; Sun, Yu-Long; Zhao, Chunfeng; Zobitz, Mark E.; Cha, Chung-Ja; Jay, Gregory D.; An, Kai-Nan; Amadio, Peter C.

    2011-01-01

    This study investigated the effects of lubricin on the gliding of repaired flexor digitorum profundus (FDP) tendons in vitro. Canine FDP tendons were completely lacerated, repaired with a modified Pennington technique, and treated with one of the following solutions: saline, carbodiimide derivatized gelatin/hyaluronic acid (cd-HA-gelatin), carbodiimide derivatized gelatin to which lubricin was added in a second step (cd-gelatin + lubricin), or carbodiimide derivatized gelatin/HA + lubricin (cd-HA-gelatin + lubricin). After treatment, gliding resistance was measured up to 1,000 cycles of simulated flexion/extension motion. The increase in average and peak gliding resistance in cd-HA-gelatin, cd-gelatin + lubricin, and cd-HA-gelatin + lubricin tendons was less than the control tendons after 1,000 cycles (p < 0.05). The increase in average gliding resistance of cd-HA-gelatin + lubricin treated tendons was also less than that of the cd-HA-gelatin treated tendons (p < 0.05). The surfaces of the repaired tendons and associated pulleys were assessed qualitatively with scanning electron microscopy and appeared smooth after 1,000 cycles of tendon motion for the cd-HA-gelatin, cd-gelatin + lubricin, and cd-HA-gelatin + lubricin treated tendons, while that of the saline control appeared roughened. These results suggest that tendon surface modification can improve tendon gliding ability, with a trend suggesting that lubricin fixed on the repaired tendon may provide additional improvement over that provided by HA and gelatin alone. PMID:18683890

  18. Multi-functional electrospun antibacterial core-shell nanofibrous membranes for prolonged prevention of post-surgical tendon adhesion and inflammation.

    PubMed

    Shalumon, K T; Sheu, Chialin; Chen, Chih-Hao; Chen, Shih-Heng; Jose, Gils; Kuo, Chang-Yi; Chen, Jyh-Ping

    2018-05-01

    The possibility of endowing an electrospun anti-adhesive barrier membrane with multi-functionality, such as lubrication, prevention of fibroblast attachment and anti-infection and anti-inflammation properties, is highly desirable for the management of post-surgical tendon adhesion. To this end, we fabricated core-shell nanofibrous membranes (CSNMs) with embedded silver nanoparticles (Ag NPs) in the poly(ethylene glycol) (PEG)/poly(caprolactone) (PCL) shell and hyaluronic acid (HA)/ibuprofen in the core. HA imparted a lubrication effect for smooth tendon gliding and reduced fibroblast attachment, while Ag NPs and ibuprofen functioned as anti-infection and anti-inflammation agents, respectively. CSNMs with a PEG/PCL/Ag shell (PPA) and HA core containing 0% (H/PPA), 10% (HI10/PPA), 30% (HI30/PPA) and 50% (HI50/PPA) ibuprofen were fabricated through co-axial electrospinning and assessed through microscopic, spectroscopic, thermal, mechanical and drug release analyses. Considering nutrient passage through the barrier, the microporous CSNMs exerted the same barrier effect but drastically increased the mass transfer coefficients of bovine serum albumin compared with the commercial anti-adhesive membrane SurgiWrap®. Cell attachment/focal adhesion formation of fibroblasts revealed effective reduction of initial cell attachment on the CSNM surface with minimum cytotoxicity (except HI50/PPA). The anti-bacterial effect against both Gram-negative and Gram-positive bacteria was verified to be due to the Ag NPs in the membranes. In vivo studies using H/PPA and HI30/PPA CSNMs and SurgiWrap® in a rabbit flexor tendon rupture model demonstrated the improved efficacy of HI30/PPA CSNMs in reducing inflammation and tendon adhesion formation based on gross observation, histological analysis and functional assays. We conclude that HI30/PPA CSNMs can act as a multifunctional barrier membrane to prevent peritendinous adhesion after tendon surgery. A multi-functional anti-adhesion barrier membrane that could reduce fibroblasts attachment and penetration while simultaneously prevent post-surgical infection and inflammation is urgently needed. To this end, we prepared electrospun core-shell hyaluronic acid + ibuprofen/polyethylene glycol + polycaprolactone + Ag nanoparticles nanofibrous membranes by co-axial electrospinning as an ideal anti-adhesive membrane. The core-shell structure could meet the need of a desirable anti-adhesion barrier through release of ibuprofen and Ag nanoparticles to reduce infection and inflammation while hyaluronic acid can reduce fibroblasts adhesion. The superior performance of this multi-functional core-shell nanofibrous membrane in preventing peritendinous adhesion and post-surgical inflammation was demonstrated in a rabbit flexor tendon rupture model. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Pleiotropic roles of the matricellular protein Sparc in tendon maturation and ageing

    PubMed Central

    Gehwolf, Renate; Wagner, Andrea; Lehner, Christine; Bradshaw, Amy D.; Scharler, Cornelia; Niestrawska, Justyna A.; Holzapfel, Gerhard A.; Bauer, Hans-Christian; Tempfer, Herbert; Traweger, Andreas

    2016-01-01

    Acute and chronic tendinopathies remain clinically challenging and tendons are predisposed to degeneration or injury with age. Despite the high prevalence of tendon disease in the elderly, our current understanding of the mechanisms underlying the age-dependent deterioration of tendon function remains very limited. Here, we show that Secreted protein acidic and rich in cysteine (Sparc) expression significantly decreases in healthy-aged mouse Achilles tendons. Loss of Sparc results in tendon collagen fibrillogenesis defects and Sparc−/− tendons are less able to withstand force in comparison with their respective wild type counterparts. On the cellular level, Sparc-null and healthy-aged tendon-derived cells exhibited a more contracted phenotype and an altered actin cytoskeleton. Additionally, an elevated expression of the adipogenic marker genes PPARγ and Cebpα with a concomitant increase in lipid deposits in aged and Sparc−/− tendons was observed. In summary, we propose that Sparc levels in tendons are critical for proper collagen fibril maturation and its age-related decrease, together with a change in ECM properties favors lipid accretion in tendons. PMID:27586416

  20. Phenytoin accelerates tendon healing in a rat model of Achilles tendon rupture.

    PubMed

    Hajipour, B; Navali, A M; Mohammad, S Ali; Mousavi, G; Akbari, M Gahvechi; Miyandoab, T Maleki; Roshangar, L; Saleh, B Mohammadi; Kermani, T Asvadi; Laleh, F Moutab; Ghabili, M

    2016-01-01

    Tendons are vulnerable to various types of acute or chronic injures. Different methods have been investigated to achieve better healing. Phenytoin is a drug which could stimulate fibroblasts to produce collagen. This experimental study was performed to assess the effect of phenytoin on tendon healing in a rat model of tendon rupture. Thirty healthy rats were divided into 3 groups, 1) Sham group; 2) Tendon rupture; 3) Tendon rupture+phenytoin (100 mg/kg intraperitoneally) for 21 days. On 21st day after tendon injury, the rats were anesthetized and tendon tissue was sampled for studying by light and electron microscopy. Qualitative and quantitative microscopic comparisons of the repair tissues of both groups were made on the 21st day. The results obtained from light and electron microscopy studies showed that tendon tissue healing was significantly better in phenytoin group compared to the control group (p < 0.05). Systemic administration of phenytoin may have a positive effect on tendon healing by increasing fibroblast quantity, fibrillar collagen synthesis, vascularity, and suppressing inflammation (Tab. 2, Ref. 25).

  1. Quadriceps tendon autograft for arthroscopic knee ligament reconstruction: use it now, use it often.

    PubMed

    Sheean, Andrew J; Musahl, Volker; Slone, Harris S; Xerogeanes, John W; Milinkovic, Danko; Fink, Christian; Hoser, Christian

    2018-04-28

    Traditional bone-patellar tendon-bone and hamstring tendon ACL grafts are not without limitations. A growing body of anatomic, biomechanical and clinical data has demonstrated the utility of quadriceps tendon autograft in arthroscopic knee ligament reconstruction. The quadriceps tendon autograft provides a robust volume of tissue that can be reliably harvested, mitigating the likelihood of variably sized grafts and obviating the necessity of allograft augmentation. Modern, minimally invasive harvest techniques offer the advantages of low rates of donor site morbidity and residual extensor mechanism strength deficits. New data suggest that quadriceps tendon autograft may possess superior biomechanical characteristics when compared with bone-patella tendon-bone (BPTB) autograft. However, there have been very few direct, prospective comparisons between the clinical outcomes associated with quadriceps tendon autograft and other autograft options (eg, hamstring tendon and bone-patellar tendon-bone). Nevertheless, quadriceps tendon autograft should be one of the primary options in any knee surgeon's armamentarium. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Non-linear finite element model to assess the effect of tendon forces on the foot-ankle complex.

    PubMed

    Morales-Orcajo, Enrique; Souza, Thales R; Bayod, Javier; Barbosa de Las Casas, Estevam

    2017-11-01

    A three-dimensional foot finite element model with actual geometry and non-linear behavior of tendons is presented. The model is intended for analysis of the lower limb tendon forces effect in the inner foot structure. The geometry of the model was obtained from computational tomographies and magnetic resonance images. Tendon tissue was characterized with the first order Ogden material model based on experimental data from human foot tendons. Kinetic data was employed to set the load conditions. After model validation, a force sensitivity study of the five major foot extrinsic tendons was conducted to evaluate the function of each tendon. A synergic work of the inversion-eversion tendons was predicted. Pulling from a peroneus or tibialis tendon stressed the antagonist tendons while reducing the stress in the agonist. Similar paired action was predicted for the Achilles tendon with the tibialis anterior. This behavior explains the complex control motion performed by the foot. Furthermore, the stress state at the plantar fascia, the talocrural joint cartilage, the plantar soft tissue and the tendons were estimated in the early and late midstance phase of walking. These estimations will help in the understanding of the functional role of the extrinsic muscle-tendon-units in foot pronation-supination. Copyright © 2017 IPEM. Published by Elsevier Ltd. All rights reserved.

  3. Changes in Achilles tendon mechanical properties following eccentric heel drop exercise are specific to the free tendon.

    PubMed

    Obst, S J; Newsham-West, R; Barrett, R S

    2016-04-01

    Mechanical loading of the Achilles tendon during isolated eccentric contractions could induce immediate and region-dependent changes in mechanical properties. Three-dimensional ultrasound was used to examine the immediate effect of isolated eccentric exercise on the mechanical properties of the distal (free tendon) and proximal (gastrocnemii) regions of the Achilles tendon. Participants (n = 14) underwent two testing sessions in which tendon measurements were made at rest and during a 30% and 70% isometric plantar flexion contractions immediately before and after either: (a) 3 × 15 eccentric heel drops or (b) 10-min rest. There was a significant time-by-session interaction for free tendon length and strain for all loading conditions (P < 0.05). Pairwise comparisons revealed a significant increase in free tendon length and strain at all contraction intensities after eccentric exercise (P < 0.05). There was no significant time-by-session interaction for the gastrocnemii (medial or lateral) aponeurosis or tendon for any of the measured parameters. Immediate changes in Achilles tendon mechanical properties were specific to the free tendon and consistent with changes due to mechanical creep. These findings suggest that the mechanical properties of the free tendon may be more vulnerable to change with exercise compared with the gastrocnemii aponeurosis or tendon. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  4. Deficits in heel-rise height and achilles tendon elongation occur in patients recovering from an Achilles tendon rupture.

    PubMed

    Silbernagel, Karin Grävare; Steele, Robert; Manal, Kurt

    2012-07-01

    Whether an Achilles tendon rupture is treated surgically or not, complications such as muscle weakness, decrease in heel-rise height, and gait abnormalities persist after injury. The purpose of this study was to evaluate if side-to-side differences in maximal heel-rise height can be explained by differences in Achilles tendon length. Case series; level of evidence, 4. Eight patients (mean [SD] age of 46 [13] years) with acute Achilles tendon rupture and 10 healthy subjects (mean [SD] age of 28 [8] years) were included in the study. Heel-rise height, Achilles tendon length, and patient-reported outcome were measured 3, 6, and 12 months after injury. Achilles tendon length was evaluated using motion analysis and ultrasound imaging. The Achilles tendon length test-retest reliability (intraclass correlation coefficient = 0.97) was excellent. For the healthy subjects, there were no side-to-side differences in tendon length and heel-rise height. Patients with Achilles tendon ruptures had significant differences between the injured and uninjured side for both tendon length (mean [SD] difference, 2.6-3.1 [1.2-1.4] cm, P = .017-.028) and heel-rise height (mean [SD] difference, -4.1 to -6.1 [1.7-1.8] cm, P = .012-.028). There were significant negative correlations (r = -0.943, P = .002, and r = -0.738, P = .037) between the side-to-side difference in heel-rise height and Achilles tendon length at the 6- and 12-month evaluations, respectively. The side-to-side difference found in maximal heel-rise height can be explained by a difference in Achilles tendon length in patients recovering from an Achilles tendon rupture. Minimizing tendon elongation appears to be an important treatment goal when aiming for full return of function.

  5. Reconstruction of chronic achilles tendon rupture with the use of interposed tissue between the stumps.

    PubMed

    Yasuda, Toshito; Kinoshita, Mitsuo; Okuda, Ryuzo

    2007-04-01

    The gap between the tendon stumps in chronic Achilles tendon rupture has reportedly been filled with interposed scar tissue. In the authors' clinical experience, this interposed tissue is often thick and resists tension, so they considered it was possible to use the interposed tissue for reconstruction of Achilles tendon rupture. Scar tissue interposed between the tendon stumps has the capacity to form tendon-like repair tissue in patients with chronic Achilles tendon rupture. Case series; Level of evidence, 4. Six patients with chronic rupture of the Achilles tendon underwent tendon reconstruction with the use of interposed tissue between the stumps. The average time from the primary injury to surgery was 22 weeks (range, 9 to 30 weeks). Preoperative magnetic resonance imaging (MRI), histology of the interposed tissue, and clinical results were evaluated. The average postoperative follow-up period was 31 months (range, 24 to 43 months). Preoperative T2-weighted MRI in all cases revealed that chronically ruptured Achilles tendons were thickened and fusiform-shaped with diffuse intratendinous high-signal alterations throughout. Longitudinal high-signal bands were seen throughout the tendon, except at the musculotendinous junction and insertion on the calcaneus. Histologically, scar tissue interposed between the tendon stumps consisted of dense collagen fibers, and degenerative changes were not seen. After surgery, no patient had difficulty in walking or stair climbing, and all were able to perform a single-limb toe raise. The mean preoperative and postoperative American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot scores were 88.2 and 98.3 points, respectively; the difference was statistically significant (P = .0277). Interposed tissue between the tendon stumps is suitable for repair of chronic Achilles tendon rupture if preoperative MRI shows a thickened fusiform-shaped Achilles tendon with diffuse intratendinous high-signal alterations throughout.

  6. The Achilles Tendon in Healthy Subjects: An Anthropometric and Ultrasound Mapping Study.

    PubMed

    Patel, Nick N; Labib, Sameh A

    Ultrasonography is an inexpensive, fast, and reliable imaging technique widely used to assess the Achilles tendon. Although significant data exists regarding pathologic tendon changes, ultrasound data from healthy individuals are more limited. We aimed to better characterize ultrasound Achilles tendon measurements in healthy individuals and identify important correlating factors. The information collected included patient demographics, body habitus, activity level, foot dominance, and resting ankle angle. Ultrasound analysis was performed bilaterally on the Achilles tendons of 50 subjects using a high-frequency transducer to measure tendon width, thickness, cross-sectional area, and length. Males had a significantly larger mean tendon length, width, thickness, and cross-sectional area. No statistically significant difference was found in any tendon dimension between the white and black participants. Similarly, no difference was found in any tendon parameter when comparing right versus left leg dominance. Healthy subjects had a mean ankle resting angle of 45.1° ± 24° with no statistically significant difference between right and left ankles. Considering all individuals, each tendon parameter (tendon length, width, thickness, and cross-sectional area) correlated positively with subject height, weight, tibia length, and foot size. Only the Achilles cross-sectional area correlated significantly with the activity level. The resting angle of the ankle correlated positively with both tendon length and thickness. In conclusion, we found significant variations in Achilles tendon anatomy in the healthy adult population. We have thoroughly characterized significant correlations between healthy tendon dimensions and various body habitus, activity levels, and ankle parameters. Greater knowledge of the normal Achilles tendon anatomy and characterization of its variations in the healthy population will potentially allow for better pathologic diagnosis and surgical repair. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  7. The flexor digitorum profundus "demi-tendon"--a new technique for passage of the flexor profundus tendon through the A4 pulley.

    PubMed

    Elliot, D; Khandwala, A R; Ragoowansi, R

    2001-10-01

    The flexor digitorum profundus (FDP) tendon may retract after avulsion or division in Zone 1. When treatment has been delayed, the oedematous tendon can be too swollen to pass freely through the A4 pulley. We present a new technique for dealing with this situation which depends on the "double-barrelled" nature of the distal part of the FDP tendon. One half of the tendon is excised longitudinally and the remaining "demi-tendon" is passed through the intact A4 pulley to allow tendon repair or re-attachment. This technique has been used in six cases in which passage of the FDP tendon through the A4 pulley would otherwise have been impossible. Copyright 2001 The British Society for Surgery of the Hand.

  8. Prestressed Ring Beam in the Church of St. Peter’s and Paul’s in Bodzanow, Design and Realization

    NASA Astrophysics Data System (ADS)

    Szydlowski, Rafal; Labuzek, Barbara; Turcza, Monika

    2017-10-01

    The present trend in architecture is designing thin. slender and spacious architectural forms. It has become the reason for searching for new solutions and finding new ways of use of the existing construction ones. Recently, the first time in Poland, the post-tensioning has been used in realization of church building. In the Church of St. Peter’s and Paul’s in Bodzanow (near Cracow) was designed circumferential ring beam post-tensioned with 4 unbounded tendons to transfer peripheral tensile forces from the roof. Thanks to the use of a prestressed ring beam hidden in the wall, large cross-section of roof girders was possible to be avoided, as well as a massive reinforced concrete ring or additional steel tie-rods. The paper presents the applied solutions in details with the theoretical calculated results as well as the results of prestressing measured in site during tensioning of tendons. Based on presented results some conclusions have been drawn.

  9. [Ultrastructural observation of tendonization of artificial tendon 109HH in rabbit].

    PubMed

    Liu, L; Cao, Q; Xiao, H

    1995-09-01

    Ten New Zealand rabbits were divided into 5 groups at random. Calcaneal tendons were cut bilaterally, then atificial tendon 109HH was used to connect the two ends of the cut tendon. Ultrastructural changes of control group and experimental groups at 2, 6, 12, 28 weeks after section were observed. The results showed that fibroblast proliferated and a lot of ribosome and RER appeared in plasm during 2 approximately 6 weeks, indicating artificial tendon caused fibroblast proliferation. During this period, fibroblast over synthesized collagenous protein and the synthesis of collagenous fibers peaked. During 12-28 weeks, the number of fibroblasts and the synthesis of collagenous protein decreased. Finally, fibroblasts became inactive tendon cells. With the formation of new tendons, the artificial tendens were degradated and absorbed, and disappeared after 12 weeks. The new tendon fibers became thicker and had the correct direction through reconstruction. The structure and function of new tendons could be restored to be consistent with normal values.

  10. Central Tendon Injuries of Hamstring Muscles: Case Series of Operative Treatment.

    PubMed

    Lempainen, Lasse; Kosola, Jussi; Pruna, Ricard; Puigdellivol, Jordi; Sarimo, Janne; Niemi, Pekka; Orava, Sakari

    2018-02-01

    As compared with injuries involving muscle only, those involving the central hamstring tendon have a worse prognosis. Limited information is available regarding the surgical treatment of central tendon injuries of the hamstrings. To describe the operative treatment and outcomes of central tendon injuries of the hamstrings among athletes. Case series; Level of evidence, 4. Eight athletes (6 top level, 2 recreational) with central hamstring tendon injuries underwent magnetic resonance imaging and surgical treatment. The indication for surgery was recurrent (n = 6) or acute (n = 2) central hamstring tendon injury. All patients followed the same postoperative rehabilitation protocol, and return to play was monitored. Magnetic resonance imaging found a central tendon injury in all 3 hamstring muscles (long head of the biceps femoris, semimembranosus, and semitendinosus) with disrupted tendon ends. In acute and recurrent central tendon injuries, full return to play was achieved at 2.5 to 4 months. There were no adverse events during follow-up. Central tendon injuries of the hamstrings can be successfully repaired surgically after acute and recurrent ruptures.

  11. Postinjury biomechanics of Achilles tendon vary by sex and hormone status

    PubMed Central

    Fryhofer, George W.; Freedman, Benjamin R.; Hillin, Cody D.; Salka, Nabeel S.; Pardes, Adam M.; Weiss, Stephanie N.; Farber, Daniel C.

    2016-01-01

    Achilles tendon ruptures are common injuries. Sex differences are present in mechanical properties of uninjured Achilles tendon, but it remains unknown if these differences extend to tendon healing. We hypothesized that ovariectomized females (OVX) and males would exhibit inferior postinjury tendon properties compared with females. Male, female, and OVX Sprague-Dawley rats (n = 32/group) underwent acclimation and treadmill training before blunt transection of the Achilles tendon midsubstance. Injured hindlimbs were immobilized for 1 wk, followed by gradual return to activity and assessment of active and passive hindlimb function. Animals were euthanized at 3 or 6 wk postinjury to assess tendon structure, mechanics, and composition. Passive ankle stiffness and range of motion were superior in females at 3 wk; however, by 6 wk, passive and active function were similar in males and females but remained inferior in OVX. At 6 wk, female tendons had greater normalized secant modulus, viscoelastic behavior, and laxity compared with males. Normalized secant modulus, cross-sectional area and tendon glycosaminoglycan composition were inferior in OVX compared with females at 6 wk. Total fatigue cycles until tendon failure were similar among groups. Postinjury muscle fiber size was better preserved in females compared with males, and females had greater collagen III at the tendon injury site compared with males at 6 wk. Despite male and female Achilles tendons withstanding similar durations of fatigue loading, early passive hindlimb function and tendon mechanical properties, including secant modulus, suggest superior healing in females. Ovarian hormone loss was associated with inferior Achilles tendon healing. PMID:27633741

  12. The effect of mechanical stimulation on the maturation of TDSCs-poly(L-lactide-co-e-caprolactone)/collagen scaffold constructs for tendon tissue engineering.

    PubMed

    Xu, Yuan; Dong, Shiwu; Zhou, Qiang; Mo, Xiumei; Song, Lei; Hou, Tianyong; Wu, Jinglei; Li, Songtao; Li, Yudong; Li, Pei; Gan, Yibo; Xu, Jianzhong

    2014-03-01

    Mechanical stimulation plays an important role in the development and remodeling of tendons. Tendon-derived stem cells (TDSCs) are an attractive cell source for tendon injury and tendon tissue engineering. However, these cells have not yet been fully explored for tendon tissue engineering application, and there is also lack of understanding to the effect of mechanical stimulation on the maturation of TDSCs-scaffold construct for tendon tissue engineering. In this study, we assessed the efficacy of TDSCs in a poly(L-lactide-co-ε-caprolactone)/collagen (P(LLA-CL)/Col) scaffold under mechanical stimulation for tendon tissue engineering both in vitro and in vivo, and evaluated the utility of the transplanted TDSCs-scaffold construct to promote rabbit patellar tendon defect regeneration. TDSCs displayed good proliferation and positive expressed tendon-related extracellular matrix (ECM) genes and proteins under mechanical stimulation in vitro. After implanting into the nude mice, the fluorescence imaging indicated that TDSCs had long-term survival, and the macroscopic evaluation, histology and immunohistochemistry examinations showed high-quality neo-tendon formation under mechanical stimulation in vivo. Furthermore, the histology, immunohistochemistry, collagen content assay and biomechanical testing data indicated that dynamically cultured TDSCs-scaffold construct could significantly contributed to tendon regeneration in a rabbit patellar tendon window defect model. TDSCs have significant potential to be used as seeded cells in the development of tissue-engineered tendons, which can be successfully fabricated through seeding of TDSCs in a P(LLA-CL)/Col scaffold followed by mechanical stimulation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Informing Stem Cell-Based Tendon Tissue Engineering Approaches with Embryonic Tendon Development.

    PubMed

    Okech, William; Kuo, Catherine K

    Adult tendons fail to regenerate normal tissue after injury, and instead form dysfunctional scar tissue with abnormal mechanical properties. Surgical repair with grafts is the current standard to treat injuries, but faces significant limitations including pain and high rates of re-injury. To address this, we aim to regenerate new, normal tendons to replace dysfunctional tendons. A common approach to tendon tissue engineering is to design scaffolds and bioreactors based on adult tendon properties that can direct adult stem cell tenogenesis. Despite significant progress, advances have been limited due, in part, to a need for markers and potent induction cues. Our goal is to develop novel tendon tissue engineering approaches informed by embryonic tendon development. We are characterizing structure-property relationships of embryonic tendon to identify design parameters for three-dimensional scaffolds and bioreactor mechanical loading systems to direct adult stem cell tenogenesis. We will review studies in which we quantified changes in the mechanical and biochemical properties of tendon during embryonic development and elucidated specific mechanisms of functional property elaboration. We then examined the effects of these mechanical and biochemical factors on embryonic tendon cell behavior. Using custom-designed bioreactors, we also examined the effects of dynamic mechanical loading and growth factor treatment on embryonic tendon cells. Our findings have established cues to induce tenogenesis as well as metrics to evaluate differentiation. We finish by discussing how we have evaluated the tenogenic differentiation potential of adult stem cells by comparing their responses to that of embryonic tendon cells in these culture systems.

  14. Tendon material properties vary and are interdependent among turkey hindlimb muscles

    PubMed Central

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P.; Roberts, Thomas J.

    2012-01-01

    SUMMARY The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress–strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r2=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity. PMID:22771746

  15. Tendon material properties vary and are interdependent among turkey hindlimb muscles.

    PubMed

    Matson, Andrew; Konow, Nicolai; Miller, Samuel; Konow, Pernille P; Roberts, Thomas J

    2012-10-15

    The material properties of a tendon affect its ability to store and return elastic energy, resist damage, provide mechanical feedback and amplify or attenuate muscle power. While the structural properties of a tendon are known to respond to a variety of stimuli, the extent to which material properties vary among individual muscles remains unclear. We studied the tendons of six different muscles in the hindlimb of Eastern wild turkeys to determine whether there was variation in elastic modulus, ultimate tensile strength and resilience. A hydraulic testing machine was used to measure tendon force during quasi-static lengthening, and a stress-strain curve was constructed. There was substantial variation in tendon material properties among different muscles. Average elastic modulus differed significantly between some tendons, and values for the six different tendons varied nearly twofold, from 829±140 to 1479±106 MPa. Tendons were stretched to failure, and the stress at failure, or ultimate tensile stress, was taken as a lower-limit estimate of tendon strength. Breaking tests for four of the tendons revealed significant variation in ultimate tensile stress, ranging from 66.83±14.34 to 112.37±9.39 MPa. Resilience, or the fraction of energy returned in cyclic length changes was generally high, and one of the four tendons tested was significantly different in resilience from the other tendons (range: 90.65±0.83 to 94.02±0.71%). An analysis of correlation between material properties revealed a positive relationship between ultimate tensile strength and elastic modulus (r(2)=0.79). Specifically, stiffer tendons were stronger, and we suggest that this correlation results from a constrained value of breaking strain, which did not vary significantly among tendons. This finding suggests an interdependence of material properties that may have a structural basis and may explain some adaptive responses observed in studies of tendon plasticity.

  16. [Clinical application of peroneal muscles tendon transposition in repair of Achilles tendon rupture].

    PubMed

    Jin, Rihao; Jin, Yu; Fang, Xiulin

    2006-07-01

    To discuss applied anatomy, biomechanics and surgical procedures of long peroneal muscles tendon transposition in repair of occlusive achilles tendon rupture. The blood supply and the morphology of long peroneal muscles tendon were observed in the lower extremity of 50 sides adult specimens and the mechanical tests which stretch load on the tendon were carried out. The methods were designed on the basis of the anatomical characteristics and morphology. Ten patients suffering occlusive Achilles tendon rupture were treated by using long peroneal muscles tendon transposition from March 2001 to July 2004. Among 10 patients, there were 7 males and 3 females, aging 32 to 54 years including 6 cases of jump injury, 2 cases of bruise, 1 case of step vacancy and 1 case of spontaneity injury. The interval between injury and surgery was 6 hours to 7 days in 7 fresh rupture and 21 days to 3 months in 3 old rupture. All cases belonged to occlusive Achilles tendon rupture (8 cases of complete rupture and 2 cases of incomplete rupture). The origin of long peroneal muscles was proximal tibia and fibular head, the end of them was base of first metatarsal bones and medial cuboid. The length of tendon was 13.5 +/- 2.5 cm. The width of origin tendon was 0.9 +/- 0.2 cm and the thickness was 0.3 +/- 0.1 cm; the width on apex of lateral malleolus was 0.7 +/- 0.1 cm and the thickness was 0.4 +/- 0.1 cm, the width on head of cuboid was 0.7 +/- 0.1 cm and the thickness was 0.3 +/- 0.1 cm. The long peroneal muscles tendon had abundant blood supply. The results of mechanical test showed that the biggest load was 2,292.4 +/- 617.3 N on tendon calcaneus, 1,020.4 +/- 175.4 N on long peroneal muscles tendon, 752.0 +/- 165.4 N on peroneus brevis tendon and 938.2 +/- 216.7 N on tibialis posterior tendon. Ten cases of occlusive Achilles tendon rupture achieved healing by first intention and were followed up 18-24 months. No Achilles tendon re-rupture, necrosis of skin or other complications occurred. According to Amerind-holm criterion for curative results, the results were excellent in 7 cases and good in 3 cases and the excellent and good rate was 100%. The long peroneal muscles tendon transposition is a perfect and simple way to repair occlusive Achilles tendon rupture.

  17. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts.

    PubMed

    Wu, J H; Thoreson, A R; Gingery, A; An, K N; Moran, S L; Amadio, P C; Zhao, C

    2017-03-01

    The present study describes a novel technique for revitalising allogenic intrasynovial tendons by combining cell-based therapy and mechanical stimulation in an ex vivo canine model. Specifically, canine flexor digitorum profundus tendons were used for this study and were divided into the following groups: (1) untreated, unprocessed normal tendon; (2) decellularised tendon; (3) bone marrow stromal cell (BMSC)-seeded tendon; and (4) BMSC-seeded and cyclically stretched tendon. Lateral slits were introduced on the tendon to facilitate cell seeding. Tendons from all four study groups were distracted by a servohydraulic testing machine. Tensile force and displacement data were continuously recorded at a sample rate of 20 Hz until 200 Newton of force was reached. Before testing, the cross-sectional dimensions of each tendon were measured with a digital caliper. Young's modulus was calculated from the slope of the linear region of the stress-strain curve. The BMSCs were labeled for histological and cell viability evaluation on the decellularized tendon scaffold under a confocal microscope. Gene expression levels of selected extracellular matrix tendon growth factor genes were measured. Results were reported as mean ± SD and data was analyzed with one-way ANOVAs followed by Tukey's post hoc multiple-comparison test. We observed no significant difference in cross-sectional area or in Young's modulus among the four study groups. In addition, histological sections showed that the BMSCs were aligned well and viable on the tendon slices after two-week culture in groups three and four. Expression levels of several extracellular matrix tendon growth factors, including collagen type I, collagen type III, and matrix metalloproteinase were significantly higher in group four than in group three (p < 0.05). Lateral slits introduced into de-cellularised tendon is a promising method of delivery of BMSCs without compromising cell viability and tendon mechanical properties. In addition, mechanical stimulation of a cell-seeded tendon can promote cell proliferation and enhance expression of collagen types I and III in vitro . Cite this article: J. H. Wu, A. R. Thoreson, A. Gingery, K. N. An, S. L. Moran, P. C. Amadio, C. Zhao. The revitalisation of flexor tendon allografts with bone marrow stromal cells and mechanical stimulation: An ex vivo model revitalising flexor tendon allografts. Bone Joint Res 2017;6:179-185. DOI: 10.1302/2046-3758.63.BJR-2016-0207.R1. © 2017 Zhao et al.

  18. Reverse shoulder arthroplasty for massive rotator cuff tear: risk factors for poor functional improvement.

    PubMed

    Hartzler, Robert U; Steen, Brandon M; Hussey, Michael M; Cusick, Michael C; Cottrell, Benjamin J; Clark, Rachel E; Frankle, Mark A

    2015-11-01

    Some patients unexpectedly have poor functional improvement after reverse shoulder arthroplasty (RSA) for massive rotator cuff tear without glenohumeral arthritis. Our aim was to identify risk factors for this outcome. We also assessed the value of RSA for cases with poor functional improvement vs. The study was a retrospective case-control analysis for primary RSA performed for massive rotator cuff tear without glenohumeral arthritis with minimum 2-year follow-up. Cases were defined as Simple Shoulder Test (SST) score improvement of ≤1, whereas controls improved SST score ≥2. Risk factors were chosen on the basis of previous association with poor outcomes after shoulder arthroplasty. Latissimus dorsi tendon transfer results were analyzed as a subgroup. Value was defined as improvement in American Shoulder and Elbow Surgeons (ASES) score per $10,000 hospital cost. In a multivariate binomial logistic regression analysis, neurologic dysfunction (P = .006), age <60 years (P = .02), and high preoperative SST score (P = .03) were independently associated with poor functional improvement. Latissimus dorsi tendon transfer patients significantly improved in active external rotation (-0.3° to 38.7°; P < .01). The value of RSA (ΔASES/$10,000 cost) for cases was 0.8 compared with 17.5 for controls (P < .0001). Young age, high preoperative function, and neurologic dysfunction were associated with poor functional improvement. Surgeons should consider these associations in counseling and selection of patients. Concurrent latissimus dorsi transfer was successful in restoring active external rotation in a subgroup of patients. The critical economic importance of improved patient selection is emphasized by the very low value of the procedure in the case group. Copyright © 2015 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  19. Lengthening osteotomy of the calcaneus and flexor digitorum longus tendon transfer in flexible flatfoot deformity improves talo-1st metatarsal-Index, clinical outcome and pedographic parameter.

    PubMed

    Richter, Martinus; Zech, Stefan

    2013-03-01

    Lengthening osteotomy of the calcaneus (LO) and flexor digitorum longus tendon (FDL) transfer to the navicular is one option for the treatment of flexible flatfoot deformity (FD). The aim of the study was to analyse the amount of correction and clinical outcome including pedographic assessment. In a prospective consecutive non-controlled clinical followup study, all patients with FD that were treated with LO and FDL from September 1st 2006 to August 31st, 2009 were included. Assessment was performed before surgery and at 2-year-followup including clinical examination (with staging of posterior tibialis insufficiency) weight bearing radiographs (Talo-1st metatarsal angles (TMT)), pedography (increased midfoot contact area and force) and Visual Analogue Scale Foot and Ankle (VAS FA). 112 feet in 102 patients were analysed (age, 57.6 (13-82), 42% male). In 12 feet (9%) wound healing delay without further surgical measures was registered. All patients achieved full weight bearing during the 7th postoperative week. Until followup, revision surgery was done in 3 patients (fusion calcaneocuboid joint (n=2), correction triple arthrodesis (n=1)). 101 feet (90%) completed 2-year-followup. TMT dorsoplantar/lateral/Index and VAS FA scores were increased, and posterior tibialis insufficiency stage, pedographic midfoot contact area and force percentage were decreased (each p<.05). All relevant parameters (stage of posterior tibialis insufficiency, TMT angles and Index, pedographic midfoot contact area and force percentage, VAS FA) were improved 2 years after LO and FDL transfer to the navicular in FD. The complication rate was low. This method allows safe and predictable correction. Copyright © 2012 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  20. Functional status and failed rotator cuff repair predict outcomes after arthroscopic-assisted latissimus dorsi transfer for irreparable massive rotator cuff tears.

    PubMed

    Castricini, Roberto; De Benedetto, Massimo; Familiari, Filippo; De Gori, Marco; De Nardo, Pasquale; Orlando, Nicola; Gasparini, Giorgio; Galasso, Olimpio

    2016-04-01

    Arthroscopic-assisted latissimus dorsi tendon transfer (LDTT) has been recently introduced for treatment of irreparable, posterosuperior massive rotator cuff tears. We sought to evaluate the functional outcomes of this technique and to check for possible outcome predictors. The study reviewed 86 patients (aged 59.8 ± 5.9 years) who underwent an arthroscopic-assisted latissimus dorsi tendon transfer after 36.4 ± 9 months of follow-up. Of these, 14 patients (16.3%) sustained an irreparable massive rotator cuff tear after a failed arthroscopic rotator cuff repair. The Constant and Murley score (CMS) was used to assess patients' functionality preoperatively and at follow-up. As a group, the CMS improved with surgery from 35.5 ± 6.1 to 69.5 ± 12.3 (P < .001). A lower preoperative CMS and a previous failed rotator cuff repair resulted in lower postoperative range of motion (P = .044 and P = .007, respectively) and CMS (P = .042 and P = .018, respectively). A previous rotator cuff repair resulted in lower satisfaction with surgery (P = .009). Gender and age did not affect the clinical outcomes. Our results support the effectiveness of arthroscopic-assisted LDTT in the treatment of patients with an irreparable, posterosuperior massive rotator cuff tears in pain relief, functional recovery, and postoperative satisfaction. Patients with lower preoperative CMS and a history of failed rotator cuff repair have a greater likelihood of having a lower clinical result. However, the favorable values of summary postoperative scores do not exclude these patients as candidates for arthroscopic-assisted LDTT. Copyright © 2016 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  1. The Role of Mechanical Loading in Tendon Development, Maintenance, Injury, and Repair

    PubMed Central

    Galloway, Marc T.; Lalley, Andrea L.; Shearn, Jason T.

    2013-01-01

    ➤ Tendon injuries often result from excessive or insufficient mechanical loading, impairing the ability of the local tendon cell population to maintain normal tendon function. ➤ The resident cell population composing tendon tissue is mechanosensitive, given that the cells are able to alter the extracellular matrix in response to modifications of the local loading environment. ➤ Natural tendon healing is insufficient, characterized by improper collagen fibril diameter formation, collagen fibril distribution, and overall fibril misalignment. ➤ Current tendon repair rehabilitation protocols focus on implementing early, well-controlled eccentric loading exercises to improve repair outcome. ➤ Tissue engineers look toward incorporating mechanical loading regimens to precondition cell populations for the creation of improved biological augmentations for tendon repair. PMID:24005204

  2. Lipids, adiposity and tendinopathy: is there a mechanistic link? Critical review

    PubMed Central

    Scott, Alex; Zwerver, Johannes; Grewal, Navi; de Sa, Agnetha; Alktebi, Thuraya; Granville, David J; Hart, David A

    2015-01-01

    Being overweight or obese is associated with an elevated risk of tendon pathology. However, for sportspeople the epidemiological data linking weight or adiposity on one hand, and risk of tendon pathology on the other, are less consistent. Indeed, the mechanistic links between diet, adiposity and tendon pathology remain largely unexamined. Recent studies have begun to examine the effects of dietary interventions on outcomes such as tendon biomechanics or pain. Oxidised low-density lipoprotein has been shown to (A) accumulate in the tendon tissues of mice that eat a fatty diet and (B) induce a pathological phenotype in human tendon cells. This paper addresses the current debate: is excessive body mass index (causing increased load and strain on tendon tissue) per se the underlying mechanism? Or do local or systemic influences of fat on tendons predispose to tendon pathology? This narrative review argues that excessive blood lipids may be an important avenue for clinical investigations. PMID:25488953

  3. Therapeutics for tendon regeneration: a multidisciplinary review of tendon research for improved healing.

    PubMed

    Paredes, J J; Andarawis-Puri, Nelly

    2016-11-01

    Tendon injuries, known as tendinopathies, are common musculoskeletal injuries that affect a wide range of the population. Canonical tendon healing is characterized by fibrosis, scar formation, and the loss of tissue mechanical and structural properties. Understanding the regenerative tendon environment is an area of increasing interest in the field of musculoskeletal research. Previous studies have focused on utilizing individual elements from the fields of biomechanics, developmental biology, cell and growth factor therapy, and tissue engineering in an attempt to develop regenerative tendon therapeutics. Still, the specific mechanism for regenerative healing remains unknown. In this review, we highlight some of the current approaches of tendon therapeutics and elucidate the differences along the tendon midsubstance and enthesis, exhibiting the necessity of location-specific tendon therapeutics. Furthermore, we emphasize the necessity of further interdisciplinary research in order to reach the desired goal of fully understanding the mechanisms underlying regenerative healing. © 2016 New York Academy of Sciences.

  4. Robot Arm with Tendon Connector Plate and Linear Actuator

    NASA Technical Reports Server (NTRS)

    Bridgwater, Lyndon (Inventor); Millerman, Alexander (Inventor); Ihrke, Chris A. (Inventor); Diftler, Myron A. (Inventor); Nguyen, Vienny (Inventor)

    2014-01-01

    A robotic system includes a tendon-driven end effector, a linear actuator, a flexible tendon, and a plate assembly. The linear actuator assembly has a servo motor and a drive mechanism, the latter of which translates linearly with respect to a drive axis of the servo motor in response to output torque from the servo motor. The tendon connects to the end effector and drive mechanism. The plate assembly is disposed between the linear actuator assembly and the tendon-driven end effector and includes first and second plates. The first plate has a first side that defines a boss with a center opening. The second plate defines an accurate through-slot having tendon guide channels. The first plate defines a through passage for the tendon between the center opening and a second side of the first plate. A looped end of the flexible tendon is received within the tendon guide channels.

  5. Peroneal tendon pathology: Pre- and post-operative high resolution US and MR imaging.

    PubMed

    Kumar, Yogesh; Alian, Ali; Ahlawat, Shivani; Wukich, Dane K; Chhabra, Avneesh

    2017-07-01

    Peroneal tendon pathology is an important cause of lateral ankle pain and instability. Typical peroneal tendon disorders include tendinitis, tenosynovitis, partial and full thickness tendon tears, peroneal retinacular injuries, and tendon subluxations and dislocations. Surgery is usually indicated when conservative treatment fails. Familiarity with the peroneal tendon surgeries and expected postoperative imaging findings is essential for accurate assessment and to avoid diagnostic pitfalls. Cross-sectional imaging, especially ultrasound and MRI provide accurate pre-operative and post-operative evaluation of the peroneal tendon pathology. In this review article, the normal anatomy, clinical presentation, imaging features, pitfalls and commonly performed surgical treatments for peroneal tendon abnormalities will be reviewed. The role of dynamic ultrasound and kinematic MRI for the evaluation of peroneal tendons will be discussed. Normal and abnormal postsurgical imaging appearances will be illustrated. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Mechanisms of tendon injury and repair

    PubMed Central

    Thomopoulos, Stavros; Parks, William C.; Rifkin, Daniel B.; Derwin, Kathleen A.

    2015-01-01

    Tendon disorders are common and lead to significant disability, pain, healthcare cost, and lost productivity. A wide range of injury mechanisms exist leading to tendinopathy or tendon rupture. Tears can occur in healthy tendons that are acutely overloaded (e.g., during a high speed or high impact event) or lacerated (e.g., a knife injury). Tendinitis or tendinosis can occur in tendons exposed to overuse conditions (e.g., an elite swimmer’s training regimen) or intrinsic tissue degeneration (e.g., age-related degeneration). The healing potential of a torn or pathologic tendon varies depending on anatomic location (e.g., Achilles vs. rotator cuff) and local environment (e.g., intrasynovial vs. extrasynovial). Although healing occurs to varying degrees, in general healing of repaired tendons follows the typical wound healing course, including an early inflammatory phase, followed by proliferative and remodeling phases. Numerous treatment approaches have been attempted to improve tendon healing, including growth factor- and cell-based therapies and rehabilitation protocols. This review will describe the current state of knowledge of injury and repair of the three most common tendinopathies-- flexor tendon lacerations, Achilles tendon rupture, and rotator cuff disorders-- with a particular focus on the use of animal models for understanding tendon healing. PMID:25641114

  7. Neuronal regulation of tendon homoeostasis

    PubMed Central

    Ackermann, Paul W

    2013-01-01

    The regulation of tendon homoeostasis, including adaptation to loading, is still not fully understood. Accumulating data, however, demonstrates that in addition to afferent (sensory) functions, the nervous system, via efferent pathways which are associated with through specific neuronal mediators plays an active role in regulating pain, inflammation and tendon homeostasis. This neuronal regulation of intact-, healing- and tendinopathic tendons has been shown to be mediated by three major groups of molecules including opioid, autonomic and excitatory glutamatergic neuroregulators. In intact healthy tendons the neuromediators are found in the surrounding structures: paratenon, endotenon and epitenon, whereas the proper tendon itself is practically devoid of neurovascular supply. This neuroanatomy reflects that normal tendon homoeostasis is regulated from the tendon surroundings. After injury and during tendon repair, however, there is extensive nerve ingrowth into the tendon proper, followed by a time-dependent emergence of sensory, autonomic and glutamatergic mediators, which amplify and fine-tune inflammation and regulate tendon regeneration. In tendinopathic condition, excessive and protracted presence of sensory and glutamatergic neuromediators has been identified, suggesting involvement in inflammatory, nociceptive and hypertrophic (degenerative) tissue responses. Under experimental and clinical conditions of impaired (e.g. diabetes) as well as excessive (e.g. tendinopathy) neuromediator release, dysfunctional tendon homoeostasis develops resulting in chronic pain and gradual degeneration. Thus there is a prospect that in the future pharmacotherapy and tissue engineering approaches targeting neuronal mediators and their receptors may prove to be effective therapies for painful, degenerative and traumatic tendon disorders. PMID:23718724

  8. Peroneal tendon displacement accompanying intra-articular calcaneal fractures.

    PubMed

    Toussaint, Rull James; Lin, Darius; Ehrlichman, Lauren K; Ellington, J Kent; Strasser, Nicholas; Kwon, John Y

    2014-02-19

    Peroneal tendon displacement (subluxation or dislocation) accompanying an intra-articular calcaneal fracture is often undetected and under-treated. The goals of this study were to determine (1) the prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures, (2) the association of tendon displacement with fracture classifications, (3) the association of tendon displacement with heel width, and (4) the rate of missed diagnosis of the tendon displacement on radiographs and computed tomography (CT) scans and the resulting treatment rate. A retrospective radiographic review of all calcaneal fractures presenting at three institutions from June 30, 2006, to June 30, 2011, was performed. CT imaging of 421 intra-articular calcaneal fractures involving the posterior facet was available for review. The prevalence of peroneal tendon displacement was noted and its associations with fracture classification and heel width were evaluated. Peroneal tendon displacement was identified in 118 (28.0%) of the 421 calcaneal fracture cases. The presence of tendon displacement was significantly associated with joint-depression fractures compared with tongue-type fractures (p < 0.001). Only twelve (10.2%) of the 118 cases of peroneal tendon displacement had been identified in the radiology reports. Although sixty-five (55.1%) of the fractures with tendon displacement had been treated with internal fixation, the tendon displacement was treated surgically in only seven (10.8%) of these cases. Analysis of CT images showed a 28% prevalence of peroneal tendon displacement accompanying intra-articular calcaneal fractures. Surgeons and radiologists are encouraged to consider this association.

  9. Using the zebrafish to understand tendon development and repair

    PubMed Central

    Chen, Jessica W.; Galloway, Jenna L.

    2017-01-01

    Tendons are important components of our musculoskeletal system. Injuries to these tissues are very common, resulting from occupational-related injuries, sports-related trauma, and age-related degeneration. Unfortunately, there are few treatment options, and current therapies rarely restore injured tendons to their original function. An improved understanding of the pathways regulating their development and repair would have significant impact in stimulating the formulation of regenerative-based approaches for tendon injury. The zebrafish provides an ideal system in which to perform genetic and chemical screens to identify new pathways involved in tendon biology. Until recently, there had been few descriptions of tendons and ligaments in the zebrafish and their similarity to mammalian tendon tissues. In this chapter, we describe the development of the zebrafish tendon and ligament tissues in the context of their gene expression, structure, and interactions with neighboring musculoskeletal tissues. We highlight the similarities with tendon development in higher vertebrates, showing that the craniofacial tendons and ligaments in zebrafish morphologically, molecularly, and structurally resemble mammalian tendons and ligaments from embryonic to adult stages. We detail methods for fluorescent in situ hybridization and immunohistochemistry as an assay to examine morphological changes in the zebrafish musculoskeleton. Staining assays such as these could provide the foundation for screen-based approaches to identify new regulators of tendon development, morphogenesis, and repair. These discoveries would provide new targets and pathways to study in the context of regenerative medicine-based approaches to improve tendon healing. PMID:28129848

  10. Continuous Shear Wave Elastography: a New Method to Measure in-vivo Viscoelastic Properties of Tendons

    PubMed Central

    Cortes, Daniel H.; Suydam, Stephen M.; Silbernagel, Karin Grävare; Buchanan, Thomas S.; Elliott, Dawn M.

    2015-01-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study are to present an elastography method to measure localized viscoelastic properties of tendon and to present initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction specific wave speeds were calculated using Local Frequency Estimation. Maps of viscoelastic properties were obtained using a pixel wise curve-fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels to those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as function of frequency that highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon showed that it is feasible to quantify local viscoeasltic properties. Similarly, measurement in the semitendinosus tendon showed a substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential of evaluating localized changes in tendon viscoelastic properties due to injury and during recovery in a clinical setting. PMID:25796414

  11. An Overview of the Management of Flexor Tendon Injuries

    PubMed Central

    Griffin, M; Hindocha, S; Jordan, D; Saleh, M; Khan, W

    2012-01-01

    Flexor tendon injuries still remain a challenging condition to manage to ensure optimal outcome for the patient. Since the first flexor tendon repair was described by Kirchmayr in 1917, several approaches to flexor tendon injury have enabled successful repairs rates of 70-90%. Primary surgical repair results in better functional outcome compared to secondary repair or tendon graft surgery. Flexor tendon injury repair has been extensively researched and the literature demonstrates successful repair requires minimal gapping at the repair site or interference with tendon vascularity, secure suture knots, smooth junction of tendon end and having sufficient strength for healing. However, the exact surgical approach to achieve success being currently used among surgeons is still controversial. Therefore, this review aims to discuss the results of studies demonstrating the current knowledge regarding the optimal approach for flexor tendon repair. Post-operative rehabilitation for flexor tendon surgery is another area, which has caused extensive debate in hand surgery. The trend to more active mobilisation protocols seems to be favoured but further study in this area is needed to find the protocol, which achieves function and gliding but avoids rupture of the tendons. Lastly despite success following surgery complications commonly still occur post surgery, including adhesion formation, tendon rupture and stiffness of the joints. Therefore, this review aims to discuss the appropriate management of these difficulties post surgery. New techniques in management of flexor tendon will also be discussed including external laser devices, addition of growth factors and cytokines. PMID:22431948

  12. Effect of Implanting a Soft Tissue Autograft in a Central-Third Patellar Tendon Defect: Biomechanical and Histological Comparisons

    PubMed Central

    Kinneberg, Kirsten R. C.; Galloway, Marc T.; Butler, David L.; Shearn, Jason T.

    2011-01-01

    Previous studies by our laboratory have demonstrated that implanting a stiffer tissue engineered construct at surgery is positively correlated with repair tissue stiffness at 12 weeks. The objective of this study was to test this correlation by implanting a construct that matches normal tissue biomechanical properties. To do this, we utilized a soft tissue patellar tendon autograft to repair a central-third patellar tendon defect. Patellar tendon auto-graft repairs were contrasted against an unfilled defect repaired by natural healing (NH). We hypothesized that after 12 weeks, patellar tendon autograft repairs would have biomechanical properties superior to NH. Bilateral defects were established in the central-third patellar tendon of skeletally mature (one year old), female New Zealand White rabbits (n = 10). In one limb, the excised tissue, the patellar tendon autograft, was sutured into the defect site. In the contralateral limb, the defect was left empty (natural healing). After 12 weeks of recovery, the animals were euthanized and their limbs were dedicated to bio-mechanical (n = 7) or histological (n = 3) evaluations. Only stiffness was improved by treatment with patellar tendon autograft relative to natural healing (p = 0.009). Additionally, neither the patellar tendon autograft nor natural healing repairs regenerated a normal zonal insertion site between the tendon and bone. Immunohistochemical staining for collagen type II demonstrated that fibrocartilage-like tissue was regenerated at the tendon-bone interface for both repairs. However, the tissue was disorganized. Insufficient tissue integration at the tendon-to-bone junction led to repair tissue failure at the insertion site during testing. It is important to re-establish the tendon-to-bone insertion site because it provides joint stability and enables force transmission from muscle to tendon and subsequent loading of the tendon. Without loading, tendon mechanical properties deteriorate. Future studies by our laboratory will investigate potential strategies to improve patellar tendon autograft integration into bone using this model. [DOI: 10.1115/1.4004948] PMID:22010737

  13. The promoting effect of pentadecapeptide BPC 157 on tendon healing involves tendon outgrowth, cell survival, and cell migration.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Lin, Miao-Sui; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2011-03-01

    Pentadecapeptide BPC 157, composed of 15 amino acids, is a partial sequence of body protection compound (BPC) that is discovered in and isolated from human gastric juice. Experimentally it has been demonstrated to accelerate the healing of many different wounds, including transected rat Achilles tendon. This study was designed to investigate the potential mechanism of BPC 157 to enhance healing of injured tendon. The outgrowth of tendon fibroblasts from tendon explants cultured with or without BPC 157 was examined. Results showed that BPC 157 significantly accelerated the outgrowth of tendon explants. Cell proliferation of cultured tendon fibroblasts derived from rat Achilles tendon was not directly affected by BPC 157 as evaluated by MTT assay. However, the survival of BPC 157-treated cells was significantly increased under the H(2)O(2) stress. BPC 157 markedly increased the in vitro migration of tendon fibroblasts in a dose-dependent manner as revealed by transwell filter migration assay. BPC 157 also dose dependently accelerated the spreading of tendon fibroblasts on culture dishes. The F-actin formation as detected by FITC-phalloidin staining was induced in BPC 157-treated fibroblasts. The protein expression and activation of FAK and paxillin were determined by Western blot analysis, and the phosphorylation levels of both FAK and paxillin were dose dependently increased by BPC 157 while the total amounts of protein was unaltered. In conclusion, BPC 157 promotes the ex vivo outgrowth of tendon fibroblasts from tendon explants, cell survival under stress, and the in vitro migration of tendon fibroblasts, which is likely mediated by the activation of the FAK-paxillin pathway.

  14. Partial supraspinatus tears are associated with tendon lengthening.

    PubMed

    Farshad-Amacker, Nadja A; Buck, Florian M; Farshad, Mazda; Pfirrmann, Christian W A; Gerber, Christian

    2015-02-01

    Tendon tear may result in muscular retraction with the loss of contractile amplitude and strength of the rotator cuff muscles. Currently, neither a validated method of measuring supraspinatus tendon length nor normal values are known. It was therefore the purpose of this study to measure the normal length of the supraspinatus tendon and to determine whether partial tears are associated with changes in tendon length. MR examinations of 49 asymptomatic volunteers and 37 patients with arthroscopically proven, isolated partial tears of the supraspinatus tendon were compared. The ratio of the extramuscular tendon length to the distance between the footprint and the glenoid surface was calculated (TL/FG ratio). Tendon length measurements were taken by two independent readers at the bursal and articular surfaces at the anterior, the central and the posterior parts of the tendon. TL/FG ratios at the bursal surface of tendons with partial tears were significantly higher than those in the control group [anterior: 0.78 ± 0.20 vs. 0.66 ± 0.15 (p < 0.05); central: 0.61 ± 0.13 vs. 0.52 ± 0.10 (p < 0.05); posterior: 0.57 ± 0.15 vs. 0.52 ± 0.10 (p < 0.05)]. At the articular surface, differences were significant only anteriorly [0.60 ± 0.13, vs. 0.54 ± 0.10 (p < 0.05)]. A cut-off TL/FG ratio of 0.63 for measurements at the bursal surface in the center of the tendon achieved a sensitivity of 46 % and a specificity of 92 % for the identification of partial cuff tearing. A reproducible method for measurement of extramuscular supraspinatus tendon length is described. Partial tearing of the supraspinatus tendon is associated with significant tendon lengthening, suggesting failure in continuity, and this is most reliably measured on the bursal surface. III.

  15. Tendon Reattachment to Bone in an Ovine Tendon Defect Model of Retraction Using Allogenic and Xenogenic Demineralised Bone Matrix Incorporated with Mesenchymal Stem Cells.

    PubMed

    Thangarajah, Tanujan; Shahbazi, Shirin; Pendegrass, Catherine J; Lambert, Simon; Alexander, Susan; Blunn, Gordon W

    2016-01-01

    Tendon-bone healing following rotator cuff repairs is mainly impaired by poor tissue quality. Demineralised bone matrix promotes healing of the tendon-bone interface but its role in the treatment of tendon tears with retraction has not been investigated. We hypothesized that cortical demineralised bone matrix used with minimally manipulated mesenchymal stem cells will result in improved function and restoration of the tendon-bone interface with no difference between xenogenic and allogenic scaffolds. In an ovine model, the patellar tendon was detached from the tibial tuberosity and a complete distal tendon transverse defect measuring 1 cm was created. Suture anchors were used to reattach the tendon and xenogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5), or allogenic demineralised bone matrix + minimally manipulated mesenchymal stem cells (n = 5) were used to bridge the defect. Graft incorporation into the tendon and its effect on regeneration of the enthesis was assessed using histomorphometry. Force plate analysis was used to assess functional recovery. Compared to the xenograft, the allograft was associated with significantly higher functional weight bearing at 6 (P = 0.047), 9 (P = 0.028), and 12 weeks (P = 0.009). In the allogenic group this was accompanied by greater remodeling of the demineralised bone matrix into tendon-like tissue in the region of the defect (p = 0.015), and a more direct type of enthesis characterized by significantly more fibrocartilage (p = 0.039). No failures of tendon-bone healing were noted in either group. Demineralised bone matrix used with minimally manipulated mesenchymal stem cells promotes healing of the tendon-bone interface in an ovine model of acute tendon retraction, with superior mechanical and histological results associated with use of an allograft.

  16. Response of tibialis anterior tendon to a chronic exposure of stretch-shortening cycles: age effects

    PubMed Central

    Ensey, James S; Hollander, Melinda S; Wu, John Z; Kashon, Michael L; Baker, Brent B; Cutlip, Robert G

    2009-01-01

    Background The purpose of the current study was to investigate the effects of aging on tendon response to repetitive exposures of stretch-shortening cycles (SSC's). Methods The left hind limb from young (3 mo, N = 4) and old (30 mo, N = 9) male Fisher 344 × Brown Norway rats were exposed to 80 maximal SSCs (60 deg/s, 50 deg range of motion) 3x/week for 4.5 weeks in vivo. After the last exposure, tendons from the tibialis anterior muscle were isolated, stored at -80°C, and then tested using a micro-mechanical testing machine. Deformation of each tendon was evaluated using both relative grip-to-grip displacements and reference marks via a video system. Results At failure, the young control tendons had higher strain magnitude than the young exposed (p < 0.01) and the old control tendons (p < .0001). Total load at inflection was affected by age only (p < 0.01). Old exposed and control tendons exhibited significantly higher loads at the inflection point than their young counterparts (p < 0.05 for both comparisons). At failure, the old exposed tendons carried higher loads than the young exposed tendons (p < 0.05). Stiffness was affected by age only at failure where the old tendons exhibited higher stiffness in both exposed and control tendons than their young counterparts (p < 0.05 and p < 0.01, respectively). Conclusion The chronic protocol enhanced the elastic stiffness of young tendon and the loads in both the young and old tendons. The old exposed tendons were found to exhibit higher load capacity than their younger counterparts, which differed from our initial hypothesis. PMID:19563638

  17. The biomechanical effects of limb lengthening and botulinum toxin type A on rabbit tendon.

    PubMed

    Olabisi, Ronke M; Best, Thomas M; Hurschler, Christof; Vanderby, Ray; Noonan, Kenneth J

    2010-12-01

    Numerous studies have examined the effects of distraction osteogenesis (DO) on bone, but relatively fewer have explored muscle adaptation, and even less have addressed the concomitant alterations that occur in the tendon. The purpose herein was to characterize the biomechanical properties of normal and elongated rabbit (N = 20) tendons with and without prophylactic botulinum toxin type A (BTX-A) treatment. Elastic and viscoelastic properties of Achilles and Tibialis anterior (TA) tendons were evaluated through pull to failure and stress relaxation tests. All TA tendons displayed nonlinear viscoelastic responses that were strain dependent. A power law formulation was used to model tendon viscoelastic responses and tendon elastic responses were fit with a microstructural model. Distraction-elongated tendons displayed increases in compliance and stress relaxation rates over undistracted tendons; BTX-A administration offset this result. The elastic moduli of distraction-lengthened TA tendons were diminished (p = 0.010) when distraction was combined with gastrocnemius (GA) BTX-A administration, elastic moduli were further decreased (p = 0.004) and distraction following TA BTX-A administration resulted in TA tendons with moduli not different from contralateral control (p > 0.05). Compared to contralateral control, distraction and GA BTX-A administration displayed shortened toe regions, (p = 0.031 and 0.038, respectively), while tendons receiving BTX-A in the TA had no differences in the toe region (p > 0.05). Ultimate tensile stress was unaltered by DO, but stress at the transition from the toe to the linear region of the stress-stretch curve was diminished in all distraction-elongated TA tendons (p < 0.05). The data suggest that prophylactic BTX-A treatment to the TA protects some tendon biomechanical properties. Copyright © 2010 Elsevier Ltd. All rights reserved.

  18. Comparison of a novel bone-tendon allograft with a human dermis-derived patch for repair of chronic large rotator cuff tears using a canine model.

    PubMed

    Smith, Matthew J; Cook, James L; Kuroki, Keiichi; Jayabalan, Prakash S; Cook, Cristi R; Pfeiffer, Ferris M; Waters, Nicole P

    2012-02-01

    This study tested a bone-tendon allograft versus human dermis patch for reconstructing chronic rotator cuff repair by use of a canine model. Mature research dogs (N = 15) were used. Radiopaque wire was placed in the infraspinatus tendon (IST) before its transection. Three weeks later, radiographs showed IST retraction. Each dog then underwent 1 IST treatment: debridement (D), direct repair of IST to bone with a suture bridge and human dermis patch augmentation (GJ), or bone-tendon allograft (BT) reconstruction. Outcome measures included lameness grading, radiographs, and ultrasonographic assessment. Dogs were killed 6 months after surgery and both shoulders assessed biomechanically and histologically. BT dogs were significantly (P = .01) less lame than the other groups. BT dogs had superior bone-tendon, tendon, and tendon-muscle integrity compared with D and GJ dogs. Biomechanical testing showed that the D group had significantly (P = .05) more elongation than the other groups whereas BT had stiffness and elongation characteristics that most closely matched normal controls. Radiographically, D and GJ dogs showed significantly more retraction than BT dogs (P = .003 and P = .045, respectively) Histologically, GJ dogs had lymphoplasmacytic infiltrates, tendon degeneration and hypocellularity, and poor tendon-bone integration. BT dogs showed complete incorporation of allograft bone into host bone, normal bone-tendon junctions, and well-integrated allograft tendon. The bone-tendon allograft technique re-establishes a functional IST bone-tendon-muscle unit and maintains integrity of repair in this model. Clinical trials using this bone-tendon allograft technique are warranted. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. Functional tissue engineering of tendon: Establishing biological success criteria for improving tendon repair.

    PubMed

    Breidenbach, Andrew P; Gilday, Steven D; Lalley, Andrea L; Dyment, Nathaniel A; Gooch, Cynthia; Shearn, Jason T; Butler, David L

    2014-06-27

    Improving tendon repair using Functional Tissue Engineering (FTE) principles has been the focus of our laboratory over the last decade. Although our primary goals were initially focused only on mechanical outcomes, we are now carefully assessing the biological properties of our tissue-engineered tendon repairs so as to link biological influences with mechanics. However, given the complexities of tendon development and healing, it remains challenging to determine which aspects of tendon biology are the most important to focus on in the context of tissue engineering. To address this problem, we have formalized a strategy to identify, prioritize, and evaluate potential biological success criteria for tendon repair. We have defined numerous biological properties of normal tendon relative to cellular phenotype, extracellular matrix and tissue ultra-structure that we would like to reproduce in our tissue-engineered repairs and prioritized these biological criteria by examining their relative importance during both normal development and natural tendon healing. Here, we propose three specific biological criteria which we believe are essential for normal tendon function: (1) scleraxis-expressing cells; (2) well-organized and axially-aligned collagen fibrils having bimodal diameter distribution; and (3) a specialized tendon-to-bone insertion site. Moving forward, these biological success criteria will be used in conjunction with our already established mechanical success criteria to evaluate the effectiveness of our tissue-engineered tendon repairs. © 2013 Published by Elsevier Ltd.

  20. The Quadriga Effect Revisited: Designing a “Safety Incision” to Prevent Tendon Repair Rupture and Gap Formation in a Canine Model In Vitro

    PubMed Central

    Giambini, Hugo; Ikeda, Jun; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng

    2012-01-01

    Loss of experimental animals due to tendon repair failure results in the need for additional animals to complete the study. We designed a relief proximal to the flexor digitorum profundus (FDP) tendon repair site to serve as a “safety incision” to prevent repair site ruptures and maximize safety incision-to-suture strength. The FDP tendons were dissected in 24 canine forepaws. The 2nd and 5th tendons were lacerated at the proximal interphalangeal joint level and sutured using a modified Kessler technique and peripheral running suture. Tendon width was measured where the FDP tendon separates into each individual digit and a safety incision, equal to the 2nd and 5th tendon widths, was performed 3, 4, or 5 mm (Groups 1, 2, and 3) proximal to the separation. The tendons were pulled at a rate of 1 mm/s until either the “safety incision” ruptured or the repair failed. There was no gap formation at the repair site in Groups 1 and 2. However, all Group 3 tendons failed by repair site rupture with the safety incision intact. An adequate safety incision to protect repair gap and rupture and maintain tendon tension for the FDP animal model should be about 4 mm from where the FDP tendon separates. PMID:20872585

  1. Characterising the proximal patellar tendon attachment and its relationship to skeletal maturity in adolescent ballet dancers

    PubMed Central

    Rudavsky, Aliza; Cook, Jillianne; Magnusson, Stig Peter; Kjaer, Michael; Docking, Sean

    2017-01-01

    Summary Background It is unknown how and when the proximal attachment of the patellar tendon matures; puberty may be key in ensuring normal tendon formation. The aim of this study was to investigate the features of the proximal patellar tendon attachment at different stages of skeletal maturity, to help gain an understanding of how and when the tendon attachment matures. Methods Sixty adolescent elite ballet students (ages 11–18) and eight mature adults participated. Peak height velocity (PHV) estimated skeletal maturity. Ultrasound tissue characterisation (UTC) scan was taken of the left knee and analysed for stability of echopattern. An image-based grading scale for greyscale ultrasound was developed to describe the tendon appearance. Anterior-posterior thickness was measured at the inferior pole of the patella, 1 and 2 centimetres distally. Outcomes were compared with skeletal maturity. Results Mid-portion patellar tendon thickness increased with skeletal maturity (p=0.001 at 1 cm and p=0.007 at 2 cm). There was more variance in structural appearance (greyscale classification and UTC echopattern) in pre and peri-PHV participants. Tendon attachment one-year post PHV appeared similar to mature tendons. Conclusions Early adolescence was associated with highly variable tendon appearance, whereas the tendon appeared mature after PHV. Adolescence may be a critical time for the formation of normal tendon attachment. Level of evidence IIb individual cohort study. PMID:29264342

  2. Biomechanical Cadaveric Evaluation of Partial Acute Peroneal Tendon Tears.

    PubMed

    Wagner, Emilio; Wagner, Pablo; Ortiz, Cristian; Radkievich, Ruben; Palma, Felipe; Guzmán-Venegas, Rodrigo

    2018-06-01

    No clear guideline or solid evidence exists for peroneal tendon tears to determine when to repair, resect, or perform a tenodesis on the damaged tendon. The objective of this study was to analyze the mechanical behavior of cadaveric peroneal tendons artificially damaged and tested in a cyclic and failure mode. The hypothesis was that no failure would be observed in the cyclic phase. Eight cadaveric long leg specimens were tested on a specially designed frame. A longitudinal full thickness tendon defect was created, 3 cm in length, behind the tip of the fibula, compromising 66% of the visible width of the peroneal tendons. Cyclic testing was initially performed between 50 and 200 N, followed by a load-to-failure test. Tendon elongation and load to rupture were measured. No tendon failed or lengthened during cyclic testing. The mean load to failure for peroneus brevis was 416 N (95% confidence interval, 351-481 N) and for the peroneus longus was 723 N (95% confidence interval, 578-868 N). All failures were at the level of the defect created. In a cadaveric model of peroneal tendon tears, 33% of remaining peroneal tendon could resist high tensile forces, above the physiologic threshold. Some peroneal tendon tears can be treated conservatively without risking spontaneous ruptures. When surgically treating a symptomatic peroneal tendon tear, increased efforts may be undertaken to repair tears previously considered irreparable.

  3. Greater glycosaminoglycan content in human patellar tendon biopsies is associated with more pain and a lower VISA score.

    PubMed

    Attia, Mohamed; Scott, Alexander; Carpentier, Gilles; Lian, Oystein; Van Kuppevelt, Toin; Gossard, Camille; Papy-Garcia, Dulce; Tassoni, Marie-Claude; Martelly, Isabelle

    2014-03-01

    People with patellar tendinopathy experience chronic pain and activity limitation, but a pertinent biochemical marker correlated with these clinical features has not been identified. The Victoria Institute of Sport Assessment (VISA) questionnaire is a condition-specific patient-rated outcome measure. Since the quantity of glycosaminoglycans (GAGs) increases with advancing tendon pathology, we hypothesised that there would be a correlation between the quantity of GAGs in the patellar tendon and the VISA score. Tissue biopsies from athletes with chronic patellar tendinopathy (confirmed by clinical examination and MRI) were recruited (n=7), as well as controls with no history of knee pain (n=4). The quantity of sulphated GAGs in the human patellar tendons was determined with a dimethyl methylene blue (DMMB) assay; this method was first validated with rat tendon tissue. The extent and distribution of GAG species and proteoglycans (decorin, versican and aggrecan) in the human tendon biopsies were examined using immunohistochemistry. Greater sulphated GAG content of the patellar tendon was correlated with the greater tendon dysfunction (R(2)=0.798). The quantity of aggrecan in the tendon, a chondroitin sulphate-rich proteoglycan, also increased with advancing tendon pathology. Increased GAGs in the pathological human patellar tendon are related to a worse clinical status. These findings indicate that the VISA score reflects the extent of tendon tissue pathology.

  4. Central Tendon Injuries of Hamstring Muscles: Case Series of Operative Treatment

    PubMed Central

    Lempainen, Lasse; Kosola, Jussi; Pruna, Ricard; Puigdellivol, Jordi; Sarimo, Janne; Niemi, Pekka; Orava, Sakari

    2018-01-01

    Background: As compared with injuries involving muscle only, those involving the central hamstring tendon have a worse prognosis. Limited information is available regarding the surgical treatment of central tendon injuries of the hamstrings. Purpose: To describe the operative treatment and outcomes of central tendon injuries of the hamstrings among athletes. Study Design: Case series; Level of evidence, 4. Methods: Eight athletes (6 top level, 2 recreational) with central hamstring tendon injuries underwent magnetic resonance imaging and surgical treatment. The indication for surgery was recurrent (n = 6) or acute (n = 2) central hamstring tendon injury. All patients followed the same postoperative rehabilitation protocol, and return to play was monitored. Results: Magnetic resonance imaging found a central tendon injury in all 3 hamstring muscles (long head of the biceps femoris, semimembranosus, and semitendinosus) with disrupted tendon ends. In acute and recurrent central tendon injuries, full return to play was achieved at 2.5 to 4 months. There were no adverse events during follow-up. Conclusion: Central tendon injuries of the hamstrings can be successfully repaired surgically after acute and recurrent ruptures. PMID:29479545

  5. Bioreactor design for tendon/ligament engineering.

    PubMed

    Wang, Tao; Gardiner, Bruce S; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B; Wang, Allan; Xu, Jiake; Smith, David W; Lloyd, David G; Zheng, Ming H

    2013-04-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments.

  6. Bioreactor Design for Tendon/Ligament Engineering

    PubMed Central

    Wang, Tao; Gardiner, Bruce S.; Lin, Zhen; Rubenson, Jonas; Kirk, Thomas B.; Wang, Allan; Xu, Jiake

    2013-01-01

    Tendon and ligament injury is a worldwide health problem, but the treatment options remain limited. Tendon and ligament engineering might provide an alternative tissue source for the surgical replacement of injured tendon. A bioreactor provides a controllable environment enabling the systematic study of specific biological, biochemical, and biomechanical requirements to design and manufacture engineered tendon/ligament tissue. Furthermore, the tendon/ligament bioreactor system can provide a suitable culture environment, which mimics the dynamics of the in vivo environment for tendon/ligament maturation. For clinical settings, bioreactors also have the advantages of less-contamination risk, high reproducibility of cell propagation by minimizing manual operation, and a consistent end product. In this review, we identify the key components, design preferences, and criteria that are required for the development of an ideal bioreactor for engineering tendons and ligaments. PMID:23072472

  7. The prevalence and clinical significance of sonographic tendon abnormalities in asymptomatic ballet dancers: a 24-month longitudinal study.

    PubMed

    Comin, Jules; Cook, Jill L; Malliaras, Peter; McCormack, Moira; Calleja, Michelle; Clarke, Andrew; Connell, David

    2013-01-01

    Sonographic abnormalities of the achilles and patellar tendons are common findings in athletes, and tendinopathy is a common cause of pain and disability in athletes. However, it is unclear whether the sonographic changes are pathological or adaptive, or if they predict future injury. We undertook a cohort study to determine what sonographic features of the achilles and patellar tendons are consistent with changes as a result of ballet training, and which may be predictive of future development of disabling tendon symptoms. The achilles and patellar tendons of 79 (35 male, 44 female) professional ballet dancers (members of the English Royal Ballet) were examined with ultrasound, measuring proximal and distal tendon diameters and assessing for the presence of hypoechoic change, intratendon defects, calcification and neovascularity. All subjects were followed for 24 months for the development of patellar tendon or achilles-related pain or injury severe enough to require time off from dancing. Sonographic abnormalities were common among dancers, both male and female, and in both achilles and patellar tendons. Disabling tendon-related symptoms developed in 10 dancers and 14 tendons: 7 achilles (3 right, 4 left) and 7 patellar (2 right, 5 left). The presence of moderate or severe hypoechoic defects was weakly predictive for the development of future disabling tendon symptoms (p=0.0381); there was no correlation between any of the other sonographic abnormalities and the development of symptoms. There was no relationship between achilles or patellar tendons' diameter, either proximal or distal, with an increased likelihood of developing tendon-related disability. The presence of sonographic abnormalities is common in ballet dancers, but only the presence of focal hypoechoic changes predicts the development of future tendon-related disability. This suggests that screening of asymptomatic individuals may be of use in identifying those who are at higher risk of developing tendon-related disability, which may in turn allow targeted modifications of training or other preventative regimens.

  8. Optimization of human tendon tissue engineering: peracetic acid oxidation for enhanced reseeding of acellularized intrasynovial tendon.

    PubMed

    Woon, Colin Y L; Pridgen, Brian C; Kraus, Armin; Bari, Sina; Pham, Hung; Chang, James

    2011-03-01

    Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 10(6) cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.

  9. Effects of Increased Loading on In Vivo Tendon Properties: A Systematic Review

    PubMed Central

    WIESINGER, HANS-PETER; KÖSTERS, ALEXANDER; MÜLLER, ERICH; SEYNNES, OLIVIER R.

    2015-01-01

    ABSTRACT Introduction In vivo measurements have been used in the past two decades to investigate the effects of increased loading on tendon properties, yet the current understanding of tendon macroscopic changes to training is rather fragmented, limited to reports of tendon stiffening, supported by changes in material properties and/or tendon hypertrophy. The main aim of this review was to analyze the existing literature to gain further insights into tendon adaptations by extracting patterns of dose-response and time-course. Methods PubMed/Medline, SPORTDiscus, and Google Scholar databases were searched for studies examining the effect of training on material, mechanical, and morphological properties via longitudinal or cross-sectional designs. Results Thirty-five of 6440 peer-reviewed articles met the inclusion criteria. The key findings were i) the confirmation of a nearly systematic adaptation of tendon tissue to training, ii) the important variability in the observed changes in tendon properties between and within studies, and iii) the absence of a consistent incremental pattern regarding the dose-response or the time-course relation of tendon adaptation within the first months of training. However, long-term (years) training was associated with a larger tendon cross-sectional area, without any evidence of differences in material properties. Our analysis also highlighted several gaps in the existing literature, which may be addressed in future research. Conclusions In line with some cross-species observations about tendon design, tendon cross-sectional area allegedly constitutes the ultimate adjusting parameter to increased loading. We propose here a theoretical model placing tendon hypertrophy and adjustments in material properties as parts of the same adaptive continuum. PMID:25563908

  10. Continuous Shear Wave Elastography: A New Method to Measure Viscoelastic Properties of Tendons in Vivo.

    PubMed

    Cortes, Daniel H; Suydam, Stephen M; Silbernagel, Karin Grävare; Buchanan, Thomas S; Elliott, Dawn M

    2015-06-01

    Viscoelastic mechanical properties are frequently altered after tendon injuries and during recovery. Therefore, non-invasive measurements of shear viscoelastic properties may help evaluate tendon recovery and compare the effectiveness of different therapies. The objectives of this study were to describe an elastography method for measuring localized viscoelastic properties of tendons and to discuss the initial results in healthy and injured human Achilles and semitendinosus tendons. The technique used an external actuator to generate the shear waves in the tendon at different frequencies and plane wave imaging to measure shear wave displacements. For each of the excitation frequencies, maps of direction-specific wave speeds were calculated using local frequency estimation. Maps of viscoelastic properties were obtained using a pixel-wise curve fit of wave speed and frequency. The method was validated by comparing measurements of wave speed in agarose gels with those obtained using magnetic resonance elastography. Measurements in human healthy Achilles tendons revealed a pronounced increase in wave speed as a function of frequency, which highlights the importance of tendon viscoelasticity. Additionally, the viscoelastic properties of the Achilles tendon were larger than those reported for other tissues. Measurements in a tendinopathic Achilles tendon indicated that it is feasible to quantify local viscoelastic properties. Similarly, measurement in the semitendinosus tendon revealed substantial differences in viscoelastic properties between the healthy and contralateral tendons. Consequently, this technique has the potential to evaluate localized changes in tendon viscoelastic properties caused by injury and during recovery in a clinical setting. Copyright © 2015 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  11. How does a cadaver model work for testing ultrasound diagnostic capability for rheumatic-like tendon damage?

    PubMed

    Janta, Iustina; Morán, Julio; Naredo, Esperanza; Nieto, Juan Carlos; Uson, Jacqueline; Möller, Ingrid; Bong, David; Bruyn, George A W; D Agostino, Maria Antonietta; Filippucci, Emilio; Hammer, Hilde Berner; Iagnocco, Annamaria; Terslev, Lene; González, Jorge Murillo; Mérida, José Ramón; Carreño, Luis

    2016-06-01

    To establish whether a cadaver model can serve as an effective surrogate for the detection of tendon damage characteristic of rheumatoid arthritis (RA). In addition, we evaluated intraobserver and interobserver agreement in the grading of RA-like tendon tears shown by US, as well as the concordance between the US findings and the surgically induced lesions in the cadaver model. RA-like tendon damage was surgically induced in the tibialis anterior tendon (TAT) and tibialis posterior tendon (TPT) of ten ankle/foot fresh-frozen cadaveric specimens. Of the 20 tendons examined, six were randomly assigned a surgically induced partial tear; six a complete tear; and eight left undamaged. Three rheumatologists, experts in musculoskeletal US, assessed from 1 to 5 the quality of US imaging of the cadaveric models on a Likert scale. Tendons were then categorized as having either no damage, (0); partial tear, (1); or complete tear (2). All 20 tendons were blindly and independently evaluated twice, over two rounds, by each of the three observers. Overall, technical performance was satisfactory for all items in the two rounds (all values over 2.9 in a Likert scale 1-5). Intraobserver and interobserver agreement for US grading of tendon damage was good (mean κ values 0.62 and 0.71, respectively), with greater reliability found in the TAT than the TPT. Concordance between US findings and experimental tendon lesions was acceptable (70-100 %), again greater for the TAT than for the TPT. A cadaver model with surgically created tendon damage can be useful in evaluating US metric properties of RA tendon lesions.

  12. Free tissue transfer in acute burns.

    PubMed

    Oni, Georgette; Saint-Cyr, Michel; Mojallal, Ali

    2012-02-01

    Major burn injuries can be devastating for the patients and their carers both in terms of morbidity and mortality. Therefore, it is important to optimize the treatment of the injured patient. After initial resuscitation and physiological stabilization, thorough surgical débridement of the burn is necessary. Often resultant defects can be resurfaced with split skin grafting or local flaps. However, in a small percentage of cases free flap surgery is necessary. Free tissue transfer in burns surgery is rare, but is indicated in those patients in which there is loss of a vascularized surface suitable for grafting such as exposed tendon, or bone following surgical débridement, and in extreme cases for limb salvage. This review article discusses the rationale for free flap surgery in terms of types of burn injuries, perioperative considerations, and summarizes the literature in free tissue transfer in acute burns. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Decellularized Tendon Extracellular Matrix—A Valuable Approach for Tendon Reconstruction?

    PubMed Central

    Schulze-Tanzil, Gundula; Al-Sadi, Onays; Ertel, Wolfgang; Lohan, Anke

    2012-01-01

    Tendon healing is generally a time-consuming process and often leads to a functionally altered reparative tissue. Using degradable scaffolds for tendon reconstruction still remains a compromise in view of the required high mechanical strength of tendons. Regenerative approaches based on natural decellularized allo- or xenogenic tendon extracellular matrix (ECM) have recently started to attract interest. This ECM combines the advantages of its intrinsic mechanical competence with that of providing tenogenic stimuli for immigrating cells mediated, for example, by the growth factors and other mediators entrapped within the natural ECM. A major restriction for their therapeutic application is the mainly cell-associated immunogenicity of xenogenic or allogenic tissues and, in the case of allogenic tissues, also the risk of disease transmission. A survey of approaches for tendon reconstruction using cell-free tendon ECM is presented here, whereby the problems associated with the decellularization procedures, the success of various recellularization strategies, and the applicable cell types will be thoroughly discussed. Encouraging in vivo results using cell-free ECM, as, for instance, in rabbit models, have already been reported. However, in comparison to native tendon, cells remain mostly inhomogeneously distributed in the reseeded ECM and do not align. Hence, future work should focus on the optimization of tendon ECM decellularization and recolonization strategies to restore tendon functionality. PMID:24710540

  14. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model

    PubMed Central

    Gordon, J.A.; Freedman, B.R.; Zuskov, A.; Iozzo, R.V.; Birk, D.E.; Soslowsky, L.J.

    2015-01-01

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn−/−) and biglycan-null (Bgn−/−) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. PMID:25888014

  15. Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model.

    PubMed

    Gordon, J A; Freedman, B R; Zuskov, A; Iozzo, R V; Birk, D E; Soslowsky, L J

    2015-07-16

    Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Magnetotherapy: The quest for tendon regeneration.

    PubMed

    Pesqueira, Tamagno; Costa-Almeida, Raquel; Gomes, Manuela E

    2018-05-09

    Tendons are mechanosensitive tissues that connect and transmit the forces generated by muscles to bones by allowing the conversion of mechanical input into biochemical signals. These physical forces perform the fundamental work of preserving tendon homeostasis assuring body movements. However, overloading causes tissue injuries, which leads us to the field of tendon regeneration. Recently published reviews have broadly shown the use of biomaterials and different strategies to attain tendon regeneration. In this review, our focus is the use of magnetic fields as an alternative therapy, which has demonstrated clinical relevance in tendon medicine because of their ability to modulate cell fate. Yet the underlying cellular and molecular mechanisms still need to be elucidated. While providing a brief outlook about specific signalling pathways and intracellular messengers as framework in play by tendon cells, application of magnetic fields as a subcategory of physical forces is explored, opening up a compelling avenue to enhance tendon regeneration. We outline here useful insights on the effects of magnetic fields both at in vitro and in vivo levels, particularly on the expression of tendon genes and inflammatory cytokines, ultimately involved in tendon regeneration. Subsequently, the potential of using magnetically responsive biomaterials in tendon tissue engineering is highlighted and future directions in magnetotherapy are discussed. © 2018 Wiley Periodicals, Inc.

  17. Stem cell technology for tendon regeneration: current status, challenges, and future research directions

    PubMed Central

    Lui, Pauline Po Yee

    2015-01-01

    Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed. PMID:26715856

  18. [Rupture of the Achilles tendon].

    PubMed

    Ulmar, B; Simon, S; Eschler, A; Mittlmeier, T

    2014-10-01

    The rupture of the Achilles tendon is the most frequent tendon rupture in humans and it is associated with increasing incidence. The main risk factor is intrinsic degeneration of the tendon. During the rupture the person feels a whiplash or dagger thrust-like pain, followed by restricted walking ability and decreased plantar flexion of the ankle. The positive Simmond/Thompson test and a palpable dent above the tendon rupture are pathognomical. Diagnostically, ultrasound of the tendon and lateral x-ray of the calcaneus (bony pull-out of the tendon insertion) are necessary. Regarding correct indication and treatment modalities, most established conservative and surgical therapies realize optimal functional results. Surgical treatment promises better primary stability and slightly earlier better functional results, but there is the potential for surgical complications. Conservative therapy is associated with higher rates of re-rupture and healing of the tendon under elongation. Therefore, therapy planning in Achilles tendon rupture should be determined based on each patient. We recommend surgical treatment in patients with higher sporting demands and in younger patients (< 50 years).

  19. Experimental study of the effects of helium-neon laser radiation on repair of injured tendon

    NASA Astrophysics Data System (ADS)

    Xu, Yong-Qing; Li, Zhu-Yi; Weng, Long-Jiang; An, Mei; Li, Kai-Yun; Chen, Shao-Rong; Wang, Jian-Xin; Lu, Yu

    1993-03-01

    Despite extensive research into the biology of tendon healing, predictably restoring normal function to a digit after a flexor tendon laceration remains one of the most difficult problems facing the hand surgeon. The challenge of simultaneously achieving tendon healing while minimizing the peritendinous scar formation, which limits tendon gliding, has captured the attention of investigators for many years. It has been said that low-power density helium-neon laser radiation had effects on anti-inflammation, detumescence, progressive wound healing, and reducing intestinal adhesions. This experimental study aims at whether helium-neon laser can reduce injured tendon adhesions and improve functional recovery of the injured tendon. Fifty white Leghorn hens were used. Ten were randomly assigned as a normal control group, the other forty were used in the operation. After anesthetizing them with Amytal, a half of the profundus tendons of the second and third foretoes on both sides of the feet were cut. Postoperatively, the hens moved freely in the cages. One side of the toes operated on were randomly chosen as a treatment group, the other side served as an untreated control group. The injured tendon toes in the treatment group were irradiated for twenty minutes daily with a fiber light needle of helium-neon laser therapeutic apparatus (wavelength, 6328 angstroms) at a constant power density of 12.74 mW/cm2, the first exposure taking place 24 hours after the operation. The longest course of treatment was 3 weeks. The control group was not irradiated. At 3 days, 1, 2, 3, and 5 weeks after surgery, 8 hens were sacrificed and their tendons were examined. The experimental results: (1) active, passive flexion and tendon gliding functional recovery were significantly better in the treatment group (p < 0.01); (2) width and thickness of the tendon at the cut site were significantly smaller in the treatment group (p < 0.01); (3) degrees of tendon adhesions were significantly lighter in the treatment group (p < 0.05). The experimental results demonstrate helium-neon laser radiation had significant effects on anti-inflammation, detumescence, progressive hematoma absorbing, inhibiting the tendon extrinsic healing, reducing tendon adhesions, improving the tendon intrinsic healing, i.e., stimulating epitenon and endotenon cells proliferation and migrating into the gap, stimulating collagen synthesis in the tendon gap, and enhancing the late remodeling of fibrous peritendonous adhesion.

  20. Management of acute Achilles tendon rupture with tendon-bundle technique

    PubMed Central

    Li, Chun-Guang; Li, Bing

    2017-01-01

    Objective *These authors contributed equally to this work.To explore tendon-bundle technique for treating Achilles tendon rupture with no defects. Methods Patients with full unilateral Achilles tendon rupture with no defects were included. The Achilles tendon medial edge surgical repair approach was used, revealing horsetail-like rupture bundles. Tendon bundles were anatomically realigned and repaired end-to-end using 5-0 sutures. Patients were followed-up for 1 year, and assessed for differences between the repaired versus healthy limb. Results Out of 24 patients (18 male, 6 female; aged 19–56 years) at 1 year following surgery, mean American Orthopaedic Foot and Ankle Society score was 92.4 ± 5.9; mean differences between the surgically repaired versus contralateral side in dorsiflexion and plantarflexion angle were 3.5 ± 2.3° and 5.6 ± 3.2°, respectively; mean difference in calf circumference between the two sides was 0.9 ± 0.5 cm; and mean increase in Achilles tendon width versus the healthy side was 0.8 ± 0.2 cm. By 1 year post-surgery, there were no significant between-side differences in dorsiflexion and plantarflexion angle, or calf circumference. Conclusions Tendon-bundle surgery resulted in good ankle function restoration and low complication rates. Tendon-bundle surgery may reduce blood supply destruction and maximally preserve Achilles tendon length, and may be effective for treating Achilles tendon rupture with no defects. PMID:28222622

  1. Proteomic Analysis Reveals Age-related Changes in Tendon Matrix Composition, with Age- and Injury-specific Matrix Fragmentation*

    PubMed Central

    Peffers, Mandy J.; Thorpe, Chavaunne T.; Collins, John A.; Eong, Robin; Wei, Timothy K. J.; Screen, Hazel R. C.; Clegg, Peter D.

    2014-01-01

    Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging. PMID:25077967

  2. Tendon elasticity and muscle function.

    PubMed

    Alexander, R McNeill

    2002-12-01

    Vertebrate animals exploit the elastic properties of their tendons in several different ways. Firstly, metabolic energy can be saved in locomotion if tendons stretch and then recoil, storing and returning elastic strain energy, as the animal loses and regains kinetic energy. Leg tendons save energy in this way when birds and mammals run, and an aponeurosis in the back is also important in galloping mammals. Tendons may have similar energy-saving roles in other modes of locomotion, for example in cetacean swimming. Secondly, tendons can recoil elastically much faster than muscles can shorten, enabling animals to jump further than they otherwise could. Thirdly, tendon elasticity affects the control of muscles, enhancing force control at the expense of position control.

  3. The Achilles tendon: fundamental properties and mechanisms governing healing

    PubMed Central

    Freedman, Benjamin R.; Gordon, Joshua A.; Soslowsky, Louis J.

    2014-01-01

    Summary This review highlights recent research on Achilles tendon healing, and comments on the current clinical controversy surrounding the diagnosis and treatment of injury. The processes of Achilles tendon healing, as demonstrated through changes in its structure, composition, and biomechanics, are reviewed. Finally, a review of tendon developmental biology and mechano transductive pathways is completed to recognize recent efforts to augment injured Achilles tendons, and to suggest potential future strategies for therapeutic intervention and functional tissue engineering. Despite an abundance of clinical evidence suggesting that current treatments and rehabilitation strategies for Achilles tendon ruptures are equivocal, significant questions remain to fully elucidate the basic science mechanisms governing Achilles tendon injury, healing, treatment, and rehabilitation. PMID:25332943

  4. The role of ultrasound in the management of flexor tendon injuries.

    PubMed

    Jeyapalan, K; Bisson, M A; Dias, J J; Griffin, Y; Bhatt, R

    2008-08-01

    The use of ultrasound scanning to establish tendon pathologies was assessed retrospectively in 17 patients in 18 digits. The ultrasound scan demonstrated four patterns: (1) normal intact tendons in four, (2) ruptured tendons in three, (3) tendons in continuity but attenuated in five and (4) tendons in continuity but thickened with fibrosis and decreased movement representing adhesions in five patients. Surgery was undertaken in only three cases, confirming the ultrasound diagnosis in two. Surgery was offered to all three patients with ruptures but was declined by two. Ultrasound imaging helped to avoid surgery in 14 cases by excluding flexor tendon re-ruptures. This allowed on-going mobilisation, leading to recovery of function.

  5. Distal Biceps Tendon Rupture

    DTIC Science & Technology

    2010-06-01

    Distal Biceps Tendon Rupture Military Medicine Radiology Corner, 2006 Radiology Corner Distal Biceps Tendon Rupture Contributors: CPT Michael...treatment of a 56-year-old man with complete rupture of the distal biceps tendon . The mechanism of injury, symptoms, and findings at physical...be used in pre-operative planning. Introduction Rupture of the distal biceps tendon is a relatively uncommon injury, but delayed diagnosis may

  6. A Multi-modality Approach Towards Elucidation of the Mechanism for Human Achilles Tendon Bending During Passive Ankle Rotation.

    PubMed

    Kinugasa, Ryuta; Taniguchi, Keigo; Yamamura, Naoto; Fujimiya, Mineko; Katayose, Masaki; Takagi, Shu; Edgerton, V Reggie; Sinha, Shantanu

    2018-03-12

    The in vitro unconstrained Achilles tendon is nearly straight, while in vivo experiments reveal that the proximal region of the Achilles tendon, adjacent to Kager's fat pad, bends ventrally during plantarflexion but remains nearly straight during dorsiflexion. Tendon bending is an important factor in determining the displacement of the foot compared to the shortening of the muscle fibers. The objective of this study was to elucidate the various mechanisms that could cause tendon bending, which currently remain unknown. Examination of Thiel-embalmed cadavers, with preservation of native articular joint mobility, revealed that the Achilles tendon still bent ventrally even when its surrounding tissues, including the skin surface, Kager's fat pad, and distal portions of the soleus muscle were removed. Shear modulus and collagen fiber orientation were distributed homogeneously with respect to the longitudinal line of the tendon, minimizing their causative contributions to the bending. Given that tendon bending is not caused by either the nature of the deformations of the tissues surrounding the Achilles tendon or its physical properties, we conclude that it results from the geometric architecture of the Achilles tendon and its configuration with respect to the surrounding tissues.

  7. Tensile properties of craniofacial tendons in the mature and aged zebrafish

    PubMed Central

    Shah, Rishita R.; Nerurkar, Nandan L.; Wang, Calvin; Galloway, Jenna L.

    2015-01-01

    The zebrafish Danio rerio is a powerful model for the study of development, regenerative biology, and human disease. However, the analysis of load-bearing tissues such as tendons and ligaments has been limited in this system. This is largely due to technical limitations that preclude accurate measurement of their mechanical properties. Here, we present a custom tensile testing system that applies nano-Newton scale forces to zebrafish tendons as small as 1 mm in length. Tendon properties were remarkably similar to mammalian tendons, including stress-strain nonlinearity and a linear modulus (515±152 MPa) that aligned closely with mammalian data. Additionally, a simple exponential constitutive law used to describe tendon mechanics was successfully fit to zebrafish tendons; the associated material constants agreed with literature values for mammalian tendons. Finally, mature and aged zebrafish comparisons revealed a significant decline in mechanical function with age. Based on the exponential constitutive model, age related changes were primarily caused by a reduction in nonlinearity (e.g. changes in collagen crimp or fiber recruitment). These findings demonstrate the utility of zebrafish as a model to study tendon biomechanics in health and disease. Moreover, these findings suggest that tendon mechanical behavior is highly conserved across vertebrates. PMID:25665155

  8. Effects of habitual loading on patellar tendon mechanical and morphological properties in basketball and volleyball players.

    PubMed

    Zhang, Z J; Ng, G Y F; Fu, S N

    2015-11-01

    Tendon mechanical properties are linked to sports performance and tendon-related injuries, such as tendinopathy. Whether habitual loading, such as participation in regular jumping activities, would induce adaptation on tendon mechanical properties remains unclear. Forty healthy subjects (10 sedentary, 15 volleyball players, and 15 basketball players) aged between 18 and 35 years were recruited. Supersonic shearwave imaging was used to measure the shear elastic modulus and thickness and cross-sectional area (CSA) of the proximal patellar tendons of both knees at 30° of flexion. Significant group differences in tendon shear elastic modulus were found among the three groups. In the dominant leg, reduction in tendon shear elastic modulus by 18.9 % (p = 0.018) and 48.7 % (p = 0.000) were observed in the basketball and volleyball players, respectively, when compared with sedentary subjects. In the non-dominant leg, reduction in tendon shear elastic modulus were 27.3 % (p = 0.034) and 47.1 % (p = 0.02) in the basketball and volleyball players, respectively. The athlete groups were found to have larger CSA but with similar tendon thickness than sedentary group. The CSA were larger by 24-29 % and by 22-24 % in the basketball players and volleyball players, for the dominant and non-dominant legs, respectively (all p < 0.05). Age and body mass are related to tendon stiffness and CSA, particularly in the sedentary subjects. The proximal patellar tendon can undergo substantial adaptation on tendon mechanical and morphological properties when exposed in jumping sports. Intrinsic factors such as age and body mass could influence tendon properties.

  9. The Influence of External Load on Quadriceps Muscle and Tendon Dynamics during Jumping.

    PubMed

    Earp, Jacob E; Newton, Robert U; Cormie, Prue; Blazevich, Anthony J

    2017-11-01

    Tendons possess both viscous (rate-dependent) and elastic (rate-independent) properties that determine tendon function. During high-speed movements external loading increases both the magnitude (FT) and rate (RFDT) of tendon loading. The influence of external loading on muscle and tendon dynamics during maximal vertical jumping was explored. Ten resistance-trained men performed parallel-depth, countermovement vertical jumps with and without additional load (0%, 30%, 60%, and 90% of maximum squat lift strength), while joint kinetics and kinematics, quadriceps tendon length (LT) and patellar tendon FT and RFDT were estimated using integrated ultrasound, motion analysis and force platform data and muscle tendon modelling. Estimated FT and RFDT, but not peak LT, increased with external loading. Temporal comparisons between 0% and 90% loads revealed that FT was greater with 90% loading throughout the majority of the movement (11%-81% and 87%-95% movement duration). However, RFDT was greater with 90% load only during the early movement initiation phase (8%-15% movement duration) but was greater in the 0% load condition later in the eccentric phase (27%-38% movement duration). LT was longer during the early movement (12%-23% movement duration) but shorter in the late eccentric and early concentric phases (48%-55% movement duration) with 90% load. External loading positively influenced peak FT and RFDT but tendon strain appeared unaffected, suggesting no additive effect of external loading on patellar tendon lengthening during human jumping. Temporal analysis revealed that external loading resulted in a large initial RFDT that may have caused dynamic stiffening of the tendon and attenuated tendon strain throughout the movement. These results suggest that external loading influences tendon lengthening in both a load- and movement-dependent manner.

  10. Visualization of the extra-articular portion of the long head of the biceps tendon during intra-articular shoulder arthroscopy.

    PubMed

    Festa, Anthony; Allert, Jesse; Issa, Kimona; Tasto, James P; Myer, Jonathan J

    2014-11-01

    To quantify the amount of the extra-articular long head of the biceps tendon (LHBT) seen during intra-articular shoulder arthroscopy by pulling the tendon into the joint with a probe through an anterior portal while viewing through a standard posterior portal. Intra-articular shoulder arthroscopy was performed on 10 forequarter cadaveric specimens. The extra-articular portion of the LHBT was evaluated by pulling the tendon into the joint with an arthroscopic probe inserted through an anterior portal. The tendon was marked at the pulley insertion on the humerus with a vascular clip before and after the tendon was pulled into the joint. An open deltopectoral approach was performed, and the amount of extra-articular tendon visualized was calculated as an absolute amount and in relation to nearby anatomic structures. An additional 1.9 cm (range, 1.4 to 2.6 cm) of extra-articular LHBT was viewed by pulling the tendon into the joint with an arthroscopic probe through an anterior portal during shoulder arthroscopy. This represented 30.8% of the extra-articular portion of the tendon, 47.7% of tendon in the bicipital groove, and 76.3% of the tendon that lies under the area from the pulley insertion to the distal edge of the transverse humeral ligament. During intra-articular shoulder arthroscopy, the extra-articular portion of the LHBT is incompletely visualized by pulling the tendon into the joint with a probe placed through an anterior portal while viewing through a standard posterior portal. An additional extra-articular portion of the LHBT may be viewed by pulling the tendon into the joint with an arthroscopic probe during shoulder arthroscopy. Copyright © 2014 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  11. Decorin and biglycan are necessary for maintaining collagen fibril structure, fiber realignment, and mechanical properties of mature tendons.

    PubMed

    Robinson, Kelsey A; Sun, Mei; Barnum, Carrie E; Weiss, Stephanie N; Huegel, Julianne; Shetye, Snehal S; Lin, Linda; Saez, Daniel; Adams, Sheila M; Iozzo, Renato V; Soslowsky, Louis J; Birk, David E

    2017-12-01

    The small leucine-rich proteoglycans (SLRPs), decorin and biglycan, are key regulators of collagen fibril and matrix assembly. The goal of this work was to elucidate the roles of decorin and biglycan in tendon homeostasis. Our central hypothesis is that decorin and biglycan expression in the mature tendon would be critical for the maintenance of the structural and mechanical properties of healthy tendons. Defining the function(s) of these SLRPs in tendon homeostasis requires that effects in the mature tendon be isolated from their influence on development. Thus, we generated an inducible knockout mouse model that permits genetic ablation of decorin and biglycan expression in the mature tendon, while maintaining normal expression during development. Decorin and biglycan expression were knocked out in the mature patellar tendon with the subsequent turnover of endogenous SLRPs deposited prior to induction. The acute absence of SLRP expression was associated with changes in fibril structure with a general shift to larger diameter fibrils in the compound knockout tendons, together with fibril diameter heterogeneity. In addition, tendon mechanical properties were altered. Compared to wild-type controls, acute ablation of both genes resulted in failure of the tendon at lower loads, decreased stiffness, a trend towards decreased dynamic modulus, as well as a significant increase in percent relaxation and tissue viscosity. Collagen fiber realignment was also increased with a delayed and slower in response to load in the absence of expression. These structural and functional changes in response to an acute loss of decorin and biglycan expression in the mature tendon demonstrate a significant role for these SLRPs in adult tendon homeostasis. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. The role of three-dimensional pure bovine gelatin scaffolds in tendon healing, modeling, and remodeling: an in vivo investigation with potential clinical value.

    PubMed

    Oryan, Ahmad; Sharifi, Pardis; Moshiri, Ali; Silver, Ian A

    2017-09-01

    Large tendon defects involving extensive tissue loss present complex clinical problems. Surgical reconstruction of such injuries is normally performed by transplanting autogenous and allogenous soft tissues that are expected to remodel to mimic a normal tendon. However, the use of grafts has always been associated with significant limitations. Tissue engineering employing artificial scaffolds may provide acceptable alternatives. Gelatin is a hydrolyzed form of collagen that is bioactive, biodegradable, and biocompatible. The present study has investigated the suitability of gelatin scaffold for promoting healing of a large tendon-defect model in rabbits. An experimental model of a large tendon defect was produced by partial excision of the Achilles tendon of the left hind leg in adult rabbits. To standardize and stabilize the length of the tendon defect a modified Kessler core suture was anchored in the sectioned tendon ends. The defects were either left untreated or filled with three-dimensional gelatin scaffold. Before euthanasia 60 days after injury, the progress of healing was evaluated clinically. Samples of healing tendon were harvested at autopsy and evaluated by gross, histopathologic, scanning, and transmission electron microscopy, and by biomechanical testing. The treated animals showed superior weight-bearing and physical activity compared with those untreated, while frequency of peritendinous adhesions around the healing site was reduced. The gelatin scaffold itself was totally degraded and replaced by neo-tendon that morphologically had significantly greater numbers, diameters, density, and maturation of collagen fibrils, fibers, and fiber bundles than untreated tendon scar tissue. It also had mechanically higher ultimate load, yield load, stiffness, maximum stress and elastic modulus, when compared to the untreated tendons. Gelatin scaffold may be a valuable option in surgical reconstruction of large tendon defects.

  13. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model.

    PubMed

    Park, Gi-Young; Kwon, Dong Rak; Lee, Sang Chul

    2015-11-01

    Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, we investigated the therapeutic effects of ultrasound-guided human umbilical cord blood (UCB)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit's activity. At 4 weeks after ultrasound-guided UCB-derived MSC injection, 7 of the 10 full-thickness subscapularis tendon tears were only partial-thickness tears, and 3 remained full-thickness tendon tears. The tendon tear size and walking capacity at 4 weeks after UCB-derived MSC injection under ultrasound guidance were significantly improved compared with the same parameters immediately after tendon tear. UCB-derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full-thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB-derived MSCs induced regeneration of rotator cuff tendon tear and that the regenerated tissue was predominantly composed of type I collagens. In this study, ultrasound-guided injection of human UCB-derived MSCs contributed to regeneration of the full-thickness rotator cuff tendon tear without surgical repair. The results demonstrate the effectiveness of local injection of MSCs into the rotator cuff tendon. The results of this study suggest that ultrasound-guided umbilical cord blood-derived mesenchymal stem cell injection may be a useful conservative treatment for full-thickness rotator cuff tendon tear repair. ©AlphaMed Press.

  14. Platelet-rich plasma in tendon-related disorders: results and indications.

    PubMed

    Filardo, Giuseppe; Di Matteo, Berardo; Kon, Elizaveta; Merli, Giulia; Marcacci, Maurilio

    2016-09-24

    Platelet-rich plasma (PRP) is currently the most exploited strategy in the clinical practice to provide a regenerative stimulus for tendon healing. The aim of the present study was to systematically review the available evidence on the treatment of the main tendon disorders where PRP is currently applied. A systematic review of the literature was performed on the use of PRP as a treatment for tendinopathies focusing on the following sites: Achilles tendon, patellar tendon, rotator cuff tendons, and lateral elbow tendons. The following inclusion criteria for relevant articles were used: clinical trials written in English language up to 21 June 2016 on the use of PRP in the conservative or surgical treatment of the aforementioned tendinopathies. The research identified the following clinical trials dealing with the application of PRP in the selected tendons: 19 papers on patellar tendon (6 being RCTs: 4 dealing with PRP conservative application and 2 surgical), 24 papers on Achilles tendon (4 RCTs: 3 conservative and 1 surgical), 29 on lateral elbow tendons (17 RCTs, all conservative), and 32 on rotator cuff (22 RCTs: 18 surgical and 3 conservative). Patellar tendons seem to benefit from PRP injections, whereas in the Achilles tendon, PRP application is not indicated neither as a conservative approach nor as a surgical augmentation. Lateral elbow tendinopathy showed an improvement in most of the high-level studies, but the lack of proven superiority with respect to the more simple whole-blood injections still questions its use in the clinical practice. With regard to rotator cuff pathology, the vast majority of surgical RCTs documented a lack of beneficial effects, whereas there is still inconclusive evidence concerning its conservative application in rotator cuff disorders. Systematic review of level I-IV trials, Level IV.

  15. Regeneration of Full-Thickness Rotator Cuff Tendon Tear After Ultrasound-Guided Injection With Umbilical Cord Blood-Derived Mesenchymal Stem Cells in a Rabbit Model

    PubMed Central

    Park, Gi-Young; Lee, Sang Chul

    2015-01-01

    Rotator cuff tendon tear is one of the most common causes of chronic shoulder pain and disability. In this study, we investigated the therapeutic effects of ultrasound-guided human umbilical cord blood (UCB)-derived mesenchymal stem cell (MSC) injection to regenerate a full-thickness subscapularis tendon tear in a rabbit model by evaluating the gross morphology and histology of the injected tendon and motion analysis of the rabbit’s activity. At 4 weeks after ultrasound-guided UCB-derived MSC injection, 7 of the 10 full-thickness subscapularis tendon tears were only partial-thickness tears, and 3 remained full-thickness tendon tears. The tendon tear size and walking capacity at 4 weeks after UCB-derived MSC injection under ultrasound guidance were significantly improved compared with the same parameters immediately after tendon tear. UCB-derived MSC injection under ultrasound guidance without surgical repair or bioscaffold resulted in the partial healing of full-thickness rotator cuff tendon tears in a rabbit model. Histology revealed that UCB-derived MSCs induced regeneration of rotator cuff tendon tear and that the regenerated tissue was predominantly composed of type I collagens. In this study, ultrasound-guided injection of human UCB-derived MSCs contributed to regeneration of the full-thickness rotator cuff tendon tear without surgical repair. The results demonstrate the effectiveness of local injection of MSCs into the rotator cuff tendon. Significance The results of this study suggest that ultrasound-guided umbilical cord blood-derived mesenchymal stem cell injection may be a useful conservative treatment for full-thickness rotator cuff tendon tear repair. PMID:26371340

  16. HGF Mediates the Anti-inflammatory Effects of PRP on Injured Tendons

    PubMed Central

    Zhang, Jianying; Middleton, Kellie K.; Fu, Freddie H.; Im, Hee-Jeong; Wang, James H-C.

    2013-01-01

    Platelet-rich plasma (PRP) containing hepatocyte growth factor (HGF) and other growth factors are widely used in orthopaedic/sports medicine to repair injured tendons. While PRP treatment is reported to decrease pain in patients with tendon injury, the mechanism of this effect is not clear. Tendon pain is often associated with tendon inflammation, and HGF is known to protect tissues from inflammatory damages. Therefore, we hypothesized that HGF in PRP causes the anti-inflammatory effects. To test this hypothesis, we performed in vitro experiments on rabbit tendon cells and in vivo experiments on a mouse Achilles tendon injury model. We found that addition of PRP or HGF decreased gene expression of COX-1, COX-2, and mPGES-1, induced by the treatment of tendon cells in vitro with IL-1β. Further, the treatment of tendon cell cultures with HGF antibodies reduced the suppressive effects of PRP or HGF on IL-1β-induced COX-1, COX-2, and mPGES-1 gene expressions. Treatment with PRP or HGF almost completely blocked the cellular production of PGE2 and the expression of COX proteins. Finally, injection of PRP or HGF into wounded mouse Achilles tendons in vivo decreased PGE2 production in the tendinous tissues. Injection of platelet-poor plasma (PPP) however, did not reduce PGE2 levels in the wounded tendons, but the injection of HGF antibody inhibited the effects of PRP and HGF. Further, injection of PRP or HGF also decreased COX-1 and COX-2 proteins. These results indicate that PRP exerts anti-inflammatory effects on injured tendons through HGF. This study provides basic scientific evidence to support the use of PRP to treat injured tendons because PRP can reduce inflammation and thereby reduce the associated pain caused by high levels of PGE2. PMID:23840657

  17. Biochemical, histologic, and biomechanical characterization of native and decellularized flexor tendon specimens harvested from the pelvic limbs of orthopedically normal dogs.

    PubMed

    Balogh, Daniel G; Biskup, Jeffery J; O'Sullivan, M Gerard; Scott, Ruth M; Groschen, Donna; Evans, Richard B; Conzemius, Michael G

    2016-04-01

    To evaluate the biochemical and biomechanical properties of native and decellularized superficial digital flexor tendons (SDFTs) and deep digital flexor tendons (DDFTs) harvested from the pelvic limbs of orthopedically normal dogs. 22 commercially supplied tendon specimens (10 SDFT and 12 DDFT) harvested from the pelvic limbs of 13 canine cadavers. DNA, glycosaminoglycan, collagen, and protein content were measured to biochemically compare native and decellularized SDFT and DDFT specimens. Mechanical testing was performed on 4 groups consisting of native tendons (5 SDFTs and 6 DDFTs) and decellularized tendons (5 SDFTs and 6 DDFTs). All tendons were preconditioned, and tension was applied to failure at 0.5 mm/s. Failure mode was video recorded for each tendon. Load-deformation and stress-strain curves were generated; calculations were performed to determine the Young modulus and stiffness. Biochemical and biomechanical data were statistically compared by use of the Wilcoxon rank sum test. Decellularized SDFT and DDFT specimens had significantly less DNA content than did native tendons. No significant differences were identified between native and decellularized specimens with respect to glycosaminoglycan, collagen, or protein content. Biomechanical comparison yielded no significant intra- or intergroup differences. All DDFT constructs failed at the tendon-clamp interface, whereas nearly half (4/10) of the SDFT constructs failed at midsubstance. Decellularized commercial canine SDFT and DDFT specimens had similar biomechanical properties, compared with each other and with native tendons. The decellularization process significantly decreased DNA content while minimizing loss of extracellular matrix components. Decellularized canine flexor tendons may provide suitable, biocompatible graft scaffolds for bioengineering applications such as tendon or ligament repair.

  18. Anatomy of the Adductor Magnus Origin

    PubMed Central

    Obey, Mitchel R.; Broski, Stephen M.; Spinner, Robert J.; Collins, Mark S.; Krych, Aaron J.

    2016-01-01

    Background: The adductor magnus (AM) has historically been a potential source of confusion in patients with suspected proximal hamstring avulsion injuries. Purpose: To investigate the anatomic characteristics of the AM, including its osseous origin, anatomic dimensions, and relationship to the proximal hamstring tendons. Study Design: Descriptive laboratory study. Methods: Dissection of the AM origin was performed in 11 (8 cadavers) fresh-frozen hip-to-foot cadaveric hemipelvis specimens. The gross anatomy and architecture of the proximal hamstring and AM tendons were studied. After dissecting the hamstring tendons away from their origin, the dimension, shape, and orientation of the tendon footprints on the ischial tuberosity were determined. Results: The AM was identified in all cadaveric specimens. The mean tendon thickness (anterior to posterior [AP]) was 5.7 ± 2.9 mm. The mean tendon width (medial to lateral [ML]) was 7.1 ± 2.2 mm. The mean tendon length was 13.1 ± 8.7 cm. The mean footprint height (AP dimension) was 12.1 ± 2.9 mm, and mean footprint width (ML dimension) was 17.3 ± 7.1 mm. The mean distance between the AM footprint and the most medial aspect of the conjoint tendon footprint was 8.5 ± 4.2 mm. Tendon measurements demonstrated a considerable degree of both intra- and interspecimen variability. Conclusion: The AM tendon is consistently present just medial to the conjoint tendon at the ischial tuberosity, representing the lateral-most portion of the AM muscle. This study found wide variation in the dimensional characteristics of the AM tendon between specimens. Its shape and location can mimic the appearance of an intact hamstring (conjoint or semimembranosus) tendon intraoperatively or on diagnostic imaging, potentially misleading surgeons and radiologists. Therefore, detailed knowledge of the AM tendon anatomy, footprint anatomy, and its relationship to the hamstring muscle complex is paramount when planning surgical approach and technique. Clinical Relevance: The reported data may aid surgeons in more accurate recognition, diagnosis, and repair of proximal hamstring avulsion injuries. PMID:26798764

  19. [A comparative study on repair of acute Achilles tendon rupture using three operating techniques].

    PubMed

    Wang, Ting; Mei, Guohua; Shi, Zhongmin; Chai, Yimin; Zhang, Changqing; Hou, Chunlin

    2012-07-01

    To compare the effectiveness of the 3 methods (traditional open Achilles tendon anastomosis, minimally invasive percutaneous Achilles tendon anastomosis, and Achilles tendon anastomosis limited incision) for acute Achilles tendon rupture so as to provide a reference for the choice of clinical treatment plans. Between December 2007 and March 2010, 69 cases of acute Achilles tendon rupture were treated by traditional open Achilles tendon anastomosis (traditional group, n=23), by minimally invasive percutaneous Achilles tendon anastomosis (minimally invasive group, n=23), and by Achilles tendon anastomosis limited incision (limited incision group, n=23). There was no significant difference in gender, age, mechanism of injury, and American Orthopaedic Foot and Ankle Society (AOFAS) ankle-hindfoot score between 3 groups (P > 0.05). Minimally invasive group and limited incision group were significantly better than traditional group in hospitalization days and blood loss (P < 0.01). Incision infection occurred in 2 cases of traditional group, and healing of incision by first intention was achieved in all patients of the other 2 groups, showing significant difference in the complication rate (P < 0.05). Re-rupture of Achilles tendon occurred in 1 case (4.3%) of minimally invasive group and limited incision group respectively; no re-rupture was found in traditional group (0), showing significant difference when compared with the other 2 groups (P < 0.05). All cases were followed up 12-18 months with an average of 14.9 months. The function of the joint was restored. The AOFAS score was more than 90 points in 3 groups at 12 months after operation, showing no significant difference among 3 groups (P > 0.05). The above 3 procedures can be used to treat acute Achilles tendon rupture. However, minimally invasive percutaneous Achilles tendon anastomosis and Achilles tendon anastomosis limited incision have the advantages of less invasion, good healing, short hospitalization days, and less postoperative complication, and have the disadvantage of increased risk for re-rupture of Achilles tendon after operations.

  20. Accumulation of oxidized LDL in the tendon tissues of C57BL/6 or apolipoprotein E knock-out mice that consume a high fat diet: potential impact on tendon health.

    PubMed

    Grewal, Navdeep; Thornton, Gail M; Behzad, Hayedeh; Sharma, Aishwariya; Lu, Alex; Zhang, Peng; Reid, W Darlene; Granville Alex Scott, David J

    2014-01-01

    Clinical studies have suggested an association between dyslipidemia and tendon injuries or chronic tendon pain; the mechanisms underlying this association are not yet known. The objectives of this study were (1) to evaluate the impact of a high fat diet on the function of load-bearing tendons and on the distribution in tendons of oxidized low density lipoprotein (oxLDL), and (2) to examine the effect of oxLDL on tendon fibroblast proliferation and gene expression. Gene expression (Mmp2, Tgfb1, Col1a1, Col3a1), fat content (Oil Red O staining), oxLDL levels (immunohistochemistry) and tendon biomechanical properties were examined in mice (C57Bl/6 or ApoE -/-) receiving a standard or a high fat diet. Human tendon fibroblast proliferation and gene expression (COL1A1, COL3A1, MMP2) were examined following oxLDL exposure. In both types of mice (C57Bl/6 or ApoE -/-), consumption of a high fat diet led to a marked increase in oxLDL deposition in the load-bearing extracellular matrix of the tendon. The consumption of a high fat diet also reduced the failure stress and load of the patellar tendon in both mouse types, and increased Mmp2 expression. ApoE -/- mice exhibited more pronounced reductions in tendon function than wild-type mice, and decreased expression of Col1a1 compared to wild type mice. Human tendon fibroblasts responded to oxLDL by increasing their proliferation and their mRNA levels of MMP2, while decreasing their mRNA levels for COL1A1 and COL3A1. The consumption of a high fat diet resulted in deleterious changes in tendon function, and these changes may be explained in part by the effects of oxLDL, which induced a proliferative, matrix-degrading phenotype in human tenocytes.

  1. Role of tissue-engineered artificial tendon in healing of a large Achilles tendon defect model in rabbits.

    PubMed

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2013-09-01

    Treatment of large Achilles tendon defects is technically demanding. Tissue engineering is an option. We constructed a collagen-based artificial tendon, covered it with a polydioxanon (PDS) sheath, and studied the role of this bioimplant on experimental tendon healing in vivo. A 2-cm tendon gap was created in the left Achilles tendon of rabbits (n = 120). The animals were randomly divided into 3 groups: control (no implant), treated with tridimensional-collagen, and treated with tridimensional-collagen-bidimensional-PDS implants. Each group was divided into 2 subgroups of 60 and 120 days postinjury (DPI). Another 50 pilot animals were used to study the host-implant interaction. Physical activity of the animals was scored and ultrasonographic and bioelectrical characteristics of the injured tendons were investigated weekly. After euthanasia, macro, micro, and nano morphologies and biophysical and biomechanical characteristics of the healing tendons were studied. Treatment improved function of the animals, time dependently. At 60 and 120 DPI, the treated tendons showed significantly higher maximum load, yield, stiffness, stress, and modulus of elasticity compared with controls. The collagen implant induced inflammation and absorbed the migrating fibroblasts in the defect area. By its unique architecture, it aligned the fibroblasts and guided their proliferation and collagen deposition along the stress line of the tendon and resulted in improved collagen density, micro-amp, micro-ohm, water uptake, and delivery of the regenerated tissue. The PDS-sheath covering amplified these characteristics. The implants were gradually absorbed and replaced by a new tendon. Minimum amounts of peritendinous adhesion, muscle atrophy, and fibrosis were observed in the treated groups. Some remnants of the implants were preserved and accepted as a part of the new tendon. The implants were cytocompatible, biocompatible, biodegradable, and effective in tendon healing and regeneration. This implant may be a valuable option in clinical practice. Copyright © 2013 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  2. A Fibre-Reinforced Poroviscoelastic Model Accurately Describes the Biomechanical Behaviour of the Rat Achilles Tendon

    PubMed Central

    Heuijerjans, Ashley; Matikainen, Marko K.; Julkunen, Petro; Eliasson, Pernilla; Aspenberg, Per; Isaksson, Hanna

    2015-01-01

    Background Computational models of Achilles tendons can help understanding how healthy tendons are affected by repetitive loading and how the different tissue constituents contribute to the tendon’s biomechanical response. However, available models of Achilles tendon are limited in their description of the hierarchical multi-structural composition of the tissue. This study hypothesised that a poroviscoelastic fibre-reinforced model, previously successful in capturing cartilage biomechanical behaviour, can depict the biomechanical behaviour of the rat Achilles tendon found experimentally. Materials and Methods We developed a new material model of the Achilles tendon, which considers the tendon’s main constituents namely: water, proteoglycan matrix and collagen fibres. A hyperelastic formulation of the proteoglycan matrix enabled computations of large deformations of the tendon, and collagen fibres were modelled as viscoelastic. Specimen-specific finite element models were created of 9 rat Achilles tendons from an animal experiment and simulations were carried out following a repetitive tensile loading protocol. The material model parameters were calibrated against data from the rats by minimising the root mean squared error (RMS) between experimental force data and model output. Results and Conclusions All specimen models were successfully fitted to experimental data with high accuracy (RMS 0.42-1.02). Additional simulations predicted more compliant and soft tendon behaviour at reduced strain-rates compared to higher strain-rates that produce a stiff and brittle tendon response. Stress-relaxation simulations exhibited strain-dependent stress-relaxation behaviour where larger strains produced slower relaxation rates compared to smaller strain levels. Our simulations showed that the collagen fibres in the Achilles tendon are the main load-bearing component during tensile loading, where the orientation of the collagen fibres plays an important role for the tendon’s viscoelastic response. In conclusion, this model can capture the repetitive loading and unloading behaviour of intact and healthy Achilles tendons, which is a critical first step towards understanding tendon homeostasis and function as this biomechanical response changes in diseased tendons. PMID:26030436

  3. Collagen structure of tendon relates to function.

    PubMed

    Franchi, Marco; Trirè, Alessandra; Quaranta, Marilisa; Orsini, Ester; Ottani, Victoria

    2007-03-30

    A tendon is a tough band of fibrous connective tissue that connects muscle to bone, designed to transmit forces and withstand tension during muscle contraction. Tendon may be surrounded by different structures: 1) fibrous sheaths or retinaculae; 2) reflection pulleys; 3) synovial sheaths; 4) peritendon sheaths; 5) tendon bursae. Tendons contain a) few cells, mostly represented by tenoblasts along with endothelial cells and some chondrocytes; b) proteoglycans (PGs), mainly decorin and hyaluronan, and c) collagen, mostly type I. Tendon is a good example of a high ordered extracellular matrix in which collagen molecules assemble into filamentous collagen fibrils (formed by microfibrils) which aggregate to form collagen fibers, the main structural components. It represents a multihierarchical structure as it contains collagen molecules arranged in fibrils then grouped in fibril bundles, fascicles and fiber bundles that are almost parallel to the long axis of the tendon, named as primary, secondary and tertiary bundles. Collagen fibrils in tendons show prevalently large diameter, a D-period of about 67 nm and appear built of collagen molecules lying at a slight angle (< 5 degrees). Under polarized light microscopy the collagen fiber bundles appear crimped with alternative dark and light transverse bands. In recent studies tendon crimps observed via SEM and TEM show that the single collagen fibrils suddenly changing their direction contain knots. These knots of collagen fibrils inside each tendon crimp have been termed "fibrillar crimps", and even if they show different aspects they all may fulfil the same functional role. As integral component of musculoskeletal system, the tendon acts to transmit muscle forces to the skeletal system. There is no complete understanding of the mechanisms in transmitting/absorbing tensional forces within the tendon; however it seems likely that a flattening of tendon crimps may occur at a first stage of tendon stretching. Increasing stretching, other transmission mechanisms such as an interfibrillar coupling via PGs linkages and a molecular gliding within the fibrils structure may be involved.

  4. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  5. Obesity/Type II diabetes alters macrophage polarization resulting in a fibrotic tendon healing response

    PubMed Central

    Ackerman, Jessica E.; Geary, Michael B.; Orner, Caitlin A.; Bawany, Fatima

    2017-01-01

    Type II Diabetes (T2DM) dramatically impairs the tendon healing response, resulting in decreased collagen organization and mechanics relative to non-diabetic tendons. Despite this burden, there remains a paucity of information regarding the mechanisms that govern impaired healing of diabetic tendons. Mice were placed on either a high fat diet (T2DM) or low fat diet (lean) and underwent flexor tendon transection and repair surgery. Healing was assessed via mechanical testing, histology and changes in gene expression associated with collagen synthesis, matrix remodeling, and macrophage polarization. Obese/diabetic tendons healed with increased scar formation and impaired mechanical properties. Consistent with this, prolonged and excess expression of extracellular matrix (ECM) components were observed in obese/T2DM tendons. Macrophages are involved in both inflammatory and matrix deposition processes during healing. Obese/T2DM tendons healed with increased expression of markers of pro-inflammatory M1 macrophages, and elevated and prolonged expression of M2 macrophages markers that are involved in ECM deposition. Here we demonstrate that tendons from obese/diabetic mice heal with increased scar formation and increased M2 polarization, identifying excess M2 macrophage activity and matrix synthesis as a potential mechanism of the fibrotic healing phenotype observed in T2DM tendons, and as such a potential target to improve tendon healing in T2DM. PMID:28686669

  6. Use of quantitative analysis of sonographic brightness for detection of early healing of tendon injury in horses.

    PubMed

    Micklethwaite, L; Wood, A K; Sehgal, C M; Polansky, M; Dowling, B A; Dart, A J; Rose, R J; Hodgson, D R

    2001-08-01

    To determine whether quantitative analysis of sonographic brightness could be used to detect healing of an induced injury of the superficial digital flexor tendon in horses and whether rate of healing was influenced by equine recombinant growth hormone. 8 clinically normal Standardbreds. A localized injury was created in the left and right superficial digital flexor tendons of each horse by injection of 2,000 units of collagenase. After injury, 4 horses received equine recombinant growth hormone, a possible promoter of tendon healing. Sonographic images (7.5 MHz) of the flexor tendons and ligaments of the metacarpal region were recorded on videotape prior to injury and weekly for 7 weeks after injury. Images were digitized, and sonographic brightness of tendons and ligaments was calculated. Collagenase-induced injury was sonographically similar to naturally occurring injury. After injury, sonographic brightness of the tendon decreased; after 3 weeks, brightness progressively increased, although by 7 weeks brightness had not returned to preinjury value. Equine recombinant growth hormone had no significant effect on the rate of tendon healing, as evaluated sonographically or at necropsy. As healing developed, alterations in sonographic brightness of injured tendons coincided with real changes in tendon structure. Quantitative sonographic brightness could be used to accurately monitor healing of equine tendon and ligament injuries and investigate the efficacy of various treatment regimens.

  7. Fixation Strength of Polyetheretherketone Sheath-and-Bullet Device for Soft Tissue Repair in the Foot and Ankle.

    PubMed

    Christensen, Jay; Fischer, Brian; Nute, Michael; Rizza, Robert

    Tendon transfers are often performed in the foot and ankle. Recently, interference screws have been a popular choice owing to their ease of use and fixation strength. Considering the benefits, one disadvantage of such devices is laceration of the soft tissues by the implant threads during placement that potentially weaken the structural integrity of the grafts. A shape memory polyetheretherketone bullet-in-sheath tenodesis device uses circumferential compression, eliminating potential damage from thread rotation and maintaining the soft tissue orientation of the graft. The aim of this study was to determine the pullout strength and failure mode for this device in both a synthetic bone analogue and porcine bone models. Thirteen mature bovine extensor tendons were secured into ten 4.0 × 4.0 × 4.0-cm cubes of 15-pound per cubic foot solid rigid polyurethane foam bone analogue models or 3 porcine femoral condyles using the 5 × 20-mm polyetheretherketone soft tissue anchor. The bullet-in-sheath device demonstrated a mean pullout of 280.84 N in the bone analog models and 419.47 N in the porcine bone models. (p = .001). The bullet-in-sheath design preserved the integrity of the tendon graft, and none of the implants dislodged from their original position. Copyright © 2017 The American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  8. Foot Health Facts for Athletes

    MedlinePlus

    ... more likely to suffer repeated sprains, leading to chronic ankle instability. Achilles tendon disorders —Athletes are at high risk for developing disorders of the Achilles tendon. Achilles tendonitis , an inflammation of the tendon that runs down the back ...

  9. Modified tendon stripper for obtaining palmaris longus tendon graft.

    PubMed

    Aköz, T; Altintaş, H; Civelek, B

    1999-04-01

    Tendon graft harvesting is a challenging part of hand surgery. It is not only a time-consuming procedure but also carries the potential complications associated with it. Various alternatives for this procedure are presented in the literature to overcome these difficulties. In this paper, we are presenting a series of cases in which a newly modified tendon stripper was used for tendon graft harvesting.

  10. Implantation of a Novel Biologic and Hybridized Tissue Engineered Bioimplant in Large Tendon Defect: An In Vivo Investigation

    PubMed Central

    Oryan, Ahmad; Moshiri, Ali; Parizi, Abdolhamid Meimandi

    2014-01-01

    Surgical reconstruction of large Achilles tendon defects is technically demanding. There is no standard method, and tissue engineering may be a valuable option. We investigated the effects of 3D collagen and collagen-polydioxanone sheath (PDS) implants on a large tendon defect model in rabbits. Ninety rabbits were divided into three groups: control, collagen, and collagen-PDS. In all groups, 2 cm of the left Achilles tendon were excised and discarded. A modified Kessler suture was applied to all injured tendons to retain the gap length. The control group received no graft, the treated groups were repaired using the collagen only or the collagen-PDS prostheses. The bioelectrical characteristics of the injured areas were measured at weekly intervals. The animals were euthanized at 60 days after the procedure. Gross, histopathological and ultrastructural morphology and biophysical characteristics of the injured and intact tendons were investigated. Another 90 pilot animals were also used to investigate the inflammatory response and mechanism of graft incorporation during tendon healing. The control tendons showed severe hyperemia and peritendinous adhesion, and the gastrocnemius muscle of the control animals showed severe atrophy and fibrosis, with a loose areolar connective tissue filling the injured area. The tendons receiving either collagen or collagen-PDS implants showed lower amounts of peritendinous adhesion, hyperemia and muscle atrophy, and a dense tendon filled the defect area. Compared to the control tendons, application of collagen and collagen-PDS implants significantly improved water uptake, water delivery, direct transitional electrical current and tissue resistance to direct transitional electrical current. Compared to the control tendons, both prostheses showed significantly increased diameter, density and alignment of the collagen fibrils and maturity of the tenoblasts at ultrastructure level. Both prostheses influenced favorably tendon healing compared to the control tendons, with no significant differences between collagen and collagen-PDS groups. Implantation of the 3D collagen and collagen-PDS implants accelerated the production of a new tendon in the defect area, and may become a valuable option in clinical practice. PMID:24004331

  11. Focal Experimental Injury Leads to Widespread Gene Expression and Histologic Changes in Equine Flexor Tendons

    PubMed Central

    Jacobsen, Else; Dart, Andrew J.; Mondori, Takamitsu; Horadogoda, Neil; Jeffcott, Leo B.; Little, Christopher B.; Smith, Margaret M.

    2015-01-01

    It is not known how extensively a localised flexor tendon injury affects the entire tendon. This study examined the extent of and relationship between histopathologic and gene expression changes in equine superficial digital flexor tendon after a surgical injury. One forelimb tendon was hemi-transected in six horses, and in three other horses, one tendon underwent a sham operation. After euthanasia at six weeks, transected and control (sham and non-operated contralateral) tendons were regionally sampled (medial and lateral halves each divided into six 3cm regions) for histologic (scoring and immunohistochemistry) and gene expression (real time PCR) analysis of extracellular matrix changes. The histopathology score was significantly higher in transected tendons compared to control tendons in all regions except for the most distal (P ≤ 0.03) with no differences between overstressed (medial) and stress-deprived (lateral) tendon halves. Proteoglycan scores were increased by transection in all but the most proximal region (P < 0.02), with increased immunostaining for aggrecan, biglycan and versican. After correcting for location within the tendon, gene expression for aggrecan, versican, biglycan, lumican, collagen types I, II and III, MMP14 and TIMP1 was increased in transected tendons compared with control tendons (P < 0.02) and decreased for ADAMTS4, MMP3 and TIMP3 (P < 0.001). Aggrecan, biglycan, fibromodulin, and collagen types I and III expression positively correlated with all histopathology scores (P < 0.001), whereas lumican, ADAMTS4 and MMP14 expression positively correlated only with collagen fiber malalignment (P < 0.001). In summary, histologic and associated gene expression changes were significant and widespread six weeks after injury to the equine SDFT, suggesting rapid and active development of tendinopathy throughout the entire length of the tendon. These extensive changes distant to the focal injury may contribute to poor functional outcomes and re-injury in clinical cases. Our data suggest that successful treatments of focal injuries will need to address pathology in the entire tendon, and that better methods to monitor the development and resolution of tendinopathy are required. PMID:25837713

  12. Application of a novel Kalman filter based block matching method to ultrasound images for hand tendon displacement estimation.

    PubMed

    Lai, Ting-Yu; Chen, Hsiao-I; Shih, Cho-Chiang; Kuo, Li-Chieh; Hsu, Hsiu-Yun; Huang, Chih-Chung

    2016-01-01

    Information about tendon displacement is important for allowing clinicians to not only quantify preoperative tendon injuries but also to identify any adhesive scaring between tendon and adjacent tissue. The Fisher-Tippett (FT) similarity measure has recently been shown to be more accurate than the Laplacian sum of absolute differences (SAD) and Gaussian sum of squared differences (SSD) similarity measures for tracking tendon displacement in ultrasound B-mode images. However, all of these similarity measures can easily be influenced by the quality of the ultrasound image, particularly its signal-to-noise ratio. Ultrasound images of injured hands are unfortunately often of poor quality due to the presence of adhesive scars. The present study investigated a novel Kalman-filter scheme for overcoming this problem. Three state-of-the-art tracking methods (FT, SAD, and SSD) were used to track the displacements of phantom and cadaver tendons, while FT was used to track human tendons. These three tracking methods were combined individually with the proposed Kalman-filter (K1) scheme and another Kalman-filter scheme used in a previous study to optimize the displacement trajectories of the phantom and cadaver tendons. The motion of the human extensor digitorum communis tendon was measured in the present study using the FT-K1 scheme. The experimental results indicated that SSD exhibited better accuracy in the phantom experiments, whereas FT exhibited better performance for tracking real tendon motion in the cadaver experiments. All three tracking methods were influenced by the signal-to-noise ratio of the images. On the other hand, the K1 scheme was able to optimize the tracking trajectory of displacement in all experiments, even from a location with a poor image quality. The human experimental data indicated that the normal tendons were displaced more than the injured tendons, and that the motion ability of the injured tendon was restored after appropriate rehabilitation sessions. The obtained results show the potential for applying the proposed FT-K1 method in clinical applications for evaluating the tendon injury level after metacarpal fractures and assessing the recovery of an injured tendon during rehabilitation.

  13. Intravoxel incoherent motion (IVIM) imaging in human achilles tendon.

    PubMed

    Wengler, Kenneth; Fukuda, Takeshi; Tank, Dharmesh; Huang, Mingqian; Gould, Elaine S; Schweitzer, Mark E; He, Xiang

    2018-05-09

    Limited microcirculation has been implicated in Achilles tendinopathy and may affect healing and disease progression. Existing invasive and noninvasive approaches to evaluate tendon microcirculation lack sensitivity and spatial coverage. To develop a novel Achilles tendon intravoxel incoherent motion (IVIM) MRI protocol to overcome the limitations from low tendon T 2 /T 2 * value and low intratendinous blood volume and blood velocity to evaluate tendon microcirculation. Prospective. Sixteen healthy male participants (age 31.0 ± 2.1) were recruited. A stimulated echo readout-segmented echo planar imaging (ste-RS-EPI) IVIM sequence at 3.0T. The feasibility of the proposed ste-RS-EPI IVIM protocol combined with Achilles tendon magic angle effect was evaluated. The sensitivity of the protocol was assessed by an exercise-induced intratendinous hemodynamic response in healthy participants. The vascular origin of the observed IVIM signal was validated by varying the diffusion mixing time and echo time. Two-tailed t-tests were used to evaluate differences (P < 0.05 was considered significant). Consistent with known tendon hypovascularity, the midportion Achilles tendon at baseline showed significantly lower IVIM-derived perfusion fraction (f p ) (3.1 ± 0.9%) compared to the proximal and distal Achilles tendon (6.0 ± 1.8% and 6.1 ± 2.0%, respectively; P < 0.01). Similarly, the midportion Achilles tendon exhibited significantly lower baseline blood flow index (D*×f p ) (40.9 ± 19.2, 18.3 ± 5.3, and 32.0 ± 9.4 in proximal, midportion, and distal Achilles tendon, respectively; P < 0.01). Eccentric heel-raise exercise led to ∼2 times increase of Achilles tendon blood flow in healthy participants. Consistent with its vascular origin, the estimated f p demonstrated a high dependency to IVIM protocol parameters, while the T 1 /T 2 -corrected absolute intratendinous microvascular blood volume fraction (V b ) did not vary. Achilles tendon ste-RS-EPI IVIM noninvasively assessed baseline values and exercise-induced changes to tendon microcirculation in healthy tendon. 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018. © 2018 International Society for Magnetic Resonance in Medicine.

  14. Altered Achilles tendon function during walking in people with diabetic neuropathy: implications for metabolic energy saving.

    PubMed

    Petrovic, M; Maganaris, C N; Deschamps, K; Verschueren, S M; Bowling, F L; Boulton, A J M; Reeves, N D

    2018-05-01

    The Achilles tendon (AT) has the capacity to store and release elastic energy during walking, contributing to metabolic energy savings. In diabetes patients, it is hypothesized that a stiffer Achilles tendon may reduce the capacity for energy saving through this mechanism, thereby contributing to an increased metabolic cost of walking (CoW). The aim of this study was to investigate the effects of diabetes and diabetic peripheral neuropathy (DPN) on the Achilles tendon and plantarflexor muscle-tendon unit behavior during walking. Twenty-three nondiabetic controls (Ctrl); 20 diabetic patients without peripheral neuropathy (DM), and 13 patients with moderate/severe DPN underwent gait analysis using a motion analysis system, force plates, and ultrasound measurements of the gastrocnemius muscle, using a muscle model to determine Achilles tendon and muscle-tendon length changes. During walking, the DM and particularly the DPN group displayed significantly less Achilles tendon elongation (Ctrl: 1.81; DM: 1.66; and DPN: 1.54 cm), higher tendon stiffness (Ctrl: 210; DM: 231; and DPN: 240 N/mm), and higher tendon hysteresis (Ctrl: 18; DM: 21; and DPN: 24%) compared with controls. The muscle fascicles of the gastrocnemius underwent very small length changes in all groups during walking (~0.43 cm), with the smallest length changes in the DPN group. Achilles tendon forces were significantly lower in the diabetes groups compared with controls (Ctrl: 2666; DM: 2609; and DPN: 2150 N). The results strongly point toward the reduced energy saving capacity of the Achilles tendon during walking in diabetes patients as an important factor contributing to the increased metabolic CoW in these patients. NEW & NOTEWORTHY From measurements taken during walking we observed that the Achilles tendon in people with diabetes and particularly people with diabetic peripheral neuropathy was stiffer, was less elongated, and was subject to lower forces compared with controls without diabetes. These altered properties of the Achilles tendon in people with diabetes reduce the tendon's energy saving capacity and contribute toward the higher metabolic energy cost of walking in these patients.

  15. Effects of sodium hyaluronate on tendon healing and adhesion formation in horses.

    PubMed

    Gaughan, E M; Nixon, A J; Krook, L P; Yeager, A E; Mann, K A; Mohammed, H; Bartel, D L

    1991-05-01

    Sodium hyaluronate reduces adhesions after tendon repair in rodents and dogs, and has been used in limited clinical trials in people. To evaluate its effect on tendon healing and adhesion formation in horses and to compare these effects with those of a compound of similar visco-elastic properties, a study was performed in horses, using a model of collagenase injection in the flexor tendons within the digital sheath. Eight clinically normal horses were randomly allotted to 2 groups. Adhesion formation between the deep digital flexor tendon and the tendon sheath at the pastern region was induced in the forelimbs of all horses. Using tenoscopic control, a 20-gauge needle was inserted into the deep digital flexor tendon of horses under general anesthesia and 0.2 ml of collagenase (2.5 mg/ml) was injected. The procedure was repeated proximally at 2 other sites, spaced 1.5 cm apart. A biopsy forceps was introduced, and a 5-mm tendon defect was created at each injection site. Group-A horses had 120 mg of sodium hyaluronate (NaHA) gel injected into the tendon sheath of one limb. Group-B horses had methylcellulose gel injected at the same sites. The contralateral limbs of horses in both groups served as surgical, but noninjected, controls. Horses were euthanatized after 8 weeks of stall rest. Ultrasonographic evaluation revealed improved tendon healing after NaHa injection, but no difference in peritendinous adhesion formation. Tendon sheath fluid volume and hyaluronic acid (HA) content were greater in NaHA-treated limbs. Gross pathologic examination revealed considerably fewer and smaller adhesions when limbs were treated with NaHA. However, significant difference in pull-out strengths was not evident between NaHA-treated and control limbs. Histologically, the deep digital flexor tendon from the NaHA-treated limbs had reduced inflammatory cell infiltration, improved tendon structure, and less intratendinous hemorrhage. Treatment with methylcullulose had no significant effect on tendon healing, adhesion size, quantity, or strength or on the volume and composition of the tendon sheath fluid. Sodium hyaluronate, administered intrathecally, appears to have a pharmaceutically beneficial action in this collagenase-induced tendinitis and adhesion model in horses.

  16. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology.

    PubMed

    Connizzo, Brianne K; Grodzinsky, Alan J

    2017-03-21

    Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Proteomic analysis reveals age-related changes in tendon matrix composition, with age- and injury-specific matrix fragmentation.

    PubMed

    Peffers, Mandy J; Thorpe, Chavaunne T; Collins, John A; Eong, Robin; Wei, Timothy K J; Screen, Hazel R C; Clegg, Peter D

    2014-09-12

    Energy storing tendons, such as the human Achilles and equine superficial digital flexor tendon (SDFT), are highly prone to injury, the incidence of which increases with aging. The cellular and molecular mechanisms that result in increased injury in aged tendons are not well established but are thought to result in altered matrix turnover. However, little attempt has been made to fully characterize the tendon proteome nor determine how the abundance of specific tendon proteins changes with aging and/or injury. The aim of this study was, therefore, to assess the protein profile of normal SDFTs from young and old horses using label-free relative quantification to identify differentially abundant proteins and peptide fragments between age groups. The protein profile of injured SDFTs from young and old horses was also assessed. The results demonstrate distinct proteomic profiles in young and old tendon, with alterations in the levels of proteins involved in matrix organization and regulation of cell tension. Furthermore, we identified several new peptide fragments (neopeptides) present in aged tendons, suggesting that there are age-specific cleavage patterns within the SDFT. Proteomic profile also differed between young and old injured tendon, with a greater number of neopeptides identified in young injured tendon. This study has increased the knowledge of molecular events associated with tendon aging and injury, suggesting that maintenance and repair of tendon tissue may be reduced in aged individuals and may help to explain why the risk of injury increases with aging. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  18. The Location-Specific Role of Proteoglycans in the Flexor Carpi Ulnaris Tendon

    PubMed Central

    Buckley, Mark R.; Huffman, George R.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2015-01-01

    Tendons like the flexor carpi ulnaris (FCU) that contain region-specific distributions of proteoglycans (PGs) as a result of the heterogeneous, multi-axial loads they are subjected to in vivo provide valuable models for understanding structure-function relationships in connective tissues. However, the contributions of specific PGs to FCU tendon mechanical properties are unknown. Therefore, the objective of this study was to determine how the location-dependent, viscoelastic mechanical properties of the FCU tendon are impacted individually by PG-associated glycosaminoglycans (GAGs) and by two small leucine-rich proteoglycans (SLRPs), biglycan and decorin. Full length FCU tendons from biglycan- and decorin-null mice were compared to wild type mice to evaluate the effects of specific SLRPs, while chondroitinase ABC digestion of isolated specimens removed from the tendon midsubstance was used to determine how chontroitin/dermatan sulfate (CS/DS) GAGs impact mechanics in mature FCU tendons. A novel combined genetic knockout/ digestion technique also was employed to compare SLRP-null and wild-type tendons in the absence of CS/DS GAGs that may impact properties in the mature state. In all genotypes, mechanical properties in the FCU tendon midsubstance were not affected by GAG digestion. Full-length tendons exhibited complex, multi-axial deformation under tension that may be associated with their in vivo loading environment. Mechanical properties were adversely affected by the absence of biglycan, and a decreased modulus localized in the center of the tendon was measured. These results help elucidate the role that local alterations in proteoglycan levels may play in processes that adversely impact tendon functionality including injury and pathology. PMID:23941206

  19. Regional stiffening with aging in tibialis anterior tendons of mice occurs independent of changes in collagen fibril morphology

    PubMed Central

    Wood, Lauren K.; Arruda, Ellen M.

    2011-01-01

    The incidence of tendon degeneration and rupture increases with advancing age. The mechanisms underlying this increased risk remain unknown but may arise because of age-related changes in tendon mechanical properties and structure. Our purpose was to determine the effect of aging on tendon mechanical properties and collagen fibril morphology. Regional mechanical properties and collagen fibril characteristics were determined along the length of tibialis anterior (TA) tendons from adult (8- to 12-mo-old) and old (28- to 30-mo-old) mice. Tangent modulus of all regions along the tendons increased in old age, but the increase was substantially greater in the proximal region adjacent to the muscle than in the rest of the tendon. Overall end-to-end modulus increased with old age at maximum tendon strain (799 ± 157 vs. 1,419 ± 91 MPa) and at physiologically relevant strain (377 ± 137 vs. 798 ± 104 MPa). Despite the dramatic changes in tendon mechanical properties from adulthood to old age, collagen fibril morphology and packing fraction remained relatively constant in all tendon regions examined. Since tendon properties are influenced by their external loading environment, we also examined the effect of aging on TA muscle contractile properties. Maximum isometric force did not differ between the age groups. We conclude that TA tendons stiffen in a region-dependent manner throughout the life span, but the changes in mechanical properties are not accompanied by corresponding changes in collagen fibril morphology or force-generating capacity of the TA muscle. PMID:21737825

  20. Matrix metabolism rate differs in functionally distinct tendons.

    PubMed

    Birch, Helen L; Worboys, Sarah; Eissa, Sabry; Jackson, Brendan; Strassburg, Sandra; Clegg, Peter D

    2008-04-01

    Tendon matrix integrity is vital to ensure adequate mechanical properties for efficient function. Although historically tendon was considered to be relatively inert, recent studies have shown that tendon matrix turnover is active. During normal physiological activities some tendons are subjected to stress and strains much closer to their failure properties than others. Tendons with low safety margins are those which function as energy stores such as the equine superficial digital flexor tendon (SDFT) and human Achilles tendon (AT). We postulate therefore that energy storing tendons suffer a higher degree of micro-damage and thus have a higher rate of matrix turnover than positional tendons. The hypothesis was tested using tissue from the equine SDFT and common digital extensor tendon (CDET). Matrix turnover was assessed indirectly by a combination of measurements for matrix age, markers of degradation, potential for degradation and protein expression. Results show that despite higher cellularity, the SDFT has lower relative levels of mRNA for collagen types I and III. Non-collagenous proteins, although expressed at different levels per cell, do not appear to differ between tendon types. Relative levels of mRNA for MMP1, MMP13 and both pro-MMP3 and MMP13 protein activity were significantly higher in the CDET. Correspondingly levels of cross-linked carboxyterminal telopeptide of type I collagen (ICTP) were higher in the CDET and tissue fluorescence lower suggesting more rapid turnover of the collagenous component. Reduced or inhibited collagen turnover in the SDFT may account for the high level of degeneration and subsequent injury compared to the CDET.

  1. Flexor Tendon Repair With Looped Suture: 1 Versus 2 Knots.

    PubMed

    Gil, Joseph A; Skjong, Christian; Katarincic, Julia A; Got, Christopher

    2016-03-01

    To assess the strength of flexor tendon repair with looped suture. We hypothesized that, after passing the intact looped suture in the desired repair configuration, splitting the loop and tying 2 independent knots would increase the strength of flexor tendon repair. Thirty-two flexor tendons were harvested and were sharply transected in zone II. The tendons were repaired with a 4-strand core suture repair using 3-0 looped nonabsorbable nylon suture. The harvested tendons were randomly assigned and repaired with either a 1- or a 2-knot construct. The repaired flexor tendons were fixed in a servohydraulic material testing system and were loaded to failure either with uniaxial tension or cyclically. The average force at failure was 43 N for the 1-knot repair and 28 N for the 2-knot repair. The mode of failure of 15 of the flexor tendon repairs that were cyclically loaded to failure was suture pull-out. The average number of cycles and force in cyclic testing that caused failure of flexor tendon repairs was 134 cycles and 31 N for tendons repaired with looped 3-0 suture tied with 1 knot and 94 cycles and 33 N for tendons repaired with looped 3-0 suture tied with 2 knots. Our hypothesis was disproved by the results of this study. This study suggests that, when using looped suture, tying 2 independent knots instead of tying a single knot does not increase the strength of the flexor tendon repair. Copyright © 2016 American Society for Surgery of the Hand. Published by Elsevier Inc. All rights reserved.

  2. Ultrasound definition of tendon damage in patients with rheumatoid arthritis. Results of a OMERACT consensus-based ultrasound score focussing on the diagnostic reliability.

    PubMed

    Bruyn, George A W; Hanova, Petra; Iagnocco, Annamaria; d'Agostino, Maria-Antonietta; Möller, Ingrid; Terslev, Lene; Backhaus, Marina; Balint, Peter V; Filippucci, Emilio; Baudoin, Paul; van Vugt, Richard; Pineda, Carlos; Wakefield, Richard; Garrido, Jesus; Pecha, Ondrej; Naredo, Esperanza

    2014-11-01

    To develop the first ultrasound scoring system of tendon damage in rheumatoid arthritis (RA) and assess its intraobserver and interobserver reliability. We conducted a Delphi study on ultrasound-defined tendon damage and ultrasound scoring system of tendon damage in RA among 35 international rheumatologists with experience in musculoskeletal ultrasound. Twelve patients with RA were included and assessed twice by 12 rheumatologists-sonographers. Ultrasound examination for tendon damage in B mode of five wrist extensor compartments (extensor carpi radialis brevis and longus; extensor pollicis longus; extensor digitorum communis; extensor digiti minimi; extensor carpi ulnaris) and one ankle tendon (tibialis posterior) was performed blindly, independently and bilaterally in each patient. Intraobserver and interobserver reliability were calculated by κ coefficients. A three-grade semiquantitative scoring system was agreed for scoring tendon damage in B mode. The mean intraobserver reliability for tendon damage scoring was excellent (κ value 0.91). The mean interobserver reliability assessment showed good κ values (κ value 0.75). The most reliable were the extensor digiti minimi, the extensor carpi ulnaris, and the tibialis posterior tendons. An ultrasound reference image atlas of tenosynovitis and tendon damage was also developed. Ultrasound is a reproducible tool for evaluating tendon damage in RA. This study strongly supports a new reliable ultrasound scoring system for tendon damage. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  3. Scaffolds in Tendon Tissue Engineering

    PubMed Central

    Longo, Umile Giuseppe; Lamberti, Alfredo; Petrillo, Stefano; Maffulli, Nicola; Denaro, Vincenzo

    2012-01-01

    Tissue engineering techniques using novel scaffold materials offer potential alternatives for managing tendon disorders. Tissue engineering strategies to improve tendon repair healing include the use of scaffolds, growth factors, cell seeding, or a combination of these approaches. Scaffolds have been the most common strategy investigated to date. Available scaffolds for tendon repair include both biological scaffolds, obtained from mammalian tissues, and synthetic scaffolds, manufactured from chemical compounds. Preliminary studies support the idea that scaffolds can provide an alternative for tendon augmentation with an enormous therapeutic potential. However, available data are lacking to allow definitive conclusion on the use of scaffolds for tendon augmentation. We review the current basic science and clinical understanding in the field of scaffolds and tissue engineering for tendon repair. PMID:22190961

  4. Distal Attachment of Flexor Tendon Allograft: A Biomechanical Study of Different Reconstruction Techniques in Human Cadaver Hands

    PubMed Central

    Wei, Zhuang; Thoreson, Andrew R.; Amadio, Peter C.; An, Kai-Nan; Zhao, Chunfeng

    2014-01-01

    We compared the mechanical force of tendon-to-bone repair techniques for flexor tendon reconstruction. Thirty-six flexor digitorum profundus (FDP) tendons were divided into three groups based upon the repair technique: (1) suture/button repair using FDP tendon (Pullout button group), (2) suture bony anchor using FDP tendon (Suture anchor group), and (3) suture/button repair using FDP tendon with its bony attachment preserved (Bony attachment group). The repair failure force and stiffness were measured. The mean load to failure and stiffness in the bony attachment group were significantly higher than that in the pullout button and suture anchor groups. No significant difference was found in failure force and stiffness between the pullout button and suture anchor groups. An intrasynovial flexor tendon graft with its bony attachment has significantly improved tensile properties at the distal repair site when compared with a typical tendon-to-bone attachment with a button or suture anchor. The improvement in the tensile properties at the repair site may facilitate postoperative rehabilitation and reduce the risk of graft rupture. PMID:23754507

  5. Ultrasonographic assessment of the equine palmar tendons

    PubMed Central

    Padaliya, N. R.; Ranpariya, J. J.; Kumar, Dharmendra; Javia, C. B.; Barvalia, D. R.

    2015-01-01

    Aim: The present study was conducted to evaluate the equine palmar tendon by ultrasonography (USG) in standing the position. Materials and Methods: USG of palmar tendons was performed in 40 adult horses using linear transducer having frequency of 10-18 MHz (e-soate, My Lab FIVE) and L52 linear array transducer (Titan, SonoSite) with frequencies ranging from 8 to 10 MHz. Palmar tendon was divided into 7 levels from distal to accessory carpal bone up to ergot in transverse scanning and 3 levels in longitudinal scanning. Results: The USG evaluation was very useful for diagnosis of affections of the conditions such as chronic bowed tendon, suspensory ligament desmitis, carpal sheath tenosynovitis and digital sheath effusions. The mean cross-sectional area (cm2) of affected tendons was significantly increased in affected than normal tendons. The echogenicity was also found reduced in affected tendons and ligaments along with disorganization of fiber alignment depending on the severity of lesion and injury. Conclusion: USG proved ideal diagnostic tool for diagnosis and post-treatment healing assessment of tendon injuries in horses. PMID:27047074

  6. Validation of Greyscale-Based Quantitative Ultrasound in Manual Wheelchair Users

    PubMed Central

    Collinger, Jennifer L.; Fullerton, Bradley; Impink, Bradley G.; Koontz, Alicia M.; Boninger, Michael L.

    2010-01-01

    Objective The primary aim of this study is to establish the validity of greyscale-based quantitative ultrasound (QUS) measures of the biceps and supraspinatus tendons. Design Nine QUS measures of the biceps and supraspinatus tendons were computed from ultrasound images collected from sixty-seven manual wheelchair users. Shoulder pathology was measured using questionnaires, physical examination maneuvers, and a clinical ultrasound grading scale. Results Increased age, duration of wheelchair use, and body mass correlated with a darker, more homogenous tendon appearance. Subjects with pain during physical examination tests for biceps tenderness and acromioclavicular joint tenderness exhibited significantly different supraspinatus QUS values. Even when controlling for tendon depth, QUS measures of the biceps tendon differed significantly between subjects with healthy tendons, mild tendinosis, and severe tendinosis. Clinical grading of supraspinatus tendon health was correlated with QUS measures of the supraspinatus tendon. Conclusions Quantitative ultrasound is valid method to quantify tendinopathy and may allow for early detection of tendinosis. Manual wheelchair users are at a high risk for developing shoulder tendon pathology and may benefit from quantitative ultrasound-based research that focuses on identifying interventions designed to reduce this risk. PMID:20407304

  7. The role of the non-collagenous matrix in tendon function.

    PubMed

    Thorpe, Chavaunne T; Birch, Helen L; Clegg, Peter D; Screen, Hazel R C

    2013-08-01

    Tendon consists of highly ordered type I collagen molecules that are grouped together to form subunits of increasing diameter. At each hierarchical level, the type I collagen is interspersed with a predominantly non-collagenous matrix (NCM) (Connect. Tissue Res., 6, 1978, 11). Whilst many studies have investigated the structure, organization and function of the collagenous matrix within tendon, relatively few have studied the non-collagenous components. However, there is a growing body of research suggesting the NCM plays an important role within tendon; adaptations to this matrix may confer the specific properties required by tendons with different functions. Furthermore, age-related alterations to non-collagenous proteins have been identified, which may affect tendon resistance to injury. This review focuses on the NCM within the tensional region of developing and mature tendon, discussing the current knowledge and identifying areas that require further study to fully understand structure-function relationships within tendon. This information will aid in the development of appropriate techniques for tendon injury prevention and treatment. © 2013 The Authors. International Journal of Experimental Pathology © 2013 International Journal of Experimental Pathology.

  8. Hydroxyapatite-doped polycaprolactone nanofiber membrane improves tendon-bone interface healing for anterior cruciate ligament reconstruction.

    PubMed

    Han, Fei; Zhang, Peng; Sun, Yaying; Lin, Chao; Zhao, Peng; Chen, Jiwu

    2015-01-01

    Hamstring tendon autograft is a routine graft for anterior cruciate ligament (ACL) reconstruction. However, ways of improving the healing between the tendon and bone is often overlooked in clinical practice. This issue can be addressed by using a biomimetic scaffold. Herein, a biomimetic nanofiber membrane of polycaprolactone/nanohydroxyapatite/collagen (PCL/nHAp/Col) is fabricated that mimics the composition of native bone tissue for promoting tendon-bone healing. This membrane has good cytocompatibility, allowing for osteoblast cell adhesion and growth and bone formation. As a result, MC3T3 cells reveal a higher mineralization level in PCL/nHAp/Col membrane compared with PCL membrane alone. Further in vivo studies in ACL reconstruction in a rabbit model shows that PCL/nHAp/Col-wrapped tendon may afford superior tissue integration to nonwrapped tendon in the interface between the tendon and host bone as well as improved mechanical strength. This study shows that PCL/nHAp/Col nanofiber membrane wrapping of autologous tendon is effective for improving tendon healing with host bone in ACL reconstruction.

  9. Stem Cell Applications in Tendon Disorders: A Clinical Perspective

    PubMed Central

    Young, Mark

    2012-01-01

    Tendon injuries are a common cause of morbidity and a significant health burden on society. Tendons are structural tissues connecting muscle to bone and are prone to tearing and tendinopathy, an overuse or degenerative condition that is characterized by failed healing and cellular depletion. Current treatments, for tendon tear are conservative, surgical repair or surgical scaffold reconstruction. Tendinopathy is treated by exercises, injection therapies, shock wave treatments or surgical tendon debridement. However, tendons usually heal with fibrosis and scar tissue, which has suboptimal tensile strength and is prone to reinjury, resulting in lifestyle changes with activity restriction. Preclinical studies show that cell therapies have the potential to regenerate rather than repair tendon tissue, a process termed tenogenesis. A number of different cell lines, with varying degrees of differentiation, have being evaluated including stem cells, tendon derived cells and dermal fibroblasts. Even though cellular therapies offer some potential in treating tendon disorders, there have been few published clinical trials to determine the ideal cell source, the number of cells to administer, or the optimal bioscaffold for clinical use. PMID:22448174

  10. Surface Modification with Chemically Modified Synovial Fluid for Flexor Tendon Reconstruction in a Canine Model in Vivo

    PubMed Central

    Ji, Xiaoxi; Reisdorf, Ramona L.; Thoreson, Andrew R.; Berglund, Lawrence R.; Moran, Steven L.; Jay, Gregory D.; An, Kai-Nan; Amadio, Peter C.; Zhao, Chunfeng

    2015-01-01

    Background: Functional restoration is the major concern after flexor tendon reconstruction in the hand. The purpose of the present study was to investigate the effects of modifying the surface of extrasynovial tendon autografts with carbodiimide-derivatized synovial fluid with gelatin (cd-SF-G) on functional outcomes of flexor tendon reconstruction using a canine model. Methods: The second and fifth flexor digitorum profundus tendons from eleven dogs were transected and repaired in zone II. The dogs then had six weeks of free activity leading to tendon rupture and scar formation (the repair-failure phase). In the reconstruction phase, two autologous peroneus longus tendons from each dog were harvested; one tendon was coated with cd-SF-G and the other, with saline solution, as a control. A non-weight-bearing rehabilitation protocol was followed for six weeks after reconstruction. The digits were then harvested and evaluations of function, adhesion status, gliding resistance, attachment strength, cell viability, and histology were performed. Results: The tendons coated with cd-SF-G demonstrated significantly lower values (mean and standard deviation) compared with the saline-solution group for work of flexion (0.63 ± 0.24 versus 1.34 ± 0.42 N-mm/deg), adhesion score (3.5 ± 1.6 versus 6.1 ± 1.3), proximal adhesion breaking force (8.6 ± 3.2 versus 20.2 ± 10.2 N), and gliding resistance (0.26 ± 0.08 versus 0.46 ± 0.22 N) (p < 0.05). There was no significant difference between the cd-SF-G and saline-solution groups (p > 0.05) in distal attachment-site strength (56.9 ± 28.4 versus 77.2 ± 36.2 N), stiffness (19 ± 7.5 versus 24.5 ± 14.5 N/mm), and compressive modulus from indentation testing (4.37 ± 1.26 versus 3.98 ± 1.24 N/mm). Histological analysis showed that tendons coated with cd-SF-G had smoother surfaces and demonstrated tendon-to-bone and tendon-to-tendon incorporation. No significant difference in viable cell count between the two groups was observed on tendon culture. Conclusions: Modification of the flexor tendon surface with cd-SF-G significantly improved digital function and reduced adhesion formation without affecting graft healing and stiffness. Clinical Relevance: This study used native synovial fluid as a basic lubricating reagent to treat a tendon graft in vivo, a novel avenue for improving clinical outcomes of flexor tendon reconstruction. This methodology may also apply to other surgical procedures where postoperative adhesions impair function. PMID:26085530

  11. Fascial flap reconstruction of the hand: a single surgeon's 30-year experience.

    PubMed

    Carty, Matthew J; Taghinia, Amir; Upton, Joseph

    2010-03-01

    The reconstruction of complex hand wounds is challenging due to the requirements for thin and pliable coverage with a reliable vascular supply, potential for sensibility, and provision of a gliding surface. Fascial flaps represent an excellent option for the reconstruction of these complicated defects. A retrospective review of fascial flap reconstructive procedures to the hand undertaken by a single microsurgeon was performed for operations occurring between 1979 and 2009. Both pedicled and free tissue transfer procedures were included in both pediatric and adult patients. Data were culled from a combination of patient charts, hospital records, radiographic studies, and clinical photographs. Sixty fascial flap reconstructive procedures to the hand were analyzed in 60 patients from the defined 30-year period. The most common pathological process necessitating reconstruction was acute trauma (n = 32, 53 percent). Most of the soft-tissue injuries included in the study sample were located on the dorsal hand and wrist (n = 27, 45 percent). The most commonly utilized reconstructive modality was the temporoparietal fascial flap (n = 35, 58 percent). Most reconstructions were completed as free tissue transfers (n = 46, 77 percent). Perioperative complications were relatively minor; no flap losses were recorded. All cases studied demonstrated excellent long-term coverage with no evidence of underlying tendon adhesion or contracture. Fascial flaps represent an excellent option for coverage of soft-tissue defects of the hand that are not amenable to reconstruction with skin grafting alone, particularly for localized defects with denuded tendons or exposed joints.

  12. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); hide

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  13. Pentadecapeptide BPC 157 enhances the growth hormone receptor expression in tendon fibroblasts.

    PubMed

    Chang, Chung-Hsun; Tsai, Wen-Chung; Hsu, Ya-Hui; Pang, Jong-Hwei Su

    2014-11-19

    BPC 157, a pentadecapeptide derived from human gastric juice, has been demonstrated to promote the healing of different tissues, including skin, muscle, bone, ligament and tendon in many animal studies. However, the underlying mechanism has not been fully clarified. The present study aimed to explore the effect of BPC 157 on tendon fibroblasts isolated from Achilles tendon of male Sprague-Dawley rat. From the result of cDNA microarray analysis, growth hormone receptor was revealed as one of the most abundantly up-regulated genes in tendon fibroblasts by BPC 157. BPC 157 dose- and time-dependently increased the expression of growth hormone receptor in tendon fibroblasts at both the mRNA and protein levels as measured by RT/real-time PCR and Western blot, respectively. The addition of growth hormone to BPC 157-treated tendon fibroblasts dose- and time-dependently increased the cell proliferation as determined by MTT assay and PCNA expression by RT/real-time PCR. Janus kinase 2, the downstream signal pathway of growth hormone receptor, was activated time-dependently by stimulating the BPC 157-treated tendon fibroblasts with growth hormone. In conclusion, the BPC 157-induced increase of growth hormone receptor in tendon fibroblasts may potentiate the proliferation-promoting effect of growth hormone and contribute to the healing of tendon.

  14. Pitfalls during biomechanical testing - Evaluation of different fixation methods for measuring tendons endurance properties.

    PubMed

    Hangody, Gy; Pánics, G; Szebényi, G; Kiss, R; Hangody, L; Pap, K

    2016-03-01

    The goal of the study was to find a proper technique to fix tendon grafts into an INSTRON loading machine. From 8 human cadavers, 40 grafts were collected. We removed the bone-patella tendon-bone grafts, the semitendinosus and gracilis tendons, the quadriceps tendon-bone grafts, the Achilles tendons, and the peroneus longus tendons from each lower extremity. We tested the tendon grafts with five different types of fixation devices: surgical thread (Premicron 3), general mounting clamp, wire mesh, cement fixation, and a modified clamp for an INSTRON loading machine. The mean failure load in case of surgical thread fixation was (381N ± 26N). The results with the general clamp were (527N ± 45N). The wire meshes were more promising (750N ± 21N), but did not reach the outcomes we desired. Easy slippages of the ends of the tendons from the cement encasements were observed (253N ± 18N). We then began to use Shi's clamp that could produce 977N ± 416N peak force. We combined Shi's clamp with freezing of the graft and the rupture of the tendon itself demonstrated an average force of 2198 N ± 773N. We determined that our modified frozen clamp fixed the specimens against high tensile forces.

  15. Achilles tendon shape and echogenicity on ultrasound among active badminton players.

    PubMed

    Malliaras, P; Voss, C; Garau, G; Richards, P; Maffulli, N

    2012-04-01

    The relationship between Achilles tendon ultrasound abnormalities, including a spindle shape and heterogeneous echogenicity, is unclear. This study investigated the relationship between these abnormalities, tendon thickness, Doppler flow and pain. Sixty-one badminton players (122 tendons, 36 men, and 25 women) were recruited. Achilles tendon thickness, shape (spindle, parallel), echogenicity (heterogeneous, homogeneous) and Doppler flow (present or absent) were measured bilaterally with ultrasound. Achilles tendon pain (during or after activity over the last week) and pain and function [Victorian Institute of Sport Achilles Assessment (VISA-A)] were measured. Sixty-eight (56%) tendons were parallel with homogeneous echogenicity (normal), 22 (18%) were spindle shaped with homogeneous echogenicity, 16 (13%) were parallel with heterogeneous echogenicity and 16 (13%) were spindle shaped with heterogeneous echogenicity. Spindle shape was associated with self-reported pain (P<0.05). Heterogeneous echogenicity was associated with lower VISA-A scores than normal tendon (P<0.05). There was an ordinal relationship between normal tendon, parallel and heterogeneous and spindle shaped and heterogeneous tendons with regard to increasing thickness and likelihood of Doppler flow. Heterogeneous echogenicity with a parallel shape may be a physiological phase and may develop into heterogeneous echogenicity with a spindle shape that is more likely to be pathological. © 2010 John Wiley & Sons A/S.

  16. Effects of Trypsinization and Mineralization on Intrasynovial Tendon Allograft Healing to Bone

    PubMed Central

    Qu, Jin; van Alphen, Nick A.; Thoreson, Andrew R.; Chen, Qingshan; An, Kai-Nan; Amadio, Peter C.; Schmid, Thomas M.; Zhao, Chunfeng

    2014-01-01

    The purpose of the current study was to develop a novel technology to enhance tendon-to-bone interface healing by trypsinizing and mineralizing (TM) an intrasynovial tendon allograft in a rabbit bone tunnel model. Eight rabbit flexor digitorum profundus (FDP) tendons were used to optimize the trypsinization process. An additional 24 FDP tendons were stratified into control and TM groups; in each group, 4 tendons were used for in vitro evaluation of TM and 8 were transplanted into proximal tibial bone tunnels in rabbits. The samples were evaluated histologically and with mechanical testing at postoperative week 8. Maximum failure strength and linear stiffness were not significantly different between the control and TM tendons. A thin fibrous band of scar tissue formed at the graft-to-bone interface in the control group. However, only the TM group showed obvious new bone formation inside the tendon graft and a visible fibrocartilage layer at the bone tunnel entrance. This study is the first to explore effects of TM on the intrasynovial allograft healing to a bone tunnel. TM showed beneficial effects on chondrogenesis, osteogenesis, and integration of the intrasynovial tendon graft, but mechanical strength was the same as the control tendons in this short-term in vivo study. PMID:25611186

  17. Tendon sheath fibroma in the thigh.

    PubMed

    Moretti, Vincent M; Ashana, Adedayo O; de la Cruz, Michael; Lackman, Richard D

    2012-04-01

    Tendon sheath fibromas are rare, benign soft tissue tumors that are predominantly found in the fingers, hands, and wrists of young adult men. This article describes a tendon sheath fibroma that developed in the thigh of a 70-year-old man, the only known tendon sheath fibroma to form in this location. Similar to tendon sheath fibromas that develop elsewhere, our patient's lesion presented as a painless, slow-growing soft tissue nodule. Physical examination revealed a firm, nontender mass with no other associated signs or symptoms. Although the imaging appearance of tendon sheath fibromas varies, our patient's lesion appeared dark on T1- and bright on T2-weighted magnetic resonance imaging. It was well marginated and enhanced with contrast.Histologically, tendon sheath fibromas are composed of dense fibrocollagenous stromas with scattered spindle-shaped fibroblasts and narrow slit-like vascular spaces. Most tendon sheath fibromas can be successfully removed by marginal excision, although 24% of lesions recur. No lesions have metastasized. Our patient's tendon sheath fibroma was removed by marginal excision, and the patient remained disease free 35 months postoperatively. Despite its rarity, tendon sheath fibroma should be included in the differential diagnosis of a thigh mass on physical examination or imaging, especially if it is painless, nontender, benign appearing, and present in men. Copyright 2012, SLACK Incorporated.

  18. Collagen fibrils in functionally distinct tendons have differing structural responses to tendon rupture and fatigue loading.

    PubMed

    Herod, Tyler W; Chambers, Neil C; Veres, Samuel P

    2016-09-15

    In this study we investigate relationships between the nanoscale structure of collagen fibrils and the macroscale functional response of collagenous tissues. To do so, we study two functionally distinct classes of tendons, positional tendons and energy storing tendons, using a bovine forelimb model. Molecular-level assessment using differential scanning calorimetry (DSC), functional crosslink assessment using hydrothermal isometric tension (HIT) analysis, and ultrastructural assessment using scanning electron microscopy (SEM) were used to study undamaged, ruptured, and cyclically loaded samples from the two tendon types. HIT indicated differences in both crosslink type and crosslink density, with flexor tendons having more thermally stable crosslinks than the extensor tendons (higher TFmax of >90 vs. 75.1±2.7°C), and greater total crosslink density than the extensor tendons (higher t1/2 of 11.5±1.9 vs. 3.5±1.0h after NaBH4 treatment). Despite having a lower crosslink density than flexor tendons, extensor tendons were significantly stronger (37.6±8.1 vs. 23.1±7.7MPa) and tougher (14.3±3.6 vs. 6.8±3.4MJ/m(3)). SEM showed that collagen fibrils in the tougher, stronger extensor tendons were able to undergo remarkable levels of plastic deformation in the form of discrete plasticity, while those in the flexor tendons were not able to plastically deform. When cyclically loaded, collagen fibrils in extensor tendons accumulated fatigue damage rapidly in the form of kink bands, while those in flexor tendons did not accumulate significant fatigue damage. The results demonstrate that collagen fibrils in functionally distinct tendons respond differently to mechanical loading, and suggests that fibrillar collagens may be subject to a strength vs. fatigue resistance tradeoff. Collagen fibrils-nanoscale biological cables-are the fundamental load-bearing elements of all structural human tissues. While all collagen fibrils share common features, such as being composed of a precise quarter-staggered polymeric arrangement of triple-helical collagen molecules, their structure can vary significantly between tissue types, and even between different anatomical structures of the same tissue type. To understand normal function, homeostasis, and disease of collagenous tissues requires detailed knowledge of collagen fibril structure-function. Using anatomically proximate but structurally distinct tendons, we show that collagen fibrils in functionally distinct tendons have differing susceptibilities to damage under both tensile overload and cyclic fatigue loading. Our results suggest that the structure of collagen fibrils may lead to a strength versus fatigue resistance tradeoff, where high strength is gained at the expense of fatigue resistance, and vice versa. Copyright © 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. Leukocyte-Reduced Platelet-Rich Plasma Normalizes Matrix Metabolism in Torn Human Rotator Cuff Tendons.

    PubMed

    Cross, Jessica A; Cole, Brian J; Spatny, Kaylan P; Sundman, Emily; Romeo, Anthony A; Nicholson, Greg P; Wagner, Bettina; Fortier, Lisa A

    2015-12-01

    The optimal platelet-rich plasma (PRP) for treatment of supraspinatus tendinopathy has not been determined. To evaluate the effect of low- versus high-leukocyte concentrated PRP products on catabolic and anabolic mediators of matrix metabolism in diseased rotator cuff tendons. Controlled laboratory study. Diseased supraspinatus tendons were treated with PRP made by use of 2 commercial systems: Arthrex Autologous Conditioned Plasma Double Syringe System (L(lo) PRP) and Biomet GPS III Mini Platelet Concentrate System (L(hi) PRP). Tendon explants were placed in 6-well plates and cultured in L(lo) PRP, L(hi) PRP, or control media (Dulbecco's Modified Eagle Medium + 10% fetal bovine serum) for 96 hours. Tendons were processed for hematoxylin-eosin histologic results and were scored with the modified Bonar scale. Group 1 tendons were defined as moderate tendinopathy (Bonar score <3); group 2 tendons were assessed as severely affected (Bonar score = 3). Transforming growth factor β-1 (TGFβ-1), interleukin-1β (IL-1β), interleukin-1 receptor antagonist (IL-1Ra), interleukin-6 (IL-6), interleukin-8 (IL-8), and matrix metalloproteinase-9 (MMP-9) concentrations in PRP media were measured by use of enzyme-linked immunosorbent assay after 96 hours of culture with diseased tendon. Tendon messenger RNA expression of collagen type I (COL1A1), collagen type III (COL3A1), cartilage oligomeric matrix protein (COMP), MMP-9, MMP-13, and IL-1β was measured with real-time quantitative polymerase chain reaction. Leukocytes and platelets were significantly more concentrated in L(hi) PRP compared with L(lo) PRP. Increased IL-1β was present in L(hi) PRP after culture with group 1 tendons. IL-6 was increased in L(hi) PRP after culture with group 2 tendons. Both TGFβ-1 and MMP-9 were increased in L(hi) PRP after culture with either tendon group. In L(lo) PRP cultures, IL-1Ra:IL-1β in PRP used as media and COL1A1:COL3A1 gene expression were increased for group 1 tendon cultures. Gene expression of MMP-9 and IL-1β was increased in group 2 tendons cultured in L(lo) PRP. There was no significant difference in the expression of MMP-13 or COMP in either group of tendons cultured in L(lo) PRP or L(hi) PRP. L(lo) PRP promotes normal collagen matrix synthesis and decreases cytokines associated with matrix degradation and inflammation to a greater extent than does L(hi) PRP in moderately degenerative tendons. In severely degenerative tendons, neither PRP preparation enhanced matrix synthesis. L(lo) PRP may promote healing in moderately degenerative rotator cuff tendons. © 2015 The Author(s).

  20. Time-Dependent Alterations of MMPs, TIMPs and Tendon Structure in Human Achilles Tendons after Acute Rupture

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian; Klatte-Schulz, Franka

    2017-01-01

    A balance between matrix metalloproteinases (MMPs) and their inhibitors (TIMPs) is required to maintain tendon homeostasis. Variation in this balance over time might impact on the success of tendon healing. This study aimed to analyze structural changes and the expression profile of MMPs and TIMPs in human Achilles tendons at different time-points after rupture. Biopsies from 37 patients with acute Achilles tendon rupture were taken at surgery and grouped according to time after rupture: early (2–4 days), middle (5–6 days), and late (≥7 days), and intact Achilles tendons served as control. The histological score increased from the early to the late time-point after rupture, indicating the progression towards a more degenerative status. In comparison to intact tendons, qRT-PCR analysis revealed a significantly increased expression of MMP-1, -2, -13, TIMP-1, COL1A1, and COL3A1 in ruptured tendons, whereas TIMP-3 decreased. Comparing the changes over time post rupture, the expression of MMP-9, -13, and COL1A1 significantly increased, whereas MMP-3 and -10 expression decreased. TIMP expression was not significantly altered over time. MMP staining by immunohistochemistry was positive in the ruptured tendons exemplarily analyzed from early and late time-points. The study demonstrates a pivotal contribution of all investigated MMPs and TIMP-1, but a minor role of TIMP-2, -3, and -4, in the early human tendon healing process. PMID:29053586

  1. Is the chronic painful tendinosis tendon a strong tendon?: a case study involving an Olympic weightlifter with chronic painful Jumper's knee.

    PubMed

    Gisslén, Karl; Ohberg, Lars; Alfredson, Håkan

    2006-09-01

    The chronic painful tendinosis tendon is generally considered a degenerated and weak tendon. However, this has not been scientifically verified, and is to be considered a hypothesis. We present here a case study involving a high-level Olympic weightlifter with chronic painful patellar tendinosis who started heavy-weight training very early after successful treatment with sclerosing injections. A 25-year-old super heavy-weight (+105 kg) Olympic weightlifter with 9 months duration of severe pain (prohibiting full training) in the proximal patellar tendon, where ultrasound and Doppler showed a widened tendon with structural changes and neovascularisation, was given one treatment with ultrasound and Doppler-guided injections of the sclerosing agent polidocanol. The injections targeted the neovessels posterior to the tendon. The patient was pain-free after the treatment, and already after 2-weeks he started with heavy-weight training (240 kg in deep squats) to try to qualify for the Olympics. Additional very heavy training on training camps, most often without having any discomfort or pain in the patellar tendon, resulted in Swedish records and ninth place at the European Championships 17 weeks after the treatment. Despite beating the national records, he did not qualify for the Olympics. Ultrasound and Doppler follow-ups have shown only a few remaining neovessels, and little structural tendon changes. This case questions previous theories about the weak tendinosis tendon, and stresses the importance of studies evaluating tendon strength.

  2. Architectural properties of the neuromuscular compartments in selected forearm skeletal muscles

    PubMed Central

    Liu, An-Tang; Liu, Ben-Li; Lu, Li-Xuan; Chen, Gang; Yu, Da-Zhi; Zhu, Lie; Guo, Rong; Dang, Rui-Shan; Jiang, Hua

    2014-01-01

    The purposes f this study were to (i) explore the possibility of splitting the selected forearm muscles into separate compartments in human subjects; (ii) quantify the architectural properties of each neuromuscular compartment; and (iii) discuss the implication of these properties in split tendon transfer procedures. Twenty upper limbs from 10 fresh human cadavers were used in this study. Ten limbs of five cadavers were used for intramuscular nerve study by modified Sihler's staining technique, which confirmed the neuromuscular compartments. The other 10 limbs were included for architectural analysis of neuromuscular compartments. The architectural features of the compartments including muscle weight, muscle length, fiber length, pennation angle, and sarcomere length were determined. Physiological cross-sectional area and fiber length/muscle length ratio were calculated. Five of the selected forearm muscles were ideal candidates for splitting, including flexor carpi ulnaris, flexor carpi radials, extensor carpi radialis brevis, extensor carpi ulnaris and pronator teres. The humeral head of pronator teres contained the longest fiber length (6.23 ± 0.31 cm), and the radial compartment of extensor carpi ulnaris contained the shortest (2.90 ± 0.28 cm). The ulnar compartment of flexor carpi ulnaris had the largest physiological cross-sectional area (5.17 ± 0.59 cm2), and the ulnar head of pronator teres had the smallest (0.67 ± 0.06 cm2). Fiber length/muscle length ratios of the neuromuscular compartments were relatively low (average 0.27 ± 0.09, range 0.18–0.39) except for the ulnar head of pronator teres, which had the highest one (0.72 ± 0.05). Using modified Sihler's technique, this research demonstrated that each compartment of these selected forearm muscles has its own neurovascular supply after being split along its central tendon. Data of the architectural properties of each neuromuscular compartment provide insight into the ‘design’ of their functional capability. In addition to improving our understanding of muscle anatomy and function, elucidation of forearm neuromuscular compartments architecture may ultimately provide information useful for selection of muscle subdivisions used in tendon transfer. PMID:24836406

  3. Surgical Treatment for Failure of Repair of Patellar and Quadriceps Tendon Rupture With Ipsilateral Hamstring Tendon Graft.

    PubMed

    Maffulli, Nicola; Papalia, Rocco; Torre, Guglielmo; Denaro, Vincenzo

    2017-03-01

    Tears of the patellar and quadriceps tendon are common in the active population, especially in athletes. At present, several techniques for surgical repair and reconstruction are available. When reruptures occur, a reconstruction is mandatory. In the present paper, we describe a surgical technique for patellar and quadriceps tendon reconstruction using ipsilateral hamstring autograft. After routine hamstring tendon harvesting, the tendon ends are prepared using a whip stitch. A transverse tunnel is drilled in the midportion of the patella, the hamstring graft is passed through the patella, and firmly secured to the patellar tunnel openings with sutures. The details of the technique are fully described. Autologous ipsilateral hamstring tendon grafts provide a secure sound means to manage these challenging injuries.

  4. Dental pulp stem cells express tendon markers under mechanical loading and are a potential cell source for tissue engineering of tendon-like tissue.

    PubMed

    Chen, Yu-Ying; He, Sheng-Teng; Yan, Fu-Hua; Zhou, Peng-Fei; Luo, Kai; Zhang, Yan-Ding; Xiao, Yin; Lin, Min-Kui

    2016-12-16

    Postnatal mesenchymal stem cells have the capacity to differentiate into multiple cell lineages. This study explored the possibility of dental pulp stem cells (DPSCs) for potential application in tendon tissue engineering. The expression of tendon-related markers such as scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagens I and VI was detected in dental pulp tissue. Interestingly, under mechanical stimulation, these tendon-related markers were significantly enhanced when DPSCs were seeded in aligned polyglycolic acid (PGA) fibre scaffolds. Furthermore, mature tendon-like tissue was formed after transplantation of DPSC-PGA constructs under mechanical loading conditions in a mouse model. This study demonstrates that DPSCs could be a potential stem cell source for tissue engineering of tendon-like tissue.

  5. Tendon Functional Extracellular Matrix

    PubMed Central

    Screen, H.R.C.; Birk, D.E.; Kadler, K.E.; Ramirez, F; Young, M.F.

    2015-01-01

    This article is one of a series, summarising views expressed at the Orthopaedic Research Society New Frontiers in Tendon Research Conference. This particular article reviews the three workshops held under the “Functional Extracellular Matrix” stream. The workshops focused on the roles of the tendon extracellular matrix, such as performing the mechanical functions of tendon, creating the local cell environment and providing cellular cues. Tendon is a complex network of matrix and cells, and its biological functions are influenced by widely-varying extrinsic and intrinsic factors such as age, nutrition, exercise levels and biomechanics. Consequently, tendon adapts dynamically during development, ageing and injury. The workshop discussions identified research directions associated with understanding cell-matrix interactions to be of prime importance for developing novel strategies to target tendon healing or repair. PMID:25640030

  6. Synthesis, development, characterization and effectiveness of bovine pure platelet gel-collagen-polydioxanone bioactive graft on tendon healing

    PubMed Central

    Moshiri, Ali; Oryan, Ahmad; Meimandi-Parizi, Abdolhamid

    2015-01-01

    Bovine platelet gel (BPG) is an accessible and cost-effective source of growth factors which may have a value in tendon regenerative medicine. We produced a collagen implant (CI) as a tendon proper, covered it with polydioxanone (PDS) sheath to simulate paratenon and finally embedded the BPG as an active source of growth factor within the bioimplant to test whether BPG would be able to accelerate and enhance tendon regeneration and repair. After in vitro characterization of the bioactive grafts, the grafts were implanted in rabbit large tendon defect model. Untreated tendons and tendons treated with either CI or CI-PDS were served as controls for the CI-PDS-BPG. The animals were investigated clinically, ultrasonographically and haematologically for 120 days. After euthanasia, dry matter content, water uptake and delivery characteristics and also gross morphological, histopathological and scanning electron microscopic features of the healing tendons were assessed. In vitro, the activated platelets in the scaffold, released their growth factors significantly more than the controls. BPG also increased cell viability, and enhanced cellular differentiation, maturation and proliferation inside the CI-PDS compared with the controls. In vivo, the BPG modulated inflammation, increased quality and rate of fibroplasia and produced a remodelled tendon that had significantly higher collagen content and superior collagen fibril and fibre differentiation than controls. Treatment also significantly improved tendon water uptake and delivery characteristics, animals’ serum PDGF level, CI-PDS biocompatibility and biodegradability and reduced peritendinous adhesions, muscle fibrosis and atrophy. BPG was effective on tendon healing and CI-PDS-BPG may be a valuable bioscaffold in tendon reconstructive surgery. PMID:25702535

  7. The paratenon contributes to scleraxis-expressing cells during patellar tendon healing.

    PubMed

    Dyment, Nathaniel A; Liu, Chia-Feng; Kazemi, Namdar; Aschbacher-Smith, Lindsey E; Kenter, Keith; Breidenbach, Andrew P; Shearn, Jason T; Wylie, Christopher; Rowe, David W; Butler, David L

    2013-01-01

    The origin of cells that contribute to tendon healing, specifically extrinsic epitenon/paratenon cells vs. internal tendon fibroblasts, is still debated. The purpose of this study is to determine the location and phenotype of cells that contribute to healing of a central patellar tendon defect injury in the mouse. Normal adult patellar tendon consists of scleraxis-expressing (Scx) tendon fibroblasts situated among aligned collagen fibrils. The tendon body is surrounded by paratenon, which consists of a thin layer of cells that do not express Scx and collagen fibers oriented circumferentially around the tendon. At 3 days following injury, the paratenon thickens as cells within the paratenon proliferate and begin producing tenascin-C and fibromodulin. These cells migrate toward the defect site and express scleraxis and smooth muscle actin alpha by day 7. The thickened paratenon tissue eventually bridges the tendon defect by day 14. Similarly, cells within the periphery of the adjacent tendon struts express these markers and become disorganized. Cells within the defect region show increased expression of fibrillar collagens (Col1a1 and Col3a1) but decreased expression of tenogenic transcription factors (scleraxis and mohawk homeobox) and collagen assembly genes (fibromodulin and decorin). By contrast, early growth response 1 and 2 are upregulated in these tissues along with tenascin-C. These results suggest that paratenon cells, which normally do not express Scx, respond to injury by turning on Scx and assembling matrix to bridge the defect. Future studies are needed to determine the signaling pathways that drive these cells and whether they are capable of producing a functional tendon matrix. Understanding this process may guide tissue engineering strategies in the future by stimulating these cells to improve tendon repair.

  8. Evaluating adhesion reduction efficacy of type I/III collagen membrane and collagen-GAG resorbable matrix in primary flexor tendon repair in a chicken model.

    PubMed

    Turner, John B; Corazzini, Rubina L; Butler, Timothy J; Garlick, David S; Rinker, Brian D

    2015-09-01

    Reduction of peritendinous adhesions after injury and repair has been the subject of extensive prior investigation. The application of a circumferential barrier at the repair site may limit the quantity of peritendinous adhesions while preserving the tendon's innate ability to heal. The authors compare the effectiveness of a type I/III collagen membrane and a collagen-glycosaminoglycan (GAG) resorbable matrix in reducing tendon adhesions in an experimental chicken model of a "zone II" tendon laceration and repair. In Leghorn chickens, flexor tendons were sharply divided using a scalpel and underwent repair in a standard fashion (54 total repairs). The sites were treated with a type I/III collagen membrane, collagen-GAG resorbable matrix, or saline in a randomized fashion. After 3 weeks, qualitative and semiquantitative histological analysis was performed to evaluate the "extent of peritendinous adhesions" and "nature of tendon healing." The data was evaluated with chi-square analysis and unpaired Student's t test. For both collagen materials, there was a statistically significant improvement in the degree of both extent of peritendinous adhesions and nature of tendon healing relative to the control group. There was no significant difference seen between the two materials. There was one tendon rupture observed in each treatment group. Surgical handling characteristics were subjectively favored for type I/III collagen membrane over the collagen-GAG resorbable matrix. The ideal method of reducing clinically significant tendon adhesions after injury remains elusive. Both materials in this study demonstrate promise in reducing tendon adhesions after flexor tendon repair without impeding tendon healing in this model.

  9. The Coracohumeral Distance in Shoulders With Traumatic and Degenerative Subscapularis Tendon Tears.

    PubMed

    Balke, Maurice; Banerjee, Marc; Greshake, Oliver; Hoeher, Juergen; Bouillon, Bertil; Liem, Dennis

    2016-01-01

    A reduced coracohumeral distance (CHD) is thought to be responsible for subcoracoid impingement. This only accounts for degenerative tendon tears. In traumatic tears, the subcoracoid space should be normal. The CHD in patients with traumatic subscapularis tendon tears is larger than that in patients with degenerative tears and does not differ from patients with an intact subscapularis tendon. Cohort study; Level of evidence, 3. A total of 83 patients with arthroscopically certified subscapularis tendon tears were included in the study. Forty-four patients had degenerative causes (group 1), and 39 had traumatic causes (group 2). The control group consisted of 20 patients with traumatic supraspinatus tendon tears and arthroscopically proven, intact subscapularis tendons (group 3). On preoperative axial magnetic resonance imaging, the distance between the CHD was measured, and the values of the 3 groups were compared using the t test. The mean (±SD) CHD in patients with degenerative subscapularis tendon tears was 8.6 ± 2.0 mm (range, 4.0-13.2 mm) and was significantly (P = .0003) smaller than that in patients with traumatic tears (10.2 ± 2.0 mm; range, 6.6-16.2 mm) or controls (10.4 ± 1.8 mm; range, 6.8-14.0 mm). The CHD of controls and patients with traumatic tears did not differ significantly (P = .7875). A CHD of less than 6 mm only occurred in patients with degenerative subscapularis tendon tears. The hypothesis that the CHD in patients with degenerative subscapularis tendon tears is significantly smaller than that in patients with traumatic tears or intact subscapularis tendons was confirmed. The CHD in patients with traumatic tears does not differ from that in controls. A CHD of less than 6 mm only occurs in patients with degenerative subscapularis tendon tears. © 2015 The Author(s).

  10. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model.

    PubMed

    Freedman, Benjamin R; Gordon, Joshua A; Bhatt, Pankti R; Pardes, Adam M; Thomas, Stephen J; Sarver, Joseph J; Riggin, Corinne N; Tucker, Jennica J; Williams, Alexis W; Zanes, Robert C; Hast, Michael W; Farber, Daniel C; Silbernagel, Karin G; Soslowsky, Louis J

    2016-12-01

    Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3 weeks of healing. Sprague-Dawley rats (N = 100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1 week (RTA1) or after 3 weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post-injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:2172-2180, 2016. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  11. Faster Movement Speed Results in Greater Tendon Strain during the Loaded Squat Exercise

    PubMed Central

    Earp, Jacob E.; Newton, Robert U.; Cormie, Prue; Blazevich, Anthony J.

    2016-01-01

    Introduction: Tendon dynamics influence movement performance and provide the stimulus for long-term tendon adaptation. As tendon strain increases with load magnitude and decreases with loading rate, changes in movement speed during exercise should influence tendon strain. Methods: Ten resistance-trained men [squat one repetition maximum (1RM) to body mass ratio: 1.65 ± 0.12] performed parallel-depth back squat lifts with 60% of 1RM load at three different speeds: slow fixed-tempo (TS: 2-s eccentric, 1-s pause, 2-s concentric), volitional-speed without a pause (VS) and maximum-speed jump (JS). In each condition joint kinetics, quadriceps tendon length (LT), patellar tendon force (FT), and rate of force development (RFDT) were estimated using integrated ultrasonography, motion-capture, and force platform recordings. Results: Peak LT, FT, and RFDT were greater in JS than TS (p < 0.05), however no differences were observed between VS and TS. Thus, moving at faster speeds resulted in both greater tendon stress and strain despite an increased RFDT, as would be predicted of an elastic, but not a viscous, structure. Temporal comparisons showed that LT was greater in TS than JS during the early eccentric phase (10–14% movement duration) where peak RFDT occurred, demonstrating that the tendon's viscous properties predominated during initial eccentric loading. However, during the concentric phase (61–70 and 76–83% movement duration) differing FT and similar RFDT between conditions allowed for the tendon's elastic properties to predominate such that peak tendon strain was greater in JS than TS. Conclusions: Based on our current understanding, there may be an additional mechanical stimulus for tendon adaptation when performing large range-of-motion isoinertial exercises at faster movement speeds. PMID:27630574

  12. Nonsurgical treatment and early return to activity leads to improved Achilles tendon fatigue mechanics and functional outcomes during early healing in an animal model

    PubMed Central

    Freedman, BR; Gordon, JA; Bhatt, PB; Pardes, AM; Thomas, SJ; Sarver, JJ; Riggin, CN; Tucker, JJ; Williams, AW; Zanes, RC; Hast, MW; Farber, DC; Silbernagel, KG; Soslowsky, LJ

    2016-01-01

    Achilles tendon ruptures are common and devastating injuries; however, an optimized treatment and rehabilitation protocol has yet to be defined. Therefore, the objective of this study was to investigate the effects of surgical repair and return to activity on joint function and Achilles tendon properties after 3-weeks of healing. Sprague Dawley rats (N=100) received unilateral blunt transection of their Achilles tendon. Animals were then randomized into repaired or non-repaired treatments, and further randomized into groups that returned to activity after 1-week (RTA1) or after 3-weeks (RTA3) of limb casting in plantarflexion. Limb function, passive joint mechanics, and tendon properties (mechanical, organizational using high frequency ultrasound, histological, and compositional) were evaluated. Results showed that both treatment and return to activity collectively affected limb function, passive joint mechanics, and tendon properties. Functionally, RTA1 animals had increased dorsiflexion ROM and weight bearing of the injured limb compared to RTA3 animals 3-weeks post injury. Such functional improvements in RTA1 tendons were evidenced in their mechanical fatigue properties and increased cross sectional area compared to RTA3 tendons. When RTA1 was coupled with nonsurgical treatment, superior fatigue properties were achieved compared to repaired tendons. No differences in cell shape, cellularity, GAG, collagen type I, or TGF-β staining were identified between groups, but collagen type III was elevated in RTA3 repaired tendons. The larger tissue area and increased fatigue resistance created in RTA1 tendons may prove critical for optimized outcomes in early Achilles tendon healing following complete rupture. PMID:27038306

  13. The influence of freezing on the tensile strength of tendon grafts : a biomechanical study.

    PubMed

    Arnout, Nele; Myncke, Jan; Vanlauwe, Johan; Labey, Luc; Lismont, Daniel; Bellemans, Johan

    2013-08-01

    We investigated the influence of freezing on the tensile strength of fresh frozen tendon grafts. The biomechanical characteristics of tendons that are less commonly used in knee surgery (tibialis anterior, tibialis posterior, peroneus longus and medial and lateral half of Achilles tendons) were compared to those of a semitendinosus and gracilis graft harvested from the same 10 multi-organ donors. All right side tendons constituted the study group and were frozen at -80 degrees C and thawed at room temperature 5 times. All left side tendons were frozen at -80 degrees C and thawed at room temperature once. There were 59 tendons in the control group and 56 in the study group. The looped grafts were clamped at one side using a custom-made freeze clamp and loaded until failure on an Instron 4505 testing machine. The average ultimate failure load was not significantly different between the control and the study group (p > 0.05). The failure load of the medial tendon Achilles was the lowest in both study and control group (p < 0.001). There was no significant difference in maximum stress, maximum displacement, maximum strain and stiffness between the control and study group (p > 0.05). From our study, we conclude that freezing tendons at -80 degrees C and thawing several times does not influence the maximum load, maximum stress, maximum displacement, maximum strain and stiffness. The medial half of the Achilles tendon is clearly the weakest tendon (p < 0.001). These findings show that tendon grafts can be frozen at -80 degrees C and thawed at room temperature several times without altering their biomechanical properties.

  14. Minimally invasive reconstruction of chronic achilles tendon ruptures using the ipsilateral free semitendinosus tendon graft and interference screw fixation.

    PubMed

    Maffulli, Nicola; Loppini, Mattia; Longo, Umile Giuseppe; Maffulli, Gayle D; Denaro, Vincenzo

    2013-05-01

    Achilles tendon ruptures represent more than 40% of all tendon ruptures requiring surgical management. About 20% of acute Achilles tendon tears are not diagnosed at the time of injury and become chronic, necessitating more complicated management than fresh injuries. Several techniques for the reconstruction of chronic tears of the Achilles tendon have been described, but the superiority of one technique over the others has not been demonstrated. Mini-invasive reconstruction of the Achilles tendon, with a gap lesion larger than 6 cm, using the ipsilateral free semitendinosus tendon graft will result in improvement of the overall function with a low rate of complications. Case series; Level of evidence, 4. Between 2008 and 2010, the authors prospectively enrolled 28 consecutive patients (21 men and 7 women; median age, 46 years) with chronic closed ruptures of the Achilles tendon who had undergone reconstruction with a free semitendinosus tendon graft. They assessed the Achilles tendon Total Rupture Score (ATRS), maximum calf circumference, and isometric plantarflexion strength before surgery and at the last follow-up. Outcome of surgery and rate of complications were also recorded. The median follow-up after surgery was 31.4 months. The overall result of surgery was excellent/good in 26 (93%) of 28 patients. The ATRS improved from 42 (range, 29-55) to 86 (range, 78-95) (P < .0001). In the operated leg, the maximum calf circumference and isometric plantarflexion strength were significantly improved after surgery (P < .0001); however, their values remained significantly lower than those of the opposite side (P < .0001). All patients were able to walk on tiptoes and returned to their preinjury working occupation. No infections were recorded. Mini-invasive reconstruction of the Achilles tendon, with a gap lesion larger than 6 cm, using the ipsilateral free semitendinosus tendon graft provides a significant improvement of symptoms and function, although calf circumference and ankle plantarflexion strength do not recover fully.

  15. Evidence of accumulated stress in Achilles and anterior knee tendons in elite badminton players.

    PubMed

    Boesen, Anders Ploug; Boesen, Morten Ilum; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren; Langberg, Henning

    2011-01-01

    Tendon-related injuries are a major problem, but the aetiology of tendinopathies is unknown. In tendinopathies as well as during unaccustomed loading, intra-tendinous flow can be detected indicating that extensive loading can provoke intra-tendinous flow. The aim of present study is to evaluate the vascular response as indicated by colour Doppler (CD) activity in both the Achilles and patella tendon after loading during high-level badminton matches. The Achilles tendon was subdivided into a mid-tendon, pre-insertional, and insertional region and the anterior knee tendons into a quadriceps-, patella- and tuberositas region. Intra-tendinous flow was measured using both a semi-quantitative grading system (CD grading) and a quantitative scoring system (CF) on colour Doppler. Intra-tendinous flow in the Achilles and anterior knee tendons was examined in fourteen single players before tournament and after 1st and 2nd match, respectively on both the dominant and non-dominant side. All players had abnormal intra-tendinous flow (Colour Doppler ≥ grade 2) in at least one tendon in at least one scan during the tournament. At baseline, only two of the 14 players had normal flow in all the tendons examined. After 1st match, tendencies to higher intra-tendinous flow were observed in both the dominant patella tendon and non-dominant quadriceps tendon (P-values n.s.). After 2nd match, intra-tendinous flow was significant increased in the dominant patella tendon (P = 0.009). In all other locations, there was a trend towards a stepwise increase in intra-tendinous flow. The preliminary results indicate that high amount of intra-tendinous flow was found in elite badminton players at baseline and was increased after repetitive loading, especially in the patella tendon (dominant leg). The colour Doppler measurement can be used to determine changes in intra-tendinous flow after repetitive loading.

  16. A novel remaining tendon preserving repair technique leads to improved outcomes in special rotator cuff tear patterns.

    PubMed

    Jeon, Yoon Sang; Kim, Rag Gyu; Shin, Sang-Jin

    2018-05-16

    The purpose of this study was to identify the tear pattern that could be anatomically repaired by preserving the remaining tendon on footprint and evaluate clinical outcomes of patients who underwent remaining tendon preserving cuff repair. Of 523 patients with full-thickness rotator cuff tears who underwent arthroscopic repair, 41 (7.8%) patients had repairable rotator cuff tear while preserving the remaining tendon. Among them, 31 patients were followed-up for more than 2 years, including 26 patients with posterior L-shaped tear and 5 patients with transtendinous tear patterns. Clinical outcomes were evaluated using ASES and Constant score, SANE score for patient satisfaction, and VAS for pain. MRI was taken for tendon integrity 6 months postoperatively. Of the 31 patients, 11 (35.5%) had previous injury history before rotator cuff tear, including 7 (26.9%) of the 26 patients with posterior L-shaped tear and 4 (80%) of the 5 patients with transtendinous tear. The average size of preoperative cuff tear was 17.8 ± 6.8 mm in anterior-to-posterior direction and 15.2 ± 5.1 mm in medial-to-lateral direction. ASES and Constant score, SANE score, and VAS for pain were significantly (p < 0.001) improved after remaining tendon preserving rotator cuff repair. Rotator cuff tendons of 22(84.6%) patients with posterior L-shaped tear and 4(80%) patients with transtendinous tear patterns were healed. Patients who underwent rotator cuff repair with preservation of the remaining tendon on the footprint obtained satisfactory functional outcomes. Rotator cuff tears in patients who had posterior L-shaped tear extending between supraspinatus and infraspinatus tendons or transtendinous tear pattern with substantial remaining tendon could be repaired using remaining tendon preserving repair technique. Anatomic reduction of torn cuff tendon without undue tension could be achieved using the remaining tendon preserving repair technique.

  17. An advanced glycation endproduct (AGE)-rich diet promotes accumulation of AGEs in Achilles tendon.

    PubMed

    Skovgaard, Dorthe; Svensson, Rene B; Scheijen, Jean; Eliasson, Pernilla; Mogensen, Pernille; Hag, Anne Mette F; Kjær, Michael; Schalkwijk, Casper G; Schjerling, Peter; Magnusson, Stig P; Couppé, Christian

    2017-03-01

    Advanced Glycation Endproducts (AGEs) accumulate in long-lived tissue proteins like collagen in bone and tendon causing modification of the biomechanical properties. This has been hypothesized to raise the risk of orthopedic injury such as bone fractures and tendon ruptures. We evaluated the relationship between AGE content in the diet and accumulation of AGEs in weight-bearing animal Achilles tendon. Two groups of mice (C57BL/6Ntac) were fed with either high-fat diet low in AGEs high-fat diet (HFD) ( n  = 14) or normal diet high in AGEs (ND) ( n  = 11). AGE content in ND was six to 50-fold higher than HFD The mice were sacrificed at week 40 and Achilles and tail tendons were carefully excised to compare weight and nonweight-bearing tendons. The amount of the AGEs carboxymethyllysine (CML), methylglyoxal-derived hydroimidazolone (MG-H1) and carboxyethyllysine (CEL) in Achilles and tail tendon was measured using ultraperformance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) and pentosidine with high-pressure liquid chromatography (HPLC) with fluorescent detection. AGEs in Achilles tendon were higher than in tail tendon for CML ( P  < 0.0001), CEL ( P  < 0.0001), MG-H1 and pentosidine (for both ND and HFD) ( P  < 0.0001). The AGE-rich diet (ND) resulted in an increase in CML ( P  < 0.0001), MG-H1 ( P  < 0.001) and pentosidine ( P  < 0.0001) but not CEL, in Achilles and tail tendon. This is the first study to provide evidence for AGE accumulation in injury-prone, weight-bearing Achilles tendon associated with intake of an AGE-rich diet. This indicates that food-derived AGEs may alter tendon properties and the development of tendon injuries. © 2017 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  18. Prevalence and Role of a Low-Lying Peroneus Brevis Muscle Belly in Patients With Peroneal Tendon Pathologic Features: A Potential Source of Tendon Subluxation.

    PubMed

    Mirmiran, Roya; Squire, Chad; Wassell, Daniel

    2015-01-01

    A peroneus brevis low-lying muscle belly (LLMB) is a rare anomaly. A few published studies have supported the presence of this anomaly as an etiology for a peroneal tendon tear. However, the association between a peroneus brevis LLMB and tendon subluxation has not been well explored. In the present retrospective study, the magnetic resonance imaging (MRI) and intraoperative findings of 50 consecutive patients undergoing primary peroneal tendon surgery during a 5-year period were assessed. The sensitivity and specificity of MRI compared with the intraoperative findings for identifying peroneal tendon disease were investigated. The presence of associated peroneal tendon pathologic features in patients with and without a peroneus brevis LLMB was also compared. The sensitivity of MRI was high for identifying peroneal tenosynovitis (81.58%) and tear (85.71%). Although the sensitivity of MRI for detecting a peroneus brevis LLMB (3.23%) and tendon subluxation (10.00%) was low, MRI had high specificity at 94.74% and 100%, respectively. Intraoperatively, a peroneus brevis LLMB was seen in 62.00% of the patients with chronic lateral ankle pain and was associated with 64.52% of the patients with tenosynovitis, 29.03% of those with tendon subluxation, and 80.65% of those with a peroneus brevis tendon tear. Although the presence of a peroneus brevis LLMB did not show any statistically significant association with peroneus brevis tendon subluxation, of the 10 patients with intraoperatively observed tendon subluxation, 9 had a concomitant peroneus brevis LLMB. More studies with larger patient populations are needed to better investigate the role of a peroneus brevis LLMB as a mass-occupying lesion resulting in peroneal tendon subluxation. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  19. How Obesity Affects Tendons?

    PubMed

    Abate, Michele; Salini, Vincenzo; Andia, Isabel

    Several epidemiological and clinical observations have definitely demonstrated that obesity has harmful effects on tendons. The pathogenesis of tendon damage is multi-factorial. In addition to overload, attributable to the increased body weight, which significantly affects load-bearing tendons, systemic factors play a relevant role. Several bioactive peptides (chemerin, leptin, adiponectin and others) are released by adipocytes, and influence tendon structure by means of negative activities on mesenchymal cells. The ensuing systemic state of chronic, sub-clinic, low-grade inflammation can damage tendon structure. Metabolic disorders (diabetes, impaired glucose tolerance, and dislipidemia), frequently associated with visceral adiposity, are concurrent pathogenetic factors. Indeed, high glucose levels increase the formation of Advanced Glycation End-products, which in turn form stable covalent cross-links within collagen fibers, modifying their structure and functionality.Sport activities, so useful for preventing important cardiovascular complications, may be detrimental for tendons if they are submitted to intense acute or chronic overload. Therefore, two caution rules are mandatory: first, to engage in personalized soft training program, and secondly to follow regular check-up for tendon pathology.

  20. Reconstruction of a ruptured patellar tendon using ipsilateral semitendinosus and gracilis tendons with preserved distal insertions: two case reports

    PubMed Central

    2013-01-01

    Background Acute patellar tendon ruptures with poor tissue quality. Ruptures that have been neglected are difficult to repair. Several surgical techniques for the repair of the patellar tendon have been reported, however, these techniques remain difficult because of contractures, adhesions, and atrophy of the quadriceps muscle after surgery. Case presentation We report the cases of 2 Japanese patients (Case 1: a 16-year-old male and Case 2: a 43-year-old male) with patellar tendon ruptures who were treated by reconstruction using semitendinosus-gracilis (STG) tendons with preserved distal insertions. Retaining the original insertion of the STG appears to preserve its viability and provide the revascularization necessary to accelerate healing. Both tendons were placed in front of the patella, in a figure-of-eight fashion, providing stability to the patella. Conclusion Both patients recovered near normal strength and stability of the patellar tendon as well as restoration of function after the operation. PMID:24010848

  1. Increased muscle belly and tendon stiffness in patients with Parkinson's disease, as measured by myotonometry.

    PubMed

    Marusiak, Jarosław; Jaskólska, Anna; Budrewicz, Sławomir; Koszewicz, Magdalena; Jaskólski, Artur

    2011-09-01

    Based on Davis's law, greater tonus of the muscle belly in individuals with Parkinson's disease can create greater tension in the tendon, leading to structural adjustment and an increase in tendon stiffness. Our study aimed to separately assess passive stiffness in the muscle belly and tendon in medicated patients with Parkinson's disease, using myotonometry. We tested 12 patients with Parkinson's disease and 12 healthy matched controls. Passive stiffness of muscle belly and tendon was estimated by myotonometry, electromyography, and mechanomyography in relaxed biceps and triceps brachii muscles. Compared with controls, patients with Parkinson's disease had higher stiffness in the muscle belly and tendon of the biceps brachii and in the tendon of the triceps brachii. In patients with Parkinson's disease, there was a positive correlation between muscle belly stiffness and parkinsonian rigidity in the biceps brachii. Patients with Parkinson's disease have higher passive stiffness of the muscle belly and tendon than healthy matched controls. Copyright © 2011 Movement Disorder Society.

  2. Magnetic resonance imaging of the long head of the biceps tendon: benefit of coplanar image.

    PubMed

    Lin, Anderson; Ting, Julius; Lee, Kwo-Whei

    2007-01-01

    To evaluate coplanar imaging of the long head of the biceps tendon. We retrospectively compared coronal oblique magnetic resonance images aligned with the principal supraspinatus tendon and with the intra-articular biceps tendon in 21 patients. Magnetic resonance images were analyzed for lesions depicted, including superior labral anteroposterior (SLAP) tears. Arthroscopic findings were reviewed. Coronal oblique images aligned with intra-articular biceps tendon depicted 18 (86%) of 21 coplanar intra-articular biceps tendons. Coplanar images identified 6 cases of tendinosis, 1 tear, 3 intra-articular ruptures, and 20 (95.2%) of 21 exact origins of the tendon. Arthroscopy revealed 18 SLAP tears. The detection of SLAP lesions between both coronal oblique magnetic resonance images was significantly different (P = 0.007). Advantages included imaging of the intra-articular biceps tendon with least partial-volume effects, definition of SLAP lesions and the tendinous origin at the supraglenoid tubercle, depiction of intra-articular bicipital ruptures, and increased sensitivity and specificity for intra-articular lesions.

  3. New Imaging Methods for Non-invasive Assessment of Mechanical, Structural, and Biochemical Properties of Human Achilles Tendon: A Mini Review

    PubMed Central

    Fouré, Alexandre

    2016-01-01

    The mechanical properties of tendon play a fundamental role to passively transmit forces from muscle to bone, withstand sudden stretches, and act as a mechanical buffer allowing the muscle to work more efficiently. The use of non-invasive imaging methods for the assessment of human tendon's mechanical, structural, and biochemical properties in vivo is relatively young in sports medicine, clinical practice, and basic science. Non-invasive assessment of the tendon properties may enhance the diagnosis of tendon injury and the characterization of recovery treatments. While ultrasonographic imaging is the most popular tool to assess the tendon's structural and indirectly, mechanical properties, ultrasonographic elastography, and ultra-high field magnetic resonance imaging (UHF MRI) have recently emerged as potentially powerful techniques to explore tendon tissues. This paper highlights some methodological cautions associated with conventional ultrasonography and perspectives for in vivo human Achilles tendon assessment using ultrasonographic elastography and UHF MRI. PMID:27512376

  4. IN VIVO MEASURES OF SHEAR WAVE SPEED AS A PREDICTOR OF TENDON ELASTICITY AND STRENGTH

    PubMed Central

    Martin, Jack A.; Biedrzycki, Adam H.; Lee, Kenneth S.; DeWall, Ryan J.; Brounts, Sabrina H.; Murphy, William L.; Markel, Mark D.; Thelen, Darryl G.

    2015-01-01

    The purpose of this study was to assess the potential for ultrasound shear wave elastography (SWE) to assess tissue elasticity and ultimate stress in both intact and healing tendons. The lateral gastrocnemius (Achilles) tendons of 41 New Zealand white rabbits were surgically severed and repaired with growth factor coated sutures. SWE imaging was used to measure shear wave speed (SWS) in both the medial and lateral tendons pre-surgery, and at 2 and 4 weeks post-surgery. Rabbits were euthanized at 4 weeks, and both medial and lateral tendons underwent mechanical testing to failure. SWS significantly (p<0.001) decreased an average of 17% between the intact and post-surgical state across all tendons. SWS was significantly (p<0.001) correlated with both the tendon elastic modulus (r = 0.52) and ultimate stress (r = 0.58). Thus, ultrasound SWE is a potentially promising noninvasive technology for quantitatively assessing the mechanical integrity of pre-operative and post-operative tendons. PMID:26215492

  5. National Rugby League athletes and tendon tap reflex assessment: a matched cohort clinical study.

    PubMed

    Maurini, James; Ohmsen, Paul; Condon, Greg; Pope, Rodney; Hing, Wayne

    2016-11-04

    Limited research suggests elite athletes may differ from non-athletes in clinical tendon tap reflex responses. In this matched cohort study, 25 elite rugby league athletes were compared with 29 non-athletes to examine differences in tendon reflex responses. Relationships between reflex responses and lengths of players' careers were also examined. Biceps, triceps, patellar and Achilles tendon reflexes were clinically assessed. Right and left reflexes were well correlated for each tendon (r S  = 0.7-0.9). The elite rugby league athletes exhibited significantly weaker reflex responses than non-athletes in all four tendons (p < 0.005). Biceps reflexes demonstrated the largest difference and Achilles reflexes the smallest difference. Moderate negative correlations (r S  = -0.3-0.6) were observed between reflex responses and lengths of players' careers. Future research is required to further elucidate mechanisms resulting in the observed differences in tendon reflexes and to ensure clinical tendon tap examinations and findings can be interpreted appropriately in this athletic population.

  6. Real-time sonoelastography as novel follow-up method in Achilles tendon surgery.

    PubMed

    Busilacchi, A; Olivieri, M; Ulisse, S; Gesuita, R; Skrami, E; Lording, T; Fusini, F; Gigante, A

    2016-07-01

    To evaluate the sonoelastographic features of Achilles tendon healing after percutaneous treatment using real-time sonoelastography, a new tool able to quantify deformation in biological tissues. Patients with atraumatic Achilles tendon ruptures, treated with a percutaneous technique, were assessed. Sonoelastographic evaluations were performed at the myotendinous junction, tendon body/lesion site and osteotendinous junction, both for the operated and contralateral side, at 40 days, 6 months and 1 year after surgery. Using standard regions of interest, the "strain index" (SI) was calculated as an indicator of tendon elasticity. Clinical outcomes were assessed by the ATRS questionnaire at 6 months and 1 year post-operatively and correlated with sonoelastographic findings. Sixty healthy tendons from 30 volunteers were used to provide a healthy control range. Twenty-five patients were recruited for this study. The SI in treated tendons showed progressive stiffening over time, especially at myotendinous junction and at the site of the sutured lesion, resulting in significantly higher stiffness than both the contralateral tendon and healthy volunteers. Peak thickness of treated tendons occurred at 6 months, with a tendency to reduce at 1 year, while never achieving a normal physiological state. Greatest remodelling was seen at the lesion site. The contralateral tendon showed significant thickening at the myotendinous and osteotendinous junctions. The SI of the contralateral tendon was found to be stiffer than physiological values found in the control group. ATRS score improved significantly between 6 months and 1 year, being negatively correlated with the SI (p < 0.001). RTSE showed that operatively treated Achilles tendons become progressively stiffer during follow-up, while the ATRS score improved. From a biomechanical point of view, at 1 year after surgery Achilles tendons did not show a "restitutio ad integrum". Real-time sonoelastography provides more qualitative and quantitative details in the diagnostics and follow-up of Achilles tendon conditions as the post-operative evolution of the repairing tissue. Diagnostic and therapeutic study, Level III.

  7. Accumulation of Oxidized LDL in the Tendon Tissues of C57BL/6 or Apolipoprotein E Knock-Out Mice That Consume a High Fat Diet: Potential Impact on Tendon Health

    PubMed Central

    Grewal, Navdeep; Thornton, Gail M.; Behzad, Hayedeh; Sharma, Aishwariya; Lu, Alex; Zhang, Peng; Reid, W. Darlene; Granville, David J.; Scott, Alex

    2014-01-01

    Objective Clinical studies have suggested an association between dyslipidemia and tendon injuries or chronic tendon pain; the mechanisms underlying this association are not yet known. The objectives of this study were (1) to evaluate the impact of a high fat diet on the function of load-bearing tendons and on the distribution in tendons of oxidized low density lipoprotein (oxLDL), and (2) to examine the effect of oxLDL on tendon fibroblast proliferation and gene expression. Methods Gene expression (Mmp2, Tgfb1, Col1a1, Col3a1), fat content (Oil Red O staining), oxLDL levels (immunohistochemistry) and tendon biomechanical properties were examined in mice (C57Bl/6 or ApoE -/-) receiving a standard or a high fat diet. Human tendon fibroblast proliferation and gene expression (COL1A1, COL3A1, MMP2) were examined following oxLDL exposure. Results In both types of mice (C57Bl/6 or ApoE -/-), consumption of a high fat diet led to a marked increase in oxLDL deposition in the load-bearing extracellular matrix of the tendon. The consumption of a high fat diet also reduced the failure stress and load of the patellar tendon in both mouse types, and increased Mmp2 expression. ApoE -/- mice exhibited more pronounced reductions in tendon function than wild-type mice, and decreased expression of Col1a1 compared to wild type mice. Human tendon fibroblasts responded to oxLDL by increasing their proliferation and their mRNA levels of MMP2, while decreasing their mRNA levels for COL1A1 and COL3A1. Conclusion The consumption of a high fat diet resulted in deleterious changes in tendon function, and these changes may be explained in part by the effects of oxLDL, which induced a proliferative, matrix-degrading phenotype in human tenocytes. PMID:25502628

  8. Asymptomatic Achilles tendon pathology is associated with a central fat distribution in men and a peripheral fat distribution in women: a cross sectional study of 298 individuals

    PubMed Central

    2010-01-01

    Background Adiposity is a modifiable factor that has been implicated in tendinopathy. As tendon pain reduces physical activity levels and can lead to weight gain, associations between tendon pathology and adiposity must be studied in individuals without tendon pain. Therefore, the purpose of this study was to determine whether fat distribution was associated with asymptomatic Achilles tendon pathology. Methods The Achilles tendons of 298 individuals were categorised as normal or pathological using diagnostic ultrasound. Fat distribution was determined using anthropometry (waist circumference, waist hip ratio [WHR]) and dual-energy x-ray absorptiometry. Results Asymptomatic Achilles tendon pathology was more evident in men (13%) than women (5%) (p = 0.007). Men with tendon pathology were older (50.9 ± 10.4, 36.3 ± 11.3, p < 0.001), had greater WHR (0.926 ± 0.091, 0.875 ± 0.065, p = 0.039), higher android/gynoid fat mass ratio (0.616 ± 0.186, 0.519 ± 0.142, p = 0.014) and higher upper-body/lower body fat mass ratio (2.346 ± 0.630, 2.022 ± 0.467, p = 0.013). Men older than 40 years with a waist circumference >83 cm had the greatest prevalence of tendon pathology (33%). Women with tendon pathology were older (47.4 ± 10.0, 36.0 ± 10.3, p = 0.008), had less total fat (17196 ± 3173 g, 21626 ± 7882 g, p = 0.009), trunk fat (7367 ± 1662 g, 10087 ± 4152 g, p = 0.003) and android fat (1117 ± 324 g, 1616 ± 811 g, p = 0.005). They had lower central/peripheral fat mass ratios (0.711 ± 0.321 g, 0.922 ± 0.194 g, p = 0.004) than women with normal tendons. Women with tendon pathology were more often menopausal (63%, 13%, p = 0.002). Conclusions Men with Achilles tendon pathology were older and had a central fat distribution. Women with tendon pathology were older and had a peripheral fat distribution. An interaction between age and waist circumference was observed among men. PMID:20196870

  9. Inducement of semitendinosus tendon regeneration to the pes anserinus after its harvest for anterior cruciate ligament reconstruction-A new inducer grafting technique

    PubMed Central

    2012-01-01

    Purpose To investigate the usefulness of the “inducer grafting” technique for regeneration of the semitendinosus (ST) tendon after its harvest for anterior cruciate ligament (ACL) reconstruction. Methods Twenty knees of 20 patients (mean age at the time of surgery, 23.1 years) underwent ACL reconstruction with a double bundle autograft using the ST tendon (7 patients) and the ST + the gracilis (G) tendons (13 patients). “Inducer grafting” technique After harvesting the ST tendon, a passing pin with a loop thread is inserted along with the tendon stripper. The passing pin is pulled out from the medial thigh and the loop thread retained. As an inducer graft, the ST tendon branch is used. After the ACL graft has been secured, the inducer graft is sutured to the pes anserinus and the proximal end passed through by pulling the thread out. Then the inducer graft is placed within the tendon canal. The mean follow-up period was 15 months. The presence and morphology of the regenerated ST tendon were examined by MRI. And the isometric hamstring strength was examined at 45°, 90° and 120° of knee flexion. Results One month after the operation in all the patients, MRI demonstrated a low-intensity structure at the anatomical location of the ST, at the level of the superior pole of the patella and the joint line, apparently representing the regenerated ST tendon. Four months after the operation, the distal portion of the regenerated ST tendon had reached the pes anserinus in all patients. Twelve months after the operation, the regenerated ST tendon was hypertrophic in 19 of the 20 patients (95%). The isometric knee flexion torque of the ACL-reconstructed limb was significantly lower at 90° and 120° compared with the contralateral limb. Conclusion These results suggest that the “inducer grafting” technique is able to improve the regeneration rate of the harvested ST tendon and promote hypertrophy of the regenerated ST tendon, extending all the way to the pes anserinus. However, this technique couldn’t improve the deficits in knee flexion torque after ACL reconstruction. PMID:22607724

  10. IFSSH Flexor Tendon Committee report 2014: from the IFSSH Flexor Tendon Committee (Chairman: Jin Bo Tang).

    PubMed

    Tang, Jin Bo; Chang, James; Elliot, David; Lalonde, Donald H; Sandow, Michael; Vögelin, Esther

    2014-01-01

    Hand surgeons continue to search for the best surgical flexor tendon repair and treatment of the tendon sheaths and pulleys, and they are attempting to establish postoperative regimens that fit diverse clinical needs. It is the purpose of this report to present the current views, methods, and suggestions of six senior hand surgeons from six different countries - all experienced in tendon repair and reconstruction. Although certainly there is common ground, the report presents provocative views and approaches. The report reflects an update in the views of the committee. We hope that it is helpful to surgeons and therapists in treating flexor tendon injuries.

  11. Tension Regulation at the Suture Lines for Repair of Neglected Achilles Tendon Laceration.

    PubMed

    Massoud, Elsayed Ibraheem Elsayed

    2017-03-01

    Operative intervention is the preferred option for management of the neglected laceration of the Achilles tendon. However, the commonly used techniques rarely follow the principles of the regenerative medicine for the restoration of the lost tissue. This study postulated that incorporation of the autogenous tendon graft would properly progress when the interplay between mechanical loading and healing phases was correctly applied. A prospective study included 15 patients who were treated for neglected Achilles tendon laceration using the technique of lengthening of the proximal tendon stump. An absorbable reinforcement suture was used for control of the mechanical environment at the suture lines. By an average 5 years of the prospective follow-up, all the repaired tendons had restored continuity and length. The calf circumference equalized to the uninjured side in 12 patients. However, 3 patients had calf atrophy but they improved compared to the preoperative measurements. Sonogram confirmed the restoration of the normal thickness and the gliding characteristics of the repaired tendon. The technique restored continuity and tension of the repaired tendon, preserved the calf circumference, and prevented peritendinous adhesions. The absorbable reinforcement suture spontaneously allowed for the mechanical loading of the grafted tendon. Level IV, case series.

  12. A rare knee extensor mechanism injury: Vastus intermedius tendon rupture.

    PubMed

    Cetinkaya, Engin; Aydin, Canan Gonen; Akman, Yunus Emre; Gul, Murat; Arikan, Yavuz; Aycan, Osman Emre; Kabukcuoglu, Yavuz Selim

    2015-01-01

    Quadriceps tendon injuries are rare. There is a limited number of studies in the literature, reporting partial quadriceps tendon ruptures. We did not find any study reporting an isolated vastus intermedius tendon injury in the literature. A 22 years old professional rugby player with the complaints of pain in the right lower limb, decreased range of motion in right knee and a mass in the mid-anterior of the right thigh applied following an overloading on his hyperflexed knee during a rugby match. T2 sequence magnetic resonance images revealed discontinuity in the vastus intermedius tendon and intramuscular hematoma. The patient has been conservatively treated. Quadriceps tendon ruptures generally occur after the 4th decade in the presence of degenerative changes. Our case is a young professional rugby player. Isolated vastus intermedius tendon rupture is unusual. Conservative treatment is performed as the intermedius tendon is in the deepest layer of the quadriceps muscle. We report the first case of isolated rupture of the vastus intermedius tendon in the literature and we claim that disorder may be succesfully treated with conservative treatment and adequate physiotheraphy. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. A rare knee extensor mechanism injury: Vastus intermedius tendon rupture

    PubMed Central

    Cetinkaya, Engin; Aydin, Canan Gonen; Akman, Yunus Emre; Gul, Murat; Arikan, Yavuz; Aycan, Osman Emre; Kabukcuoglu, Yavuz Selim

    2015-01-01

    Introduction Quadriceps tendon injuries are rare. There is a limited number of studies in the literature, reporting partial quadriceps tendon ruptures. We did not find any study reporting an isolated vastus intermedius tendon injury in the literature. Presentation of case A 22 years old professional rugby player with the complaints of pain in the right lower limb, decreased range of motion in right knee and a mass in the mid-anterior of the right thigh applied following an overloading on his hyperflexed knee during a rugby match. T2 sequence magnetic resonance images revealed discontinuity in the vastus intermedius tendon and intramuscular hematoma. The patient has been conservatively treated. Discussion Quadriceps tendon ruptures generally occur after the 4th decade in the presence of degenerative changes. Our case is a young professional rugby player. Isolated vastus intermedius tendon rupture is unusual. Conservative treatment is performed as the intermedius tendon is in the deepest layer of the quadriceps muscle. Conclusion We report the first case of isolated rupture of the vastus intermedius tendon in the literature and we claim that disorder may be succesfully treated with conservative treatment and adequate physiotheraphy. PMID:26298093

  14. Measuring Regional Changes in Damaged Tendon

    NASA Astrophysics Data System (ADS)

    Frisch, Catherine Kayt Vincent

    Mechanical properties of tendon predict tendon health and function, but measuring these properties in vivo is difficult. An ultrasound-based (US) analysis technique called acoustoelastography (AE) uses load-dependent changes in the reflected US signal to estimate tissue stiffness non-invasively. This thesis explores whether AE can provide information about stiffness alteration resulting from tendon tears both ex vivo and in vivo. An ex vivo ovine infraspinatus tendon model suggests that the relative load transmitted by the different tendon layers transmit different fractions of the load and that ultrasound echo intensity change during cyclic loading decreases, becoming less consistent once the tendon is torn. An in vivo human tibialis anterior tendon model using electrically stimulated twitch contractions investigated the feasibility of measuring the effect in vivo. Four of the five subjects showed the expected change and that the muscle contraction times calculated using the average grayscale echo intensity change compared favorably with the times calculated based on the force data. Finally an AE pilot study with patients who had rotator cuff tendon tears found that controlling the applied load and the US view of the system will be crucial to a successful in vivo study.

  15. Freezing does not alter multiscale tendon mechanics and damage mechanisms in tension.

    PubMed

    Lee, Andrea H; Elliott, Dawn M

    2017-12-01

    It is common in biomechanics to use previously frozen tissues, where it is assumed that the freeze-thaw process does not cause consequential mechanical or structural changes. We have recently quantified multiscale tendon mechanics and damage mechanisms using previously frozen tissue, where damage was defined as an irreversible change in the microstructure that alters the macroscopic mechanical parameters. Because freezing has been shown to alter tendon microstructures, the objective of this study was to determine if freezing alters tendon multiscale mechanics and damage mechanisms. Multiscale testing using a protocol that was designed to evaluate tendon damage (tensile stress-relaxation followed by unloaded recovery) was performed on fresh and previously frozen rat tail tendon fascicles. At both the fascicle and fibril levels, there was no difference between the fresh and frozen groups for any of the parameters, suggesting that there is no effect of freezing on tendon mechanics. After unloading, the microscale fibril strain fully recovered, and interfibrillar sliding only partially recovered, suggesting that the tendon damage is localized to the interfibrillar structures and that mechanisms of damage are the same in both fresh and previously frozen tendons. © 2017 New York Academy of Sciences.

  16. Medial versus lateral supraspinatus tendon properties: implications for double-row rotator cuff repair.

    PubMed

    Wang, Vincent M; Wang, Fan Chia; McNickle, Allison G; Friel, Nicole A; Yanke, Adam B; Chubinskaya, Susan; Romeo, Anthony A; Verma, Nikhil N; Cole, Brian J

    2010-12-01

    Rotator cuff repair retear rates range from 25% to 90%, necessitating methods to improve repair strength. Although numerous laboratory studies have compared single-row with double-row fixation properties, little is known regarding regional (ie, medial vs lateral) suture retention properties in intact and torn tendons. A torn supraspinatus tendon will have reduced suture retention properties on the lateral aspect of the tendon compared with the more medial musculotendinous junction. Controlled laboratory study. Human supraspinatus tendons (torn and intact) were randomly assigned for suture retention mechanical testing, ultrastructural collagen fibril analysis, or histologic testing after suture pullout testing. For biomechanical evaluation, sutures were placed either at the musculotendinous junction (medial) or 10 mm from the free margin (lateral), and tendons were elongated to failure. Collagen fibril assessments were performed using transmission electron microscopy. Intact tendons showed no regional differences with respect to suture retention properties. In contrast, among torn tendons, the medial region exhibited significantly higher stiffness and work values relative to the lateral region. For the lateral region, work to 10-mm displacement (1592 ± 261 N-mm) and maximum load (265 ± 44 N) for intact tendons were significantly higher (P < .05) than that of torn tendons (1086 ± 388 N-mm and 177 ± 71 N, respectively). For medial suture placement, maximum load, stiffness, and work of intact and torn tendons were similar (P > .05). Regression analyses for the intact and torn groups revealed generally low correlations between donor age and the 3 biomechanical indices. For both intact and torn tendons, the mean fibril diameter and area density were greater in the medial region relative to the lateral (P ≤ .05). In the lateral tendon, but not the medial region, torn specimens showed a significantly lower fibril area fraction (48.3% ± 3.8%) than intact specimens (56.7% ± 3.6%, P < .05). Superior pullout resistance of medially placed sutures may provide a strain shielding effect for the lateral row after double-row repair. Larger diameter collagen fibrils as well as greater fibril area fraction in the medial supraspinatus tendon may provide greater resistance to suture migration. While clinical factors such as musculotendinous integrity warrant strong consideration for surgical decision making, the present ultrastructural and biomechanical results appear to provide a scientific rationale for double-row rotator cuff repair where sutures are placed more medially at the muscle-tendon junction.

  17. Achilles Pain.

    ERIC Educational Resources Information Center

    Connors, G. Patrick

    Five ailments which can cause pain in the achilles tendon area are: (1) muscular strain, involving the stretching or tearing of muscle or tendon fibers; (2) a contusion, inflammation or infection called tenosynovitis; (3) tendonitis, the inflammation of the tendon; (4) calcaneal bursitis, the inflammation of the bursa between the achilles tendon…

  18. The Tendon Structure Returns to Asymptomatic Values in Nonoperatively Treated Achilles Tendinopathy but Is Not Associated With Symptoms: A Prospective Study.

    PubMed

    de Jonge, Suzan; Tol, Johannes L; Weir, Adam; Waarsing, Jan H; Verhaar, Jan A N; de Vos, Robert-Jan

    2015-12-01

    Tendinopathy is characterized by alterations in the tendon structure, but there are conflicting results on the potential of tendon structure normalization and no large studies on the quantified, ultrasonographic tendon structure and its association with symptoms. To determine whether the tendon structure returns to values of asymptomatic individuals after treatment with 2 substances injected within the tendon, to assess the association between the tendon structure and symptoms, and to assess the prognostic value of the baseline tendon structure on treatment response. Cohort study; Level of evidence, 2. This study was part of a randomized trial on chronic midportion Achilles tendinopathy using eccentric exercises with either a platelet-rich plasma or saline injection. Symptoms were recorded using the Victorian Institute of Sports Assessment-Achilles (VISA-A) questionnaire. The tendon structure was quantified with ultrasound tissue characterization (UTC); echo types I + II (as a percentage of total tendon types I-IV) are structure related. Follow-up was at 6, 12, 24, and 52 weeks. A control group of asymptomatic subjects (similar age) was selected to compare the tendon structure. Patient symptoms were correlated with the tendon structure using a linear model. Fifty-four patients were included in the symptomatic group. The mean (± SD) echo types I + II in the symptomatic group increased significantly from 74.6% ± 10.8% at baseline to 85.6% ± 6.0% at 24-week follow-up. The result for echo types I + II at 24 weeks was not significantly different (P = .198) from that of the asymptomatic control group (87.5% ± 6.0%). In 54 repeated measurements at 5 time points, the adjusted percentage of echo types I + II was not associated with the VISA-A score (main effect: β = .12; 95% CI, -0.12 to 0.35; P = .338). The adjusted baseline echo types I + II were not associated with a change in the VISA-A score from baseline to 52 weeks (β = -.15; 95% CI, -0.67 to 0.36; P = .555). In symptomatic, tendinopathic Achilles tendons, the ultrasonographic tendon structure improved during nonoperative treatment and normalized after 24 weeks to values of matched asymptomatic controls. There was no association between the tendon structure and symptoms. The percentage of echo types I + II before treatment was not associated with change in symptoms over time. This study demonstrates that restoration of the tendon structure is not required for an improvement of symptoms. © 2015 The Author(s).

  19. Rat supraspinatus muscle atrophy after tendon detachment.

    PubMed

    Barton, Elisabeth R; Gimbel, Jonathan A; Williams, Gerald R; Soslowsky, Louis J

    2005-03-01

    Rotator cuff tears are one of the most common tendon disorders found in the healthy population. Tendon tears not only affect the biomechanical properties of the tendon, but can also lead to debilitation of the muscles attached to the damaged tendons. The changes that occur in the muscle after tendon detachment are not well understood. A rat rotator cuff model was utilized to determine the time course of changes that occur in the supraspinatus muscle after tendon detachment. It was hypothesized that the lack of load on the supraspinatus muscle would cause a significant decrease in muscle mass and a conversion of muscle fiber properties toward those of fast fiber types. Tendons were detached at the insertion on the humerus without repair. Muscle mass, morphology and fiber properties were measured at one, two, four, eight, and 16 weeks after detachment. Tendon detachment resulted in a rapid loss of muscle mass, an increase in the proportion of fast muscle fibers, and an increase in the fibrotic content of the muscle bed, concomitant with the appearance of adhesions of the tendon to surrounding surfaces. At 16 weeks post-detachment, muscle mass and the fiber properties in the deep muscle layers returned to normal levels. However, the fiber shifts observed in the superficial layers persisted throughout the experiment. These results suggest that load returned to the muscle via adhesions to surrounding surfaces, which may be sufficient to reverse changes in muscle mass.

  20. Muscle-tendon glucose uptake in Achilles tendon rupture and tendinopathy before and after eccentric rehabilitation: Comparative case reports.

    PubMed

    Masood, Tahir; Kalliokoski, Kari; Bojsen-Møller, Jens; Finni, Taija

    2016-09-01

    Achilles tendon rupture (ATR) is the most common tendon rupture injury. The consequences of ATR on metabolic activity of the Achilles tendon and ankle plantarflexors are unknown. Furthermore, the effects of eccentric rehabilitation on metabolic activity patterns of Achilles tendon and ankle plantarflexors in ATR patients have not been reported thus far. We present a case study demonstrating glucose uptake (GU) in the Achilles tendon, the triceps surae, and the flexor hallucis longus of a post-surgical ATR patient before and after a 5-month eccentric rehabilitation. At baseline, three months post-surgery, all muscles and Achilles tendon displayed much higher GU in the ATR patient compared to a healthy individual despite lower plantarflexion force. After the rehabilitation, plantarflexion force increased in the operated leg while muscle GU was considerably reduced. The triceps surae muscles showed similar values to the healthy control. When compared to the healthy or a matched patient with Achilles tendon pain after 12 weeks of rehabilitation, Achilles tendon GU levels of ATR patient remained greater after the rehabilitation. Past studies have shown a shift in the metabolic fuel utilization towards glycolysis due to immobilization. Further research, combined with immuno-histological investigation, is needed to fully understand the mechanism behind excessive glucose uptake in ATR cases. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Enhancing the Biomechanical Performance of Anisotropic Nanofibrous Scaffolds in Tendon Tissue Engineering: Reinforcement with Cellulose Nanocrystals.

    PubMed

    Domingues, Rui M A; Chiera, Silvia; Gershovich, Pavel; Motta, Antonella; Reis, Rui L; Gomes, Manuela E

    2016-06-01

    Anisotropically aligned electrospun nanofibrous scaffolds based on natural/synthetic polymer blends have been established as a reasonable compromise between biological and biomechanical performance for tendon tissue engineering (TE) strategies. However, the limited tensile properties of these biomaterials restrict their application in this field due to the load-bearing nature of tendon/ligament tissues. Herein, the use of cellulose nanocrystals (CNCs) as reinforcing nanofillers in aligned electrospun scaffolds based on a natural/synthetic polymer blend matrix, poly-ε-caprolactone/chitosan (PCL/CHT) is reported. The incorporation of small amounts of CNCs (up to 3 wt%) into tendon mimetic nanofiber bundles has a remarkable biomaterial-toughing effect (85% ± 5%, p < 0.0002) and raises the scaffolds mechanical properties to tendon/ligament relevant range (σ = 39.3 ± 1.9 MPa and E = 540.5 ± 83.7 MPa, p < 0.0001). Aligned PCL/CHT/CNC nanocomposite fibrous scaffolds meet not only the mechanical requirements for tendon TE applications but also provide tendon mimetic extracellular matrix (ECM) topographic cues, a key feature for maintaining tendon cell's morphology and behavior. The strategy proposed here may be extended to other anisotropic aligned nanofibrous scaffolds based on natural/synthetic polymer blends and enable the full exploitation of the advantages provided by their tendon mimetic fibrous structures in tendon TE. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Marked innervation but also signs of nerve degeneration in between the Achilles and plantaris tendons and presence of innervation within the plantaris tendon in midportion Achilles tendinopathy

    PubMed Central

    Spang, C.; Harandi, V.M.; Alfredson, H.; Forsgren, S.

    2015-01-01

    Objectives: The plantaris tendon is increasingly recognised as an important factor in midportion Achilles tendinopathy. Its innervation pattern is completely unknown. Methods: Plantaris tendons (n=56) and associated peritendinous tissue from 46 patients with midportion Achilles tendinopathy and where the plantaris tendon was closely related to the Achilles tendon were evaluated. Morphological evaluations and stainings for nerve markers [general (PGP9.5), sensory (CGRP), sympathetic (TH)], glutamate NMDA receptor and Schwann cells (S-100β) were made. Results: A marked innervation, as evidenced by evaluation for PGP9.5 reactions, occurred in the peritendinous tissue located between the plantaris and Achilles tendons. It contained sensory and to some extent sympathetic and NMDAR1-positive axons. There was also an innervation in the zones of connective tissue within the plantaris tendons. Interestingly, some of the nerve fascicles showed a partial lack of axonal reactions. Conclusion: New information on the innervation patterns for the plantaris tendon in situations with midportion Achilles tendinopathy has here been obtained. The peritendinous tissue was found to be markedly innervated and there was also innervation within the plantaris tendon. Furthermore, axonal degeneration is likely to occur. Both features should be further taken into account when considering the relationship between the nervous system and tendinopathy. PMID:26032213

  3. Spontaneous tendon rupture in systemic lupus erythematosus: association with Jaccoud's arthropathy.

    PubMed

    Alves, E M; Macieira, J C; Borba, E; Chiuchetta, F A; Santiago, M B

    2010-03-01

    Tendon rupture has rarely been described in patients with systemic lupus erythematosus. From observation of three cases of Jaccoud's arthropathy with tendon rupture, and considering that this arthropathy is more related to an inflammatory process of the tendon sheath than to synovitis per se, the intention of this study was to review the cases of tendon rupture in patients with systemic lupus erythematosus, in the hope of determining the frequency of Jaccoud's arthropathy associated with this complication. Systematic review using MEDLINE, Scielo and LILACS databases (1966 to 2009) and the following keywords: systemic lupus erythematosus, tendon rupture, Jaccoud's arthropathy. Secondary references were additionally obtained. Additionally, three Brazilian systemic lupus erythematosus patients who developed tendon rupture are described. Only 40 articles obtained fulfilled the previously established criteria. They were all case reports; the number of cases reported was 52 which, together with the three cases presented herein add up to 55 cases. Forty-six patients were women aged between 19 and 71 years, with a mean age of 40.1 +/- 12.4 years, and the average duration of the disease was 10 years. The most frequently observed rupture sites were the patellar and Achilles' tendons. While almost all patients described were on various doses of corticosteroids, 16 patients concomitantly had Jaccoud's arthropathy (29%). In conclusion, the association between Jaccoud's arthropathy and tendon rupture in systemic lupus erythematosus has been underestimated. As almost one-third of the systemic lupus erythematosus patients with tendon rupture also have Jaccoud's arthropathy, this arthropathy may be recognized as risk marker for tendon rupture.

  4. Different Achilles Tendon Pathologies Show Distinct Histological and Molecular Characteristics

    PubMed Central

    Minkwitz, Susann; Schmock, Aysha; Bormann, Nicole; Kurtoglu, Alper; Tsitsilonis, Serafeim; Manegold, Sebastian

    2018-01-01

    Reasons for the development of chronic tendon pathologies are still under debate and more basic knowledge is needed about the different diseases. The aim of the present study was therefore to characterize different acute and chronic Achilles tendon disorders. Achilles tendon samples from patients with chronic tendinopathy (n = 7), chronic ruptures (n = 6), acute ruptures (n = 13), and intact tendons (n = 4) were analyzed. The histological score investigating pathological changes was significantly increased in tendinopathy and chronic ruptures compared to acute ruptures. Inflammatory infiltration was detected by immunohistochemistry in all tendon pathology groups, but was significantly lower in tendinopathy compared to chronic ruptures. Quantitative real-time PCR (qRT-PCR) analysis revealed significantly altered expression of genes related to collagens and matrix modeling/remodeling (matrix metalloproteinases, tissue inhibitors of metalloproteinases) in tendinopathy and chronic ruptures compared to intact tendons and/or acute ruptures. In all three tendon pathology groups markers of inflammation (interleukin (IL) 1β, tumor necrosis factor α, IL6, IL10, IL33, soluble ST2, transforming growth factor β1, cyclooxygenase 2), inflammatory cells (cluster of differentaition (CD) 3, CD68, CD80, CD206), fat metabolism (fatty acid binding protein 4, peroxisome proliferator-activated receptor γ, CCAAT/enhancer-binding protein α, adiponectin), and innervation (protein gene product 9.5, growth associated protein 43, macrophage migration inhibitory factor) were detectable, but only in acute ruptures significantly regulated compared to intact tendons. The study gives an insight into structural and molecular changes of pathological processes in tendons and might be used to identify targets for future therapy of tendon pathologies. PMID:29385715

  5. Manipulation of Foot Strike and Footwear Increases Achilles Tendon Loading During Running.

    PubMed

    Rice, Hannah; Patel, Mubarak

    2017-08-01

    The Achilles tendon is the most common site of tendon overuse injury in humans. Running with a forefoot strike pattern and in minimal shoes is a topic of recent interest, yet evidence is currently limited regarding the combined influence of foot strike and footwear on Achilles tendon loading. To investigate the influence of both foot strike and footwear on Achilles tendon loading in habitual rearfoot strike runners. Controlled laboratory study. Synchronized kinematic and force data were collected from 22 habitual rearfoot strikers (11 male), who habitually ran in nonminimal running shoes, during overground running at 3.6 m·s -1 . Participants ran in 3 different footwear conditions (standard running shoe, minimal running shoe, and barefoot) with both a rearfoot strike (RFS) and an imposed forefoot strike (FFS) in each footwear condition. Achilles tendon loading was estimated by use of inverse dynamics, where the Achilles tendon moment arm was determined with a regression equation. A 2-way, repeated-measures analysis of variance was used to compare conditions. Achilles tendon impulse was greater when subjects ran with an FFS rather than an RFS in minimal shoes. Achilles tendon loading rates were higher when subjects ran either in minimal shoes or barefoot than in standard shoes, regardless of foot strike. In runners who habitually rearfoot strike in standard running shoes, running in minimal shoes or barefoot increased the rate of tendon loading, and running with a forefoot strike in minimal shoes increased the magnitude of tendon loading. Transitioning to these running conditions may increase the risk of tendinopathy.

  6. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C

    PubMed Central

    Heinemeier, Katja Maria; Schjerling, Peter; Heinemeier, Jan; Magnusson, Stig Peter; Kjaer, Michael

    2013-01-01

    Tendons are often injured and heal poorly. Whether this is caused by a slow tissue turnover is unknown, since existing data provide diverging estimates of tendon protein half-life that range from 2 mo to 200 yr. With the purpose of determining life-long turnover of human tendon tissue, we used the 14C bomb-pulse method. This method takes advantage of the dramatic increase in atmospheric levels of 14C, produced by nuclear bomb tests in 1955–1963, which is reflected in all living organisms. Levels of 14C were measured in 28 forensic samples of Achilles tendon core and 4 skeletal muscle samples (donor birth years 1945–1983) with accelerator mass spectrometry (AMS) and compared to known atmospheric levels to estimate tissue turnover. We found that Achilles tendon tissue retained levels of 14C corresponding to atmospheric levels several decades before tissue sampling, demonstrating a very limited tissue turnover. The tendon concentrations of 14C approximately reflected the atmospheric levels present during the first 17 yr of life, indicating that the tendon core is formed during height growth and is essentially not renewed thereafter. In contrast, 14C levels in muscle indicated continuous turnover. Our observation provides a fundamental premise for understanding tendon function and pathology, and likely explains the poor regenerative capacity of tendon tissue.—Heinemeier, K. M., Schjerling, P., Heinemeier, J., Magnusson, S. P., Kjaer, M. Lack of tissue renewal in human adult Achilles tendon is revealed by nuclear bomb 14C. PMID:23401563

  7. Rotator cuff tendon connections with the rotator cable.

    PubMed

    Rahu, Madis; Kolts, Ivo; Põldoja, Elle; Kask, Kristo

    2017-07-01

    The literature currently contains no descriptions of the rotator cuff tendons, which also describes in relation to the presence and characteristics of the rotator cable (anatomically known as the ligamentum semicirculare humeri). The aim of the current study was to elucidate the detailed anatomy of the rotator cuff tendons in association with the rotator cable. Anatomic dissection was performed on 21 fresh-frozen shoulder specimens with an average age of 68 years. The rotator cuff tendons were dissected from each other and from the glenohumeral joint capsule, and the superior glenohumeral, coracohumeral, coracoglenoidal and semicircular (rotator cable) ligaments were dissected. Dissection was performed layer by layer and from the bursal side to the joint. All ligaments and tendons were dissected in fine detail. The rotator cable was found in all specimens. It was tightly connected to the supraspinatus (SSP) tendon, which was partly covered by the infraspinatus (ISP) tendon. The posterior insertion area of the rotator cable was located in the region between the middle and inferior facets of the greater tubercle of the humerus insertion areas for the teres minor (TM), and ISP tendons were also present and fibres from the SSP extended through the rotator cable to those areas. The connection between the rotator cable and rotator cuff tendons is tight and confirms the suspension bridge theory for rotator cuff tears in most areas between the SSP tendons and rotator cable. In its posterior insertion area, the rotator cable is a connecting structure between the TM, ISP and SSP tendons. These findings might explain why some patients with relatively large rotator cuff tears can maintain seamless shoulder function.

  8. Is there still a place for Achilles tendon lengthening?

    PubMed

    Tagoe, Mark T; Reeves, Neil D; Bowling, Frank L

    2016-01-01

    Patients with diabetes and ankle equinus are at particularly high risk for forefoot ulceration because of the development of high forefoot pressures. Stiffness in the triceps surae muscles and tendons are thought to be largely responsible for equinus in patients with diabetes and underpins the surgical rationale for Achilles tendon lengthening (ATL) procedures to alleviate this deformity and reduce ulcer risk. The established/traditional surgical approach is the triple hemisection along the length of the Achilles tendon. Although the percutaneous approach has been successful in achieving increases in ankle dorsiflexion >30°, the tendon rupture risk has led to some surgeons looking at alternative approaches. The gastrocnemius aponeurosis may be considered as an alternative because of the Achilles tendon's poor blood supply. ATL procedures are a balance between achieving adequate tendon lengthening and minimizing tendon rupture risk during or after surgery. After ATL surgery, the first 7 days should involve reduced loading and protected range of motion to avoid rupture, after which gradual reintroduction to loading should be encouraged to increase tendon strength. In summary, there is a moderate level of evidence to support surgical intervention for ankle joint equinus in patients with diabetes and forefoot ulceration that is non-responsive to other conservative treatments. Areas of caution for ATL procedures include the risk for overcorrection, tendon rupture and the tendon's poor blood supply. Further prospective randomized control trials are required to confirm the benefits of ATL procedures over conservative care and the most optimal anatomical sites for surgical intervention. Copyright © 2016 John Wiley & Sons, Ltd.

  9. 21 CFR 888.3025 - Passive tendon prosthesis.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Passive tendon prosthesis. 888.3025 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3025 Passive tendon prosthesis. (a) Identification. A passive tendon prosthesis is a device intended to be implanted made of silicon elastomer or a...

  10. 21 CFR 888.3025 - Passive tendon prosthesis.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Passive tendon prosthesis. 888.3025 Section 888...) MEDICAL DEVICES ORTHOPEDIC DEVICES Prosthetic Devices § 888.3025 Passive tendon prosthesis. (a) Identification. A passive tendon prosthesis is a device intended to be implanted made of silicon elastomer or a...

  11. [Lesser toe deformities. Definition, pathogenesis, and options for surgical correction].

    PubMed

    Arnold, H

    2005-08-01

    Whereas in the past resection arthroplasty was - in analogy to hallux valgus surgery - the preferred therapy to correct lesser toe deformities, the point of view has undergone a change. Much interest is directed toward functional aspects that require reconstructive management. Whenever possible the integrity of joint play should be saved. Above all the metatarsophalangeal joint of the lesser toes is worth being preserved to prevent a severe disturbance of the biomechanics of the foot. Tendon transfers and subtle corrective osteotomies such as the Weil procedure allow restricting resection procedures to contraction deformities.

  12. Free Bone Plug Quadriceps Tendon Harvest and Suspensory Button Attachment for Anterior Cruciate Ligament Reconstruction.

    PubMed

    Todor, Adrian; Caterev, Sergiu; Nistor, Dan Viorel; Khallouki, Youssef

    2016-06-01

    The most commonly used autografts for anterior cruciate ligament reconstruction are the bone-patellar tendon-bone and hamstring tendons. Each has its advantages and limitations. The bone-patellar tendon-bone autograft can lead to more donor-site morbidity, and the hamstring autograft can be unpredictable in size. The quadriceps tendon, with or without a bone block, has been described as an alternative graft source and has been used especially in revision cases, but in recent years, it has attracted attention even for primary cases. We report a technique for harvesting a free bone quadriceps tendon graft and attaching an extracortical button for femoral fixation for anterior cruciate ligament reconstruction.

  13. Force Model for Control of Tendon Driven Hands

    NASA Technical Reports Server (NTRS)

    Pena, Edward; Thompson, David E.

    1997-01-01

    Knowing the tendon forces generated for a given task such as grasping via a model, an artificial hand can be controlled. A two-dimensional force model for the index finger was developed. This system is assumed to be in static equilibrium, therefore, the equations of equilibrium were applied at each joint. Constraint equations describing the tendon branch connectivity were used. Gaussian elimination was used to solve for the unknowns of the Linear system. Results from initial work on estimating tendon forces in post-operative hands during active motion therapy were discussed. The results are important for understanding the effects of hand position on tendon tension, elastic effects on tendon tension, and overall functional anatomy of the hand.

  14. The role of animal models in tendon research

    PubMed Central

    Hast, M. W.; Zuskov, A.; Soslowsky, L. J.

    2014-01-01

    Tendinopathy is a debilitating musculoskeletal condition which can cause significant pain and lead to complete rupture of the tendon, which often requires surgical repair. Due in part to the large spectrum of tendon pathologies, these disorders continue to be a clinical challenge. Animal models are often used in this field of research as they offer an attractive framework to examine the cascade of processes that occur throughout both tendon pathology and repair. This review discusses the structural, mechanical, and biological changes that occur throughout tendon pathology in animal models, as well as strategies for the improvement of tendon healing. Cite this article: Bone Joint Res 2014;3:193–202. PMID:24958818

  15. A Comparative Study of Clinical Outcomes and Second-Look Arthroscopic Findings between Remnant-Preserving Tibialis Tendon Allograft and Hamstring Tendon Autograft in Anterior Cruciate Ligament Reconstruction: Matched-Pair Design.

    PubMed

    Kim, You Keun; Ahn, Jong Hyun; Yoo, Jae Doo

    2017-12-01

    This study aimed to compare stability, functional outcome, and second-look arthroscopic findings after anterior cruciate ligament reconstruction between remnant-preserving tibialis tendon allograft and remnant-sacrificing hamstring tendon autograft. We matched two groups (remnant-preserving tibialis tendon allograft group and hamstring tendon autograft group) in terms of demographic characteristics, associated injury, and knee characteristics. Each group consisted of 25 patients. Operation time was longer in the remnant-preserving tibialis tendon allograft group, but there was no significant intergroup difference in stability, clinical outcome, and second-look arthroscopic findings. When an autograft is not feasible in anterior cruciate ligament reconstruction, the remnant-preserving technique can produce comparable results in terms of restoration of function, stability of the knee, and degree of synovium coverage at second-look arthroscopy compared to remnant-sacrificing hamstring autograft.

  16. A passive exoskeleton with artificial tendons: design and experimental evaluation.

    PubMed

    van Dijk, Wietse; van der Kooij, Herman; Hekman, Edsko

    2011-01-01

    We developed a passive exoskeleton that was designed to minimize joint work during walking. The exoskeleton makes use of passive structures, called artificial tendons, acting in parallel with the leg. Artificial tendons are elastic elements that are able to store and redistribute energy over the human leg joints. The elastic characteristics of the tendons have been optimized to minimize the mechanical work of the human leg joints. In simulation the maximal reduction was 40 percent. The performance of the exoskeleton was evaluated in an experiment in which nine subjects participated. Energy expenditure and muscle activation were measured during three conditions: Normal walking, walking with the exoskeleton without artificial tendons, and walking with the exoskeleton with the artificial tendons. Normal walking was the most energy efficient. While walking with the exoskeleton, the artificial tendons only resulted in a negligibly small decrease in energy expenditure. © 2011 IEEE

  17. Effects of foot orthoses on Achilles tendon load in recreational runners.

    PubMed

    Sinclair, J; Isherwood, J; Taylor, P J

    2014-09-01

    Achilles tendon pathology is a frequently occurring musculoskeletal disorder in runners. Foot orthoses have been shown to reduce the symptoms of pain in runners but their mechanical effects are still not well understood. This study aimed to examine differences in Achilles tendon load when running with and without orthotic intervention. Twelve male runners ran at 4.0 m·s(-1). Ankle joint moments and Achilles tendon forces were compared when running with and without orthotics. The results indicate that running with foot orthotics was associated with significant reductions in Achilles tendon load compared to without orthotics. In addition to providing insight into the mechanical effects of orthotics in runners, the current investigation suggests that via reductions in Achilles tendon load, foot orthoses may serve to reduce the incidence of chronic Achilles tendon pathologies in runners. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Applied Joint-Space Torque and Stiffness Control of Tendon-Driven Fingers

    NASA Technical Reports Server (NTRS)

    Abdallah, Muhammad E.; Platt, Robert, Jr.; Wampler, Charles W.; Hargrave, Brian

    2010-01-01

    Existing tendon-driven fingers have applied force control through independent tension controllers on each tendon, i.e. in the tendon-space. The coupled kinematics of the tendons, however, cause such controllers to exhibit a transient coupling in their response. This problem can be resolved by alternatively framing the controllers in the joint-space of the manipulator. This work presents a joint-space torque control law that demonstrates both a decoupled and significantly faster response than an equivalent tendon-space formulation. The law also demonstrates greater speed and robustness than comparable PI controllers. In addition, a tension distribution algorithm is presented here to allocate forces from the joints to the tendons. It allocates the tensions so that they satisfy both an upper and lower bound, and it does so without requiring linear programming or open-ended iterations. The control law and tension distribution algorithm are implemented on the robotic hand of Robonaut-2.

  19. The use of Achilles tendon allograft for latissimus dorsi tendon reconstruction: a minimally invasive technique.

    PubMed

    Sabzevari, Soheil; Chao, Tom; Kalawadia, Jay; Lin, Albert

    2018-01-01

    Treatment of subacute, retracted latissimus dorsi and teres major tendon ruptures in young overhead athletes is challenging. This case report describes management of a subacute retracted latissimus dorsi and teres major rupture with Achilles tendon allograft reconstruction using a two-incision minimally invasive technique. Level of evidence V.

  20. THE ROLE OF MECHANOBIOLOGY IN TENDON HEALING

    PubMed Central

    Killian, Megan L.; Cavinatto, Leonardo; Galatz, Leesa M.; Thomopoulos, Stavros

    2011-01-01

    Mechanical cues affect tendon healing, homeostasis, and development in a variety of settings. Alterations in the mechanical environment are known to result in changes in the expression of extracellular matrix proteins, growth factors, transcription factors, and cytokines that can alter tendon structure and cell viability. Loss of muscle force in utero or in the immediate postnatal period delays tendon and enthesis development. The response of healing tendons to mechanical load varies depending on anatomic location. Flexor tendons require motion to prevent adhesion formation, yet excessive force results in gap formation and subsequent weakening of the repair. Excessive motion in the setting of anterior cruciate ligament reconstruction causes accumulation of macrophages, which are detrimental to tendon graft healing. Complete removal of load is detrimental to rotator cuff healing, yet large forces are also harmful. Controlled loading can enhance healing in most settings; however, a fine balance must be reached between loads that are too low (leading to a catabolic state) and too high (leading to micro-damage). This review will summarize existing knowledge of the mechanobiology of tendon development, homeostasis, and healing. PMID:22244066

  1. Cell-laden composite suture threads for repairing damaged tendons.

    PubMed

    Costa-Almeida, Raquel; Domingues, Rui M A; Fallahi, Afsoon; Avci, Huseyin; Yazdi, Iman K; Akbari, Mohsen; Reis, Rui L; Tamayol, Ali; Gomes, Manuela E; Khademhosseini, Ali

    2018-04-01

    Tendons have limited regenerative capacity due to their low cellularity and hypovascular nature, which results in poor clinical outcomes of presently used therapies. As tendon injuries are often observed in active adults, it poses an increasing socio-economic burden on healthcare systems. Currently, suture threads are used during surgical repair to anchor the tissue graft or to connect injured ends. Here, we created composite suture threads coated with a layer of cell-laden hydrogel that can be used for bridging the injured tissue aiming at tendon regeneration. In addition, the fibres can be used to engineer 3-dimensional constructs through textile processes mimicking the architecture and mechanical properties of soft tissues, including tendons and ligaments. Encapsulated human tendon-derived cells migrated within the hydrogel and aligned at the surface of the core thread. An up-regulation of tendon-related genes (scleraxis and tenascin C) and genes involved in matrix remodelling (matrix metalloproteinases 1, matrix metalloproteinases 2) was observed. Cells were able to produce a collagen-rich matrix, remodelling their micro-environment, which is structurally comparable to native tendon tissue. Copyright © 2017 John Wiley & Sons, Ltd.

  2. Surgical treatment for partial rupture of the distal biceps tendon using palmaris longus tendon graft: A case report.

    PubMed

    Ozasa, Yasuhiro; Wada, Takuro; Iba, Kousuke; Yamashita, Toshihiko

    2018-03-08

    We report a case of a partial rupture of the distal biceps tendon that was surgically treated using a palmaris longus tendon graft. A 58-year-old man complained of increasing pain with resisted elbow flexion and supination in the antecubital fossa. Magnetic resonance imaging revealed the irregularity of a distal attachment of the biceps brachii and peripheral signal changes. We diagnosed a partial rupture of the distal biceps tendon. Because conservative treatment failed, surgical treatment was performed through a single anterior approach. The insertion of the tendon was partially ruptured at the radial tuberosity. After the involved site was debrided, the palmaris longus tendon was grafted with suture anchors to reinforce the remaining tendon. Postoperative immobilization was not performed, and all moves were freed after 3 weeks. At the 6-year postoperative follow-up, the patient no longer experienced pain and returned to his original job without any limitations. Copyright © 2018 Turkish Association of Orthopaedics and Traumatology. Production and hosting by Elsevier B.V. All rights reserved.

  3. [Application of silk-based tissue engineering scaffold for tendon / ligament regeneration].

    PubMed

    Hu, Yejun; Le, Huihui; Jin, Zhangchu; Chen, Xiao; Yin, Zi; Shen, Weiliang; Ouyang, Hongwei

    2016-03-01

    Tendon/ligament injury is one of the most common impairments in sports medicine. The traditional treatments of damaged tissue repair are unsatisfactory, especially for athletes, due to lack of donor and immune rejection. The strategy of tissue engineering may break through these limitations, and bring new hopes to tendon/ligament repair, even regeneration. Silk is a kind of natural biomaterials, which has good biocompatibility, wide range of mechanical properties and tunable physical structures; so it could be applied as tendon/ligament tissue engineering scaffolds. The silk-based scaffold has robust mechanical properties; combined with other biological ingredients, it could increase the surface area, promote more cell adhesion and improve the biocompatibility. The potential clinical application of silk-based scaffold has been confirmed by in vivo studies on tendon/ligament repairing, such as anterior cruciate ligament, medial collateral ligament, achilles tendon and rotator cuff. To develop novel biomechanically stable and host integrated tissue engineered tendon/ligament needs more further micro and macro studies, combined with product development and clinical application, which will give new hope to patients with tendon/ligament injury.

  4. Arthroscopic suture retrievers and shuttles: a biomechanical investigation of the force required for tendon penetration and defect size.

    PubMed

    Lenz, Christopher G; Wieser, Karl; Lajtai, Georg; Meyer, Dominik C

    2015-11-17

    To compare instruments designed for arthroscopic suture handling during arthroscopic rotator cuff repair, to assess the force needed to penetrate the tendon, and to evaluate the residual defect size. Twenty-one instruments were each tested ten times on thawed sheep infraspinatus tendons. The force needed to pierce the tendon with each instrument was measured using a custom setup. Bone wax plates were used to make the perforation marks visible and to quantify the lesions each instrument created. The force to pierce a tendon had a range of 5.6-18.5 N/mm. Within the group of suture retrievers, the angled instruments required in average 85 % higher forces than straight instruments. The lesion area had a range of 2-7 mm(2). Suture retrievers produced significantly larger lesion sizes compared with suture shuttles. For the identical task of passing a suture through a tendon, differences exist regarding the ease of tendon penetration and potential damage to the tendon for different tools. The design, function, and resulting lesion size may be relevant and important for surgical handling and to avoid excess structural damage to the tendon. These results suggest that choosing the most appropriate tools for arthroscopic suture stitching influences the ease of handling and final integrity of the tissue.

  5. Structure-mechanics relationships in mineralized tendons.

    PubMed

    Spiesz, Ewa M; Zysset, Philippe K

    2015-12-01

    In this paper, we review the hierarchical structure and the resulting elastic properties of mineralized tendons as obtained by various multiscale experimental and computational methods spanning from nano- to macroscale. The mechanical properties of mineralized collagen fibres are important to understand the mechanics of hard tissues constituted by complex arrangements of these fibres, like in human lamellar bone. The uniaxial mineralized collagen fibre array naturally occurring in avian tendons is a well studied model tissue for investigating various stages of tissue mineralization and the corresponding elastic properties. Some avian tendons mineralize with maturation, which results in a graded structure containing two zones of distinct morphology, circumferential and interstitial. These zones exhibit different amounts of mineral, collagen, pores and a different mineral distribution between collagen fibrillar and extrafibrillar space that lead to distinct elastic properties. Mineralized tendon cells have two phenotypes: elongated tenocytes placed between fibres in the circumferential zone and cuboidal cells with lower aspect ratios in the interstitial zone. Interestingly some regions of avian tendons seem to be predestined to mineralization, which is exhibited as specific collagen cross-linking patterns as well as distribution of minor tendon constituents (like proteoglycans) and loss of collagen crimp. Results of investigations in naturally mineralizing avian tendons may be useful in understanding the pathological mineralization occurring in some human tendons. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Effects of corticosteroids and hyaluronic acid on torn rotator cuff tendons in vitro and in rats.

    PubMed

    Nakamura, Hidehiro; Gotoh, Masafumi; Kanazawa, Tomonoshin; Ohta, Keisuke; Nakamura, Keiichirou; Honda, Hirokazu; Ohzono, Hiroki; Shimokobe, Hisao; Mitsui, Yasuhiro; Shirachi, Isao; Okawa, Takahiro; Higuchi, Fujio; Shirahama, Masahiro; Shiba, Naoto; Matsueda, Satoko

    2015-10-01

    Corticosteroids (CS) or hyaluronic acid (HA) is used in subacromial injection for the conservative treatment of rotator cuff tears (RCT); this study addresses the question of how CS and HA affect the tendon tissue and fibroblasts in vitro and in rats. Cell proliferation assays were performed in human tendon fibroblasts from RCT. Rats underwent surgery to create RCT, and the surgical sites were injected with CS or HA. The rotator cuff tendons were subjected to biomechanical testing, microscopic and immunohistochemical analysis of proliferating cell nuclear antigen (PCNA), and ultrastructural analysis. Cell proliferation was significantly decreased with CS in vitro (p < 0.05). Maximal load of CS-treated tendons was significantly decreased compared with that of HA-treated tendons (p < 0.05), as well as PCNA(+) cells at 2 weeks (p < 0.05). Ultrastructural observations of the CS-treated rats detected apoptosis of tendon fibroblasts 24 h after surgery. Histological and biomechanical data 4 weeks after surgery were not significant among the three groups. Unlike HA, CS caused cell death, and inhibition of the proliferation of tendon fibroblasts, leading to a delay of tendon healing involved and a subsequent decrease of biomechanical strength at the surgical site. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  7. Effect of Tendon Stem Cells in Chitosan/β-Glycerophosphate/Collagen Hydrogel on Achilles Tendon Healing in a Rat Model.

    PubMed

    Yang, Zhijin; Cao, Honghui; Gao, Shang; Yang, Mingyu; Lyu, Jingtong; Tang, Kanglai

    2017-09-27

    BACKGROUND The aim of this study was to determine whether the local application of tendon stem cells (TSCs) with chitosan/β-glycerophosphate/collagen(C/GP/Co) hydrogel promotes healing after an acute Achilles tendon injury in a rat model. MATERIAL AND METHODS Ninety-six Sprague-Dawley (SD) rats were used to make an Achilles tendon defect model, then the animals were randomly divided into 4 groups consisting of 8 rats each: control group, hydrogel group, TSCs group, and TSCs with hydrogel group. At 2, 4, and 6 weeks after treatment, tendon samples were harvested, and the quality of tendon repair was evaluated based on histology, immunohistochemistry, and biomechanical properties. RESULTS Combining TSCs with C/GP/Co hydrogel significantly enhances tendon healing compared with the control, hydrogel, and TSCs groups. The improved healing was indicated by the improvement in histological and immunohistochemistry outcomes and the increase in the biomechanical properties of the regenerated tissue at both 4 and 6 weeks post-injury. CONCLUSIONS This study demonstrates that the transplantation of TSCs combined with C/GP/Co hydrogel significantly improved the histological, immunohistochemistry, and biomechanical outcomes of the regenerated tissue at 4 and 6 weeks after implantation. TSCs with C/GP/Co hydrogel is a potentially effective treatment for tendon injury.

  8. Preinjury and postinjury running analysis along with measurements of strength and tendon length in a patient with a surgically repaired Achilles tendon rupture.

    PubMed

    Silbernagel, Karin Grävare; Willy, Richard; Davis, Irene

    2012-06-01

    Case report. The Achilles tendon is the most frequently ruptured tendon, and the incidence of Achilles tendon rupture has increased in the last decade. The rupture generally occurs without any preceding warning signs, and therefore preinjury data are seldom available. This case represents a unique opportunity to compare preinjury running mechanics with postinjury evaluation in a patient with an Achilles tendon rupture. A 23-year-old female sustained a right complete Achilles tendon rupture while playing soccer. Running mechanics data were collected preinjury, as she was a healthy participant in a study on running analysis. In addition, patient-reported symptoms, physical activity level, strength, ankle range of motion, heel-rise ability, Achilles tendon length, and running kinetics were evaluated 1 year after surgical repair. During running, greater ankle dorsiflexion and eversion and rearfoot abduction were noted on the involved side postinjury when compared to preinjury data. In addition, postinjury, the magnitude of all kinetics data was lower on the involved limb when compared to the uninvolved limb. The involved side displayed differences in strength, ankle range of motion, heel rise, and tendon length when compared to the uninvolved side 1 year after injury. Despite a return to normal running routine and reports of only minor limitations with running, considerable changes were noted in running biomechanics 1 year after injury. Calf muscle weakness and Achilles tendon elongation were also found when comparing the involved and uninvolved sides.

  9. Rupture of the anterior tibial tendon: three clinical cases, anatomical study, and literature review.

    PubMed

    Anagnostakos, Konstantinos; Bachelier, Felix; Fürst, Oliver Alexander; Kelm, Jens

    2006-05-01

    We report three cases of anterior tibial tendon ruptures and the results of an anatomical study in regard to the tendon's insertion site and a literature review. Three patients were referred to our hospital with anterior tibial tendon ruptures. In the anatomical study, 53 feet were dissected, looking in particular for variants of the bony insertion of the tendon. Two patients had surgical treatment (one primary repair and one semimembranosus tendon graft) and one conservative treatment. After a mean followup of 14 weeks all patients had satisfactory outcomes. In the anatomical study, we noted three different insertion sites: in 36 feet the tendon inserted into the medial side of the cuneiform and the base of the first metatarsal bone and in 13 feet only into the medial side of the cuneiform bone. In the remaining four feet the tendon inserted into the cuneiform and the first metatarsal bone, but an additional tendon was noted taking its origin from the anterior tibial tendon near its insertion into the medial cuneiform and attaching to the proximal part of the first metatarsal. According to literature, surgical repair is the treatment of choice for acute ruptures and for patients with high activity levels. For chronic ruptures and patients with low demands, conservative management may lead to an equally good outcome. Knowledge of the anatomy in this region may be helpful for diagnosis and for the interpretation of intraoperative findings and choosing the most appropriate surgical procedure.

  10. Multiple variations of the tendons of the anatomical snuffbox.

    PubMed

    Thwin, San San; Fazlin, Fazlin; Than, Myo

    2014-01-01

    Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3-14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery.

  11. Rotator Cuff Repair with a Tendon-Fibrocartilage-Bone Composite Bridging Patch

    PubMed Central

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R.; Qu, Jin; An, Kai-Nan; Amadio, Peter C.; Steinmann, Scott P.; Zhao, Chunfeng

    2015-01-01

    Background To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Methods Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/sec. Findings The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). Interpretation The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch–greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. PMID:26190097

  12. Rotator cuff repair with a tendon-fibrocartilage-bone composite bridging patch.

    PubMed

    Ji, Xiaoxi; Chen, Qingshan; Thoreson, Andrew R; Qu, Jin; An, Kai-Nan; Amadio, Peter C; Steinmann, Scott P; Zhao, Chunfeng

    2015-11-01

    To compare the mechanical performance of a rotator cuff repaired with a novel tendon-fibrocartilage-bone composite bridging patch vs the traditional Mason-Allen repair in an in vitro canine model. Twenty shoulders and 10 bridging patches from patellar tendon were harvested. The patches were trimmed and sliced into 2 layers. An infraspinatus tendon tear was created in each shoulder. Modified Mason-Allen sutures were used to repair the infraspinatus tendon to the greater tuberosity, with or without the bridging patch (bridging patch group and controls, respectively). Shoulders were loaded to failure under displacement control at a rate of 0.5mm/s. The ultimate tensile load was significantly higher in the bridging patch group than control (mean [SD], 365.46 [36.45] vs 272.79 [48.88] N; P<.001). Stiffness at the greater tuberosity repair site and the patch-infraspinatus tendon repair site was significantly higher than the control repair site (93.96 [27.72] vs 42.62 [17.48] N/mm P<.001; 65.94 [24.51] vs 42.62 [17.48] N/mm P=.02, respectively). The tendon-fibrocartilage-bone composite bridging patch achieved higher ultimate tensile load and stiffness at the patch-greater tuberosity repair site compared with traditional repair in a canine model. This composite tissue transforms the traditional tendon-to-bone healing interface (with dissimilar tissues) into a pair of bone-to-bone and tendon-to-tendon interfaces, which may improve healing quality and reduce retear rate. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Post-tensioning tendon force loss detection using low power pulsed eddy current measurement

    NASA Astrophysics Data System (ADS)

    Kim, Ji-Min; Lee, Jun; Sohn, Hoon

    2018-04-01

    In the field of bridge engineering, pre-fabrication of a bridge member and its construction in site have been issued and studied, which achieves improved quality and rapid construction. For integration of those pre-fabricated segments into a structural member (i.e., a concrete slab, girder and pier), post-tensioning (PT) technique is adopted utilizing a high-strength steel tendon, and an effective investigation of the remaining PT tendon force is essential to assure an overall structural integrity. This study proposes a pulsed eddy current based tendon force loss detection system. A compact eddy current sensor is designed to be installed on the surface of an anchor holding a steel PT tendon. The intensity of the induced eddy current varies with PT tendon force alteration due to the magnetostriction effect of a ferromagnetic material. The advantages of the proposed system are as follows: (1) low power consumption, (2) rapid inspection, and (3) simple installation. Its performance was validated experimentally in a full-scale lab test of a 3.3-m long, 15.2-mm diameter mono-tendon that was tensioned using a universal testing machine. Tendon force was controlled from 20 to 180 kN with 20 kN interval, and eddy current responses were measured and analyzed at each force condition. The proposed damage index and the amount of force loss of PT tendon were monotonically related, and an excessive loss as much as 30 % of an initially-introduced tendon force was successfully predicted.

  14. Observation of tendon repair in animal model using second-harmonic-generation microscopy

    NASA Astrophysics Data System (ADS)

    Hase, Eiji; Minamikawa, Takeo; Sato, Katsuya; Takahashi, Mitsuhiko; Yasui, Takashi

    2016-03-01

    Tendon rupture is a trauma difficult to recover the condition before injury. In previous researches, tensile test and staining method have been widely used to elucidate the mechanism of the repair process from the viewpoints of the mechanical property and the histological findings. However, since both methods are destructive and invasive, it is difficult to obtain both of them for the same sample. If both the mechanical property and the histological findings can be obtained from the same sample, one may obtain new findings regarding mechanisms of tendon repairing process. In this paper, we used second-harmonic-generation (SHG) microscopy, showing high selectivity and good image contrast to collagen molecules as well as high spatial resolution, optical three-dimensional sectioning, deep penetration, and without additional staining. Since SHG light intensity sensitively reflects the structural maturity of collagen molecule and its aggregates, it will be a good indicator for the repairing degree of the ruptured tendon. From comparison of SHG images between the 4-weeks-repaired tendon and the sound tendon in the animal model, we confirmed that SHG light intensity of the repaired tendon was significantly lower than that of the sound tendon, indicating that the collagen structure in the repaired tendon is still immature. Furthermore, we performed both SHG imaging and the tensile test for the same sample, and confirmed a correlation between them. This result shows a potential of SHG light for an indicator of the histological and mechanical recovery of the ruptured tendon.

  15. Structural and biomechanical characteristics after early mobilization in an Achilles tendon rupture model: operative versus nonoperative treatment.

    PubMed

    Krapf, Daniel; Kaipel, Martin; Majewski, Martin

    2012-09-01

    Acute Achilles tendon ruptures are common sports injuries; however, treatment remains a clinical challenge. Studies show a superior effect of early mobilization and full weight bearing on tendon healing and clinical outcome; however, few data exist on structural and biomechanical characteristics in the early healing phase. This study investigated the histological and biomechanical characteristics of early mobilization and full weight bearing in an Achilles tendon rupture model. Eighty rats underwent dissection of a hindpaw Achilles tendon; 40 rats were treated conservatively and 40 underwent open repair of the transected Achilles tendon by suturing. Early mobilization and full weight bearing were allowed in both groups. At 1, 2, 4, and 8 weeks after tenotomy, tensile strength, stiffness, thickness, tissue characteristics (histological analysis), and length were determined. Dissected Achilles tendons healed in all animals during full weight-bearing early mobilization. One and 2 weeks after tenotomy, rats in the operative group showed increased tensile strength and stiffness compared with the nonoperative group. Repair-site diameters were increased at 1, 2, and 8 weeks after tenotomy. Tendon length was decreased in the operative group throughout observation, whereas the nonoperative group showed increased structural characteristics on the cellular level and a more homogeneous collagen distribution. Surgical treatment of dissected rat Achilles tendons showed superior biomechanical characteristics within the first 2 weeks. Conservative treatment resulted in superior histological findings but significant lengthening of the tendon in the early healing phase (weeks 1-8). Copyright 2012, SLACK Incorporated.

  16. Prospective multicentre study of the clinical and functional outcomes following quadriceps tendon repair with suture anchors.

    PubMed

    Mille, F; Adam, A; Aubry, S; Leclerc, G; Ghislandi, X; Sergent, P; Garbuio, P

    2016-01-01

    Quadriceps tendon avulsions are typically treated by reattaching the tendon through bone tunnels, with or without tendon or hardware augmentation. The operated knee joint can be moved right away; however, tendon grafting or tension banding will be required to protect the repair, and the hardware must be removed later on. The goal of this study was to evaluate the clinical and functional outcomes when suture anchors are used to reattached torn quadriceps tendon, and also to assess tendon healing using MRI. Thirteen consecutive patients with avulsed quadriceps tendons were operated and then followed prospectively. The surgical technique consisted of tendon reattachment using at least three anchors, in addition to intratendinous weaving of the sutures. Weight bearing was allowed while using a splint. Rehabilitation was initiated immediately after surgery according to a set protocol. Eleven patients were followed for a mean of 14.7 months. Two retears occurred in patients who did not wear the splint. Eighty-two per cent of patients were satisfied or very satisfied with the outcome. The mean knee flexion was 124.5°. All patients were able to return to their pre-injury activity levels. The mean time for clinical and functional recovery was 3 months. MRI performed 6 months after the surgical repair revealed good tendon healing. This was the first prospective study performed on quadriceps avulsion patients undergoing suture anchor repair. Prior clinical case reports have shown that this method leads to predictable clinical and functional results. Our results were comparable to those in published cases. The procedure is simpler when only suture anchors are used. Tendon healing was observed on MRI in all cases. This simple, reproducible technique is free of the drawbacks associated with the typical repair augmentation.

  17. Supraspinatus tendon micromorphology in individuals with subacromial pain syndrome.

    PubMed

    Pozzi, Federico; Seitz, Amee L; Plummer, Hillary A; Chow, Kira; Bashford, Gregory R; Michener, Lori A

    Cross-sectional cohort. Tendon collagen organization can be estimated by peak spatial frequency radius (PSFR) on ultrasound images. Characterizing PSFR can define the contribution of collagen disruption to shoulder symptoms. The purpose of this was to characterize the (1) supraspinatus tendon PSFR in participants with subacromial pain syndrome (SPS) and healthy controls; (2) PSFR between participants grouped on a tendon visual quality score; and (3) relationship between PSFR with patient-reported pain, function, and shoulder strength. Participants with SPS (n = 20) and age, sex, and arm-dominance-matched healthy controls (n = 20) completed strength testing in scaption and external rotation, and patient-reported pain, and functional outcomes. Supraspinatus tendon ultrasound images were acquired, and PSFR was calculated for a region of interest 15 mm medial to the supraspinatus footprint. PSFR was compared between groups using an independent t-test and an analysis of variance to compare between 3 groups for visually qualitatively rated tendon abnormalities. Relationships between PSFR with pain, function, and strength were assessed using Pearson correlation coefficient. Supraspinatus tendon PSFR was not different between groups (P = .190) or tendon qualitative ratings (P = .556). No relationship was found between PSFR and pain, functional loss, and strength (P > .05). Collagen disruption (PSFR) measured via ultrasound images of the supraspinatus tendon was not different between participants with SPS or in those with visually rated tendon defects. PSFR is not related to shoulder pain, function, and strength, suggesting that supraspinatus tendon collagen disorganization may not be a contributing factor to shoulder SPS. However, collagen disruption may not be isolated to a single region of interest. 3b: case-control study. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.

  18. The role of bone sialoprotein in the tendon-bone insertion.

    PubMed

    Marinovich, Ryan; Soenjaya, Yohannes; Wallace, Gregory Q; Zuskov, Andre; Dunkman, Andrew; Foster, Brian L; Ao, Min; Bartman, Kevin; Lam, Vida; Rizkalla, Amin; Beier, Frank; Somerman, Martha J; Holdsworth, David W; Soslowsky, Louis J; Lagugné-Labarthet, François; Goldberg, Harvey A

    2016-01-01

    Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp(-/-) mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp(-/-) mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp(-/-) patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, Picrosirius Red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp(-/-) mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone. Copyright © 2016 International Society of Matrix Biology. All rights reserved.

  19. Cell phenotypic variation in normal and damaged tendons

    PubMed Central

    Clegg, Peter D; Strassburg, Sandra; Smith, Roger K

    2007-01-01

    Injuries to tendons are common in both human athletes as well as in animals, such as the horse, which are used for competitive purposes. Furthermore, such injuries are also increasing in prevalence in the ageing, sedentary population. Tendon diseases often respond poorly to treatment and require lengthy periods of rehabilitation. The tendon has a unique extracellular matrix, which has developed to withstand the mechanical demands of such tensile-load bearing structures. Following injury, any repair process is inadequate and results in tissue that is distinct from original tendon tissue. There is growing evidence for the key role of the tendon cell (tenocyte) in both the normal physiological homeostasis and regulation of the tendon matrix and the pathological derangements that occur in disease. In particular, the tenocyte is considered to have a major role in effecting the subclinical matrix degeneration that is thought to occur prior to clinical disease, as well as in the severe degradative events that occur in the tendon at the onset of clinical disease. Furthermore, the tenocyte is likely to have a central role in the production of the biologically inadequate fibrocartilaginous repair tissue that develops subsequent to tendinopathy. Understanding the biology of the tenocyte is central to the development of appropriate interventions and drug therapies that will either prevent the onset of disease, or lead to more rapid and appropriate repair of injured tendon. Central to this is a full understanding of the proteolytic response in the tendon in disease by such enzymes as metalloproteinases, as well as the control of the inappropriate fibrocartilaginous differentiation. Finally, it is important that we understand the role of both intrinsic and extrinsic cellular elements in the repair process in the tendon subsequent to injury. PMID:17696903

  20. Does partial tear repair of adjacent tendons improve the outcome of supraspinatus tendonfull-thickness tear reinsertion?

    PubMed

    Nich, C; Dhiaf, N; Di Schino, M; Augereau, B

    2014-11-01

    Partial tearing of the infraspinatus and/or subscapularis tendon(s) is frequently associated with supraspinatus full-thickness tears. However, limited data regarding its influence on supraspinatus surgical repair is available. Our aim was to assess the functional and anatomical outcomes of open repair of supraspinatus full-thickness tears combined with adjacent partial tearing, comparatively to a control. We retrospectively identified 22 patients (22 shoulders) with a partial tear, most of them being a delamination tear, of the infraspinatus and/or subscapularis tendons associated with a complete detachment of the supraspinatus tendon. Twenty-seven patients (27 shoulders) treated for an isolated complete detachment of the supraspinatus tendon by open repair served as controls. The mean age was 58 years. A proximalized trans-osseous reinsertion of the supraspinatus tendon was combined with a curettage-closure of the delamination tear. Patients were evaluated with standardized MRI at last follow-up. At a mean of 75-month follow-up, the presence of a partial tear of either infraspinatus or subscapularis, or both, did not influence function and healing rates of supraspinatus tendon repair. Conversely to the control, when a retear occurred, the functional score tended to worsen. Preoperatively, fatty muscular degeneration was more pronounced when a partial tear was present. Fatty degeneration worsened regardless of repair healing. Open reinsertion of a supraspinatus full-thickness tear associated with a thorough treatment of partial tear of adjacent tendons led to optimal functional and anatomical mid term outcomes. Our results suggest the presence of a partial tear of adjacent tendons could be associated with poorer function in case of supraspinatus tendon re-rupture. Level III case-control study. Copyright © 2014 Elsevier Masson SAS. All rights reserved.

  1. Landing strategies of athletes with an asymptomatic patellar tendon abnormality.

    PubMed

    Edwards, Suzi; Steele, Julie R; McGhee, Deirdre E; Beattie, Sue; Purdam, Craig; Cook, Jill L

    2010-11-01

    Risk factors associated with a clinical presentation of patellar tendinopathy are patellar tendon ultrasonographic abnormality (PTA) and excessive loading. It remains unknown whether characteristics of an athlete's landing technique contribute to this excessive patellar tendon loading. This study investigated whether asymptomatic athletes with and without PTA had different landing strategies and hypothesized that asymptomatic athletes with a PTA would create higher patellar tendon loading and a different lower-limb landing strategy compared with athletes with normal patellar tendons. Seven athletes with no previous history or clinical signs of patellar tendon injury with a PTA were matched to athletes with normal patellar tendons (controls). Participants performed five successful trials of a stop-jump task, which involved a simultaneous two-foot horizontal and then vertical landing. During each trial, the participants' ground reaction forces and lower-limb electromyographic data were recorded, the three-dimensional kinematics measured, and the peak patellar tendon force calculated by dividing the net knee joint moment by the patellar tendon moment arm. Significant between-group differences in landing technique were mostly observed during the horizontal landing phase. Participants with a PTA created similar patellar tendon loading to the controls, but with altered sequencing, by landing with significantly greater knee flexion and extending their hips while the controls flexed their hips as they landed, reflecting a different muscle recruitment order compared with the PTA group. The crucial part in the development of PTA and, in turn, patellar tendinopathy may not be the magnitude of the patellar tendon load but rather the loading patterns. This research provides clinicians with important landing assessment criteria against which to identify athletes at risk of developing patellar tendinopathy.

  2. Tendon neuroplastic training: changing the way we think about tendon rehabilitation: a narrative review

    PubMed Central

    Rio, Ebonie; Kidgell, Dawson; Moseley, G Lorimer; Docking, Sean; Purdam, Craig; Cook, Jill

    2016-01-01

    Tendinopathy can be resistant to treatment and often recurs, implying that current treatment approaches are suboptimal. Rehabilitation programmes that have been successful in terms of pain reduction and return to sport outcomes usually include strength training. Muscle activation can induce analgesia, improving self-efficacy associated with reducing one's own pain. Furthermore, strength training is beneficial for tendon matrix structure, muscle properties and limb biomechanics. However, current tendon rehabilitation may not adequately address the corticospinal control of the muscle, which may result in altered control of muscle recruitment and the consequent tendon load, and this may contribute to recalcitrance or symptom recurrence. Outcomes of interest include the effect of strength training on tendon pain, corticospinal excitability and short interval cortical inhibition. The aims of this concept paper are to: (1) review what is known about changes to the primary motor cortex and motor control in tendinopathy, (2) identify the parameters shown to induce neuroplasticity in strength training and (3) align these principles with tendon rehabilitation loading protocols to introduce a combination approach termed as tendon neuroplastic training. Strength training is a powerful modulator of the central nervous system. In particular, corticospinal inputs are essential for motor unit recruitment and activation; however, specific strength training parameters are important for neuroplasticity. Strength training that is externally paced and akin to a skilled movement task has been shown to not only reduce tendon pain, but modulate excitatory and inhibitory control of the muscle and therefore, potentially tendon load. An improved understanding of the methods that maximise the opportunity for neuroplasticity may be an important progression in how we prescribe exercise-based rehabilitation in tendinopathy for pain modulation and potentially restoration of the corticospinal control of the muscle-tendon complex. PMID:26407586

  3. Synovial Mesenchymal Stem Cells Promote Meniscus Regeneration Augmented by an Autologous Achilles Tendon Graft in a Rat Partial Meniscus Defect Model

    PubMed Central

    Ozeki, Nobutake; Muneta, Takeshi; Matsuta, Seiya; Koga, Hideyuki; Nakagawa, Yusuke; Mizuno, Mitsuru; Tsuji, Kunikazu; Mabuchi, Yo; Akazawa, Chihiro; Kobayashi, Eiji; Saito, Tomoyuki; Sekiya, Ichiro

    2015-01-01

    Although meniscus defects and degeneration are strongly correlated with the later development of osteoarthritis, the promise of regenerative medicine strategies is to prevent and/or delay the disease's progression. Meniscal reconstruction has been shown in animal models with tendon grafting and transplantation of mesenchymal stem cells (MSCs); however, these procedures have not shown the same efficacy in clinical studies. Here, our aim was to investigate the ability of tendon grafts pretreated with exogenous synovial-derived MSCs to prevent cartilage degeneration in a rat partial meniscus defect model. We removed the anterior half of the medial meniscus and grafted autologous Achilles tendons with or without a 10-minute pretreatment of the tendon with synovial MSCs. The meniscus and surrounding cartilage were evaluated at 2, 4, and 8 weeks (n = 5). Tendon grafts increased meniscus size irrespective of synovial MSCs. Histological scores for regenerated menisci were better in the tendon + MSC group than in the other two groups at 4 and 8 weeks. Both macroscopic and histological scores for articular cartilage were significantly better in the tendon + MSC group at 8 weeks. Implanted synovial MSCs survived around the grafted tendon and native meniscus integration site by cell tracking assays with luciferase+, LacZ+, DiI+, and/or GFP+ synovial MSCs and/or GFP+ tendons. Flow cytometric analysis showed that transplanted synovial MSCs retained their MSC properties at 7 days and host synovial tissue also contained cells with MSC characteristics. Synovial MSCs promoted meniscus regeneration augmented by autologous Achilles tendon grafts and prevented cartilage degeneration in rats. Stem Cells 2015;33:1927–1938 PMID:25993981

  4. Tendon Healing in Bone Tunnel after Human Anterior Cruciate Ligament Reconstruction: A Systematic Review of Histological Results.

    PubMed

    Lu, Hongbin; Chen, Can; Xie, Shanshan; Tang, Yifu; Qu, Jin

    2018-05-21

    Most studies concerning to tendon healing and incorporation into bone are mainly based on animal studies due to the invasive nature of the biopsy procedure. The evidence considering tendon graft healing to bone in humans is limited in several case series or case reports, and therefore, it is difficult to understand the healing process. A computerized search using relevant search terms was performed in the PubMed, EMBASE, Scopus, and Cochrane Library databases, as well as a manual search of reference lists. Searches were limited to studies that investigated tendon graft healing to bone by histologic examination after anterior cruciate ligament (ACL) reconstruction with hamstring. Ten studies were determined to be eligible for this systematic review. Thirty-seven cases were extracted from the included studies. Most studies showed that a fibrovascular interface would form at the tendon-bone interface at the early stage and a fibrous indirect interface with Sharpey-like fibers would be expected at the later stage. Cartilage-like tissue at tendon graft-bone interface was reported in three studies. Tendon graft failed to integrate with the surrounding bone in 10 of the 37 cases. Unexpectedly, suspensory type of fixation was used for the above failure cases. An indirect type of insertion with Sharpey-like fibers at tendon-bone interface could be expected after ACL reconstruction with hamstring. Regional cartilage-like tissue may form at tendon-bone interface occasionally. The underlying tendon-to-bone healing process is far from understood in the human hamstring ACL reconstruction. Further human studies are highly needed to understand tendon graft healing in bone tunnel after hamstring ACL reconstruction. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  5. The Role of Bone Sialoprotein in the Tendon-Bone Insertion

    PubMed Central

    Marinovich, Ryan; Soenjaya, Yohannes; Wallace, Gregory Q.; Zuskov, Andre; Dunkman, Andrew; Foster, Brian L.; Ao, Min; Bartman, Kevin; Lam, Vida; Rizkalla, Amin; Beier, Frank; Somerman, Martha J.; Holdsworth, David W.; Soslowsky, Louis J.; Lagugné-Labarthet, François; Goldberg, Harvey A.

    2016-01-01

    Tendons/ligaments insert into bone via a transitional structure, the enthesis, which is susceptible to injury and difficult to repair. Fibrocartilaginous entheses contain fibrocartilage in their transitional zone, part of which is mineralized. Mineral-associated proteins within this zone have not been adequately characterized. Members of the Small Integrin Binding Ligand N-Linked Glycoprotein (SIBLING) family are acidic phosphoproteins expressed in mineralized tissues. Here we show that two SIBLING proteins, bone sialoprotein (BSP) and osteopontin (OPN), are present in the mouse enthesis. Histological analyses indicate that the calcified zone of the quadriceps tendon enthesis is longer in Bsp−/− mice, however no difference is apparent in the supraspinatus tendon enthesis. In an analysis of mineral content within the calcified zone, micro-CT and Raman spectroscopy reveal that the mineral content in the calcified fibrocartilage of the quadriceps tendon enthesis are similar between wild type and Bsp−/− mice. Mechanical testing of the patellar tendon shows that while the tendons fail under similar loads, the Bsp−/− patellar tendon is 7.5% larger in cross sectional area than wild type tendons, resulting in a 16.5% reduction in failure stress. However, picrosirius red staining shows no difference in collagen organization. Data collected here indicate that BSP is present in the calcified fibrocartilage of murine entheses and suggest that BSP plays a regulatory role in this structure, influencing the growth of the calcified fibrocartilage in addition to the weakening of the tendon mechanical properties. Based on the phenotype of the Bsp−/− mouse enthesis, and the known in vitro functional properties of the protein, BSP may be a useful therapeutic molecule in the reattachment of tendons and ligaments to bone. PMID:26826499

  6. The effect of preheated tendon as a lean meat replacement on the properties of fine emulsion sausages.

    PubMed

    Sadler, D H; Young, O A

    1993-01-01

    Tendon from beef hind leg muscles was used to replace some of the lean in a conventional emulsion formulation. The tendon was homogenized and either used raw or preheated for 2·5 h at a range of temperatures (50, 60, 70, 80°C) before use. Texture analysis and sensory evaluation were performed on cylinders of cooked sausage. Texture analysis was carried out on formulations which had 20% of meat protein replaced by 20% tendons which were raw or had been preheated to 50, 60, 70, or 80°C. Fracturability decreased by about 40% with raw tendon, but was restored to within 20% of the no-replacement control if the tendon had been preheated. Hardness was approximately doubled by replacement with raw tendon or tendon heated at 50°C. At temperatures higher than that, hardness returned to approximately no-replacement levels. For sensory evaluation (0-25% replacement; preheating at 70°C), sausages were assessed by a 12-member panel for texture, flavour and overall acceptability. All attributes decreased with increasing collagen content, the decrease being less marked with preheated tendon. Thus more connective tissue could be added for the same panel score if the tissue was preheated. Comparison of the texture profile and the panel scores for texture at the same lean replacement level suggested that reduced fracturability was the texture parameter that panellists objected to when heated tendon replaced some of the lean. Other researchers have shown that connective tissue preheated to 100°C before addition in emulsion sausages results in improved yields and better sensory attributes, but the present results show that temperatures as low as 60°C can be effective for beef tendon. Copyright © 1993. Published by Elsevier Ltd.

  7. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression.

    PubMed

    Chen, Yeung-Jen; Wang, Ching-Jen; Yang, Kuender D; Kuo, Yur-Ren; Huang, Hui-Chen; Huang, Yu-Ting; Sun, Yi-Chih; Wang, Feng-Sheng

    2004-07-01

    Extracorporeal shock waves (ESW) have recently been used in resolving tendinitis. However, mechanisms by which ESW promote tendon repair is not fully understood. In this study, we reported that an optimal ESW treatment promoted healing of Achilles tendintis by inducing TGF-beta1 and IGF-I. Rats with the collagenease-induced Achilles tendinitis were given a single ESW treatment (0.16 mJ/mm(2) energy flux density) with 0, 200, 500 and 1000 impulses. Achilles tendons were subjected to biomechanical (load to failure and stiffness), biochemical properties (DNA, glycosaminoglycan and hydroxyproline content) and histological assessment. ESW with 200 impulses restored biomechanical and biochemical characteristics of healing tendons 12 weeks after treatment. However, ESW treatments with 500 and 1000 impulses elicited inhibitory effects on tendinitis repair. Histological observation demonstrated that ESW treatment resolved edema, swelling, and inflammatory cell infiltration in injured tendons. Lesion site underwent intensive tenocyte proliferation, neovascularization and progressive tendon tissue regeneration. Tenocytes at the hypertrophied cellular tissue and newly developed tendon tissue expressed strong proliferating cell nuclear antigen (PCNA) after ESW treatment, suggesting that physical ESW could increase the mitogenic responses of tendons. Moreover, the proliferation of tenocytes adjunct to hypertrophied cell aggregate and newly formed tendon tissue coincided with intensive TGF-beta1 and IGF-I expression. Increasing TGF-beta1 expression was noted in the early stage of tendon repair, and elevated IGF-I expression was persisted throughout the healing period. Together, low-energy shock wave effectively promoted tendon healing. TGF-beta1 and IGF-I played important roles in mediating ESW-stimulated cell proliferation and tissue regeneration of tendon.

  8. Beneficial Effects of Autologous Bone Marrow-Derived Mesenchymal Stem Cells in Naturally Occurring Tendinopathy

    PubMed Central

    Smith, Roger Kenneth Whealands; Werling, Natalie Jayne; Dakin, Stephanie Georgina; Alam, Rafiqul; Goodship, Allen E.; Dudhia, Jayesh

    2013-01-01

    Tendon injuries are a common age-related degenerative condition where current treatment strategies fail to restore functionality and normal quality of life. This disease also occurs naturally in horses, with many similarities to human tendinopathy making it an ideal large animal model for human disease. Regenerative approaches are increasingly used to improve outcome involving mesenchymal stem cells (MSCs), supported by clinical data where injection of autologous bone marrow derived MSCs (BM-MSCs) suspended in marrow supernatant into injured tendons has halved the re-injury rate in racehorses. We hypothesized that stem cell therapy induces a matrix more closely resembling normal tendon than the fibrous scar tissue formed by natural repair. Twelve horses with career-ending naturally-occurring superficial digital flexor tendon injury were allocated randomly to treatment and control groups. 1X107 autologous BM-MSCs suspended in 2 ml of marrow supernatant were implanted into the damaged tendon of the treated group. The control group received the same volume of saline. Following a 6 month exercise programme horses were euthanized and tendons assessed for structural stiffness by non-destructive mechanical testing and for morphological and molecular composition. BM-MSC treated tendons exhibited statistically significant improvements in key parameters compared to saline-injected control tendons towards that of normal tendons and those in the contralateral limbs. Specifically, treated tendons had lower structural stiffness (p<0.05) although no significant difference in calculated modulus of elasticity, lower (improved) histological scoring of organisation (p<0.003) and crimp pattern (p<0.05), lower cellularity (p<0.007), DNA content (p<0.05), vascularity (p<0.03), water content (p<0.05), GAG content (p<0.05), and MMP-13 activity (p<0.02). Treatment with autologous MSCs in marrow supernatant therefore provides significant benefits compared to untreated tendon repair in enhancing normalisation of biomechanical, morphological, and compositional parameters. These data in natural disease, with no adverse findings, support the use of this treatment for human tendon injuries. PMID:24086616

  9. The effects of platelet lysate patches on the activity of tendon-derived cells.

    PubMed

    Costa-Almeida, Raquel; Franco, Albina R; Pesqueira, Tamagno; Oliveira, Mariana B; Babo, Pedro S; Leonor, Isabel B; Mano, João F; Reis, Rui L; Gomes, Manuela E

    2018-03-01

    Platelet-derived biomaterials are widely explored as cost-effective sources of therapeutic factors, holding a strong potential for endogenous regenerative medicine. Particularly for tendon repair, treatment approaches that shift the injury environment are explored to accelerate tendon regeneration. Herein, genipin-crosslinked platelet lysate (PL) patches are proposed for the delivery of human-derived therapeutic factors in patch augmentation strategies aiming at tendon repair. Developed PL patches exhibited a controlled release profile of PL proteins, including bFGF and PDGF-BB. Additionally, PL patches exhibited an antibacterial effect by preventing the adhesion, proliferation and biofilm formation by S. aureus, a common pathogen in orthopaedic surgical site infections. Furthermore, these patches supported the activity of human tendon-derived cells (hTDCs). Cells were able to proliferate over time and an up-regulation of tenogenic genes (SCX, COL1A1 and TNC) was observed, suggesting that PL patches may modify the behavior of hTDCs. Accordingly, hTDCs deposited tendon-related extracellular matrix proteins, namely collagen type I and tenascin C. In summary, PL patches can act as a reservoir of biomolecules derived from PL and support the activity of native tendon cells, being proposed as bioinstructive patches for tendon regeneration. Platelet-derived biomaterials hold great interest for the delivery of therapeutic factors for applications in endogenous regenerative medicine. In the particular case of tendon repair, patch augmentation strategies aiming at shifting the injury environment are explored to improve tendon regeneration. In this study, PL patches were developed with remarkable features, including the controlled release of growth factors and antibacterial efficacy. Remarkably, PL patches supported the activity of native tendon cells by up-regulating tenogenic genes and enabling the deposition of ECM proteins. This patch holds great potential towards simultaneously reducing post-implantation surgical site infections and promoting tendon regeneration for prospective in vivo applications. Copyright © 2018 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  10. [Reconstruction of the extensor pollicis longus tendon by transposition of the extensor indicis tendon].

    PubMed

    Loos, A; Kalb, K; Van Schoonhoven, J; Landsleitner Dagger, B

    2003-12-01

    Rupture of the extensor pollicis longus-tendon (EPL) is a frequent complication after distal radius fractures. Other traumatic and non-traumatic reasons for this tendon lesion are known, including a theory about a disorder in the blood supply to the tendon itself. We examined 40 patients after reconstruction of the EPL-tendon in a mean follow-up time of 30 months. All patients were clinically examined and a DASH questionnaire was answered by all patients. The method to reconstruct the EPL-tendon was the transposition of the extensor indicis-tendon. After the operations the thumb was put in a splint for four weeks in a "hitch-hiker's-position". 31 ruptures of the tendon (77.5 %) were a result of trauma. In 20 of them (50 %) a distal radius fracture had occurred. Clinical examination included measurements of the movement of the thumb- and index-finger joints, the grip strength and the maximal span of the hand. Significant differences were not found. The isolated extension of the index finger was possible in all patients. But it was reduced in ten cases which represent 25 %. Our results were evaluated by the Geldmacher score to evaluate the reconstruction of the EPL-tendon. 20 % excellent, 65 % good, 12.5 % fair and 2.5 % poor results were reached. The Geldmacher score was used critically. We suggest its modification for the evaluation of thumb abduction. The DASH score reached a functional value of ten points which represents a very good result. In conclusion the extensor indicis-transposition is a safe method to reconstruct the EPL-tendon. Its substantial advantage is taking a healthy muscle as the motor, thereby avoiding the risk of using a degenerated muscle in late tendon reconstruction. A powerful extension of the index finger will be maintained by physical education. Generally, the loss of the extension of the index finger is negligible. It does not disturb the patients. But it has to be discussed with the patient before the operation.

  11. Biomechanical characteristics of the horizontal mattress stitch: implication for double-row and suture-bridge rotator cuff repair.

    PubMed

    Tamboli, Mallika; Mihata, Teruhisa; Hwang, James; McGarry, Michelle H; Kang, Yangmi; Lee, Thay Q

    2014-03-01

    We investigated the effects of bite-size horizontal mattress stitch (distance between the limbs passed through the tendon) on the biomechanical properties of the repaired tendon. We anchored 20 bovine Achilles tendons to bone using no. 2 high-strength suture and 5-mm titanium suture anchors in a mattress-suture technique. Tendons were allocated randomly into two groups of ten each to receive stitches with a 4- or 10-mm bite. Specimens underwent cyclic loading from 5 to 30 N at 1 mm/s for 30 cycles, followed by tensile testing to failure. Gap formation, tendon strain, hysteresis, stiffness, yield load, ultimate load, energy to yield load, and energy to ultimate load were compared between groups using unpaired t tests. The 4-mm group had less (p < 0.05) gap formation and less (p < 0.05) longitudinal strain than did the 10-mm group. Ultimate load (293.6 vs. 148.9 N) and energy to ultimate load (2,563 vs. 1,472 N-mm) were greater (p < 0.001) for the 10-mm group than the 4-mm group. All tendons repaired with 4-mm suturing failed at the suture-tendon interface, with sutures pulling through the tendon, whereas the suture itself failed before the tendon did in seven of the ten specimens in the 10-mm group. Whereas a 4-mm bite fixed the tendon more tightly but at the cost of decreased ultimate strength, a 10-mm bite conveyed greater ultimate strength but with increased gap and strain. These results suggest that for the conventional double-row repair, small mattress stitches provide a tighter repair, whereas large stitches are beneficial to prevent sutures from pulling through the tendon after surgery. For suture-bridge rotator cuff repair, large stitches are beneficial because the repaired tendon has a higher strength, and the slightly mobile medial knot can be tightened by lateral fixation.

  12. A robust method for RNA extraction and purification from a single adult mouse tendon.

    PubMed

    Grinstein, Mor; Dingwall, Heather L; Shah, Rishita R; Capellini, Terence D; Galloway, Jenna L

    2018-01-01

    Mechanistic understanding of tendon molecular and cellular biology is crucial toward furthering our abilities to design new therapies for tendon and ligament injuries and disease. Recent transcriptomic and epigenomic studies in the field have harnessed the power of mouse genetics to reveal new insights into tendon biology. However, many mouse studies pool tendon tissues or use amplification methods to perform RNA analysis, which can significantly increase the experimental costs and limit the ability to detect changes in expression of low copy transcripts. Single Achilles tendons were harvested from uninjured, contralateral injured, and wild type mice between three and five months of age, and RNA was extracted. RNA Integrity Number (RIN) and concentration were determined, and RT-qPCR gene expression analysis was performed. After testing several RNA extraction approaches on single adult mouse Achilles tendons, we developed a protocol that was successful at obtaining high RIN and sufficient concentrations suitable for RNA analysis. We found that the RNA quality was sensitive to the time between tendon harvest and homogenization, and the RNA quality and concentration was dependent on the duration of homogenization. Using this method, we demonstrate that analysis of Scx gene expression in single mouse tendons reduces the biological variation caused by pooling tendons from multiple mice. We also show successful use of this approach to analyze Sox9 and Col1a2 gene expression changes in injured compared with uninjured control tendons. Our work presents a robust, cost-effective, and straightforward method to extract high quality RNA from a single adult mouse Achilles tendon at sufficient amounts for RT-qPCR as well as RNA-seq. We show this can reduce variation and decrease the overall costs associated with experiments. This approach can also be applied to other skeletal tissues, as well as precious human samples.

  13. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model

    PubMed Central

    Soejima, T.; Murakami, H.; Noguchi, K.; Shiba, N.; Nagata, K.

    2016-01-01

    Objectives The objective of this study was to determine if the use of fascia lata as a tendon regeneration guide (placed into the tendon canal following harvesting the semitendinosus tendon) would improve the incidence of tissue regeneration and prevent fatty degeneration of the semitendinosus muscle. Materials and Methods Bilateral semitendinosus tendons were harvested from rabbits using a tendon stripper. On the inducing graft (IG) side, the tendon canal and semitendinosus tibial attachment site were connected by the fascia lata, which was harvested at the same width as the semitendinosus tendon. On the control side, no special procedures were performed. Two groups of six rabbits were killed at post-operative weeks 4 and 8, respectively. In addition, three healthy rabbits were killed to obtain normal tissue. We evaluated the incidence of tendon tissue regeneration, cross-sectional area of the regenerated tendon tissue and proportion of fatty tissue in the semitendinosus muscle. Results At post-operative week 8, the distal end of the regenerated tissue reached the vicinity of the tibial insertion on the control side in two of six specimens. On the IG side, the regenerated tissue maintained continuity with the tibial insertion in all specimens. The cross-sectional area of the IG side was significantly greater than that of the control side. The proportion of fatty tissue in the semitendinosus muscle on the IG side was comparable with that of the control side, but was significantly greater than that of the normal muscle. Conclusions Tendon tissue regenerated with the fascia lata graft was thicker than naturally occurring regenerated tissue. However, the proportion of fatty tissue in the semitendinosus muscle was greater than that of normal muscle. Cite this article: K. Tabuchi, T. Soejima, H. Murakami, K. Noguchi, N. Shiba, K. Nagata. Inducement of tissue regeneration of harvested hamstring tendons in a rabbit model. Bone Joint Res 2016;5:247–252. DOI: 10.1302/2046-3758.56.2000585. PMID:27340141

  14. Extracorporeal shock wave therapy for calcific and noncalcific tendonitis of the rotator cuff: a systematic review.

    PubMed

    Harniman, Elaine; Carette, Simon; Kennedy, Carol; Beaton, Dorcas

    2004-01-01

    The authors conducted a systematic review to assess the effectiveness of extracorporeal shock wave therapy (ESWT) for the treatment of calcific and noncalcific tendonitis of the rotator cuff. Conservative treatment for rotator cuff tendonitis includes physiotherapy, nonsteroidal antiinflammatory drugs, and corticosteroid injections. If symptoms persist with conservative treatment, surgery is often considered. Extracorporeal shock wave therapy has been suggested as a treatment alternative for chronic rotator cuff tendonitis, which may decrease the need for surgery. Articles for this review were identified by electronically searching Medline, EMBASE, Cumulative Index to Nursing & Allied Health Literature (CINAHL), and Evidence Based Medicine (EBM) and hand-screening references. Two reviewers selected the trials that met the inclusion criteria, extracted the data, and assessed the methodological quality of the selected trials. Finally, the strength of scientific evidence was appraised. Evidence was classified as strong, moderate, limited, or conflicting. Sixteen trials met the inclusion criteria. There were only five randomized, controlled trials and all involved chronic (>/=3 months) conditions, three for calcific tendonitis and two for noncalcific tendonitis. For randomized, controlled trials, two (40%) were of high quality, one (33%) for calcific tendonitis and one (50%) for noncalcific tendonitis. The 11 nonrandomized trials included nine that involved calcific tendonitis and two that involved both calcific and noncalcific tendonitis. Common problem areas were sample size, randomization, blinding, treatment provider bias, and outcome measures. There is moderate evidence that high-energy ESWT is effective in treating chronic calcific rotator cuff tendonitis when the shock waves are focused at the calcified deposit. There is moderate evidence that low-energy ESWT is not effective for treating chronic noncalcific rotator cuff tendonitis, although this conclusion is based on only one high-quality study, which was underpowered. High-quality randomized, controlled trials are needed with larger sample sizes, better randomization and blinding, and better outcome measures.

  15. The Incidence of Acute Traumatic Tendon Injuries in the Hand and Wrist: A 10-Year Population-based Study

    PubMed Central

    de Jong, Johanna P.; Nguyen, Jesse T.; Sonnema, Anne J. M.; Nguyen, Emily C.; Amadio, Peter C.

    2014-01-01

    Background Acute traumatic tendon injuries of the hand and wrist are commonly encountered in the emergency department. Despite the frequency, few studies have examined the true incidence of acute traumatic tendon injuries in the hand and wrist or compared the incidences of both extensor and flexor tendon injuries. Methods We performed a retrospective population-based cohort study of all acute traumatic tendon injuries of the hand and wrist in a mixed urban and rural Midwest county in the United States between 2001-2010. A regional epidemiologic database and medical codes were used to identify index cases. Epidemiologic information including occupation, year of injury, mechanism of injury and the injured tendon and zone were recorded. Results During the 10-year study period there was an incidence rate of 33.2 injuries per 100,000 person-years. There was a decreasing rate of injury during the study period. Highest incidence of injury occurred at 20-29 years of age. There was significant association between injury rate and age, and males had a higher incidence than females. The majority of cases involved a single tendon, with extensor tendon injuries occurring more frequently than flexor tendons. Typically, extensor tendon injuries involved zone three of the index finger, while flexor tendons involved zone two of the index finger. Work-related injuries accounted for 24.9% of acute traumatic tendon injuries. The occupations of work-related injuries were assigned to major groups defined by the 2010 Standard Occupational Classification structure. After assigning these patients' occupations to respective major groups, the most common groups work-related injuries occurred in construction and extraction occupations (44.2%), food preparation and serving related occupations (14.4%), and transportation and material moving occupations (12.5%). Conclusions Epidemiology data enhances our knowledge of injury patterns and may play a role in the prevention and treatment of future injuries, with an end result of reducing lost work time and economic burden. PMID:24900902

  16. The biophysical characteristics of human composite flexor tendon allograft for upper extremity reconstruction.

    PubMed

    DeGeorge, Brent R; Rodeheaver, George T; Drake, David B

    2014-01-01

    Devastating volar hand injuries with significant damage to the skin and soft tissues, pulley structures and fibro-osseous sheath, flexor tendons, and volar plates pose a major problem to the reconstructive hand surgeon. Despite advances in tendon handling, operative technique, and postoperative hand rehabilitation, patients who have undergone flexor tendon reconstruction are often plagued by chronic pain, stiffness, and decreased range of motion with resultant decreased ability to work and poor quality of life. In this article, we expand the technique of human composite flexor tendon allografts (CFTAs), pioneered by Dr E.E. Peacock, Jr, which consist of both the intrasynovial and extrasynovial flexor digitorum superficialis and flexor digitorum profundus tendons and their respective fibro-osseous sheath consisting of the digital pulley structures, periosteum, and volar plates procured from cadaveric donors with the use of modern tissue processing techniques. Human cadaveric CFTAs were procured and divided into 2 groups-unprocessed CFTAs and processed CFTAs, which are cleansed and sterilized to a sterility assurance level of 10(-6). Physical length and width relationships as well as tensile strength and gliding resistance assessments were recorded pre-tissue and post-tissue processing. The histologic properties of the composite allografts were assessed before and after tissue processing. There was no significant difference with respect to physical properties of the composite allografts before or after tissue processing. The processed composite allografts demonstrated equivalent maximum load to failure and elastic modulus compared to unprocessed tendons. The gliding resistance of the composite tendon allografts was not significantly different between the 2 groups. The use of CFTAs addresses the issues of adhesion formation and lack of suitable donor material by providing a source of intrasynovial tendon in its unaltered fibro-osseous sheath without donor morbidity. This approach represents an important step toward designing an ideal material for complex flexor tendon reconstruction, which takes advantage of an intrasynovial flexor tendon in its native fibro-osseous sheath without the need for additional donor morbidity using a construct which can be engineered to have minimal tissue reactivity, negligible potential for disease transmission, and improved tendon healing properties versus standard tendon allograft.

  17. Intramuscular tendon involvement on MRI has limited value for predicting time to return to play following acute hamstring injury.

    PubMed

    van der Made, Anne D; Almusa, Emad; Whiteley, Rod; Hamilton, Bruce; Eirale, Cristiano; van Hellemondt, Frank; Tol, Johannes L

    2018-01-01

    Hamstring injury with intramuscular tendon involvement is regarded as a serious injury with a delay in return to play (RTP) of more than 50 days and reinjury rates up to 63%. However, this reputation is based on retrospective case series with high risk of bias. Determine whether intramuscular tendon involvement is associated with delayed RTP and elevated rates of reinjury. MRI of male athletes with an acute hamstring injury was obtained within 5 days of injury. Evaluation included standardised MRI scoring and scoring of intramuscular tendon involvement. Time to RTP and reinjury rate were prospectively recorded. Out of 70 included participants, intramuscular tendon disruption was present in 29 (41.4%) injuries. Injuries without intramuscular tendon disruption had a mean time to RTP of 22.2±7.4 days. Injuries with <50%, 50%-99% and 100% disruption of tendon cross-sectional area had a mean time to RTP of 24.0±9.7, 25.3±8.6 and 31.6±10.9 days, respectively. Injuries with full-thickness disruption took longer to RTP compared with injuries without disruption (p=0.025). Longitudinal intramuscular tendon disruption was not significantly associated with time to RTP. Waviness was present in 17 (24.3%) injuries. Mean time to RTP for injuries without and with waviness was 22.6±7.5 and 30.2±10.8 days (p=0.014). There were 11 (15.7%) reinjuries within 12 months, five (17.2%) in the group with intramuscular tendon disruption and six (14.6%) in the group without intramuscular tendon disruption. Time to RTP for injuries with full-thickness disruption of the intramuscular tendon and waviness is significantly longer (by slightly more than 1 week) compared with injuries without intramuscular tendon involvement. However, due to the considerable overlap in time to RTP between groups with and without intramuscular tendon involvement, its clinical significance for the individual athlete is limited. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  18. Triceps surae muscle-tendon properties in older endurance- and sprint-trained athletes.

    PubMed

    Stenroth, Lauri; Cronin, Neil J; Peltonen, Jussi; Korhonen, Marko T; Sipilä, Sarianna; Finni, Taija

    2016-01-01

    Previous studies have shown that aging is associated with alterations in muscle architecture and tendon properties (Morse CI, Thom JM, Birch KM, Narici MV. Acta Physiol Scand 183: 291-298, 2005; Narici MV, Maganaris CN, Reeves ND, Capodaglio P. J Appl Physiol 95: 2229-2234, 2003; Stenroth L, Peltonen J, Cronin NJ, Sipila S, Finni T. J Appl Physiol 113: 1537-1544, 2012). However, the possible influence of different types of regular exercise loading on muscle architecture and tendon properties in older adults is poorly understood. To address this, triceps surae muscle-tendon properties were examined in older male endurance (OE, n = 10, age = 74.0 ± 2.8 yr) and sprint runners (OS, n = 10, age = 74.4 ± 2.8 yr), with an average of 42 yr of regular training experience, and compared with age-matched [older control (OC), n = 33, age = 74.8 ± 3.6 yr] and young untrained controls (YC, n = 18, age = 23.7 ± 2.0 yr). Compared with YC, Achilles tendon cross-sectional area (CSA) was 22% (P = 0.022), 45% (P = 0.001), and 71% (P < 0.001) larger in OC, OE, and OS, respectively. Among older groups, OS had significantly larger tendon CSA compared with OC (P = 0.033). No significant between-group differences were observed in Achilles tendon stiffness. In older groups, Young's modulus was 31-44%, and maximal tendon stress 44-55% lower, than in YC (P ≤ 0.001). OE showed shorter soleus fascicle length than both OC (P < 0.05) and YC (P < 0.05). These data suggest that long-term running does not counteract the previously reported age-related increase in tendon CSA, but, instead, may have an additive effect. The greatest Achilles tendon CSA was observed in OS followed by OE and OC, suggesting that adaptation to running exercise is loading intensity dependent. Achilles tendon stiffness was maintained in older groups, even though all older groups displayed larger tendon CSA and lower tendon Young's modulus. Shorter soleus muscle fascicles in OE runners may be an adaptation to life-long endurance running. Copyright © 2016 the American Physiological Society.

  19. Therapeutic Effects of Doxycycline on the Quality of Repaired and Unrepaired Achilles Tendons.

    PubMed

    Nguyen, Quynhhoa T; Norelli, Jolanta B; Graver, Adam; Ekstein, Charles; Schwartz, Johnathan; Chowdhury, Farzana; Drakos, Mark C; Grande, Daniel A; Chahine, Nadeen O

    2017-10-01

    Achilles tendon tears are devastating injuries, especially to athletes. Elevated matrix metalloproteinase (MMP) activity after a tendon injury has been associated with deterioration of the collagen network and can be inhibited with doxycycline (Doxy). Daily oral administration of Doxy will enhance the histological, molecular, and biomechanical quality of transected Achilles tendons. Additionally, suture repair will further enhance the quality of repaired tendons. Controlled laboratory study. Randomized unilateral Achilles tendon transection was performed in 288 adult male Sprague-Dawley rats. The injured tendons were either unrepaired (groups 1 and 2) or surgically repaired (groups 3 and 4). Animals from groups 2 and 4 received Doxy daily through oral gavage, and animals from groups 1 and 3 served as controls (no Doxy). Tendons were harvested at 1.5, 3, 6, and 9 weeks after the injury (n = 18 per group and time point). The quality of tendon repair was evaluated based on the histological grading score, collagen fiber orientation, gene expression, and biomechanical properties. In surgically repaired samples, Doxy enhanced the quality of tendon repair compared with no Doxy ( P = .0014). Doxy had a significant effect on collagen fiber dispersion, but not principal fiber angle. There was a significant effect of time on the gene expression of MMP-3, MMP-9 and TIMP1, and Doxy significantly decreased MMP-3 expression at 9 weeks. Doxy treatment with surgical repair increased the dynamic modulus at 6 weeks but not at 9 weeks after the injury ( P < .001). Doxy also increased the equilibrium modulus and decreased creep strain irrespective of the repair group. Doxy did not have a significant effect on the histology or biomechanics of unrepaired tendons. The findings indicate that daily oral administration of Doxy accelerated matrix remodeling and the dynamic and equilibrium biomechanics of surgically repaired Achilles tendons, although such enhancements were most evident at the 3- to 6-week time points. The inhibition of MMPs at the optimal stage of the repair process may accelerate Achilles tendon repair and improve biomechanical properties, especially when paired with surgical management.

  20. The Effects of Mechanical Loading on Tendons - An In Vivo and In Vitro Model Study

    PubMed Central

    Zhang, Jianying; Wang, James H-C.

    2013-01-01

    Mechanical loading constantly acts on tendons, and a better understanding of its effects on the tendons is essential to gain more insights into tendon patho-physiology. This study aims to investigate tendon mechanobiological responses through the use of mouse treadmill running as an in vivo model and mechanical stretching of tendon cells as an in vitro model. In the in vivo study, mice underwent moderate treadmill running (MTR) and intensive treadmill running (ITR) regimens. Treadmill running elevated the expression of mechanical growth factors (MGF) and enhanced the proliferative potential of tendon stem cells (TSCs) in both patellar and Achilles tendons. In both tendons, MTR upregulated tenocyte-related genes: collagen type I (Coll. I ∼10 fold) and tenomodulin (∼3–4 fold), but did not affect non-tenocyte-related genes: LPL (adipocyte), Sox9 (chondrocyte), Runx2 and Osterix (both osteocyte). However, ITR upregulated both tenocyte (Coll. I ∼7–11 fold; tenomodulin ∼4–5 fold) and non-tenocyte-related genes (∼3–8 fold). In the in vitro study, TSCs and tenocytes were stretched to 4% and 8% using a custom made mechanical loading system. Low mechanical stretching (4%) of TSCs from both patellar and Achilles tendons increased the expression of only the tenocyte-related genes (Coll. I ∼5–6 fold; tenomodulin ∼6–13 fold), but high mechanical stretching (8%) increased the expression of both tenocyte (Coll. I ∼28–50 fold; tenomodulin ∼14–48 fold) and non-tenocyte-related genes (2–5-fold). However, in tenocytes, non-tenocyte related gene expression was not altered by the application of either low or high mechanical stretching. These findings indicate that appropriate mechanical loading could be beneficial to tendons because of their potential to induce anabolic changes in tendon cells. However, while excessive mechanical loading caused anabolic changes in tendons, it also induced differentiation of TSCs into non-tenocytes, which may lead to the development of degenerative tendinopathy frequently seen in clinical settings. PMID:23977130

  1. Prophylactic training in asymptomatic soccer players with ultrasonographic abnormalities in Achilles and patellar tendons: the Danish Super League Study.

    PubMed

    Fredberg, Ulrich; Bolvig, Lars; Andersen, Niels T

    2008-03-01

    A recent study published in The American Journal of Sports Medicine showed that asymptomatic soccer players with an increased risk of developing Achilles and patellar tendon injuries within the next 12 months can be identified with use of ultrasonography. Prophylactic eccentric training and stretching can reduce both the frequency of asymptomatic ultrasonographic changes in Achilles and patellar tendons in soccer players and the risk of these asymptomatic intratendinous changes becoming symptomatic. Randomized controlled trial; Level of evidence, 1. Two hundred and nine Danish professional soccer players from the best national league (Super League) were followed over 12 months with use of ultrasonography and injury registration. Half the teams were randomized to an intervention group with prophylactic eccentric training and stretching of the Achilles and patellar tendons during the soccer season. The eccentric training and stretching did not reduce the injury risk, and, contrary to all expectations, the injury risk during the season was increased in players with abnormal patellar tendons at the beginning of the study in January. Eccentric training and stretching in players with normal patellar tendons significantly reduced the proportion of players with ultrasonographic changes in the patellar tendons at the end of the season (risk difference [RD] = 12%; 95% confidence interval [CI], 2%-22%; P = .02), but the training had no effect on the Achilles tendons (RD = 1%; 95% CI, -7% to 9%; P = .75). The presence of preseason ultrasonographic abnormalities in the tendons significantly increased the risk of developing tendon symptoms during the season (relative risk = 1.9; 95% CI, 1.2-3.1; P = .009). This study demonstrates that with the use of ultrasonography, tendon changes in soccer players can be diagnosed before they become symptomatic. The prophylactic eccentric training and stretching program reduces the risk of developing ultrasonographic abnormalities in the patellar tendons but has no positive effects on the risk of injury. On the contrary, in asymptomatic players with ultrasonographically abnormal patellar tendons, prophylactic eccentric training and stretching increased the injury risk.

  2. [HEALING MODEL RESEARCH OF ROTATOR CUFF INJURY IN CANINE].

    PubMed

    Ye, Wei; Bao, Nirong; Zhaq, Jianning

    2016-04-01

    To compare the difference of rotator cuff healing between different types of injury andbetween different repair methods, and to explore the animal model to accurately simulate the restorative process afterrepair of rotator cuff injury. Twelve adult male beagle dogs (weighing, 10-15 kg) were divided into 3 groups (n = 4) according to different processing methods: acute rotator cuff injury+Mason-Allen suture repair (group A), huge rotator cuff injury+Mason-Allen suture repair (group B), and huge rotator cuff injury+Mason-Allen combined with autogenous semitendinosus expansion suture repair (group C). The external fixation was used for immobilization after repair. After operation, the general situation of the animals was observed, and the infraspinatus tendon was harvested for gross observation at 6 weeks after operation. The biomechanical test of limit load and histological observation of tendon fibers were carried out. All the animals survived to the end of the experiment. All incisions healed well and no infection occurred. Gross observation showed more scar tissues at the end of infraspinatus muscle tendon than normal tendon in group A; no obvious tendon tissue was observed at the end of infraspinatus muscle tendon in group B; the infraspinatus muscle tendon was covered with some white scar tissue, but the tendon and the general direction could be observed in group C. The limit load of groups A, B, and C were (223.75 ± 24.28), (159.25 ± 34.87), and (233.25 ± 14.24) N respectively, group B was significantly lower than groups A and C (P < 0.05), and no significant differnce was found between group A and group C (P > 0.05). Histological observation showed normal arrangement of tendon fibers in group A; tendon fibers arranged disorderly in group B and tendon cells were significantly less than those of group A; tendon fibers arranged in neat in group C and tendon cells were more than those of group B. Canine autologous semitendinosus expansion repair of massive rotator cuff injury immobilization model can better simulate the clinical rotator cuff injury healing process, so it can be used as an ideal animal model for related research.

  3. [Reconstruction of chronic Achilles tendon rupture with flexor hallucis longus tendon harvested using a minimally invasive technique].

    PubMed

    Miao, Xudong; Wu, Yongping; Tao, Huimin; Yang, Disheng

    2011-07-01

    To evaluate the effectiveness of flexor hallucis longus tendon harvested using a minimally invasive technique in reconstruction of chronic Achilles tendon rupture. Between July 2006 and December 2009, 22 patients (22 feet) with chronic Achilles tendon rupture were treated, including 16 males and 6 females with a median age of 48 years (range, 28-65 years). The disease duration was 27-1,025 days (median, 51 days). Twenty-one patients had hooflike movement's history and 1 patient had no obvious inducement. The result of Thompson test was positive in 22 cases. The score was 53.04 +/- 6.75 according to American Orthopedic Foot and Ankle Society (AOFAS) ankle and hindfoot score system. MRI indicated that the gap of the chronic Achilles tendon rupture was 4.2-8.0 cm. A 3 cm-long incision was made vertically in the plantar aspect of the midfoot and a 1 cm-long transverse incision was made in a plantar flexor crease at the base of the great toe to harvest flexor hallucis longus tendon. The flexor hallucis longus tendon was 10.5-13.5 cm longer from tuber calcanei to the end of the Achilles tendon, and then the tendon was fixed to the tuber calcanei using interface screws or anchor nail after they were woven to form reflexed 3-bundle and sutured. Wound healed by first intention in all patients and no early complication occurred. Twenty-two patients were followed up 12-42 months (mean, 16.7 months). At 12 months after operation, The AOFAS ankle and hindfoot score was 92.98 +/- 5.72, showing significant difference when compared with that before operation (t= -40.903, P=0.000). The results were excellent in 18 cases, good in 2 cases, and fair in 2 cases with an excellent and good rate of 90.9%. No sural nerve injury, posterior tibial nerve injury, plantar painful scar, medial plantar nerve injury, and lateral plantar nerve injury occurred. Chronic Achilles tendon rupture reconstruction with flexor hallucis longus tendon harvested using a minimally invasive technique offers a desirable outcome in operative recovery, tendon fixation, and complications.

  4. Quantification of Internal Stress-Strain Fields in Human Tendon: Unraveling the Mechanisms that Underlie Regional Tendon Adaptations and Mal-Adaptations to Mechanical Loading and the Effectiveness of Therapeutic Eccentric Exercise

    PubMed Central

    Maganaris, Constantinos N.; Chatzistergos, Panagiotis; Reeves, Neil D.; Narici, Marco V.

    2017-01-01

    By virtue of their anatomical location between muscles and bones, tendons make it possible to transform contractile force to joint rotation and locomotion. However, tendons do not behave as rigid links, but exhibit viscoelastic tensile properties, thereby affecting the length and contractile force in the in-series muscle, but also storing and releasing elastic stain energy as some tendons are stretched and recoiled in a cyclic manner during locomotion. In the late 90s, advancements were made in the application of ultrasound scanning that allowed quantifying the tensile deformability and mechanical properties of human tendons in vivo. Since then, the main principles of the ultrasound-based method have been applied by numerous research groups throughout the world and showed that tendons increase their tensile stiffness in response to exercise training and chronic mechanical loading, in general, by increasing their size and improving their intrinsic material. It is often assumed that these changes occur homogenously, in the entire body of the tendon, but recent findings indicate that the adaptations may in fact take place in some but not all tendon regions. The present review focuses on these regional adaptability features and highlights two paradigms where they are particularly evident: (a) Chronic mechanical loading in healthy tendons, and (b) tendinopathy. In the former loading paradigm, local tendon adaptations indicate that certain regions may “see,” and therefore adapt to, increased levels of stress. In the latter paradigm, local pathological features indicate that certain tendon regions may be “stress-shielded” and degenerate over time. Eccentric exercise protocols have successfully been used in the management of tendinopathy, without much sound understanding of the mechanisms underpinning their effectiveness. For insertional tendinopathy, in particular, it is possible that the effectiveness of a loading/rehabilitation protocol depends on the topography of the stress created by the exercise and is not only reliant upon the type of muscle contraction performed. To better understand the micromechanical behavior and regional adaptability/mal-adaptability of tendon tissue it is important to estimate its internal stress-strain fields. Recent relevant advancements in numerical techniques related to tendon loading are discussed. PMID:28293194

  5. FROM ACUTE ACHILLES TENDON RUPTURE TO RETURN TO PLAY - A CASE REPORT EVALUATING RECOVERY OF TENDON STRUCTURE, MECHANICAL PROPERTIES, CLINICAL AND FUNCTIONAL OUTCOMES.

    PubMed

    Zellers, Jennifer A; Cortes, Daniel H; Silbernagel, Karin Grävare

    2016-12-01

    Achilles tendon rupture results in significant functional deficits regardless of treatment strategy (surgical versus non-surgical intervention). Recovery post-rupture is highly variable, making comprehensive patient assessment critical. Assessment tools may change along the course of recovery as the patient progresses - for instance, moving from a seated heel-rise to standing heel-rise to jump testing. However, tools that serve as biomarkers for early recovery may be particularly useful in informing clinical decision-making. The purpose of this case report was to describe the progress of a young, athletic individual following Achilles tendon rupture managed non-surgically, using patient reported and functional performance outcome measures and comprehensively evaluating Achilles tendon structure and function incorporating a novel imaging technique (cSWE). The subject is a 26 year-old, female basketball coach who sustained an Achilles tendon rupture and was managed non-surgically. The subject was able to steadily progress using a gradual tendon loading treatment approach well-supported by the literature. Multiple evaluative techniques including the addition of diagnostic ultrasound imaging and continuous shear wave elastography (cSWE) to standard clinical tests and measures were used to assess patient-reported symptoms, tendon structure, and tendon functional performance. Five assessments were performed over the course of 2-14 months post-rupture. By the 14-month follow-up, the subject had achieved full self-reported function. Tendon structural and mechanical properties showed similar shear modulus by 14 months, however, viscosity continued to be lower and tendon length longer on the ruptured side. Functional performance, evidenced by the heel-rise test and jump tests, also showed a positive trajectory, however, deficits of 12-28% remained between ruptured and non-ruptured sides at 14 months. This case report outlines comprehensive outcomes assessment in an athletic individual following non-surgically managed Achilles tendon rupture using a wide variety of tools that capture different aspects of tendon health. Interestingly, the course of recovery of patient symptoms, functional performance, and tendon structure do not occur in the same time frame. Therefore, it is important to assess patient outcomes using multiple outcome measures encompassing different aspects of patient performance to ensure the patient is progressing steadily with rehabilitation. Level 4.

  6. Associations between abnormal ultrasound color Doppler measures and tendon pain symptoms in badminton players during a season: a prospective cohort study.

    PubMed

    Boesen, Anders Ploug; Boesen, Morten Ilum; Torp-Pedersen, Soren; Christensen, Robin; Boesen, Lars; Hölmich, Per; Nielsen, Michael Bachmann; Koenig, Merete Juhl; Hartkopp, Andreas; Ellegaard, Karen; Bliddal, Henning; Langberg, Henning

    2012-03-01

    Color Doppler ultrasound is widely used to examine intratendinous flow in individuals with overuse tendon problems, but the association between color Doppler and pain is still unclear. Intratendinous flow is present and associated with pain in badminton players, and intratendinous flow and pain increase during a badminton season. Cohort study (prognosis); Level of evidence, 2. Ninety-five semiprofessional badminton players were included in the study at a tournament at the start of the badminton season. All players were interviewed regarding pain. The anterior knee tendons and Achilles tendons were studied. Each tendon was scored using a quantitative grading system (grades 0-5) and a qualitative scoring system (color fraction) using color Doppler ultrasound. Eight months later, 86 of the players (91%) were retested by the same investigators during an equivalent badminton tournament (including 1032 tendon regions; 86 players with 4 tendons each with 3 regions), thus forming the study group. At the start of the season, 24 players (28%) experienced pain in 37 tendons (11%), and at the end of the season, 31 players (36%) experienced pain in 51 tendons (15%), which was a statistically significant increase (P = .0002). Abnormal flow was found in 230 tendon regions in 71 players (83%) at the start of the season compared with 78 tendon regions in 41 players (48%) at the follow-up. The decrease in abnormal flow was statistically significant (P < .0001). Of the 37 painful tendons at the start of the season, 25 had abnormal flow (68%). In contrast, 131 tendons (85%) with abnormal flow at the start of the season were pain free. At the end of the season, 18 of the 51 painful tendons (35%) had abnormal flow. Ninety-six of the 131 pain-free tendons (73%) with abnormal flow at the start of the season were normalized (no pain and normal flow) at the end of the season. It was not possible to verify any association between intratendinous flow and pain at the start of the season or at the follow-up (end of the season). Intratendinous flow at the start of the season could not predict symptomatic outcome at the end of the season. The decrease in Doppler flow during the season might suggest that intratendinous flow could be part of a physiological adaptive response to loading and that intratendinous flow as previously believed is not always a sign of pathological changes.

  7. Intraoperative muscle electrical stimulation for accurate positioning of the temporalis muscle tendon during dynamic, one-stage lengthening temporalis myoplasty for facial and lip reanimation.

    PubMed

    Har-Shai, Yaron; Gil, Tamir; Metanes, Issa; Labbé, Daniel

    2010-07-01

    Facial paralysis is a significant functional and aesthetic handicap. Facial reanimation is performed either by two-stage microsurgical methods or by regional one-stage muscle pedicle flaps. Labbé has modified and improved the regional muscle pedicle transfer flaps for facial reanimation (i.e., the lengthening temporalis myoplasty procedure). This true myoplasty technique is capable of producing a coordinated, spontaneous, and symmetrical smile. An intraoperative electrical stimulation of the temporal muscle is proposed to simulate the smile of the paralyzed side on the surgical table. The intraoperative electrical stimulation of the temporalis muscle, employing direct percutaneous electrode needles or transcutaneous electrical stimulation electrodes, was utilized in 11 primary and four secondary cases with complete facial palsy. The duration of the facial paralysis was up to 12 years. Postoperative follow-up ranged from 3 to 12 months. The insertion points of the temporalis muscle tendon to the nasolabial fold, upper lip, and oral commissure had been changed according to the intraoperative muscle stimulation in six patients of the 11 primary cases (55 percent) and in all four secondary (revisional) cases. A coordinated, spontaneous, and symmetrical smile was achieved in all patients by 3 months after surgery by employing speech therapy and biofeedback. This adjunct intraoperative refinement provides crucial feedback for the surgeon in both primary and secondary facial palsy cases regarding the vector of action of the temporalis muscle and the accuracy of the anchoring points of its tendon, thus enhancing a more coordinated and symmetrical smile.

  8. Bilateral Patellar Tendon Rupture

    DTIC Science & Technology

    2009-07-01

    Bilateral patellar tendon rupture Military Medicine Radiology Corner, Volume 173, July, 2009...Radiology Corner Bilateral patellar tendon rupture (#37) Guarantor: 2dLt Ramon A. Riojas, USAF, MSC1 Contributors: 2dLt Ramon A. Riojas...with the abbreviated answer in the July 2009 issue. 1 The authors present a case of bilateral patellar tendon rupture in an active duty male exiting

  9. Tendon and ligament imaging

    PubMed Central

    Hodgson, R J; O'Connor, P J; Grainger, A J

    2012-01-01

    MRI and ultrasound are now widely used for the assessment of tendon and ligament abnormalities. Healthy tendons and ligaments contain high levels of collagen with a structured orientation, which gives rise to their characteristic normal imaging appearances as well as causing particular imaging artefacts. Changes to ligaments and tendons as a result of disease and injury can be demonstrated using both ultrasound and MRI. These have been validated against surgical and histological findings. Novel imaging techniques are being developed that may improve the ability of MRI and ultrasound to assess tendon and ligament disease. PMID:22553301

  10. The plantaris tendon: a narrative review focusing on anatomical features and clinical importance.

    PubMed

    Spang, C; Alfredson, H; Docking, S I; Masci, L; Andersson, G

    2016-10-01

    In recent years, the plantaris tendon has been implicated in the development of chronic painful mid-portion Achilles tendinopathy. In some cases, a thickened plantaris tendon is closely associated with the Achilles tendon, and surgical excision of the plantaris tendon has been reported to be curative in patients who have not derived benefit following conservative treatment and surgical interventions. The aim of this review is to outline the basic aspects of, and the recent research findings, related to the plantaris tendon, covering anatomical and clinical studies including those dealing with histology, imaging and treatment. Cite this article: Bone Joint J 2016;98-B:1312-19. ©2016 The British Editorial Society of Bone & Joint Surgery.

  11. Differences in tendon properties in elite badminton players with or without patellar tendinopathy.

    PubMed

    Couppé, C; Kongsgaard, M; Aagaard, P; Vinther, A; Boesen, M; Kjaer, M; Magnusson, S P

    2013-03-01

    The aim of this study was to examine the structural and mechanical properties of the patellar tendon in elite male badminton players with and without patellar tendinopathy. Seven players with unilateral patellar tendinopathy (PT group) on the lead extremity (used for forward lunge) and nine players with no current or previous patellar tendinopathy (CT group) were included. Magnetic resonance imaging was used to assess distal patellar tendon dimensions. Patellar tendon mechanical properties were assessed using simultaneous tendon force and deformation measurements. Distal tendon cross-sectional area (CSA) normalized for body weight (mm(2) /kg(2/3) ) was lower in the PT group compared with the CT group on both the non-lead extremity (6.1 ± 0.3 vs 7.4 ± 0.2, P < 0.05) and the lead extremity (6.5 ± 0.6 vs 8.4 ± 0.3, P < 0.05). Distal tendon stress was higher in the PT group compared with the CT group for both the non-lead extremity (31 ± 1 vs 27 ± 1 MPa, P < 0.05) and the lead extremity (32 ± 3 vs 21 ± 3 MPa, P < 0.01). Conclusively, the PT group had smaller distal patellar tendon CSA on both the injured (lead extremity) and the uninjured side (non-lead extremity) compared with the CT group. Subsequently, the smaller CSA yielded a greater distal patellar tendon stress in the PT group. Therefore, a small tendon CSA may predispose to the development of tendinopathy. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  12. Aging Does Not Alter Tendon Mechanical Properties During Homeostasis, but does Impair Flexor Tendon Healing

    PubMed Central

    Ackerman, Jessica E.; Bah, Ibrahima; Jonason, Jennifer H.; Buckley, Mark R.; Loiselle, Alayna E.

    2017-01-01

    Aging is an important factor in disrupted homeostasis of many tissues. While an increased incidence of tendinopathy and tendon rupture are observed with aging, it is unclear whether this is due to progressive changes in tendon cell function and mechanics over time, or an impaired repair reaction from aged tendons in response to insult or injury. In the present study we examined changes in the mechanical properties of Flexor Digitorum Longus (FDL), Flexor Carpi Ulnaris (FCU), and tail fascicles in both male and female C57Bl/6 mice between 3-27 months of age to better understand the effects of sex and age on tendon homeostasis. No change in max load at failure was observed in any group over the course of aging, although there were significant decreases in toe and linear stiffness in female mice from 3-months to 15, and to 22-27-months. No changes in cell proliferation were observed with aging, although an observable decrease in cellularity occurred in 31-month old tendons. Given that aging did not dramatically alter tendon mechanical homeostasis we hypothesized that a disruption in tendon homeostasis, via acute injury would result in an impaired healing response. Significant decreases in max load, stiffness, and yield load were observed in repairs of 22-month old mice, relative to 4-month old mice. No changes in cell proliferation were observed between young and aged, however a dramatic loss of bridging collagen extracellular matrix was observed in aged repairs suggest that matrix production, but not cell proliferation leads to impaired tendon healing with aging. PMID:28419543

  13. Multiple variations of the tendons of the anatomical snuffbox

    PubMed Central

    Thwin, San San; Zaini, Fazlin; Than, Myo

    2014-01-01

    INTRODUCTION Multiple tendons of the abductor pollicis longus (APL) in the anatomical snuffbox of the wrist can lead to the development of de Quervain's syndrome, which is caused by stenosing tenosynovitis. A cadaveric study was performed to establish the variations present in the tendons of the anatomical snuffbox in a Malaysian population, in the hope that this knowledge would aid clinical investigation and surgical treatment of de Quervain's tenosynovitis. METHODS Routine dissection of ten upper limbs was performed to determine the variations in the tendons of the anatomical snuffbox of the wrist. RESULTS In all the dissected upper limbs, the APL tendon of the first extensor compartment was found to have several (3–14) tendon slips. The insertion of the APL tendon slips in all upper limbs were at the base of the first metacarpal bone, trapezium and fascia of the opponens pollicis muscle; however, in seven specimens, they were also found to be attached to the fleshy belly of the abductor pollicis brevis muscle. In two specimens, double tendons of the extensor pollicis longus located in the third extensor compartment were inserted into the capsule of the proximal interphalangeal joints before being joined to the extensor expansion. In two other specimens, the first extensor compartment had two osseofibrous tunnels divided by a septum that separated the APL tendon from the extensor pollicis brevis tendon. CONCLUSION Multiple variations were found in the anatomical snuffbox region of the dissected upper limbs. Knowledge of these variations would be useful in interventional radiology and orthopaedic surgery. PMID:24452976

  14. A Comparison of the Quasi-static Mechanical and Nonlinear Viscoelastic Properties of the Human Semitendinosus and Gracilis Tendons

    PubMed Central

    Abramowitch, Steven D.; Zhang, Xiaoyan; Curran, Molly; Kilger, Robert

    2010-01-01

    Background Over fifty-percent of anterior cruciate ligament reconstructions are performed using semitendinosus and gracilis tendon autografts. Despite their increased use, there remains little quantitative data on their mechanical behavior. Therefore, the objective of this study was to investigate the quasi-static mechanical and nonlinear viscoelastic properties of human semitendinosus and gracilis tendons, as well as the variation of these properties along their length. Methods Specimens were subjected to a series of uniaxial tensile tests: one-hour static stress-relaxation test, 30-cycle cyclic stress-relaxation test and load to failure test. To describe the nonlinear viscoelastic behavior, the quasi-linear viscoelastic theory was utilized to model data from the static stress relaxation experiment. Findings The constants describing the viscoelastic behavior were similar between the proximal and distal halves of the gracilis tendon. The proximal half of the semitendinosus tendon, however, had a greater viscous response than its distal half, which was also significantly higher than the proximal gracilis tendon. In terms of the quasi-static mechanical properties, the properties were similar between the proximal and distal halves of the semitendinosus tendon. However, the distal gracilis tendon showed a significantly higher tangent modulus and ultimate stress compared to its proximal half, which was also significantly higher than the distal semitendinosus tendon. Interpretation The results of this study demonstrate differences between the semitendinosus and gracilis tendons in terms of their quasi-static mechanical and nonlinear viscoelastic properties. These results are important for establishing surgical preconditioning protocols and graft selection. PMID:20092917

  15. High-resolution US and MR imaging of peroneal tendon injuries.

    PubMed

    Taljanovic, Mihra S; Alcala, Jennifer N; Gimber, Lana H; Rieke, Joshua D; Chilvers, Margaret M; Latt, L Daniel

    2015-01-01

    Injuries of the peroneal tendon complex are common and should be considered in every patient who presents with chronic lateral ankle pain. These injuries occur as a result of trauma (including ankle sprains), in tendons with preexisting tendonopathy, and with repetitive microtrauma due to instability. The peroneus brevis and peroneus longus tendons are rarely torn simultaneously. Several anatomic variants, including a flat or convex fibular retromalleolar groove, hypertrophy of the peroneal tubercle at the lateral aspect of the calcaneus, an accessory peroneus quartus muscle, a low-lying peroneus brevis muscle belly, and an os peroneum, may predispose to peroneal tendon injuries. High-resolution 1.5-T and 3-T magnetic resonance (MR) imaging with use of dedicated extremity coils and high-resolution ultrasonography (US) with high-frequency linear transducers and dynamic imaging are proved to adequately depict the peroneal tendons for evaluation and can aid the orthopedic surgeon in injury management. An understanding of current treatment approaches for partial- and full-thickness peroneal tendon tears, subluxation and dislocation of these tendons with superior peroneal retinaculum (SPR) injuries, intrasheath subluxations, and peroneal tendonopathy and tenosynovitis can help physicians achieve a favorable outcome. Patients with low functional demands do well with conservative treatment, while those with high functional demands may benefit from surgery if nonsurgical treatment is unsuccessful. Radiologists should recognize the normal anatomy and specific pathologic conditions of the peroneal tendons at US and MR imaging and understand the various treatment options for peroneal tendon and SPR superior peroneal retinaculum injuries. Online supplemental material is available for this article. RSNA, 2015

  16. Slack length of gastrocnemius medialis and Achilles tendon occurs at different ankle angles.

    PubMed

    Hug, François; Lacourpaille, Lilian; Maïsetti, Olivier; Nordez, Antoine

    2013-09-27

    Although muscle-tendon slack length is a crucial parameter used in muscle models, this is one of the most difficult measures to estimate in vivo. The aim of this study was to determine the onset of the rise in tension (i.e., slack length) during passive stretching in both Achilles tendon and gastrocnemius medialis. Muscle and tendon shear elastic modulus was measured by elastography (supersonic shear imaging) during passive plantarflexion (0° and 90° of knee angle, 0° representing knee fully extended, in a random order) in 9 participants. The within-session repeatability of the determined slack length was good at 90° of knee flexion (SEM=3.3° and 2.2° for Achilles tendon and gastrocnemius medialis, respectively) and very good at 0° of knee flexion (SEM=1.9° and 1.9° for Achilles tendon and gastrocnemius medialis, respectively). The slack length of gastrocnemius medialis was obtained at a significantly lower plantarflexed angle than for Achilles tendon at both 0° (P<0.0001; mean difference=19.4±3.8°) and 90° of knee flexion (P<0.0001; mean difference=25.5±7.6°). In conclusion, this study showed that the joint angle at which the tendon falls slack can be experimentally determined using supersonic shear imaging. The slack length of gastrocnemius medialis and Achilles tendon occurred at different joint angles. Although reporting this result is crucial to a better understanding of muscle-tendon interactions, further experimental investigations are required to explain this result. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Whole-body vibration training induces hypertrophy of the human patellar tendon.

    PubMed

    Rieder, F; Wiesinger, H-P; Kösters, A; Müller, E; Seynnes, O R

    2016-08-01

    Animal studies suggest that regular exposure to whole-body vibration (WBV) induces an anabolic response in bone and tendon. However, the effects of this type of intervention on human tendon properties and its influence on the muscle-tendon unit function have never been investigated. The aim of this study was to investigate the effect of WBV training on the patellar tendon mechanical, material and morphological properties, the quadriceps muscle architecture and the knee extension torque-angle relationship. Fifty-five subjects were randomized into either a vibration, an active control, or an inactive control group. The active control subjects performed isometric squats on a vibration platform without vibration. Muscle and tendon properties were measured using ultrasonography and dynamometry. Vibration training induced an increase in proximal (6.3%) and mean (3.8%) tendon cross-sectional area, without any appreciable change in tendon stiffness and modulus or in muscle architectural parameters. Isometric torque at a knee angle of 90° increased in active controls (6.7%) only and the torque-angle relation remained globally unchanged in all groups. The present protocol did not appreciably alter knee extension torque production or the musculo-tendinous parameters underpinning this function. Nonetheless, this study shows for the first time that WBV elicits tendon hypertrophy in humans. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Achilles tendon structure improves on UTC imaging over a 5-month pre-season in elite Australian football players.

    PubMed

    Docking, S I; Rosengarten, S D; Cook, J

    2016-05-01

    Pre-season injuries are common and may be due to a reintroduction of training loads. Tendons are sensitive to changes in load, making them vulnerable to injury in the pre-season. This study investigated changes in Achilles tendon structure on ultrasound tissue characterization (UTC) over the course of a 5-month pre-season in elite male Australian football players. Eighteen elite male Australian football players with no history of Achilles tendinopathy and normal Achilles tendons were recruited. The left Achilles tendon was scanned with UTC to quantify the stability of the echopattern. Participants were scanned at the start and completion of a 5-month pre-season. Fifteen players remained asymptomatic over the course of the pre-season. All four echo-types were significantly different at the end of the pre-season, with the overall echopattern suggesting an improvement in Achilles tendon structure. Three of the 18 participants developed Achilles tendon pain that coincided with a change in the UTC echopattern. This study demonstrates that the UTC echopattern of the Achilles tendon improves over a 5-month pre-season training period, representing increased fibrillar alignment. However, further investigation is needed to elucidate with this alteration in the UTC echopattern results in improved tendon resilience and load capacity. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Infrapatellar fat pad disruption: a radiographic sign of patellar tendon rupture.

    PubMed

    Chin, Kingsley R; Sodl, Jeffrey F

    2005-11-01

    After knee trauma, radiographs showing patella alta supercede other signs that suggest patellar tendon rupture. However, without patella alta the diagnosis may be missed. A standard lateral radiograph with the knee flexed showed the infrapatellar fat pad as a dark band with a smooth contour. Our pilot study identified a disruption of the fat pad contour as a radiographic sign of tendon rupture. Two blinded reviewers independently analyzed randomly selected lateral radiographs of the knees of 14 patients with knee injuries. Seven patients had confirmed ruptures diagnosed at surgery, and the other patients had different diagnoses. There were 12 men and two women with an average age of 49 years (range, 20-81 years). One observer detected five of the seven disrupted tendons and six of the seven intact tendons. The other observer detected six of the seven disrupted tendons and all seven intact tendons. Disruption in the contour of the infrapatellar fat pad on routine lateral view radiographs was a reasonably reliable sign of patellar tendon rupture. Diagnostic accuracy should increase when used with the patient's history, physical examination, and other radiographic signs. Absence of this sign should not supersede other suggestive signs of patella tendon rupture. Diagnostic study, Level II (development of diagnostic criteria on consecutive patients--with universally applied reference "gold" standard). See the Guidelines for Authors for a complete description of levels of evidence.

  20. Utility of an allograft tendon for scoliosis correction via the costo-transverse foreman.

    PubMed

    Sun, Dong; McCarthy, Michael; Dooley, Adam C; Ramakrishnaiah, Raghu H; Shelton, R Shane; McLaren, Sandra G; Skinner, Robert A; Suva, Larry J; McCarthy, Richard E

    2017-01-01

    Current convex tethering techniques for treatment of scoliosis have centered on anterior convex staples or polypropylene tethers. We hypothesized that an allograft tendon tether inserted via the costo-transverse foramen would correct an established spinal deformity. In the pilot study, six 8-week-old pigs underwent allograft tendon tethering via the costo-transverse foreman or sham to test the strength of the transplanted tendon to retard spine growth. After 4 months, spinal deformity in three planes was induced in all animals with allograft tendons. In the treatment study, the allograft tendon tether was used to treat established scoliosis in 11 8-week-old pigs (spinal deformity > 50°). Once the deformity was observed (4 months) animals were assigned to either no treatment group or allograft tendon tether group and progression assessed by monthly radiographs. At final follow-up, coronal Cobb angle and maximum vertebral axial rotation of the treatment group was significantly smaller than the non-treatment group, whereas sagittal kyphosis of the treatment group was significantly larger than the non-treatment group. In sum, a significant correction was achieved using a unilateral allograft tendon spinal tether, suggesting that an allograft tendon tethering approach may represent a novel fusion-less procedure to correct idiopathic scoliosis. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:183-192, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  1. Analysis of achilles tendon vascularity with second-generation contrast-enhanced ultrasound.

    PubMed

    Genovese, Eugenio; Ronga, Mario; Recaldini, Chiara; Fontana, Federico; Callegari, Leonardo; Maffulli, Nicola; Fugazzola, Carlo

    2011-01-01

    To compare morphological, power Doppler, and contrast-enhanced ultrasound (CEUS) features of the Achilles tendon between asymptomatic athletes and athletes who had undergone surgical repair of a previous rupture. Twenty-four athletes were divided in two groups (A and B). Group A included 14 patients with a median age of 32 years (range 27 to 47 years) who had undergone surgical repair for unilateral Achilles tendon rupture. Group B (control group) included 10 subjects with a median age of 34 years (range 27 to 40 years) with no previous or present history of tendinopathy. All patients were evaluated with ultrasound, power Doppler, and CEUS with second-generation contrast agent. We studied the uninjured Achilles tendon in athletes of group A and either the left or the right Achilles tendon of the athletes in group B. CEUS showed a significantly greater ability to detect a greater number of vascular spots within the uninjured tendon of group A compared to group B (<0.05). In athletes who had suffered a tear of an Achilles tendon, CEUS detected small vessels that were not identified by power Doppler ultrasound in the uninjured contralateral Achilles tendon. CEUS is useful to evaluate vascularity not detected by other imaging techniques. Vascularity in the uninjured tendon seems to be increased in patients who had a previous rupture. Copyright © 2011 Wiley Periodicals, Inc.

  2. Alterations in tendon microenvironment in response to mechanical load: potential molecular targets for treatment strategies

    PubMed Central

    Fouda, Mohamed B; Thankam, Finosh G; Dilisio, Matthew F; Agrawal, Devendra K

    2017-01-01

    Rotator cuff (RC) tendons could beinflicted in many ways with an eventual outcome of pain, weakness and disability, which represent a large burden on health care cost. However, optimal healing, either conservatively or with surgical intervention, remains an issue that needs further investigation. Disorders of the RC tendons may result from external factors like trauma, or internal factors through physiologic and metabolic derangement. Most RC tendon disorders may be asymptomatic and may result from an over-activity of the inflicted shoulder and its tendons. Such tendon disorders are poorly diagnosed since patients do not seek medical attention until pain or weakness ensue. Immunological and biochemical events in RC disorders due to mechanical intolerance have not been investigated. Generally, the mechanical load drives normal physiological properties of the tendon. But, mechanical overload/burden exerts stress on tenocytes, and disrupts the tendon microenvironment by triggering a multitude of signaling pathways leading to extracellular matrix remodeling, disorganization, alteration in collagen composition and apoptosis. These events result in weak tendon which is highly susceptible to rupture or tear. In this article, we critically reviewed the intrinsic signaling pathways that are excessively triggered by continuous mechanical load and the counteracting physiological responses and associated derangements. The elucidation of the molecular events underlying mechanical stress-induced symptomatic/asymptomatic tendinopathy could provide information on potential target sites for translational application in the management of rotator cuff disorders. PMID:29118899

  3. Supraspinatus tendinosis associated with biceps brachii tendon displacement in a dog.

    PubMed

    Fransson, Boel A; Gavin, Patrick R; Lahmers, Kevin K

    2005-11-01

    A 4-year-old spayed female Australian Cattle Dog (Blue Heeler) was evaluated because of right forelimb lameness of 5 months' duration. Orthopedic evaluation revealed signs of pain localized to the cranial aspects of both shoulder joints. Via magnetic resonance imaging, the mass of the supraspinatus tendon insertion in both shoulder joints was increased, compared with findings in cadavers of clinically normal dogs; additional imaging procedures revealed that, compared with clinically normal tendons, the tendon had increased signal intensity that was consistent with increased fluid content. The increased supraspinatus tendon mass in each shoulder joint was associated with medial displacement of the biceps brachii tendon, which was more severe in the right limb. Arthroscopic evaluations of both shoulder joints revealed no abnormalities. The dog underwent surgery, and the abnormal parts of the tendons were resected. The most prominent finding on histologic examination of excised tissues was severe myxomatous degeneration. The lameness resolved, and at 22 months after surgery, the dog was reported to have had no recurrence of lameness. The clinical signs and histologic appearance of the tendons in this dog strongly resemble findings associated with tendinosis in humans. Decompression of the biceps brachii tendon may have contributed to the successful outcome after surgery in this dog. Supraspinatus tendinosis should be considered among the differential diagnoses in dogs with uni- or bilateral forelimb lameness.

  4. Fatigue loading of tendon

    PubMed Central

    Shepherd, Jennifer H; Screen, Hazel R C

    2013-01-01

    Tendon injuries, often called tendinopathies, are debilitating and painful conditions, generally considered to develop as a result of tendon overuse. The aetiology of tendinopathy remains poorly understood, and whilst tendon biopsies have provided some information concerning tendon appearance in late-stage disease, there is still little information concerning the mechanical and cellular events associated with disease initiation and progression. Investigating this in situ is challenging, and numerous models have been developed to investigate how overuse may generate tendon fatigue damage and how this may relate to tendinopathy conditions. This article aims to review these models and our current understanding of tendon fatigue damage. We review the strengths and limitations of different methodologies for characterizing tendon fatigue, considering in vitro methods that adopt both viable and non-viable samples, as well as the range of different in vivo approaches. By comparing data across model systems, we review the current understanding of fatigue damage development. Additionally, we compare these findings with data from tendinopathic tissue biopsies to provide some insights into how these models may relate to the aetiology of tendinopathy. Fatigue-induced damage consistently highlights the same microstructural, biological and mechanical changes to the tendon across all model systems and also correlates well with the findings from tendinopathic biopsy tissue. The multiple testing routes support matrix damage as an important contributor to tendinopathic conditions, but cellular responses to fatigue appear complex and often contradictory. PMID:23837793

  5. The Achilles Tendon Insertion is Crescent-shaped: An In Vitro Anatomic Investigation

    PubMed Central

    Arentz, Sabine; Nauck, Tanja; Dorn-Lange, Nadja V.; Konerding, Moritz A.

    2008-01-01

    Anatomic and operative textbooks and current literature do not clearly describe the Achilles tendon interface to the calcaneal tuberosity. We dissected 51 specimens to identify the detailed anatomy of the Achilles tendon insertion. Achilles tendon fascicles expanded from the anterior aspect of the distal Achilles tendon over the retrocalcaneal bursa to the anterior part of the Haglund’s tuberosity in nearly half of the specimens. The insertion of the transverse section of the Achilles tendon regularly had a crescent-shape corresponding to the posterior calcaneal prominence. In transverse sections, all specimens had a curved appearance with a radius of curvature ranging from 13.8 mm to 43.6 mm (mean, 20.4 mm) and Achilles tendon extensions to the lateral and medial calcaneal surfaces reached 1.0 mm (mean) and 3.5 mm (mean) anterior in relation to the most posterior point of the calcaneal tuberosity. Knowledge of the arcuate configuration and of the medial and lateral extensions of the plantaris and the Achilles tendon insertion with respect to the transverse plane is important to avoid iatrogenic complications during resection of Haglund’s tuberosity. PMID:18506561

  6. Effect of Micro-RNA on Tenocytes and Tendon-Related Gene Expression: A Systematic Review.

    PubMed

    Dubin, Jeremy A; Greenberg, Daniel R; Iglinski-Benjamin, Kag C; Abrams, Geoffrey D

    2018-06-06

    The purpose of the review was to synthesize the current literature regarding the effect of miRNA on biological processes known to be involved in tendon and tenocyte development and homeostasis. Using multiple databases, a systematic review was performed with a customized search term crafted to identify any study examining micro-RNA in relation to tendon and/or tenocytes. Results were classified based on the following categories: gene expression, tenocyte development and differentiation, tendon tissue repair, and tenocyte senescence. A total of 3,112 potentially relevant studies were reviewed, and after exclusion criteria was applied, 15 investigations were included in the final analysis. There were 14 specific miRNA included in this review, with 11 studies reporting on tendon-related gene expression, five reporting on tendon development and/or tenocyte differentiation, six reporting on tendon tissue repair, and five reporting on tenocyte senescence. The miR-29 family was the most commonly reported micro-RNA in the investigation. We also report on a number of micro-RNA which are associated with both positive and negative effects on tendon homeostasis. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  7. Evaluating Changes in Tendon Crimp with Fatigue Loading as an ex vivo Structural Assessment of Tendon Damage

    PubMed Central

    Freedman, Benjamin R.; Zuskov, Andrey; Sarver, Joseph J.; Buckley, Mark R.; Soslowsky, Louis J.

    2015-01-01

    The complex structure of tendons relates to their mechanical properties. Previous research has associated the waviness of collagen fibers (crimp) during quasi-static tensile loading to tensile mechanics, but less is known about the role of fatigue loading on crimp properties. In this study (IACUC approved), mouse patellar tendons were fatigue loaded while an integrated plane polariscope simultaneously assessed crimp properties. We demonstrate a novel structural mechanism whereby tendon crimp amplitude and frequency are altered with fatigue loading. In particular, fatigue loading increased the crimp amplitude across the tendon width and length, and these structural alterations were shown to be both region and load dependent. The change in crimp amplitude was strongly correlated to mechanical tissue laxity (defined as the ratio of displacement and gauge length relative to the first cycle of fatigue loading assessed at constant load throughout testing), at all loads and regions evaluated. Together, this study highlights the role of fatigue loading on tendon crimp properties as a function of load applied and region evaluated, and offers an additional structural mechanism for mechanical alterations that may lead to ultimate tendon failure. PMID:25773654

  8. Current Concepts in Examination and Treatment of Elbow Tendon Injury

    PubMed Central

    Ellenbecker, Todd S.; Nirschl, Robert; Renstrom, Per

    2013-01-01

    Context: Injuries to the tendons of the elbow occur frequently in the overhead athlete, creating a significant loss of function and dilemma to sports medicine professionals. A detailed review of the anatomy, etiology, and pathophysiology of tendon injury coupled with comprehensive evaluation and treatment information is needed for clinicians to optimally design treatment programs for rehabilitation and prevention. Evidence Acquisitions: The PubMed database was searched in January 2012 for English-language articles pertaining to elbow tendon injury. Results: Detailed information on tendon pathophysiology was found along with incidence of elbow injury in overhead athletes. Several evidence-based reviews were identified, providing a thorough review of the recommended rehabilitation for elbow tendon injury. Conclusions: Humeral epicondylitis is an extra-articular tendon injury that is common in athletes subjected to repetitive upper extremity loading. Research is limited on the identification of treatment modalities that can reduce pain and restore function to the elbow. Eccentric exercise has been studied in several investigations and, when coupled with a complete upper extremity strengthening program, can produce positive results in patients with elbow tendon injury. Further research is needed in high-level study to delineate optimal treatment methods. PMID:24427389

  9. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats

    PubMed Central

    Zhang, Jianying; Yuan, Ting; Wang, James H-C.

    2016-01-01

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients. PMID:26885754

  10. Peroneal tendon disorders

    PubMed Central

    Davda, Kinner; Malhotra, Karan; O’Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-01-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries. Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers. Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus. A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments. Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion. The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047 PMID:28736620

  11. Closing the gap on Achilles tendon rupture: A cadaveric study quantifying the tendon apposition achieved with commonly used immobilisation practices.

    PubMed

    Collins, Ruaraidh; Sudlow, Alexis; Loizou, Constantinos; Loveday, David T; Smith, George

    2018-04-01

    The relative benefits of surgical and conservative treatment of Achilles tendon rupture are widely debated. With modern conservative management protocols, the re-rupture risk appears to fall to one similar to surgical repair with negligible loss of function. Conservative management typically employs a period of time in an equinus cast with sequential ankle dorsiflexion in a functional orthosis. The optimal duration of immobilisation and rate of dorsiflexion is unknown. We aimed to quantify the change in Achilles tendon approximation achieved in common immobilisation techniques to assist the design of rehabilitation protocols. Twelve fresh-frozen cadaveric specimens had 2.5cm of Achilles tendon excised. The gap between the tendon ends were measured via windowed full equinus casts and compared with functional boots with successively removed heel wedges. The greatest tendon apposition was achieved with the equinus cast. Each wedge removed decreased the reapproximation by approximately 5mm. This paper supports the early use of maximal equinus casting in early management of acute Achilles tendon ruptures. Copyright © 2017 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  12. Peroneal tendon disorders.

    PubMed

    Davda, Kinner; Malhotra, Karan; O'Donnell, Paul; Singh, Dishan; Cullen, Nicholas

    2017-06-01

    Pathological abnormality of the peroneal tendons is an under-appreciated source of lateral hindfoot pain and dysfunction that can be difficult to distinguish from lateral ankle ligament injuries.Enclosed within the lateral compartment of the leg, the peroneal tendons are the primary evertors of the foot and function as lateral ankle stabilisers.Pathology of the tendons falls into three broad categories: tendinitis and tenosynovitis, tendon subluxation and dislocation, and tendon splits and tears. These can be associated with ankle instability, hindfoot deformity and anomalous anatomy such as a low lying peroneus brevis or peroneus quartus.A thorough clinical examination should include an assessment of foot type (cavus or planovalgus), palpation of the peronei in the retromalleolar groove on resisted ankle dorsiflexion and eversion as well as testing of lateral ankle ligaments.Imaging including radiographs, ultrasound and MRI will help determine the diagnosis. Treatment recommendations for these disorders are primarily based on case series and expert opinion.The aim of this review is to summarise the current understanding of the anatomy and diagnostic evaluation of the peroneal tendons, and to present both conservative and operative management options of peroneal tendon lesions. Cite this article: EFORT Open Rev 2017;2:281-292. DOI: 10.1302/2058-5241.2.160047.

  13. The effect of muscle excursion on muscle recovery after tendon repair in a neglected tendon injury: a study in rabbit soleus muscles.

    PubMed

    Jeon, Suk Ha; Chung, Moon Sang; Baek, Goo Hyun; Lee, Young Ho; Gong, Hyun Sik

    2011-01-01

    We attempted to determine whether muscle excursion observed during operation can be a prognostic indicator of muscle recovery after delayed tendon repair in a rabbit soleus model. Eighteen rabbits underwent tenotomy of the soleus muscles bilaterally and were divided into three groups according to the period from tenotomy to repair. The tendons of each group were repaired 2, 4, and 6 weeks after tenotomy. The excursion of each soleus muscle was measured at the time of tenotomy (baseline), at 2, 4, 6 weeks after tenotomy, and 8 weeks after tendon repair. The amount of muscle recovery after tendon repair in terms of muscle excursion independently depended on the timing of repair and on the muscle excursion observed during repair. The regression model predicted that the muscle excursion recovered on average by 0.6% as the muscle excursion at the time of repair increased by 1% after adjusting for the timing of repair. This study suggests that measuring the muscle excursion during tendon repair may help physicians estimate the potential of muscle recovery in cases of delayed tendon repair. Copyright © 2010 Orthopaedic Research Society.

  14. Moderate treadmill running exercise prior to tendon injury enhances wound healing in aging rats.

    PubMed

    Zhang, Jianying; Yuan, Ting; Wang, James H-C

    2016-02-23

    The effect of exercise on wound healing in aging tendon was tested using a rat moderate treadmill running (MTR) model. The rats were divided into an MTR group that ran on a treadmill for 4 weeks and a control group that remained in cages. After MTR, a window defect was created in the patellar tendons of all rats and wound healing was analyzed. We found that MTR accelerated wound healing by promoting quicker closure of wounds, improving the organization of collagen fibers, and decreasing senescent cells in the wounded tendons when compared to the cage control. MTR also lowered vascularization, increased the numbers of tendon stem/progenitor cells (TSCs) and TSC proliferation than the control. Besides, MTR significantly increased the expression of stem cell markers, OCT-4 and Nanog, and tenocyte genes, Collagen I, Collagen III and tenomodulin, and down-regulated PPAR-γ, Collagen II and Runx-2 (non-tenocyte genes). These findings indicated that moderate exercise enhances healing of injuries in aging tendons through TSC based mechanisms, through which exercise regulates beneficial effects in tendons. This study reveals that appropriate exercise may be used in clinics to enhance tendon healing in aging patients.

  15. Subscapularis slide correction of the shoulder internal rotation contracture after brachial plexus birth injury: technique and outcomes.

    PubMed

    Immerman, Igor; Valencia, Herbert; DiTaranto, Patricia; DelSole, Edward M; Glait, Sergio; Price, Andrew E; Grossman, John A I

    2013-03-01

    Internal rotation contracture is the most common shoulder deformity in patients with brachial plexus birth injury. The purpose of this investigation is to describe the indications, technique, and results of the subscapularis slide procedure. The technique involves the release of the subscapularis muscle origin off the scapula, with preservation of anterior shoulder structures. A standard postoperative protocol is used in all patients and includes a modified shoulder spica with the shoulder held in 60 degrees of external rotation and 30 degrees of abduction, aggressive occupational and physical therapy, and subsequent shoulder manipulation under anesthesia with botulinum toxin injections as needed. Seventy-one patients at 2 institutions treated with subscapularis slide between 1997 and 2010, with minimum follow-up of 39.2 months, were identified. Patients were divided into 5 groups based on the index procedure performed: subscapularis slide alone (group 1); subscapularis slide with a simultaneous microsurgical reconstruction (group 2); primary microsurgical brachial plexus reconstruction followed later by a subscapularis slide (group 3); primary microsurgical brachial plexus reconstruction followed later by a subscapularis slide combined with tendon transfers for shoulder external rotation (group 4); and subscapularis slide with simultaneous tendon transfers, with no prior brachial plexus surgery (group 5). Full passive external rotation equivalent to the contralateral side was achieved in the operating room in all cases. No cases resulted in anterior instability or internal rotation deficit. Internal rotation contracture of the shoulder after brachial plexus birth injury can be effectively managed with the technique of subscapularis slide.

  16. Three-dimensional analysis of the shoulder motion in patients with massive irreparable cuff tears after latissimus dorsi tendon transfer (LDT).

    PubMed

    Ippolito, Giorgio; Serrao, Mariano; Napoli, Francesco; Conte, Carmela; Miscusi, Massimo; Coppola, Gianluca; Pierelli, Francesco; Costanzo, Giuseppe; De Cupis, Vincenzo

    2016-10-01

    Latissimus dorsi tendon transfer (LDT) is a recent method for surgical treatment of massive, irreparable posterosuperior cuff tears (MIPCT). So far, there are no studies on the quantitative motion analysis of the shoulder and latissimus dorsi (LD) muscle activation after LDT. The changes in shoulder movements after LDT can be objectively assessed by the 3-D motion analysis. These changes may not be due to an increased activity of the LD muscle as external rotator. The shoulder kinematics of nine patients with MIPCT were recorded through a 3-D motion analysis system, before LTD (T0), and after 3 (T1) and 6 (T2) months post-LDT. Maximal shoulder flexion-extension, abduction-adduction, and horizontal abduction-adduction, and the internal and external circumduction of the shoulder joint were measured during upright standing posture. Surface EMG activity of the LD muscle was recorded during both internal rotation (IR) and external rotation (ER) tasks in three different postures. A significant increase of shoulder movements was observed at T2 compared with T0 for almost all motor tasks. A significant effect of LDT was also found on LD-IR/ER ratio in posture 1 at T2 compared with T0 and T1. No significant effects were found for the LD-IR/ER ratio in the other postures. Our study indicates that LDT is effective in shoulder motion recovery. Such improvement is not associated with a change in function of the LD muscle, which may be induced by a depression of the humeral head into the glenoid cavity instead.

  17. DELTOID FLAP for MANAGEMENT of MASSIVE IRREPARABLE ROTATOR CUFF TEARS: Case Series.

    PubMed

    Roukoz, Sami; Nabhane, Linda; Aidibi, Ali al-rida; Sebaaly, Amer

    2016-01-01

    Muscle transfer has been reported as a good surgical option to reconstruct the deficient rotator cuff. The purpose of this study is to report the outcome of deltoid muscle flap transfer to restore shoulder function in patients with massive irreparable rotator cuff tear. This is a retrospective descriptive case series. Included patients had a lesion of two or more tendons of the rotator cuff or lesion of one tendon of more than 5 cm in width and no lesion to the subscapularis. Evaluation was done using the Constant score, visual analog scale for satisfaction and quality of life. Twenty patients met the inclusion criteria. Three patients were lost to follow-up. The remaining (9 males and 8 females) had a mean follow-up period of 40.5 months. The mean age at surgery was 61.3 years. Thirty-five percent of patients were involved in heavy labor while the lesions affected the dominant side in 70% of the cases. Mean preoperative Constant score was 40.8 and increased to 78.8 (p < 0.05) with a difference of +38 points on the raw Constant score and an improvement rate of 64%. The greatest improvement involved essentially pain and quality of life (improvement rate of 82%) (p < 0.05). Eighty-nine percent of patients have good and excellent self-reported results. More than just a salvage procedure, deltoid muscle flap seems to be an adequate option in terms of appropriate pain relief, function recovery as well as patient satisfaction. Keywords: massive rotator cuff tears, deltoid muscle flap

  18. Functional management of Achilles tendon rupture: A viable option for non-operative management.

    PubMed

    Karkhanis, S; Mumtaz, H; Kurdy, N

    2010-06-01

    Functional management of the ruptured Achilles tendon can be effective using orthoses like the removable walker boot (Foam Walker Boot, Air Cast UK Limited, Lincolnshire, United Kingdom). We conducted this study to look at the outcome of our protocol using this orthosis. We retrospectively reviewed 107 non-operatively managed Achilles tendon ruptures over the last 5 years. Case notes were analyzed for demographics and immediate outcomes. Long term outcomes were assessed by a postal questionnaire using the Achilles Tendon Total Rupture Score (ATRS). Of the 107 tendons (male:female=71:36, mean age=50 years), 105 tendons (98%) healed with an average discharge time of 22 weeks. Six patients reported major complications and 6 reported minor complications. We received 56 questionnaires with a mean ATRS score of 21. Seventy-seven percent returned to pre-injury level of activity. Functional management of Achilles tendon rupture, under appropriate supervision, provides a viable option for non-operative management. Copyright 2009 European Foot and Ankle Society. Published by Elsevier Ltd. All rights reserved.

  19. Acute flexor tendon injury following midshaft radius and ulna fractures in a paediatric patient.

    PubMed

    Williams, James; Wharton, Rupert; Peev, Peter; Horwitz, Maxim

    2018-06-01

    Delayed rupture of the extensor and flexor tendons are recognised complications of distal radius fractures. However, acute flexor tendon rupture in the context of forearm fractures is rare. A twelve-year-old female sustained midshaft fractures of the radius and ulna. Intra-operatively the flexor pollicis longus (FPL) was found to be stripped from its musculotendinous junction at the level of the fracture fragment. The ruptured tendon was repaired using a modified Krackow technique at the time of fracture fixation. The repair was protected in plaster of Paris prior to referral to the paediatric hand clinic. The patient made a full recovery. Flexor tendon injury is a rare but potentially devastating consequence of acute forearm fractures. High energy trauma, significant volar angulation of the fracture fragment and clinical signs of flexor tendon injury should raise suspicion of this injury. A high index of suspicion in conjunction with repeat clinical examination of flexor tendon function should be performed before opting for closed management or intramedullary nailing in paediatric patients.

  20. Radial and ulnar bursae of the wrist: cadaveric investigation of regional anatomy with ultrasonographic-guided tenography and MR imaging.

    PubMed

    Aguiar, Rodrigo O C; Gasparetto, Emerson L; Escuissato, Dante L; Marchiori, Edson; Trudell, Debbie J; Haghighi, Parviz; Resnick, Donald

    2006-11-01

    To demonstrate the anatomy of the radial and ulnar bursae of the wrist using MR and US images. Ultrasonographic-guided tenography of the tendon sheath of flexor pollicis longus (FPL) and the common tendon sheath of the flexor digitorum of the fifth digit (FD5) of ten cadaveric hands was performed, followed by magnetic resonance imaging and gross anatomic correlation. Patterns of communication were observed between these tendon sheaths and the radial and ulnar bursae of the wrist. The tendon sheath of the FPL communicated with the radial bursa in 100% (10/10) of cases, and the tendon sheath of the FD5 communicated with the ulnar bursa in 80% (8/10). Communication of the radial and ulnar bursae was evident in 100% (10/10), and presented an "hourglass" configuration in the longitudinal plane. The ulnar and radial bursae often communicate. The radial bursa communicates with the FPL tendon sheath, and the ulnar bursa may communicate with the FD5 tendon sheath.

  1. Extracorporeal shock wave treatment for chronic rotator cuff tendonitis (shoulder pain).

    PubMed

    Ho, C

    2007-01-01

    (1) Electrohydraulic, electromagnetic, or piezoelectric devices are used to translate energy into acoustic waves during extracorporeal shock wave treatment (ESWT) for chronic rotator cuff tendonitis (shoulder pain). The acoustic waves may help to accelerate the healing process of chronic rotator cuff tendonitis via an unknown mechanism. (2) ESWT, which is performed as an outpatient procedure, is intended to alleviate the pain due to chronic rotator cuff tendonitis. (3) Limited evidence from a German study indicates that the cost of ESWT for rotator cuff tendonitis is one-fifth to one-seventh the cost of surgical treatment, with longer recovery time and time off work in the surgical treatment group accounting for about two-thirds of the overall cost. (4) The evidence reviewed for this bulletin supports the use of high-energy ESWT for chronic calcific rotator cuff tendonitis, but not for non-calcific rotator cuff tendonitis. High-quality RCTs with larger sample sizes are needed to provide stronger evidence.

  2. System and Method for Tensioning a Robotically Actuated Tendon

    NASA Technical Reports Server (NTRS)

    Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)

    2013-01-01

    A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.

  3. Torque Control of Underactuated Tendon-driven Robotic Fingers

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Wampler, Charles W. (Inventor); Abdallah, Muhammad E. (Inventor); Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor); Bridgwater, Lyndon (Inventor); Platt, Robert (Inventor)

    2013-01-01

    A robotic system includes a robot having a total number of degrees of freedom (DOF) equal to at least n, an underactuated tendon-driven finger driven by n tendons and n DOF, the finger having at least two joints, being characterized by an asymmetrical joint radius in one embodiment. A controller is in communication with the robot, and controls actuation of the tendon-driven finger using force control. Operating the finger with force control on the tendons, rather than position control, eliminates the unconstrained slack-space that would have otherwise existed. The controller may utilize the asymmetrical joint radii to independently command joint torques. A method of controlling the finger includes commanding either independent or parameterized joint torques to the controller to actuate the fingers via force control on the tendons.

  4. Endoscopic-assisted Repair of Neglected Rupture or Rerupture After Primary Repair of Extensor Hallucis Longus Tendon.

    PubMed

    Lui, Tun Hing; Chang, Joseph Jeremy; Maffulli, Nicola

    2016-03-01

    Rerupture of the extensor hallucis longus tendon after primary repair and neglected rupture of the tendon poses surgical challenges to orthopedic surgeons. Open exploration and repair of the tendon ends usually requires large incision and extensive dissection. This may induce scarring and adhesion around the repaired tendon. Endoscopic-assisted repair has the advantage of minimally invasive surgery including less soft tissue trauma and scar formation and better cosmetic result. The use of Krackow locking suture and preservation of the extensor retinacula allow early mobilization of the great toe.

  5. Tendon Contraction After Cyclic Elongation Is an Age-Dependent Phenomenon: In Vitro and In Vivo Comparisons.

    PubMed

    Lavagnino, Michael; Bedi, Asheesh; Walsh, Christopher P; Sibilsky Enselman, Elizabeth R; Sheibani-Rad, Shahin; Arnoczky, Steven P

    2014-06-01

    Tendons are viscoelastic tissues that deform (elongate) in response to cyclic loading. However, the ability of a tendon to recover this elongation is unknown. Tendon length significantly increases after in vivo or in vitro cyclic loading, and the ability to return to its original length through a cell-mediated contraction mechanism is an age-dependent phenomenon. Controlled laboratory study. In vitro, rat tail tendon fascicles (RTTfs) from Sprague-Dawley rats of 3 age groups (1, 3, and 12 months) underwent 2% cyclic strain at 0.17 Hz for 2 hours, and the percentages of elongation were determined. After loading, the RTTfs were suspended for 3 days under tissue culture conditions and photographed daily to determine the amount of length contraction. In vivo, healthy male participants (n = 29; age, 19-49 years) had lateral, single-legged weightbearing radiographs taken of the knee at 60° of flexion immediately before, immediately after, and 24 hours after completing eccentric quadriceps loading exercises on the dominant leg to fatigue. Measurements of patellar tendon length were taken from the radiographs, and the percentages of tendon elongation and subsequent contraction were calculated. In vitro, cyclic loading increased the length of all RTTfs, with specimens from younger (1 and 3 months) rats demonstrating significantly greater elongation than those from older (12 months) rats (P = .009). The RTTfs contracted to their original length significantly faster (P < .001) and in an age-dependent fashion, with younger animals contracting faster. In vivo, repetitive eccentric loading exercises significantly increased patellar tendon length (P < .001). Patellar tendon length decreased 24 hours after exercises (P < .001) but did not recover completely (P < .001). There was a weak but significant (R (2) = 0.203, P = .014) linear correlation between the amount of tendon contraction and age, with younger participants (<30 years) demonstrating significantly more contraction (P = .014) at 24 hours than older participants (>30 years). Cyclic tendon loading results in a significant increase in tendon elongation under both in vitro and in vivo conditions. Tendons in both conditions demonstrated an incomplete return to their original length after 24 hours, and the extent of this return was age dependent. The age- and time-dependent contraction of tendons, elongated after repetitive loading, could result in transient alterations in the mechanobiological environment of tendon cells. This, in turn, could induce the onset of catabolic changes associated with the pathogenesis of tendinopathy. These results suggest the importance of allowing time for contraction between bouts of repetitive exercise and may explain why age is a predisposing factor in tendinopathy. © 2014 The Author(s).

  6. The effect of platelet-rich fibrin matrix on rotator cuff tendon healing: a prospective, randomized clinical study.

    PubMed

    Rodeo, Scott A; Delos, Demetris; Williams, Riley J; Adler, Ronald S; Pearle, Andrew; Warren, Russell F

    2012-06-01

    There is a strong need for methods to improve the biological potential of rotator cuff tendon healing. Platelet-rich fibrin matrix (PRFM) allows delivery of autologous cytokines to healing tissue, and limited evidence suggests a positive effect of platelet-rich plasma on tendon biology. To evaluate the effect of platelet-rich fibrin matrix on rotator cuff tendon healing. Randomized controlled trial; Level of evidence, 2. Seventy-nine patients undergoing arthroscopic rotator cuff tendon repair were randomized intraoperatively to either receive PRFM at the tendon-bone interface (n = 40) or standard repair with no PRFM (n = 39). Standardized repair techniques were used for all patients. The postoperative rehabilitation protocol was the same in both groups. The primary outcome was tendon healing evaluated by ultrasound (intact vs defect at repair site) at 6 and 12 weeks. Power Doppler ultrasound was also used to evaluate vascularity in the peribursal, peritendinous, and musculotendinous and insertion site areas of the tendon and bone anchor site. Secondary outcomes included standardized shoulder outcome scales (American Shoulder and Elbow Surgeons [ASES] and L'Insalata) and strength measurements using a handheld dynamometer. Patients and the evaluator were blinded to treatment group. All patients were evaluated at minimum 1-year follow-up. A logistic regression model was used to predict outcome (healed vs defect) based on tear severity, repair type, treatment type (PRFM or control), and platelet count. Overall, there were no differences in tendon-to-bone healing between the PRFM and control groups. Complete tendon-to-bone healing (intact repair) was found in 24 of 36 (67%) in the PRFM group and 25 of 31 (81%) in the control group (P = .20). There were no significant differences in healing by ultrasound between 6 and 12 weeks. There were gradual increases in ASES and L'Insalata scores over time in both groups, but there were no differences in scores between the groups. We also found no difference in vascularity in the peribursal, peritendinous, and musculotendinous areas of the tendon between groups. There were no differences in strength between groups. Platelet count had no effect on healing. Logistic regression analysis demonstrated that PRFM was a significant predictor (P = .037) for a tendon defect at 12 weeks, with an odds ratio of 5.8. Platelet-rich fibrin matrix applied to the tendon-bone interface at the time of rotator cuff repair had no demonstrable effect on tendon healing, tendon vascularity, manual muscle strength, or clinical rating scales. In fact, the regression analysis suggests that PRFM may have a negative effect on healing. Further study is required to evaluate the role of PRFM in rotator cuff repair.

  7. Effect of the Interposition of Calcium Phosphate Materials on Tendon-Bone Healing During Repair of Chronic Rotator Cuff Tear.

    PubMed

    Zhao, Song; Peng, Lingjie; Xie, Guoming; Li, Dingfeng; Zhao, Jinzhong; Ning, Congqin

    2014-08-01

    The current nature of tendon-bone healing after rotator cuff (RC) repair is still the formation of granulation tissue at the tendon-bone interface rather than the formation of fibrocartilage, which is the crucial structure in native tendon insertion and can be observed after knee ligament reconstruction. The interposition of calcium phosphate materials has been found to be able to enhance tendon-bone healing in knee ligament reconstruction. However, whether the interposition of these kinds of materials can enhance tendon-bone healing or even change the current nature of tendon-bone healing after RC repair still needs to be explored. The interposition of calcium phosphate materials during RC repair would enhance tendon-bone healing or change its current nature of granulation tissue formation into a more favorable process. Controlled laboratory study. A total of 144 male Sprague-Dawley rats underwent unilateral detachment of the supraspinatus tendon, followed by delayed repair after 3 weeks. The animals were allocated into 1 of 3 groups: (1) repair alone, (2) repair with Ca5(PO4)2SiO4 (CPS) bioceramic interposition, or (3) repair with hydroxyapatite (HA) bioceramic interposition at the tendon-bone interface. Animals were sacrificed at 2, 4, or 8 weeks postoperatively, and microcomputed tomography (micro-CT) was used to quantify the new bone formation at the repair site. New fibrocartilage formation and collagen organization at the tendon-bone interface was evaluated by histomorphometric analysis. Biomechanical testing of the supraspinatus tendon-bone complex was performed. Statistical analysis was performed using 1-way analysis of variance. Significance was set at P < .05. The micro-CT analysis demonstrated remarkable osteogenic activity and osteoconductivity to promote new bone formation and ingrowth of CPS and HA bioceramic, with CPS bioceramic showing better results than HA. Histological observations indicated that CPS bioceramic had excellent biocompatibility and biodegradability. At early time points after the RC repair, CPS bioceramic significantly increased the area of fibrocartilage at the tendon-bone interface compared with the control and HA groups. Moreover, CPS and HA bioceramics had significantly improved collagen organization. Biomechanical tests indicated that the CPS and HA groups have greater ultimate load to failure and stiffness than the control group at 4 and 8 weeks, and the CPS specimens exhibited the maximum ultimate load to failure, stiffness, and stress of the healing enthesis. Both CPS and HA bioceramics aid in cell attachment and proliferation and accelerate new bone formation, and CPS bioceramic has a more prominent effect on tendon-to-bone healing. Local application of CPS and HA bioceramic at the tendon-bone interface shows promise in improving healing after rotator cuff tear repair. © 2014 The Author(s).

  8. Living nanofiber yarn-based woven biotextiles for tendon tissue engineering using cell tri-culture and mechanical stimulation.

    PubMed

    Wu, Shaohua; Wang, Ying; Streubel, Philipp N; Duan, Bin

    2017-10-15

    Non-woven nanofibrous scaffolds have been developed for tendon graft application by using electrospinning strategies. However, electrospun nanofibrous scaffolds face some obstacles and limitations, including suboptimal scaffold structure, weak tensile and suture-retention strengths, and compact structure for cell infiltration. In this work, a novel nanofibrous, woven biotextile, fabricated based on electrospun nanofiber yarns, was implemented as a tissue engineered tendon scaffold. Based on our modified electrospinning setup, polycaprolactone (PCL) nanofiber yarns were fabricated with reproducible quality, and were further processed into plain-weaving fabrics interlaced with polylactic acid (PLA) multifilaments. Nonwoven nanofibrous PCL meshes with random or aligned fiber structures were generated using typical electrospinning as comparative counterparts. The woven fabrics contained 3D aligned microstructures with significantly larger pore size and obviously enhanced tensile mechanical properties than their nonwoven counterparts. The biological results revealed that cell proliferation and infiltration, along with the expression of tendon-specific genes by human adipose derived mesenchymal stem cells (HADMSC) and human tenocytes (HT), were significantly enhanced on the woven fabrics compared with those on randomly-oriented or aligned nanofiber meshes. Co-cultures of HADMSC with HT or human umbilical vein endothelial cells (HUVEC) on woven fabrics significantly upregulated the functional expression of most tenogenic markers. HADMSC/HT/HUVEC tri-culture on woven fabrics showed the highest upregulation of most tendon-associated markers than all the other mono- and co-culture groups. Furthermore, we conditioned the tri-cultured constructs with dynamic conditioning and demonstrated that dynamic stretch promoted total collagen secretion and tenogenic differentiation. Our nanofiber yarn-based biotextiles have significant potential to be used as engineered scaffolds to synergize the multiple cell interaction and mechanical stimulation for promoting tendon regeneration. Tendon grafts are essential for the treatment of various tendon-related conditions due to the inherently poor healing capacity of native tendon tissues. In this study, we combined electrospun nanofiber yarns with textile manufacturing strategies to fabricate nanofibrous woven biotextiles with hierarchical features, aligned fibrous topography, and sufficient mechanical properties as tendon tissue engineered scaffolds. Comparing to traditional electrospun random or aligned meshes, our novel nanofibrous woven fabrics possess strong tensile and suture-retention strengths and larger pore size. We also demonstrated that the incorporation of tendon cells and vascular cells promoted the tenogenic differentiation of the engineered tendon constructs, especially under dynamic stretch. This study not only presents a novel tissue engineered tendon scaffold fabrication technique but also provides a useful strategy to promote tendon differentiation and regeneration. Copyright © 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  9. The effect of a collagen-elastin matrix on adhesion formation after flexor tendon repair in a rabbit model.

    PubMed

    Wichelhaus, Dagmar Alice; Beyersdoerfer, Sascha Tobias; Gierer, Philip; Vollmar, Brigitte; Mittlmeier, Th

    2016-07-01

    The outcome of flexor tendon surgery is negatively affected by the formation of adhesions which can occur during the healing of the tendon repair. In this experimental study, we sought to prevent adhesion formation by wrapping a collagen-elastin scaffold around the repaired tendon segment. In 28 rabbit hind legs, the flexor tendons of the third and fourth digits were cut and then repaired using a two-strand suture technique on the fourth digit and a four-strand technique on the third digit. Rabbits were randomly assigned to study and control groups. In the control group, the operation ended by closing the tendon sheath and the skin. In the study group, a collagen-elastin scaffold was wrapped around the repaired tendon segment in both digits. After 3 and 8 weeks, the tendons were harvested and processed histologically. The range of motion of the digits and the gap formation between the repaired tendon ends were measured. The formation of adhesions, infiltration of leucocytes and extracellular inflammatory response were quantified. At the time of tendon harvesting, all joints of the operated toes showed free range of motion. Four-strand core sutures lead to significantly less diastasis between the repaired tendon ends than two-strand core suture repairs. The collagen-elastin scaffold leads to greater gapping after 3 weeks compared to the controls treated without the matrix. Within the tendons treated with the collagen-elastin matrix, a significant boost of cellular and extracellular inflammation could be stated after 3 weeks which was reflected by a higher level of CAE positive cells and more formation of myofibroblasts in the αSMA stain in the study group. The inflammatory response subsided gradually and significantly until the late stage of the study. Both the cellular and extracellular inflammatory response was emphasized with the amount of material used for the repair. The use of a collagen-elastin matrix cannot be advised for the prevention of adhesion formation in flexor tendon surgery, because it enhances both cellular and extracellular inflammation. Four-strand core sutures lead to less gapping than two-strand core sutures, but at the same time, the cellular and extracellular inflammatory response is more pronounced.

  10. Cellular and molecular maturation in fetal and adult ovine calcaneal tendons

    PubMed Central

    Russo, Valentina; Mauro, Annunziata; Martelli, Alessandra; Di Giacinto, Oriana; Di Marcantonio, Lisa; Nardinocchi, Delia; Berardinelli, Paolo; Barboni, Barbara

    2015-01-01

    Processes of development during fetal life profoundly transform tendons from a plastic tissue into a highly differentiated structure, characterised by a very low ability to regenerate after injury in adulthood. Sheep tendon is frequently used as a translational model to investigate cell-based regenerative approaches. However, in contrast to other species, analytical and comparative baseline studies on the normal developmental maturation of sheep tendons from fetal through to adult life are not currently available. Thus, a detailed morphological and biochemical study was designed to characterise tissue maturation during mid- (2 months of pregnancy: 14 cm of length) and late fetal (4 months: 40 cm of length) life, through to adulthood. The results confirm that ovine tendon morphology undergoes profound transformations during this period. Endotenon was more developed in fetal tendons than in adult tissues, and its cell phenotype changed through tendon maturation. Indeed, groups of large rounded cells laying on smaller and more compacted ones expressing osteocalcin, vascular endothelial growth factor (VEGF) and nerve growth factor (NGF) were identified exclusively in fetal mid-stage tissues, and not in late fetal or adult tendons. VEGF, NGF as well as blood vessels and nerve fibers showed decreased expression during tendon development. Moreover, the endotenon of mid- and late fetuses contained identifiable cells that expressed several pluripotent stem cell markers [Telomerase Reverse Transcriptase (TERT), SRY Determining Region Y Box-2 (SOX2), Nanog Homeobox (NANOG) and Octamer Binding Transcription Factor-4A (OCT-4A)]. These cells were not identifiable in adult specimens. Ovine tendon development was also accompanied by morphological modifications to cell nuclei, and a progressive decrease in cellularity, proliferation index and expression of connexins 43 and 32. Tendon maturation was similarly characterised by modulation of several other gene expression profiles, including Collagen type I, Collagen type III, Scleraxis B, Tenomodulin, Trombospondin 4 and Osteocalcin. These gene profiles underwent a dramatic reduction in adult tissues. Transforming growth factor-1 expression (involved in collagen synthesis) underwent a similar decrease. In conclusion, these morphological studies carried out on sheep tendons at different stages of development and aging offer normal structural and molecular baseline data to allow accurate evaluation of data from subsequent interventional studies investigating tendon healing and regeneration in ovine experimental models. PMID:25546075

  11. Ruptured Tendons in Anabolic-Androgenic Steroid Users: A Cross-Sectional Cohort Study

    PubMed Central

    Kanayama, Gen; DeLuca, James; Meehan, William P.; Hudson, James I.; Isaacs, Stephanie; Baggish, Aaron; Weiner, Rory; Micheli, Lyle; Pope, Harrison G.

    2016-01-01

    Background Accumulating case reports have described tendon rupture in men using anabolic-androgenic steroids (AAS). However no controlled study, to our knowledge, has assessed history of tendon rupture in a large cohort of AAS users and comparison nonusers. Hypothesis We hypothesized that men reporting long-term AAS abuse would report an elevated lifetime incidence of tendon rupture as compared to non-AAS-using bodybuilders. Study Design Cross-sectional cohort study. Methods We obtained medical histories from 142 experienced male bodybuilders age 35–55, recruited in the course of two studies. Of these men, 88 reported at least two years of cumulative lifetime AAS use and 54 reported no history of AAS use. In men reporting a history of tendon rupture, we recorded circumstances of the injury, prodromal symptoms, concomitant drug or alcohol use, and details of current and lifetime AAS use if applicable. We also obtained surgical records for most participants. Results Nineteen (22%) of the AAS users, but only 3 (6%) of the nonusers reported at least one lifetime tendon rupture. The hazard ratio (95% confidence interval) for a first ruptured tendon in AAS users versus nonusers was 9.0 (2.5, 32.3); P <.001. Several men reported two or more independent lifetime tendon ruptures. Interestingly, upper body tendon ruptures occurred exclusively in the AAS group (15 [17%] of the AAS users versus 0 non-users; risk difference 0.17 (0.09, 0.25); P < 0.001 [hazard ratio not estimable]), whereas we found no significant difference between users and nonusers in risk for lower body ruptures (6 [7%] AAS users, 3 [6%] nonusers; hazard ratio 3.1 (0.7, 13.8), P = 0.13). Of 31 individual tendon ruptures that we assessed, only 6 (19%) occurred while weightlifting, with the majority occurring during other sports activities. Eight (26%) ruptures followed prodromal symptoms of nonspecific pain in the region. Virtually all ruptures were treated surgically with complete or near-complete ultimate restoration of function. Conclusions AAS abusers, as compared to otherwise similar bodybuilders, showed a markedly increased risk of tendon ruptures, particularly upper body tendon rupture. Clinical relevance Tendon rupture represents a major adverse consequence of AAS abuse and a substantial public health problem. PMID:26362436

  12. Ultrasonographic investigation of the Achilles tendon in elite badminton players using color Doppler.

    PubMed

    Boesen, Morten Ilum; Boesen, Anders; Koenig, Merete Juhl; Bliddal, Henning; Torp-Pedersen, Soren

    2006-12-01

    The most frequent injuries in badminton players are in the lower extremities, especially in the Achilles tendon. The game of badminton may be related to abnormal intratendinous flow in the Achilles tendon as detected by color Doppler ultrasound. To a certain extent, this blood flow might be physiological, especially when examined after match. Cohort study (prevalence); Level of evidence, 3. Seventy-two elite badminton players were interviewed regarding Achilles tendon pain (achillodynia) in the preceding 3 years. Color Doppler was used to examine the tendons of 64 players before their matches and 46 players after their matches. Intratendinous color Doppler flow was graded from 0 to 4. The Achilles tendon was divided into dominant (eg, right side for right-handed players and vice versa) and nondominant side and classified as midtendon, preinsertional, and calcaneal areas. Of 72 players, 26 had experienced achillodynia in 34 tendons, 18 on the dominant side and 16 on the nondominant side. In 62% of the players with achillodynia, the problems had begun slowly, and the median duration of symptoms was 4 months (range, 0-36 months). Thirty-five percent had ongoing pain in their tendons for a median duration of 12 months (range, 0-12 months). Achillodynia was not associated with the self-reported training load or with sex, age, weight, singles or doubles players, or racket side. Forty-six players were scanned before and after match. At baseline, color Doppler flow was present in the majority of players, and only 7 (16%) players had no color Doppler flow in either tendon. After match, all players had some color Doppler flow in 1 or both tendons. Achillodynia and color Doppler flow were related in the nondominant Achilles tendon (chi-square, P = .008). The grades of Doppler flow also increased significantly after match in the preinsertional area in both the nondominant (P = .0002) and dominant (P = .005) side tendons. A large proportion of the players had experienced achillodynia and habitually played with a degree of pain that demanded medication. The self-reported pain was associated with increased intratendinous color Doppler flow in the nondominant Achilles tendon. Doppler flow was found in most players before and in all players after the match and therefore may in part be a physiological response to activity.

  13. Effect of Age and Proteoglycan Deficiency on Collagen Fiber Re-Alignment and Mechanical Properties in Mouse Supraspinatus Tendon

    PubMed Central

    Connizzo, Brianne K.; Sarver, Joseph J.; Iozzo, Renato V.; Birk, David E.; Soslowsky, Louis J.

    2013-01-01

    Collagen fiber realignment is one mechanism by which tendon responds to load. Re-alignment is altered when the structure of tendon is altered, such as in the natural process of aging or with alterations of matrix proteins, such as proteoglycan expression. While changes in re-alignment and mechanical properties have been investigated recently during development, they have not been studied in (1) aged tendons, or (2) in the absence of key proteoglycans. Collagen fiber re-alignment and the corresponding mechanical properties are quantified throughout tensile mechanical testing in both the insertion site and the midsubstance of mouse supraspinatus tendons in wild type (WT), decorin-null (Dcn-/-), and biglycan-null (Bgn-/-) mice at three different ages (90 days, 300 days, and 570 days). Percent relaxation was significantly decreased with age in the WT and Dcn-/- tendons, but not in the Bgn-/- tendons. Changes with age were found in the linear modulus at the insertion site where the 300 day group was greater than the 90 day and 570 day group in the Bgn-/- tendons and the 90 day group was smaller than the 300 day and 570 day groups in the Dcn-/- tendons. However, no changes in modulus were found across age in WT tendons were found. The midsubstance fibers of the WT and Bgn-/- tendons were initially less aligned with increasing age. The re-alignment was significantly altered with age in the WT tendons, with older groups responding to load later in the mechanical test. This was also seen in the Dcn-/- midsubstance and the Bgn-/- insertion, but not in the other locations. Although some studies have found changes in the WT mechanical properties with age, this study did not support those findings. However, it did show fiber re-alignment changes at both locations with age, suggesting a breakdown of tendon′s ability to respond to load in later ages. In the proteoglycan-null tendons however, there were changes in the mechanical properties, accompanied only by location-dependent re-alignment changes, suggesting a site-specific role for these molecules in loading. Finally, changes in the mechanical properties did not occur in concert with changes in re-alignment, suggesting that typical mechanical property measurements alone are insufficient to describe how structural alterations affect tendon′s response to load. PMID:23445064

  14. Macroscopic Rotator Cuff Tendinopathy and Histopathology Do Not Predict Repair Outcomes of Rotator Cuff Tears.

    PubMed

    Sethi, Paul M; Sheth, Chirag D; Pauzenberger, Leo; McCarthy, Mary Beth R; Cote, Mark P; Soneson, Emma; Miller, Seth; Mazzocca, Augustus D

    2018-03-01

    Numerous studies have identified factors that may affect the chances of rotator cuff healing after surgery. Intraoperative tendon quality may be used to predict healing and to determine type of repair and/or consideration of augmentation. There are no data that correlate how gross tendon morphology and degree of tendinopathy affect patient outcome or postoperative tendon healing. Purpose/Hypothesis: The purposes of this study were to (1) compare the gross appearance of the tendon edge during arthroscopic rotator cuff repair with its histological degree of tendinopathy and (2) determine if gross appearance correlated with postoperative repair integrity. The hypothesis was that gross (macroscopic) tendon with normal thickness, no delamination, and elastic tissue before repair would have a correlation with low Bonar scores, higher postoperative American Shoulder and Elbow Surgeons (ASES) scores, and increased rates of postoperative tendon healing on ultrasound. Cross-sectional study; Level of evidence, 3. A total of 105 patients undergoing repair of medium-size (1-3 cm) full-thickness rotator cuff tears were enrolled in the study. Intraoperatively, the supraspinatus tendon was rated on thickness, fraying, and stiffness. Tendon tissue was recovered for histological analysis based on the Bonar scoring system. Postoperative ASES and ultrasound assessment of healing were obtained 1 year after repair. Correlation between gross appearance of the tendon and rotator cuff histology was determined. Of the 105 patients, 85 were followed the study to completion. The mean age of the patients was 61.6 years; Bonar score, 7.5; preoperative ASES score, 49; and postoperative ASES score, 86. Ninety-one percent of repairs were intact on ultrasound. Gross appearance of torn rotator cuff tendon tissue did not correlate with histological appearance. Neither histological (Bonar) score nor gross appearance correlated with multivariate analysis of ASES score, postoperative repair status, or demographic data. The degree of tendinopathy did not correlate with morphological appearance of the tendon. Neither of these parameters correlated with healing or patient outcome. This study suggests that the degree of tendinopathy, unlike muscle atrophy, may not be predictive of outcomes and that, on appearance, poor quality tendon has adequate healing capacity. Therefore, abnormal gross tendon appearance should not affect the repair effort or technique.

  15. Fetal derived embryonic-like stem cells improve healing in a large animal flexor tendonitis model

    PubMed Central

    2011-01-01

    Introduction Tendon injury is a common problem in athletes, with poor tissue regeneration and a high rate of re-injury. Stem cell therapy is an attractive treatment modality as it may induce tissue regeneration rather than tissue repair. Currently, there are no reports on the use of pluripotent cells in a large animal tendon model in vivo. We report the use of intra-lesional injection of male, fetal derived embryonic-like stem cells (fdESC) that express Oct-4, Nanog, SSEA4, Tra 1-60, Tra 1-81 and telomerase. Methods Tendon injury was induced using a collagenase gel-physical defect model in the mid-metacarpal region of the superficial digital flexor tendon (SDFT) of eight female adult Thoroughbred or Thoroughbred cross horses. Tendon lesions were treated one week later with intra-lesional injection of male derived fdESCs in media or media alone. Therapy was blinded and randomized. Serial ultrasound examinations were performed and final analysis at eight weeks included magnetic resonance imaging (MRI), biochemical assays (total DNA, glycosaminoglycan, collagen), gene expression (TNC, TNMD, SCX, COL1A1, COL3A1, COMP, DCN, MMP1, MMP3, MMP13, 18S) and histology. Differences between groups were assessed with Wilcoxon's rank sum test. Results Cell survival was demonstrated via the presence of the SRY gene in fdESC treated, but not control treated, female SDFT at the end of the trial. There were no differences in tendon matrix specific gene expression or total proteoglycan, collagen or DNA of tendon lesions between groups. Tissue architecture, tendon size, tendon lesion size, and tendon linear fiber pattern were significantly improved on histologic sections and ultrasound in the fdESC treated tendons. Conclusions Such profound structural effects lend further support to the notion that pluripotent stem cells can effect musculoskeletal regeneration, rather than repair, even without in vitro lineage specific differentiation. Further investigation into the safety of pluripotent cellular therapy as well as the mechanisms by which repair was improved seem warranted. PMID:21272343

  16. Ruptured Tendons in Anabolic-Androgenic Steroid Users: A Cross-Sectional Cohort Study.

    PubMed

    Kanayama, Gen; DeLuca, James; Meehan, William P; Hudson, James I; Isaacs, Stephanie; Baggish, Aaron; Weiner, Rory; Micheli, Lyle; Pope, Harrison G

    2015-11-01

    Accumulating case reports have described tendon rupture in men who use anabolic-androgenic steroids (AAS). However, no controlled study has assessed the history of tendon rupture in a large cohort of AAS users and comparison nonusers. Men reporting long-term AAS abuse would report an elevated lifetime incidence of tendon rupture compared with non-AAS-using bodybuilders. Cohort study; Level of evidence, 3. Medical histories were obtained from 142 experienced male bodybuilders aged 35 to 55 years recruited in the course of 2 studies. Of these men, 88 reported at least 2 years of cumulative lifetime AAS use, and 54 reported no history of AAS use. In men reporting a history of tendon rupture, the circumstances of the injury, prodromal symptoms, concomitant drug or alcohol use, and details of current and lifetime AAS use (if applicable) were recorded. Surgical records were obtained for most participants. Nineteen (22%) of the AAS users, but only 3 (6%) of the nonusers, reported at least 1 lifetime tendon rupture. The hazard ratio for a first ruptured tendon in AAS users versus nonusers was 9.0 (95% CI, 2.5-32.3; P < .001). Several men reported 2 or more independent lifetime tendon ruptures. Interestingly, upper-body tendon ruptures occurred exclusively in the AAS group (15 [17%] AAS users vs 0 nonusers; risk difference, 0.17 [95% CI, 0.09-0.25]; P < .001 [hazard ratio not estimable]), whereas there was no significant difference between users and nonusers in risk for lower-body ruptures (6 [7%] AAS users, 3 [6%] nonusers; hazard ratio, 3.1 [95% CI, 0.7-13.8]; P = .13). Of 31 individual tendon ruptures assessed, only 6 (19%) occurred while weightlifting, with the majority occurring during other sports activities. Eight (26%) ruptures followed prodromal symptoms of nonspecific pain in the region. Virtually all ruptures were treated surgically, with complete or near-complete ultimate restoration of function. AAS abusers, compared with otherwise similar bodybuilders, showed a markedly increased risk of tendon ruptures, particularly upper-body tendon rupture. © 2015 The Author(s).

  17. Isolation and characterization of 2 new human rotator cuff and long head of biceps tendon cells possessing stem cell-like self-renewal and multipotential differentiation capacity.

    PubMed

    Randelli, Pietro; Conforti, Erika; Piccoli, Marco; Ragone, Vincenza; Creo, Pasquale; Cirillo, Federica; Masuzzo, Pamela; Tringali, Cristina; Cabitza, Paolo; Tettamanti, Guido; Gagliano, Nicoletta; Anastasia, Luigi

    2013-07-01

    Stem cell therapy is expected to offer new alternatives to the traditional therapies of rotator cuff tendon tears. In particular, resident, tissue-specific, adult stem cells seem to have a higher regenerative potential for the tissue where they reside. Rotator cuff tendon and long head of the biceps tendon possess a resident stem cell population that, when properly stimulated, may be induced to proliferate, thus being potentially usable for tendon regeneration. Controlled laboratory study. Human tendon samples from the supraspinatus and the long head of the biceps were collected during rotator cuff tendon surgeries from 26 patients, washed with phosphate-buffered saline, cut into small pieces, and digested with collagenase type I and dispase. After centrifugation, cell pellets were resuspended in appropriate culture medium and plated. Adherent cells were cultured, phenotypically characterized, and then compared with human bone marrow stromal cells (BMSCs), as an example of adult stem cells, and human dermal fibroblasts, as normal proliferating cells with no stem cell properties. Two new adult stem cell populations from the supraspinatus and long head of the biceps tendons were isolated, characterized, and cultured in vitro. Cells showed adult stem cell characteristics (ie, they were self-renewing in vitro, clonogenic, and multipotent), as they could be induced to differentiate into different cell types--namely, osteoblasts, adipocytes, and skeletal muscle cells. This work demonstrated that human rotator cuff tendon stem cells and human long head of the biceps tendon stem cells can be isolated and possess a high regenerative potential, which is comparable with that of BMSCs. Moreover, comparative analysis of the sphingolipid pattern of isolated cells with that of BMSCs and fibroblasts revealed the possibility of using this class of lipids as new possible markers of the cell differentiation status. Rotator cuff and long head of the biceps tendons contain a stem cell population that can proliferate in vitro and could constitute an easily accessible stem cell source to develop novel therapies for tendon regeneration.

  18. Midportion achilles tendon microcirculation after intermittent combined cryotherapy and compression compared with cryotherapy alone: a randomized trial.

    PubMed

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2008-11-01

    The effect of combined cryotherapy/compression versus cryotherapy alone on the Achilles tendon is undetermined. Standardized combined cryotherapy/compression changes in midportion Achilles tendon microcirculation are superior to those with cryotherapy during intermittent application. Controlled laboratory study. Sixty volunteers were randomized for either combined cryotherapy/compression (Cryo/Cuff, DJO Inc, Vista, California: n = 30; 32 +/- 11 years) or cryotherapy alone (KoldBlue, TLP Industries, Kent, United Kingdom: n = 30; 33 +/- 12 years) with intermittent 3 x 10-minute application. Midportion Achilles tendon microcirculation was determined (O2C, LEA Medizintechnik, Giessen, Germany). Both Cryo/Cuff and KoldBlue significantly reduced superficial and deep capillary tendon blood flow within the first minute of application (43 +/- 46 arbitrary units [AU] vs 10 +/- 19 AU and 42 +/- 46 AU vs 12 +/- 10 AU; P = .0001) without a significant difference throughout all 3 applications. However, during recovery, superficial and deep capillary blood flow was reestablished significantly faster using Cryo/Cuff (P = .023). Tendon oxygen saturation was reduced in both groups significantly (3 minutes Cryo/Cuff: 36% +/- 20% vs 16% +/- 15%; KoldBlue: 42% +/- 19% vs 28% +/- 20%; P < .05) with significantly stronger effects using Cryo/Cuff (P = .014). Cryo/Cuff led to significantly higher tendon oxygenation (Cryo/Cuff: 62% +/- 28% vs baseline 36% +/- 20%; P = .0001) in superficial and deep tissue (Cryo/Cuff: 73% +/- 14% vs baseline 65% +/- 17%; P = .0001) compared with KoldBlue during all recoveries. Postcapillary venous filling pressures were significantly reduced in both groups during application; however, Cryo/Cuff led to significantly, but marginally, lower pressures (Cryo/Cuff: 41 +/- 7 AU vs baseline 51 +/- 13 AU; P = .0001 and KoldBlue: 46 +/- 7 AU vs baseline 56 +/- 11 AU; P = .026 for Cryo/Cuff vs KoldBlue). Increased tendon oxygenation is achieved as tendon preconditioning by combined cryotherapy and compression with significantly increased tendon oxygen saturation during recovery in contrast to cryotherapy alone. Both regimens lead to a significant amelioration of tendinous venous outflow. Combined cryotherapy and compression is superior to cryotherapy alone regarding the Achilles tendon microcirculation. Further studies in tendinopathy and tendon rehabilitation are warranted to elucidate its value regarding functional issues.

  19. Assessment of Postoperative Tendon Quality in Patients With Achilles Tendon Rupture Using Diffusion Tensor Imaging and Tendon Fiber Tracking.

    PubMed

    Sarman, Hakan; Atmaca, Halil; Cakir, Ozgur; Muezzinoglu, Umit Sefa; Anik, Yonca; Memisoglu, Kaya; Baran, Tuncay; Isik, Cengiz

    2015-01-01

    Although pre- and postoperative imaging of Achilles tendon rupture (ATR) has been well documented, radiographic evaluations of postoperative intratendinous healing and microstructure are still lacking. Diffusion tensor imaging (DTI) is an innovative technique that offers a noninvasive method for describing the microstructure characteristics and organization of tissues. DTI was used in the present study for quantitative assessment of fiber continuity postoperatively in patients with acute ATR. The data from 16 patients with ATR from 2005 to 2012 were retrospectively analyzed. The microstructure of ART was evaluated using tendon fiber tracking, tendon continuity, fractional anisotropy, and apparent diffusion coefficient values by way of DTI. The distal and proximal portions were measured separately in both the ruptured and the healthy extremities of each patient. The mean patient age was 41.56 ± 8.49 (range 26 to 56) years. The median duration of follow-up was 21 (range 6 to 80) months. The tendon fractional anisotropy values of the ruptured Achilles tendon were significantly lower statistically than those of the normal side (p = .001). However, none of the differences between the 2 groups with respect to the distal and proximal apparent diffusion coefficient were statistically significant (p = .358 and p = .899, respectively). In addition, the fractional anisotropy and apparent diffusion coefficient measurements were not significantly different in the proximal and distal regions of the ruptured tendons compared with the healthy tendons. The present study used DTI and fiber tracking to demonstrate the radiologic properties of postoperative Achilles tendons with respect to trajectory and tendinous fiber continuity. Quantifying DTI and fiber tractography offers an innovative and effective tool that might be able to detect microstructural abnormalities not appreciable using conventional radiologic techniques. Copyright © 2015 American College of Foot and Ankle Surgeons. Published by Elsevier Inc. All rights reserved.

  20. High-resolution study of the 3D collagen fibrillary matrix of Achilles tendons without tissue labelling and dehydrating.

    PubMed

    Wu, Jian-Ping; Swift, Benjamin John; Becker, Thomas; Squelch, Andrew; Wang, Allan; Zheng, Yong-Chang; Zhao, Xuelin; Xu, Jiake; Xue, Wei; Zheng, Minghao; Lloyd, David; Kirk, Thomas Brett

    2017-06-01

    Knowledge of the collagen structure of an Achilles tendon is critical to comprehend the physiology, biomechanics, homeostasis and remodelling of the tissue. Despite intensive studies, there are still uncertainties regarding the microstructure. The majority of studies have examined the longitudinally arranged collagen fibrils as they are primarily attributed to the principal tensile strength of the tendon. Few studies have considered the structural integrity of the entire three-dimensional (3D) collagen meshwork, and how the longitudinal collagen fibrils are integrated as a strong unit in a 3D domain to provide the tendons with the essential tensile properties. Using second harmonic generation imaging, a 3D imaging technique was developed and used to study the 3D collagen matrix in the midportion of Achilles tendons without tissue labelling and dehydration. Therefore, the 3D collagen structure is presented in a condition closely representative of the in vivo status. Atomic force microscopy studies have confirmed that second harmonic generation reveals the internal collagen matrix of tendons in 3D at a fibril level. Achilles tendons primarily contain longitudinal collagen fibrils that braid spatially into a dense rope-like collagen meshwork and are encapsulated or wound tightly by the oblique collagen fibrils emanating from the epitenon region. The arrangement of the collagen fibrils provides the longitudinal fibrils with essential structural integrity and endows the tendon with the unique mechanical function for withstanding tensile stresses. A novel 3D microscopic method has been developed to examine the 3D collagen microstructure of tendons without tissue dehydrating and labelling. The study also provides new knowledge about the collagen microstructure in an Achilles tendon, which enables understanding of the function of the tissue. The knowledge may be important for applying surgical and tissue engineering techniques to tendon reconstruction. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  1. Regional strain variations in the human patellar tendon.

    PubMed

    Pearson, Stephen J; Ritchings, Tim; Mohamed, Azlan S A

    2014-07-01

    Characteristics of localized tendon strain in vivo are largely unknown. The present study examines local tendon strain between the deep, middle, and surface structures at the proximal and distal aspects of the patellar tendon during ramped isometric contractions. Male subjects (age 28.0 ± 6.3 yr) were examined for patellar tendon excursion (anterior, midsection, and posterior) during ramped isometric voluntary contractions using real-time B-mode ultrasonography and dynamometry. Regional tendon excursion measurements were compared using an automated pixel tracking method. Strain was determined from the tendon delta length normalized to initial/resting segment length. Strain increased from 10% to 100% of force for all regions. Significantly greater mean strain was seen for the anterior proximal region compared to the posterior and mid layer of the tendon (7.5% ± 1.1% vs 3.7% ± 0.5% vs 5.5% ± 1.0%; P < 0.05). Similarly, the distal posterior region showed greater mean strain compared to the mid and anterior regions (7.9% ± 0.6% vs 5.0% ± 0.6% vs 5.4% ± 0.6%; P < 0.05). Relative changes in strain differences from 50% to 100% of force for the proximal region were greatest for the anterior to midline regions (4.6% ± 0.6% and 5.6% ± 0.6%, respectively) and those for the distal region were also greatest for the anterior to midline regions (4.4% ± 0.2% and 5.3% ± 0.2%, respectively). The largest mean strain for the proximal region was at the anterior layer (7.5% ± 1.1%) and that for the distal tendon region was at the posterior layer (7.9% ± 0.9%). This study shows significant regional differences in strain during ramped isometric contractions for the patellar tendon. Lower proximal strains in the posterior tendon compared to the anterior region may be associated with the suggestion of "stress shielding" as an etiological factor in insertional tendinopathy.

  2. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers

    PubMed Central

    Jiang, Tianyong; Song, Gangbing

    2017-01-01

    With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors’ previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct. PMID:28961173

  3. Finite Element Analysis of Grouting Compactness Monitoring in a Post-Tensioning Tendon Duct Using Piezoceramic Transducers.

    PubMed

    Jiang, Tianyong; Zheng, Junbo; Huo, Linsheng; Song, Gangbing

    2017-09-29

    With the development of the post-tensioning technique, prestressed concrete structures have been widely used in civil engineering. To ensure the long-term effectiveness of the prestressed tendon, the grouting quality of the tendon duct is one of the important factors. However, it is still a challenge to monitor the grouting quality of post-tensioning tendon ducts, due to the invisibility of the grouting. The authors' previous work proposed a real-time method that employed a stress wave-based active sensing approach with piezoceramic transducers to monitor the grouting compactness of a Post-Tensioning Tendon Duct (PTTD). To further understand the piezoceramic induced stress wave propagation in the PTTD with different grouting levels, this paper develops a two-dimensional finite element model for monitoring the grouting compactness of the tendon duct with a piezoceramic transducer. A smart aggregate (SA) developed to utilize one Lead Zirconate Titanate (PZT) transducer with marble protection is installed in the center location of the tendon duct as an actuator. Two PZT patches are bonded on the bottom and top surface of the tendon duct as the sensors. The analysis results show that the finite element analysis results are in good agreement with the experimental results, which demonstrates that the finite element analysis is feasible and reliable. For the top half of the specimen, not much stress wave could be detected before the full grouting level, except for negligible signals that may propagate through the walls of the tendon duct. When the tendon duct grouting is at 100%, the stress wave propagates to the top of the specimen, and the displacements are symmetric in both left-right and top-bottom directions before the stress waves reach the boundary. The proposed two-dimensional finite element model has the potential to be implemented to simulate the stress wave propagation principle for monitoring grouting compaction of the post-tensioning tendon duct.

  4. Eccentric Training for Tendon Healing After Acute Lesion: A Rat Model.

    PubMed

    Kaux, Jean-François; Libertiaux, Vincent; Leprince, Pierre; Fillet, Marianne; Denoel, Vincent; Wyss, Clémence; Lecut, Christelle; Gothot, André; Le Goff, Caroline; Croisier, Jean-Louis; Crielaard, Jean-Michel; Drion, Pierre

    2017-05-01

    The tendon is a dynamic entity that remodels permanently. Platelet-rich plasma (PRP) injection has been shown to have a beneficial effect on tendon healing after lesion in rats. Furthermore, eccentric exercise seems to improve the mechanical quality of the tendon. A combination of PRP injection and eccentric training might be more effective than either treatment alone. Controlled laboratory study. Adult male rats were anesthetized, an incision was performed in the middle of their left patellar tendon and an injection of physiological fluid (PF) or homologous PRP was randomly made at the lesion level. The rats were then divided into 2 groups: the eccentric group, undergoing eccentric training 3 times a week, and the untrained group, without any training. Thus, 4 groups were compared. After 5 weeks, the tendons were removed and their ultimate tensile strength and energy were measured. Tendons were frozen for proteomic analyses when all biomechanical tests were completed. Statistical analysis was performed with linear mixed effect models. No significant difference was found between the treatments using PF injection or PRP injection alone. However, the value of the ultimate tensile force at rupture was increased by 4.5 N (108% of control, P = .006) when eccentric training was performed. An intragroup analysis revealed that eccentric training significantly improved the ultimate force values for the PRP group. Proteomic analysis revealed that eccentric training led to an increase in abundance of several cytoskeletal proteins in the PF group, while a decrease in abundance of enzymes of the glycolytic pathway occurred in the PRP-treated groups, indicating that this treatment might redirect the exercise-driven metabolic plasticity of the tendon. Eccentric training altered the metabolic plasticity of tendon and led to an improvement of injured tendon resistance regardless of the treatment injected (PF or PRP). This study demonstrates the necessity of eccentric rehabilitation and training in cases of tendon lesion regardless of the treatment carried out.

  5. Effect of Achilles tendon loading on plantar fascia tension in the standing foot.

    PubMed

    Cheung, Jason Tak-Man; Zhang, Ming; An, Kai-Nan

    2006-02-01

    The plantar fascia, which is one of the major arch-supporting structures of the human foot, sustains high tensions during weight-bearing. A positive correlation between Achilles tendon loading and plantar fascia tension has been reported. Excessive stretching and tightness of the Achilles tendon are thought to be the risk factors of plantar fasciitis but their biomechanical effects on the plantar fascia have not been fully addressed. A three-dimensional finite element model of the human foot and ankle, incorporating geometrical and material nonlinearity, was employed to investigate the loading response of the plantar fascia in the standing foot with different magnitudes of Achilles tendon loading. With the total ground reaction forces of one foot maintained at 350 N to represent half body weight, an increase in Achilles tendon load from (0-700 N) resulted in a general increase in total force and peak plantar pressure at the forefoot of up to about 250%. There was a lateral and anterior shift of the centre of pressure and a reduction in the arch height with an increasing Achilles tendon load as a result of the plantar flexion moment on the calcaneus. From the finite element predictions of simulated balanced standing, Achilles tendon forces of 75% of the total weight on the foot (350 N) were found to provide the closest match of the measured centre of pressure of the subject during balanced standing. Both the weight on the foot and Achilles tendon loading resulted in an increase in tension of the plantar fascia with the latter showing a two-times larger straining effect. Increasing tension on the Achilles tendon is coupled with an increasing strain on the plantar fascia. Overstretching of the Achilles tendon resulting from intense muscle contraction and passive stretching of tight Achilles tendon are plausible mechanical factors for overstraining of the plantar fascia.

  6. Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3.

    PubMed

    Kapacee, Zoher; Yeung, Ching-Yan Chloé; Lu, Yinhui; Crabtree, David; Holmes, David F; Kadler, Karl E

    2010-10-01

    Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days. Copyright © 2010 International Society of Matrix Biology. Published by Elsevier B.V. All rights reserved.

  7. Intermittent KoldBlue cryotherapy of 3x10 min changes mid-portion Achilles tendon microcirculation.

    PubMed

    Knobloch, Karsten; Grasemann, Ruth; Spies, Marcus; Vogt, Peter M

    2007-06-01

    Neovascularisation and microcirculatory changes have been reported in Achilles tendinopathy. Cryotherapy and compression, as part of a rest, ice, compression and elevation regimen, are shown to decrease pain and improve function. However, the microcirculatory changes following a given dosage of cryotherapy on mid-portion Achilles tendon remain unclear. Prospective clinical cohort study, level of evidence 2. 30 people (12 males, 33 (SD 12) years, body mass index 25.6 (5.3) kg/m2) were included in the cohort. 3x10 min KoldBlue ankle-cooling bandages were applied and microcirculation of Achilles tendon mid-portion was real-time and continuously assessed using a laser-Doppler-spectrophotometry system (O2C, Germany). Superficial capillary blood flow was reduced from 42 to 6, 5 and 3 relative units (rU) in the first, second and third cryotherapy periods, respectively (-65%, p = 0.001), with no significant capillary hyperaemia. Deep capillary tendon blood flow was reduced from 180 to 82, 53 and 52 rU (-71%, p = 0.001) within 6-9 min of application without hyperaemia. Superficial tendon oxygen saturation dropped significantly from 43% to 26%, 18% and 11% (p = 0.001) after repetitive cryotherapy, with persisting increase of tendon oxygenation during rewarming (51%, 49% and 54%, p = 0.077) up to 27% of the baseline level. At 8 mm tendon depth, cryotherapy preserved local oxygenation. Relative postcapillary venous tendon filling pressures were favourably reduced from 41 (11) to 31, 28 and 26 rU (-36%, p = 0.001) superficially and from 56 (11) to 45, 46 and 48 rU (-18%, p = 0.001) in deep capillary blood flow during cryotherapy, facilitating capillary venous clearance. Intermittent cryotherapy of 3x10 min significantly decreases local Achilles tendon mid-portion capillary blood flow by 71%. Within 2 min of rewarming, tendon oxygen saturation is re-established following cryotherapy. Postcapillary venous filling pressures are reduced during cryotherapy, favouring capillary venous outflow of the healthy Achilles tendon.

  8. Descriptive analysis of retirement of Thoroughbred racehorses due to tendon injuries at the Hong Kong Jockey Club (1992-2004).

    PubMed

    Lam, K H; Parkin, T D H; Riggs, C M; Morgan, K L

    2007-03-01

    This study was part of a programme to optimise the longevity and maximise the health and welfare of the Thoroughbred racehorses in Hong Kong. Injuries to the superficial digital flexor (SDF) tendon are the most common veterinary reason for premature retirement in this population. To describe the frequency and pattern of retirements associated with SDF tendon injuries in Thoroughbred racehorses and to compare the characteristics of these horses with those that retired for other reasons. A retrospective analysis of retirement records documented in the Hong Kong Jockey Club clinical database between 1992 and 2004 was conducted. As this is complete census data, no statistical inference to the population is necessary. The mean annual cumulative incidence of retirements due to tendon injury was 3.2% accounting for 14% of all retirements. The risk of tendon injury increased over the 12 year period from 23-4.2%. The racing career, number of starts and earnings of horses retired with tendon injuries were reduced by 25.6, 41.2 and 53.3%, respectively. Thirteen percent of these horses never raced in Hong Kong. A greater proportion of 3- and 4-year-olds and entire males were retired because of tendon injuries. Ninety-seven percent of injuries affected the forelimb, the right more frequently than the left. Only 19.7% of retired horses that had received ultrasound examination for SDF tendon injury retired for this reason. This study provides population based data on the frequency, career and economic losses associated with tendon injury induced retirement. This descriptive study has provided a useful resource for further case-control studies to investigate risk factors for retirement from racing due to tendon injury. This is the first step toward the development of management tools to reduce the incidence of tendon injury related retirement in Hong Kong.

  9. Surgical repair of chronic patellar tendon rupture in total knee replacement with ipsilateral hamstring tendons.

    PubMed

    Spoliti, Marco; Giai Via, Alessio; Padulo, Johnny; Oliva, Francesco; Del Buono, Angelo; Maffulli, Nicola

    2016-10-01

    Patellar tendon rupture is a serious complication of total knee arthroplasty (TKA). Its reconstruction in patients with chronic ruptures is technically demanding. This article reports the results of surgical reconstruction of neglected patellar tendon rupture in TKA using autologous hamstring tendons. Nine TKA patients (six women and three men) (mean age at index surgery 68 years) with chronic patellar tendon tears underwent reconstruction with ipsilateral hamstrings tendon, leaving the distal insertion in situ. The clinical diagnosis was supported by imaging (anterior-posterior and 30° flexion lateral radiographs). Insall-Salvati index, range of motion, and leg extension test were recorded preoperatively and at last follow-up. The modified Cincinnati rating system and the Kujala score were administered. The patients sustained the patellar tendon tear an average of 8 weeks before the procedure. At final follow-up of 4 years (range 2-8 years), the median of extension lag was 5° (range 0°-15°; DS = 5). The median of post-operative Insall-Salvati index was 1.4 (range 1.3-1.8; SD = 0.15; p = 0.002) compared to the preoperative index of 1.7 (range 1.5-2.2; SD = 0.23). The mean modified Cincinnati and Kujala scores significantly increased compared with the preoperative ones (p < 0.01). At final follow-up, all patients were able to walk without brace or aids, and they were satisfied with the procedure. Based on our retrospective study of nine patients, reconstruction of neglected patellar tendon rupture in TKA with autologous hamstring tendons is feasible and safe, and provides good functional recovery. Case series, Level IV.

  10. Use of fluroquinolone and risk of Achilles tendon rupture: a population-based cohort study.

    PubMed

    Sode, Jacob; Obel, Niels; Hallas, Jesper; Lassen, Annmarie

    2007-05-01

    Several case-control studies have reported that the use of fluoroquinolone increases the risk of rupture of the Achilles tendon. Our aim was to estimate this risk by means of a population-based cohort approach. Data on Achilles tendon ruptures and fluoroquinolone use were retrieved from three population-based databases that include information on residents of Funen County (population: 470,000) in primary and secondary care during the period 1991-1999. A study cohort of all 28,262 first-time users of fluoroquinolone and all incident cases of Achilles tendon ruptures were identified. The incidence rate of Achilles tendon ruptures among users and non-users of fluoroquinolones and the standardised incidence rate ratio associating fluoroquinolon use with Achilles tendon rupture were the main outcome measures. Between 1991 and 2002 the incidence of Achilles tendon rupture increased from 22.1 to 32.6/100,000 person-years. Between 1991 and 1999 the incidence of fluoroquinolone users was 722/100,000 person-years, with no apparent trend over time. Within 90 days of their first use of fluoroquinolone, five individuals had a rupture of the Achilles tendon; the expected number was 1.6, yielding an age- and sex-standardised incidence ratio of 3.1 [(95% confidence interval (95%CI): 1.0-7.3). The 90-day cumulative incidence of Achilles tendon ruptures among fluoroquinolone users was 17.7/100,000 (95%CI: 5.7-41.3), which is an increase of 12.0/100,000 (95%CI: 0.0-35.6) compared to the background population. Fluoroquinolone use triples the risk of Achilles tendon rupture, but the incidence among users is low.

  11. Gap junction protein expression and cellularity: comparison of immature and adult equine digital tendons

    PubMed Central

    Stanley, Rachael L; Fleck, Roland A; Becker, David L; Goodship, Allen E; Ralphs, Jim R; Patterson-Kane, Janet C

    2007-01-01

    Injury to the energy-storing superficial digital flexor tendon is common in equine athletes and is age-related. Tenocytes in the superficial digital flexor tendon of adult horses appear to have limited ability to respond adaptively to exercise or prevent the accumulation of strain-induced microdamage. It has been suggested that conditioning exercise should be introduced during the growth period, when tenocytes may be more responsive to increased quantities or intensities of mechanical strain. Tenocytes are linked into networks by gap junctions that allow coordination of synthetic activity and facilitate strain-induced collagen synthesis. We hypothesised that there are reductions in cellular expression of the gap junction proteins connexin (Cx) 43 and 32 during maturation and ageing of the superficial digital flexor tendon that do not occur in the non-injury-prone common digital extensor tendon. Cryosections from the superficial digital flexor tendon and common digital extensor tendon of 5 fetuses, 5 foals (1–6 months), 5 young adults (2–7 years) and 5 old horses (18–33 years) were immunofluorescently labelled and quantitative confocal laser microscopy was performed. Expression of Cx43 and Cx32 protein per tenocyte was significantly higher in the fetal group compared with all other age groups in both tendons. The density of tenocytes was found to be highest in immature tissue. Higher levels of cellularity and connexin protein expression in immature tendons are likely to relate to requirements for tissue remodelling and growth. However, if further studies demonstrate that this correlates with greater gap junctional communication efficiency and synthetic responsiveness to mechanical strain in immature compared with adult tendons, it could support the concept of early introduction of controlled exercise as a means of increasing resistance to later injury. PMID:17848160

  12. Tendon length and joint flexibility are related to running economy.

    PubMed

    Hunter, Gary R; Katsoulis, Konstantina; McCarthy, John P; Ogard, William K; Bamman, Marcas M; Wood, David S; Den Hollander, Jan A; Blaudeau, Tamilane E; Newcomer, Bradley R

    2011-08-01

    The purpose of study was to determine whether quadriceps/patella and Achilles tendon length and flexibility of the knee extensors and plantar flexors are related to walking and running economy. Twenty-one male distance runners were subjects. Quadriceps/patella and Achilles tendon length were measured by magnetic resonance imaging; body composition was measured DXA; oxygen uptake at rest while seated, walking (3 mph), and running (6 and 7 mph) were measured by indirect calorimetry; knee and ankle joint flexibility were measured by goniometry; and leg lengths were measured by anthropometry while seated. Correlations were used to identify relationships between variables of interest. Net VO2 (exercise VO2 - rest VO2) for walking (NVOWK) and running at 6 and 7 mph (NVO6 and NVO7, respectively) was significantly related to Achilles tendon length (r varying from -0.40 to -0.51, P all < 0.04). Achilles tendon cross section was not related to walking or running economy. Quadriceps/patella tendon length was significantly related to NVO7 (r = -0.43, P = 0.03) and approached significance for NVO6 (r = -0.36, P = 0.06). Flexibility of the plantar flexors was related to NVO7 (+0.38, P = 0.05). Multiple regression showed that Achilles tendon length was independently related to NVO6 and NVO7 (partial r varying from -0.53 to -0.64, all P < 0.02) independent of lower leg length, upper leg length, quadriceps/patella tendon length, knee extension flexibility, or plantarflexion flexibility. These data support the premise that longer lower limb tendons (especially Achilles tendon) and less flexible lower limb joints are associated with improved running economy.

  13. Imbalances in the Development of Muscle and Tendon as Risk Factor for Tendinopathies in Youth Athletes: A Review of Current Evidence and Concepts of Prevention

    PubMed Central

    Mersmann, Falk; Bohm, Sebastian; Arampatzis, Adamantios

    2017-01-01

    Tendons feature the crucial role to transmit the forces exerted by the muscles to the skeleton. Thus, an increase of the force generating capacity of a muscle needs to go in line with a corresponding modulation of the mechanical properties of the associated tendon to avoid potential harm to the integrity of the tendinous tissue. However, as summarized in the present narrative review, muscle and tendon differ with regard to both the time course of adaptation to mechanical loading as well as the responsiveness to certain types of mechanical stimulation. Plyometric loading, for example, seems to be a more potent stimulus for muscle compared to tendon adaptation. In growing athletes, the increased levels of circulating sex hormones might additionally augment an imbalanced development of muscle strength and tendon mechanical properties, which could potentially relate to the increasing incidence of tendon overload injuries that has been indicated for adolescence. In fact, increased tendon stress and strain due to a non-uniform musculotendinous development has been observed recently in adolescent volleyball athletes, a high-risk group for tendinopathy. These findings highlight the importance to deepen the current understanding of the interaction of loading and maturation and demonstrate the need for the development of preventive strategies. Therefore, this review concludes with an evidence-based concept for a specific loading program for increasing tendon stiffness, which could be implemented in the training regimen of young athletes at risk for tendinopathy. This program incorporates five sets of four contractions with an intensity of 85–90% of the isometric voluntary maximum and a movement/contraction duration that provides 3 s of high magnitude tendon strain. PMID:29249987

  14. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    PubMed Central

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-01-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle–tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-β-1 (TGF-β-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague–Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7–9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-β-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-β-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-β-1 in loading-induced collagen synthesis in the muscle–tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus. PMID:17540706

  15. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    PubMed

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  16. The histology of tendon attachments to bone in man.

    PubMed Central

    Benjamin, M; Evans, E J; Copp, L

    1986-01-01

    Based on a parallel study of a wide range of human tendons from embalmed dissecting room subjects and from a study of dried bones, an explanation is offered for the well known similarity in gross appearance between the markings left by certain tendons (e.g. those of the rotator cuff) and by articular surfaces on dried bones. Epiphyseal tendons leave markings on bones that look like those left by articular surfaces. These tendons have a prominent zone of fibrocartilage at their attachment site and the deepest part of this is calcified, just as the deepest part of articular hyaline cartilage is calcified. After maceration of the soft tissues, the calcified (fibro) cartilage is left attached to the bone at articular surfaces and at the sites of tendon attachment. In all cases, the tissues separate at the basophilic tidemark between the calcified and uncalcified regions. This tidemark is smooth where there is much overlying uncalcified (fibro) cartilage and it is the smoothness that gives the typical appearance of the dried bone. Blood vessels do not generally traverse the tendon fibrocartilage plugs. Hence the areas are devoid of vascular foramina. The functional significance of tendon fibrocartilage is discussed with particular reference to supraspinatus. It is suggested that the uncalcified fibrocartilage ensures that the tendon fibres do not bend, splay out or become compressed at a hard tissue interface, and are thereby offered some protection from wear and tear. It is also suggested that the fibrocartilage plug of supraspinatus prevents the tendon from rubbing on the head of the humerus. Images Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 Fig. 6 Fig. 7 PMID:3693113

  17. Exposure of a tendon extracellular matrix to synovial fluid triggers endogenous and engrafted cell death: A mechanism for failed healing of intrathecal tendon injuries.

    PubMed

    Garvican, Elaine R; Salavati, Mazdak; Smith, Roger K W; Dudhia, Jayesh

    2017-09-01

    The purpose of this study was to investigate the effect of normal synovial fluid (SF) on exposed endogenous tendon-derived cells (TDCs) and engrafted mesenchymal stem cells (MSCs) within the tendon extracellular matrix. Explants from equine superficial digital flexor (extra-synovial) and deep digital flexor tendons (DDFTs) from the compressed, intra-synovial and the tensile, extra-synovial regions were cultured in allogeneic or autologous SF-media. Human hamstring explants were cultured in allogeneic SF. Explant viability was assessed by staining. Proliferation of equine monolayer MSCs and TDCs in SF-media and co-culture with DDFT explants was determined by alamarblue®. Non-viable Native Tendon matrices (NNTs) were re-populated with MSCs or TDCs and cultured in SF-media. Immunohistochemical staining of tendon sections for the apoptotic proteins caspase-3, -8, and -9 was performed. Contact with autologous or allogeneic SF resulted in rapid death of resident tenocytes in equine and human tendon. SF did not affect the viability of equine epitenon cells, or of MSCs and TDCs in the monolayer or indirect explant co-culture. MSCs and TDCs, engrafted into NNTs, died when cultured in SF. Caspase-3, -8, and -9 expression was the greatest in SDFT explants exposed to allogeneic SF. The efficacy of cells administered intra-synovially for tendon lesion repair is likely to be limited, since once incorporated into the matrix, cells become vlnerable to the adverse effects of SF. These observations could account for the poor success rate of intra-synovial tendon healing following damage to the epitenon and contact with SF, common with most soft tissue intra-synovial pathologies.

  18. Augmentation of Rotator Cuff Repair With Soft Tissue Scaffolds

    PubMed Central

    Thangarajah, Tanujan; Pendegrass, Catherine J.; Shahbazi, Shirin; Lambert, Simon; Alexander, Susan; Blunn, Gordon W.

    2015-01-01

    Background Tears of the rotator cuff are one of the most common tendon disorders. Treatment often includes surgical repair, but the rate of failure to gain or maintain healing has been reported to be as high as 94%. This has been substantially attributed to the inadequate capacity of tendon to heal once damaged, particularly to bone at the enthesis. A number of strategies have been developed to improve tendon-bone healing, tendon-tendon healing, and tendon regeneration. Scaffolds have received considerable attention for replacement, reconstruction, or reinforcement of tendon defects but may not possess situation-specific or durable mechanical and biological characteristics. Purpose To provide an overview of the biology of tendon-bone healing and the current scaffolds used to augment rotator cuff repairs. Study Design Systematic review; Level of evidence, 4. Methods A preliminary literature search of MEDLINE and Embase databases was performed using the terms rotator cuff scaffolds, rotator cuff augmentation, allografts for rotator cuff repair, xenografts for rotator cuff repair, and synthetic grafts for rotator cuff repair. Results The search identified 438 unique articles. Of these, 214 articles were irrelevant to the topic and were therefore excluded. This left a total of 224 studies that were suitable for analysis. Conclusion A number of novel biomaterials have been developed into biologically and mechanically favorable scaffolds. Few clinical trials have examined their effect on tendon-bone healing in well-designed, long-term follow-up studies with appropriate control groups. While there is still considerable work to be done before scaffolds are introduced into routine clinical practice, there does appear to be a clear indication for their use as an interpositional graft for large and massive retracted rotator cuff tears and when repairing a poor-quality degenerative tendon. PMID:26665095

  19. Accuracy of open magnetic resonance imaging for guiding injection of the equine deep digital flexor tendon within the hoof.

    PubMed

    Groom, Lauren M; White, Nathaniel A; Adams, M Norris; Barrett, Jennifer G

    2017-11-01

    Lesions of the distal deep digital flexor tendon (DDFT) are frequently diagnosed using MRI in horses with foot pain. Intralesional injection of biologic therapeutics shows promise in tendon healing; however, accurate injection of distal deep digital flexor tendon lesions within the hoof is difficult. The aim of this experimental study was to evaluate accuracy of a technique for injection of the deep digital flexor tendon within the hoof using MRI-guidance, which could be performed in standing patients. We hypothesized that injection of the distal deep digital flexor tendon within the hoof could be accurately guided using open low-field MRI to target either the lateral or medial lobe at a specific location. Ten cadaver limbs were positioned in an open, low-field MRI unit. Each distal deep digital flexor tendon lobe was assigned to have a proximal (adjacent to the proximal aspect of the navicular bursa) or distal (adjacent to the navicular bone) injection. A titanium needle was inserted into each tendon lobe, guided by T1-weighted transverse images acquired simultaneously during injection. Colored dye was injected as a marker and postinjection MRI and gross sections were assessed. The success of injection as evaluated on gross section was 85% (70% proximal, 100% distal). The success of injection as evaluated by MRI was 65% (60% proximal, 70% distal). There was no significant difference between the success of injecting the medial versus lateral lobe. The major limitation of this study was the use of cadaver limbs with normal tendons. The authors conclude that injection of the distal deep digital flexor tendon within the hoof is possible using MRI guidance. © 2017 American College of Veterinary Radiology.

  20. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    PubMed

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

Top