Science.gov

Sample records for tensile strength properties

  1. Correlation of tensile and shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1982-01-01

    The relation between the theoretical tensile and the shear strengths and the friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. The relationship between the actual shear strength and the friction properties of the metal was also investigated. An estimate of the theoretical uniaxial tensile strength was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. An estimate of the theoretical shear strength for metals was obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal and the interplanar spacing of the shear planes. The coefficient of friction for metals was found to be related to the theoretical tensile, theoretical shear, and actual shear strengths of metals. The higher the strength of the metal, the lower the coefficient of friction.

  2. Impact tensile properties and strength development mechanism of glass for reinforcement fiber

    NASA Astrophysics Data System (ADS)

    Kim, T.; Oshima, K.; Kawada, H.

    2013-07-01

    In this study, impact tensile properties of E-glass were investigated by fiber bundle testing under a high strain rate. The impact tests were performed employing two types of experiments. One is the tension-type split Hopkinson pressure bar system, and the other is the universal high-speed tensile-testing machine. As the results, it was found that not only the tensile strength but also the fracture strain of E-glass fiber improved with the strain rate. The absorbed strain energy of this material significantly increased. It was also found that the degree of the strain rate dependency of E-glass fibers on the tensile strength was varied according to fiber diameter. As for the strain rate dependency of the glass fiber under tensile loading condition, change of the small crack-propagation behaviour was considered to clarify the development of the fiber strength. The tensile fiber strength was estimated by employing the numerical simulation based on the slow crack-growth model (SCG). Through the parametric study against the coefficient of the crack propagation rate, the numerical estimation value was obtained for the various testing conditions. It was concluded that the slow crack-growth behaviour in the glass fiber was an essential for the increase in the strength of this material.

  3. Comparison of the Tensile, Creep, and Rupture Strength Properties of Stoichiometric SiC Fibers

    NASA Technical Reports Server (NTRS)

    Yun, H. M.; DiCarlo, J. A.

    1999-01-01

    Tensile strength, creep strength, and rupture strength properties were measured for the following types of polymer-derived stoichiometric SiC fibers: Hi-Nicalon Type S from Nippon Carbon, Tyranno SA from Ube, and Sylramic from Dow Corning. Also included in this study were an earlier version of the SA fiber plus two recent developmental versions of the Sylramic fiber. The tensile strength measurements were made at room temperature on as-received fibers and on fibers after high-temperature inert exposure. The creep-rupture property data were obtained at 1400 deg C in air as well as, argon. Some fiber types showed strong effects of environment on their strength properties. These results are compared and discussed in terms of underlying mechanisms and implications for ceramic composites.

  4. Coating of carbon nanotube fibers: variation of tensile properties, failure behavior and adhesion strength

    NASA Astrophysics Data System (ADS)

    Mäder, Edith; Liu, Jian-Wen; Hiller, Janett; Lu, Weibang; Li, Qingwen; Zhandarov, Serge; Chou, Tsu-Wei

    2015-07-01

    An experimental study of the tensile properties of CNT fibers and their interphasial behavior in epoxy matrices is reported. One of the most promising applications of CNT fibers is their use as reinforcement in multifunctional composites. For this purpose, an increase of the tensile strength of the CNT fibers in unidirectional composites as well as strong interfacial adhesion strength is desirable. However, the mechanical performance of the CNT fiber composites manufactured so far is comparable to that of commercial fiber composites. The interfacial properties of CNT fiber/polymer composites have rarely been investigated and provided CNT fiber/epoxy interfacial shear strength of 14.4 MPa studied by the microbond test. In order to improve the mechanical performance of the CNT fibers, an epoxy compatible coating with nano-dispersed aqueous based polymeric film formers and low viscous epoxy resin, respectively, was applied. For impregnation of high homogeneity, low molecular weight epoxy film formers and polyurethane film formers were used. The aqueous based epoxy film formers were not crosslinked and able to interdiffuse with the matrix resin after impregnation. Due to good wetting of the individual CNT fibers by the film formers, the degree of activation of the fibers was improved leading to increased tensile strength and Young’s modulus. Cyclic tensile loading and simultaneous determination of electric resistance enabled to characterize the fiber’s durability in terms of elastic recovery and hysteresis. The pull-out tests and SEM study reveal different interfacial failure mechanisms in CNT fiber/epoxy systems for untreated and film former treated fibers, on the one hand, and epoxy resin treated ones, on the other hand. The epoxy resin penetrated between the CNT bundles in the reference or film former coated fiber, forming a relatively thick CNT/epoxy composite layer and thus shifting the fracture zone within the fiber. In contrast to this, shear sliding along

  5. Interpretation of mucoadhesive properties of polymer gel preparations using a tensile strength method.

    PubMed

    Hägerström, H; Edsman, K

    2001-12-01

    We have developed a new tensile strength method for assessing mucoadhesive properties of polymer gels utilising freshly excised porcine nasal mucosa and a texture analyser. In conjunction with this, we propose a method for interpreting the mucoadhesive properties that is based on reasoning about the locus of the failure of a mucoadhesive joint. This involves measuring the cohesiveness of the gel and the mucus layer, respectively, and comparing these results with those obtained from a mucoadhesion measurement. Linear polymers (sodium carboxymethylcellulose, poly(acrylic acid) and sodium hyaluronate) and a cross-linked polymer (poly(acrylic acid)) were used as model polymers in this study. It was shown that the withdrawal speed of the probe should be low, about 0.1 mm s(-1), and that a contact time of 2 min was sufficient. In the mucoadhesion measurements there was no dependence of the results on the contact time in the interval 2-20 min. The tensile work appeared to be more applicable than the fracture strength for interpreting mucoadhesive properties. Furthermore, it was concluded that the interpretation procedure offers a good basis by which to assess whether the measured tensile work reflects a cohesive failure of the gel or a true interaction of the gel with the mucus layer. PMID:11804389

  6. The tensile strength properties of CFRPs and GRRPs for Unnes electric car body material

    NASA Astrophysics Data System (ADS)

    Khumaedi, Muhammad; Sumbodo, Wirawan; Widodo, Rahmat Doni

    2016-04-01

    This paper describes composite materials tensile testing of electric car body material. The UNNES electric car body must be developed using a high strength and lightweight material. A fiber-reinforced plastic composite is widely used for the concerned objective. Selection of the type of composites, variations in fiber orientation, and the number of fiber layers will affect the tensile strength of the material. Composite materials use Carbon-fiber-reinforced plastics (CFRPs) and glass-fiber-reinforced plastics (GFRPs) variation to the fiber areal weight, variations in fiber orientation and the number of fiber layers. The CFRPs areal weight consists of 230 gsm and 400 gsm. The GFRPsareal weight consists of 400 gsm and 600 gsm. Fibre orientationsconsist of 0° and 45°. Number of fiber layers consists of one layer and two layers. Various variations were then tested to figure out their tensile to get ultimate tensile strength of materials. Standard test method for tensile test was conducted using ASTM D3039. Tensile specimen geometry used a type of balanced and symmetric fiber orientation, with 25mm in width, 250 mm in length, and 2.5 mm in thickness. The result shows that the more fiber areal weight and the layer number were used, the more its tensile strength would increase, beside it increased the ultimate tensile strength of the material for both glass and carbon fiber with 0o and 45o fiber arientation. Fiber plain wave with 45o has greater tensile strength compared to any other variation.

  7. Tensile and fatigue strength properties of Kevlar 29 aramid/epoxy unidirectional composites

    SciTech Connect

    Zweben, C.

    1981-07-22

    Static and fatigue tensile strength properties of filament wound undirectional Kevlar 29/epoxy, typical of filament wound material used in flywheel rotors, were studied. Machining techniques were developed to minimize fiber fuzzing on edges. The static modulus, normalized to 70% fiber volume fraction is 8.87 x 10/sup 6/ psi. The major Poisson's ratio is 0.37. The static composite tensile strength, normalized to 70% fiber volume fraction is 200 x 10/sup 3/ psi, corresponding to a fiber stress at failure of 286 x 10/sup 3/ psi, which is good for materials having a very high fiber volume fraction. The S-N curve for R = 0.7 was found to be quite flat. Although the techniques used in this program had previously been employed successfully to study the fatigue behavior of Kevlar 29/epoxy and Kevlar 49/epoxy unidirectional materials, we were unable to overcome the persistent problem of cohesive material failure in the tab regions. The apparent reason for this is the very low interlaminar shear strength of the filament wound material. 16 figures.

  8. Tensile strength of restorative resins.

    PubMed

    Zidan, O; Asmussen, E; Jørgensen, K D

    1980-06-01

    The purpose of the present work was to measure the tensile strength of restorative resins and to study the effect of the method of measurement on the recorded results. A direct pull method using dumb-bell shaped specimens was used. The tensile strength of the resins was also tested using the diametral compression method suggested by the A.D.A. It was found that the method of testing affects the results. Although the diametral compression method is a simple method, it cannot be considered reliable for all types of material. The tensile strength of the conventional composites was significantly higher than the tensile strength of the microfilled composites.

  9. Relationship between the ideal tensile strength and the friction properties of metals in contact with nonmetals and themselves

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The adhesion and friction properties of metals in contact with diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum was investigated. An estimate of the ideal uniaxial tensile was obtained in terms of the equilibrium surface energy, interplanar spacing of the planes perpendicular to the tensile axis, and the Young's modulus of elasticity. The coefficient of friction for metals was found to be related to the ideal tensile strength of metals. The higher the strength of the metal, the lower the coefficient of friction.

  10. CHARACTERIZATION OF TENSILE STRENGTH OF GLOVEBOX GLOVES

    SciTech Connect

    Korinko, P.; Chapman, G.

    2012-02-29

    A task was undertaken to compare various properties of different glovebox gloves, having various compositions, for use in gloveboxes at the Savannah River Site (SRS). One aspect of this project was to determine the tensile strength (TS) of the gloves. Longitudinal tensile samples were cut from 15 different gloves and tensile tested. The stress, load, and elongation at failure were determined. All of the gloves that are approved for glovebox use and listed in the glovebox procurement specification met the tensile and elongation requirements. The Viton{reg_sign} compound gloves are not listed in the specification, but exhibited lower tensile strengths than permissible based on the Butyl rubber requirements. Piercan Polyurethane gloves were the thinnest samples and exhibited the highest tensile strength of the materials tested.

  11. Tensile and electrical properties of high-strength high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1998-09-01

    Electrical conductivity and tensile properties have been measured on an extruded and annealed CuCrNb dispersion strengthened copper alloy which has been developed for demanding aerospace high heat flux applications. The properties of this alloy are somewhat inferior to GlidCop dispersion strengthened copper and prime-aged CuCrZr over the temperature range of 20--500 C. However, if the property degradation in CuCrZr due to joining operations and the anisotropic properties of GlidCop in the short transverse direction are taken into consideration, CuCrNb may be a suitable alternative material for high heat flux structural applications in fusion energy devices. The electrical conductivity and tensile properties of CuCrZr that was solution annealed and then simultaneously aged and diffusion bonded are also summarized. A severe reduction in tensile elongation is observed in the diffusion bonded joint, particularly if a thin copper shim is not placed in the diffusion bondline.

  12. Influence of uniaxial, biaxial and plane strain pre-straining on the dynamic tensile properties of high strength sheet steels

    NASA Astrophysics Data System (ADS)

    Larour, P.; Verleysen, P.; Bleck, W.

    2006-08-01

    The influence of pre-straining and microstructure on the dynamic properties of car body high strength steels has been investigated at room temperature. The mechanical properties of a dual phase steel DP600, a TRIP steel TRIP700 and an austenitic steel AISI 301LN2B (1.4318) have been determined performing high speed servohydraulic and split-Hopkinson bar tensile tests in the strain rate range from 0.005s-1 up to 950s-1. The pre-straining modes and levels, respectively 10% uniaxial, 10% plane strain and 5% biaxial pre-straining, have been chosen in this investigation according to industrial use. 10% plane strain pre-straining brings the highest increase of yield and tensile strength values. 5% biaxial and 10% uniaxial pre-straining have similar effect on strength properties. The austenitic steel presents a pronounced minimum for tensile strength values at around 1/s. A combination of adiabatic heating and exothermic γ to α' transformation produces some significant softening effects in the austenitic steel grade.

  13. Making High-Tensile-Strength Amalgam Components

    NASA Technical Reports Server (NTRS)

    Grugel, Richard

    2008-01-01

    Structural components made of amalgams can be made to have tensile strengths much greater than previously known to be possible. Amalgams, perhaps best known for their use in dental fillings, have several useful attributes, including room-temperature fabrication, corrosion resistance, dimensional stability, and high compressive strength. However, the range of applications of amalgams has been limited by their very small tensile strengths. Now, it has been discovered that the tensile strength of an amalgam depends critically on the sizes and shapes of the particles from which it is made and, consequently, the tensile strength can be greatly increased through suitable choice of the particles. Heretofore, the powder particles used to make amalgams have been, variously, in the form of micron-sized spheroids or flakes. The tensile reinforcement contributed by the spheroids and flakes is minimal because fracture paths simply go around these particles. However, if spheroids or flakes are replaced by strands having greater lengths, then tensile reinforcement can be increased significantly. The feasibility of this concept was shown in an experiment in which electrical copper wires, serving as demonstration substitutes for copper powder particles, were triturated with gallium by use of a mortar and pestle and the resulting amalgam was compressed into a mold. The tensile strength of the amalgam specimen was then measured and found to be greater than 10(exp 4) psi (greater than about 69 MPa). Much remains to be done to optimize the properties of amalgams for various applications through suitable choice of starting constituents and modification of the trituration and molding processes. The choice of wire size and composition are expected to be especially important. Perusal of phase diagrams of metal mixtures could give insight that would enable choices of solid and liquid metal constituents. Finally, whereas heretofore, only binary alloys have been considered for amalgams

  14. Effect of heat treatments on the tensile and electrical properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-08-01

    The unirradiated tensile properties of CuCrZr produced by two different vendors have been measured following different heat treatments. Room temperature electrical resistivity measurements were also performed in order to estimate the thermal conductivity of these specimens. The thermomechanical conditions studied included solution quenched, solution quenched and aged (ITER reference heat treatment), simulated slow HIP thermal cycle ({approximately}1{degrees}C/min cooling from solutionizing temperature) and simulated fast HIP thermal cycle ({approximately}100{degrees}C/min cooling from solutionizing temperature). Specimens from the last two heat treatments were tested in both the solution-cooled condition and after subsequent precipitate aging at 475{degrees}C for 2 h. Both of the simulated HIP thermal cycles caused a pronounced decreases in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycles caused a pronounced decrease in the strength and electrical conductivity of CuCrZr. The tensile and electrical properties were unchanged by subsequent aging in the slow HIP thermal cycle specimens, whereas the strength and conductivity following aging in the fast HIP thermal cycle improved to {approximately}65% of the solution quenched and aged CuCrZr values. Limited tensile and electrical resistivity measurements were also made on two new heats of Hycon 3HP CuNiBe. High strength but poor uniform and total elongations were observed at 500{degrees}C on one of these new heats of CuNiBe, similar to that observed in other heats.

  15. Effects of material properties and speed of compression on microbial survival and tensile strength in diclofenac tablet formulations.

    PubMed

    Ayorinde, J O; Itiola, O A; Odeniyi, M A

    2013-03-01

    A work has been done to study the effects of material properties and compression speed on microbial survival and tensile strength in diclofenac tablet formulations. Tablets were produced from three formulations containing diclofenac and different excipients (DC, DL and DDCP). Two types of machines (Hydraulic hand press and single punch press), which compress the tablets at different speeds, were used. The compression properties of the tablets were analyzed using Heckel and Kawakita equations. A 3-dimensional plot was produced to determine the relationship between the tensile strength, compression speed and percentage survival of Bacillus subtilis in the diclofenac tablets. The mode of consolidation of diclofenac was found to depends on the excipient used in the formulation. DC deformed mainly by plastic flow with the lowest Py and Pk values. DL deformed plastically at the initial stage, followed by fragmentation at the later stage of compression, whereas DDCP deformed mainly by fragmentation with the highest Py and Pk values. The ranking of the percentage survival of B. subtilis in the formulations was DDCP > DL > DC, whereas the ranking of the tensile strength of the tablets was DDCP > DL > DC. Tablets produced on a hydraulic hand press with a lower compression speed had a lower percentage survival of microbial contaminants than those produced on a single punch press, which compressed the tablets at a much higher speed. The mode of consolidation of the materials and the speed at which tablet compression is carried out have effects on both the tensile strength of the tablets and the extent of destruction of microbial contaminants in diclofenac tablet formulations.

  16. An Interlaminar Tensile Strength Specimen

    NASA Technical Reports Server (NTRS)

    Martin, Roderick H.; Jackson, Wade C.

    1993-01-01

    This paper describes a technique to determine interlaminar tensile strength, sigma(sub 3c), of a fiber reinforced composite material using a curved beam. The specimen was a unidirectional curved beam, bent 90 deg, with straight arms. Attached to each arm was a hinged loading mechanism that was held by the grips of a tension testing machine. Geometry effects of the specimen, including the effects of loading arm length, inner radius, thickness, and width, were studied. The data sets fell into two categories: low strength corresponding to a macroscopic flaw related failure and high strength corresponding to a microscopic flaw related failure. From the data available, the specimen width and loading arm length had little effect on sigma(sub 3c). The inner radius was not expected to have a significant effect on sigma(sub 3c), but this conclusion could not be confirmed because of differences in laminate quality for each curve geometry. The thicker specimens had the lowest value of sigma(sub 3c) because of poor laminate quality.

  17. Effect of test temperature and strain rate on the tensile properties of high-strength, high-conductivity copper alloys

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1997-04-01

    The unirradiated tensile properties of wrought GlidCop AL25 (ITER grade zero, IGO) solutionized and aged CuCrZr, and cold-worked and aged and solutionized and aged Hycon 3HP{trademark} CuNiBe have been measured over the temperature range of 20-500{degrees}C at strain rates between 4 x 10{sup {minus}4} s{sup {minus}1} and 0.06 s{sup {minus}1}. The measured room temperature electrical conductivity ranged from 64 to 90% IACS for the different alloys. All of the alloys were relatively insensitive to strain rate at room temperature, but the strain rate sensitivity of GlidCop Al25 increased significantly with increasing temperature. The CuNiBe alloys exhibited the best combination of high strength and high conductivity at room temperature. The strength of CuNiBe decreased slowly with increasing temperature. However, the ductility of CuNiBe decreased rapidly with increasing temperature due to localized deformation near grain boundaries, making these alloy heats unsuitable for typical structural applications above 300{degrees}C. The strength and uniform elongation of GlidCop Al25 decreased significantly with increasing temperature at a strain rate of 1 x 10{sup {minus}3} s{sup {minus}1}, whereas the total elongation was independent of test temperature. The strength and ductility of CuCrZr decreased slowly with increasing temperature.

  18. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  19. 7 CFR 29.6040 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Strength (tensile). 29.6040 Section 29.6040 Agriculture Regulations of the Department of Agriculture AGRICULTURAL MARKETING SERVICE (Standards... REGULATIONS TOBACCO INSPECTION Standards Definitions § 29.6040 Strength (tensile). The stress a tobacco...

  20. Gas bubble retention and its effect on waste properties: Retention mechanisms, viscosity, and tensile and shear strengths

    SciTech Connect

    Gauglitz, P.A.; Rassat, S.D.; Powell, M.R.

    1995-08-01

    Several of the underground nuclear storage tanks at Hanford have been placed on a flammable gas watch list, because the waste is either known or suspected to generate, store, and episodically release flammable gases. Because retention and episodic release of flammable gases from these tanks containing radioactive waste slurries are critical safety concerns, Pacific Northwest Laboratory (PNL) is studying physical mechanisms and waste properties that contribute to the episodic gas release from these storage tanks. This study is being conducted for Westinghouse Hanford Company as part of the PNL Flammable Gas project. Previous investigations have concluded that gas bubbles are retained by the slurry or sludge that has settled at the bottom of the tanks; however, the mechanisms responsible for the retention of these bubbles are not well understood. Understanding the rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles and the dynamics of how these bubbles are released from the waste. The presence of gas bubbles is expected to affect the rheology of the sludge, specifically its viscosity and tensile and shear strengths, but essentially no literature data are available to assess the effect of bubbles. The objectives of this study were to conduct experiments and develop theories to understand better how bubbles are retained by slurries and sludges, to measure the effect of gas bubbles on the viscosity of simulated slurries, and to measure the effect of gas bubbles on the tensile and shear strengths of simulated slurries and sludges. In addition to accomplishing these objectives, this study developed correlations, based on the new experimental data, that can be used in large-scale computations of waste tank physical phenomena.

  1. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, J.L.

    1982-05-28

    A method and apparatus is described for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  2. Method and apparatus for determining tensile strength

    DOEpatents

    Ratigan, Joe L.

    1984-01-01

    A method and apparatus for determining the statistical distribution of apparent tensile strength of rock, the size effect with respect to tensile strength, as well as apparent deformation modulus of both intact and fractured or jointed rock. The method is carried out by inserting a plug of deformable material, such as rubber, in an opening of a specimen to be tested. The deformable material is loaded by an upper and lower platen until the specimen ruptures, whereafter the tensile strength is calculated based on the parameters of the test specimen and apparatus.

  3. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades for Burley Tobacco (u.s. Type 31 and Foreign Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing....

  4. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades for Burley Tobacco (u.s. Type 31 and Foreign Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing....

  5. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades for Burley Tobacco (u.s. Type 31 and Foreign Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing....

  6. 7 CFR 29.3061 - Strength (tensile).

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... REGULATIONS TOBACCO INSPECTION Standards Official Standard Grades for Burley Tobacco (u.s. Type 31 and Foreign Type 93) § 29.3061 Strength (tensile). The stress a tobacco leaf can bear without tearing....

  7. On the tensile strength of insect swarms

    NASA Astrophysics Data System (ADS)

    Ni, Rui; Ouellette, Nicholas T.

    2016-08-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young’s modulus and yield strength, and that they do not flow like viscous fluids.

  8. On the tensile strength of insect swarms.

    PubMed

    Ni, Rui; Ouellette, Nicholas T

    2016-01-01

    Collective animal groups are often described by the macroscopic patterns they form. Such global patterns, however, convey limited information about the nature of the aggregation as a whole. Here, we take a different approach, drawing on ideas from materials testing to probe the macroscopic mechanical properties of mating swarms of the non-biting midge Chironomus riparius. By manipulating ground-based visual features that tend to position the swarms in space, we apply an effective tensile load to the swarms, and show that we can quasi-statically pull single swarms apart into multiple daughter swarms. Our results suggest that swarms surprisingly have macroscopic mechanical properties similar to solids, including a finite Young's modulus and yield strength, and that they do not flow like viscous fluids. PMID:27559838

  9. Tensile Properties of GRCop-84

    NASA Technical Reports Server (NTRS)

    Ellis, David L.; Loewenthal, William S.; Yun, Hee-Man

    2012-01-01

    This is a chapter in the final report on GRCop-84 for the Reusable Launch Vehicle (RLV) Second Generation/Project Constellation Program. It contains information on the tensile properties of GRCop-84. GRCop-84 (Cu-8 at.% Cr-4 at.% Nb) was produced by extrusion and Hot Isostatic Pressing (HIPing). Some of the extrusions were rolled to plate and sheet while other extrusions were drawn into tubing. The material was further subjected to various heat treatments corresponding to annealing, anticipated typical brazing conditions, an end-of-life condition and various elevated temperature exposures to attempt to improve creep resistance. As anticipated, cold work increased strength while decreasing ductility. Annealing at 600 C (1112 F) and higher temperatures was effective. An exposure for 100 h at 500 C (932 F) resulted in an increase in strength rather than the anticipated decrease. High temperature simulated-braze cycles and thermal exposures lowered the strength of GRCop-84, but the deceases were small compared to precipitation strengthened copper alloys. It was observed that the excess Cr could form large precipitates that lower the reduction in area though it appears a minimum amount is required. Overall, GRCop-84 exhibits good stability of its tensile properties, which makes it an excellent candidate for rocket engine liners and many other high temperature applications.

  10. Tensile properties of textile composites

    NASA Technical Reports Server (NTRS)

    Avva, V. Sarma; Sadler, Robert L.; Lyon, Malcolm

    1992-01-01

    The importance of textile composite materials in aerospace structural applications has been gaining momentum in recent years. With a view to better understand the suitability of these materials in aerospace applications, an experimental program was undertaken to assess the mechanical properties of these materials. Specifically, the braided textile preforms were infiltrated with suitable polymeric matrices leading to the fabrication of composite test coupons. Evaluation of the tensile properties and the analyses of the results in the form of strength moduli, Poisson's ratio, etc., for the braided composites are presented. Based on our past experience with the textile coupons, the fabrication techniques have been modified (by incorporating glass microballoons in the matrix and/or by stabilizing the braid angle along the length of the specimen with axial fibers) to achieve enhanced mechanical properties of the textile composites. This paper outlines the preliminary experimental results obtained from testing these composites.

  11. Ultrasonic Spot Welding of Aluminum to High-Strength Low-Alloy Steel: Microstructure, Tensile and Fatigue Properties

    NASA Astrophysics Data System (ADS)

    Patel, V. K.; Bhole, S. D.; Chen, D. L.

    2014-04-01

    The structural applications of lightweight aluminum alloys inevitably involve dissimilar welding with steels and the related durability issues. This study was aimed at evaluating the microstructural change, lap shear tensile load, and fatigue resistance of dissimilar ultrasonic spot-welded joints of aluminum-to-galvanized high-strength low-alloy (HSLA) steel. Two non-uniform layers were identified in between Al and HSLA steel via SEM/EDS and XRD. One was an Al-Zn eutectic layer and the other was a thin (<2 μm) layer of intermetallic compound (IMC) of Al and Fe in the nugget zone. The lap shear tensile testing gave a maximum load of 3.7 kN and the sample failed initially in between the Al-Zn eutectic film and Al-Fe IMC, and afterward from the region containing Al on both matching fracture surfaces. The fatigue test results showed a fatigue limit of about 0.5 kN (at 1 × 107 cycles). The maximum cyclic stress at which transition of the fatigue fracture from transverse through-thickness crack growth mode to the interfacial failure mode occurs increases with increasing energy input.

  12. Tensile properties of nanoclay reinforced epoxy composites

    NASA Astrophysics Data System (ADS)

    Ku, H.; Trada, Mohan

    2013-08-01

    Kinetic epoxy resin was filled with nanoclay to increase tensile properties of the composite for civil and structural. This project manufactured samples with different percentages by weight of nanoclay in the composites in steps of 1 wt %, which were then post-cured in an oven. The samples were then subjected to tensile tests. The results showed that the composite with 3 wt % of nanoclay produced the highest yield and tensile strengths. However, the Young's modulus increased with increasing nanoparticulate loading. It is hoped that the discussion and results in this work would not only contribute towards the further development of nanoclay reinforced epoxy composites with enhanced material properties, but also provide useful information for the studies of fracture toughness, tensile properties and flexural properties of other composites.

  13. Covalent Crosslinking of Carbon Nanotube Materials for Improved Tensile Strength

    NASA Technical Reports Server (NTRS)

    Baker, James S.; Miller, Sandi G.; Williams, Tiffany A.; Meador, Michael A.

    2013-01-01

    Carbon nanotubes have attracted much interest in recent years due to their exceptional mechanical properties. Currently, the tensile properties of bulk carbon nanotube-based materials (yarns, sheets, etc.) fall far short of those of the individual nanotube elements. The premature failure in these materials under tensile load has been attributed to inter-tube sliding, which requires far less force than that needed to fracture individual nanotubes.1,2 In order for nanotube materials to achieve their full potential, methods are needed to restrict this tube-tube shear and increase inter-tube forces.Our group is examining covalent crosslinking between the nanotubes as a means to increase the tensile properties of carbon nanotube materials. We are working with multi-walled carbon nanotube (MWCNT) sheet and yarn materials obtained from commercial sources. Several routes to functionalize the nanotubes have been examined including nitrene, aryl diazonium, and epoxide chemistries. The functional nanotubes were crosslinked through small molecule or polymeric bridges. Additionally, electron beam irradiation induced crosslinking of the non-functional and functional nanotube materials was conducted. For example, a nanotube sheet material containing approximately 3.5 mol amine functional groups exhibited a tensile strength of 75 MPa and a tensile modulus of 1.16 GPa, compared to 49 MPa and 0.57 GPa, respectively, for the as-received material. Electron beam irradiation (2.2x 1017 ecm2) of the same amine-functional sheet material further increased the tensile strength to 120 MPa and the modulus to 2.61 GPa. This represents approximately a 150 increase in tensile strength and a 360 increase in tensile modulus over the as-received material with only a 25 increase in material mass. Once we have optimized the nanotube crosslinking methods, the performance of these materials in polymer matrix composites will be evaluated.

  14. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2013-10-01 2013-10-01 false Tensile strength of shell plates. 230.26...

  15. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2012-10-01 2012-10-01 false Tensile strength of shell plates. 230.26...

  16. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2014-10-01 2014-10-01 false Tensile strength of shell plates. 230.26...

  17. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2010-10-01 2010-10-01 false Tensile strength of shell plates. 230.26...

  18. 49 CFR 230.26 - Tensile strength of shell plates.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... ADMINISTRATION, DEPARTMENT OF TRANSPORTATION STEAM LOCOMOTIVE INSPECTION AND MAINTENANCE STANDARDS Boilers and Appurtenances Strength of Materials § 230.26 Tensile strength of shell plates. When the tensile strength of... 49 Transportation 4 2011-10-01 2011-10-01 false Tensile strength of shell plates. 230.26...

  19. Tensile strength of dried gelcast green bodies

    SciTech Connect

    Nunn, S.D.; Omatete, O.O.; Walls, C.A.; Barker, D.L.

    1994-04-01

    Ceramic green bodies were prepared by three different techniques, dry pressing, slip casting, and gelcasting. The tensile strength of the green bodies was measured using a diametral compression test. It was found that the gelcast samples were from 2 to 20 times stronger than the conventionally formed green bodies. SEM examination of the gelcast samples revealed a homogeneous, brittle fracture surface indicating a very uniform distribution of the binder and excellent dispersion of the ceramic powder.

  20. Tensile and shear strength of adhesives

    NASA Technical Reports Server (NTRS)

    Stibolt, Kenneth A.

    1990-01-01

    This experiment is conducted in a freshman-level course: Introduction to Engineering Materials. There are no prerequisites for the course although students should have some knowledge of basic algebra. The objectives are to tension and shear test adhesives and to determine the tensile and shear properties of adhesives. Details of equipment of procedure are given.

  1. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths.

  2. The Tensile Behavior of High-Strength Carbon Fibers.

    PubMed

    Langston, Tye

    2016-08-01

    Carbon fibers exhibit exceptional properties such as high stiffness and specific strength, making them excellent reinforcements for composite materials. However, it is difficult to directly measure their tensile properties and estimates are often obtained by tensioning fiber bundles or composites. While these macro scale tests are informative for composite design, their results differ from that of direct testing of individual fibers. Furthermore, carbon filament strength also depends on other variables, including the test length, actual fiber diameter, and material flaw distribution. Single fiber tensile testing was performed on high-strength carbon fibers to determine the load and strain at failure. Scanning electron microscopy was also conducted to evaluate the fiber surface morphology and precisely measure each fiber's diameter. Fiber strength was found to depend on the test gage length and in an effort to better understand the overall expected performance of these fibers at various lengths, statistical weak link scaling was performed. In addition, the true Young's modulus was also determined by taking the system compliance into account. It was found that all properties (tensile strength, strain to failure, and Young's modulus) matched very well with the manufacturers' reported values at 20 mm gage lengths, but deviated significantly at other lengths. PMID:27278219

  3. Data Qualification and Data Summary Report: Intact Rock Properties Data on Tensile Strength, Schmidt Hammer Rebound Hardness, and Rock Triaxial Creep

    SciTech Connect

    E.M. Cikanek; R.J. Blakely; T.A. Grant; L.E. Safley

    2003-07-29

    This report presents a systematic review of the available data in the TDMS that are relevant to the following intact rock properties: rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep. Relevant data are compiled from qualified and unqualified sources into the summary DTNs and these DTNs are evaluated for qualification using the method of corroborating data as defined in AP-SIII.2Q, ''Qualification of Unqualified Data''. This report also presents a summary of the compiled information in the form of descriptive statistics and recommended values that will be contained in a Reference Information Base (RIB) item prepared in accordance with AP-SIII.4Q, ''Development, Review, Online Placement, and Maintenance of Individual Reference Information Base Data Items''. The primary purpose of this report is to produce qualified sets of data that include all relevant intact rock tensile strength, Schmidt hammer rebound hardness, and rock triaxial creep testing done over the course of the Yucca Mountain Project (YMP). A second purpose is to provide a qualified summary (i.e., a RIB data item) of the test results using descriptive statistics. The immediate purpose of the report is to support the data needs of repository design; however, the products are designed to be appropriate for general use by the YMP. The appropriateness and limitations, if any, of the data, with respect to the intended use, are addressed in this report.

  4. Dependence of tablet brittleness on tensile strength and porosity.

    PubMed

    Gong, Xingchu; Chang, Shao-Yu; Osei-Yeboah, Frederick; Paul, Shubhajit; Perumalla, Sathyanarayana Reddy; Shi, Limin; Sun, Wei-Jhe; Zhou, Qun; Sun, Changquan Calvin

    2015-09-30

    An analysis of data collected from 25 sets of diverse pharmaceutical powders has identified that an exponential growth function satisfactorily describes the relationship between tablet brittleness and tablet porosity while a power law function well describes the relationship between tablet brittleness and tensile strength. These equations have the potential to facilitate better characterization of tablet mechanical properties and to guide the design and optimization of pharmaceutical tablet products. PMID:26226338

  5. Mechanical Strength and Failure Characteristics of Cast Mg-9 pctAl-1 pctZn Alloys Produced by a Heated-Mold Continuous Casting Process: Tensile Properties

    NASA Astrophysics Data System (ADS)

    Okayasu, Mitsuhiro; Takeuchi, Shuhei; Ohfuji, Hiroaki

    2014-11-01

    The mechanical properties and failure characteristics of a cast Mg alloy (AZ91: Mg-Al8.9-Zn0.6-Mn0.2) produced by a heated-mold continuous casting process (HMC) are investigated. In a modification of the original HMC process, the cooling of the liquid alloy by direct water spray is carried out in an atmosphere of high-purity argon gas. The HMC-AZ91 alloy exhibits excellent mechanical properties (high strength and high ductility) that are about twice as high as those for the same alloy produced by conventional gravity casting. The increased material strength and ductility of the HMC sample are attributed to nanoscale and microscale microstructural characteristics. The fine grains and tiny spherical eutectic structures ( e.g., Mg17Al12 and Al6Mn) distributed randomly in the matrix of the HMC alloy result in resistance to dislocation movement, leading to high tensile strength. Basal slip on (0001) planes in the relatively organized crystal orientation of the HMC alloy, as well as grain boundary sliding through tiny spherical eutectic structures, results in high ductility. Details of the failure mechanism under static loading in the HMC alloy are also discussed using failure models.

  6. Chain Ends and the Ultimate Tensile Strength of Polyethylene Fibers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas C.; Robbins, Mark O.

    Determining the tensile yield mechanisms of oriented polymer fibers remains a challenging problem in polymer mechanics. By maximizing the alignment and crystallinity of polyethylene (PE) fibers, tensile strengths σ ~ 6 - 7 GPa have been achieved. While impressive, first-principal calculations predict carbon backbone bonds would allow strengths four times higher (σ ~ 20 GPa) before breaking. The reduction in strength is caused by crystal defects like chain ends, which allow fibers to yield by chain slip in addition to bond breaking. We use large scale molecular dynamics (MD) simulations to determine the tensile yield mechanism of orthorhombic PE crystals with finite chains spanning 102 -104 carbons in length. The yield stress σy saturates for long chains at ~ 6 . 3 GPa, agreeing well with experiments. Chains do not break but always yield by slip, after nucleation of 1D dislocations at chain ends. Dislocations are accurately described by a Frenkel-Kontorova model, parametrized by the mechanical properties of an ideal crystal. We compute a dislocation core size ξ = 25 . 24 Å and determine the high and low strain rate limits of σy. Our results suggest characterizing such 1D dislocations is an efficient method for predicting fiber strength. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  7. Tensile properties of bacterial cellulose nanofibers - polyester composites

    NASA Astrophysics Data System (ADS)

    Abral, H.; Mahardika, M.

    2016-07-01

    The paper shows tensile properties of bacterial cellulose (BC) nanofibers and polyester (PO) matrix composites. Tensile properties including tensile strength (TS), modulus elasticity (ME), and elongation (EL) were observed respectively. BC nanofibers exist in the form of a sheet that was then varied in matrix PO. The BC sheet was mounted by one, three, five and seven pieces respectively in the matrix PO. The tensile strength of the composites was conducted by using the tensile equipment. The results showed that the tensile strength of the composite with a single sheet of BC was lower than that of pure PO. The ST value achieved maximum level in the number of layers of BC three pieces, but then it decreased for the composites reinforced five and seven pieces of BC nanofiber, respectively. Scanning Electron Microscope (SEM) observation exhibits bad interface bonding between BC nanofibers and PO matrix.

  8. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types. PMID:25940499

  9. Tensile mechanical properties of human forearm tendons.

    PubMed

    Weber, J F; Agur, A M R; Fattah, A Y; Gordon, K D; Oliver, M L

    2015-09-01

    Previous studies of the mechanical properties of tendons in the upper limb have used embalmed specimens or sub-optimal methods of measurement. The aim of this study was to determine the biomechanical properties of all tendons from five fresh frozen cadaveric forearms using updated methodology. The cross-sectional area of tendons was accurately measured using a laser reflectance system. Tensile testing was done in a precision servo-hydraulic device with cryo-clamp fixation. We determined that the cross-sectional area of some tendons is variable and directly influences the calculated material properties; visual estimation of this is unreliable. Data trends illustrate that digital extensor tendons possess the greatest tensile strength and a higher Young's modulus than other tendon types.

  10. An experimental evaluation of the tensile strength of impact ice

    NASA Technical Reports Server (NTRS)

    Xian, X.; Chu, M. L.; Scavuzzo, R. J.; Srivatsan, T. S.

    1989-01-01

    The evaluation of the tensile strength of impact built-up ice on structural components has been prompted by such problems as electrical transmission line losses and catastrophic failures in Arctic regions, deicing problems with fixed-wing and rotary-wing aircraft, etc. It is demonstrated that the conventional tensile-testing technique furnishes adequate data on artificially refrigerated ice, and helps establish the influence of extrinsic factors on ice tensile strength.

  11. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles.

  12. Tensile strength and fracture of cemented granular aggregates.

    PubMed

    Affes, R; Delenne, J-Y; Monerie, Y; Radjaï, F; Topin, V

    2012-11-01

    Cemented granular aggregates include a broad class of geomaterials such as sedimentary rocks and some biomaterials such as the wheat endosperm. We present a 3D lattice element method for the simulation of such materials, modeled as a jammed assembly of particles bound together by a matrix partially filling the interstitial space. From extensive simulation data, we analyze the mechanical properties of aggregates subjected to tensile loading as a function of matrix volume fraction and particle-matrix adhesion. We observe a linear elastic behavior followed by a brutal failure along a fracture surface. The effective stiffness before failure increases almost linearly with the matrix volume fraction. We show that the tensile strength of the aggregates increases with both the increasing tensile strength at the particle-matrix interface and decreasing stress concentration as a function of matrix volume fraction. The proportion of broken bonds in the particle phase reveals a range of values of the particle-matrix adhesion and matrix volume fraction for which the cracks bypass the particles and hence no particle damage occurs. This limit is shown to depend on the relative toughness of the particle-matrix interface with respect to the particles. PMID:23160765

  13. Tensile-property characterization of thermally aged cast stainless steels

    SciTech Connect

    Michaud, W.F.; Toben, P.T.; Soppet, W.K.; Chopra, O.K.

    1994-02-01

    The effect of thermal aging on tensile properties of cast stainless steels during service in light water reactors has been evaluated. Tensile data for several experimental and commercial heats of cast stainless steels are presented. Thermal aging increases the tensile strength of these steels. The high-C Mo-bearing CF-8M steels are more susceptible to thermal aging than the Mo-free CF-3 or CF-8 steels. A procedure and correlations are presented for predicting the change in tensile flow and yield stresses and engineering stress-vs.-strain curve of cast stainless steel as a function of time and temperature of service. The tensile properties of aged cast stainless steel are estimated from known material information, i.e., chemical composition and the initial tensile strength of the steel. The correlations described in this report may be used for assessing thermal embrittlement of cast stainless steel components.

  14. Dynamic compressive and tensile strengths of spark plasma sintered alumina

    SciTech Connect

    Girlitsky, I.; Zaretsky, E.; Kalabukhov, S.; Dariel, M. P.; Frage, N.

    2014-06-28

    Fully dense submicron grain size alumina samples were manufactured from alumina nano-powder using Spark Plasma Sintering and tested in two kinds of VISAR-instrumented planar impact tests. In the first kind, samples were loaded by 1-mm tungsten impactors, accelerated to a velocity of about 1 km/s. These tests were aimed at studying the Hugoniot elastic limit (HEL) of Spark Plasma Sintering (SPS)-processed alumina and the decay, with propagation distance, of the elastic precursor wave. In the tests of the second kind, alumina samples of 3-mm thickness were loaded by 1-mm copper impactors accelerated to 100–1000 m/s. These tests were aimed at studying the dynamic tensile (spall) strength of the alumina specimens. The tensile fracture of the un-alloyed alumina shows a monotonic decline of the spall strength with the amplitude of the loading stress pulse. Analysis of the decay of the elastic precursor wave allowed determining the rate of the irreversible (inelastic) strains in the SPS-processed alumina at the initial stages of the shock-induced inelastic deformation and to clarify the mechanisms responsible for the deformation. The 1-% addition of Cr{sub 2}O{sub 3} decreases the HEL of the SPS-processed alumina by 5-% and its spall strength by 50% but barely affects its static properties.

  15. Effect of Electron Beam Irradiation on Tensile Strength of Polypropylene

    NASA Astrophysics Data System (ADS)

    Yamada, Hiroshi; Ikeda, Masayuki; Shimbo, Minoru; Miyano, Yasushi

    In this paper, the effects of the intensity of electron beam and the variation with time after irradiation of electron beam on the tensile strength of the polypropylene (PP), which is widely used as medicine containers, were investigated. PP with and without colorants were used first and samples irradiated under various intensity of EB. A tensile test on the irradiated samples with elapsed time after the irradiation of the electron beam was carried out. The effects of those factors on the tensile strength were discussed. The following results were obtained (1) The tensile strength of PP decreased due to the influence of the electron beam irradiation, however the rate of the decrease in strength was small compared with the original one. Furthermore, the rate of the decrease in strength was very small owing to the variation with time after the EB irradiation. (2) The tensile rupture strength of PP increased and the rupture strain owing to the influence of the electron beam irradiation compared with the original one. In addition, these rupture strength increased and the rupture strain decreased along with time after the irradiation of the electron beam. (3) The tensile rupture strain energy of PP decreased owing to the influence of the electron beam irradiation compared with the original one. In addition, the strain energy decreases with time after the irradiation of the electron beam. Moreover, the strength characteristics of PP with colorants received greater influence of electron beam compared with the one without colorants.

  16. Dynamic Tensile Strength of Coal under Dry and Saturated Conditions

    NASA Astrophysics Data System (ADS)

    Zhao, Yixin; Liu, Shimin; Jiang, Yaodong; Wang, Kai; Huang, Yaqiong

    2016-05-01

    The tensile failure characterization of dry and saturated coals under different impact loading conditions was experimentally investigated using a Split Hopkinson pressure bar. Indirect dynamic Brazilian disc tension tests for coals were carried out. The indirect tensile strengths for different bedding angles under different impact velocities, strain rates and loading rates are analyzed and discussed. A high-speed high-resolution digital camera was employed to capture and record the dynamic failure process of coal specimens. Based on the experimental results, it was found that the saturated specimens have stronger loading rate dependence than the dry specimens. The bedding angle has a smaller effect on the dynamic indirect tensile strength compared to the impact velocity. Both shear and tensile failures were observed in the tested coal specimens. Saturated coal specimens have higher indirect tensile strength than dry ones.

  17. Tensile properties of the modified 13Cr martensitic stainless steels

    NASA Astrophysics Data System (ADS)

    Mabruri, Efendi; Anwar, Moch. Syaiful; Prifiharni, Siska; Romijarso, Toni B.; Adjiantoro, Bintang

    2016-04-01

    This paper reports the influence of Mo and Ni on the tensile properties of the modified 13Cr martensitic stainless steels in tempered condition. Four steels with different content of Mo and Ni were prepared by induction melting followed by hot forging, quenching and tempering. The experimental results showed that the addition of about 1% and 3% Mo has a beneficial effect to increase both the tensile strength and the elongation of the steels. On the contrary, the addition of about 3% Ni into the martensitic stainless steel results in decreasing of both the tensile strength and the elongation. Among the alloys investigated the 13Cr3Mo type steel exhibited largest tensile strength of 1348 MPa and largest elongation of 12%. The observation on the tensile fractured surfaces by using scanning electron microscope supported these findings.

  18. Dynamic tensile strength of glass fiber reinforced pultruded composites

    SciTech Connect

    Dutta, P.K.; Kumar, M.M.; Hui, D.

    1994-12-31

    This paper discusses the stress-strain behavior, fracture strength, influence of low temperature, and energy absorption in the diametral tensile splitting fracturing of a Glass Fiber Reinforced Polymer Composite. Experiments were conducted at low-temperature in a thermal chamber installed on a servo-hydraulic universal testing machine. The tensile strength was determined by diametral compression of disc samples at 24, {minus}5 and {minus}40 C.

  19. Tensile properties of austempered ductile iron under thermomechanical treatment

    NASA Astrophysics Data System (ADS)

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1700 MPa/1300 MPa/5% and 1350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  20. Tensile properties of austempered ductile iron under thermomechanical treatment

    SciTech Connect

    Achary, J.

    2000-02-01

    A new processing method was investigated for improving the strength and elongation of austempered ductile iron (ADI) by grain refinement of parent austenite using thermomechanical treatment. The material was deformed at the austenitization temperature by single and multipass rolling before the austempering treatment. The effects of the amount of deformation, austenitization temperature, austempering temperatures, reaustenitization, and secondary deformation on the tensile properties were studied. The properties obtained using the method were compared with those of the ASTM standards. The effect of deformation on the graphite shape was also studied. Tensile strength/yield strength/elongation values were found to increase with increasing austenite deformation up to 40% and then to start decreasing. Tensile strength/yield strength and elongation values of 1,700 MPa/1,300 MPa/5% and 1,350 MPa/920 MPa/15% can be achieved with this method in the ranges of variables studied.

  1. Tensile Bond Strength of Latex-Modified Bonded Concrete Overlays

    NASA Astrophysics Data System (ADS)

    Dubois, Cameron; Ramseyer, Chris

    2010-10-01

    The tensile bond strength of bonded concrete overlays was tested using the in-situ pull-off method described in ASTM C 1583 with the goal of determining whether adding latex to the mix design increases bond strength. One slab of ductile concrete (f'c > 12,000 psi) was cast with one half tined, i.e. roughened, and one half steel-troweled, i.e. smooth. The slab surface was sectioned off and overlay mixtures containing different latex contents cast in each section. Partial cores were drilled perpendicular to the surface through the overlay into the substrate. A tensile loading device applied a direct tensile load to each specimen and the load was increased until failure occurred. The tensile bond strength was then calculated for comparison between the specimens.

  2. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, Vimal K.; Tracey, Dennis M.; Foley, Michael R.; Paille, Norman I.; Pelletier, Paul J.; Sales, Lenny C.; Willkens, Craig A.; Yeckley, Russell L.

    1996-01-01

    A silicon nitride ceramic comprising: a) inclusions no greater than 25 microns in length, b) agglomerates no greater than 20 microns in diameter, and c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa.

  3. Silicon nitride having a high tensile strength

    DOEpatents

    Pujari, V.K.; Tracey, D.M.; Foley, M.R.; Paille, N.I.; Pelletier, P.J.; Sales, L.C.; Willkens, C.A.; Yeckley, R.L.

    1996-11-05

    A silicon nitride ceramic is disclosed comprising: (a) inclusions no greater than 25 microns in length, (b) agglomerates no greater than 20 microns in diameter, and (c) a surface finish of less than about 8 microinches, said ceramic having a four-point flexural strength of at least about 900 MPa. 4 figs.

  4. Determination of Dynamic Flexural Tensile Strength of Thermally Treated Laurentian Granite Using Semi-Circular Specimens

    NASA Astrophysics Data System (ADS)

    Yin, Tubing; Wang, Pin; Li, Xibing; Wu, Bangbiao; Tao, Ming; Shu, Ronghua

    2016-10-01

    To understand the effects of increasing temperature and loading rate on the flexural tensile strength of Laurentian granite, dynamic flexural tensile strength experiments were carried out by means of a semi-circular bend specimen with a modified split Hopkinson pressure bar system. The tests were performed at different loading rates, specimens were treated from room temperature up to 850 °C, and a high-speed camera was utilized to monitor the failure process of the specimen. For samples in the same temperature group, a loading rate dependence of the flexural tensile strength was observed; it increased consistently with the increase of loading rate. Temperature effects on rock mechanical properties were investigated from the microscopic viewpoint, and the dynamic flexural tensile strength decreased with the treatment temperature. A formula relating dynamic flexural tensile strength to loading rate and temperature is presented to quantify the results. It was found that the change regulation of the dynamic flexural tensile strength of rock is very similar to that of its crack growth along with the increase of loading rate, which indicates that the essence of rock failure is the initiation and propagation of the internal cracks. Compared with our earlier work on dynamic tensile tests using the Brazilian test, it was observed that the flexural tensile strength is higher than the tensile strength. Non-local failure theory can be adopted to explain this discrepancy at low temperature conditions, but it is no longer effective at high temperatures. Under high loading rates, rock failure is initiated at the centre of the half circular disc, and finally it is separated completely into two equal parts.

  5. Tensile and fatigue properties of Inconel 718 at cryogenic temperatures

    NASA Technical Reports Server (NTRS)

    Malin, C. O.; Schmidt, E. H.

    1969-01-01

    Tests to determine the tensile and fatigue properties of Inconel 718 at cryogenic temperatures show that the alloy increases in strength at low temperatures, with very little change in toughness. The effect of surface finish and grain size on the fatigue properties was also determined.

  6. Tensile and tear strength of carrageenan film from Philippine eucheuma species.

    PubMed

    Briones, Annabelle V; Ambal, Wilhelmina O; Estrella, Romulo R; Pangilinan, Rolando; De Vera, Carlos J; Pacis, Raymund L; Rodriguez, Ner; Villanueva, Merle A

    2004-01-01

    The tensile and tear strength of carrageenan film from Philippines Eucheuma species were investigated using NEC tensilon universal-testing machine according to American Society for Testing Materials methods. These properties are important for assessing carrageenan film as packaging material. The kappa and iota types were used in the study. The effect of glycerine on the tensile and tear strength including elongation was also evaluated. Addition of glycerine tended to lower the tensile strength of the film and increase its elongation properties including the tear strength. Carrageenan film without glycerine was much stronger. Glycerine made the film more flexible and easy to deform. The composite film of carrageenan and konjac gum did not exhibit elongation. It also showed higher tensile strength than did the composite film of carrageenan and xanthan gum. Compared with iota-type carrageenan film, kappa-type carrageenan film without glycerine was more comparable to low-density polyethylene (LDPE) film in terms of tensile strength as was the composite film of carrageenan-konjac gum. The kappa-type carrageenan film with glycerine was more comparable to LDPE film in terms of tear strength. The elongation reading for carrageenan film was lower than that for LDPE film. Morphologic studies showed that the carrageenan film had sets of pores distributed randomly at different places as compared to LDPE film. It also showed that the carrageenan film was more fibrous than LDPE film. PMID:15085409

  7. General and mechanistic optimal relationships for tensile strength of doubly convex tablets under diametrical compression.

    PubMed

    Razavi, Sonia M; Gonzalez, Marcial; Cuitiño, Alberto M

    2015-04-30

    We propose a general framework for determining optimal relationships for tensile strength of doubly convex tablets under diametrical compression. This approach is based on the observation that tensile strength is directly proportional to the breaking force and inversely proportional to a non-linear function of geometric parameters and materials properties. This generalization reduces to the analytical expression commonly used for flat faced tablets, i.e., Hertz solution, and to the empirical relationship currently used in the pharmaceutical industry for convex-faced tablets, i.e., Pitt's equation. Under proper parametrization, optimal tensile strength relationship can be determined from experimental results by minimizing a figure of merit of choice. This optimization is performed under the first-order approximation that a flat faced tablet and a doubly curved tablet have the same tensile strength if they have the same relative density and are made of the same powder, under equivalent manufacturing conditions. Furthermore, we provide a set of recommendations and best practices for assessing the performance of optimal tensile strength relationships in general. Based on these guidelines, we identify two new models, namely the general and mechanistic models, which are effective and predictive alternatives to the tensile strength relationship currently used in the pharmaceutical industry.

  8. An investigation into geometry and microstructural effects upon the ultimate tensile strengths of butt welds

    NASA Technical Reports Server (NTRS)

    Gordon, Stephen S.

    1992-01-01

    A mathematical theory was evaluated empirically. This theory predicts weld ultimate tensile strength based on material properties and fusion line angles, mismatch, peaking, and weld widths. Welds were made on 1/4 and 1/2 in. aluminum 2219-T87, their geometries were measured, they were tensile tested, and these results were compared to theoretical predictions. Statistical analysis of results was performed to evaluate correlation of theory to results for many different categories of weld geometries.

  9. Effects of Thermal Treatment on Tensile Strength of Laurentian Granite Using Brazilian Test

    NASA Astrophysics Data System (ADS)

    Yin, Tubing; Li, Xibing; Cao, Wenzhuo; Xia, Kaiwen

    2015-11-01

    The effect of thermal treatment on several physical properties and the tensile strength of Laurentian granite (LG) are measured in this study. Brazilian disc LG specimens are treated at temperatures of up to 850 °C. The physical properties such as grain density, relative volume change per degree, and P-wave velocity are investigated under the effect of heat treatment. The results indicate that both the density and the P-wave velocity decrease with the increase in heating temperature. However, the relative volume change per degree is not sensitive below 450 °C, while a remarkable increase appears from 450 to 850 °C. All cases are explained by the increase in both number and width of the thermally induced microcracks with the heating temperature. Brazilian tests are carried out statically with an MTS hydraulic servo-control testing system and dynamically with a modified split Hopkinson pressure bar (SHPB) system to measure both static and dynamic tensile strength of LG. The relationship between the tensile strength and treatment temperatures shows that static tensile strength decreases with temperature while the dynamic tensile strength first increases and then decreases with a linear increase in the loading rate. However, the increase in dynamic tensile strength with treatment temperatures from 25 to 100 °C is due to slight dilation of the grain boundaries as the initial thermal action, which leads to compaction of rock. When the treatment temperature rises above 450 °C, the quartz phase transition results in increased size of microcracks due to the differential expansion between the quartz grains and other minerals, which is the main cause of the sharp reduction in tensile strength.

  10. The theoretical tensile strength of fcc crystals predicted from shear strength calculations

    NASA Astrophysics Data System (ADS)

    Černý, M.; Pokluda, J.

    2009-04-01

    This work presents a simple way of estimating uniaxial tensile strength on the basis of theoretical shear strength calculations, taking into account its dependence on a superimposed normal stress. The presented procedure enables us to avoid complicated and time-consuming analyses of elastic stability of crystals under tensile loading. The atomistic simulations of coupled shear and tensile deformations in cubic crystals are performed using first principles computational code based on pseudo-potentials and the plane wave basis set. Six fcc crystals are subjected to shear deformations in convenient slip systems and a special relaxation procedure controls the stress tensor. The obtained dependence of the ideal shear strength on the normal tensile stress seems to be almost linearly decreasing for all investigated crystals. Taking these results into account, the uniaxial tensile strength values in three crystallographic directions were evaluated by assuming a collapse of the weakest shear system. Calculated strengths for \\langle 001\\rangle and \\langle 111\\rangle loading were found to be mostly lower than previously calculated stresses related to tensile instability but rather close to those obtained by means of the shear instability analysis. On the other hand, the strengths for \\langle 110\\rangle loading almost match the stresses related to tensile instability.

  11. Ideal tensile strength of B2 transition-metal aluminides

    NASA Astrophysics Data System (ADS)

    Li, Tianshu; Morris, J. W., Jr.; Chrzan, D. C.

    2004-08-01

    The ideal tensile strengths of the B2 -type (CsCl) transition-metal aluminides FeAl , CoAl , and NiAl have been investigated using an ab initio electronic structure total energy method. The three materials exhibit dissimilar mechanical behaviors under the simulated ideal tensile tests along [001], [110], and [111] directions. FeAl is weakest in tension along [001] whereas CoAl and NiAl are strongest in the same direction. The weakness of FeAl along [001] direction is attributed to the instability introduced by the filling of antibonding d states.

  12. Effect of Silver Nano-particles on Tensile Strength of Acrylic Resins

    PubMed Central

    Ghaffari, Tahereh; Hamedi-rad, Fahimeh

    2015-01-01

    Background and aims. Polymethyl methacrylate (PMMA) is widely used for the fabrication of removable prostheses. Silver nano-particles (AgNps) have been added to PMMA because of their antimicrobial properties, but their effect on the mechanical properties of PMMA is unknown. The aim of this study was to investigate the effects of AgNps on the tensile strength of PMMA. Materials and methods. For this study, 12 specimens were prepared and divided into two groups. Group 1 included PMMA without AgNps and group 2 included PMMA mixed with 5 wt% of AgNps. Tensile strength of the specimens was measured by Zwick Z100 apparatus. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. This study showed that the mean tensile strength of PMMA in group 2 was significantly lower than that in group 1. Therefore, the tensile strength decreased significantly after incorporation of silver nano-particles. Conclusion. Within the limitations of this study, tensile strength of acrylic resin specimens was influenced by silver nano-particles. PMID:25973153

  13. Tensile bond strength between custom tray and elastomeric impression material.

    PubMed

    Maruo, Yukinori; Nishigawa, Goro; Oka, Morihiko; Minagi, Shogo; Irie, Masao; Suzuki, Kazuomi

    2007-05-01

    The aim of this study was to investigate how to achieve sufficient and stable adhesive strength between impression material and tray. Impression materials were molded between autopolymerizing resin columns, and tensile strength was measured as a function of these factors: tray storage time (1, 2, 4, 7, and 10 days), adhesive drying time (0, 1, 5, 10, and 15 minutes), and tray surface roughness (air abrasion, bur-produced roughness, and no treatment). Tensile bond strength was not affected by tray storage time throughout the entire evaluation period of 10 days. As for tray adhesive drying time, Reprosil and Exaimplant yielded extremely low values for drying times of 10 minutes or less (P<0.05), while Imprint II and Impregum were not influenced by drying time. Vinyl polysiloxane achieved the highest adhesive strength with bur-produced roughness, which was significantly higher than with air abrasion or no treatment (P<0.05), whereas polyether achieved the lowest value with bur-produced roughness (P<0.05). It was concluded that surface treatment of custom tray should be adapted to the type of impression material used to achieve optimum bond strength.

  14. Effects of parachute-ribbon surface treatments on tensile strength

    SciTech Connect

    Auerbach, I.; Whinery, L.D.; Johnson, D.W.; Mead, K.E.; Sheldon, D.D.

    1986-01-01

    Routine quality-assurance evaluations of nylon ribbons used on test-deployed parachutes revealed tensile-strength degradation had occurred in some of the ribbons. The degradation occurred exclusively in some of the noncritical skirt ribbons with stenciled blue-ink identification markings. Although the strength loss was excessive, the reliability of the parachute was not affected. These results motivated an accelerated-aging study of the effects on tensile strength of not only the inks but also of the sizing chemicals that are used to coat fabrics in parachute construction. Nylon ribbons and Kevlar webbing were treated with these materials and stored both under ambient conditions and at 60/sup 0/C (140/sup 0/F) for periods of time up to eight months. Small increases in strength developed under ambient conditions whereas small decreases developed at elevated temperatures. Samples stored in glass degraded more than those stored in stainless steel. None of these laboratory results correlated with those obtained from parachutes. Possible explanations for the lack of a correlation are provided in this paper. Additional studies are in progress.

  15. A novel melt stable and high tensile strength biopolymer (polyhydroxyalkanoates) from Bacillus megaterium (MTCC10086) and its characterization.

    PubMed

    Bora, Limpon; Das, Reshmi; Gohain, Dibakar

    2014-09-01

    In the present investigation, we have defined a novel biopolymer from Bacillus megaterium strain with novel melt stability, high tensile strength, and elongation to break properties higher to polypropylene and similar to polyethylene the polymers available commercially. The polymer was characterized with FTIR and XRD. The percent crystalinity was found to 44.09% with tensile strength 42 (Mpa) and elongation to break (%) 142 higher than polypropylene. The polymeric properties were confirmed by differential scanning calorimeter and universal testing.

  16. A micromechanics model for predicting the tensile strength of unidirectional metal matrix composites

    SciTech Connect

    Subramanian, S.

    1995-12-31

    In this paper, a micromechanics model has been developed to predict the tensile strength of unidirectional metal matrix composites (MMC). A simplified shear lag analysis is used to estimate the local stresses in the various constituents (fiber/matrix/interface). In this work, the matrix is assumed to carry both normal and shear stresses. Global matrix plasticity is considered by assuming that the matrix behaves in an elastic-perfectly plastic manner. Local interfacial debonding is assumed to occur when the average interfacial shear stress exceeds the interfacial shear strength value. The shear lag analysis including the effects of interfacial debonding and global matrix plasticity is used to estimate the stress concentration in fibers adjacent to broken fibers and the ineffective length. The tensile strength is estimated by considering the accumulation of fiber fractures. The effects of residual thermal stresses and statistical distribution of strength of the fibers are also included in this analysis. Parametric studies were conducted to investigate the influence of various parameters such as fiber volume fraction, temperature, interfacial shear strength, matrix properties and fiber strength, on the unidirectional tensile strength of MMC. The model was also used to predict the effects of volume fraction and temperature, on the strength of SCS6/Ti 24-11 composites. The predicted values compared well with the experimental results.

  17. Effect of Electron Beam Irradiation on the Tensile Properties of Carbon Nanotubes Sheets and Yarns

    NASA Technical Reports Server (NTRS)

    Williams, Tiffany S.; Miller, Sandi G.; Baker, James S.; McCorkle, Linda S.; Meador, Michael A.

    2013-01-01

    Carbon nanotube sheets and yarns were irradiated using electron beam (e-beam) energy to determine the effect of irradiation dose on the tensile properties. Results showed that a slight change in tensile strength occurred after irradiating as-received CNT sheets for 20 minutes, and a slight decrease in tensile strength as the irradiation time approached 90 minutes. On the other hand, the addition of small molecules to the CNT sheet surface had a greater effect on the tensile properties of e-beam irradiated CNT sheets. Some functionalized CNT sheets displayed up to a 57% increase in tensile strength following 90 minutes of e-beam exposure. In addition, as-received CNT yarns showed a significant increase in tensile strength as the irradiation time increased.

  18. Through-the-thickness tensile strength of textile composites

    NASA Technical Reports Server (NTRS)

    Jackson, Wade C.; Ifju, Peter G.

    1994-01-01

    A series of tests was run to characterize the through-the-thickness tensile strength for a variety of composites that included 2D and 3D braids, 2D and 3D weaves, and prepreg tapes. A new test method based on a curved beam was evaluated. The through-the-thickness deformations were characterized using moire interferometry. Failures were significantly different between the 2D and 3D materials. The 2D materials delaminated between layers due to out-of-plane tensile stresses. The strength of the 2D textile composites did not increase relative to the tapes. The 3D materials failed due to the formation of radial cracks caused by high circumferential stresses along the inner radius. A circumferential crack similar to the 2D materials produced the final failure. Final failure in the 3D materials occurred at a lower bending moment than in other materials. The early failures were caused by radial crack formation rather than low through-the-thickness strength.

  19. Scale effects on the transverse tensile strength of graphite epoxy composites

    NASA Technical Reports Server (NTRS)

    Obrien, T. Kevin; Salpekar, Satish A.

    1992-01-01

    The influence of material volume on the transverse tensile strength of AS4/3501-6 graphite epoxy composites was investigated. Tensile tests of 90 degree laminates with 3 different widths and 5 different thicknesses were conducted. A finite element analysis was performed to determine the influence of the grip on the stress distribution in the coupons and explain the tendency for the distribution of failure locations to be skewed toward the grip. Specimens were instrumented with strain gages and extensometers to insure good alignment and to measure failure strains. Data indicated that matrix dominated strength properties varied with the volume of material that was stressed, with the strength decreasing as volume increased. Transverse strength data were used in a volumetric scaling law based on Weibull statistics to predict the strength of 90 degree laminates loaded in three point bending. Comparisons were also made between transverse strength measurements and out-of-plane interlaminar tensile strength measurements from curved beam bending tests. The significance of observed scale effects on the use of tests for material screening, quality assurance, and design allowables is discussed.

  20. Effect of Heat Treatment and Layer Orientation on the Tensile Strength of a Crystalline Rock Under Brazilian Test Condition

    NASA Astrophysics Data System (ADS)

    Guha Roy, Debanjan; Singh, T. N.

    2016-05-01

    The effect of heat treatment and the layer orientation on the tensile properties of granitic gneiss were studied under the unconfined stress condition. The tensile strength of the samples was studied using a Brazilian configuration, and the geochemical and microstructural properties were studied using the X-ray diffraction technique as well as scanning electron microscopy (SEM), respectively. The fracture pattern and the geometrical analyses were performed using the digital photographs. The results show that both the heat treatment and layer orientation have strong control on the tensile strength, force-parallel and layer-parallel strains, and on the tensile fracture geometry. A general decrease in the tensile strength of the rock was documented with the increasing heat treatment. Although, in the heat-treated samples, X-ray diffraction study do not reveal any major change in the mineral composition, but the SEM shows the development of several micro-cracks in the grains. In the samples with different layer orientation, along with the changes in the tensile strength and layer-parallel to force-parallel strain ratio, the layer activation under shear stress is also noticed. Here, the ratio between the tensile to shear stress, acting along the layers is thought to be the major controlling factor of the tensile properties of rocks, which has many applications in mining, civil constructions, and waste disposal work.

  1. Development of Manila Hemp Fiber Epoxy Composite with High Tensile Properties Through Handpicking Fiber Fragments

    NASA Astrophysics Data System (ADS)

    Liu, Ke; Takagi, Hitoshi; Yang, Zhimao

    Manila hemp fibers are separated to several sequent fragments from single fiber. The tensile strength of each fiber fragments and their epoxy composite are measured, followed by scanning electronic microscopic (SEM) analysis. The results show that the tensile strength of fiber fragments is almost constant along fiber. For composite, the tensile strength first increases and then decreases at the position near to root. The Young's modulus presents increasing with location from root to top for fiber and composite. Microstructure analysis indicates that the difference of tensile properties between fiber fragments derive from the difference of fiber diameter.

  2. Toward predicting tensile strength of pharmaceutical tablets by ultrasound measurement in continuous manufacturing.

    PubMed

    Razavi, Sonia M; Callegari, Gerardo; Drazer, German; Cuitiño, Alberto M

    2016-06-30

    An ultrasound measurement system was employed as a non-destructive method to evaluate its reliability in predicting the tensile strength of tablets and investigate the benefits of incorporating it in a continuous line, manufacturing solid dosage forms. Tablets containing lactose, acetaminophen, and magnesium stearate were manufactured continuously and in batches. The effect of two processing parameters, compaction force and level of shear strain were examined. Young's modulus and tensile strength of tablets were obtained by ultrasound and diametrical mechanical testing, respectively. It was found that as the blend was exposed to increasing levels of shear strain, the speed of sound in the tablets decreased and the tablets became both softer and mechanically weaker. Moreover, the results indicate that two separate tablet material properties (e.g., relative density and Young's modulus) are necessary in order to predict tensile strength. A strategy for hardness prediction is proposed that uses the existing models for Young's modulus and tensile strength of porous materials. Ultrasound testing was found to be very sensitive in differentiating tablets with similar formulation but produced under different processing conditions (e.g., different level of shear strain), thus, providing a fast, and non-destructive method for hardness prediction that could be incorporated to a continuous manufacturing process.

  3. Tensile properties of fresh human calcaneal (Achilles) tendons.

    PubMed

    Louis-Ugbo, John; Leeson, Benjamin; Hutton, William C

    2004-01-01

    The purpose of this study was to measure the tensile properties of fresh human calcaneal (Achilles) tendons. Twenty fresh cadaveric (age range = 57-93 years) bone-Achilles tendon complexes were harvested within 24 hr postmortem. The calcaneus together with 15 cm of the Achilles tendon extending proximally from the insertion on the calcaneus was clamped and biomechanically tested. Each tendon was firmly fixed in clamps in an MTS Systems Corporation MTS testing machine and tension was applied at a displacement rate of 8 cm per minute until the tendon failed. The tensile force and tensile strain (as measured using an extensometer) were recorded and plotted using onboard software. The narrow age range of our donors prevented any meaningful correlation between age and tensile properties; however, the results showed that: 1) the average ultimate tensile strength (UTS) of the human Achilles tendon was 1189 N (range = 360-1,965), 2) there was a correlation between left and right legs for UTS, 3) there was a correlation between left and right legs in regard to cross sectional area, and 4) there was no correlation between UTS and cross-sectional area.

  4. High Tensile Strength Amalgams for In-Space Repair and Fabrication

    NASA Technical Reports Server (NTRS)

    Grugel, R. N.

    2005-01-01

    Amalgams are defined as an alloy of mercury with one or more other metals. These, along with those based on gallium (also liquid at near room temperature), are widely used in dental practice as a tooth filling material. Amalgams have a number of useful attributes that indude room temperature compounding. corrosion resistance, dimensional stability, and good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits their applications. The work presented here demonstrates how, by modifying particle geometry, the tensile strength of amalgams can be increased and thus extending the range of potential applications. This is relevant to, for example, the freeform fabrication of replacement parts that might be necessary during an extended space mission. Advantages, i.e. Figures-of-Merit. include the ability to produce complex parts, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption.

  5. Tensile Properties of Electrodeposited Nanocrystalline Ni-Cu Alloys

    NASA Astrophysics Data System (ADS)

    Dai, P. Q.; Zhang, C.; Wen, J. C.; Rao, H. C.; Wang, Q. T.

    2016-02-01

    Nanocrystalline Ni-Cu alloys with a Cu content of 6, 10, 19, and 32 wt.% were prepared by pulse electrodeposition. The microstructure and tensile properties of the nanocrystalline Ni-Cu alloys were characterized by x-ray diffraction, transmission electron microscopy, and tensile testing. The x-ray diffraction analysis indicates that the structure of the nanocrystalline Ni-Cu alloys is a face-centered cubic, single-phase solid solution with an average grain size of 18 to 24 nm, and that the average grain size decreased with increasing Cu content. The ultimate tensile strength (~1265 to 1640 MPa) and elongation to failure (~5.8 to 8.9%) of the Ni-Cu alloys increased with increasing Cu content. The increase in tensile strength results from the solid solution and fine-grain strengthening. Elemental Cu addition results in a decrease in stacking fault energy, an increase in work hardening rate, a delay in plasticity instability, and consequently, a higher plasticity.

  6. Tensile strength and the mining of black holes.

    PubMed

    Brown, Adam R

    2013-11-22

    There are a number of important thought experiments that involve raising and lowering boxes full of radiation in the vicinity of black hole horizons. This Letter looks at the limitations placed on these thought experiments by the null energy condition, which imposes a fundamental bound on the tensile-strength-to-weight ratio of the materials involved, makes it impossible to build a box near the horizon that is wider than a single wavelength of the Hawking quanta, and puts a severe constraint on the operation of "space elevators" near black holes. In particular, it is shown that proposals for mining black holes by lowering boxes near the horizon, collecting some Hawking radiation, and dragging it out to infinity cannot proceed nearly as rapidly as has previously been claimed. As a consequence of this limitation, the boxes and all the moving parts are superfluous and black holes can be destroyed equally rapidly by threading the horizon with strings.

  7. Prediction of residual tensile strength of transversely impacted composite laminates

    NASA Technical Reports Server (NTRS)

    Lal, K. M.

    1982-01-01

    The response to low velocity impact of graphite-epoxy T300/5208 composite laminates is discussed. Steel balls of 3/8 inch, 5/8 inch, and 1 inch diameter were the projectiles. Impact energy was limited to 1.2 joules. Impacted specimens were ultrasonically C scanned to determine the impact damaged region. The threshold value of impact energy for impact damage was found to be approximately 0.3 joules. A model was developed to predict the tensile residual strength of impact damaged specimens from fracture mechanics concepts. Impacted specimens were tested in tension to provide a fracture data base. The experimental results agreed well with the predictions from fracture mechanics. In this study, the maximum impact velocity used to simulate the low velocity transverse impact from common objects like tool drops was 10 m/s.

  8. Improved Tensile Adhesion Specimens for High Strength Epoxy Systems in Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Haddock, M. Reed; McLennan, Michael L.

    2000-01-01

    An improved tensile adhesion button has been designed and tested that results in higher measured tensile adhesion strength while providing increased capability for testing high strength epoxy adhesive systems. The best attributes of two well-established tensile button designs were combined and refined into an optimized tensile button. The most significant design change to the tensile button was to improve alignment of the bonded tensile button specimens during tensile testing by changing the interface between the tensile button and the tensile test machine. The established or old button design uses a test fixture that pulls from a grooved annulus or anvil head while the new button design pulls from a threaded hole in the centerline of the button. Finite element (FE) analysis showed that asymmetric loading of the established anvil head tensile button significantly increases the stress concentration in the adhesive, causing failure at lower tensile test loads. The new tensile button was designed to eliminate asymmetric loading and eliminate misalignment sensitivity. Enhanced alignment resulted in improved tensile adhesion strength measurement up to 13.8 MPa (2000psi) over the established button design. Another design change increased the capability of the button by increasing the threaded hole diameter allowing it to test high strength epoxy systems up to 85 MPa(less than 12,000 psi). The improved tensile button can be used in button- to-button or button-to-panel configurations.

  9. Tensile Properties of Hydrogels and of Snake Skin

    NASA Technical Reports Server (NTRS)

    Hinkley, Jeffrey A.; Savitzky, Alan H.; Rivera, Gabriel; Gehrke, Stevin H.

    2002-01-01

    Stimulus-responsive or 'smart' gels are of potential interest as sensors and actuators, in industrial separations, and as permeable delivery systems. In most applications, a certain degree of mechanical strength and toughness will be required, yet the large-strain behavior of gels has not been widely reported. Some exceptions include work on gelatin and other food gels, some characterization of soft gels applicable for in-vitro cell growth studies, and toughness determinations on commercial contact lens materials. In general, it can be anticipated that the gel stiffness will increase with increasing degree of crosslinking, but the tensile strength may go through a maximum. Gel properties can be tailored by varying not only the degree of crosslinking, but also the polymer concentration and the nature of the polymer backbone (e.g. its stiffness or solubility). Polypeptides provide an especially interesting case, where secondary structure affects trends in moduli and conformational transitions may accompany phase changes. A few papers on the tensile properties of responsive gels have begun to appear. The responsive hydrogel chosen for the present study, crosslinked hydroxypropylcellulose, shrinks over a rather narrow temperature range near 44 C. Some vertebrate skin is also subject to substantial strain. Among reptiles, the morphologies of the skin and scales show wide variations. Bauer et al. described the mechanical properties and histology of gecko skin; longitudinal tensile properties of snake skin were examined by Jayne with reference to locomotion. The present measurements focus on adaptations related to feeding, including the response of the skin to circumferential tension. Tensile properties will be related to interspecific and regional variation in skin structure and folding.

  10. Tensile property of low carbon steel with gridding units

    NASA Astrophysics Data System (ADS)

    Wang, Chuanwei; Zhou, Hong; Zhang, Zhihui; Jing, Zhengjun; Cong, Dalong; Meng, Chao; Ren, Luquan

    2013-05-01

    Although much effort has been devoted to the mechanical properties of biomimetic coupled laser remelting (BCLR) processed steels, our understanding to the strengthening and toughening mechanisms of it has still remained unclear. To address it, here we studied the roles played by the gridding units of BCLR steels. Tensile tests show that the gridding units have a significant influence on the tensile properties. Interestingly, such an influence is essentially decided by the unit distance of gridding units. The strength increases with the unit distance narrowing while the ductility first increases with it up to a maximum then decreases. The mechanism behind these changes is attributed to the combined effects of the microstructure changes in the units and the stress transition throughout the BCLR samples.

  11. Casting behavior and tensile strength of cast BaTiO sub 3 tape

    SciTech Connect

    Karas, A.; Kumagai, Toshiya; Cannon, W.R. )

    1988-07-01

    The casting behavior and properties of thin, unsintered BaTiO{sub 3} tapes were studied by measuring viscosity of the slip, green density, ultimate tensile stress, and strain to failure. It was found that increasing the binder to plasticizer ratio increased slip viscosity and strength as expected but also increased strain to failure, and that increasing the poly(ethylene glycol) to benzyl butyl phthalate ratio improved tape release and tape strength, but a small amount of benzyl butyl phthalate improved strain to failure. In addition, increasing the powder to organics ratio increased slip viscosity and green density but strength passed through a maximum and strain to failure decreased. Both slip viscosity and green density were optimized at a particular dispersant concentration but strength decreased monotonically with increased dispersant addition. Finally, an optimum cyclohexanone addition led to a maximum density and strength.

  12. The relation between the tensile strength and the hardness of metals

    NASA Technical Reports Server (NTRS)

    Schwarz, O

    1930-01-01

    This report presents methods determining the hardness and tensile strength of metals by showing the effect and dependence of the hardness numbers on the strain-hardening. Relations between the hardness numbers and the ordinary stress-strain diagrams and tensile strength are given. Procedures for finding the Brinell strength are also presented.

  13. Effect of Root Moisture Content and Diameter on Root Tensile Properties

    PubMed Central

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  14. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation. PMID:27003872

  15. Effect of Root Moisture Content and Diameter on Root Tensile Properties.

    PubMed

    Yang, Yuanjun; Chen, Lihua; Li, Ning; Zhang, Qiufen

    2016-01-01

    The stabilization of slopes by vegetation has been a topical issue for many years. Root mechanical characteristics significantly influence soil reinforcement; therefore it is necessary to research into the indicators of root tensile properties. In this study, we explored the influence of root moisture content on tensile resistance and strength with different root diameters and for different tree species. Betula platyphylla, Quercus mongolica, Pinus tabulaeformis, and Larix gmelinii, the most popular tree species used for slope stabilization in the rocky mountainous areas of northern China, were used in this study. A tensile test was conducted after root samples were grouped by diameter and moisture content. The results showedthat:1) root moisture content had a significant influence on tensile properties; 2) slightly loss of root moisture content could enhance tensile strength, but too much loss of water resulted in weaker capacity for root elongation, and consequently reduced tensile strength; 3) root diameter had a strong positive correlation with tensile resistance; and4) the roots of Betula platyphylla had the best tensile properties when both diameter and moisture content being controlled. These findings improve our understanding of root tensile properties with root size and moisture, and could be useful for slope stabilization using vegetation.

  16. Effects of porosity on weld-joint tensile strength of aluminum alloys

    NASA Technical Reports Server (NTRS)

    Lovoy, C. V.

    1974-01-01

    Tensile properties in defect-free weldments of aluminum alloys 2014-T6 and 2219-T87 (sheet and plate) are shown to be related to the level or concentration of induced simulated porosity. The scatter diagram shows that the ultimate tensile strength of the weldments displays the most pronounced linear relationship with the level of porosity. The relationships between yield strength or elongation and porosity are either trivial or inconsequential in the lower and intermediate levels of porosity content. In highly concentrated levels of porosity, both yield strength and elongation values decrease markedly. Correlation coefficients were obtained by simple straight line regression analysis between the variables of ultimate tensile strength and pore level. The coefficients were greater, indicating a better correlation, using a pore area accumulation concept or pore volume accumulation than the accumulation of the pore diameters. These relationships provide a useful tool for assessing the existing aerospace radiographic acceptance standards with respect to permissible porosity. In addition, these relationships, in combination with known design load requirements, will serve as an engineering guideline in determining when a weld repair is necessary based on accumulative pore level as detected by radiographic techniques.

  17. The Effect of Temperature on Compressive and Tensile Strengths of Commonly Used Luting Cements: An In Vitro Study

    PubMed Central

    Patil, Suneel G; Sajjan, MC Suresh; Patil, Rekha

    2015-01-01

    Background: The luting cements must withstand masticatory and parafunctional stresses in the warm and wet oral environment. Mouth temperature and the temperature of the ingested foods may induce thermal variation and plastic deformation within the cements and might affect the strength properties. The objectives of this study were to evaluate the effect of temperature on the compressive and diametral tensile strengths of two polycarboxylate, a conventional glass ionomer and a resin modified glass ionomer luting cements and, to compare the compressive strength and the diametral tensile strength of the selected luting cements at varying temperatures. Materials and Methods: In this study, standardized specimens were prepared. The temperature of the specimens was regulated prior to testing them using a universal testing machine at a crosshead speed of 1 mm/min. Six specimens each were tested at 23°C, 37°C and 50°C for both the compressive and diametral tensile strengths, for all the luting cements. Results: All the luting cements showed a marginal reduction in their compressive and diametral tensile strengths at raised temperatures. Fuji Plus was strongest in compression, followed by Fuji I > Poly F > Liv Carbo. Fuji Plus had the highest diametral tensile strength values, followed by Poly F = Fuji I = Liv Carbo, at all temperatures. Conclusion: An increase in the temperature caused no significant reduction in the compressive and diametral tensile strengths of the cements evaluated. The compressive strength of the luting cements differed significantly from one another at all temperatures. The diametral tensile strength of resin modified glass ionomers differed considerably from the other cements, whereas there was no significant difference between the other cements, at all the temperatures. PMID:25859100

  18. Improved tensile strength of glycerol-plasticized gluten bioplastic containing hydrophobic liquids.

    PubMed

    Song, Yihu; Zheng, Qiang

    2008-11-01

    The aim of the present work has been to study the influence of hydrophobic liquids on the morphology and the properties of thermo-molded plastics based on glycerol-plasticized wheat gluten (WG). While the total amount of castor oil and glycerol was remained constant at 30 wt%, castor oil with various proportions with respect to glycerol was incorporated with WG by mixing at room temperature and the resultant mixtures were thermo-molded at 120 degrees C to prepare sheet samples. Moisture absorption, morphology, dynamic mechanical properties, and tensile properties (Young's modulus, tensile strength and elongation at break) of the plastics were evaluated. Experimental results showed that the physical properties of WG plastic were closely related to glycerol to castor oil ratio. Increasing in castor oil content reduces the moisture absorption markedly, which is accompanied with a significant improvement in tensile strength and Young's modulus. These observations were further confirmed in 24 wt% glycerol-plasticized WG plastics containing 6 wt% silicone oil or polydimethylsiloxane (PDMS) liquid rubber.

  19. Enhancement of tensile strength of lignocellulosic jute fibers by alkali-steam treatment.

    PubMed

    Saha, Prosenjit; Manna, Suvendu; Chowdhury, Sougata Roy; Sen, Ramkrishna; Roy, Debasis; Adhikari, Basudam

    2010-05-01

    The physico-chemical properties of jute fibers treated with alkali (NaOH) solution have been investigated in this study. The treatments were applied under ambient and elevated temperatures and high pressure steaming conditions. To the knowledge of these authors the influence of alkali-steam treatment on the uniaxial tensile strength of natural ligno-cellulosic fibers, such as jute, has not been investigated earlier. The results from this investigation indicate that a 30 min dipping of the fibers in 0.5% alkali solution followed by 30 min alkali-steam treatment leads to an increase in the tensile strength of up to 65%. The increase appears to be due to fiber separation and removal of non-cellulosic materials, which, in turn, resulted in an increased crystallinity.

  20. Application of a tensile-strength test method to the evaluation of hydrating hair products.

    PubMed

    Mercelot, V

    1998-08-01

    The usual methods applied to studying the hydration state of hair (e.g. gravimetry, microscopy, evaporimetry) are mostly concerned with a limited area of the fibre. Consequently, the results obtained do not reflect the variability of the physicochemical properties of the whole fibre. Moreover, there are not many experimental methods to evaluate the hydrating power of hair care products in the literature. This study proposes a new method to measure the hydration state of treated or untreated hair by using a tensile strength test. A graphic analysis of tensile strength variation as a function of relative humidity after hair treatment allows the calculation of three hydration indexes: protection index, instant hydration index and permanent hydration index. This technique can give useful information on the behaviour of hair versus relative humidity and on the different hydrating mechanisms exhibited by hair care products.

  1. Fast tablet tensile strength prediction based on non-invasive analytics.

    PubMed

    Halenius, Anna; Lakio, Satu; Antikainen, Osmo; Hatara, Juha; Yliruusi, Jouko

    2014-06-01

    In this paper, linkages between tablet surface roughness, tablet compression forces, material properties, and the tensile strength of tablets were studied. Pure sodium halides (NaF, NaBr, NaCl, and NaI) were chosen as model substances because of their simple and similar structure. Based on the data available in the literature and our own measurements, various models were made to predict the tensile strength of the tablets. It appeared that only three parameters-surface roughness, upper punch force, and the true density of material-were needed to predict the tensile strength of a tablet. Rather surprising was that the surface roughness alone was capable in the prediction. The used new 3D imaging method (Flash sizer) was roughly a thousand times quicker in determining tablet surface roughness than traditionally used laser profilometer. Both methods gave practically analogous results. It is finally suggested that the rapid 3D imaging can be a potential in-line PAT tool to predict mechanical properties of tablets in production.

  2. High Tensile Strength Amalgams for In-Space Fabrication and Repair

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.

    2006-01-01

    Amalgams are well known for their use in dental practice as a tooth filling material. They have a number of useful attributes that include room temperature fabrication, corrosion resistance, dimensional stability, and very good compressive strength. These properties well serve dental needs but, unfortunately, amalgams have extremely poor tensile strength, a feature that severely limits other potential applications. Improved material properties (strength and temperature) of amalgams may have application to the freeform fabrication of repairs or parts that might be necessary during an extended space mission. Advantages would include, but are not limited to: the ability to produce complex parts, a minimum number of processing steps, minimum crew interaction, high yield - minimum wasted material, reduced gravity compatibility, minimum final finishing, safety, and minimum power consumption. The work presented here shows how the properties of amalgams can be improved by changing particle geometries in conjunction with novel engineering metals.

  3. The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments.

    PubMed

    West, Daniel W D; Lee-Barthel, Ann; McIntyre, Todd; Shamim, Baubak; Lee, Cassandra A; Baar, Keith

    2015-10-15

    Exercise stimulates a dramatic change in the concentration of circulating hormones, such as growth hormone (GH), but the biological functions of this response are unclear. Pharmacological GH administration stimulates collagen synthesis; however, whether the post-exercise systemic milieu has a similar action is unknown. We aimed to determine whether the collagen content and tensile strength of tissue-engineered ligaments is enhanced by serum obtained post-exercise. Primary cells from a human anterior cruciate ligament (ACL) were used to engineer ligament constructs in vitro. Blood obtained from 12 healthy young men 15 min after resistance exercise contained GH concentrations that were ∼7-fold greater than resting serum (P < 0.001), whereas IGF-1 was not elevated at this time point (P = 0.21 vs. rest). Ligament constructs were treated for 7 days with medium supplemented with serum obtained at rest (RestTx) or 15 min post-exercise (ExTx), before tensile testing and collagen content analysis. Compared with RestTx, ExTx enhanced collagen content (+19%; 181 ± 33 vs. 215 ± 40 μg per construct P = 0.001) and ligament mechanical properties - maximal tensile load (+17%, P = 0.03 vs. RestTx) and ultimate tensile strength (+10%, P = 0.15 vs. RestTx). In a separate set of engineered ligaments, recombinant IGF-1, but not GH, enhanced collagen content and mechanics. Bioassays in 2D culture revealed that acute treatment with post-exercise serum activated mTORC1 and ERK1/2. In conclusion, the post-exercise biochemical milieu, but not recombinant GH, enhances collagen content and tensile strength of engineered ligaments, in association with mTORC1 and ERK1/2 activation.

  4. Tensile and creep properties of titanium-vanadium, titanium-molybdenum, and titanium-niobium alloys

    NASA Technical Reports Server (NTRS)

    Gray, H. R.

    1975-01-01

    Tensile and creep properties of experimental beta-titanium alloys were determined. Titanium-vanadium alloys had substantially greater tensile and creep strength than the titanium-niobium and titanium-molybdenum alloys tested. Specific tensile strengths of several titanium-vanadium-aluminum-silicon alloys were equivalent or superior to those of commercial titanium alloys to temperatures of 650 C. The Ti-50V-3Al-1Si alloy had the best balance of tensile strength, creep strength, and metallurgical stability. Its 500 C creep strength was far superior to that of a widely used commercial titanium alloy, Ti-6Al-4V, and almost equivalent to that of newly developed commercial titanium alloys.

  5. FE analysis strategies for structural materials with small tensile strength

    SciTech Connect

    Borri, A. ); Sorace, S. )

    1993-05-01

    A review of the smeared crack approach to the finite element analysis of small tensile strength (STS) materials is presented. The most widely applied strategies for crack modeling, shear transfer mechanism, and the definition of the mechanical constitutive laws and failure critically discussed. The models and special options in the ANSYS, ADINA, and ABAQUS programs are considered in detail, and applied to the analysis of a square panel under boundary pressures. The three solutions were compared in terms of the final broadening of the panel cracked zones. The results of the analysis of an hemispherical dome over a cylindrical drum are also presented. The Romulus Temple in the Roman Forum was the reference structure for this FE model. The problem was analyzed by a special procedure using the ANSYS concrete element. The results were compared with those of a discrete crack solution which reproduced the real cracked configuration of the building, and then with an experimental survey carried out by the flat jack technique.

  6. Tensile strength of fiber reinforced plastics at 77K irradiated by various radiation sources

    SciTech Connect

    Humer, K.; Weber, H.W.; Tschegg, E.K.; Egusa, S.; Birtcher, R.C.; Gerstenberg, H.

    1993-08-01

    The influence of radiation damage on the mechanical properties of fiber reinforced plastics (FRPs), which are considered as candidate materials for the insulation of superconducting magnets for nuclear fusion reactors, has been investigated. Different types of FRPs (epoxies, bismaleimides; two- and three-dimensional reinforcement structures with E-, S-, or T-glass fibers) has been included in the test program. Three aspects of our present results will be discussed in detail. The first is related to an assessment of the tensile strength and its radiation dependence under the influence of strongly varying radiation conditions. The second aspect refers to low temperature ({approx}5 K) reactor irradiation of selected materials. In this case, identical sets of tensile test samples were transferred into the tensile testing machine, one without warming-up to room temperature and the other after an annealing cycle to room temperature. Finally, a comparison between the radiation response of different materials is made. It turns out that the three-dimensionally reinforced bismaleimide shows the smallest degradation of its tensile properties under all irradiation conditions.

  7. Bulk metallic glass composite with good tensile ductility, high strength and large elastic strain limit

    PubMed Central

    Wu, Fu-Fa; Chan, K. C.; Jiang, Song-Shan; Chen, Shun-Hua; Wang, Gang

    2014-01-01

    Bulk metallic glasses exhibit high strength and large elastic strain limit but have no tensile ductility. However, bulk metallic glass composites reinforced by in-situ dendrites possess significantly improved toughness but at the expense of high strength and large elastic strain limit. Here, we report a bulk metallic glass composite with strong strain-hardening capability and large elastic strain limit. It was found that, by plastic predeformation, the bulk metallic glass composite can exhibit both a large elastic strain limit and high strength under tension. These unique elastic mechanical properties are attributed to the reversible B2↔B19′ phase transformation and the plastic-predeformation-induced complicated stress state in the metallic glass matrix and the second phase. These findings are significant for the design and application of bulk metallic glass composites with excellent mechanical properties. PMID:24931632

  8. Tensile and flexural strength of non-graphitic superhybrid composites: Predictions and comparisons

    NASA Technical Reports Server (NTRS)

    Chamis, C. C.; Sinclair, J. H.; Lark, R. F.

    1979-01-01

    Equations are presented and described which can be used to predict bounds on the tensile and flexural strengths of nongraphitic superhybrid (NGSH) composites. These equations are derived by taking into account the measured stress-strain behavior, the lamination residual stresses and the sequence of events leading to fracture. The required input for using these equations includes constituents, properties (elastic and strength), NGSH elastic properties, cure temperature, and ply stress influence coefficients. Results predicted by these equations are in reasonably good agreement with measured data for strength and for the apparent knees in the nonlinear stress-strain curve. The lower bound values are conservative compared to measured data. These equations are relatively simple and are suitable for use in the preliminary design and initial sizing of structural components made from NGSH composites.

  9. Chitosan films with improved tensile strength and toughness from N-acetyl-cysteine mediated disulfide bonds.

    PubMed

    Miles, Kevin Barrett; Ball, Rebecca Lee; Matthew, Howard William Trevor

    2016-03-30

    To improve the mechanical properties of chitosan (Ct) materials without the use of cytotoxic crosslinkers, disulfide cross-linkable Ct was synthesized by grafting N-acetyl-cysteine (NAC) to Ct using carbodiimide chemistry. Cast films of NAC-Ct conjugates were prepared with degrees of substitution (DS) of 0%, 6%, 15%, and 20%, and the disulfide bond formation was induced by increasing the reaction media pH to 11. The tensile strength, breaking strain, elastic moduli and toughness of disulfide cross-linked polymers were analyzed by monotonic tensile testing of hydrated NAC-Ct films. Crystallinity was determined via XRD. Results demonstrated that NAC incorporation and crosslinking in chitosan produced tougher polymer films with 4-fold higher tensile strength (10 MPa) and 6-fold greater elongation (365%), but reduced crystallinity, compared to unmodified chitosan. The resilience of NAC-Ct films was evaluated by cyclic testing, and results demonstrate that increasing NAC content produced a more resilient material that dissipated less energy when deformed. These improved mechanical properties broaden chitosan's applicability towards the construction of mechanically robust implantable scaffolds for tissue regeneration.

  10. Biocomposites from abaca strands and polypropylene. Part I: Evaluation of the tensile properties.

    PubMed

    Vilaseca, Fabiola; Valadez-Gonzalez, Alex; Herrera-Franco, Pedro J; Pèlach, M Angels; López, Joan Pere; Mutjé, Pere

    2010-01-01

    In this paper, abaca strands were used as reinforcement of polypropylene matrix and their tensile mechanical properties were studied. It was found relevant increments on the tensile properties of the abaca strand-PP composites despite the lack of good adhesion at fiber-matrix interface. Afterwards, it was stated the influence of using maleated polypropylene (MAPP) as compatibilizer to promote the interaction between abaca strands and polypropylene. The intrinsic mechanical properties of the reinforcement were evaluated and used for modeling both the tensile strength and elastic modulus of the composites. For these cases, the compatibility factor for the ultimate tensile strength was deduced from the modified rule of mixtures. Additionally, the experimental fiber orientation coefficient was measured, allowing determining the interfacial shear strengths of the composites and the critical fiber length of the abaca strand reinforcement. The mechanical improvement was compared to that obtained for fiberglass-reinforced PP composites and evaluated under an economical and technical point of view. PMID:19700312

  11. High temperature tensile properties of V-4Cr-4Ti

    SciTech Connect

    Zinkle, S.J.; Rowcliffe, A.F.; Stevens, C.O.

    1998-09-01

    Tensile tests have been performed on V-4Cr-4Ti at 750 and 800 C in order to extend the data base beyond the current limit of 700 C. From comparison with previous measurements, the yield strength is nearly constant and tensile elongations decrease slightly with increasing temperature between 300 and 800 C. The ultimate strength exhibits an apparent maximum near 600 C (attributable to dynamic strain aging) but adequate strength is maintained up to 800 C. The reduction in area measured on tensile specimens remained high ({approximately}80%) for test temperatures up to 800 C, in contrast to previous reported results.

  12. Asteroids With Tensile Strength: The Case of 2015 HM10

    NASA Astrophysics Data System (ADS)

    Busch, Michael W.; Benner, Lance A. M.; Naidu, Shantanu P.; Brozovic, Marina; Richardson, James E.; Rivera-Valentin, Edgard G.; Taylor, Patrick A.; Ford, H. Alyson; Ghigo, Frank D.; Giorgini, Jon D.; Jao, Joseph S.; Teitelbaum, Lawrence

    2015-11-01

    Near-Earth asteroid 2015 HM10 was discovered on 2015 April 19 with the 4-m Blanco Telescope at Cerro Tololo (MPEC 2015-H90). HM10 made a 0.00295 AU / 1.14 lunar distance flyby of Earth on July 7. This was the asteroid’s closest approach to Earth until at least 2419.We observed HM10 with radar between July 5 and July 8 using Arecibo, the 70 m DSS-14 and 34 m DSS-13 antennas at Goldstone, Green Bank, and elements of the Very Long Baseline Array (VLBA). Bistatic observations were crucial to obtain high-resolution images of HM10 due to the short round-trip travel time of the radar signal, which was as low as 2.95 s on July 7. Our finest image resolution was 3.75 m/pixel in range, obtained on July 7 with the new 80 kW C-band (7190 MHz, 4.2 cm) transmitter on DSS-13 and receiving at Green Bank with the new radar backend.Optical lightcurves obtained prior to closest approach indicated that HM10 has a spin period of ~22.2 minutes and an elongated shape (W. Ryan, pers. comm). The delay-Doppler radar images confirm the rotation period estimated from photometry and reveal that HM10 has a long-axis extent of 80-100 m with an equatorial aspect ratio of about 2:1. Radar speckle tracking transmitting from Arecibo and receiving with the VLBA on July 6 rule out any non-principal axis ‘wobble’ with an amplitude greater than ~10º.HM10’s rapid rotation implies significant cohesion, with a minimum tensile strength of 25-150 Pa required at its center to prevent disruption, assuming overall bulk density between 0.7 and 3.9 g cm-3. This is comparable to strength predictions for rubble-pile aggregates (e.g. Scheeres, Britt, Carry, & Holsapple 2015, Asteroids IV, in press). HM10 is not necessarily a ‘monolith’.HM10’s shape is complex and irregular. The radar images show angular features and ‘facets’ up to ~30 m across. There is also a cluster of radar-bright pixels that tracks with HM10’s rotation, consistent with a high standing feature 15-20 m across. This feature is

  13. Modeling approach for tensile strength of interphase layers in polymer nanocomposites.

    PubMed

    Zare, Yasser

    2016-06-01

    At the first step, this paper describes a developed model for tensile strength of interphase layers (σ(k)) in polymer nanocomposites. The "σ(k)" is expressed as linear, exponential and power functions of the distance between nanoparticles and polymer matrix (x(k)). Afterwards, the predictions of these equations at the central layer of interphase (the average strength) are compared to the calculations of interphase strength (σ(i)) by several micromechanical models including the developed Leidner-Woodhams and Pukanszky models to choose the best equation which expresses "σ(k)". The calculations are carried out for several reported samples. The equation which expresses the "σ(k)" as a power function of "xk" shows the best results compared to others. Also, its predictions significantly depend to an exponent as "Z" which demonstrates the level of interphase properties. According to the chosen equation, the "σ(m)" and "σ(p)" play positive roles in "σ(i)" predictions at low "Z" value, but a high "Z" eliminates the effect of "σ(m)" on the tensile strength of interphase layers. PMID:26990956

  14. Comparative evaluation of compressive strength, diametral tensile strength and shear bond strength of GIC type IX, chlorhexidine-incorporated GIC and triclosan-incorporated GIC: An in vitro study

    PubMed Central

    Jaidka, Shipra; Somani, Rani; Singh, Deepti J.; Shafat, Shazia

    2016-01-01

    Aim: To comparatively evaluate the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX, chlorhexidine-incorporated glass ionomer cement, and triclosan-incorporated glass ionomer cement. Materials and Methods: In this study, glass ionomer cement type IX was used as a control. Chlorhexidine diacetate, and triclosan were added to glass ionomer cement type IX powder, respectively, in order to obtain 0.5, 1.25, and 2.5% concentrations of the respective experimental groups. Compressive strength, diametral tensile strength, and shear bond strength were evaluated after 24 h using Instron Universal Testing Machine. The results obtained were statistically analyzed using the independent t-test, Dunnett test, and Tukey test. Results: There was no statistical difference in the compressive strength, diametral tensile strength, and shear bond strength of glass ionomer cement type IX (control), 0.5% triclosan-glass ionomer cement, and 0.5% chlorhexidine-glass ionomer cement. Conclusion: The present study suggests that the compressive strength, diametral tensile strength, and shear bond strength of 0.5% triclosan-glass ionomer cement and 0.5% chlorhexidine-glass ionomer cement were similar to those of the glass ionomer cement type IX, discernibly signifying that these can be considered as viable options for use in pediatric dentistry with the additional value of antimicrobial property along with physical properties within the higher acceptable range. PMID:27195231

  15. Tensile strength and its scatter of unidirectional carbon fiber reinforced composites

    SciTech Connect

    Hamada, H.; Oya, N.; Yamashita, K.; Maekawa, Z.I.

    1995-12-31

    0 (along the fiber direction) and 90 degree (transverse to the fiber direction) tension tests of Carbon Fiber Reinforced Plastics (CFRP) using a great number of specimens were conducted. Tensile properties and their scatter were evaluated by means of the data base. Materials used in this study were seven kinds of carbon fibers and three kinds of epoxy resins. Reinforcing fiber and matrix resin properties strongly affected on 0 and 90 degree properties of CFRP respectively. In 0 degree tension tests, fracture mode of specimen vaned in each material, and a relationship between the scatter of strength and the fracture mode existed. From the results of 9 degree tension tests, some differences of interfacial properties between each laminate were` also detected. According to some considerations on fracture mechanism in 0 degree tension test, it was deduced that the fracture mode depended on the balance of fiber, matrix and interface properties.

  16. SIZE EFFECTS IN THE TENSILE STRENGTH OF UNIDIRECTIONAL FIBER COMPOSITES

    SciTech Connect

    M. SIVASAMBU; ET AL

    1999-08-01

    Monte Carlo simulation and theoretical modeling are used to study the statistical failure modes in unidirectional composites consisting of elastic fibers in an elastic matrix. Both linear and hexagonal fiber arrays are considered, forming 2D and 3D composites, respectively. Failure is idealized using the chain-of-bundles model in terms of {delta}-bundles of length {delta}, which is the length-scale of fiber load transfer. Within each {delta}-bundle, fiber load redistribution is determined by local load-sharing models that approximate the in-plane fiber load redistribution from planar break clusters as predicted from 2D and 3D shear-lag models. As a result these models are 1D and 2D, respectively. Fiber elements have random strengths following either the Weibull or the power-law distribution with shape and scale parameters {rho} and {sigma}{sub {delta}}, respectively. Simulations of {delta}-bundle failure, reveal two regimes. When fiber strength variability is low (roughly {rho} > 2) the dominant failure mode is by growing clusters of fiber breaks up to instability. When this variability is high (roughly 0 < {rho} < 1) cluster formation is suppressed by a dispersed fiber failure mode. For these two cases, closed-form approximations to the strength distribution of a {delta}-bundle are developed under the local load-sharing model and an equal load-sharing model of Daniels, respectively. The results compare favorably with simulations on {delta}-bundles with up to 1500 fibers. The location of the transition in terms of {rho} is affected by the upper tail properties of the fiber strength distributions as well as the number of fibers.

  17. The Cryogenic Tensile Properties of an Extruded Aluminum-Beryllium Alloy

    NASA Technical Reports Server (NTRS)

    Gamwell, W. R.

    2002-01-01

    Basic mechanical properties; i.e., ultimate tensile strength, yield strength, percent elongation, and elastic modulus, were obtained for the aluminum-beryllium alloy, AlBeMet162, at cryogenic (-195.5 C (-320 F) and -252.8 C (-423 F)) temperatures. The material evaluated was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions."

  18. Effect of the strain-induced melt activation (SIMA) process on the tensile properties of a new developed super high strength aluminum alloy modified by Al-5Ti-1B grain refiner

    SciTech Connect

    Haghparast, Amin; Nourimotlagh, Masoud; Alipour, Mohammad

    2012-09-15

    In this study, the effect of Al-5Ti-1B grain refiners and modified strain-induced melt activation process on an Al-Zn-Mg-Cu alloy was studied. The optimum level of Ti was found to be 0.1 wt.%. The specimens subjected to deformation ratio of 40% (at 300 Degree-Sign C) and various heat treatment times (10-40 min) and temperature (550-600 Degree-Sign C) regimes were characterized in this study. Reheating condition to obtain a fine globular microstructure was optimized. Microstructural examinations were conducted by optical and scanning electron microscopy coupled with an energy dispersive spectrometry. The optimum temperature and time in strain-induced melt activation process are 575 Degree-Sign C and 20 min, respectively. T6 heat treatment including quenching to room temperature and aging at 120 Degree-Sign C for 24 h was employed to reach to the maximum strength. Significant improvements in mechanical properties were obtained with the addition of grain refiner combined with T6 heat treatment. After the T6 heat treatment, the average tensile strength increased from 283 MPa to 587 and 332 MPa to 617 for samples refined with 2 wt.% Al-5Ti-1B before and after strain-induced melt activation process and extrusion process, respectively. Ultimate strength of Ti-refined specimens without SIMA process has a lower value than globular microstructure specimens after SIMA and extrusion process. - Highlights: Black-Right-Pointing-Pointer The effect of Al-5Ti-1B on the aluminum alloy produced by SIMA process was studied. Black-Right-Pointing-Pointer Al-5Ti-1B is an effective in reducing the grain and reagent fine microstructure. Black-Right-Pointing-Pointer Reheating condition to obtain a fine globular microstructure was optimized. Black-Right-Pointing-Pointer The optimum temperature and time in SIMA process are 575 Degree-Sign C and 20 min respectively. Black-Right-Pointing-Pointer UTS of globular structure specimens have a more value than Ti-refined specimens.

  19. Increased Tensile Strength of Carbon Nanotube Yarns and Sheets through Chemical Modification and Electron Beam Irradiation

    NASA Technical Reports Server (NTRS)

    Miller, Sandi G.; Williams, Tiffany S.; Baker, James S.; Sola, Francisco; Lebron-Colon, Marisabel; McCorkle, Linda S.; Wilmoth, Nathan G.; Gaier, James; Chen, Michelle; Meador, Michael A.

    2014-01-01

    The inherent strength of individual carbon nanotubes offers considerable opportunity for the development of advanced, lightweight composite structures. Recent work in the fabrication and application of carbon nanotube (CNT) forms such as yarns and sheets has addressed early nanocomposite limitations with respect to nanotube dispersion and loading; and has pushed the technology toward structural composite applications. However, the high tensile strength of an individual CNT has not directly translated to macro-scale CNT forms where bulk material strength is limited by inter-tube electrostatic attraction and slippage. The focus of this work was to assess post processing of CNT sheet and yarn to improve the macro-scale strength of these material forms. Both small molecule functionalization and e-beam irradiation was evaluated as a means to enhance tensile strength and Youngs modulus of the bulk CNT material. Mechanical testing results revealed a tensile strength increase in CNT sheets by 57 when functionalized, while an additional 48 increase in tensile strength was observed when functionalized sheets were irradiated; compared to unfunctionalized sheets. Similarly, small molecule functionalization increased yarn tensile strength up to 25, whereas irradiation of the functionalized yarns pushed the tensile strength to 88 beyond that of the baseline yarn.

  20. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations.

  1. Tensile and flexural strength of commercially pure titanium submitted to laser and tungsten inert gas welds.

    PubMed

    Atoui, Juliana Abdallah; Felipucci, Daniela Nair Borges; Pagnano, Valéria Oliveira; Orsi, Iara Augusta; Nóbilo, Mauro Antônio de Arruda; Bezzon, Osvaldo Luiz

    2013-01-01

    This study evaluated the tensile and flexural strength of tungsten inert gas (TIG) welds in specimens made of commercially pure titanium (CP Ti) compared with laser welds. Sixty cylindrical specimens (2 mm diameter x 55 mm thick) were randomly assigned to 3 groups for each test (n=10): no welding (control), TIG welding (10 V, 36 A, 8 s) and Nd:YAG laser welding (380 V, 8 ms). The specimens were radiographed and subjected to tensile and flexural strength tests at a crosshead speed of 1.0 mm/min using a load cell of 500 kgf applied on the welded interface or at the middle point of the non-welded specimens. Tensile strength data were analyzed by ANOVA and Tukey's test, and flexural strength data by the Kruskal-Wallis test (α=0.05). Non-welded specimens presented significantly higher tensile strength (control=605.84 ± 19.83) (p=0.015) and flexural strength (control=1908.75) (p=0.000) than TIG- and laser-welded ones. There were no significant differences (p>0.05) between the welding types for neither the tensile strength test (TIG=514.90 ± 37.76; laser=515.85 ± 62.07) nor the flexural strength test (TIG=1559.66; laser=1621.64). As far as tensile and flexural strengths are concerned, TIG was similar to laser and could be suitable to replace laser welding in implant-supported rehabilitations. PMID:24474361

  2. Relationships between tensile strength, morphology and crystallinity of treated kenaf bast fibers

    NASA Astrophysics Data System (ADS)

    Sosiati, H.; Rohim, Ar; Ma`arif, Triyana, K.; Harsojo

    2013-09-01

    Surface treatments on kenaf bast fibers were carried out with steam, alkali and a combination of steam-alkali. To verify and gain an understanding of their inter-relationship, tensile strength, surface morphology and crystallinity of treated and raw fibers were characterized. Tensile strength of fibers was measured with a universal tensile machine (UTM), crystallinity was estimated using X-ray diffraction (XRD) and Fourier transformation infrared (FTIR) spectroscopy, and surface morphology was examined by scanning electron microscopy (SEM). Tensile strength of the treated fibers was higher than that of the raw fiber. Tensile strength increased after steam treatment and was further improved by alkali treatment, but slightly reduced after steam treatment followed by alkalization. Increase of concentration of alkali tended to increase tensile strength. Differences in tensile strength of the treated fibers are discussed in relation to the changes in surface morphology and crystallinity. Understanding of these relationships may provide direction towards the goal of producing better performance of natural fiber composites.

  3. Optimization of tensile strength of ferritic/austenitic laser-welded components

    NASA Astrophysics Data System (ADS)

    Anawa, E. M.; Olabi, A. G.

    2008-08-01

    Ferritic/austenitic (F/A) joints are a popular dissimilar metal combination used in many applications. F/A joints are usually produced using conventional processes. Laser beam welding (LBW) has recently been successfully used for the production of F/A joints with suitable mechanical properties. In this study, a statistical design of experiment (DOE) was used to optimize selected LBW parameters (laser power, welding speed and focus length). Taguchi approach was used for the selected factors, each having five levels (L-25; 5×3). Joint strength was determined using the notched-tensile strength (NTS) method. The results were analysed using analyses of variance (ANOVA) and the signal-to-noise (S/N) ratios for the optimal parameters, and then compared with the base material. The experimental results indicate that the F/A laser-welded joints are improved effectively by optimizing the input parameters using the Taguchi approach.

  4. Experimental and Numerical Study on Tensile Strength of Concrete under Different Strain Rates

    PubMed Central

    Min, Fanlu; Yao, Zhanhu; Jiang, Teng

    2014-01-01

    The dynamic characterization of concrete is fundamental to understand the material behavior in case of heavy earthquakes and dynamic events. The implementation of material constitutive law is of capital importance for the numerical simulation of the dynamic processes as those caused by earthquakes. Splitting tensile concrete specimens were tested at strain rates of 10−7 s−1 to 10−4 s−1 in an MTS material test machine. Results of tensile strength versus strain rate are presented and compared with compressive strength and existing models at similar strain rates. Dynamic increase factor versus strain rate curves for tensile strength were also evaluated and discussed. The same tensile data are compared with strength data using a thermodynamic model. Results of the tests show a significant strain rate sensitive behavior, exhibiting dynamic tensile strength increasing with strain rate. In the quasistatic strain rate regime, the existing models often underestimate the experimental results. The thermodynamic theory for the splitting tensile strength of concrete satisfactorily describes the experimental findings of strength as effect of strain rates. PMID:24883355

  5. Microstructure and Tensile Properties of Multiple Compressed CuZn Alloy

    NASA Astrophysics Data System (ADS)

    Hu, F. Y.; Cao, Q. D.; Xiao, J. R.; Dong, X. H.; Ma, S. J.; Zhang, X. P.

    2016-10-01

    The effects of zinc content, preannealing temperature and time, and a number of compression passes on the microstructure and tensile properties of multiple compressed (MCed) CuZn alloys were studied by the orthogonal experimental design method. The grain size of the CuZn alloys was refined by multiple compression (MC), which improved the ultimate tensile strength and tensile yield strength of the annealed CuZn alloys. The degree of grain refinement increased with decreasing grain size of the annealed materials. Fragmentation of the α-Cu and secondary phases during the MC process led to the grain refinement. The zinc content, preannealing temperature and time, and a number of compression passes were therefore found to have a very significant effect on the tensile properties of the MCed material.

  6. Microstructure and Tensile Properties of Multiple Compressed CuZn Alloy

    NASA Astrophysics Data System (ADS)

    Hu, F. Y.; Cao, Q. D.; Xiao, J. R.; Dong, X. H.; Ma, S. J.; Zhang, X. P.

    2016-08-01

    The effects of zinc content, preannealing temperature and time, and a number of compression passes on the microstructure and tensile properties of multiple compressed (MCed) CuZn alloys were studied by the orthogonal experimental design method. The grain size of the CuZn alloys was refined by multiple compression (MC), which improved the ultimate tensile strength and tensile yield strength of the annealed CuZn alloys. The degree of grain refinement increased with decreasing grain size of the annealed materials. Fragmentation of the α-Cu and secondary phases during the MC process led to the grain refinement. The zinc content, preannealing temperature and time, and a number of compression passes were therefore found to have a very significant effect on the tensile properties of the MCed material.

  7. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding.

    PubMed

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10-20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%.

  8. Anisotropy of tensile strength and fracture mode of perfect face-centered-cubic crystals

    NASA Astrophysics Data System (ADS)

    Wang, R. F.; Xu, J.; Qu, R. T.; Liu, Z. Q.; Zhang, Z. F.

    2015-06-01

    This study presents an effective method to calculate the ideal tensile strength of six face-centered-cubic (fcc) crystals (Cu, Au, Ni, Pt, Al, and Ir) along an arbitrary tensile direction by considering the coupling effect of normal stress and shear stress on a given crystallographic plane. Meanwhile, the fracture modes of the six crystals can also be derived from the competition between shear and cleavage fracture along different crystallographic planes. The results show that both the intrinsic factors (the ideal shear strength and cleavage strength of low-index planes) and the orientation may affect the tensile strength and fracture modes of ideal fcc crystals, which may give the reliable strength limit of fcc metals and well interpret the observed high strength in nano-scale mechanical experiments.

  9. Experimental determination of the dynamic tensile strength of liquid Sn, Pb, and Zn

    NASA Astrophysics Data System (ADS)

    Zaretsky, E. B.

    2016-07-01

    An experimental technique capable of determining the dynamic tensile (spall) strength of metals in the liquid state is described. Relying on this technique, spall data on samples of tin, lead, and zinc pre-heated to 20 K above their melting points were obtained. It is found that the spall strength of the metals is low, 40-100 MPa, but not zero and is, seemingly, affected by material purity and by the rate of tensile deformation preceding sample spallation.

  10. A Tensile Strength of Bermuda Grass and Vetiver Grass in Terms of Root Reinforcement Ability Toward Soil Slope Stabilization

    NASA Astrophysics Data System (ADS)

    Noorasyikin, M. N.; Zainab, M.

    2016-07-01

    An examination on root characteristics and root properties has been implemented in this study. Two types of bioengineering were chose which are Vetiver grass and Bermuda grass as these grasses were widely applied for slope stabilization. The root samples were taken to the laboratory to investigate its classification, characteristics and strength. The root of both grasses was found grow with fibrous root matrix system. In terms of root anchorage, the root matrix system of Vetiver grass was exhibits more strengthen than the Bermuda grass. However, observation on root image from Scanning Electron Microscope test reveals that the root of Vetiver grass becomes non-porous as the moisture content reduced. Meanwhile, the root tensile strength of Bermuda grass was obtained acquired low value with higher percentage of moisture content, root morphology and bonding strength. The results indicated that the root tensile strength is mainly influence by percentage of moisture content and root morphology.

  11. High efficient preparation of carbon nanotube-grafted carbon fibers with the improved tensile strength

    NASA Astrophysics Data System (ADS)

    Fan, Wenxin; Wang, Yanxiang; Wang, Chengguo; Chen, Jiqiang; Wang, Qifen; Yuan, Yan; Niu, Fangxu

    2016-02-01

    An innovative technique has been developed to obtain the uniform catalyst coating on continuously moving carbon fibers. Carbon nanotube (CNT)-grafted carbon fibers with significantly improved tensile strength have been succeeded to produce by using chemical vapor deposition (CVD) when compared to the tensile strength of untreated carbon fibers. The critical requirements for preparation of CNT-grafted carbon fibers with high tensile strength have been found, mainly including (i) the obtainment of uniform coating of catalyst particles with small particle size, (ii) the low catalyst-induced and mechano-chemical degradation of carbon fibers, and (iii) the high catalyst activity which could facilitate the healing and strengthening of carbon fibers during the growth of CNTs. The optimum growth temperature was found to be about 500 °C, and the optimum catalyst is Ni due to its highest activity, there is a pronounced increase of 10% in tensile strength of carbon fibers after CNT growth at 500 °C by using Ni catalyst. Based on the observation from HRTEM images, a healing and crosslink model of neighboring carbon crystals by CNTs has been formulated to reveal the main reason that causes an increase in tensile strength of carbon fibers after the growth of CNTs. Such results have provided the theoretical and experimental foundation for the large-scale preparation of CNT-grafted carbon fibers with the improved tensile strength, significantly promoting the development of CNT-grafted carbon fiber reinforced polymer composites.

  12. Comparative evaluation of tensile strength of Gutta-percha cones with a herbal disinfectant

    PubMed Central

    Mahali, Raghunandhan Raju; Dola, Binoy; Tanikonda, Rambabu; Peddireddi, Suresh

    2015-01-01

    Aim: To evaluate and compare the tensile strength values and influence of taper on the tensile strength of Gutta-percha (GP) cones after disinfection with sodium hypochlorite (SH) and Aloe vera gel (AV). Materials and Methods: Sixty GP cones of size 110, 2% taper, 60 GP cones F3 ProTaper, and 60 GP of size 30, 6% taper were obtained from sealed packs as three different groups. Experimental groups were disinfected with 5.25% SH and 90% AV gel except the control group. Tensile strengths of GP were measured using the universal testing machine. Results: The mean tensile strength values for Group IA, IIA and IIIA are 11.8 MPa, 8.69 MPa, and 9.24 MPa, respectively. Results were subjected to statistical analysis one-way analysis of variance test and Tukey post-hoc test. 5.25% SH solutions decreased the tensile strength of GP cones whereas with 90% AV gel it was not significantly altered. Conclusion: Ninety percent Aloe vera gel as a disinfectant does not alter the tensile strength of GP cones PMID:26752842

  13. Development on the Tensile Fatigue Test Apparatus and Strength Evaluation of Thin Metal Films

    NASA Astrophysics Data System (ADS)

    Fukushi, Miyuki; Miyata, Hiroshi; Murakami, Akira

    Recently, development of medical devices such as catheter and stent are advanced in the low invasion medical field. Considering the functions of human body are affected severely by the medical devices, the high strength reliability of devices must be secured. In these circumstances, the thin metal film, which has high reliability of strength, is useful structural material for further development of low invasion medical device. As the strength characteristics of a thin film depend on thickness and formation process of itself, there is little strength database concerning a thin metal film. In this study, a tensile fatigue testing apparatus with cyclic loading frequency up to 30Hz and maximum loading 8 N for the thin metal film has been developed, and thin rolled films Ti and SUS304 were evaluated on tensile and load-controlled fatigue strength. The static tensile tests give that both are also over the twice of the bulk material on the tensile strength, and the proof stress is high-strength with over 90% of tensile strength respectively. The fatigue test shows that Ti thin film has long life in comparison with the bulk material, however, the fatigue characteristic itself is similar like that of bulk material.

  14. Origin of tensile strength of a woven sample cut in bias directions

    PubMed Central

    Pan, Ning; Kovar, Radko; Dolatabadi, Mehdi Kamali; Wang, Ping; Zhang, Diantang; Sun, Ying; Chen, Li

    2015-01-01

    Textile fabrics are highly anisotropic, so that their mechanical properties including strengths are a function of direction. An extreme case is when a woven fabric sample is cut in such a way where the bias angle and hence the tension loading direction is around 45° relative to the principal directions. Then, once loaded, no yarn in the sample is held at both ends, so the yarns have to build up their internal tension entirely via yarn–yarn friction at the interlacing points. The overall fabric strength in such a sample is a result of contributions from the yarns being pulled out and those broken during the process, and thus becomes a function of the bias direction angle θ, sample width W and length L, along with other factors known to affect fabric strength tested in principal directions. Furthermore, in such a bias sample when the major parameters, e.g. the sample width W, change, not only the resultant strengths differ, but also the strength generating mechanisms (or failure types) vary. This is an interesting problem and is analysed in this study. More specifically, the issues examined in this paper include the exact mechanisms and details of how each interlacing point imparts the frictional constraint for a yarn to acquire tension to the level of its strength when both yarn ends were not actively held by the testing grips; the theoretical expression of the critical yarn length for a yarn to be able to break rather than be pulled out, as a function of the related factors; and the general relations between the tensile strength of such a bias sample and its structural properties. At the end, theoretical predictions are compared with our experimental data. PMID:26064655

  15. Microstructure-Tensile Properties Correlation for the Ti-6Al-4V Titanium Alloy

    NASA Astrophysics Data System (ADS)

    Shi, Xiaohui; Zeng, Weidong; Sun, Yu; Han, Yuanfei; Zhao, Yongqing; Guo, Ping

    2015-04-01

    Finding the quantitative microstructure-tensile properties correlations is the key to achieve performance optimization for various materials. However, it is extremely difficult due to their non-linear and highly interactive interrelations. In the present investigation, the lamellar microstructure features-tensile properties correlations of the Ti-6Al-4V alloy are studied using an error back-propagation artificial neural network (ANN-BP) model. Forty-eight thermomechanical treatments were conducted to prepare the Ti-6Al-4V alloy with different lamellar microstructure features. In the proposed model, the input variables are microstructure features including the α platelet thickness, colony size, and β grain size, which were extracted using Image Pro Plus software. The output variables are the tensile properties, including ultimate tensile strength, yield strength, elongation, and reduction of area. Fourteen hidden-layer neurons which can make ANN-BP model present the most excellent performance were applied. The training results show that all the relative errors between the predicted and experimental values are within 6%, which means that the trained ANN-BP model is capable of providing precise prediction of the tensile properties for Ti-6Al-4V alloy. Based on the corresponding relations between the tensile properties predicted by ANN-BP model and the lamellar microstructure features, it can be found that the yield strength decreases with increasing α platelet thickness continuously. However, the α platelet thickness exerts influence on the elongation in a more complicated way. In addition, for a given α platelet thickness, the yield strength and the elongation both increase with decreasing β grain size and colony size. In general, the β grain size and colony size play a more important role in affecting the tensile properties of Ti-6Al-4V alloy than the α platelet thickness.

  16. Tensile Strength and Hardness Correlations with Microscopy in Friction welded Aluminium to Copper

    NASA Astrophysics Data System (ADS)

    Satish, Rengarajan; Seshagiri Rao, Vaddi; Ananthapadmanaban, Dattaguru; Ravi, Balappa

    2016-01-01

    Aluminium and copper are good conductors of heat and electricity, copper being the better conductor, is a costly metal indeed. On the other hand, aluminium is cheap, easily available and also has a lower density than copper. Hence, worldwide efforts are being made to partially replace copper wire. Solid state welding should be used to join aluminium to copper. This is because the use of fusion welding results in brittle phases formed in the weld interface. One of the solid state welding techniques used for joining aluminium to copper is friction welding. In this paper, an attempt has been made to join aluminium to copper by friction welding by varying the friction welding parameters, namely friction pressure, upset pressure, burn-off length and speed of rotation of the workpiece. Nine different friction welding parameter combinations were used during welding in accordance with ASTM standards and results have been reported. Tensile strength and hardness tests were carried out for each parameter combination. Optimum friction welding parameter combination was identified with respect to tensile strength. Scanning Electron Microscopy and Electron dispersive spectroanalysis were obtained to identify modes of fracture and presence of intermetallic phases for each friction welding combination with the aim to narrow down friction welding parameters that give good properties on the whole.

  17. Effect of plastic anisotropy on tensile strength of single crystals of an Ni-based superalloy

    SciTech Connect

    Kakehi, K.

    1999-12-31

    Turbine blades are designed so that their primary orientation is within 10 to 15{degree} of the <001> axis to insure a low modulus. The secondary dendritic direction (<010> direction) is usually randomly orientated with respect to the longitudinal direction of the turbine blade. The strengths of single crystals are influenced by the crystallographic orientations not only in the tensile direction but also in the normal direction of the specimen because a single crystal possesses intrinsic plastic anisotropy. The air-cooled turbine blades, which have a complicated hollow structure, are composed of sections of various thicknesses. Therefore, the mechanical properties of each blade section will depend on plastic anisotropy and the stress state as well as stress in the longitudinal direction. In previous studies, in an experimental single crystal alloy of an Ni-based superalloy, it has been revealed that {l_brace}111{r_brace}<101>-type slip systems were activated during tensile tests. In this study, by using the experimental alloy which shows distinct active slip systems, the influence of crystallographic orientations and plastic anisotropy on the strength and ductility of single crystals of the Ni-based superalloy have been investigated on the assumption that the {l_brace}111{r_brace}<101> slip systems operate.

  18. Enzymatic surface erosion of high tensile strength polycarbonates based on natural phenols.

    PubMed

    Sommerfeld, Sven D; Zhang, Zheng; Costache, Marius C; Vega, Sebastián L; Kohn, Joachim

    2014-03-10

    Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic-aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young's moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm(-2) d(-1) and 3.0 ± 0.8 μm d(-1), respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (T(g)) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher T(g) and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet T(g) for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between T(g) and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway.

  19. Enzymatic Surface Erosion of High Tensile Strength Polycarbonates Based on Natural Phenols

    PubMed Central

    2015-01-01

    Surface erosion has been recognized as a valuable design tool for resorbable biomaterials within the context of drug delivery devices, surface coatings, and when precise control of strength retention is critical. Here we report on high tensile strength, aromatic–aliphatic polycarbonates based on natural phenols, tyrosol (Ty) and homovanillyl alcohol (Hva), that exhibit enzymatic surface erosion by lipase. The Young’s moduli of the polymers for dry and fully hydrated samples are 1.0 to 1.2 GPa and 0.8 to 1.2 GPa, respectively. Typical characteristics of enzymatic surface erosion were confirmed for poly(tyrosol carbonate) films with concomitant mass-loss and thickness-loss at linear rates of 0.14 ± 0.01 mg cm–2 d–1 and 3.0 ± 0.8 μm d–1, respectively. The molecular weight and the mechanical properties of the residual films remained constant. Changing the ratio of Ty and Hva provided control over the glass transition temperature (Tg) and the enzymatic surface erosion: increasing the Hva content in the polymers resulted in higher Tg and lower enzymatic erosion rate. Polymers with more than 50 mol % Hva were stable at 37 °C in enzyme solution. Analysis on thin films using quartz crystal microbalance with dissipation (QCM-D) demonstrated that the onset temperature of the enzymatic erosion was approximately 20 °C lower than the wet Tg for all tested polymers. This new finding demonstrates that relatively high tensile strength polycarbonates can undergo enzymatic surface erosion. Moreover, it also sheds light on the connection between Tg and enzymatic degradation and explains why few of the high strength polymers follow an enzyme-meditated degradation pathway. PMID:24432806

  20. Evaluation of Surface Roughness and Tensile Strength of Base Metal Alloys Used for Crown and Bridge on Recasting (Recycling)

    PubMed Central

    Hashmi, Syed W.; Rao, Yogesh; Garg, Akanksha

    2015-01-01

    Background Dental casting alloys play a prominent role in the restoration of the partial dentition. Casting alloys have to survive long term in the mouth and also have the combination of structure, molecules, wear resistance and biologic compatibility. According to ADA system casting alloys were divided into three groups (wt%); high noble, Noble and predominantly base metal alloys. Aim To evaluate the mechanical properties such as tensile strength and surface roughness of the new and recast base metal (nickel-chromium) alloys. Materials and Methods Recasting of the base metal alloys derived from sprue and button, to make it reusable has been done. A total of 200 test specimens were fabricated using specially fabricated jig of metal and divided into two groups- 100 specimens of new alloy and 100 specimens of recast alloys, which were tested for tensile strength on universal testing machine and surface roughness on surface roughness tester. Results Tensile strength of new alloy showed no statistically significant difference (p-value>0.05) from recast alloy whereas new alloy had statistically significant surface roughness (Maximum and Average surface roughness) difference (p-value<0.01) as compared to recast alloy. Conclusion Within the limitations of the study it is concluded that the tensile strength will not be affected by recasting of nickel-chromium alloy whereas surface roughness increases markedly. PMID:26393194

  1. The Effect of Gap Angle on Tensile Strength of Preceramic Base Metal Solder Joints

    PubMed Central

    Fattahi, Farnaz; Hashemi Ardakani, Zahra; Hashemi Ardakani, Maryam

    2015-01-01

    Statement of the Problem Soldering is a process commonly used in fabricating dental prosthesis. Since most soldered prosthesis fail at the solder joints; the joint strength is of utmost importance. Purpose The purpose of this study was to evaluate the effect of gap angle on the tensile strength of base metal solder joints. Materials and Method A total number of 40 Ni-Cr samples were fabricated according to ADA/ISO 9693 specifications for tensile test. Samples were cut at the midpoint of the bar, and were placed at the considered angles by employing an explicitly designed device. They were divided into 4 groups regarding the gap angle; Group C (control group) with parallel gap on steady distance of 0.2mm, Group 1: 10°, Group 2: 20°, and Group3: 30° gap angles. When soldered, the specimens were all tested for tensile strength using a universal testing machine at a cross-head speed of 0.5 mm/min with a preload of 10N. Kruskal-Wallis H test was used to compare tensile strength among the groups (p< 0.05). Results The mean tensile strength values obtained from the study groups were respectively 307.84, 391.50, 365.18, and 368.86 MPa. The tensile strength was not statistically different among the four groups in general (p≤ 0.490). Conclusion Making the gap angular at the solder joints and the subsequent unsteady increase of the gap distance would not change the tensile strength of the joint. PMID:26636118

  2. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  3. Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats.

    PubMed

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; Nassir, Zaleha; Bahktiar, Hazri

    2015-04-01

    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing.

  4. Biophotonic effect of diode laser irradiance on tensile strength of diabetic rats.

    PubMed

    Lau, Pik Suan; Bidin, Noriah; Krishnan, Ganesan; Nassir, Zaleha; Bahktiar, Hazri

    2015-04-01

    Low-energy laser irradiance at certain wavelengths is able to stimulate the tissue bio-reaction and enhance the healing process. Collagen deposition is one of the important aspects in healing process because it can increase the strength of the skin. This study was designed to examine the biophotonic effect of irradiance on collagen production of diabetic wound in rat model. The tensile strength of skin was employed as a parameter to describe the wound. Diabetic rat models were induced by streptozotocin via intravenous injection. Skin-breaking strength was measured using an Instron tensile test machine. The experimental animals were treated with 808-nm diode laser at two different powers-0.1 and 0.5 W/cm(2)-and 30, 60, and 120 s for each session. The tensile strength was optimized after treated with high-power diode laser. The photostimulation effect was revealed by accelerated healing process and enhanced tensile strength of wound. Laser photostimulation on tensile strength in diabetic wound suggests that such therapy facilitates collagen production in diabetic wound healing. PMID:25260140

  5. Characterization of Optical Fiber Strength Under Applied Tensile Stress and Bending Stress

    SciTech Connect

    P.E. Klingsporn

    2011-08-01

    Various types of tensile testing and bend radius tests were conducted on silica core/silica cladding optical fiber of different diameters with different protective buffer coatings, fabricated by different fiber manufacturers. The tensile tests were conducted to determine not only the average fiber strengths at failure, but also the distribution in fracture strengths, as well as the influence of buffer coating on fracture strength. The times-to-failure of fiber subjected to constant applied bending stresses of various magnitudes were measured to provide a database from which failure times of 20 years or more, and the corresponding minimum bend radius, could be extrapolated in a statistically meaningful way. The overall study was done to provide an understanding of optical fiber strength in tensile loading and in applied bending stress as related to applications of optical fiber in various potential coizfgurations for weapons and enhanced surveillance campaigns.

  6. Elevated-temperature tensile and creep properties of several ferritic stainless steels

    NASA Technical Reports Server (NTRS)

    Whittenberger, J. D.

    1977-01-01

    The elevated-temperature mechanical properties of several ferritic stainless steels were determined. The alloys evaluated included Armco 18SR, GE 1541, and NASA-18T-A. Tensile and creep strength properties at 1073 and 1273 K and residual room temperature tensile properties after creep testing were measured. In addition, 1273 K tensile and creep tests and residual property testing were conducted with Armco 18SR and GE 1541 which were exposed for 200 hours to a severe oxidizing environment in automotive thermal reactors. Aside from the residual tensile properties for Armco 18SR, prior exposure did not affect the mechanical properties of either alloy. The 1273 K creep strength parallel to the sheet-rolling direction was similar for all three alloys. At 1073 K, NASA-18T-A had better creep strength than either Armco 18SR or GE 1541. NASA-18T-A possesses better residual properties after creep testing than either Armco 18SR or Ge 1541.

  7. Influence of association of "EVA-NBR" on indirect tensile strength of modified bituminous concrete

    NASA Astrophysics Data System (ADS)

    Chinoun, M.; Soudani, K.; Haddadi, S.

    2016-04-01

    The aim of this work is to contribute to the improvement of the mechanical properties of bituminous concrete by modification of bituminous concrete. In this study, we present the results of the indirect tensile strength "ITS" of modified bituminous concrete by the combination of two modifiers, one is a plastomer EVA (Ethylene Vinyl Acetate) and the other is a industrial waste from the shoe soles grinding NBR (Nitrile Butadiene Rubber) as crumb rubber. To modify the bitumen a wet process was used. The results show that the modification of bitumen by EVA-NBR combination increases their resistance to the indirect traction "ITS" compared to the bituminous concrete control. The mixture of 5% [50% EVA+ 50% NBR] is given the best result among the other associations.

  8. Specimen type and size effects on lithium hydride tensile strength distributions

    SciTech Connect

    Oakes, Jr, R E

    1991-12-01

    Weibull's two-parameter statistical-distribution function is used to account for the effects of specimen size and loading differences on strength distributions of lithium hydride. Three distinctly differing uniaxial specimen types (i.e., an elliptical-transition pure tensile specimen, an internally pressurized ring tensile, and two sizes of four-point-flexure specimens) are shown to provide different strength distributions as expected, because of their differing sizes and modes of loading. After separation of strengths into volumetric- and surface-initiated failure distributions, the Weibull characteristic strength parameters for the higher-strength tests associated with internal fracture initiations are shown to vary as predicted by the effective specimen volume Weibull relationship. Lower-strength results correlate with the effective area to much lesser degree, probably because of the limited number of surface-related failures and the different machining methods used to prepare the specimen. The strength distribution from the fourth specimen type, the predominantly equibiaxially stressed disk-flexure specimen, is well below that predicted by the two-parameter Weibull-derived effective volume or surface area relations. The two-parameter Weibull model cannot account for the increased failure probability associated with multiaxial stress fields. Derivations of effective volume and area relationships for those specimens for which none were found in the literature, the elliptical-transition tensile, the ring tensile, and the disk flexure (including the outer region), are also included.

  9. Thermal degradation of the tensile strength of unidirectional boron/aluminum composites

    NASA Technical Reports Server (NTRS)

    Grimes, H. H.; Lad, R. A.; Maisel, J. E.

    1977-01-01

    The variation of ultimate tensile strength with thermal treatment of B-Al composite materials and of boron fibers chemically removed from these composites in an attempt to determine the mechanism of the resulting strength degradation was studied. Findings indicate that thermally cycling B-Al represents a more severe condition than equivalent time at temperature. Degradation of composite tensile strength from about 1.3 GN/m squared to as low as 0.34 GN/m squared was observed after 3,000 cycles to 420 C for 203 micrometers B-1100 Al composite. In general, the 1100 Al matrix composites degraded somewhat more than the 6061 matrix material studied. Measurement of fiber strengths confirmed a composite strength loss due to the degradation of fiber strength. Microscopy indicated a highly flawed fiber surface.

  10. Environmental effects on the tensile strength of chemically vapor deposited silicon carbide fibers

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.; Kraitchman, M. D.

    1985-01-01

    The room temperature and elevated temperature tensile strengths of commercially available chemically vapor-deposited (CVD) silicon carbide fibers were measured after 15 min heat treatment to 1600 C in various environments. These environments included oxygen, air, argon and nitrogen at one atmosphere and vacuum at 10/9 atmosphere. Two types of fibers were examined which differed in the SiC content of their carbon-rich coatings. Threshold temperature for fiber strength degradation was observed to be dependent on the as-received fiber-flaw structure, on the environment and on the coating. Fractographic analyses and flexural strength measurements indicate that tensile strength losses were caused by surface degradation. Oxidation of the surface coating is suggested as one possible degradation mechanism. The SiC fibers containing the higher percentage of SiC near the surface of the carbon-rich coating show better strength retention and higher elevated temperature strength.

  11. Tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.; McKamey, C.G.; Maziasz, P.J.

    1995-01-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al-based FA-129 alloy were investigated. Tensile properties were obtained in the as-cast condition in air, oxygen, and water-vapor environments, and after homogenization at 700, 900, and 1200{degrees}C. Transmission electron microscopy (MM) was used to characterize ordered phases and dislocation structure, and optical metallography and scanning electron microscopy (SEM) were used to characterize the grain microstructure and fracture morphology. Tensile properties in the as-cast condition exhibited an environmental effect; tensile ductilities in oxygen atmosphere were greater than those obtained in laboratory air. Homogenized samples of FA-129 alloy exhibited almost twice the ductility found in the as-cast condition. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures provided clues that helped to explain the poor ductility in the as-cast state.

  12. Estimating the tensile strength of super hard brittle materials using truncated spheroidal specimens

    NASA Astrophysics Data System (ADS)

    Serati, Mehdi; Alehossein, Habib; Williams, David J.

    2015-05-01

    New approaches need to be introduced to measure the tensile capacity of super hard materials since the standard methods are not effective. To pursue this objective, a series of laboratory tests were constructed to replicate the fracture mechanism of diamond-based materials. Experiments indicate that under a certain compressive test condition, stresses normal to the axisymmetric line in truncated spheroidal specimens (bullet-shaped specimens) are in tension contributing to the tensile fracture of the material. From experimental and numerical studies, it is concluded that semi-prolate spheroidal specimens can be used to determine precisely the tensile strength of brittle stiff diamond-like composites.

  13. Tensile properties of SiC/aluminum filamentary composites - Thermal degradation effects

    NASA Technical Reports Server (NTRS)

    Skinner, A.; Koczak, M. J.; Lawley, A.

    1982-01-01

    Aluminium metal matrix composites with a low cost fiber, e.g. SiC, provide for an attractive combination of high elastic modulus and longitudinal strengths coupled with a low density. SiC (volume fraction 0.55)-aluminum (6061) systems have been studied in order to optimize fiber composite strength and processing parameters. A comparison of two SiC/aluminum composites produced by AVCO and DWA is provided. Fiber properties are shown to alter composite tensile properties and fracture morphology. The room temperature tensile strengths appear to be insensitive to thermal exposures at 500 C up to 150 h. The elastic modulus of the composites also appears to be stable up to 400 C, however variations in the loss modulus are apparent. The fracture morphology reflects the quality of the interfacial bond, fiber strengths and fiber processing.

  14. Tensile and Impact Properties of Thermoplastic Natural Rubber (TPNR) Filled with Carbon Nanotubes (MWNTs)

    NASA Astrophysics Data System (ADS)

    Tarawneh, Mou'ad. A.; Ahmad, Sahrim Hj.; Yahya, S. Y.; Rasid, Rozaidi; Hock, Yew Chin; Halim, Hazwani Binti

    2010-07-01

    This paper discusses the effect of multi-walled carbon nanotubes (MWNT) on the tensile and impact properties of thermoplastic natural rubber (TPNR) nanocomposite. The nanocomposite was prepared using melt blending method. MWNT were added to improve the mechanical properties of MWNTs/TPNR composites at different compositions which is 1, 3, 5, and 7 wt.%. The result of tensile test showed that tensile strength and Young's modulus increase in the presence of nanotubes and maximum value are obtained with 3 wt.% of MWNTs. On other hand, higher MWNTs concentration has caused the formation of aggregates. The elongation at break considerably decreased with increasing the percentage of MWNTs. The maximum impact strength is recorded with 5 wt.% of MWNTs. SEM micrograph has confirmed the homogenous dispersion of MWNTs in the TPNR matrix and promoted strong interfacial adhesion between MWNTs and the matrix which is improved mechanical significantly.

  15. Effects of Aluminum Addition on Tensile and Cup Forming Properties of Three Twinning Induced Plasticity Steels

    NASA Astrophysics Data System (ADS)

    Hong, Seokmin; Shin, Sang Yong; Kim, Hyoung Seop; Lee, Sunghak; Kim, Sung-Kyu; Chin, Kwang-Geun; Kim, Nack J.

    2012-06-01

    In the present study, a high Mn twinning induced plasticity (TWIP) steel and two Al-added TWIP steels were fabricated, and their microstructures, tensile properties, and cup formability were analyzed to investigate the effects of Al addition on deformation mechanisms in tensile and cup forming tests. In the high Mn steel, the twin formation was activated to increase the strain hardening rate and ultimate tensile strength, which needed the high punch load during the cup forming test. In the Al-added TWIP steels, the twin formation was reduced, while the slip activation increased, thereby leading to the decrease in strain hardening rate and ultimate tensile strength. As twins and slips were homogeneously formed during the tensile or cup forming test, the punch load required for the cup forming and residual stresses were relatively low, and the tensile ductility was sufficiently high even after the cup forming test. This indicated that making use of twins and slips simultaneously in TWIP steels by the Al addition was an effective way to improve overall properties including cup formability.

  16. Treatment of bleached wool with trans-glutaminases to enhance tensile strength, whiteness, and alkali resistance.

    PubMed

    Montazer, Majid; Lessan, Fatemeh; Pajootan, Elmira; Dadashian, Fatemeh

    2011-09-01

    Trans-glutaminases is known as a cross-linking enzyme for proteins. Wool is a proteinous fiber conventionally is treated through several processes to obtain the desirable characteristics. Bleaching is also one of the most important processes usually carried out by using an oxidizing agent in a conventional method. The tensile strength of wool yarns was reduced as a consequence of oxidative bleaching. Here, with the help of microbial trans-glutaminases (m-TGases), a novel bleaching process was disclosed in a way to obtain a bleached wool yarn with no significant reduction in the tensile strength. The results confirmed that the bleached wool yarns with H(2)O(2) could be modified by m-TGases post-treatment. The m-TGases treatment on the bleached wool yarns improved the tensile strength and whiteness along with the higher alkali resistance. PMID:21638062

  17. Tensile strength of laser welded cobalt-chromium alloy with and without an argon atmosphere.

    PubMed

    Tartari, Anna; Clark, Robert K F; Juszczyk, Andrzej S; Radford, David R

    2010-06-01

    The tensile strength and depth of weld of two cobalt chromium alloys before and after laser welding with and without an argon gas atmosphere were investigated. Using two cobalt chromium alloys, rod shaped specimens (5 cm x 1.5 mm) were cast. Specimens were sand blasted, sectioned and welded with a pulsed Nd: YAG laser welding machine and tested in tension using an Instron universal testing machine. A statistically significant difference in tensile strength was observed between the two alloys. The tensile strength of specimens following laser welding was significantly less than the unwelded controls. Scanning electron microscopy showed that the micro-structure of the cast alloy was altered in the region of the weld. No statistically significant difference was found between specimens welded with or without an argon atmosphere. PMID:20698419

  18. Experimental Study On The Effect Of Micro-Cracks On Brazilian Tensile Strength

    NASA Astrophysics Data System (ADS)

    Wang, Xiangyu

    2015-12-01

    For coal mine ground control issues, it is necessary to propose a failure criteria accounting for the transversely isotropic behaviors of rocks. Hence, it is very helpful to provide experimental data for the validation of the failure criteria. In this paper, the method for preparing transversely isotropic specimens and the scheme of the Brazilian tensile strength test are presented. Results obtained from Brazilian split tests under dry and water-saturated conditions reflect the effect of the development direction β of the structural plane, such as the bedding fissure, on the tensile strength, ultimate displacement, failure mode, and the whole splitting process. The results show that the tensile strength decreases linearly with increasing β. The softening coefficient of the tensile strength shows a sinusoidal function. The values of the slope and inflection point for the curve vary at the different stages of the Brazilian test. The failure mode of the rock specimen presented in this paper generally coincides with the standard Brazilian splitting failure mode. Based on the test results, the major influencing factors for the Brazilian splitting strength are analyzed and a mathematical model for solving the Brazilian splitting strength is proposed. The findings in this paper would greatly benefit the coal mine ground control studies when the surrounding rocks of interest show severe transversely isotropic behaviors.

  19. Mechanical Properties of AN ER Fluid in Tensile, Compression and Oscillatory Squeeze Tests

    NASA Astrophysics Data System (ADS)

    Vieira, S. L.; Nakano, M.; Oke, R.; Nagata, T.

    In this work, the mechanical properties of an anhydrous electrorheological fluid made of carbonaceous particles dispersed in silicone oil were determined in tensile, compression and oscillatory squeeze tests. The mechanical tests were carried out on a Mechanical Testling Machine and the device developed for measuring the ER properties was composed of two parallel steel electrodes between which the ER fluid was placed. The mechanical properties were measured for different DC electric field strengths, velocity and initial gap between the electrodes, and the ERF was tested in two different ways: (a) the fluid was placed between the electrodes (configuration 1) and (b) the electrodes were immersed inside the ERF (configuration 2). The results showed that the ER fluid is more resistant to compression than to tensile, and that the shape of the tensile stress-strain curve and the tensile strength varies with the electric field strength and the initial gap between the electrodes. The compressive stress increased with the increase of the electric field strength and with the decrease of the gap size and upper electrode velocity. In oscillatory test, for both configurations 1 and 2, increasing the oscillation frequency f and the number of cycles N produced a decrease of the damping performance of the ER fluid. Besides this, the damping force of each cycle in oscillatory tests increased with N. The electric field also played an important role on the shape of the hysteresis loop (stress as a function of fluid strain) for both configurations.

  20. Tensile Properties of Al-Cu 206 Cast Alloys with Various Iron Contents

    NASA Astrophysics Data System (ADS)

    Liu, K.; Cao, X.; Chen, X.-G.

    2014-05-01

    The Al-Cu 206 cast alloys with varying alloy compositions ( i.e., different levels of Fe, Mn, and Si) were investigated to evaluate the effect of the iron-rich intermetallics on the tensile properties. It is found that the tensile strength decreases with increasing iron content, but its overall loss is less than 10 pct over the range of 0.15 to 0.5 pct Fe at 0.3 pct Mn and 0.3 pct Si. At similar iron contents, the tensile properties of the alloys with dominant Chinese script iron-rich intermetallics are generally higher than those with the dominant platelet phase. In the solution and artificial overaging condition (T7), the tensile strength of the 206 cast alloys with more than 0.15 pct Fe is satisfactory, but the elongation does not sufficiently meet the minimum requirement of ductility (>7 pct) for critical automotive applications. However, it was found that both the required ductility and tensile strength can be reached at high Fe levels of 0.3 to 0.5 pct for the alloys with well-controlled alloy chemistry and microstructure in the solution and natural aging condition (T4), reinforcing the motivation for developing recyclable high-iron Al-Cu 206 cast alloys.

  1. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties.

    PubMed

    Jumaidin, R; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc.

  2. Characteristics of thermoplastic sugar palm Starch/Agar blend: Thermal, tensile, and physical properties.

    PubMed

    Jumaidin, R; Sapuan, S M; Jawaid, M; Ishak, M R; Sahari, J

    2016-08-01

    The aim of this work is to study the behavior of biodegradable sugar palm starch (SPS) based thermoplastic containing agar in the range of 10-40wt%. The thermoplastics were melt-mixed and then hot pressed at 140°C for 10min. SEM investigation showed good miscibility between SPS and agar. FT-IR analysis confirmed that SPS and agar were compatible and inter-molecular hydrogen bonds existed between them. Incorporation of agar increased the thermoplastic starch tensile properties (Young's modulus and tensile strength). The thermal stability and moisture uptake increased with increasing agar content. The present work shows that starch-based thermoplastics with 30wt% agar content have the highest tensile strength. Higher content of agar (40wt%) resulted to more rough cleavage fracture and slight decrease in the tensile strength. In conclusion, the addition of agar improved the thermal and tensile properties of thermoplastic SPS which widened the potential application of this eco-friendly material. The most promising applications for this eco-friendly material are short-life products such as packaging, container, tray, etc. PMID:27177458

  3. Instrumented impact and residual tensile strength testing of eight-ply carbon eopoxy specimens

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.

    1990-01-01

    Instrumented drop weight impact testing was utilized to examine a puncture-type impact on thin carbon-epoxy coupons. Four different material systems with various eight-ply lay-up configurations were tested. Specimens were placed over a 10.3-mm diameter hole and impacted with a smaller tup (4.2-mm diameter) than those used in previous studies. Force-time plots as well as data on absorbed energy and residual tensile strength were gathered and examined. It was found that a critical impact energy level existed for each material tested, at which point tensile strength began to rapidly decrease with increasing impact energy.

  4. Evaluation of Tensile Strength of Partial Penetration Butt Welded Joints by Ultrasonic Testing

    NASA Astrophysics Data System (ADS)

    Matsuura, Hiroshi; Kaji, Atsushi

    Partial penetration butt welded joints are widely used because they require relatively less weld metal for fabrication. However, incomplete penetration acts as a crack-like flaw. When the size of flaw in a material is known, the tensile strength of the material can be evaluated using fracture mechanics. This paper deals with a practical method of estimating the size of flaw (the incomplete penetration of a partial penetration butt welded joint) by ultrasonic testing (UT). The refraction angle of the probe and the method of UT are discussed. In addition, tensile strengths of welded joints are evaluated using fracture mechanics, and are found to be in good agreement with experimental results.

  5. Tensile Properties and Fracture Behavior of Different Carbon Nanotube-Grafted Polyacrylonitrile-Based Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-11-01

    The tensile properties and fracture behavior of different carbon nanotube (CNT)-grafted polyacrylonitrile-based (T1000GB) single carbon fibers were investigated. Grafting of CNTs was achieved via chemical vapor deposition (CVD). When Fe(C5H5)2 (also applied via CVD) was used as the catalyst, the tensile strength and Weibull modulus of the carbon fibers were improved, possibly due to the growth of dense CNT networks on the carbon fibers, which may have led to a reduction in the number of strength-limiting defects. Separately, at lower concentrations of an Fe(NO3)3·9H2O catalyst in ethanol, which was applied via dipping, the tensile strength of CNT-grafted fibers was nearly identical to that of the as-received fibers, although the Weibull modulus was higher. For higher concentrations of the Fe(NO3)3·9H2O catalyst, however, the tensile strength and the Weibull modulus were lower than those for the as-received material. Although the density of the CNT network increased with the concentration of the Fe(NO3)3·9H2O catalyst in the ethanol solution, heating of the ethanolic Fe(NO3)3·9H2O catalyst solution generated nitric acid (HNO3) due to decomposition, which damaged the fiber surfaces, resulting in an increase in the number of flaws and consequently a reduction in the tensile strength. Therefore, the tensile strength and Weibull modulus of CNT-grafted carbon fibers vary due to the combination of these effects and as a function of the catalyst concentration.

  6. Modeling the Tensile Strength of Carbon Fiber - Reinforced Ceramic - Matrix Composites Under Multiple Fatigue Loading

    NASA Astrophysics Data System (ADS)

    Li, Longbiao

    2016-06-01

    An analytical method has been developed to investigate the effect of interface wear on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs) under multiple fatigue loading. The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure and the difference existed in the new and original interface debonded region. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The interface shear stress degradation model and fibers strength degradation model have been adopted to analyze the interface wear effect on the tensile strength of the composite subjected to multiple fatigue loading. Under tensile loading, the fibers failure probabilities were determined by combining the interface wear model and fibers failure model based on the assumption that the fiber strength is subjected to two - parameter Weibull distribution and the loads carried by broken and intact fibers satisfy the Global Load Sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength corresponding to multiple fatigue peak stress levels and different cycle number have been analyzed.

  7. Development of Yield and Tensile Strength Design Curves for Alloy 617

    SciTech Connect

    Nancy Lybeck; T. -L. Sham

    2013-10-01

    The U.S. Department of Energy Very High Temperature Reactor Program is acquiring data in preparation for developing an Alloy 617 Code Case for inclusion in the nuclear section of the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel (B&PV) Code. A draft code case was previously developed, but effort was suspended before acceptance by ASME. As part of the draft code case effort, a database was compiled of yield and tensile strength data from tests performed in air. Yield strength and tensile strength at temperature are used to set time independent allowable stress for construction materials in B&PV Code, Section III, Subsection NH. The yield and tensile strength data used for the draft code case has been augmented with additional data generated by Idaho National Laboratory and Oak Ridge National Laboratory in the U.S. and CEA in France. The standard ASME Section II procedure for generating yield and tensile strength at temperature is presented, along with alternate methods that accommodate the change in temperature trends seen at high temperatures, resulting in a more consistent design margin over the temperature range of interest.

  8. Tensile strengths and porosities of solar system primitive bodies

    NASA Astrophysics Data System (ADS)

    Trigo-Rodriguez, J. M.; Llorca, J.; Blum, J.

    Recent measurements of asteroid bulk densities suggest that rubble-pile asteroids with typical porosities of 30 to 50% may be common (Britt et al., 2006). However, the presence of such objects doesn't mean necessarily that the initial porosity had been preserved (Kerridge, 1993). In fact, the fluffy aggregates produced in laboratory experiments that we expect to be representative of the oldest protoplanetary disk materials, exhibit even higher porosities (Blum et al., 2006). Recent results confirm that primitive meteorites (like e.g. CM carbonaceous chondrites) are compacted samples of the nebula matter exhibiting different density and porosity that their precursors materials (Trigo-Rodríguez et al., 2006). Consequently, aqueous alteration, brecciation, and impact-induced metamorphism make very unlikely to find pristine bodies between the asteroidal population. However, there is clear evidence for the existence of high-porosity bodies between the C-type asteroids like e.g. Mathilde (Housen et al., 1999) or the Tagish Lake parent body (Brown et al., 2002). Although extensive post-accretionary processing of meteorite parent bodies can produce high degrees of porosity, only the most pristine ones seem to preserve more than 50% of porosity. Consequently, we should look for these low strength bodies among the C-type asteroids, or very especially in some unprocessed comets that continue being representative of the precursor materials. Recent suggestion that CI1 chondrites are originated from comets should be studied in this context (Gounelle et al., 2006). Particularly, we think that studies of the porosity and strength of primitive meteorites would provide valuable clues on the origin and nature of their parent bodies. REFERENCES Blum J., R. Schräpler, B.J.R. Davidson and J.M. Trigo-Rodríguez (2006) Astroph. J., submitted. Britt D.T., G.J. Consolmagno, and W.J. Merline (2006) Lunar Planet. Sci. Conf. Abstract #2214. Brown, P. G., D. O. Revelle, E. Tagliaferri, and A

  9. Factors which influence tensile strength of a SiC/Ti-24Al-11Nb (at. pct) composite

    NASA Technical Reports Server (NTRS)

    Brindley, P. K.; Draper, S. L.; Nathal, M. V.; Eldridge, J. I.

    1990-01-01

    Tensile and fiber pullout tests were used in conjunction with SEM to investigate structural and processing effects on SiC fiber, a neat Ti-24Al-11Nb matrix alloy, and a composite fabricated from the two. The effects of oxygen content, fiber spacing, fiber volume fraction, fiber-matrix reaction thickness, Teflon content, and matrix powder size, appear to be smaller than the effects of variability in fiber strength. Fiber spacing did not influence radial crack formation, interfacial bond shear strength, or stress-strain behavior in the composite. The temperature dependence of composite properties was investigated over the 23-815 C range.

  10. A Unified Model for Predicting the Open Hole Tensile and Compressive Strengths of Composite Laminates for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Davidson, Paul; Pineda, Evan J.; Heinrich, Christian; Waas, Anthony M.

    2013-01-01

    The open hole tensile and compressive strengths are important design parameters in qualifying fiber reinforced laminates for a wide variety of structural applications in the aerospace industry. In this paper, we present a unified model that can be used for predicting both these strengths (tensile and compressive) using the same set of coupon level, material property data. As a prelude to the unified computational model that follows, simplified approaches, referred to as "zeroth order", "first order", etc. with increasing levels of fidelity are first presented. The results and methods presented are practical and validated against experimental data. They serve as an introductory step in establishing a virtual building block, bottom-up approach to designing future airframe structures with composite materials. The results are useful for aerospace design engineers, particularly those that deal with airframe design.

  11. Effects of LEO Environment on Tensile Properties of PEEK Films

    NASA Astrophysics Data System (ADS)

    Nakamura, Takashi; Nakamura, Hiroshi; Shimamura, Hiroyuki

    2009-01-01

    To clarify the effects of space environment on mechanical properties of polymer, exposure experiments were conducted utilizing the International Space Station Russian Service Module. Poly-ether-ether-ketone (PEEK) films under tensile stress were exposed to low Earth orbit (LEO) environment, and reference samples were irradiated with atomic oxygen (AO), electron beam (EB), and ultraviolet light (UV) in ground facilities. By comparing the results of flight and ground tests, the degradation behavior and the influential factors in LEO were investigated. The following results were obtained. (1) UV was found to be the harshest factor in LEO on tensile properties, since it decreased elongation to 15% of pristine sample after 46-months exposure. (2) AO in LEO eroded the specimen surface with a cone-like morphology and reduced the thickness; however, it had no significant effect on tensile properties. (3) EB irradiation in LEO had no measurable effects on the material properties.

  12. Tensile Strength of Carbon Nanotubes Under Realistic Temperature and Strain Rate

    NASA Technical Reports Server (NTRS)

    Wei, Chen-Yu; Cho, Kyeong-Jae; Srivastava, Deepak; Biegel, Bryan (Technical Monitor)

    2002-01-01

    Strain rate and temperature dependence of the tensile strength of single-wall carbon nanotubes has been investigated with molecular dynamics simulations. The tensile failure or yield strain is found to be strongly dependent on the temperature and strain rate. A transition state theory based predictive model is developed for the tensile failure of nanotubes. Based on the parameters fitted from high-strain rate and temperature dependent molecular dynamics simulations, the model predicts that a defect free micrometer long single-wall nanotube at 300 K, stretched with a strain rate of 1%/hour, fails at about 9 plus or minus 1% tensile strain. This is in good agreement with recent experimental findings.

  13. Microstructure and Tensile Properties of Wrought Al Alloy 5052 Produced by Rheo-Squeeze Casting

    NASA Astrophysics Data System (ADS)

    Lü, Shulin; Wu, Shusen; Wan, Li; An, Ping

    2013-06-01

    The semisolid slurry of wrought Al alloy 5052 was prepared by the indirect ultrasonic vibration (IUV) method, in which the horn was vibrated under the outside of the metallic cup containing molten alloy, and then shaped by direct squeeze casting (SC). Spherical primary α-Al particles were uniformly dispersed in the matrix and presented a bimodal distribution of grain sizes. The effects of rheo-squeeze casting (RSC) parameters such as squeeze pressure and solid fraction on the microstructure and tensile properties of the semisolid alloy were investigated. The results indicate that average diameters of the primary α-Al particles decreased with the increase of squeeze pressure, while the tensile properties of the alloy increased. With the increase of solid fraction, the tensile strength increased first and then decreased, but the elongation decreased continuously. The best tensile properties were achieved when the slurry with a solid fraction of 0.17 solidified under 100 MPa. Compared to conventional squeeze casting, RSC process can offer the 5052 alloy better tensile strength and elongation, which were improved by 9.7 pct and 42.4 pct, respectively.

  14. Comparison of Elevated Temperature Tensile Properties and Fatigue Behavior of Two Variants of a Woven SiC/SiC Composite

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Brewer, David N.; Sreeramesh, Kalluri

    2005-01-01

    Tensile properties (elastic modulus, proportional limit strength, in-plane tensile strength, and strain at failure) of two variants of a woven SiC/SiC composite, manufactured during two separate time periods (9/99 and 1/01), were determined at 1038 and 1204 C by conducting tensile tests on specimens machined from plates. Continuous cycling fatigue tests (R = 0.05) and 20 cpm) were also conducted at the same two temperatures on specimens from both composites. In this study, average tensile properties, 95% confidence intervals associated with the tensile properties, and geometric mean fatigue lives of both composite materials are compared. The observed similarities and differences in the tensile properties are highlighted and an attempt is made to understand the relationship, if any, between the tensile properties and the fatigue behaviors of the two woven composites.

  15. Characteristics of the tensile mechanical properties of fresh and dry forewings of beetles.

    PubMed

    Tuo, Wanyong; Chen, Jinxiang; Wu, Zhishen; Xie, Juan; Wang, Yong

    2016-08-01

    Based on a tensile experiment and observations by scanning electron microscopy (SEM), this study demonstrated the characteristics of the tensile mechanical properties of the fresh and dry forewings of two types of beetles. The results revealed obvious differences in the tensile fracture morphologies and characteristics of the tensile mechanical properties of fresh and dry forewings of Cybister tripunctatus Olivier and Allomyrina dichotoma. For fresh forewings of these two types of beetles, a viscous, flow-like, polymer matrix plastic deformation was observed on the fracture surfaces, with soft morphologies and many fibers being pulled out, whereas on the dry forewings, the tensile fracture surfaces were straightforward, and there were no features resembling those found on the fresh forewings. The fresh forewings exhibited a greater fracture strain than the dry forewings, which was caused by the relative slippage of hydroxyl inter-chain bonds due to the presence of water in the fibers and proteins in the fresh forewings. Our study is the first to demonstrate the phenomenon of sudden stress drops caused by the fracturing of the lower skin because the lower skin fractured before the forewings of A. dichotoma reached their ultimate tensile strength. We also investigated the reasons underlying this phenomenon. This research provides a much better understanding of the mechanical properties of beetle forewings and facilitates the correct selection of study objects for biomimetic materials and development of the corresponding applications. PMID:27157727

  16. Effects of Cyclic Tensile Forces on the Strength of Fibrous Tissue Examined in an in Vivo Model

    NASA Astrophysics Data System (ADS)

    Takakuda, Kazuo; Koyama, Yoshihisa; Matsumoto, Hiroko N.; Katakura, Hiroshi; Muneta, Takeshi

    Adaptive remodeling of soft fibrous tissues under cyclic tensile forces was investigated. Patellar tendons of rat’s knee were harvested and mounted on apparatuses for mechanical stimuli. They were transplanted into the subcutaneous tissues and experienced mechanical stimuli of cyclic tensile forces (1N, 1Hz). Then the tendons were retrieved and their mechanical properties were evaluated with a tensile tester. Four experimental groups were examined in which loading conditions were (1) three times a day (2700 cycles a day) throughout 4 weeks, (2) twice a week (1800 cycles a week) throughout 4 weeks, (3) load-free throughout 4 weeks, or (4) control. Comparing to control group, the tendons in load-free conditions were very weak and shown statistically significant decrease in maximum load, strength and tangent modulus. Contrarily, the tendons in frequent loadings (three times a day) nearly maintained their mechanical properties. Thus the present study clearly elucidated the fact that cyclic tensile forces have significant effects on the mechanical properties of transplanted fibrous tissues.

  17. Annealing and Test Temperature Dependence of Tensile Properties of UNS N04400 Alloy

    NASA Astrophysics Data System (ADS)

    Afzal, Naveed; Ahmad, R.; Akhtar, Tanveer; Ayub, R.; Ghauri, I. M.

    2013-07-01

    Effects of annealing and test temperatures on the tensile behavior of UNS N04400 alloy have been examined. The specimens were annealed at 800, 1000, and 1200 °C for 4 h under vacuum in a muffle furnace. Stress-strain curves of the specimens were obtained in the temperature range 25-300 °C using a universal testing machine fitted with a thermostatic chamber. The results indicate that the yield strength (YS), ultimate tensile strength (UTS), and percentage elongation of the specimens decrease with increase of annealing temperature. By increasing the test temperature, the YS and UTS decrease, whereas the percentage elongation initially decreases with increase of test temperature from 25 to 100 °C and then increases with further increasing the temperature up to 300 °C. The changes in the tensile properties of the alloy are associated with the post-annealing microstructure and modes of fracture.

  18. Effect of Thermal Exposure on the Tensile Properties of Aluminum Alloys for Elevated Temperature Service

    NASA Technical Reports Server (NTRS)

    Edahl, Robert A., Jr.; Domack, Marcia

    2004-01-01

    Tensile properties were evaluated for four aluminum alloys that are candidates for airframe applications on high speed transport aircraft. These alloys included the Al-Cu-Mg-Ag alloys C415 and C416 and the Al-Cu-Li-Mg-Ag alloys RX818 and ML377. The Al-Cu-Mg alloys CM001, which was used on the Concorde SST, and 1143, which was modified from the alloy used on the TU144 Russian supersonic aircraft, were tested for comparison. The alloys were subjected to thermal exposure at 200 F, 225 F and 275 F for times up to 30,000 hours. Tensile tests were performed on thermally-exposed and as-received material at -65 F, room temperature, 200 F, 225 F and 275 F. All four candidate alloys showed significant tensile property improvements over CM001 and 1143. Room temperature yield strengths of the candidate alloys were at least 20% greater than for CM001 and 1143, for both the as-received and thermally-exposed conditions. The strength levels of alloy RX818 were the highest of all materials investigated, and were 5-10% higher than for ML377, C415 and C416 for the as-received condition and after 5,000 hours thermal exposure. RX818 was removed from this study after 5,000 hours exposure due to poor fracture toughness performance observed in a parallel study. After 30,000 hours exposure at 200 F and 225 F, the alloys C415, C416 and ML377 showed minor decreases in yield strength, tensile strength and elongation when compared to the as-received properties. Reductions in tensile strength from the as-received values were up to 25% for alloys C415, C416 and ML377 after 15,000 hours exposure at 275 F.

  19. [Study of tensile bond strength of 3 different adhesive systems associated with composites on dentinal surfaces].

    PubMed

    Matos, A B; Saraceni, C H; Jacobs, M M; Oda, M

    2001-01-01

    The aim of this in vitro study was to compare the tensile bond strength of 3 different bonding systems, associated to composite resins, bonded to dentinal surfaces. Forty-four dentinal surfaces were obtained from recently extracted human molars. A standardized smear layer was obtained and the surfaces were divided in 3 groups: G1) self etch + microhybrid composite; G2) single-component adhesive + phosphoric acid + microhybrid composite and G3) conventional system (acid + primer + bond) + microhybrid composite. Specimens made of composite resin were constructed in the shape of an inverted truncated cone with 3 mm of diameter. Tensile bond strength test was performed at the speed of 0.5 mm/min, and the results were expressed in MPa. The analysis of variance ANOVA (p < 0.05) determined that the type of bonding system used influenced tensile bond strength. Tukey's test, however, showed that the results of the comparison between G2 and G3 were the only statistically significant ones, with G2 showing greater values of tensile bond strength.

  20. Melt reaction of zein with glyoxal to improve tensile strength and reduce solubility

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Glyoxal, in the presence of base, has been used to crosslink zein in a melt process, involving reaction in a melt state combined with compression molding. The resulting zein articles had improved tensile strength, increasing from 34.3 to 40.6 MPa, when the amount of glyoxal was 6% by zein weight. ...

  1. Dependence of Dynamic Tensile Strength of Longyou Sandstone on Heat-Treatment Temperature and Loading Rate

    NASA Astrophysics Data System (ADS)

    Yao, Wei; Xu, Ying; Wang, Wei; Kanopolous, Patrick

    2016-10-01

    As a material for famous historical underground rock caverns, Longyou sandstone (LS) may fail under the combination of high loading rate and high temperature. The thermal damage induced by various heat-treatment temperatures (150, 250, 350, 450, 600 and 850 °C) is first characterized by X-ray Micro-computed tomography (CT) method. The damage variable derived from the average CT value for heat-treated LS specimen and reference specimen without heat treatment was used to quantify the thermal damage. The dynamic tensile strengths of these LS samples under different dynamic loading rates (ranging from 24 to 540 GPa/s) were then obtained using the split Hopkinson pressure bar (SHPB) system. The dynamic tensile strength of LS increases with the loading rate at a given heat-treatment temperature, and the tensile strength at the same loading rate decreases with the heat-treatment temperature except for 450 °C. Based on the experimental data, an empirical equation was established to relate the dynamic tensile strength of LS to the loading rate and the heat-treatment temperature.

  2. Effects of reclaimed asphalt pavement on indirect tensile strength test of conditioned foamed asphalt mix

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    This paper presents the results of Indirect Tensile Strength (ITS) Test for samples prepared with reclaimed asphalt pavement (RAP). Samples were conditioned in water at 25°C for 24 hours prior to testing. Results show that recycled aggregate from reclaimed asphalt pavement performs as well as virgin aggregate.

  3. Optimization and Prediction of Ultimate Tensile Strength in Metal Active Gas Welding

    PubMed Central

    Ampaiboon, Anusit; Lasunon, On-Uma; Bubphachot, Bopit

    2015-01-01

    We investigated the effect of welding parameters on ultimate tensile strength of structural steel, ST37-2, welded by Metal Active Gas welding. A fractional factorial design was used for determining the significance of six parameters: wire feed rate, welding voltage, welding speed, travel angle, tip-to-work distance, and shielded gas flow rate. A regression model to predict ultimate tensile strength was developed. Finally, we verified optimization of the process parameters experimentally. We achieved an optimum tensile strength (558 MPa) and wire feed rate, 19 m/min, had the greatest effect, followed by tip-to-work distance, 7 mm, welding speed, 200 mm/min, welding voltage, 30 V, and travel angle, 60°. Shield gas flow rate, 10 L/min, was slightly better but had little effect in the 10–20 L/min range. Tests showed that our regression model was able to predict the ultimate tensile strength within 4%. PMID:26491719

  4. Tensile and creep rupture properties of (16) uncoated and (2) coated engineering alloys at elevated temperatures

    NASA Technical Reports Server (NTRS)

    Fritz, L. J.; Koster, W. P.

    1977-01-01

    Sixteen test materials were supplied by NASA-Lewis Research Center as wrought bar or cast remelt stock. The cast remelt stock was cast into test blanks with two such materials being also evaluated after Jocoat coating was applied. Mechanical properties evaluated included tensile, modulus of elasticity, Poisson's Ratio, creep properties and creep rupture strength. Tests were conducted at temperatures applicable to the service temperature of the various alloys. This range extended from room temperature to 1000 C.

  5. Intrinsic tensile properties of cocoon silk fibres can be estimated by removing flaws through repeated tensile tests

    PubMed Central

    Rajkhowa, Rangam; Kaur, Jasjeet; Wang, Xungai; Batchelor, Warren

    2015-01-01

    Silk fibres from silkworm cocoons have lower strength than spider silk and have received less attention as a source of high-performance fibres. In this work, we have used an innovative procedure to eliminate the flaws gradually of a single fibre specimen by retesting the unbroken portion of the fibre, after each fracture test. This was done multiple times so that the final test may provide the intrinsic fibre strength. During each retest, the fibre specimen began to yield once the failure load of the preceding test was exceeded. For each fibre specimen, a composite curve was constructed from multiple tests. The composite curves and analysis show that strengths of mass-produced Muga and Eri cocoon silk fibres increased from 446 to 618 MPa and from 337 to 452 MPa, respectively. Similarly, their toughness increased from 84 to 136 MJ m−3 and from 61 to 104 MJ m−3, respectively. Composite plots produced significantly less inter-specimen variations compared to values from single tests. The fibres with reduced flaws as a result of retests in the tested section have a tensile strength and toughness comparable to naturally spun dragline spider silk with a reported strength of 574 MPa and toughness of 91–158 MJ m−3, which is used as a benchmark for developing high-performance fibres. This retesting approach is likely to provide useful insights into discrete flaw distributions and intrinsic mechanical properties of other fatigue-resistant materials. PMID:25948613

  6. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins.

    PubMed

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength.

  7. Effect of TiO2 Nanoparticles on Tensile Strength of Dental Acrylic Resins

    PubMed Central

    Shirkavand, Saeed; Moslehifard, Elnaz

    2014-01-01

    Background and aims. Adding further fillers to dental resins may enhance their physical characteristics. The aim of this study was to evaluate the tensile strength of heat-curing acrylic resin reinforced by TiO2nanoparticles added into the resin matrix. Materials and methods. Commercially available TiO2 nanoparticles were obtained and characterized using X-ray diffrac-tion (XRD) and scanning electron microscopy (SEM) to determine their crystalline structure, particle size and morphology. TiO2-acrylic resin nanocomposite was prepared by mixing 0.5, 1 and 2 (wt%) of surface modified TiO2 nanoparticles in an amalgamator providing three groups of samples. Before curing, the obtained paste was packed into steel molds. After cur-ing, the specimens were removed from the molds. The tensile strength test samples were prepared according to ISO 1567. Results. Two crystalline phases were found in TiO2 nanoparticles including: (i) anatase as the major one, and (ii) rutile. The average particle size calculated according to the Scherrer equation was 20.4 nm, showing a normal size distribution. According to SEM images, the nanocomposite with 1wt% TiO2 nanoparticles had a better distribution compared to other groups. In addition, the group by 1wt% TiO2 exhibited higher tensile strength with a significant difference compared to other groups. ANOVA showed significant differences between the contents of TiO2 particles in acrylic resin (F = 22.19; P < 0.001). Conclusion. A considerable increase in tensile strength was observed with titania NPs reinforcement agents in 1wt% by weight. Further increase of TiO2 nanoparticles decreased the tensile strength. PMID:25587380

  8. Structure and tensile properties evaluation of samples produced by Fused Deposition Modeling

    NASA Astrophysics Data System (ADS)

    Gajdoš, Ivan; Slota, Ján; Spišák, Emil; Jachowicz, Tomasz; Tor-Swiatek, Aneta

    2016-05-01

    This paper presents the result of a study evaluating the influence of alternative path generation strategy on structure and some mechanical properties of parts produced by Fused Deposition Modeling (FDM) technology. Several scientific investigations focused on resolving issues in FDM parts by modifying a path generation strategy to optimize its mechanical properties. In this study, an alternative strategy was proposed with the intention of minimizing internal voids and, thus, to improve mechanical properties. Polycarbonate samples made by this alternative path generation strategy were subjected to tensile strength test and metro-tomography structure evaluation. The results reveal that the structure observed on build models differs from a structure expected from path generation predicted by software Insight 9.1. This difference affected the tensile strength of samples.

  9. Tensile properties of copper alloyed austempered ductile iron: Effect of austempering parameters

    NASA Astrophysics Data System (ADS)

    Batra, U.; Ray, S.; Prabhakar, S. R.

    2004-10-01

    A ductile iron containing 0.6% copper as the main alloying element was austenitized at 850 °C for 120 min and was subsequently austempered for 60 min at austempering temperatures of 270, 330, and 380 °C. The samples were also austempered at 330 °C for austempering times of 30 150 min. The structural parameters for the austempered alloy austenite (X γ ), average carbon content (C γ ), the product X γ C γ , and the size of the bainitic ferrite needle (d α ) were determined using x-ray diffraction. The effect of austempering temperature and time has been studied with respect to tensile properties such as 0.2% proof stress, ultimate tensile strength (UTS), percentage of elongation, and quality index. These properties have been correlated with the structural parameters of the austempered ductile iron microstructure. Fracture studies have been carried out on the tensile fracture surfaces of the austempered ductile iron (ADI).

  10. Carbon nanotube yarns with high tensile strength made by a twisting and shrinking method.

    PubMed

    Liu, Kai; Sun, Yinghui; Zhou, Ruifeng; Zhu, Hanyu; Wang, Jiaping; Liu, Liang; Fan, Shoushan; Jiang, Kaili

    2010-01-29

    We report a simple and continuous spinning method that combines twisting and shrinking processes to produce carbon nanotube yarns. In this method, a yarn freshly spun from a super-aligned carbon nanotube array is first twisted and then passes through a volatile solvent for shrinking. The as-produced yarn consists of densely packed carbon nanotubes, and thus has a tensile strength up to about 1 GPa. The tensile strength depends on the diameter and the twisting angle of the yarn. Different kinds of solvents, such as water, ethanol, and acetone, are used to shrink the twisted yarns, and acetone shows the best shrinking effect. The origin of the solvent shrinking effect is investigated. Our method is favorable for continuous mass production of high strength carbon nanotube yarns with a wide range of diameters, especially ultra-thin yarns. PMID:20009208

  11. Evaluation of tensile strength of hybrid fiber (jute/gongura) reinforced hybrid polymer matrix composites

    NASA Astrophysics Data System (ADS)

    Venkatachalam, G.; Gautham Shankar, A.; Vijay, Kumar V.; Chandan, Byral R.; Prabaharan, G. P.; Raghav, Dasarath

    2015-07-01

    The polymer matrix composites attract many industrial applications due to its light weight, less cost and easy for manufacturing. In this paper, an attempt is made to prepare and study of the tensile strength of hybrid (two natural) fibers reinforced hybrid (Natural + Synthetic) polymer matrix composites. The samples were prepared with hybrid reinforcement consists of two different fibers such as jute and Gongura and hybrid polymer consists of polyester and cashew nut shell resins. The hybrid composites tensile strength is evaluated to study the influence of various fiber parameters on mechanical strength. The parameters considered here are the duration of fiber treatment, the concentration of alkali in fiber treatment and nature of fiber content in the composites.

  12. Effects of processing induced defects on laminate response - Interlaminar tensile strength

    NASA Technical Reports Server (NTRS)

    Gurdal, Zafer; Tomasino, Alfred P.; Biggers, S. B.

    1991-01-01

    Four different layup methods were used in the present study of the interlaminar tensile strength of AS4/3501-6 graphite-reinforced epoxy as a function of defects from manufacturing-induced porosity. The methods were: (1) baseline hand layup, (2) solvent wipe of prepreg for resin removal, (3) moisture-introduction between plies, and (4) a low-pressure cure cycle. Pore characterization was conducted according to ASTM D-2734. A significant reduction is noted in the out-of-plane tensile strength as a function of increasing void content; the porosity data were used in an empirical model to predict out-of-plane strength as a function of porosity.

  13. Assessment of the tensile strength of hexagonal abutments using different cementing agents.

    PubMed

    Wahl, Carlos; França, Fabiana Mantovani Gomes; Brito, Rui Barbosa; Basting, Roberta Tarkany; Smanio, Henrique

    2008-01-01

    The aim of this study was to assess the uniaxial tensile strength after thermal cycling in replicas of CeraOne abutments (abutment and coping sets), using four types of cements (n = 10). A zinc phosphate cement (Fosfato de Zinco/ SSW), a resin-modified glass ionomer cement (RelyX luting / 3M-ESPE), a zinc oxide-eugenol cement (ZOE/ SSW) and a zinc oxide cement without eugenol (TempBond NE/ KERR) were used. After cementation, the samples were submitted to thermal cycles (1,000 cycles, 5 degrees C +/- 2 degrees to 55 degrees C +/- 2 degrees) for thirty seconds in each bath. Next, the samples were submitted to the tensile test in a universal test machine (0.5 mm/min). The data were submitted to ANOVA and the Tukey-Kramer test (p < 0.05), and statistically significant difference was found among the cements. The highest tensile strength mean value found was for zinc phosphate cement (33.6 kgf) followed by the resin-modified glass ionomer cement (20.5 kgf), zinc oxide-eugenol cement (8.4 kgf) and the temporary cement (3.1 kgf). Therefore, it was found that the permanent cements presented higher tensile strength, and the temporary cement could be used in situations requiring reversibility and the removal of cemented dental implant-supported prostheses. PMID:19148383

  14. Comparison of the Effect of two Denture Cleansers on Tensile bond Strength of a Denture Liner

    PubMed Central

    Farzin, M; Bahrani, F; Adelpour, E

    2013-01-01

    Statement of Problem: One of the most clinical challenging issues in prosthodontics is debonding of soft liners from the denture base. Purpose: The aim of this study was to evaluate and compare tensile bond strength between soft liner and heat-cured acrylic resin when immersed in two different types of denture cleanser and distilled water, at different period of times. Materials and Method: In this experimental in vivo study, 238 heat-cured acrylic blocks were made. A soft liner was embedded between the acrylic blocks. Samples were divided into four groups: 17 samples were in the control group and were not soaked in any solution .The remaining samples were divided into 3 groups (Distilled water, Calgon and Fittydent). Each group was then subdivided into two subcategories, regarding the immersion time variable; 15 and 45 minutes. All samples were placed in tension force and tensile bond strength was recorded with the testing machine. One- way ANOVA and Tucky HSD post-hoc test were adopted to analyze the yielded data (α> 0.05). Results: Specimens which were immersed in two denture cleansers (Fittydent and Calgon) and in distilled water showed significant difference (p= 0.001) in bonding strength when compared to the control group. The subjects immersed in denture cleanser solutions and distilled water did not reveal any significant difference (p= 0.90). For all groups; most of the bonding failures (72%) were cohesive type. Conclusion: The effect of the denture cleansers and distilled water on the bond strength was not statistically different; however, the difference was significant between the immersed groups with the non-immersed group. Moreover, type of the denture cleanser did not show any effect on the tensile strength. The tensile strength increases with time of immersion. PMID:24724134

  15. Electronic, mechanical and dielectric properties of silicane under tensile strain

    SciTech Connect

    Jamdagni, Pooja Sharma, Munish; Ahluwalia, P. K.; Kumar, Ashok; Thakur, Anil

    2015-05-15

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  16. Electronic, mechanical and dielectric properties of silicane under tensile strain

    NASA Astrophysics Data System (ADS)

    Jamdagni, Pooja; Kumar, Ashok; Sharma, Munish; Thakur, Anil; Ahluwalia, P. K.

    2015-05-01

    The electronic, mechanical and dielectric properties of fully hydrogenated silicene i.e. silicane in stable configuration are studied by means of density functional theory based calculations. The band gap of silicane monolayer can be flexibly reduced to zero when subjected to bi-axial tensile strain, leading to semi-conducting to metallic transition, whereas the static dielectric constant for in-plane polarization increases monotonically with increasing strain. Also the EEL function show the red shift in resonance peak with tensile strain. Our results offer useful insight for the application of silicane monolayer in nano-optical and electronics devices.

  17. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.

    PubMed

    Misak, H E; Mall, S

    2016-03-01

    Carbon nanotube (CNT) multi-yarns, consisting of 30 yarns, were tested under monotonic tensile load and fatigue at the room temperature (298 K) and two cryogenic temperatures (232 and 123 K). Tensile stiffness increased with the decrease of temperature. The average ultimate tensile strength was higher at 123 K when compared to the higher temperatures (232 and 298 K). Failure mechanism changed from a combination of classical variant and independent fiber breakage at the two higher temperatures to mostly classical variant failure mechanism at the lower temperature. The CNT-yarn's fatigue life also increased with decreasing temperature. CNT-yarns have been shown to function well at lower temperatures making them usable for applications requiring operation at cryogenic temperatures, such as in satellites and high altitude aircraft.

  18. Cryogenic Tensile Strength and Fatigue Life of Carbon Nanotube Multi-Yarn.

    PubMed

    Misak, H E; Mall, S

    2016-03-01

    Carbon nanotube (CNT) multi-yarns, consisting of 30 yarns, were tested under monotonic tensile load and fatigue at the room temperature (298 K) and two cryogenic temperatures (232 and 123 K). Tensile stiffness increased with the decrease of temperature. The average ultimate tensile strength was higher at 123 K when compared to the higher temperatures (232 and 298 K). Failure mechanism changed from a combination of classical variant and independent fiber breakage at the two higher temperatures to mostly classical variant failure mechanism at the lower temperature. The CNT-yarn's fatigue life also increased with decreasing temperature. CNT-yarns have been shown to function well at lower temperatures making them usable for applications requiring operation at cryogenic temperatures, such as in satellites and high altitude aircraft. PMID:27455753

  19. Subtask 12F3: Effects of neutron irradiation on tensile properties of vanadium-base alloys

    SciTech Connect

    Loomis, B.A.; Chung, H.M.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effects of neutron irradiation on the tensile properties of candidate vanadium-base alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti-(0.05-0.1)Si (in wt.%) alloys. In this paper, we present experimental results on the effects of neutron irradiation on tensile properties of selected candidate alloys after irradiation at 400{degrees}C-600{degrees}C in lithium in fast fission reactors to displacement damages of up to {approx}120 displacement per atom (dpa). Effects of irradiation temperature and dose on yield and ultimate tensile strengths and uniform and total elongations are given for tensile test temperatures of 25{degrees}C, 420{degrees}C, 500{degrees}, and 600{degrees}C. Effects of neutron damage on tensile properties of the U.S. reference alloy V-4Cr-4Ti are examined in detail. 7 refs., 10 figs., 1 tab.

  20. Effects of lamination and coating with drying oils on tensile and barrier properties of zein films.

    PubMed

    Rakotonirainy, A M; Padua, G W

    2001-06-01

    Zein films plasticized with oleic acid have been considered potentially useful for biodegradable packaging applications. However, moisture was found to affect their tensile and gas barrier properties. We investigated the effects of two converting processes, fusion lamination and coating with drying oils, on tensile properties and gas permeability of zein films. Zein films were laminated to 4-ply sheets in a Carver press and coated with tung oil, linseed oil, or a mixture of tung and soybean oils. Tensile properties and permeability to water vapor, oxygen, and carbon dioxide were measured according to ASTM methods. Laminated films were clearer, tougher, and more flexible, and had a smoother finish than nontreated sheets. Lamination decreased O(2) and CO(2) permeability by filling in voids and pinholes in the film structure. Coating increased tensile strength and elongation and decreased water vapor permeability. Coatings acted as a composite layer preventing crack propagation and increasing film strength. They also formed a highly hydrophobic surface that prevented film wetting.

  1. Kenaf-glass fiber reinforced unsaturated polyester hybrid composites: Tensile properties

    NASA Astrophysics Data System (ADS)

    Zhafer, S. F.; Rozyanty, A. R.; Shahnaz, S. B. S.; Musa, L.; Zuliahani, A.

    2016-07-01

    The use of natural fibers in composite is rising in recent years due their lightweight, non-abrasive, combustible, non-toxic, low cost and biodegradable properties. However, in comparison with synthetic fibers, the mechanical properties of natural fibers are lower. Therefore, the inclusion of synthetic fibers could improve the mechanical performance of natural fiber based composites. In this study, kenaf bast fiber and glass fiber at different weight percentage loading were used as reinforcement to produce hybrid composites. Unsaturated polyester (UP) resin was used as matrix and hand lay-up process was performed to apply the UP resin on the hybrid kenaf bast/glass fiber composite. Effect of different fiber loading on tensile strength, tensile modulus and elongation at break of the hybrid composite was studied. It has been found that the highest value of tensile strength and modulus was achieved at 10 wt.% kenaf/10 wt.% glass fiber loading. It was concluded that addition of glass fiber has improved the tensile properties of kenaf bast fiber based UP composites.

  2. Modelling weathering induced retreat of c-φ cliffs with limited tensile strength

    NASA Astrophysics Data System (ADS)

    Voulgari, C.

    2015-09-01

    Natural cliffs subject to weathering induced retreat are typically made of hard soils and / or weak rocks exhibiting limited tensile strength. In this paper, the morphologic evolution of uniform c, φ slopes subject to weathering is investigated for a range of values of tensile strengths employing the limit analysis upper bound method. This paper extends the analytical framework set up in [1, 2] by accounting for the limited tensile strength of the ground which was previously disregarded. The solutions were obtained by employing the kinematic method of limit analysis providing rigorous upper bounds to the true collapse values. The inclusion of tension cracks leads to modified analytical expressions of the energy balance equation (the balance between external work and dissipated energy) and as a consequence, of the function whose minimum provides the solution in terms of failure mechanisms and associated values of soil strength. Pre-existing cracks are considered, as well as cracks that form as part of the failure mechanism. It turns out that the presence of tension cracks may significantly alter the size of each landslide contributing to the retrogression of the slope. Results in the form of dimensionless ready-to-use charts are produced for any value of engineering interest of friction angle and slope inclination for the case of dry cracks. Moreover, upper bounds for values not included in the charts can be achieved either by interpolation from the charts or by running the minimisation of the analytical functions provided in the paper.

  3. Powder flow studies III: tensile strength, consolidation ratio, flow rate, and capsule-filling-weight variation relationships.

    PubMed

    Chowhan, Z T; Yang, I C

    1981-08-01

    The tensile strength of consolidated powder beds was studied by applying a series of loads to the surface of the powder beds in a tensile tester. The results were plotted as tensile strength versus consolidation pressure. The linearity of these plots suggests a direct relationship between tensile strength and consolidation pressure. The following plots gave linear relationships: (1) tensile strength versus consolidation ratio, (b) tensile strength versus coefficient of variation of the filled weight of the capsules, and (c) logarithm of the tensile strength versus logarithm of the flow rate. These results suggest a direct relationship between tensile strength and consolidation ratio and their usefulness in studying powder flow. The physical significance of the empirical equation used in consolidation studies was explored. A comparison of the empirical equation with a theoretically derived equation, under certain assumptions, suggests that the consolidation ratio is a function of the ratio of the initial volume to the net volume and a function of the coefficient of Rankine. The coefficient of Rankine is a function of the angle of internal friction in the static powder bed.

  4. Surface, structural and tensile properties of proton beam irradiated zirconium

    NASA Astrophysics Data System (ADS)

    Rafique, Mohsin; Chae, San; Kim, Yong-Soo

    2016-02-01

    This paper reports the surface, structural and tensile properties of proton beam irradiated pure zirconium (99.8%). The Zr samples were irradiated by 3.5 MeV protons using MC-50 cyclotron accelerator at different doses ranging from 1 × 1013 to 1 × 1016 protons/cm2. Both un-irradiated and irradiated samples were characterized using Field Emission Scanning Electron Microscope (FESEM), X-ray Diffraction (XRD) and Universal Testing Machine (UTM). The average surface roughness of the specimens was determined by using Nanotech WSxM 5.0 develop 7.0 software. The FESEM results revealed the formation of bubbles, cracks and black spots on the samples' surface at different doses whereas the XRD results indicated the presence of residual stresses in the irradiated specimens. Williamson-Hall analysis of the diffraction peaks was carried out to investigate changes in crystallite size and lattice strain in the irradiated specimens. The tensile properties such as the yield stress, ultimate tensile stress and percentage elongation exhibited a decreasing trend after irradiation in general, however, an inconsistent behavior was observed in their dependence on proton dose. The changes in tensile properties of Zr were associated with the production of radiation-induced defects including bubbles, cracks, precipitates and simultaneous recovery by the thermal energy generated with the increase of irradiation dose.

  5. Study of austenitic stainless steel welded with low alloy steel filler metal. [tensile and impact strength tests

    NASA Technical Reports Server (NTRS)

    Burns, F. A.; Dyke, R. A., Jr.

    1979-01-01

    The tensile and impact strength properties of 316L stainless steel plate welded with low alloy steel filler metal were determined. Tests were conducted at room temperature and -100 F on standard test specimens machined from as-welded panels of various chemical compositions. No significant differences were found as the result of variations in percentage chemical composition on the impact and tensile test results. The weldments containing lower chromium and nickel as the result of dilution of parent metal from the use of the low alloy steel filler metal corroded more severely in a marine environment. The use of a protective finish, i.e., a nitrile-based paint containing aluminum powder, prevented the corrosive attack.

  6. Laser solder repair technique for nerve anastomosis: temperatures required for optimal tensile strength

    NASA Astrophysics Data System (ADS)

    McNally-Heintzelman, Karen M.; Dawes, Judith M.; Lauto, Antonio; Parker, Anthony E.; Owen, Earl R.; Piper, James A.

    1998-01-01

    Laser-assisted repair of nerves is often unsatisfactory and has a high failure rate. Two disadvantages of laser assisted procedures are low initial strength of the resulting anastomosis and thermal damage of tissue by laser heating. Temporary or permanent stay sutures are used and fluid solders have been proposed to increase the strength of the repair. These techniques, however, have their own disadvantages including foreign body reaction and difficulty of application. To address these problems solid protein solder strips have been developed for use in conjunction with a diode laser for nerve anastomosis. The protein helps to supplement the bond, especially in the acute healing phase up to five days post- operative. Indocyanine green dye is added to the protein solder to absorb a laser wavelength (approximately 800 nm) that is poorly absorbed by water and other bodily tissues. This reduces the collateral thermal damage typically associated with other laser techniques. An investigation of the feasibility of the laser-solder repair technique in terms of required laser irradiance, tensile strength of the repair, and solder and tissue temperature is reported here. The tensile strength of repaired nerves rose steadily with laser irradiance reaching a maximum of 105 plus or minus 10 N.cm-2 at 12.7 W.cm-2. When higher laser irradiances were used the tensile strength of the resulting bonds dropped. Histopathological analysis of the laser- soldered nerves, conducted immediately after surgery, showed the solder to have adhered well to the perineurial membrane, with minimal damage to the inner axons of the nerve. The maximum temperature reached at the solder surface and at the solder/nerve interface, measured using a non-contact fiber optic radiometer and thermocouple respectively, also rose steadily with laser irradiance. At 12.7 W.cm-2, the temperatures reached at the surface and at the interface were 85 plus or minus 4 and 68 plus or minus 4 degrees Celsius respectively

  7. Nanoindentation cannot accurately predict the tensile strength of graphene or other 2D materials.

    PubMed

    Han, Jihoon; Pugno, Nicola M; Ryu, Seunghwa

    2015-10-14

    Due to the difficulty of performing uniaxial tensile testing, the strengths of graphene and its grain boundaries have been measured in experiments by nanoindentation testing. From a series of molecular dynamics simulations, we find that the strength measured in uniaxial simulation and the strength estimated from the nanoindentation fracture force can differ significantly. Fracture in tensile loading occurs simultaneously with the onset of crack nucleation near 5-7 defects, while the graphene sheets often sustain the indentation loads after the crack initiation because the sharply concentrated stress near the tip does not give rise to enough driving force for further crack propagation. Due to the concentrated stress, strength estimation is sensitive to the indenter tip position along the grain boundaries. Also, it approaches the strength of pristine graphene if the tip is located slightly away from the grain boundary line. Our findings reveal the limitations of nanoindentation testing in quantifying the strength of graphene, and show that the loading-mode-specific failure mechanism must be taken into account in designing reliable devices from graphene and other technologically important 2D materials.

  8. Effect of Hybrid Surface Modifications on Tensile Properties of Polyacrylonitrile- and Pitch-Based Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2016-05-01

    Recent interest has emerged in techniques that modify the surfaces of carbon fibers, such as carbon nanotube (CNT) grafting or polymer coating. Hybridization of these surface modifications has the potential to generate highly tunable, high-performance materials. In this study, the mechanical properties of surface-modified polyacrylonitrile (PAN)-based and pitch-based carbon fibers were investigated. Single-filament tensile tests were performed for fibers modified by CNT grafting, dipped polyimide coating, high-temperature vapor deposition polymerized polyimide coating, grafting-dipping hybridization, and grafting-vapor deposition hybridization. The Weibull statistical distributions of the tensile strengths of the surface-modified PAN- and pitch-based carbon fibers were examined. All surface modifications, especially hybrid modifications, improved the tensile strengths and Weibull moduli of the carbon fibers. The results exhibited a linear relationship between the Weibull modulus and average tensile strength on a log-log scale for all surface-modified PAN- and pitch-based carbon fibers.

  9. Tensile Properties of Polyimide Composites Incorporating Carbon Nanotubes-Grafted and Polyimide-Coated Carbon Fibers

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-09-01

    The tensile properties and fracture behavior of polyimide composite bundles incorporating carbon nanotubes-grafted (CNT-grafted) and polyimide-coated (PI-coated) high-tensile-strength polyacrylonitrile (PAN)-based (T1000GB), and high-modulus pitch-based (K13D) carbon fibers were investigated. The CNT were grown on the surface of the carbon fibers by chemical vapor deposition. The pyromellitic dianhydride/4,4'-oxydianiline PI nanolayer coating was deposited on the surface of the carbon fiber by high-temperature vapor deposition polymerization. The results clearly demonstrate that CNT grafting and PI coating were effective for improving the Weibull modulus of T1000GB PAN-based and K13D pitch-based carbon fiber bundle composites. In addition, the average tensile strength of the PI-coated T1000GB carbon fiber bundle composites was also higher than that of the as-received carbon fiber bundle composites, while the average tensile strength of the CNT-grafted T1000GB, K13D, and the PI-coated K13D carbon fiber bundle composites was similar to that of the as-received carbon fiber bundle composites.

  10. Effects of Natural Aging on the Tensile Properties of Water-Quenched U-6% Nb Alloy

    SciTech Connect

    Sunwoo, A J; Hiromoto, D S

    2003-12-09

    Uranium-6 wt-% niobium (U-6% Nb) alloy has been in use for many years in the water-quenched (WQ) condition. The purpose of this work was to determine the effect of natural aging on tensile properties of the WQ U-6% Nb alloy. The materials studied were hemispherical shells after 15 and 20 years in storage. The alloy was successfully tested in the original curved configuration, using the specially designed tensile test apparatus. Finite element analysis confirmed the validity of the test method. The results of the tensile tests clearly indicated that in the WQ condition, the material is changing and after 15 and 20 years, the yield strength exceeds the original maximum allowable specification. The fracture mode transitions from highly ductile, microvoid coalescence in new material to a mixed mode of shallow dimples and inclusion-induced voids in the naturally aged material.

  11. Tensile strength of simulated and welded butt joints in W-Cu composite sheet

    NASA Technical Reports Server (NTRS)

    Moore, Thomas J.; Watson, Gordon K.

    1994-01-01

    The weldability of W-Cu composite sheet was investigated using simulated and welded joints. The welded joints were produced in a vacuum hot press. Tensile test results showed that simulated joints can provide strength and failure mode data which can be used in joint design for actual weldments. Although all of the welded joints had flaws, a number of these joints were as strong as the W-Cu composite base material.

  12. Intracellular Na+ and Ca2+ Modulation Increases the Tensile Properties of Developing Engineered Articular Cartilage

    PubMed Central

    Natoli, Roman M.; Skaalure, Stacey; Bijlani, Shweta; Chen, Ke X.; Hu, Jerry; Athanasiou, Kyriacos A.

    2010-01-01

    Objective Significant collagen content and tensile properties are difficult to achieve in articular cartilage tissue engineering. This study investigated whether treating developing tissue engineered cartilage constructs with modulators of intracellular Na+ or Ca2+ could increase collagen concentration and tensile properties. Methods Inhibitors of Na+ ion transporters and increasers of intracellular Ca2+ were investigated for their ability to affect articular cartilage development in a scaffold-less, 3D chondrocyte culture. Using a systematic approach, ouabain (Na+/K+ ATPase inhibitor), bumetanide (Na+/K+/2Cl− tritransporter inhibitor), histamine (cAMP activator), and ionomycin (a Ca2+ ionophore) were applied to tissue engineered constructs for 1 hr per day on days 10–14 of culture and examined at 2 or 4 wks. Gross morphology, biochemical content, and compressive and tensile mechanical properties of the constructs were assayed. Results Analysis showed that 20 µM ouabain, 0.3 µM ionomycin, or their combination increased the tensile modulus by 40–95% compared to untreated controls and resulted in increased collagen normalized to wet weight. In constructs exposed to ouabain, the increased collagen per wet weight was secondary to decreased GAG production on a per cell basis. Treatment with 20 µM ouabain also increased the neo-tissue’s ultimate tensile strength 56–86% at 4 wks. Other construct properties, such as construct growth and collagen type I production, were affected differently by Na+ modulation with ouabain versus Ca2+ modulation with ionomycin. Conclusions These data are the first to show that treatments known to alter intracellular ion concentrations are a viable method for increasing the mechanical properties of engineered articular cartilage and identify potentially important relationships to hydrostatic pressure mechanotransduction. Ouabain and ionomycin may be useful pharmacological agents for increasing tensile integrity and directing

  13. Effect of interstitials on tensile strength and creep in nanostructured Ni

    SciTech Connect

    Yin, W.M.; Whang, S.H. . E-mail: swhang@poly.edu; Mirshams, R.A.

    2005-01-10

    The tensile, creep and anelastic behavior of nanostructured nickel doped and un-doped with boron was investigated. Specimen material with an average grain size of around 30 nm produced by the pulse electrodeposition method contains impurities such as carbon, sulfur and boron. The interstitials content does not have notable impact on the tensile strength at room temperature and 373 K. But, at 473 K, the minor change in sulfur content from 0.03 to 0.061 at.% raises the ultimate strength by 150 MPa while the boron doping further improves the tensile strength. On the other hand, with increasing sulfur content in nanostructured Ni, the ductility decreases. All the specimens exhibit significant anelastic relaxation from room temperature to 473 K. The creep test results show that both minimum creep rate and creep strain significantly decrease with increasing sulfur or by doping boron in nanostructured nickel. The stress exponent in the expression of Coble-type creep increases to around five at 373 and 473 K from two at room temperature. A model for grain boundary sliding, in which grain boundary dislocations and back stress are introduced, has successfully explained the large stress exponents. The calculated back stress indicates that the interstitials in grain boundaries effectively retard the sliding of grain boundary dislocations.

  14. Effect of dimethylpolysiloxane liquid on the cryogenic tensile strength and thermal contraction behavior of epoxy resins

    NASA Astrophysics Data System (ADS)

    Yi, Jin Woo; Lee, Yu Jin; Lee, Sang Bok; Lee, Wonoh; Um, Moon Kwang

    2014-05-01

    Dimethylpolysiloxane liquid was blended with diglycidyl ether of bisphenol-A epoxy resin including anhydride curing agent to improve the tensile strength of the epoxy resin at 77 K without any increase in its coefficient of thermal expansion (CTE). A bifunctional polymer, silicone-modified epoxy resin (SME), was also added to the mixture as a compatibilizer. The results of UV transmittance for the blend resin showed that the incorporation of the SME could stabilize effectively spherical domains of the siloxane liquid which was immiscible with the epoxy matrix. The tensile strengths of the blend resins at both room temperature and 77 K were measured and SEM analysis for the fractured cross sections was carried out to verify the toughening behavior of the liquid droplets. The results indicated that even small amount of addition of the siloxane liquid (0.05 phr) coupled with SME (20 phr) could enhance the tensile strength at 77 K by 77.6% compared to that of the neat epoxy resin. This improvement is attributed to the fact that the solid and s droplets can disperse the localized stress and interrupt the crack propagation by cavitation mechanism followed by multiple generation of numerous micro-deformation. From the CTE measurement, the siloxane liquid has no influence on the thermal contraction behavior of the blend resin.

  15. Tensile strength of thin resin composite layers as a function of layer thickness.

    PubMed

    Alster, D; Feilzer, A J; De Gee, A J; Davidson, C L

    1995-11-01

    As a rule, cast restorations do not allow for free curing contraction of the resin composite luting cement. In a rigid situation, the resulting contraction stress is inversely proportional to the resin layer thickness. Adhesive technology has demonstrated, however, that thin joints may be considerably stronger than thicker ones. To investigate the effects of layer thickness and contraction stress on the tensile strength of resin composite joints, we cured cylindrical samples of a chemically initiated resin composite (Clearfil F2) in restrained conditions and subsequently loaded them in tension. The samples had a diameter of 5.35 mm and thicknesses of 50, 100, 200, 300, 400, 500, 600, and 700 microns, 1.4 mm, or 2.7 mm. None of the samples fractured due to contraction stress prior to tensile loading. Tensile strength decreased gradually from 62 +/- 2 MPa for the 50-microns layer to 31 +/- 4 MPa for the 2.7-mm layer. The failures were exclusively cohesive in resin for layers between 50 and 400 microns thick. Between 500 and 700 microns, the failures were cohesive or mixed adhesive/cohesive, while the 1.4- and 2.7-mm layers always failed in a mixed adhesive/cohesive mode. For the resin composite tested, the contraction stress did not endanger the cohesive strength. It was concluded that if adhesion to tooth structure were improved, thinner adhesive joints might enhance the clinical success of luted restorations.

  16. Effects of HF Treatments on Tensile Strength of Hi-Nicalon Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.

    1998-01-01

    Tensile strengths of as-received Hi-Nicalon fibers and those having a dual BN/SiC surface coating, deposited by chemical vapor deposition, have been measured at room temperature. These fibers were also treated with HF for 24 h followed by tensile strength measurements. Strengths of uncoated and BN/SiC coated Hi-Nicalon fibers extracted from celsian matrix composites, by dissolving away the matrix in HF for 24 h, were also determined. The average tensile strength of uncoated Hi-Nicalon was 3.19 +/- 0.73 GPa with a Weibull modulus of 5.41. The Hi-Nicalon/BN/SiC fibers showed an average strength of 3.04 q 0.53 GPa and Weibull modulus of 6.66. After HF treatments, the average strengths of the uncoated and BN/SiC coated Hi-Nicalon fibers were 2.69 +/- 0.67 GPa and 2.80 +/- 0.53 GPa and the Weibull moduli were 4.93 and 5.96, respectively. The BN/SiC coated fibers extracted from the celsian matrix composite exhibited a strength of 2.38 +/- 0.40 GPa and a Weibull modulus of 7.15. The strength of the uncoated Hi-Nicalon fibers in the composite was so severely degraded that they disintegrated into small fragments during extraction with HF. The uncoated fibers probably undergo mechanical surface damage during hot pressing of the composites. Also, the BN layer on the coated fibers acts as a compliant layer which protects the fibers from mechanical damage during composite processing. The elemental composition and thickness of the fiber coatings were deten-nined using scanning Auger analysis. Microstructural analyses of the fibers and the coatings were done by scanning electron microscopy and transmission electron microscopy. Strengths of fibers calculated using average and measured fiber diameters were in good agreement. Thus, the strength of fibers can be evaluated using an average fiber diameter instead of the measured diameter of each filament.

  17. Effect of boron on post irradiation tensile properties of reduced activation ferritic steel (F-82H) irradiated in HFIR

    SciTech Connect

    Shiba, Kiyoyuki; Suzuki, Masahide; Hishinuma, Akimichi; Pawel, J.E.

    1994-12-31

    Reduced activation ferritic/martensitic steel, F-82H (Fe-8Cr-2W-V-Ta), was irradiated in the High Flux Isotope Reactor (HFIR) to doses between 11 and 34 dpa at 400 and 500 C. Post irradiation tensile tests were performed at the nominal irradiation temperature in vacuum. Some specimens included {sup 10}B or natural boron (nB) to estimate the helium effect on tensile properties. Tensile properties including the 0.2% offset yield stress, the ultimate tensile strength, the uniform elongation and the total elongation were measured. The tensile properties were not dependent on helium content in specimens irradiated to 34 dpa, however {sup 10}B-doped specimens with the highest levels of helium showed slightly higher yield strength and less ductility than boron-free specimens. Strength appears to go through a peak, and ductility through a trough at about 11 dpa. The irradiation to more than 21 dpa reduced the strength and increased the elongation to the unirradiated levels. Ferritic steels are one of the candidate alloys for nuclear fusion reactors because of their good thermophysical properties, their superior swelling resistance, and the low corrosion rate in contact with potential breeder and coolant materials.

  18. Effect of helium on tensile properties of vanadium alloys

    SciTech Connect

    Chung, H.M.; Billone, M.C.; Smith, D.L.

    1997-08-01

    Tensile properties of V-4Cr-4Ti (Heat BL-47), 3Ti-1Si (BL-45), and V-5Ti (BL-46) alloys after irradiation in a conventional irradiation experiment and in the Dynamic Helium Charging Experiment (DHCE) were reported previously. This paper presents revised tensile properties of these alloys, with a focus on the effects of dynamically generated helium of ductility and work-hardening capability at <500{degrees}C. After conventional irradiation (negligible helium generation) at {approx}427{degrees}C, a 30-kg heat of V-4Cr-4Ti (BL-47) exhibited very low uniform elongation, manifesting a strong susceptibility to loss of work-hardening capability. In contrast, a 15-kg heat of V-3Ti-1Si (BL -45) exhibited relatively high uniform elongation ({approx}4%) during conventional irradiation at {approx}427{degrees}C, showing that the heat is resistant to loss of work-hardening capability.

  19. Microstructure and tensile properties of tungsten at elevated temperatures

    NASA Astrophysics Data System (ADS)

    Shen, Tielong; Dai, Yong; Lee, Yongjoong

    2016-01-01

    In order to support the development of the 5 MW spallation target for the European Spallation Source, the effect of fabrication process on microstructure, ductile-to-brittle transition temperature (DBTT), tensile and fracture behaviour of powder-metallurgy pure tungsten materials has been investigated. A hot-rolled (HR) tungsten piece of 12 mm thickness and a hot-forged (HF) piece of about 80 mm thickness were used to simulate the thin and thick blocks in the target. The two tungsten pieces were characterized with metallography analysis, hardness measurement and tensile testing. The HR piece exhibits an anisotropic grain structure with an average size of about 330 × 140 × 40 μm in rolling, long transverse and short transverse (thickness) directions. The HF piece possesses a bimodal grain structure with about 310 × 170 × 70 μm grain size in deformed part and about 25 μm sized grains remained from sintering process. Hardness (HV0.2) of the HR piece is slightly greater than that of the HF one. The ductility of the HR tungsten specimens is greater than that of the HF tungsten. For the HF tungsten piece, specimens with small grains in gauge section manifest lower ductility but higher strength. The DBTT evaluated from the tensile results is 250-300 °C for the HR tungsten and about 350 °C for the HF tungsten.

  20. Tensile Properties and Deformation Characteristics of a Ni-Fe-Base Superalloy for Steam Boiler Applications

    NASA Astrophysics Data System (ADS)

    Zhong, Zhihong; Gu, Yuefeng; Yuan, Yong; Shi, Zhan

    2014-01-01

    Ni-Fe-base superalloys due to their good manufacturability and low cost are the proper candidates for boiler materials in advanced power plants. The major concerns with Ni-Fe-base superalloys are the insufficient mechanical properties at elevated temperatures. In this paper, tensile properties, deformation, and fracture characteristics of a Ni-Fe-base superalloy primarily strengthened by γ' precipitates have been investigated from room temperature to 1073 K (800 °C). The results showed a gradual decrease in the strength up to about 973 K (700 °C) followed by a rapid drop above this temperature and a ductility minimum at around 973 K (700 °C). The fracture surfaces were studied using scanning electron microscopy and the deformation mechanisms were determined by the observation of deformed microstructures using transmission electron microscopy. An attempt has been made to correlate the tensile properties and fracture characteristics at different temperatures with the observed deformation mechanisms.

  1. Development of Cold-Rolled Dual-Phase Steels with Tensile Strength Above 1000 MPa and Good Bendability

    NASA Astrophysics Data System (ADS)

    Rosenberg, Gejza; Sinaiová, Iveta; Hvizdoš, Pavol; Juhar, L'uboš

    2015-10-01

    This paper presents the most important results of the study oriented on development of low-silicon (<0.03Si), precipitation-strengthened, fine-grained, cold-rolled dual-phase (DP) steels with tensile strength greater than 1000 MPa, primarily intended for the automotive industry. For this purpose, extensive systematic investigations were conducted with the aim to optimize the composition/processing conditions with regard to the microstructural effects on tensile properties and bendability of DP steels. Within this study, influence of the addition of Mn, Cr, Mo and/or both Mo and Ti on the microstructure and tensile properties of eight steels molded in the form of ~20 kg ingots processed by controlled rolling has been investigated. The effect of simulated coiling temperature on hot-rolled steels followed by cold rolling and intercritical annealing at temperatures 1023 K and 1073 K (750 °C and 800 °C) as well as the interaction between ferrite recrystallization and austenite formation were examined. Investigation of the effect of intercritical annealing on the structure-property relationships was carried out on steels in both the hot-rolled and cold-rolled states. It was found that in spite of strength above 1000 MPa, good bendability (steel strip may have been bent to 180 deg at radius of 0.5 mm) can be achieved in the cold-rolled intercritically annealed steel with nominal composition 0.15-C-1.2Mn-0.02Si-0.2Mo-0.1Ti by more or less homogeneous distribution of fine Ti precipitates (<5 nm) within fine ferrite grains (<2 μm) and about 35 pct martensite volume fraction in the microstructure of DP steel.

  2. In situ neutron diffraction of heavily drawn steel wires with ultra-high strength under tensile loading

    SciTech Connect

    Tomota, Y. . E-mail: tomota@mx.ibaraki.ac.jp; Suzuki, T.; Kanie, A.; Shiota, Y.; Uno, M.; Moriai, A.; Minakawa, N.; Morii, Y.

    2005-01-10

    To make clear the strengthening mechanism of heavily drawn steel wires exhibiting ultra-high strength, in situ neutron diffraction during tensile loading was performed. A ferrite steel (FK) subjected to a true strain of 6.6 and a pearlite steel (PS) subjected to 4.0 were extended on a tensile tester and (1 1 0) diffraction profiles were measured at various holding stresses. Tensile strengths of steel FK and PS are 1.7 and 3.7 GPa, respectively. The change in (1 1 0) spacing with tensile stress is reversible, i.e., elastic, close to the relevant tensile strength. A stress versus (1 1 0) lattice plane strain is linear for steel FK while evidently nonlinear at higher stresses for steel PS. In steel PS in which cementite peaks were hardly observed, the strengthening mechanism is postulated to be different from that for as-patented pearlite steels.

  3. Effect of different surface treatments on tensile bond strength of silicone-based soft denture liner.

    PubMed

    Akin, Hakan; Tugut, Faik; Mutaf, Burcu; Akin, Gulsah; Ozdemir, A Kemal

    2011-11-01

    Failure of the bond between the acrylic resin and resilient liner material is commonly encountered in clinical practice. The purpose of this study was to investigate the effect of different surface treatments (sandblasting, Er:YAG, Nd:YAG, and KTP lasers) on tensile bond strength of silicone-based soft denture liner. Polymethyl methacrylate test specimens were fabricated and each received one of eight surface treatments: untreated (control), sandblasted, Er:YAG laser irradiated, sandblasted + Er:YAG laser irradiated, Nd:YAG laser irradiated, sandblasted + Nd:YAG laser irradiated, KTP laser irradiated, and sandblasted + KTP laser irradiated. The resilient liner specimens (n = 15) were processed between two polymethyl methacrylate (PMMA) blocks. Bonding strength of the liners to PMMA were compared by tensile test with the use of a universal testing machine at a crosshead speed of 5 mm/min. Kruskal-Wallis and Wilcoxon tests were used to analyze the data (α = 0.05). Altering the polymethyl methacrylate surface by Er:YAG laser significantly increased the bond strengths in polymethyl methacrylate/silicone specimens, however, sandblasting before applying a lining material had a weakening effect on the bond. In addition, Nd:YAG and KTP lasers were found to be ineffective for increasing the strength of the bond.

  4. Tensile Bond Strength of Self Adhesive Resin Cement After Various Surface Treatment of Enamel

    PubMed Central

    Sekhri, Sahil; Garg, Sandeep

    2016-01-01

    Introduction In self adhesive resin cements adhesion is achieved to dental surface without surface pre-treatment, and requires only single step application. This makes the luting procedure less technique-sensitive and decreases postoperative sensitivity. Aim The purpose of this study was to evaluate bond strength of self adhesive resin after surface treatment of enamel for bonding base metal alloy. Materials and Methods On the labial surface of 64 central incisor rectangular base metal block of dimension 6 mm length, 5mm width and 1 mm height was cemented with RelyX U200 and Maxcem Elite self adhesive cements with and without surface treatment of enamel. Surface treatment of enamel was application of etchant, one step bonding agent and both. Tensile bond strength of specimen was measured with universal testing machine at a cross head speed of 1mm/min. Results Least tensile bond strength (MPa) was in control group i.e. 1.33 (0.32) & 1.59 (0.299), Highest bond strength observed when enamel treated with both etchant and bonding agent i.e. 2.72 (0.43) & 2.97 (0.19) for Relyx U200 and Elite cement. When alone etchant and bonding agent were applied alone bond strength is 2.19 (0.18) & 2.24 (0.47) for Relyx U200, and 2.38 (0.27) 2.49 (0.16) for Max-cem elite. Mean bond strength was higher in case of Max-cem Elite as compared to RelyX U200 resin cement, although differences were non–significant (p > 0.05). Conclusion Surface treatment of enamel increases the bond strength of self adhesive resin cement. PMID:26894165

  5. Effect of a heat treatment on the precipitation behavior and tensile properties of alloy 690 steam generator tubes

    NASA Astrophysics Data System (ADS)

    Lee, Tae-Hyuk; Suh, Ho-Young; Han, Seul-Ki; Noh, Jae-Soo; Lee, Jong-Hyeon

    2016-10-01

    The intergranular carbide precipitation behavior and its effect on the tensile properties were investigated in alloy 690. The precipitation of intergranular carbides, identified as Cr-rich M23C6, was retarded on the low-angle grain boundaries and the coincidence-site lattice boundaries. The M23C6 carbides have a cube-cube orientation relationship with the matrix. The ultimate tensile strength, yield strength, and elongation of the solution annealed alloy 690 are 648.2 ± 8.2 MPa, 242.8 ± 10.5 MPa and 44.9 ± 2.3%, respectively. The ultimate tensile strength and the yield strength increased to 764.8 ± 7.8 MPa and 364.8 ± 10.2 MPa until the aging time reached 16 h. This increase is ascribed to the M23C6 carbide acting as reinforcements. However, when the aging time exceed 16 h, these properties gradually decreased with increasing aging time. The decrease in ultimate tensile strength, yield strength, and elongation were mainly caused by the intergranular cracking due to the low bond strength between the carbide and the matrix.

  6. The tensile strength characteristics study of the laser welds of biological tissue using the nanocomposite solder

    NASA Astrophysics Data System (ADS)

    Rimshan, I. B.; Ryabkin, D. I.; Savelyev, M. S.; Zhurbina, N. N.; Pyanov, I. V.; Eganova, E. M.; Pavlov, A. A.; Podgaetsky, V. M.; Ichkitidze, L. P.; Selishchev, S. V.; Gerasimenko, A. Y.

    2016-04-01

    Laser welding device for biological tissue has been developed. The main device parts are the radiation system and adaptive thermal stabilization system of welding area. Adaptive thermal stabilization system provided the relation between the laser radiation intensity and the weld temperature. Using atomic force microscopy the structure of composite which is formed by the radiation of laser solder based on aqua- albuminous dispersion of multi-walled carbon nanotubes was investigated. AFM topograms nanocomposite solder are mainly defined by the presence of pores in the samples. In generally, the surface structure of composite is influenced by the time, laser radiation power and MWCNT concentration. Average size of backbone nanoelements not exceeded 500 nm. Bulk density of nanoelements was in the range 106-108 sm-3. The data of welding temperature maintained during the laser welding process and the corresponding tensile strength values were obtained. Maximum tensile strength of the suture was reached in the range 50-55°C. This temperature and the pointwise laser welding technology (point area ~ 2.5mm) allows avoiding thermal necrosis of healthy section of biological tissue and provided reliable bonding construction of weld join. In despite of the fact that tensile strength values of the samples are in the range of 15% in comparison with unbroken strips of pigskin leather. This situation corresponds to the initial stage of the dissected tissue connection with a view to further increasing of the joint strength of tissues with the recovery of tissue structure; thereby achieved ratio is enough for a medical practice in certain cases.

  7. Effect of Strain Rate on Tensile Properties of Carbon Fiber Epoxy-Impregnated Bundle Composite

    NASA Astrophysics Data System (ADS)

    Naito, Kimiyoshi

    2014-03-01

    The tensile tests for high tensile strength polyacrylonitrile (PAN)-based (T1000GB) carbon fiber epoxy-impregnated bundle composite at various strain rates ranging from 3.33 × 10-5 to 6.0 × 102 s-1 (various crosshead speeds ranging from 8.33 × 10-7 to 1.5 × 101 m/s) were investigated. The statistical distributions of the tensile strength were also evaluated. The results clearly demonstrated that the tensile strength of bundle composite slightly increased with an increase in the strain rate (crosshead speed) and the Weibull modulus of tensile strength for the bundle composite decreased with an increase in the strain rate (crosshead speed), there is a linear relation between the Weibull modulus and the average tensile strength on log-log scale.

  8. Inverse relationship between tensile bond strength and dimensions of bonded area.

    PubMed

    Escribano, Nuria I; Del-Nero, Maria O; de la Macorra, Jose C

    2003-07-15

    It is a known fact that there is a relationship between magnitude of bonded area and laboratory tensile test results. This relationship has been described for a range of areas between 1 and 10 mm(2), in extracted, nonperfused teeth. The aim of this study is to test this relationship in perfused teeth, with bonded areas ranging from 0.7 to 110.9 mm(2). Dentin of 92 sound third human molars was exposed and perfused, and three groups of bonded areas (BA) were delimited: small (0.69-1.89 mm(2)), medium (8.66-19.54 mm(2)), and large (58.91-110.86 mm(2)). Tensile bond strength (TBS) of three adhesive restorative systems was found. The best nonlinear curve estimation was searched (SPSS 9.0) between TBS and BA, for each and all materials. The best estimation was, for all materials, TBS = 4.17 + 10.35/BA (p < 0.0001).

  9. A study on the tensile properties of silicone rubber/polypropylene fibers/silica hybrid nanocomposites.

    PubMed

    Ziraki, Sahar; Zebarjad, Seyed Mojtaba; Hadianfard, Mohammad Jafar

    2016-04-01

    Metacarpophalangeal joint implants have been usually made of silicone rubber. In the current study, silica nano particles and polypropylene fibers were added to silicone rubber to improve silicone properties. The effect of the addition of silica nano particles and polypropylene fibers on the tensile behavior of the resultant composites were investigated. Composite samples with different content of PP fibers and Silica nano particles (i. e. 0, 1 and 2wt%) as well as the hybrid composite of silicone rubber with 1wt% SiO2 and 1wt% PP fiber were prepared. Tensile tests were done at constant cross head speed. To study the body fluid effect on the mechanical properties of silicone rubber composites, samples soaked in simulated body fluid (SBF) at 37°C were also tested. The morphology of the samples were studied by scanning electron microscope. Results of analysis revealed that an increase in PP fibers and silica nano particles content to 2wt%, increases the tensile strength of silicone rubber of about 75% and 42% respectively. It was found out that the strength of the samples decreases after being soaked in simulated body fluid, though composites with PP fibers as the reinforcement showed less property degradation. PMID:26874087

  10. Estrogen-dependent tensile properties of the rabbit knee medial collateral ligament.

    PubMed

    Räsänen, T; Messner, K

    2000-02-01

    The influence of oophorectomy or continuous administration of estradiol on the tensile properties of the rabbit knee medial collateral ligament was investigated. Young postpubertal female New Zealand white rabbits were either oophorectomized or underwent a sham operation. The sham-operated animals received in addition a daily dosage of 4 mg 17beta-estradiol. After 5 months the animals were killed, and the material properties of the bone-ligament-bone complex in one knee were determined using a material testing machine and video system, and compared to non-treated control animals. There was no difference in elastic modulus between the groups. However, the ligaments from low-dose estrogen-treated animals had a smaller cross-sectional area and a higher ultimate tensile strength than those from controls or oophorectomized rabbits (P<0.04-0.0003).

  11. Effect of initial orientation on the tensile properties of commercially pure titanium

    NASA Astrophysics Data System (ADS)

    Sinha, Subhasis; Ghosh, Atasi; Gurao, N. P.

    2016-05-01

    Effect of crystallographic texture on uniaxial tensile deformation of commercially pure titanium was studied using in situ as well as post-mortem electron backscatter diffraction and elastoplastic self-consistent simulations. Correlation of mechanical properties and strain hardening response with deformation micromechanisms like different modes of slip and twinning was established. Tensile specimens were machined along rolling direction in the plane perpendicular to normal and transverse direction (sample A and C, respectively) as well as along transverse direction in the plane normal to rolling direction (sample B) to obtain different initial texture from cold rolled and annealed plate of commercially pure titanium. Sample B showed higher strength but lower strain hardening rate and ductility than the orientations A and C. It showed extension twinning with lateral thickening while the other samples showed coexistence of extension and contraction twinning. Schmid factor accounted for most of the observed twinning although some contraction twinning in sample A is attributed to the effect of internal stresses. A combination of in situ tensile test in a field emission gun scanning electron microscope with electron backscatter diffraction facility and elastoplastic self-consistent simulations aid in obtaining high-fidelity Voce hardening parameters for different slip and twinning systems in commercially pure titanium. The variation in tensile properties can be explained on the basis of propensity of twinning which tends to provide strain hardening at lower strain but contributes to failure at higher strain.

  12. Tensile and burning properties of clay/phenolic/GF composite and its application

    NASA Astrophysics Data System (ADS)

    Diharjo, Kuncoro; Armunanto, V. Bram; Kristiawan, S. Adi

    2016-03-01

    Composite material has been widely used in automotive due to its properties can be improved by combining with reinforcement, like fiber and particle to enhance mechanical properties and burning resistance. This study aims to investigate the tensile and burning properties of hybrid composite combining glass fiber and clay in phenolic resin. The clay was produced from roof tile rejected by tile industries in Sokka, Kebumen, Indonesia. The composite was made using a press mold method for different number of laminates and orientation of woven-roving-glass-fiber/ WRGF (0/90 and ±45), and the total volume fraction of fiber and clay is constant 40%. The specimens were tested using universal testing machine for tensile properties and burning tests apparatus for burning resistance (time to ignite/ TTI and burning rate/ BR). The enhancing of the Clay/Penolic/GF composite can be performed by the increasing of GF laminates, and the composite with 0/90 orientation of WRGF has higher tensile strength and modulus compared to that with ±45 orientation of WRGF. Both composite with 0/90 and ±45 orientation of WRGF have similar burning resistance (TTI and BR) and the composite containing 13 laminates of WR-GF shows the best burning resistance. According to these properties, this composite has good opportunity to be applied as car body panels or other structure in industries due to save weight and high burning resistance.

  13. Tensile and impact properties of iron-aluminum alloys

    SciTech Connect

    Alexander, D.J.; Sikka, V.K.

    1993-12-31

    Tensile and impact tests have been conducted on specimens from a series of five heats of iron-aluminum alloys. These results have been compared to data for the iron aluminide alloy FA-129. The transition temperatures of all of the Fe{sub 3}Al-based alloys were similar, but the simple ternary alloy had a much higher upper-shelf energy. The reduced aluminum alloys [based on Fe-8Al (wt %)] had lower transition temperatures and higher upper-shelf energy levels than the Fe{sub 3}Al-type alloys. The reduced aluminum alloy with yttrium showed excellent tensile properties, with a room temperature total elongation of 40%, and a very high upper-shelf energy level. Despite the high tensile ductility at room temperature, the transition temperature of the yttrium-containing alloy was still about 150 C, compared to approximately 300 C for FA-129. In general, the microstructures were coarse and anisotropic. The fracture processes were dominated by second-phase particles.

  14. Tensile Strength and Microstructural Characterization of Uncoated and Coated HPZ Ceramic Fibers

    NASA Technical Reports Server (NTRS)

    Bansal, Narottam P.; Wheeler, Donald R.; Dickerson, Robert M.

    1996-01-01

    Tensile strengths of as-received HPZ fiber and those surface coated with BN, BN/SiC, and BN/Si3N4 have been determined at room temperature using a two-parameter Weibull distribution. Nominally approx. 0.4 micron BN and 0.2 micron SiC or Si3N4 coatings were deposited on the fibers by chemical vapor deposition using a continuous reactor. The average tensile strength of uncoated HPZ fiber was 2.0 +/- 0.56 GPa (290 +/- 81 ksi) with a Weibull modulus of 4.1. For the BN coated fibers, the average strength and the Weibull modulus increased to 2.39 +/- 0.44 GPa (346 +/- 64 ksi) and 6.5, respectively. The HPZ/BN/SiC fibers showed an average strength of 2.0 +/- 0.32 GPa (290 +/- 47 ksi) and Weibull modulus of 7.3. Average strength of the fibers having a dual BN/Si3N4 surface coating degraded to 1.15 +/- 0.26 GPa (166 +/- 38 ksi) with a Weibull modulus of 5.3. The chemical composition and thickness of the fiber coatings were determined using scanning Auger analysis. Microstructural analysis of the fibers and the coatings was carried out by scanning electron microscopy and transmission electron microscopy. A microporous silica-rich layer approx. 200 nm thick is present on the as-received HPZ fiber surface. The BN coatings on the fibers are amorphous to partly turbostratic and contaminated with carbon and oxygen. Silicon carbide coating was crystalline whereas the silicon nitride coating was amorphous. The silicon carbide and silicon nitride coatings are non-stoichiometric, non-uniform, and granular. Within a fiber tow, the fibers on the outside had thicker and more granular coatings than those on the inside.

  15. Tensile Properties of Under-Matched Weld Joints for 950 MPa Steel.

    NASA Astrophysics Data System (ADS)

    Yamamoto, Kouji; Arakawa, Toshiaki; Akazawa, Nobuki; Yamamoto, Kousei; Matsuo, Hiroki; Nakagara, Kiyoyuki; Suita, Yoshikazu

    In welding of 950 MPa-class high tensile strength steel, preheating is crucial in order to avoid cold cracks, which, however, eventually increases welding deformations. One way to decrease welding deformations is lowering preheating temperature by using under-matched weld metal. Toyota and others clarify that although breaking elongation can decrease due to plastic constraint effect under certain conditions, static tensile of under-matched weld joints is comparable to that of base metal. However, there has still been no report about joint static tensile of under-matched weld joints applied to 950 MPa-class high tensile strength steel. In this study, we aim to research tensile strength and fatigue strength of under-matched weld joints applied to 950 MPa-class high tensile steel.

  16. [Comparative study of tensile strength of enamel/resin/metal interface. Effect of bonding resins, retention mechanisms and metal alloys].

    PubMed

    Camparis Bussadori, C M; de Angelis Porto, C L

    1990-01-01

    The purpose of this study was to compare the enamel/resin/metal bond tensile strength by using human canines, in which castings were bonded. These castings were obtained by Co-Cr or Ni-Cr alloys and showed four types of mechanisms of retention: 50 micrograms aluminum oxide abrasive, electrochemical etch, acrylic beads metal mesh. The castings were bonded utilizing Comspan Opaque and Panavia Ex. The specimens were subjected to tensile forces after 24 hours in an Instron machine. The castings subjected to 50 micrograms aluminum oxide abrasive and bonded utilizing Panavia EX showed the biggest bond tensile strength. PMID:2099553

  17. A new tensile stage for in situ electron microscopy examination of the mechanical properties of 'superelastic' specimens

    SciTech Connect

    Dragnevski, Kalin I.; Fairhead, Trevor W.; Balsod, Rik; Donald, Athene M.

    2008-12-15

    We have developed a novel tensile stage that can be used for in situ electron microscopy examination of the mechanical properties of ''superelastic'' materials. In our stage, one of the specimen clamps is replaced by a cylindrical roller, which when driven by a motor can easily stretch (''roll on'') any specimen irrespective of its plastic properties. We have used the so-called Roll-o-meter in the study of the tensile behavior of two different film formed latex formulations, here referred to as standard and novel. We find that the values of the tensile strength and extension to break of the studied systems, measured by using the Roll-o-meter, are similar to those measured by a Hounsfield tensile testing machine outside the microscope chamber. Further, in situ environmental scanning electron microscopy examination of the deformation and failure of the lattices revealed that the standard specimens exhibit a more ductile behavior, compared to the novel ones.

  18. Tensile properties of polyhydroxyalkanoate/polycaprolactone blends studied by rheo-optical near-infrared (NIR) spectroscopy

    NASA Astrophysics Data System (ADS)

    Nishida, Masahiro; Ogura, Takashi; Shinzawa, Hideyuki; Nishida, Masakazu; Kanematsu, Wataru

    2016-11-01

    In order to improve the mechanical properties of Polyhydroxyalkanoate (PHA), the polycaprolactone (PCL) pellet was blended with a PHA-based pellet. The effects of the mixing ratio on the tensile properties, Young's modulus, tensile strength and elongation at break, were examined using a universal testing machine. When the mixing ration of PCL increased to 50%, the elongation at break of the polymer blend increased and the gauge area of tensile test specimens whitened and became porous. In order to understand this behavior, a rheo-optical characterization technique based on near-infrared (NIR) spectroscopy was applied to the mechanical deformation of the polymer blends during static tensile tests. Two-dimensional (2D) correlation of NIR spectra was then examined. It was found from peaks of ethyl group or methyl group that PCL was preferentially deformed. The difference in the deformation behavior is thought to be the cause of the porous structure.

  19. Effect of the fiber-matrix interphase on the transverse tensile strength of the unidirectional composite material

    NASA Technical Reports Server (NTRS)

    Tsai, H. C.; Arocho, A. M.

    1992-01-01

    A simple one-dimensional fiber-matrix interphase model has been developed and analytical results obtained correlated well with available experimental data. It was found that by including the interphase between the fiber and matrix in the model, much better local stress results were obtained than with the model without the interphase. A more sophisticated two-dimensional micromechanical model, which included the interphase properties was also developed. Both one-dimensional and two-dimensional models were used to study the effect of the interphase properties on the local stresses at the fiber, interphase and matrix. From this study, it was found that interphase modulus and thickness have significant influence on the transverse tensile strength and mode of failure in fiber reinforced composites.

  20. Properties of aluminum alloys: Tensile, creep, and fatigue data at high and low temperatures

    SciTech Connect

    Kaufman, J.G.

    1999-01-01

    Based on work by Alcoa Laboratories over several years, this book compiles more than 300 tables listing typical average properties of a wide range of aluminum alloys. Contents include: Typical Mechanical Properties of Wrought and Cast Aluminum Alloys at Various Temperatures--tensile properties at subzero temperatures at temperature after various holding times at the test temperature, and at room temperature after exposure at various temperatures for various holding times; creep rupture strengths for various times at various temperatures; stresses required to generate various amounts of creep in various lengths of time; rotating-beam fatigue strengths; modulus of elasticity as a function of temperature; Fatigue Data--fatigue strength of wrought aluminum alloys, axial stress fatigue strength of wrought aluminum alloys (at various stress ratios, smooth and notched specimens), average fatigue strength for aluminum and aluminum alloy flat sheet specimens (under complete reversed flexure), cantilever-beam fatigue test results of aluminum alloys at elevated temperatures and following stabilization at the test temperature. The properties in this book are typical values--expected average values for representative lots produced using commercial processes and that meet industry standards, whose room temperature properties correspond to published typical values for the alloys.

  1. Evaluation of Interfacial Tensile Strength in Glass Fiber/Epoxy Resin Interface using the Cruciform Specimen Method

    NASA Astrophysics Data System (ADS)

    Ogihara, Shinji; Sakamoto, Yoriaki; Koyanagi, Jun

    Glass/epoxy interfacial tensile strength is investigated by the cruciform specimen method. The conventional transverse tensile test for single fiber composite is one of methods for evaluating the interfacial tensile strength, but stress singularity at the specimen edge is a very complicated problem to be solved. A cruciform specimen which has large width only around fiber embedded in transverse direction can potentially prevent the stress singularity problem. The cruciform specimen geometry is first discussed by means of finite element analysis considering experimental conditions. Transverse tensile test is conducted and an interfacial debonding which initiates at the middle of specimen not at edge is observed using the cruciform specimens. The interfacial tensile strength can be obtained by the value of stress concentration factor at interface multiplied by specimen stress. The location which the debonding initiates from is discussed and the validity of the evaluation method in this study is verified when interfacial tensile strength is as high as or lower than interfacial shear strength.

  2. Effect of Preparation Methods on Crystallization Behavior and Tensile Strength of Poly(vinylidene fluoride) Membranes

    PubMed Central

    Liu, Jie; Lu, Xiaolong; Wu, Chunrui

    2013-01-01

    Poly(vinylidene fluoride) (PVDF) membranes were prepared by non solvent induced phase separation (NIPS), melt spinning and the solution-cast method. The effect of preparation methods with different membrane formation mechanisms on crystallization behavior and tensile strength of PVDF membranes was investigated. Fourier transform infrared spectroscopy-attenuated total reflectance (FTIR-ATR) and X-ray diffraction (XRD) were employed to examine the crystal form of the surface layers and the overall membranes, respectively. Spherulite morphologies and thermal behavior of the membranes were studied by polarized light optical microscopy (PLO) and differential scanning calorimetry (DSC) separately. It was found that the crystallization behavior of PVDF membranes was closely related to the preparation methods. For membranes prepared by the NIPS method, the skin layers had a mixture of α and β phases, the overall membranes were predominantly α phase, and the total crystallinity was 60.0% with no spherulite. For melt spinning membranes, the surface layers also showed a mixture of α and β phases, the overall membranes were predominantly α phase. The total crystallinity was 48.7% with perfect spherulites. Whereas the crystallization behavior of solution-cast membranes was related to the evaporation temperature and the additive, when the evaporation temperature was 140 °C with a soluble additive in the dope solution, obvious spherulites appeared. The crystalline morphology of PVDF exerted a great influence on the tensile strength of the membranes, which was much higher with perfect spherulites. PMID:24957064

  3. Effect of High Temperature on Mineralogy, Microstructure, Shear Stiffness and Tensile Strength of Two Australian Mudstones

    NASA Astrophysics Data System (ADS)

    Liu, Xianfeng; Zhang, Chonglei; Yuan, Shengyang; Fityus, Stephen; Sloan, Scott William; Buzzi, Olivier

    2016-09-01

    This study aims at providing quality experimental data on the effects of temperature on tensile strength and small strain shear stiffness of two Australian mudstones. The objective is to provide multiscale data in view of developing a numerical model that can capture and simulate the complex multiphysics of underground coal fire propagation. Two mudstones were collected in the Hunter Valley, close to a known underground coal fire, referred to as "Burning Mountain." The rock specimens were heated to a range of temperatures (maximum of 900 °C) for 24 h, and the materials were comprehensively characterized by X-ray diffraction, thermal gravimetric analyses, optical microscopy and scanning electron microscopy. In addition, mercury intrusion porosimetry was used in order to track changes in pore size distribution with temperature. Investigations at microscale were complemented by testing at the macroscale. In particular, the paper focuses on the evolution of the tensile strength and small strain shear stiffness as the materials are subjected to heating treatment. Results show that both parameters evolve in a non-monotonic manner with temperature. The observed mechanical responses are fully explained and corroborated by microstructural observations.

  4. The impact of polymerization method on tensile bond strength between denture base and acrylic teeth.

    PubMed

    Hashem, Mohamed; Binmgren, Mohammed A; Alsaleem, Samah O; Vellappally, Sajith; Assery, Mansour K; Sukumaran, Anil

    2014-05-01

    Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base.

  5. The impact of polymerization method on tensile bond strength between denture base and acrylic teeth.

    PubMed

    Hashem, Mohamed; Binmgren, Mohammed A; Alsaleem, Samah O; Vellappally, Sajith; Assery, Mansour K; Sukumaran, Anil

    2014-01-01

    Failure of the bond between acrylic teeth and the denture base resin interface is one of the major concern in prosthodontics. The new generation of denture bases that utilize alternate polymerization methods are being introduced in the market. The aim of the study is to evaluate the influence of polymerization methods on bonding quality between the denture base and artificial teeth. Sixty test specimens were prepared (20 in each group) and were polymerized using heat, microwave and visible light curing. The tensile strength was recorded for each of the samples, and the results were analyzed statistically. The light-activated Eclipse™ System showed the highest tensile strength, followed by heat curing. The microwave-cured samples exhibited the least bonding to the acrylic teeth. Within the limitations of this study, it can be concluded that the new generation of light-cured denture bases showed significantly better bonding to acrylic teeth and can be used as an alternative to the conventional heat-polymerized denture base. PMID:25307813

  6. Tensile Property of Al-Mg-Sc-Zr Alloy at Cryogenic Temperature

    NASA Astrophysics Data System (ADS)

    Zhao, W. T.; Yan, D. S.; Li, X. Y.; Rong, L. J.; Li, Y. Y.

    2006-03-01

    The tensile property and fracture characteristic of Al-Mg-Sc-Zr alloy have been investigated at 77 K, 123 K, 173 K, 223 K and 300 K respectively. Both the strength and elongation improved with decreasing temperature from 300 K to 77 K, particularly between 123 K and 77 K. However, the reduction of area exhibited a maximum at around 173 K. The fractographs of tensile specimens show a completely dimple-type ductile mode of fracture at 77 K and mixed type of fracture at 300 K, and the primary Al3(Sc,Zr) and Al6(Mn,Fe) phases are responsible for void and crack initiation at their interface with the matrix at cryogenic temperature.

  7. Tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.: McKamey, C.G.; Maziasz, P.J.; Sikka, V.K.

    1993-07-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al, Fe{sub 3}Al with chromium, and Fe{sub 3}Al-based FA-129 alloy are investigated. Tensile properties were obtained in the as-cast condition and after homogenization at 700, 900, and 1200{degrees}C. Transmission electron microscopy (TEM) was used to characterize ordered phases, and optical metallography and scanning electron microscopy (SEM) were used to characterize the microstructure and fracture morphology. The results indicate that the low ductility of as-cast Fe{sub 3}Al-based alloys may be related to the relatively large grain size in the cast condition, the low dislocation density in as-cast samples, and the presence of the D0{sub 3} ordered phase. Homogenized samples of FA-129 alloy exhibited almost twice the ductility of the as-cast condition. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures may provide a clue to the poor ductility in the as-cast state.

  8. Accuracy of Prediction Method of Cryogenic Tensile Strength for Austenitic Stainless Steels in ITER Toroidal Field Coil Structure

    NASA Astrophysics Data System (ADS)

    Sakurai, Takeru; Icuchi, Masahide; Nakahira, Masatake; Saito, Toru; Morimoto, Masaaki; Inagaki, Takashi; Hong, Yunseok; Matsui, Kunihiro; Hemmi, Tsutomu; Kajitani, Hideki; Koizumi, Norikiyo

    The Japan Atomic Energy Agency (JAEA) has developed the prediction method for yield stress and ultimate tensile strength at liquid helium temperature (4 K) using the quadratic curve as a function of the content of carbon and nitrogen. Prediction method was formulated based on the tensile strength data of materials with shape of rectangle. In this study, tensile strength of the forged materials with round bar and complex shape were obtained so as to compare with the predicted value. The accuracy of the prediction method was 10.2% of Yield Strength (YS), 2.5% of Ultimate Tensile Strength (UTS) when the prediction method was applied to round bar forged materials. By contrast, the accuracy about prediction method was 1.8% of YS, -0.8% of UTS when prediction method was applied to complex shape forged materials. It can be presumed the tendency of tensile strength other than materials with shape of rectangle. However, it was found accuracy of round bar is larger than other materials because of difference in the forging method."The views and opinions expressed herein do not necessarily reflect those of the ITER Organization"

  9. Mechanical properties of individual InAs nanowires studied by tensile tests

    SciTech Connect

    Li, X.; Wei, X. L. E-mail: qingchen@pku.edu.cn; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Chen, Q. E-mail: qingchen@pku.edu.cn; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.

    2014-03-10

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ∼10%. Their fracture strength distributes in a similar range of ∼2–5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16–78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34–79 GPa with an average value of 58 GPa for MBE NWs.

  10. Mechanical properties of individual InAs nanowires studied by tensile tests

    NASA Astrophysics Data System (ADS)

    Li, X.; Wei, X. L.; Xu, T. T.; Ning, Z. Y.; Shu, J. P.; Wang, X. Y.; Pan, D.; Zhao, J. H.; Yang, T.; Chen, Q.

    2014-03-01

    Mechanical properties of individual InAs nanowires (NWs) synthesized by metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MBE) methods are studied by in-situ tensile tests in a scanning electron microscope and their fracture strength and Young's modulus are obtained. The two types of NWs both exhibit brittle fracture with a maximum elastic strain up to ˜10%. Their fracture strength distributes in a similar range of ˜2-5 GPa with a general trend of increasing with NW volume decrease, which is well described by Weibull statistic with a smaller Weibull modulus and a higher characteristic strength for MOCVD NWs. Young's modulus is determined to be 16-78 GPa with an average value of 45 GPa and no dependence on NW diameter for MOCVD NWs and 34-79 GPa with an average value of 58 GPa for MBE NWs.

  11. Tensile Bond Strengths of Two Adhesives on Irradiated and Nonirradiated Human Dentin

    PubMed Central

    Bernard, Cécile; Abouelleil, Hazem; Gustin, Marie-Paule; Grosgogeat, Brigitte

    2015-01-01

    The aim of this study was to assess the effect of radiotherapy on bond efficiency of two different adhesive systems using tensile bond strength test. Twenty extracted teeth after radiotherapy and twenty nonirradiated extracted teeth were used. The irradiation was applied in vivo to a minimal dose of 50 Gy. The specimens of each group were randomly assigned to two subgroups to test two different adhesive systems. A three-step/etch-and-rinse adhesive system (Optibond FL) and a two-steps/self-etch adhesive system (Optibond XTR) were used. Composite buildups were performed with a nanohybrid composite (Herculite XTR). All specimens were submitted to thermocycling ageing (10000 cycles). The specimens were sectioned in 1 mm2 sticks. Microtensile bond strength tests were measured. Nonparametric statistical analyses were performed due to nonnormality of data. Optibond XTR on irradiated and nonirradiated teeth did not show any significant differences. However, Optibond FL bond strength was more effective on nonirradiated teeth than on irradiated teeth. Within the limitations of an in vitro study, it can be concluded that radiotherapy had a significant detrimental effect on bond strength to human dentin. However, it seems that adhesive choice could be adapted to the substrata. According to the present study, the two-steps/self-etch (Optibond XTR) adhesive system tested could be more effective on irradiated dentin compared to three-steps/etch-and-rinse adhesive system (Optibond FL). PMID:26783528

  12. Chondroitinase ABC Treatment Results in Greater Tensile Properties of Self-Assembled Tissue-Engineered Articular Cartilage

    PubMed Central

    Natoli, Roman M.; Revell, Christopher M.

    2009-01-01

    Collagen content and tensile properties of engineered articular cartilage have remained inferior to glycosaminoglycan (GAG) content and compressive properties. Based on a cartilage explant study showing greater tensile properties after chondroitinase ABC (C-ABC) treatment, C-ABC as a strategy for cartilage tissue engineering was investigated. A scaffold-less approach was employed, wherein chondrocytes were seeded into non-adherent agarose molds. C-ABC was used to deplete GAG from constructs 2 weeks after initiating culture, followed by 2 weeks culture post-treatment. Staining for GAG and type I, II, and VI collagen and transmission electron microscopy were performed. Additionally, quantitative total collagen, type I and II collagen, and sulfated GAG content were measured, and compressive and tensile mechanical properties were evaluated. At 4 wks, C-ABC treated construct ultimate tensile strength and tensile modulus increased 121% and 80% compared to untreated controls, reaching 0.5 and 1.3 MPa, respectively. These increases were accompanied by increased type II collagen concentration, without type I collagen. As GAG returned, compressive stiffness of C-ABC treated constructs recovered to be greater than 2 wk controls. C-ABC represents a novel method for engineering functional articular cartilage by departing from conventional anabolic approaches. These results may be applicable to other GAG-producing tissues functioning in a tensile capacity, such as the musculoskeletal fibrocartilages. PMID:19344291

  13. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability

    PubMed Central

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention. PMID:27064570

  14. Symbiosis of Arbuscular Mycorrhizal Fungi and Robinia pseudoacacia L. Improves Root Tensile Strength and Soil Aggregate Stability.

    PubMed

    Zhang, Haoqiang; Liu, Zhenkun; Chen, Hui; Tang, Ming

    2016-01-01

    Robinia pseudoacacia L. (black locust) is a widely planted tree species on Loess Plateau for revegetation. Due to its symbiosis forming capability with arbuscular mycorrhizal (AM) fungi, we explored the influence of arbuscular mycorrhizal fungi on plant biomass, root morphology, root tensile strength and soil aggregate stability in a pot experiment. We inoculated R. pseudoacacia with/without AM fungus (Rhizophagus irregularis or Glomus versiforme), and measured root colonization, plant growth, root morphological characters, root tensile force and tensile strength, and parameters for soil aggregate stability at twelve weeks after inoculation. AM fungi colonized more than 70% plant root, significantly improved plant growth. Meanwhile, AM fungi elevated root morphological parameters, root tensile force, root tensile strength, Glomalin-related soil protein (GRSP) content in soil, and parameters for soil aggregate stability such as water stable aggregate (WSA), mean weight diameter (MWD) and geometric mean diameter (GMD). Root length was highly correlated with WSA, MWD and GMD, while hyphae length was highly correlated with GRSP content. The improved R. pseudoacacia growth, root tensile strength and soil aggregate stability indicated that AM fungi could accelerate soil fixation and stabilization with R. pseudoacacia, and its function in revegetation on Loess Plateau deserves more attention.

  15. Tensile properties of a boron/nitrogen-doped carbon nanotube-graphene hybrid structure.

    PubMed

    Xia, Kang; Zhan, Haifei; Wei, Ye; Gu, Yuantong

    2014-01-01

    Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young's modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young's modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene-nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials.

  16. Tensile properties of a boron/nitrogen-doped carbon nanotube–graphene hybrid structure

    PubMed Central

    Xia, Kang; Zhan, Haifei; Wei, Ye

    2014-01-01

    Summary Doping is an effective approach that allows for the intrinsic modification of the electrical and chemical properties of nanomaterials. Recently, a graphene and carbon nanotube hybrid structure (GNHS) has been reported, which extends the excellent properties of carbon-based materials to three dimensions. In this paper, we carried out a first-time investigation on the tensile properties of the hybrid structures with different dopants. It is found that with the presence of dopants, the hybrid structures usually exhibit lower yield strength, Young’s modulus, and earlier yielding compared to that of a pristine hybrid structure. For dopant concentrations below 2.5% no significant reduction of Young’s modulus or yield strength could be observed. For all considered samples, the failure is found to initiate at the region where the nanotubes and graphene sheets are connected. After failure, monatomic chains are normally observed around the failure region. Dangling graphene layers without the separation of a residual CNT wall are found to adhere to each other after failure with a distance of about 3.4 Å. This study provides a fundamental understanding of the tensile properties of the doped graphene–nanotube hybrid structures, which will benefit the design and also the applications of graphene-based hybrid materials. PMID:24778956

  17. Relationship between apposition pressure during welding and tensile strength of the acute weld

    NASA Astrophysics Data System (ADS)

    Wu, Paul J.; Walsh, Joseph T., Jr.

    2001-05-01

    Dye-assisted photothermal welding is a technique used to close wounds by thermally cross-linking collagen across apposed tissue edges. For a successful weld, not only do laser parameters have to be optimized, but also apposition of the incision has to be consistent and controlled. The objective of this study was to quantify the relationship between the applied apposition pressure (i.e., the compressive force holding the wound closed during the welding procedure divided by the area of the skin-to-skin interface) and the tensile strength of the wound following the welding procedure. By using a clamping device made of two complementary pieces, each 3 cm wide with a row of 10 equally spaced blunt wire mesh tips, the apposition pressure along a 2-cm-long incision in each albino guinea pig was quantified using a 127-micrometers -thick load cell and varied from 0-1.8 kgf/cm2. A continuous wave, Nd:YAG laser emitting 10.0 W of 1.06-micrometers radiation from a 600-micrometers -diameter fiber irradiating a 5-mm-diameter spot size was scanned across the incision in order to deliver 300 J of total energy. As the apposition pressure of the incisions was increased, the resulting tensile strength of welded skin increased in a sigmoidal manner. For this welding technique, an apposition pressure of at least 1.2 kgf/cm2 is necessary to obtain maximum weld strength of the skin (2.56+/- 0.36 kg/cm2).

  18. Effect of storage on tensile material properties of bovine liver.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Untaroiu, Costin D

    2014-01-01

    Cadaveric tissue models play an important role in the assessment and optimization of novel restraint systems for reducing abdominal injuries. However, the effect of tissue preservation by means of freezing on the material properties of abdominal tissues remains unknown. The goal of this study was to investigate the influence of frozen storage time on the material responses of the liver parenchyma in tensile loading. Specimens from ten bovine livers were equally divided into three groups: fresh, 30-day frozen storage, and 60-day frozen storage. All preserved specimens were stored at -12°C. Dog-bone specimens from each preservation group were randomly assigned to one of three strain rates (0.01s(-1), 0.1s(-1), and 1.0s(-1)) and tested to failure in tensile loading. The local material response recorded at the tear location and the global material response of the whole specimen of the liver parenchyma specimens were investigated based on the experimental data and optimized analytical material models. The local and global failure strains decreased significantly between fresh specimens and specimens preserved for 30 days (p<0.05), and between fresh specimens and specimens preserved for 60 days (p<0.05) for all three loading rates. Changes on the material model parameters were also observed between fresh and preserved specimens. Preservation by means of frozen storage was found to affect both the material and failure response of bovine liver parenchyma in tensile loading. The stiffness of the tissue increased with increased preservation time and increased strain rate. In summary, significant changes (p<0.05) between the failure strain of previously frozen liver parenchyma samples and fresh samples were demonstrated at both global and local levels in this study. In addition, nonlinear and viscoelastic characteristics of the liver parenchyma were observed in tension for both fresh and preserved samples.

  19. Effects of carbon percentage, Stelmor cooling rate and laying head temperature on tensile strength gain in low carbon steels

    NASA Astrophysics Data System (ADS)

    Gade, Surya Prakash

    Low carbon steel wire rods are used to produce finished products such as fine wire, coat hangers, staples, and roofing nails. These products are subjected to excessively high work hardening rates during wire drawing process resulting in a variation in wire tensile strength. This research analyzes the effects of carbon percentage, StelmorRTM cooling rate and laying head temperature on the tensile strength gain in wire drawn low carbon steels using design of experiments. The probable reasons for variations in tensile strength gain are analyzed by observing the microstructural changes during experiments. Microstructural analysis was done extensively using optical microscope and Transmission Electron Microscope (TEM) and it was found that the tensile strength gain variation is mainly caused by the increase in the dislocation density in wire rod and wire due to high cooling rate and high laying head temperature, within the range considered. This research concludes that a low carbon wire rod can be produced with minimum tensile strength gain, lower dislocation density and finer ferrite grain size by maintaining a low cooling rate in the StelmorRTM cooling zone and low laying head temperature, which is the temperature at which the wire rod coils are laid on the Stelmor RTM deck. It is also concluded from the results of the present study that: (1) The lowest tensile strength gain is for NS 1006T-3 (0.07 wt.% Carbon) with low cooling rate of 14°F/s and low laying head temperature of 1500°F. (2) The highest tensile strength gain is for NS 1006T-3 with high cooling rate of 26°F/s and high laying head temperature of 1650°F. (3) The effect of StelmorRTM cooling rate and laying head temperature and their interaction are found to be the significant factors causing the variation in wire tensile strength gain. The StelmorRTM cooling rate has the most significant effect on tensile strength gain among the three factors. (4) The effect of carbon percentage on wire tensile strength

  20. High Temperature Tensile Properties of Unidirectional Hi-Nicalon/Celsian Composites In Air

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, John Z.; Bansal, Narottam P.

    2000-01-01

    High temperature tensile properties of unidirectional BN/SiC-coated Hi-Nicalon SiC fiber reinforced celsian matrix composites have been measured from room temperature to 1200 C (2190 F) in air. Young's modulus, the first matrix cracking stress, and the ultimate strength decreased from room temperature to 1200 C (2190 F). The applicability of various micromechanical models, in predicting room temperature values of various mechanical properties for this CMC, has also been investigated. The simple rule of mixtures produced an accurate estimate of the primary composite modulus. The first matrix cracking stress estimated from ACK theory was in good agreement with the experimental value. The modified fiber bundle failure theory of Evans gave a good estimate of the ultimate strength.

  1. Influences of post weld heat treatment on tensile properties of friction stir welded AA2519-T87 aluminium alloy joints

    NASA Astrophysics Data System (ADS)

    Sabari, S. Sree; Balasubramanian, V.; Malarvizhi, S.; Reddy, G. Madusudhan

    2015-12-01

    AA 2519-T87 is an aluminium alloy that principally contains Cu as an alloying element and is a new grade of Al-Cu alloy system. This material is a potential candidate for light combat military vehicles. Fusion welding of this alloy leads to hot cracking, porosity and alloy segregation in the weld metal region. Friction stir welding (FSW) is a solid state joining process which can overcome the above mentioned problems. However, the FSW of age hardenable aluminium alloys results in poor tensile properties in the as-welded condition (AW). Hence, post weld heat treatment (PWHT) is used to enhance deteriorated tensile properties of FSW joints. In this work, the effect of PWHT, namely artificial ageing (AA) and solution treatment (ST) followed by ageing (STA) on the microstructure, tensile properties and microhardness were systematically investigated. The microstructural features of the weld joints were characterised using an optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). The tensile strength and microhardness of the joints were correlated with the grain size, precipitate size, shape and its distribution. From the investigation, it was found that STA treatment is beneficial in enhancing the tensile strength of the FSW joints of AA2519-T87 alloy and this is mainly due to the presence of fine and densely distributed precipitates in the stir zone.

  2. Tensile mechanical properties of swine cortical mandibular bone.

    PubMed

    Brosh, Tamar; Rozitsky, Doron; Geron, Silvia; Pilo, Raphael

    2014-01-01

    Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction.

  3. Tensile Mechanical Properties of Swine Cortical Mandibular Bone

    PubMed Central

    Brosh, Tamar; Rozitsky, Doron; Geron, Silvia; Pilo, Raphael

    2014-01-01

    Temporary orthodontic mini implants serve as anchorage devices in orthodontic treatments. Often, they are inserted in the jaw bones, between the roots of the teeth. The stability of the mini implants within the bone is one of the major factors affecting their success and, consequently, that of the orthodontic treatment. Bone mechanical properties are important for implant stability. The aim of this study was to determine the tensile properties of the alveolar and basal mandible bones in a swine model. The diametral compression test was employed to study the properties in two orthogonal directions: mesio-distal and occluso-gingival. Small cylindrical cortical bone specimens (2.6 mm diameter, 1.5 mm thickness) were obtained from 7 mandibles using a trephine drill. The sites included different locations (anterior and posterior) and aspects (buccal and lingual) for a total of 16 specimens from each mandible. The load-displacement curves were continuously monitored while loading half of the specimens in the oclluso-gingival direction and half in the mesio-distal direction. The stiffness was calculated from the linear portion of the curve. The mesio-distal direction was 31% stiffer than the occluso-gingival direction. The basal bone was 40% stiffer than the alveolar bone. The posterior zone was 46% stiffer than the anterior zone. The lingual aspect was stiffer than the buccal aspect. Although bone specimens do not behave as brittle materials, the diametral compression test can be adequately used for determining tensile behavior when only small bone specimens can be obtained. In conclusion, to obtain maximal orthodontic mini implant stability, the force components on the implants should be oriented mostly in the mesio-distal direction. PMID:25463971

  4. Clean Cast Steel Technology: Effect of Micro-porosity on Tensile and Charpy Properties of Four Cast Steels

    SciTech Connect

    Griffin, John, A.; Bates, Charles, E.

    2005-09-19

    The effect of these large shrink cavities on mechanical properties could be easily calculated using well established engineering formulas. Over the years, increases in computational and metallurgical resources have allowed the modeler to improve accuracy and increase the complexity of numerical predictors. An accurate prediction of micro-porosity, not observable using conventional radiographic techniques, and an engineering understanding of the effect on mechanical properties would give a designer confidence in using a more efficient casting design and a lower safety factor. This will give castings an additional design advantage. The goal of this project is to provide current and future modelers/designers with a tensile and Charpy property dataset for validation of micro-porosity predictors. The response of ultimate strength, elongation, and reduction in area to micro-porosity was very similar in all four alloys. Ultimate strength was largely unaffected by tensile fracture surface porosity until values of about 25% were reached and decreased linearly with increasing values. Elongation and reduction in area decreased sharply after less than 5% fracture surface porosity. Niyama values of about 0.7 were produced sound material and acceptable tensile properties. Ultrasonic velocities of 0.233 in/usec and higher produced acceptable tensile properties. Metallographic examination revealed a ratio of 4-6 to 1 in fracture surface porosity to metallographic porosity. Charpy impact properties were largely unaffected by the microporosity concentrations examined in this study and did not correlate to either Niyama values, fracture surface porosity, or metallographic porosity.

  5. Restoration of tensile strength in bark samples of Ficus benjamina due to coagulation of latex during fast self-healing of fissures

    PubMed Central

    Bauer, Georg; Speck, Thomas

    2012-01-01

    Background and Aims The functions of plant latex have been discussed for a long time. Today, many studies support a defence mechanism as being its main function. A role as a self-healing mechanism was never attributed to the coagulation of latex. In this study we quantified the contribution of the coagulation of Ficus benjamina (weeping fig) latex to a restoration of the mechanical properties of the bark after external lesions. Methods Tensile tests of F. benjamina bark were conducted either immediately after injury or at various latency times after injury. Key Results A significant increase in the tensile strength of bark samples until 30 min after injury was found, and this effect could be attributed to the coagulation of plant latex alone. The tensile strength remains nearly constant until several hours or days after injury. Then, very probably due to other mechanisms such as cell growth and cell proliferation, the tensile strength begins to increase slightly again. Conclusions The coagulation of latex seals lesions and serves as a quick and effective pre-step of subsequent, more effective, long-lasting self-healing mechanisms such as cell growth and proliferation. Thus, a fast self-healing effect can be included in the list of functions of plant latex. PMID:22207613

  6. Growth of immature articular cartilage in vitro: correlated variation in tensile biomechanical and collagen network properties.

    PubMed

    Williamson, Amanda K; Masuda, Koichi; Thonar, Eugene J-M A; Sah, Robert L

    2003-08-01

    Articular cartilage biochemical composition and mechanical properties evolve during in utero and in vivo growth, with marked differences between fetus, newborn, and young adult. The objectives of this study were to test whether in vitro growth of bovine fetal and newborn calf articular cartilage explants resulted in changes in biochemical and tensile properties during up to 6 weeks of free-swelling culture in serum-supplemented medium. During this culture period, both fetal and calf cartilage grew markedly in size, increasing in dry and wet mass by 150-270%. This was due in part to increases in sulfated glycosaminoglycan (+248%), collagen (+96%), and pyridinoline cross-link (+133%). This was accompanied by an increase in water content so that the concentration of matrix components decreased, despite the overall net increase in mass. The ratio of pyridinoline cross-link to collagen remained low and characteristic of immature tissue. The equilibrium and dynamic tensile moduli and strength of both fetal and calf cartilage decreased during the culture period. The biochemical and biomechanical properties of the cartilage explants were correlated, such that the low values of modulus and strength were associated with low concentrations of collagen and pyridinoline. Thus, the tested culture conditions supported growth and maintenance cartilage in an immature state, but did not induce biomechanical or collagen network maturation.

  7. The diametral tensile strength and hydrostability of polymer-ceramic nano-composite (pcnc) material prototypes

    NASA Astrophysics Data System (ADS)

    Yepez, Johanna

    Statement of the problem: There is a weak connection between the filler and the resin matrix of dental composites caused primarily by hydrolysis of silane coupling agent, therefore, jeopardizing the mechanical properties of the dental restorations. Purpose: The purpose of this study was to compare the diametral tensile strength (DTS) of a nano-mechanically bonded polymer ceramic nano composite (pcnc) versus the chemically bonding prototype polymer ceramic nano composite (pcnc) fabricated by using hydrolytically stable interphase. Materials and Methods: Composites were made with 60wt % filler, 38% triethyleneglycol dimethacrylate (TEDGMA), 1% camphorquinone (CQ) and 1% 2-(dimethylamino) ethyl methacrylate (DMAEMA). Tests for DTS were performed using a universal testing machine. The disk-shaped specimens were loaded in compression between two supporting plates at a crosshead speed of 0.5 mm/min until fracture. The samples, measuring 3 mm in height and 6 mm in diameter, were produced in a round stainless steel (SS) mold. A total of 144 samples were created. Groups of 48 samples were made for each of three different fillers. Specimens were soaked in artificial saliva at 37° for four time periods, dry(t=0), 1 day, 7 days, 28 days). At the end of each soaking time DTS tests were performed. Results: There where statistically significant differences in the DTS between the filler groups and the soaking times (p=<0.001) as well as for the pairwise comparison between the different filler group values and between the different soaking times as an individual treatment. Overall, longer soaking times resulted in lower mean DTS values. The DTS of the PCNC for filler #1 decreased to 82.4% of the original value after 1 day of soaking, 67.2% after 7 days and 27.2 % after 28 days. For filler #2 decreased to 54.8% of the original value after 1 day of soaking, 62.3% after 7 days and 61.2% after 28 days. For filler #3 decreased to 71.2% of the original value, 67.3% after 7 days and 51

  8. Optimization of high filler loading on tensile properties of recycled HDPE/PET blends filled with rice husk

    NASA Astrophysics Data System (ADS)

    Chen, Ruey Shan; Ahmad, Sahrim; Ghani, Mohd Hafizuddin Ab; Salleh, Mohd Nazry

    2014-09-01

    Biocomposites of recycled high density polyethylene / recycled polyethylene terephthalate (rHDPE/rPET) blend incorporated with rice husk flour (RHF) were prepared using a corotating twin screw extruder. Maleic anhydride polyethylene (MAPE) was added as a coupling agent to improve the fibre-matrix interface adhesion. The effect of high filler loadings (50-90 wt%) on morphology and tensile properties of compatibilized rHDPE/rPET blend was investigated. The results of our study shown that composite with 70 wt% exhibited the highest tensile strength and Young's modulus, which are 22 MPa and 1752 MPa, respectively. The elongation at break decreased with increasing percentage of RHF. SEM micrograph confirmed fillers dispersion, morphological interaction and enhanced interfacial bonding between recycled polymer blends and rice husk. It can be concluded that the optimum RHF content is 70 wt% with maximum tensile strength.

  9. Nd:YAG laser ablation of enamel for orthodontic use: tensile bond strength and surface modification.

    PubMed

    Kwon, Yong Hoon; Kwon, Oh-Won; Kim, Hyung-Il; Kim, Kyo-Han

    2003-09-01

    To test the feasibility of Nd:YAG laser ablation for orthodontic use, bovine enamels were ablated at 2.5 and 3.5 W/pulse conditions. Orthodontic brackets were attached on the ablated enamel surface using a self-curing resin. For comparison, a 37% phosphoric acid solution was used to etch the enamel surface. The strength to detach the brackets was estimated for both surface treatments. Modifications of the enamel surfaces were also compared using a scanning electron microscope for both treatments. The tensile bond strengths from the laser-ablated enamels were significantly lower than that from the phosphoric acid-etched enamels. The higher laser power treatment gave a significantly higher bond strength average than with the lower laser power. The laser-ablated surfaces showed the formation of craters. The formation involved melting and solidification of enamel. Each crater had numerous micropores. Microscopically, the ablated surface was smooth, while much of the acid-etched surface contained numerous microspaces. PMID:14621004

  10. Tensile Strength of Liquids: Equivalence of Temporal and Spatial Scales in Cavitation.

    PubMed

    Cai, Y; Huang, J Y; Wu, H A; Zhu, M H; Goddard, W A; Luo, S N

    2016-03-01

    It is well known that strain rate and size effects are both important in material failure, but the relationships between them are poorly understood. To establish this connection, we carry out molecular dynamics (MD) simulations of cavitation in Lennard-Jones and Cu liquids over a very broad range of size and strain rate. These studies confirm that temporal and spatial scales play equivalent roles in the tensile strengths of these two liquids. Predictions based on smallest-scale MD simulations of Cu for larger temporal and spatial scales are consistent with independent simulations, and comparable to experiments on liquid metals. We analyze these results in terms of classical nucleation theory and show that the equivalence arises from the role of both size and strain rate in the nucleation of a daughter phase. Such equivalence is expected to hold for a wide range of materials and processes and to be useful as a predictive bridging tool in multiscale studies. PMID:26885747

  11. Tensile strength of ramie yarn (spinning by machine)/HDPE thermoplastic matrix composites

    NASA Astrophysics Data System (ADS)

    Banowati, Lies; Hadi, Bambang K.; Suratman, Rochim; Faza, Aulia

    2016-03-01

    Technological developments should be trooped to prevent a gap between technology and environmental sustainability, then it needs to be developed "Green technology". In this research is making of green composites which use natural fiber ramie as reinforcement. Whereas the matrix used was HDPE (High Density Polyethylene) thermoplastic polymer which could be recycled and had a good formability and flexibility. The ramie yarns and fibers for unidirectional (0°) direction respectively were mixed with HDPE powder and processed using hot compression molding. The surface morphology was observed by SEM (Scanning Electrone Microscopy). Results showed that both tensile strength of the ramie fiber/HDPE composites increased in comparison with the ramie yarn (spinning by machine)/HDPE composites. However, the ramie yarn (spinning by machine)/HDPE composites have a good producibility for wider application. Analysis of the test results using the Weibull distribution as approaches to modeling the reliability of the specimens.

  12. Analysis of Ninety Degree Flexure Tests for Characterization of Composite Transverse Tensile Strength

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Krueger, Ronald

    2001-01-01

    Finite element (FE) analysis was performed on 3-point and 4-point bending test configurations of ninety degree oriented glass-epoxy and graphite-epoxy composite beams to identify deviations from beam theory predictions. Both linear and geometric non-linear analyses were performed using the ABAQUS finite element code. The 3-point and 4-point bending specimens were first modeled with two-dimensional elements. Three-dimensional finite element models were then performed for selected 4-point bending configurations to study the stress distribution across the width of the specimens and compare the results to the stresses computed from two-dimensional plane strain and plane stress analyses and the stresses from beam theory. Stresses for all configurations were analyzed at load levels corresponding to the measured transverse tensile strength of the material.

  13. Diametral tensile strength and film thickness of an experimental dental luting agent derived from castor oil

    PubMed Central

    CARMELLO, Juliana Cabrini; FAIS, Laiza Maria Grassi; RIBEIRO, Lígia Nunes de Moraes; CLARO NETO, Salvador; GUAGLIANONI, Dalton Geraldo; PINELLI, Lígia Antunes Pereira

    2012-01-01

    The need to develop new dental luting agents in order to improve the success of treatments has greatly motivated research. Objective The aim of this study was to evaluate the diametral tensile strength (DTS) and film thickness (FT) of an experimental dental luting agent derived from castor oil (COP) with or without addition of different quantities of filler (calcium carbonate - CaCO3). Material and Methods Eighty specimens were manufactured (DTS N=40; FT N=40) and divided into 4 groups: Pure COP; COP 10%; COP 50% and zinc phosphate (control). The cements were mixed according to the manufacturers' recommendations and submitted to the tests. The DTS test was performed in the MTS 810 testing machine (10 KN, 0.5 mm/min). For FT test, the cements were sandwiched between two glass plates (2 cm2) and a load of 15 kg was applied vertically on the top of the specimen for 10 min. The data were analyzed by means of one-way ANOVA and Tukey's test (α=0.05). Results The values of DTS (MPa) were: Pure COP- 10.94±1.30; COP 10%- 30.06±0.64; COP 50%- 29.87±0.27; zinc phosphate- 4.88±0.96. The values of FT (µm) were: Pure COP- 31.09±3.16; COP 10%- 17.05±4.83; COP 50%- 13.03±4.83; Zinc Phosphate- 20.00±0.12. One-way ANOVA showed statistically significant differences among the groups (DTS - p=1.01E-40; FT - p=2.4E-10). Conclusion The experimental dental luting agent with 50% of filler showed the best diametral tensile strength and film thickness. PMID:22437672

  14. Development of a technique for testing of tensile properties with miniature size specimens for metal additive manufacturing

    NASA Astrophysics Data System (ADS)

    Dongare, Sujitkumar

    The study of mechanical properties of metals provides a basis to decide on the capability of a particular metal for a task and also to make predictions about its life. The concepts of stress, strain and strength of materials are employed in practically every engineering discipline. Mechanical properties such as stiffness, yield strength, tensile strength, ductility, toughness, impact resistance, creep resistance, fatigue resistance and others, influence the design, fabrication and service life of equipment. Therefore, more than one property is considered for the material selection process for an application. For complete understanding of any material and its feasibility for a particular application, inter-related mechanical properties have to be measured. Unfortunately, these properties cannot be measured in any single test. However, the tensile test can be used to measure a number of the most commonly used mechanical properties. Extensive research has already been performed in this area. Standards have been developed and established regarding the size of test specimens, testing procedures and process parameters. This thesis discusses the development of a testing procedure for non-standard tensile tests for evaluation of material properties. Miniature test specimens similar to the standard ASTM E8 were designed and used for testing. The tests were mainly conducted on the baseline material for aerospace industry i.e. Ti-6Al-4V.

  15. The influence of tensile fatigue damage on residual compressive strength of woven composites

    SciTech Connect

    Mitrovic, M.; Carman, G.P.

    1995-12-31

    The long term mechanical fatigue of a Celion G30-500/PMR-15 woven composite system is investigated to study the interrelationship between thermo-mechanical properties, namely the thermal expansion coefficient (TEC) and the compressive strength. Residual compressive strength measurements (IITRI fixture) conducted on specimens subjected to tension-tension fatigue cycling indicate that this material property is sensitive to cracks and delaminations which form during mechanical cycling. Measured compressive strength degradation are as large as 49% for this material undergoing mechanical fatigue cycling with TEC degradation as large as 61%. Experimental results show that a correlation exists between TEC measurements and compressive strength. This correlation suggests that TEC measurements may be used as a damage evaluation technique.

  16. Density and Tensile Properties Changed by Aging Plutonium

    SciTech Connect

    Chung, B W; Choi, B W; Thompson, S R; Woods, C H; Hopkins, D J; Ebbinghaus, B B

    2005-03-14

    We present volume, density, and tensile property change observed from both naturally and accelerated aged plutonium alloys. Accelerated alloys are plutonium alloys with a fraction of Pu-238 to accelerate the aging process by approximately 18 times the rate of unaged weapons-grade plutonium. After thirty-five equivalent years of aging on accelerated alloys, the dilatometry shows the samples at 35 C have swelled in volume by 0.12 to 0.14% and now exhibit a near linear volume increase due to helium in-growth while showing possible surface effects on samples at 50 C and 65 C. The engineering stress of the accelerated alloy at 18 equivalent years increased significantly compared to at 4.5 equivalent years.

  17. Analysis of the influence of voids and a crack on the ultimate tensile strength of REBCO bulk superconductor

    NASA Astrophysics Data System (ADS)

    Kasaba, K.; Oshida, Y.; Hokari, T.; Katagiri, K.

    2008-09-01

    Since the high Tc rare-earth based bulk superconductor is subjected to the tensile load in radial and circumferential direction by the Lorentz force generated in the magnetization process, the evaluation of the strength by the tensile test is indispensable. Ultimate tensile strength of the bulk superconductor depends on the defects in each sample. Many artificial specimens containing voids were generated for numerical stress calculations. The distribution of the voids diameter in each artificial specimen was based on the observations of Dy123 containing 25 wt% Dy211 (abbreviated as Dy25). Furthermore, the effect of a center crack superposed to the field of the voids on the strength was analytically evaluated. The strength depends on both the size and the location of the voids. The maximum crack length which has eventually no effect on the strength was evaluated. By the evaluation method proposed in this study, it was found that if there had been no void in the Dy25 bulk sample, the tensile strength could have been estimated to be 63 MPa. The voids increase the stress intensity factor at the crack tip. If there is a crack with 0.16 mm or more in the Dy25 superconductor bulk with the porosity 10%, the fracture may not be originated around a void but at a crack tip.

  18. Development of nanostructured SUS316L-2%TiC with superior tensile properties

    NASA Astrophysics Data System (ADS)

    Sakamoto, T.; Kurishita, H.; Matsuo, S.; Arakawa, H.; Takahashi, S.; Tsuchida, M.; Kobayashi, S.; Nakai, K.; Terasawa, M.; Yamasaki, T.; Kawai, M.

    2015-11-01

    Structural materials used in radiation environments require radiation tolerance and sufficient mechanical properties in the controlled state. In order to offer SUS316L austenitic stainless steel with the assumed requirements, nanostructured SUS316L with TiC addition of 2% (SUS316L-2TiC) that is capable of exhibiting enhanced tensile ductility and flow strength sufficient for structural applications was fabricated by advanced powder metallurgical methods. The methods include MA (Mechanical Alloying), HIP (Hot Isostatic Pressing), GSMM (Grain boundary Sliding Microstructural Modification) for ductility enhancement, cold rolling at temperatures below Md (the temperature where the martensite phase occurs by plastic deformation) for phase transformation from austenite to martensite and heat treatment for reverse transformation from martensite to austenite. It is shown that the developed SUS316L-2TiC exhibits ultrafine grains with sizes of 90-270 nm, accompanied by TiC precipitates with 20-50 nm in grain interior and 70-110 nm at grain boundaries, yield strengths of 1850 to 900 MPa, tensile strengths of 1920 to 1100 MPa and uniform elongations of 0.6-21%, respectively, depending on the heat treatment temperature after rolling at -196 °C.

  19. Structural and High-Temperature Tensile Properties of Special Pitch-Coke Graphites

    NASA Technical Reports Server (NTRS)

    Kotlensky, W. V.; Martens, H. E.

    1961-01-01

    The room-temperature structural properties and the tensile properties up to 5000 F (275O C) were determined for ten grades of specially prepared petroleum-coke coal-tar-pitch graphites which were graphitized at 5430 F (3000 C). One impregnation with coal-tar pitch increased the bulk density from 1.41 to 1.57 g/cm3 and the maximum strength at 4500 F (2500 C) from 4000 to 5700 psi. None of the processing parameters studied had a marked effect on the closed porosity or the X-ray structure or the per cent graphitization. The coarse-particle filler resulted in the lowest coefficient of thermal expansion and the fine-particle filler in the highest coefficient. A marked improvement in uniformity of tensile strength was observed. A standard-deviation analysis gave a one-sigma value of approximately 150 psi for one of these special grades and values of 340-420 psi for three commercial grades.

  20. Microhardness and Tensile Properties of a 6XXX Alloy Through Minor Additions of Zr

    NASA Astrophysics Data System (ADS)

    Wong, Karen M. C.; Daud, A. R.; Jalar, Azman

    2009-02-01

    The 6XXX series alloy is known to show inferior age-hardening response during the paint-bake cycle due to natural aging prior to the paint-bake. Many researchers have adopted the pre-aging process to offset the detrimental effect of the natural aging process. The alloy used in this study contained excess Si, and it had been reported elsewhere that such alloys do not show positive response to the pre-aging process. The present work is aimed to study the microhardness and tensile strength of the Al-1.2Si-0.5Mg-0.25Fe wrought alloy through Zr additions between 0.02 and 0.30 wt.%. Alloys containing 0.15 wt.% Zr and above heat-treated for 30 min gave higher microhardness and ultimate tensile strength values compared to that of Al-1.2Si-0.5Mg-0.25Fe without Zr which was heat-treated for 11 h. It was found that mechanical properties improved when the Zr content in the alloys increased. The improvement of mechanical properties was mainly attributed to formation of Zr-bearing intermetallic compounds formed in the alloy.

  1. Use of Spherical Instrumented Indentation to Evaluate the Tensile Properties of 3D Combined Structures

    NASA Astrophysics Data System (ADS)

    Song, Won-Seok; Kim, Seung-Gyu; Kim, Young-Cheon; Kwon, Dongil

    2015-03-01

    In this paper we propose a novel method, spherical indentation, for evaluation of the plastic properties of combined structures. Three-dimensional (3D) printed products, for example gradient metal alloys consisting of different kinds of material, contain interfaces that can act as weak points and threaten the mechanical reliability of products. Combined structures containing an interface between Cu alloy and Ag were prepared for testing. Samples were heat-treated at 100°C and 200°C for 3 h to optimize processing conditions. The indentation tensile properties of the samples were estimated by analyzing multiple loading-unloading curves obtained by use of the representative stress and strain method. A continuous increase in both yield strength and tensile strength was observed for the Cu alloy and the Cu/Ag interface after heat treatment at up to 200°C, because of precipitation hardening. These experimental results show that mechanical characterization of combined structures by spherical indentation is highly useful on the nano and micro scales.

  2. Tensile properties of ADI material in water and gaseous environments

    SciTech Connect

    Rajnovic, Dragan; Balos, Sebastian; Sidjanin, Leposava; Eric Cekic, Olivera; Grbovic Novakovic, Jasmina

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  3. Tensile Strength of Mineralized/Demineralized Human Normal and Carious Dentin

    PubMed Central

    Nishitani, Y.; Yoshiyama, M.; Tay, F.R.; Wadgaonkar, B.; Waller, J.; Agee, K.; Pashley, D.H.

    2006-01-01

    The bond strengths of resins to caries-affected dentin are low. This could be due to weakened organic matrix. The purpose of this work was to determine if the ultimate tensile strength (UTS) of excavated carious dentin is weaker than that of normal dentin. Soft caries was excavated from extracted human molars, and the tooth was vertically sectioned into slabs. Each slab was trimmed to an hourglass shape, parallel or perpendicular to the tubule direction. Half of the specimens were mineralized, while the other half were completely demineralized in EDTA. ANOVA on ranks showed that the three-factor interactions (mineralization, caries, tubule direction) were all significant (p < 0.0001), indicating that mineralization and tubule direction gave different UTS results in normal and caries-affected dentin. No significant differences were seen between the UTS of normal and and that of caries-affected demineralized dentin in the parallel or perpendicular group. The matrix of demineralized caries-affected dentin was as strong as that of normal demineralized dentin when tested in the same direction. PMID:16246945

  4. The effect of tensile strength on the clinical effectiveness and patient acceptance of dental floss.

    PubMed

    Hanes, P J; O'Dell, N L; Baker, M R; Keagle, J G; Davis, H C

    1992-01-01

    This study compared the clinical effectiveness and subjective approval of 2 waxed dental flosses that differed significantly in tensile strength and wax content. At the initial appointment, subjects (20 1st-year dental students) were instructed to stop interproximal cleaning on 2 contralateral quadrants in order to allow plaque to accumulate on these surfaces for 1 week. 1 week later, subjects were instructed to begin flossing these 2 contralateral quadrants with 1 of the 2 types of floss for the next 1-week period, while withdrawing interproximal cleaning on the opposite 2 contralateral quadrants. After flossing these 2 quadrants for 1 week, the subjects began flossing the opposite 2 contralateral quadrants with the same floss. After 2 weeks of flossing contralateral quadrants, the 1st floss was withdrawn and replaced with the alternative floss for another similar 2-week trial period. At the end of each 2-week trial period, subjects completed subjective questionnaires concerning the floss they had used during the previous 2-week period. Pre- and post-flossing plaque indices were calculated for each week for both flosses, and compared statistically by a repeated measures analysis of variance. The results showed that both flosses significantly reduced interproximal plaque deposits, and had equal subjective approval. However, neither the greater-strength nor the lower-wax content of the experimental floss was associated with an increase in clinical effectiveness or with a change in subjective approval.

  5. Heat Treatment Effects on the Tensile Properties and Microstructures of a SiC/RBSN Composite in Nitrogen

    NASA Technical Reports Server (NTRS)

    Bhatt, R. T.

    1995-01-01

    The room-temperature tensile properties and constituent microstructures of a unidirectionally reinforced SiC/reaction bonded silicon nitride (RBSN) composite have been investigated after heat treatments at 1400, 1600, or 1800 C in nitrogen for up to 100 hr. The composite consisted of approximately 24 vol% of aligned 140 micron diameter, continuous length, chemically vapor deposited SiC fibers in an approximately 40% porous silicon nitride matrix. The composites heat treated at 1400 C for up to 100 hr showed elastic modulus, first matrix cracking strength, and ultimate tensile strength values similar to those of the as-fabricated composites, but those heat treated for 1 hr beyond this temperature displayed losses in all three properties. Recrystallization of the SiC fibers, reaction between the carbon-rich interface coating on the fibers and the RBSN matrix, and dissociation of the RBSN matrix are the reasons for the loss of mechanical properties.

  6. Effects of La addition on the microstructure and tensile properties of Al-Si-Cu-Mg casting alloys

    NASA Astrophysics Data System (ADS)

    Lu, Tao; Pan, Ye; Wu, Ji-li; Tao, Shi-wen; Chen, Yu

    2015-04-01

    The effects of La addition on the microstructure and tensile properties of B-refined and Sr-modified Al-11Si-1.5Cu-0.3Mg casting alloys were investigated. With a trace addition of La (0.05wt%-0.1wt%), the mutual poisoning effect between B and Sr can be neutralized by the formation of LaB6 rather than SrB6. By employing a La/B weight ratio of 2:1, uniform microstructures, which are characterized by well refined α-Al grains and adequately modified eutectic Si particles as well as the incorporation of precipitated strengthening intermetallics, are obtained and lead to appreciable tensile properties with an ultimate tensile strength of 270 MPa and elongation of 5.8%.

  7. Dimensional stability and tensile strength of irradiated Nicalon-CG and Hi-Nicalon SiC fibers

    SciTech Connect

    Youngblood, G.E.; Henager, C.H. Jr.; Senor, D.J.; Newsome, G.A.; Woods, J.J.

    1997-05-01

    Nicalon-CG and Hi-Nicalon fibers were characterized by measuring their length, density, and tensile strength in the unirradiated, thermal annealed, and irradiated conditions. The irradiation was conducted in the EBR-II to a dose of 43 dpa-SiC at a nominal irradiation temperature of 1,000 C. The annealed specimens were held at 1,010 C for 165 days to approximately duplicate the thermal exposure of the irradiated specimens. The results indicate the fibers that perform best in an irradiation environment are those that approach stoichiometric and crystalline SiC. Hi-Nicalon exhibited negligible densification, accompanied by an increase in tensile strength after irradiation. Nicalon-CG possessed a higher tensile strength than hi-Nicalon in the unirradiated condition, but was significantly weakened in the annealed and irradiated conditions. In addition, Nicalon-CG exhibited unacceptable irradiation-induced shrinkage. Loss o fiber tensile strength after irradiation is shown to reduce the flexural strength of irradiated composites and Nicalon-CG fiber shrinkage observed in irradiated composites.

  8. Modeling the Effect of Oxidation on Tensile Strength of Carbon Fiber-Reinforced Ceramic-Matrix Composites

    NASA Astrophysics Data System (ADS)

    Longbiao, Li

    2015-12-01

    An analytical method has been developed to investigate the effect of oxidation on the tensile strength of carbon fiber - reinforced ceramic - matrix composites (CMCs). The Budiansky - Hutchinson - Evans shear - lag model was used to describe the micro stress field of the damaged composite considering fibers failure. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. The fiber strength degradation model and oxidation region propagation model have been adopted to analyze the oxidation effect on tensile strength of the composite, which is controlled by diffusion of oxygen gas through matrix cracks. Under tensile loading, the fibers failure probabilities were determined by combining oxidation model and fiber statistical failure model based on the assumption that fiber strength is subjected to two-parameter Weibull distribution and the loads carried by broken and intact fibers statisfy the global load sharing criterion. The composite can no longer support the applied load when the total loads supported by broken and intact fibers approach its maximum value. The conditions of a single matrix crack and matrix multicrackings for tensile strength considering oxidation time and temperature have been analyzed.

  9. The development of a tensile-shear punch correlation for yield properties of model austenitic alloys

    SciTech Connect

    Hankin, G.L.; Faulkner, R.G.; Hamilton, M.L.; Garner, F.A.

    1997-08-01

    The effective shear yield and maximum strengths of a set of neutron-irradiated, isotopically tailored austentic alloys were evaluated using the shear punch test. The dependence on composition and neutron dose showed the same trends as were observed in the corresponding miniature tensile specimen study conducted earlier. A single tensile-shear punch correlation was developed for the three alloys in which the maximum shear stress or Tresca criterion was successfully applied to predict the slope. The correlation will predict the tensile yield strength of the three different austenitic alloys tested to within {+-}53 MPa. The accuracy of the correlation improves with increasing material strength, to within {+-} MPa for predicting tensile yield strengths in the range of 400-800 MPa.

  10. Effect of Temperature and Deformation Rate on the Tensile Mechanical Properties of Polyimide Films

    NASA Technical Reports Server (NTRS)

    Moghazy, Samir F.; McNair, Kevin C.

    1996-01-01

    In order to study the structure-property relationships of different processed oriented polyimide films, the mechanical properties will be identified by using tensile tester Instron 4505 and structural information such as the 3-dimensional birefringence molecular symmetry axis and 3-dimensional refractive indices will be determined by using wave guide coupling techniques. The monoaxial drawing techniques utilized in this research are very useful for improving the tensile mechanical properties of aromatic polyimide films. In order to obtain high modulus/high strength polyimide films the following two techniques have been employed, cold drawing in which polyimide films are drawn at room temperature at different cross head speeds and hot drawing in which polyimide films are drawn at different temperatures and cross head speeds. In the hot drawing process the polyimide films are drawn at different temperatures until the glass transition temperature (Tg) is reached by using the environmental chamber. All of the mechanical and optical property parameters will be identified for each sample processed by both cold and hot drawing techniques.

  11. Effect of Beverages on the Hardness and Tensile Bond Strength of Temporary Acrylic Soft Liners to Acrylic Resin Denture Base

    PubMed Central

    Safari, A; Vojdani, M; Mogharrabi, S; Iraji Nasrabadi, N; Derafshi, R

    2013-01-01

    Statement of Problem: Two potential problems commonly identified with a denture base incorporating a resilient liner are failure of the bond between acrylic resin and soft liner material, and loss of resiliency of the soft liner over time. Since patients may drink different beverages, it is important to evaluate their effects on physical properties of soft lining materials. Purpose: The objective of this in vitro study was to evaluate the effect of different beverages on the hardness of two temporary acrylic-based soft lining materials and their bond strength to the denture base resin. Materials and Method: For the hardness test; a total of 80 rectangular specimens (40mm×10mm×3mm) were fabricated from a heat-polymerized polymethylmethacrylate. Two commercially auto-polymerized acrylic resin-based resilient liners; Coe-Soft and Visco-gel were prepared according to the manufacturers’ instructions and applied on the specimens. For the tensile test, 160 cylindrical specimens (30mm×10mm) were prepared. The liners were added between specimens with a thickness of 3 mm. The specimens of both soft liners were divided into 4 groups (n=10) and immersed in distilled water as the control group, Coca-Cola, 8% and 50% ethanol. All groups were stored in separate containers at 37oC for 12 days. All beverages were changed daily. The hardness was determined using a Shore A durometer and tensile bond strength was determined in a ZwickRoell testing machine at a cross-head speed of 5mm/min. The results were analyzed using two-way ANOVA. Results: There was no significant interaction between the soft liners and the drinks for both hardness (p= 0.748) and bond strength (p= 0.902). There were statistically significant differences between all drinks for both hardness (p< 0.001) and bond strength (p< 0.05). Conclusion: Within the limitations of this study, it seems that drinking Coca-Cola and alcoholic beverages would not be potentially causing any problems for the temporary

  12. Mechanical properties of gold twinned nanocubes under different triaxial tensile rates

    NASA Astrophysics Data System (ADS)

    Yang, Zailin; Zhang, Guowei; Luo, Gang; Sun, Xiaoqing; Zhao, Jianwei

    2016-08-01

    The gold twinned nanocubes under different triaxial tensile rates are explored by molecular dynamics simulation. Hydrostatic stress and Mises stress are defined in order to understand triaxial stresses. Twin boundaries prevent dislocations between twin boundaries from developing and dislocation angles are inconspicuous, which causes little difference between triaxial stresses. The mechanical properties of the nanocubes under low and high tensile rates are different. The curves of nanocubes under high tensile rates are more abrupt than those under low tensile rates. When the tensile rate is extremely big, the loadings are out of the nanocubes and there are not deformation and fracture in the internal nanocubes.

  13. Laboratory measurements of ice tensile strength dependence on density and concentration of silicate and polymer impurities at low temperatures

    NASA Astrophysics Data System (ADS)

    Litwin, K. L.; Beyeler, J. D.; Polito, P. J.; Zygielbaum, B. R.; Sklar, L. S.; Collins, G. C.

    2009-12-01

    The tensile strength of ice bedrock on Titan should strongly influence the effectiveness of the erosional processes responsible for carving the extensive fluvial drainage networks and other surface features visible in images returned by the Cassini and Huygens probes. Recent measurements of the effect of temperature on the tensile strength of low-porosity, polycrystalline ice, without impurities, suggest that ice bedrock at the Titan surface temperature of 93 K may be as much as five times stronger than ice at terrestrial surface temperatures. However, ice bedrock on Titan and other outer solar system bodies may have significant porosity, and impurities such silicates or polymers are possible in such ices. In this laboratory investigation we are exploring the dependence of tensile strength on the density and concentration of impurities, for polycrystalline ice across a wide range of temperatures. We use the Brazilian tensile splitting test to measure strength, and control temperature with dry ice and liquid nitrogen. The 50 mm diameter ice cores are made from a log-normally distributed seed crystal mixture with a median size of 1.4 mm. To control ice density and porosity we vary the packing density of the seed grains in core molds and vary the degree of saturation of the matrix with added near-freezing distilled water. We also vary ice density by blending in a similarly-sized mixture of angular fragments of two types of impurities, a fine-grained volcanic rock and a polyethylene polymer. Because both types of impurities have greater tensile strength than ice at Earth surface temperatures, we expect higher concentrations of impurities to correlate with increased strength for ice-rock and ice-polymer mixtures. However, at the ultra-cold temperatures of the outer planets, we expect significant divergence in the temperature dependence of ice tensile strength for the various mixtures and resulting densities. These measurements will help constrain the range of possible

  14. Reactor irradiation effects on the ultimate tensile and the interlaminar shear strength of carbon fibre reinforced epoxies at 77 K

    NASA Astrophysics Data System (ADS)

    Spießberger, S. M.; Humer, K.; Tschegg, E. K.; Weber, H. W.; Gerstenberg, H.

    A carbon fibre reinforced plastics material (CFRP) `TORAYCA T300 3K', which was developed for various applications, including cryogenics, was irradiated at 5 K and 340 K with different reactor spectra up to a fast neutron fluence of 5×10 22 m -2 ( E>0.1 MeV). All investigations in the interlaminar shear mode as well as the tensile tests were made at 77 K, the samples subjected to 5 K irradiation were measured before and after an annealing cycle (of about one day) to room temperature. Fractographic examinations of the tensile samples were used to examine the complicated fracture process. Both the interlaminar shear strength and the ultimate tensile strength show good radiation resistance at the lowest total absorbed dose (˜5×10 6 Gy), but fail at higher dose levels (˜10 8 Gy).

  15. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    NASA Astrophysics Data System (ADS)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  16. Effects of reclaimed asphalt pavement on indirect tensile strength test of foamed asphalt mix tested in dry condition

    NASA Astrophysics Data System (ADS)

    Yati Katman, Herda; Rasdan Ibrahim, Mohd; Yazip Matori, Mohd; Norhisham, Shuhairy; Ismail, Norlela

    2013-06-01

    Indirect tensile strength (ITS) test was conducted to analyse strength of the foamed asphalt mixes incorporating reclaimed asphalt pavement. Samples were tested for ITS after cured in the oven at 40°C for 72 hours. This testing condition known as dry condition or unconditioned. Laboratory results show that reclaimed asphalt pavement (RAP) contents insignificantly affect the ITS results. ITS results significantly affected by foamed bitumen contents.

  17. Influence of high pressure hydrogen environment on tensile and fatigue properties of stainless steels at low temperatures

    NASA Astrophysics Data System (ADS)

    Ogata, T.

    2012-06-01

    Hydrogen environment embrittlement (HEE) of stainless steels in the environment of high pressure and low temperature hydrogen gas was evaluated using a very simple mechanical properties testing procedure. In the method, the high-pressure hydrogen environment is produced just inside the hole in the specimen. In this work, the effects of HEE on fatigue properties for austenitic stainless steels SUS304L and SUS316L were evaluated at 298 and 190 K. The effects of HEE on the tensile properties of higher strength stainless steels, such as strain-hardened 316, SUS630, and other alloys, SUH660 and Alloy 718 were also examined. The less effect of HEE on fatigue properties of SUS316L and tensile properties of strain-hardened 316 were observed compared with SUS304L and other steels at room temperature and 190 K.

  18. A new derivation of the tensile strength of cometary nuclei: Application to comet Shoemaker-Levy 9

    NASA Astrophysics Data System (ADS)

    Greenberg, J. M.; Mizutani, H.; Yamamoto, T.

    1995-03-01

    The splitting of comets as exemplified by comet Shoemaker-Levy 9, when it passed near Jupiter, is a common phenomenon. Multiple splitting is also not an uncommon occurrence. It is clear that the comet nucleus is fragile, i.e., its tensile strength is small compared with that of solid materials. We show that aggregates of sub-micron interstellar dust particles presumed to consist of a silicate core, an inner mantle of complex organic refractory molecules, and an outer mantle dominated by H2O ice (Greenberg, 1982) provide the basis for a quantitative derivation of the tensile strength of comet SL9 using molecular interactions at the contact interfaces. In fact, using a mean particle size representing interstellar dust as it would appear in its final presolar state one derives a tensile strength which describes remarkably well the multiple splitting phenomenon. This derivation of the tensile strength of a particle aggregate resulting from molecular interactions is quite general and can be applied to physical situations involving any sorts of aggregates as well as those representing comet nuclei.

  19. Modeling and predicting the tensile strength of poly (lactic acid)/graphene nanocomposites by using support vector regression

    NASA Astrophysics Data System (ADS)

    Cheng, W. D.; Cai, C. Z.; Luo, Y.; Li, Y. H.; Zhao, C. J.

    2016-04-01

    According to an experimental dataset under different process parameters, support vector regression (SVR) combined with particle swarm optimization (PSO) for its parameter optimization was employed to establish a mathematical model for prediction of the tensile strength of poly (lactic acid) (PLA)/graphene nanocomposites. Four variables, while graphene loading, temperature, time and speed, were employed as input variables, while tensile strength acted as output variable. Using leave-one-out cross validation test of 30 samples, the maximum absolute percentage error does not exceed 1.5%, the mean absolute percentage error (MAPE) is only 0.295% and the correlation coefficient (R2) is as high as 0.99. Compared with the results of response surface methodology (RSM) model, it is shown that the estimated errors by SVR are smaller than those achieved by RSM. It revealed that the generalization ability of SVR is superior to that of RSM model. Meanwhile, multifactor analysis is adopted for investigation on significances of each experimental factor and their influences on the tensile strength of PLA/graphene nanocomposites. This study suggests that the SVR model can provide important theoretical and practical guide to design the experiment, and control the intensity of the tensile strength of PLA/graphene nanocomposites via rational process parameters.

  20. Microstructure Development in Electron Beam-Melted Inconel 718 and Associated Tensile Properties

    DOE PAGES

    Kirka, M. M.; Unocic, K. A.; Raghavan, N.; Medina, F.; Dehoff, R. R.; Babu, S. S.

    2016-02-12

    During the electron beam melting (EBM) process, builds occur at temperatures in excess of 800°C for nickel-base superalloys such as Inconel 718. When coupled with the temporal differences between the start and end of a build, a top-to-bottom microstructure gradient forms. Characterized in this study is the microstructure gradient and associated tensile property gradient that are common to all EBM Inconel 718 builds. From the characteristic microstructure elements observed in EBM Inconel 718 material, the microstructure gradient can be classified into three distinct regions. Region 1 (top of a build) and is comprised of a cored dendritic structure that includesmore » carbides and Laves phase within the interdendritic regions. Region 2 is an intermediate transition zone characterized by a diffuse dendritic structure, dissolution of the Laves phase, and precipitation of δ needle networks within the interdendritic regions. The bulk structure (Region 3) is comprised of a columnar grain structure lacking dendritic characteristics with δ networks having precipitated within the grain interiors. Mechanically at both 20°C and 650° C, the yield strength, ultimate tensile strength, and elongation at failure exhibit the general trend of increasing with increasing build height.« less

  1. Tensile Properties and Work Hardening Behavior of Laser-Welded Dual-Phase Steel Joints

    NASA Astrophysics Data System (ADS)

    Farabi, N.; Chen, D. L.; Zhou, Y.

    2012-02-01

    The aim of this investigation was to evaluate the microstructural change after laser welding and its effect on the tensile properties and strain hardening behavior of DP600 and DP980 dual-phase steels. Laser welding led to the formation of martensite and significant hardness rise in the fusion zone because of the fast cooling, but the presence of a soft zone in the heat-affected zone was caused by partial vanishing and tempering of the pre-existing martensite. The extent of softening was much larger in the DP980-welded joints than in the DP600-welded joints. Despite the reduction in ductility, the ultimate tensile strength (UTS) remained almost unchanged, and the yield strength (YS) indeed increased stemming from the appearance of yield point phenomena after welding in the DP600 steel. The DP980-welded joints showed lower YS and UTS than the base metal owing to the appearance of severe soft zone. The YS, UTS, and strain hardening exponent increased slightly with increasing strain rate. While the base metals had multi-stage strain hardening, the welded joints showed only stage III hardening. All the welded joints failed in the soft zone, and the fracture surfaces exhibited characteristic dimple fracture.

  2. Tensile Properties of Polymeric Matrix Composites Subjected to Cryogenic Environments

    NASA Technical Reports Server (NTRS)

    Whitley, Karen S.; Gates, Thomas S.

    2004-01-01

    Polymer matrix composites (PMC s) have seen limited use as structural materials in cryogenic environments. One reason for the limited use of PMC s in cryogenic structures is a design philosophy that typically requires a large, validated database of material properties in order to ensure a reliable and defect free structure. It is the intent of this paper to provide an initial set of mechanical properties developed from experimental data of an advanced PMC (IM7/PETI-5) exposed to cryogenic temperatures and mechanical loading. The application of this data is to assist in the materials down-select and design of cryogenic fuel tanks for future reusable space vehicles. The details of the material system, test program, and experimental methods will be outlined. Tension modulus and strength were measured at room temperature, -196 C, and -269 C on five different laminates. These properties were also tested after aging at -186 C with and without loading applied. Microcracking was observed in one laminate.

  3. Tensile properties of a morphologically split supraspinatus tendon.

    PubMed

    Matsuhashi, Tomoya; Hooke, Alexander W; Zhao, Kristin D; Goto, Akira; Sperling, John W; Steinmann, Scott P; An, Kai-Nan

    2014-07-01

    The supraspinatus tendon consists morphologically of two sub-regions, anterior and posterior. The anterior sub-region is thick and tubular while the posterior is thin and strap-like. The purpose of this study was to compare the structural and mechanical properties of the anterior and posterior sub-regions of the supraspinatus tendon. The supraspinatus tendons from seven human cadaveric shoulders were morphologically divided into the anterior and posterior sub-regions. Length, width, and thickness were measured. A servo-hydraulic testing machine (MTS Systems Corporation, Minneapolis, MN) was used for tensile testing. The maximal load at failure, modulus of elasticity and ultimate tendon stress were calculated. Repeated measures were used for statistical comparisons. The mean anterior tendon cross-sectional area was 47.3 mm(2) and the posterior was 32.1 mm(2) . Failure occurred most often at the insertion site: anterior (5/7) and posterior (6/7). All parameters of the anterior sub-region were significantly greater than those of the posterior sub-region. The moduli of elasticity at the insertion site were 592.4 MPa in the anterior sub-region and 217.7 MPa in the posterior (P = 0.01). The ultimate failure loads were 779.2 N in the anterior sub-region and 335.6 N in the posterior (P = 0.003). The ultimate stresses were 22.1 MPa in the anterior sub-region and 11.6 MPa in the posterior (P = 0.008). We recognized that the anterior and posterior sub-regions of the SSP tendon have significantly different mechanical properties. In a future study, we need to evaluate how best to repair an SSP tendon considering these region-specific properties. PMID:24214830

  4. Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes

    SciTech Connect

    Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Rasid, Rozaidi; Yahya, S. Y.

    2009-06-01

    This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180 deg. C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

  5. Effect of Ultrasonic Treatment on The Tensile and Impact Properties of Thermoplastic Natural Rubber Nanocomposites Reinforced with Carbon Nanotubes

    NASA Astrophysics Data System (ADS)

    Tarawneh, Mou'ad A.; Ahmad, Sahrim Hj.; Yahya, S. Y.; Rasid, Rozaidi

    2009-06-01

    This study investigates the effect of ultrasonic treatment on the mechanical properties of thermoplastic natural rubber (TPNR) nanocomposites reinforced with multi-walled nanotubes. The TPNR nanocomposites were prepared using melt blending method from polypropylene (PP), natural rubber (NR) and liquid natural rubber (LNR) as a compatibilizer, respectively, with 1% of Multi-wall nanotubes. The nanocomposite was prepared using the indirect technique (IDT) with the optimum processing parameters at 180° C with 80 rpm mixing speed and 11 minutes processing time. The results have showed that the good dispersion on nanotubes was achieved by ultrasonic treatment. The optimization of ultrasonic time indicated that the maximum tensile and impact properties occurred with 1 h ultrasonic treatment. The Young's modulus, tensile strength, elongation at break and impact strength have increased by almost 11%, 21%, 43% and 50%, respectively. The results from our study indicate that nanotubes have as excellent reinforcement filler in TPNR matrix.

  6. Tensile and electrical properties of unirradiated and irradiated Hycon 3HP{trademark} CuNiBe

    SciTech Connect

    Zinkle, S.J.; Eatherly, W.S.

    1996-10-01

    The unirradiated tensile properties of two different heats of Hycon 3HP{trademark} CuNiBe (HT Temper) have been measured over the temperature range of 20-500{degrees}C for longitudinal and long transverse orientations. The room temperature electrical conductivity has also been measured for both heats. Both heats exhibited a very good combination of strength and conductivity at room temperature. The strength remained relatively high at all test temperatures, with a yield strength of 420-520 MPa at 500{degrees}C. However, low levels of ductility (<5% uniform elongation) were observed at test temperatures above 200-250{degrees}C, due to flow localization adjacent to grain boundaries. Fission neutron irradiation to a dose of {approximately}0.7 dpa at temperatures between 100 and 240{degrees}C produced a slight increase in strength and a significant decrease in ductility. The measured tensile elongation increased with increasing irradiation temperature, with a uniform elongation of {approximately}3.3% observed at 240{degrees}C. The electrical conductivity decreased slightly following irradiation, due to the presence of defect clusters and Ni, Zn, Co transmutation products. The data indicate that CuNiBe alloys have irradiated tensile and electrical properties comparable or superior to CuCrZr and oxide dispersion strengthened copper at temperatures <250{degrees}C, and may be suitable for certain fusion energy structural applications.

  7. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2009-12-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  8. Research on tensile strength characteristics of bridge deck pavement bonding layers

    NASA Astrophysics Data System (ADS)

    Wu, Shaopeng; Han, Jun

    2010-03-01

    As the development of the traffic in the world, the bridge deck pavement is playing a more and more important role in the whole traffic system. Big span bridge has become more and more especially cement concrete bridge, therefore the bridge deck pavement bonding layers are emphasized as an important part of bridge traffic system, which can mitigate travel impact to bridge and magnify stationary or traffic amenity. The quality and durability of deck pavement bonding layer has directly effect on traffic safety, comfort, durability and investment of bridge. It represents the first line of defence against the ingress of water, road de-icing salts and aggressive chemicals. In real project, many early age damage of bridge deck pavement has become serious disease that affecting the function of bridge. During the construction of the bridge deck, many types of asphalt binders were used, such as styrene-butadiene-styrene (SBS) modified asphalt, styrene-butadiene rubber (SBR) modified asphalt, neoprene latex asphalt, etc. In this paper UTM-25 was used to test the tensile strength of different bridge deck pavement bonding layers with the different treatment methods to inter-surface.

  9. Characterization of the tensile properties of friction stir welded aluminum alloy joints based on axial force, traverse speed, and rotational speed

    NASA Astrophysics Data System (ADS)

    Panda, Biranchi; Garg, A.; Jian, Zhang; Heidarzadeh, Akbar; Gao, Liang

    2016-09-01

    Friction stir welding (FSW) process has gained attention in recent years because of its advantages over the conventional fusion welding process. These advantages include the absence of heat formation in the affected zone and the absence of large distortion, porosity, oxidation, and cracking. Experimental investigations are necessary to understand the physical behavior that causes the high tensile strength of welded joints of different metals and alloys. Existing literature indicates that tensile properties exhibit strong dependence on the rotational speed, traverse speed, and axial force of the tool that was used. Therefore, this study introduces the experimental procedure for measuring tensile properties, namely, ultimate tensile strength (UTS) and tensile elongation of the welded AA 7020 Al alloy. Experimental findings suggest that a welded part with high UTS can be achieved at a lower heat input compared with the high heat input condition. A numerical approach based on genetic programming is employed to produce the functional relationships between tensile properties and the three inputs (rotational speed, traverse speed, and axial force) of the FSW process. The formulated models were validated based on the experimental data, using the statistical metrics. The effect of the three inputs on the tensile properties was investigated using 2D and 3D analyses. A high UTS was achieved, including a rotational speed of 1050 r/min and traverse speed of 95 mm/min. The results also indicate that 8 kN axial force should be set prior to the FSW process.

  10. Compression molding and tensile properties of thermoplastic potato starch materials.

    PubMed

    Thunwall, Mats; Boldizar, Antal; Rigdahl, Mikael

    2006-03-01

    The mechanical and melt flow properties of two thermoplastic potato starch materials with different amylose contents were evaluated. The materials were prepared by mixing starch, glycerol, and water, mainly in the weight proportions of 10:3:4.5. Compression molding was used to produce sheets/films with a thickness in the range of 0.3-1 mm. After conditioning at 53% relative humidity (RH) and 23 C, the glycerol-plasticized sheets with a higher amylose content (HAP) were stronger and stiffer than the normal thermoplastic starch (NPS) with an amylose content typical for common potato starch. The tensile modulus at 53% RH was about 160 MPa for the high-amylose material and about 120 MPa for the plasticized NPS. The strain at break was about 50% for both materials. The stress at break was substantially higher for the HAP materials than for the NPS materials, 9.8 and 4.7 MPa, respectively. Capillary viscometry at 140 C showed that the high-amylose material had a higher melt viscosity and was more shear-thinning than the NPS. Dynamic mechanical measurements indicated a broad transition temperature range for both types of starch material. The main transition peaks for glycerol-plasticized starch were located at about room temperature with the transition for the HAP material being at a somewhat higher temperature than that of the NPS material with a lower amylose content. It was also noted that the processing conditions used during the compression molding markedly affected the mechanical properties of the starch material.

  11. Experimental and Numerical Analysis of the Effects of Curing Time on Tensile Mechanical Properties of Thin Spray-on Liners

    NASA Astrophysics Data System (ADS)

    Guner, D.; Ozturk, H.

    2016-08-01

    The effects of curing time on tensile elastic material properties of thin spray-on liners (TSLs) were investigated in this study. Two different TSL products supplied by two manufacturers were tested comparatively. The "dogbone" tensile test samples that were prepared in laboratory conditions with different curing times (1, 7, 14, 21, and 28 days) were tested based on ASTM standards. It was concluded that longer curing times improves the tensile strength and the Young's Modulus of the TSLs but decreases their elongation at break. Moreover, as an additional conclusion of the testing procedure, it was observed that during the tensile tests, the common malpractice of measuring sample displacement from the grips of the loading machine with a linear variable displacement transducer versus the sample's gauge length had a major impact on modulus and deformation determination of TSLs. To our knowledge, true stress-strain curves were generated for the first time in TSL literature within this study. Numerical analyses of the laboratory tests were also conducted using Particle Flow Code in 2 Dimensions (PFC2D) in an attempt to guide TSL researchers throughout the rigorous PFC simulation process to model support behaviour of TSLs. A scaling coefficient between macro- and micro-properties of PFC was calculated which will help future TSL PFC modellers mimic their TSL behaviours for various tensile loading support scenarios.

  12. Fabrication of a 2014Al-SiC/2014Al Sandwich Structure Composite with Good Tensile Strength and Ductility

    NASA Astrophysics Data System (ADS)

    Zhu, Xian; Zhao, Yu-Guang; Wang, Hui-Yuan; Wang, Zhi-Guo; Wu, Min; Pei, Chang-hao; Chen, Chao; Jiang, Qi-Chuan

    2016-09-01

    A sandwich structure laminate composed of a ductile 2014Al inter-layer and two nanoscale SiC reinforced 2014Al (SiC/2014Al) composite outer layers was successfully fabricated through the combination of powder metallurgy and hot rolling. The ductile 2014Al inter-layer effectively improved the processability of the sandwiched laminates. Tensile test revealed that the yield strength and ultimate tensile strength of the sandwiched laminate were 287 and 470 MPa, respectively, compared with 235 and 425 MPa for monolithic 2014Al. The good performance of the sandwiched laminate results from the strong bonding between the SiC/2014Al composites layer and the ductile 2014Al layer. Thus, the sandwich structure with a composite surface and ductile core is effective for increasing the strength and toughness of composite laminates.

  13. Tensile and fracture toughness properties of alumina trihydrate filled epoxy resins

    SciTech Connect

    Pritchard, G.; Wainwright, R.

    1993-12-31

    Certain non-halogen fire retardants such as alumina trihydrate (ATH) are effective in organic matrix composite materials only when they constitute a very high volume fraction of the total material and therefore have major effects on mechanical properties. ATH particles have weak cleavage planes and are easily fractured; their effects are rather different from those of stronger fillers. This paper is concerned with the importance of various particle characteristics, especially size distribution, in ATH filled epoxy resin castings. Tensile strength, modulus, and elongation were measured, and fracture parameters were also determined as a function of filler volume fraction for various grades. Surface treatment reduced the modulus of filled resins, except for ATH particles produced by a precipitation process. The changes were nevertheless broadly consistent with those predicted by published equations such as the Nielsen equation. The size of the largest particles had a major effect on strength and elongation. The strength typically fell to 35% of the strength of the unfilled epoxy resin, for volume fractions of 0.45 approximately, as predicted by Nicolais and Schrager equations.

  14. Microstructure and Mechanical Tensile Properties of a VT6 Alloy Manufactured by Selective Laser Melting

    NASA Astrophysics Data System (ADS)

    Nazarova, T. I.; Imayev, V. M.; Imayev, R. M.; Pavlinich, S. P.

    2015-10-01

    The microstructure and tensile properties of a material manufactured from the VT6 titanium alloy by the method of selective laser melting (SLM) are investigated. In the initial state, the microstructure of the SLMmaterial consists of columnar β-grains elongated in the direction of heat sink, which were transformed during cooling into the acicular martensite α'-phase. A heat treatment, including two-stage annealing at 900 and 700°C, transfers the microstructure into equilibrium, two-phase state, with the elongation of β-grains being retained. Mechanical tensile tests were performed in the direction normal to the layer packing formed during SLM. It is found that strength properties of the workpiece manufactured by the SLM process are similar to those of the VT6 alloy manufactured by conventional casting, while its room-temperature ductility is noticeably higher. Deformation-relief studies of the specimen surface demonstrated that the layers formed during SLM affect neither the development of deformation nor fracture of the material.

  15. Improving wet and dry strength properties of recycled old corrugated carton (OCC) pulp using various polymers.

    PubMed

    Hamzeh, Yahya; Sabbaghi, Sanaz; Ashori, Alireza; Abdulkhani, Ali; Soltani, Farshid

    2013-04-15

    In this study, the application of different dosages of low and high molecular weights (MW) of chitosan (Ch), cationic starch (CS) and poly vinyl alcohol (PVA) were systematically investigated using old corrugated carton (OCC) furnishes. Various sequences of above-mentioned polymeric additives were also examined to find out the optimal combination for improving both wet and dry tensile strength. For each treatment, 4 handsheets, each having basis weight of 100 g/m(2), were made. In general, the tensile strength of handsheets was significantly affected by the addition of polymeric agents. The enhancing effect of additives on dry tensile property was much higher than wet condition. The results also showed that the tensile strength of the samples made from OCC furnishes were improved upon the addition of high molecular weight chitosan (ChI) compared to the untreated ones (control). The low MW chitosan did not change the properties of handsheets dramatically. Application of polymeric agents moderately decreased the stretch to rupture, however with increasing dosage the stretch was improved. Sequential addition of used polymers showed that triple application of polymers was beneficial to both dry and wet tensile strength, although the effect was larger for dry. The best results in wet and dry tensile strengths were achieved using sequential of PVA-ChI-CS. Sequential addition of oppositely charged polymers forms a macromolecular layered structure of polyelectrolytes. PMID:23544577

  16. Effect of Postweld Heat Treatment on Microstructure, Hardness, and Tensile Properties of Laser-Welded Ti-6Al-4V

    NASA Astrophysics Data System (ADS)

    Kabir, Abu Syed H.; Cao, Xinjin; Gholipour, Javad; Wanjara, Priti; Cuddy, Jonathan; Birur, Anand; Medraj, Mamoun

    2012-11-01

    The effects of postweld heat treatment (PWHT) on 3.2-mm- and 5.1-mm-thick Ti-6Al-4V butt joints welded using a continuous wave (CW) 4-kW Nd:YAG laser welding machine were investigated in terms of microstructural transformations, welding defects, and hardness, as well as global and local tensile properties. Two postweld heat treatments, i.e., stress-relief annealing (SRA) and solution heat treatment followed by aging (STA), were performed and the weld qualities were compared with the as-welded condition. A digital image correlation technique was used to determine the global tensile behavior for the transverse welding samples. The local tensile properties including yield strength and maximum strain were determined, for the first time, for the laser-welded Ti-6Al-4V. The mechanical properties, including hardness and the global and local tensile properties, were correlated to the microstructure and defects in the as-welded, SRA, and STA conditions.

  17. Strength properties of fly ash based controlled low strength materials.

    PubMed

    Türkel, S

    2007-08-25

    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. Flowable fill requires no tamping or compaction to achieve its strength and typically has a load carrying capacity much higher than compacted soils, but it can still be excavated easily. The selection of CLSM type should be based on technical and economical considerations for specific applications. In this study, a mixture of high volume fly ash (FA), crushed limestone powder (filler) and a low percentage of pozzolana cement have been tried in different compositions. The amount of pozzolana cement was kept constant for all mixes as, 5% of fly ash weight. The amount of mixing water was chosen in order to provide optimum pumpability by determining the spreading ratio of CLSM mixtures using flow table method. The shear strength of the material is a measure of the materials ability to support imposed stresses on the material. The shear strength properties of CLSM mixtures have been investigated by a series of laboratory tests. The direct shear test procedure was applied for determining the strength parameters Phi (angle of shearing resistance) and C(h) (cohesion intercept) of the material. The test results indicated that CLSM mixtures have superior shear strength properties compared to compacted soils. Shear strength, cohesion intercept and angle of shearing resistance values of CLSM mixtures exceeded conventional soil materials' similar properties at 7 days. These parameters proved that CLSM mixtures are suitable materials for backfill applications.

  18. Studies on tensile properties and fracture behavior of Al-6Si-0.5Mg (-Cu or/and Ni) alloys at various strain rates

    NASA Astrophysics Data System (ADS)

    Hossain, A.; Gulshan, F.; Kurny, A. S. W.

    2016-07-01

    The aim of this paper is to evaluate the effects of various strain rates on the tensile properties of Al-6Si-0.5Mg cast alloys with Cu or/and Ni additions and to establish data on the stress-strain behavior of the alloys with applications in automotive engineering. Experimental alloys of the following composition were prepared by melt processing technique. Both microstructure and the mechanical properties were investigated. The uniaxial tension test was carried out at strain rates ranging from 10-4s-1 to 10-2s-1. Tensile strengths were found to increase with ageing temperature and the maximum being attained at peak age condition (1hr at 225°C). The additions of Cu or/and Ni resulted in an increase in tensile strength and 2wt% Cu content alloy (Al-6Si-0.5Mg-2Cu) showed maximum strength. Evaluation of tensile properties at three strain rates (10-4, 10-3 and 10-2s-1) showed that strain rates affected the tensile properties significantly. At higher strain rates the strength was better but ductility was poor.

  19. Novel therapeutic use of polysaccharide nanosheets for arachnoid plasty and enhancement of venous tensile strength in rat microneurosurgery.

    PubMed

    Otani, Naoki; Kinoshita, Manabu; Fujie, Toshinori; Saito, Akihiro; Takeoka, Shinji; Saitoh, Daizoh; Hagisawa, Kohsuke; Nawashiro, Hiroshi; Shima, Katsuji

    2013-02-01

    Subdural effusion sometimes occurs during neurosurgery after opening the Sylvian fissure, due to cerebrospinal fluid (CSF) leakage from the torn arachnoid membrane. Unexpected bleeding from the fragile bridging veins may also result from brain retraction. Neurosurgeons must always watch carefully for these complications during surgery. To prevent such complications, we have attempted the clinical application of a polysaccharide nanosheet that is semi-absorbent and has a potent physical adhesive strength to investigate its therapeutic utility for arachnoid plasty and enhancement of bridging vein tensile strength in Sprague-Dawley rats. The use of overlapping nanosheets completely prevented CSF leakage from injured arachnoid membranes in the cerebral cortex. No inflammatory infiltration was observed on the cerebral surface after 6 months of follow up. In addition, the use of nanosheet bandages significantly reinforced venous tensile strength. This reinforcement increased with the number of overlaid nanosheets. We report that polysaccharide nanosheets can be used for arachnoid plasty without chemical bonding agents and for reinforcement of venous tensile strength in rat vessels. Nanosheets may be an effective neurosurgical tool. PMID:23219826

  20. Effect of Saliva on the Tensile Bond Strength of Different Generation Adhesive Systems: An In-Vitro Study

    PubMed Central

    Tripathi, Abhay Mani; Saha, Sonali; Dhinsa, Kavita; Garg, Aarti

    2015-01-01

    Background Newer development of bonding agents have gained a better understanding of factors affecting adhesion of interface between composite and dentin surface to improve longevity of restorations. Objective The present study evaluated the influence of salivary contamination on the tensile bond strength of different generation adhesive systems (two-step etch-and-rinse, two-step self-etch and one-step self-etch) during different bonding stages to dentin where isolation is not maintained. Materials and Methods Superficial dentin surfaces of 90 extracted human molars were randomly divided into three study Groups (Group A: Two-step etch-and-rinse adhesive system; Group B: Two-step self-etch adhesive system and Group C: One-step self-etch adhesive system) according to the different generation of adhesives used. According to treatment conditions in different bonding steps, each Group was further divided into three Subgroups containing ten teeth in each. After adhesive application, resin composite blocks were built on dentin and light cured subsequently. The teeth were then stored in water for 24 hours before sending for testing of tensile bond strength by Universal Testing Machine. The collected data were then statistically analysed using one-way ANOVA and Tukey HSD test. Results One-step self-etch adhesive system revealed maximum mean tensile bond strength followed in descending order by Two-step self-etch adhesive system and Two-step etch-and-rinse adhesive system both in uncontaminated and saliva contaminated conditions respectively. Conclusion Unlike One-step self-etch adhesive system, saliva contamination could reduce tensile bond strength of the two-step self-etch and two-step etch-and-rinse adhesive system. Furthermore, the step of bonding procedures and the type of adhesive seems to be effective on the bond strength of adhesives contaminated with saliva. PMID:26393214

  1. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling.

  2. Analysis of the coefficient of variation in shear and tensile bond strength tests.

    PubMed

    Romano, Fábio Lourenço; Ambrosano, Gláucia Maria Bovi; Magnani, Maria Beatriz Borges de Araújo; Nouer, Darcy Flávio

    2005-09-01

    The coefficient of variation is a dispersion measurement that does not depend on the unit scales, thus allowing the comparison of experimental results involving different variables. Its calculation is crucial for the adhesive experiments performed in laboratories because both precision and reliability can be verified. The aim of this study was to evaluate and to suggest a classification of the coefficient variation (CV) for in vitro experiments on shear and tensile strengths. The experiments were performed in laboratory by fifty international and national studies on adhesion materials. Statistical data allowing the estimation of the coefficient of variation was gathered from each scientific article since none of them had such a measurement previously calculated. Excel worksheet was used for organizing the data while the sample normality was tested by using Shapiro Wilk tests (alpha = 0.05) and the Statistical Analysis System software (SAS). A mean value of 6.11 (SD = 1.83) for the coefficient of variation was found by the data analysis and the data had a normal distribution (p>0.05). A range classification was proposed for the coefficient of variation from such data, that is, it should be considered low for a value lesser than 2.44; intermediate for a value between 2.44 and 7.94, high for a value between 7.94 and 9.78, and finally, very high for a value greater than 9.78. Such classification can be used as a guide for experiments on adhesion materials, thus making the planning easier as well as revealing precision and validity concerning the data.

  3. Effect of thermal aging on the tensile bond strength at reduced areas of seven current adhesives.

    PubMed

    Baracco, Bruno; Fuentes, M Victoria; Garrido, Miguel A; González-López, Santiago; Ceballos, Laura

    2013-07-01

    The purpose of this study was to determine the micro-tensile bond strength (MTBS) to dentin of seven adhesive systems (total and self-etch adhesives) after 24 h and 5,000 thermocycles. Dentin surfaces of human third molars were exposed and bonded with two total-etch adhesives (Adper Scotchbond 1 XT and XP Bond), two two-step self-etch adhesives (Adper Scotchbond SE and Filtek Silorane Adhesive System) and three one-step self-etch adhesives (G-Bond, Xeno V and Bond Force). All adhesive systems were applied following manufacturers' instructions. Composite buildups were constructed and the bonded teeth were then stored in water (24 h, 37 °C) or thermocycled (5,000 cycles) before being sectioned and submitted to MTBS test. Two-way ANOVA and subsequent comparison tests were applied at α = 0.05. Characteristic de-bonded specimens were analyzed using scanning electron microscopy (SEM). After 24 h water storage, MTBS values were highest with XP Bond, Adper Scotchbond 1 XT, Filtek Silorane Adhesive System and Adper Scotchbond SE and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. After thermocycling, MTBS values were highest with XP Bond, followed by Filtek Silorane Adhesive System, Adper Scotchbond SE and Adper Scotchbond 1 XT and lowest with the one-step self-etch adhesives Bond Force, Xeno V and G-Bond. Thermal aging induced a significant decrease in MTBS values with all adhesives tested. The resistance of resin-dentin bonds to thermal-aging degradation was material dependent. One-step self-etch adhesives obtained the lowest MTBS results after both aging treatments, and their adhesive capacity was significantly reduced after thermocycling. PMID:22790477

  4. A comparison between porcine, ovine, and bovine intervertebral disc anatomy and single lamella annulus fibrosus tensile properties.

    PubMed

    Monaco, Lauren A; DeWitte-Orr, Stephanie J; Gregory, Diane E

    2016-02-01

    This project aimed to compare gross anatomical measures and biomechanical properties of single lamellae from the annulus fibrosus of ovine and porcine lumbar vertebrae, and bovine tail vertebrae. The morphology of the vertebrae of these species differ significantly both from each other and from human, yet how these differences alter biomechanical properties is unknown. Geometric parameters measured in this study included: 1) absolute and relative intervertebral (IVD) and vertebral body height and 2) absolute and relative intervertebral disc (IVD) anterior-posterior (AP) and medial-lateral (ML) widths. Single lamella tensile properties included toe-region stress and stretch ratio, stiffness, and tensile strength. As expected, the bovine tail IVD revealed a more circular shape compared with both the ovine and porcine lumbar IVD. The bovine tail also had the largest IVD to vertebral body height ratio (due to having the highest absolute IVD height). Bovine tail lamellae were also found to be strongest and stiffest (in tension) while ovine lumbar lamellae were weakest and most compliant. Histological analysis revealed the greatest proportion of collagen in the bovine corroborating findings of increased strength and stiffness. The observed differences in anatomical shape, connective tissue composition, and tensile properties need to be considered when choosing an appropriate model for IVD research.

  5. The effects of specimen width on tensile properties of triaxially braided textile composites

    NASA Technical Reports Server (NTRS)

    Masters, John E.; Ifju, Peter G.; Pastore, Christopher M.; Bogdanovich, Alexander E.

    1993-01-01

    The objective of this study was to examine the effect of the unit cell architecture on the mechanical response of textile reinforced composite materials. Specifically, the study investigated the effect of unit cell size on the tensile properties of 2D triaxially braided graphite epoxy laminates. The figures contained in this paper reflect the presentation given at the conference. They may be divided into four sections: (1) a short definition of the material system tested; (2) a statement of the problem and a review of the experimental results; (3) experimental results consist of a Moire interferometry study of the strain distribution in the material plus modulus and strength measurements; and (4) a short summary and a description of future work will close the paper.

  6. The effect of saliva and oral intake on the tensile properties of sutures: an experimental study.

    PubMed

    Ferguson, Robert E H; Schuler, Kevin; Thornton, Brian P; Vasconez, Henry C; Rinker, Brian

    2007-03-01

    The plastic surgeon often operates in the oral cavity. Little or no information exists regarding the effect of saliva and oral intake upon the tensile properties of suture. Polyglactin 910 (Vicryl) and chromic gut were studied. Five sutures of each type were subjected to saline, saliva, milk, or soy milk over different durations of exposure. Suture breaking strength was tested. A 4-way interaction between suture type, size, liquid, and time was significant (P = 0.0046). Sutures soaked in saliva were significantly weaker. No significant difference was observed between sutures soaked in milk or soy. Saliva appears to enhance degradation rates in both sutures. Suture selection in the oral cavity should be predicated upon the demands of the repair and surgeon's preference. Postoperative feeding instructions should limit tension across mucosal repairs, but the selection of formula should be based upon nutritional requirements and preferences of the child rather than concern over suture degradation.

  7. Tensile strain rate effect in mechanical properties of dummy HTPB propellants

    SciTech Connect

    Chung, H.L.; Kawata, K.; Itabashi, M. . Dept. of Materials Science and Technology)

    1993-10-05

    The tensile strain rate effect in tensile strength and elongation at break for a series of filled dummy hydroxy-terminated polybutadiene (HTPB) propellant binders was studied. The data were obtained at various tensile strain rates from 10[sup [minus]4] to 10[sup [minus]1] s[sup [minus]1] on two types of specimens at room temperature. The high velocity ductility behavior, which is qualitatively similar to those of unfilled elastomers, was revealed. This means that the breaking strain increases markedly at elevated strain rates. For Bukkon-type and rod-shaped specimens, test results are consistent with each other. The fact that the increased filled solids level leads to a decreased breaking elongation capability and an increased tensile strength was obviously found.

  8. Nanoscale steel-brass multilayer laminates made by cold rolling: Microstructure and tensile properties

    SciTech Connect

    Kavarana, F.H.; Ravichandran, K.S.; Sahay, S.S.

    2000-05-10

    The thrust of this study is to fabricate steel-brass multilayer laminates with layer thicknesses in the nanometer range and to evaluate their mechanical properties. Repeated cold rolling of multilayer stacks was adopted to produce the laminates, because the relative simplicity and the low-cost nature of this process can allow the scaling-up of the technique to the level of commercial-scale production. This work is a continuation of a previous study, in which steel-brass laminates with layer thicknesses in the micrometer range were fabricated for the first time and their tensile properties were evaluated. The present work, however, emphasizes making multilayers with layer thicknesses in the nanometer range and evaluating their mechanical properties. The dependence of strength and ductility on the layer spacing in the nanometer range, is highlighted. It is shown that strength levels comparable to quenched and tempered low alloy steels can be achieved in the laminates by rolling down to the low end of nanometer range. The relevant strengthening mechanisms are also discussed.

  9. Finite Element Analysis of Deformation Due to Ball Indentation and Evaluation of Tensile Properties of Tempered P92 Steel

    NASA Astrophysics Data System (ADS)

    Barbadikar, Dipika R.; Ballal, A. R.; Peshwe, D. R.; Mathew, M. D.

    2015-08-01

    Ball indentation (BI) technique has been effectively used to evaluate the tensile properties with minimal volume of material. In the present investigation, BI test carried out on P92 steel (9Cr-0.5Mo-1.8W), using 0.76 mm diameter silicon nitride ball indenter was modeled using finite element (FE) method and analyzed. The effect of test temperature [300 K and 923 K (27 °C and 650 °C)], tempering temperature [1013 K, 1033 K, and 1053 K (740 °C, 760 °C, and 780 °C)], and coefficient of friction of steel (0.0 to 0.5) on the tensile strength and material pile-up was investigated. The stress and strain distributions underneath the indenter and along the top elements of the model have been studied to understand the deformation behavior. The tensile strength was found to decrease with increase in tempering and test temperatures. The increased pile-up around the indentation was attributed to the decrease in strain hardening exponent ( n) with increase in the test temperature. The pile-up height determined from profilometry studies and FE analysis as well as the load depth curve from BI and FE analysis was in agreement. The maximum strain location below the indentation changes with the test temperature. Stress-strain curves obtained by conventional tensile, BI test, and representative stress-strain concepts of FE model were found exactly matching.

  10. Root tensile strength relationships and their slope stability implications of three shrub species in the Northern Apennines (Italy)

    NASA Astrophysics Data System (ADS)

    Tosi, Matteo

    2007-07-01

    The role of root strength is important in stabilising steep hillslopes which are seasonally affected by storm-induced shallow landslides. In the Italian Apennines, steep (25-40°) slopes underlain by mudstone are generally stable if they are covered by shrubs whose roots anchor into the soil mantle. To quantify the mechanical reinforcement of roots to soil, the root tensile breaking force and the root tensile strength of three autochthonous shrub species commonly growing on stiff clay soils of the Northern Italian Apennines, Rosa canina (L.), Inula viscosa (L.) and Spartium junceum (L.), were measured by means of field and laboratory tests. For each test approximately 150 root specimens were used. The tensile force increases with increasing root diameter following a second-order polynomial regression curve. The tensile strength decreases with increasing root diameter following a power law curve. The field in situ tensile force required to break a root is always smaller than that obtained from laboratory tests for the same root diameter, although their difference becomes negligible if the root diameter is smaller than 5 mm. The influence of root tensile strength on soil shear strength was verified based on the infinite slope stability model. The root reinforcement was calculated using the number and mean diameter of roots. The factor of safety was calculated for three different soil thickness values (0.1, 0.3, and 0.6 m) and topographic slopes between 10° and 45°. The factor of safety for the combination of 0.6 m soil thickness, slopes smaller than 30°, and vegetation of I. viscosa (L.) or S. junceum (L.) is always larger than 1. If a slope is steeper, the factor of safety may be smaller than 1 for I. viscosa (L.), although it is still larger than 1 for S. junceum (L.). In the stiff clayey areas of the Northern Italian Apennines, I. viscosa (L.) mainly colonizes fan/cone/taluses and stabilises these zones up to a topographic gradient < 30° for a soil 0.6 m thick

  11. Self-assembled smooth muscle cell tissue rings exhibit greater tensile strength than cell-seeded fibrin or collagen gel rings

    PubMed Central

    Adebayo, Olufunmilayo; Gwyther, Tracy A.; Hu, Jason Z.; Billiar, Kristen L.; Rolle, Marsha W.

    2012-01-01

    In this study, we created self-assembled smooth muscle cell (SMC) tissue rings (comprised entirely of cells and cell-derived matrix; CDM) and compared their structure and material properties with tissue rings created from SMC-seeded fibrin or collagen gels. All tissue rings were cultured statically for 7 days in supplemented growth medium (with ε-amino caproic acid, ascorbic acid, and insulin-transferrin-selenium), prior to uniaxial tensile testing and histology. Self-assembled CDM rings exhibited ultimate tensile strength and stiffness values that were two-fold higher than fibrin gel and collagen gel rings. Tensile testing of CDM, fibrin gel and collagen gel rings treated with deionized water to lyse cells showed little to no change in mechanical properties relative to untreated ring samples, indicating that the ECM dominates the measured ring mechanics. In addition, CDM rings cultured in supplemented growth medium were significantly stronger than CDM rings cultured in standard, unsupplemented growth medium. These results illustrate the potential utility of self-assembled cell rings as model CDM constructs for tissue engineering and biomechanical analysis of ECM material properties. PMID:22865465

  12. Fractography, fluidity, and tensile properties of aluminum/hematite particulate composites

    SciTech Connect

    Sharma, S.C.; Girish, B.M.; Kamath, R.; Satish, B.M.

    1999-06-01

    This paper examines the effect of hematite (iron oxide) particles on the fluidity of the molten composite as well as the tensile properties and fracture behavior of the solidified as-cast aluminum composites. The percentage of hematite in the composite was varied from 1 to 7% in steps of 2% by weight. The vortex method was employed to prepare the composites. It followed from the results obtained that the ultimate tensile strength and Young`s modulus of the composite increased while the liquid fluidity and solid ductility decreased with the increase in hematite content in the composite specimens. The fluidity of the liquid was greater in a metal mold than in a sand mold, and it decreased with an increase in reinforcing particle size and increased with pouring temperature. The presence of the reinforcing particles altered the fracture behavior of the solid composites considerably. Final fracture of the composite occurred due to the propagation of cracks through the matrix between the reinforcing particles.

  13. Fractography, fluidity, and tensile properties of aluminum/hematite particulate composites

    NASA Astrophysics Data System (ADS)

    Sharma, S. C.; Girish, B. M.; Kamath, R.; Satish, B. M.

    1999-06-01

    This paper examines the effect of hematite (iron oxide) particles on the fluidity of the molten composite as well as the tensile properties and fracture behavior of the solidified as-cast aluminum composites. The percentage of hematite in the composite was varied from 1 to 7% in steps of 2% by weight. The vortex method was employed to prepare the composites. It followed from the results obtained that the ultimate tensile strength and Young’s modulus of the composite increased while the liquid fluidity and solid ductility decreased with the increase in hematite content in the composite specimens. The fluidity of the liquid was greater in a metal mold than in a sand mold, and it decreased with an increase in reinforcing particle size and increased with pouring temperature. The presence of the reinforcing particles altered the fracture behavior of the solid composites considerably. Final fracture of the composite occurred due to the propagation of cracks through the matrix between the reinforcing particles.

  14. Structure and tensile properties of polypropylene/carbon nanotubes composites prepared by melt extrusion

    NASA Astrophysics Data System (ADS)

    Liu, Yanhui; Zuo, Jicheng; Qin, Jie; Li, Chengwu

    2014-09-01

    Polypropylene/carbon nanotubes (PP/CNTs) nancomposites were prepared with a single screw extruder by adding maleic anhydride-grafted poplypropylene (PP-g-MAH) as compatibilizer to polypropylene (PP) with different amounts of carbon nanotubes (CNTs) in the range of 0.1-0.7 wt.%. Structure and morphology of the prepared samples were examined by Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), polarizing light microscopy (PLM) and X-ray diffraction (XRD). The results showed that PP spherulites decreased in size when CNTs were introduced into the polymer. Mechanical properties of the samples were also studied. Tensile tests showed that with increasing amount of CNTs the strain at break decreased whereas the Young's modulus was improved of 16.41 % to 36.05 % and tensile strength of 36.67 % to 64.70 % compared to pristine PP. The SEM microphotographs showed that majority of the CNTs were dispersed individually and oriented along the shear flow direction.

  15. Tensile bond strength of a lithium-disilicate pressed glass ceramic to dentin of different surface treatments.

    PubMed

    Zortuk, Mustafa; Kilic, Kerem; Gurbulak, Aysegul Guleryuz; Kesim, Bulent; Uctasli, Sadullah

    2010-08-01

    The effects of desensitizer, disinfectant, saliva, blood, and hydrogen peroxide on the tensile bond strength between adhesive and ceramic as well as between adhesive and dentin were examined. Sixty 7x3 mm pressed ceramic discs of IPS e.max were fabricated and randomly assigned to six groups of different dentin surface treatments (control, desensitizer, disinfectant, saliva, blood, and hydrogen peroxide). Representative samples of fractured specimens were observed by SEM (scanning electron microscopy). There were significant differences between the control group and saliva, blood, and hydrogen peroxide groups (p<0.05). However, there were no significant differences between any other dentin surface treatment groups (p>0.05). Results of this study suggested that only saliva, blood, and hydrogen peroxide influenced the tensile bond strength between dentin and ceramic.

  16. The elevated temperature tensile properties of S-200E commercially pure beryllium

    SciTech Connect

    Henshall, G.A.; Torres, S.G.; Hanafee, J.E.

    1995-09-01

    The tensile properties of commercially pure beryllium are sensitive to temperature, impurity content, texture, grain size, and prior processing. Therefore, tensile tests have been conducted using the commercially pure S-200E Be commonly employed at Lawrence Livermore National Laboratory. These experiments were performed at temperatures ranging from 300 to 1100{degrees}C in the longitudinal and transverse orientations at the quasi-static strain rate of 5.5 x 10{sup -4} s{sup -1}. The results of these experiments reveal that the stress-strain curve is smooth, ie. without yield points or serrations, over the entire temperature range studied. The yield stress (YS) and ultimate tensile stress (UTS) decrease monotonically with increasing temperature. Similar strengths were measured for both the longitudinal and transverse orientations, with the latter exhibiting slightly lower YS and UTS values. The measured failure elongation (e{sub f}) vs. temperature curve is complex due to the competing effects of increasing basal-plane fracture stress with increasing temperature combined with the presence of hot shortness at intermediate temperatures. The latter is believed to be caused, at least partially, by the presence of free aluminum impurities at the grain boundaries. This hypothesis is supported by the measured increase in e{sub f} at 700{degrees}C following a 100-hr anneal at 750{degrees}C, which would remove free Al from the grain boundaries. Texture also was found to influence e{sub f}. The favorable orientation of the basal planes for initiation and propagation of cleavage cracks in longitudinal specimens results in a significantly decreased failure elongation compared with the transverse orientation. The effects of testing temperature and specimen orientation on the reduction in area were found to be similar to those described for e{sub f}.

  17. Tensile bond strength between auto-polymerized acrylic resin and acrylic denture teeth treated with MF-MA solution

    PubMed Central

    2016-01-01

    PURPOSE This study evaluated the effect of chemical surface treatment using methyl formate-methyl acetate (MF-MA) solution on the tensile bond strength between acrylic denture teeth and auto-polymerized acrylic resin. MATERIALS AND METHODS Seventy maxillary central incisor acrylic denture teeth for each of three different brands (Yamahachi New Ace; Major Dent; Cosmo HXL) were embedded with incisal edge downwards in auto-polymerized resin in polyethylene pipes and ground with silicone carbide paper on their ridge lap surfaces. The teeth of each brand were divided into seven groups (n=10): no surface treatment (control group), MF-MA solution at a ratio of 25:75 (v/v) for 15 seconds, 30 seconds, 60 seconds, 120 seconds, 180 seconds, and MMA for 180 seconds. Auto-polymerized acrylic resin (Unifast Trad) was applied to the ground surface and polymerized in a pressure cooker. A tensile strength test was performed with a universal testing machine. Statistical analysis of the results was performed using two-way analysis of variance (ANOVA) and post-hoc Dunnett T3 test (α=.05). RESULTS The surface treatment groups had significantly higher mean tensile bond strengths compared with the control group (P<.05) when compared within the same brand. Among the surface treatment groups of each brand, there were no significantly different tensile bond strengths between the MF-MA groups and the MMA 180 second group (P>.05), except for the Yamahachi New Ace MF-MA 180-second group (P<.05). CONCLUSION 15-second MF-MA solution can be an alternative chemical surface treatment for repairing a denture base and rebonding acrylic denture teeth with auto-polymerized acrylic resin, for both conventional and cross-linked teeth. PMID:27555897

  18. Evaluation of tensile strength and surface topography of orthodontic wires after infection control procedures: An in vitro study

    PubMed Central

    Brindha, M.; Kumaran, N. Kurunji; Rajasigamani, K.

    2014-01-01

    Aim: The aim of this study is to evaluate, the influence of four types of sterilization/disinfection procedures (autoclave, hot air oven, glutaraldehyde, and ultraviolet [UV] light) on the tensile strength and surface topography of three orthodontic wires (stainless steel (SS), titanium - molybdenum alloy [TMA], and cobalt chromium (CoCr)). Materials and Methods: Sample comprised of three types of 8 inches straight length segments of orthodontic wires. They were divided into three groups according to wire composition comprising of 50 samples each. Totally 50 samples of each group were then equally divided into five subgroups according to sterilization method. After sterilization and disinfection of the experimental group, surface topography was examined with scanning electron microscope (SEM) and tensile strength was tested using universal testing machine. Result: The results of this study show that the mean ultimate tensile strength (UTS) of SS wire after four sterilization procedures were similar to the control group (1845.815 ± 142.29 MPa). The mean UTS of TMA wire increases after four sterilization procedures when compared with the control group (874.107 ± 275.939 MPa). The mean UTS of CoCr wire remains same after UV light disinfection, but increases after other three sterilization procedures when compared with the control group (1449.759 ± 156.586 MPa). SEM photographs of the present study shows gross increase in pitting roughness of the surface topography of all the three types of wires after four types of sterilization. Conclusion: Orthodontists who want to offer maximum safety for their patients can sterilize orthodontic wires before placement, as it does not deteriorate the tensile strength and surface roughness of the alloys. PMID:25210383

  19. High-temperature Tensile Properties and Creep Life Assessment of 25Cr35NiNb Micro-alloyed Steel

    NASA Astrophysics Data System (ADS)

    Ghatak, Amitava; Robi, P. S.

    2016-05-01

    Reformer tubes in petrochemical industries are exposed to high temperatures and gas pressure for prolonged period. Exposure of these tubes at severe operating conditions results in change in the microstructure and degradation of mechanical properties which may lead to premature failure. The present work highlights the high-temperature tensile properties and remaining creep life prediction using Larson-Miller parametric technique of service exposed 25Cr35NiNb micro-alloyed reformer tube. Young's modulus, yield strength, and ultimate tensile strength of the steel are lower than the virgin material and decreases with the increase in temperature. Ductility continuously increases with the increase in temperature up to 1000 °C. Strain hardening exponent increases up to 600 °C, beyond which it starts decreasing. The tensile properties are discussed with reference to microstructure and fractographs. Based on Larson-Miller technique, a creep life of at least 8.3 years is predicted for the service exposed material at 800 °C and 5 MPa.

  20. Effects of cyclic loading on the tensile properties of human patellar tendon.

    PubMed

    Chandrashekar, Naveen; Slauterbeck, James; Hashemi, Javad

    2012-01-01

    Bone-patellar tendon-bone (BPTB) graft is a popular choice for ACL reconstruction. These grafts are subjected to cyclic loading during the activities of daily living. Significant knee laxity is observed in reconstructed knee shortly after reconstruction. The source of this laxity is not clear. The change in the tensile properties of the graft due to cyclic loading can be one of the reasons for the change in knee laxity. Twenty patellar tendons from fresh frozen cadaver knees were cyclically loaded at a stress amplitude equivalent to 33% of the failure strength of the contralateral patellar tendon for 5000 cycles at 1.4Hz. They were then tested in tension to failure. Failure properties and the low load properties such as toe-region modulus were calculated. The results were compared with those of contralateral patellar tendons that were not subjected to cyclic loading before testing to failure. Fatigue loading did not alter the failure and low load properties with the exception of failure strain which decreased by about 10% (P<.05). Cyclically loaded patellar tendons with higher tissue mass density possess higher strength, modulus of elasticity, toughness, and transition stress (P<.05). The results indicate that there is no significant change in graft properties because of cyclic loading with the above load magnitude. The change in knee laxity observed after reconstruction, hence, is not because of change in graft properties due to moderate cyclic loading. Other factors, such as plastic deformation (yielding) of the graft, might play a role in increased knee laxity after reconstruction.

  1. Space environmental effects on graphite-epoxy compressive properties and epoxy tensile properties

    NASA Technical Reports Server (NTRS)

    Fox, Derek J.; Sykes, George F., Jr.; Herakovich, Carl T.

    1987-01-01

    This study characterizes the effects of electron radiation and temperature on a graphite-epoxy composite material. Compressive properties of the T300/934 material system were obtained at -250 F (-157 C), room temperature, and 250 F (121 C). Tensile specimens of the Fiberite 934 epoxy resin were fabricated and tested at room temperature and 250 F (121 C). Testing was conducted in the baseline (nonirradiated) and irradiated conditions. The radiation exposure was designed to simulate 30 year, worst-case exposure in geosynchronous Earth orbit. Mechanical properties tended to degrade at elevated temperature and improve at cryogenic temperature. Irradiation generally degraded properties at all temperatures.

  2. Subtask 12D4: Baseline tensile properties of V-Cr-Ti alloys

    SciTech Connect

    Loomis, B.A.; Chung, H.M.; Smith, D.L.

    1995-03-01

    The objective of this work is to provide a database on the baseline tensile properties of candidate V-Cr-Ti alloys. Vanadium-base alloys of the V-Cr-Ti system are attractive candidates for use as structural materials in fusion reactors. The current focus of the U.S. program of research on these alloys is on the V-(4-6)Cr-(3-6)Ti alloys containing 500-1000 wppm Si. In this paper, we present experimental results on baseline tensile properties of V-Cr-Ti alloys measured at 230-700{degrees}C, with an emphasis on the tensile properties of the U.S. reference alloy V-4Cr-4Ti. The reference alloy was found to exhibit excellent tensile properties up to 700{degrees}C. 9 refs., 8 figs., 1 tab.

  3. Effects of Micro-structure and Micro-parameters on Brazilian Tensile Strength Using Flat-Joint Model

    NASA Astrophysics Data System (ADS)

    Xu, Xueliang; Wu, Shunchuan; Gao, Yongtao; Xu, Miaofei

    2016-09-01

    It has been widely accepted that tensile strength plays a dominant role in the failure mechanism of rock or rock-like material. Tensile strength is determined mainly via two methods: the direct tension test and Brazilian test. Due to the strictness of preparing the specimen and difficulty of conducting the direct tension test, Brazilian test has been widely applied to determine the tensile strength of geo-materials. However, there is no exact standard for Brazilian test specimen. Moreover, Brazilian tensile strength (BTS) is affected by many factors, such as loading rate, loading platen width, model size. So far, most parametric studies of geo-materials have involved compression tests, but few studies have systematically focused on Brazilian test. The continuum methods have difficulty reproducing the failure process of Brazilian test, and 2D discrete element methods can not reflect the real mechanical behavior of a 3D cylindrical disk specimen. Moreover, the standard bonded-particle model has intrinsic problems in simulating geo-materials. This paper, using a 3D flat-joint model (FJM3D), investigates the effects of micro-structure and micro-parameters on BTS. The micro-structure consists of model size, model resolution, and degree of heterogeneity. The micro-parameters include the average coordination number, crack density, and bond strength. The effects on BTS are summarized, and this summary will be useful for guiding future Brazilian tests. Finally, FJM3D is used to calibrate Brisbane tuff by Brazilian test and the uniaxial compression test. The simulation results are in good agreement with those measured from experiments, and the failure process of Brazilian test is analyzed in detail at the microscale. Because of the heterogeneity of rock, cracks initiate near the loading platen instead of the center of the specimen. Even so, BTS can be an useful tensile index for geo-materials in a triaxial stress state, which is similar to the physical situations, and

  4. Heat treatment effects on tensile properties of V-(4-5) wt.% Cr-(4-5) wt.% Ti alloys

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-08-01

    Effects of thermomechanical treatments on microstructures and mechanical properties are of interest for long term application of V-Cr-Ti alloys in fusion reactor systems. Influence of thermal annealing at 1050{degrees}C on stress/strain behavior, maximum engineering strength, and uniform and total elongation were evaluated. The results show that multiple annealing has minimal effect on the tensile properties of V-(4-5)Cr-(4-5)Ti alloys tested at room temperature and at 500{degrees}C.

  5. Subtask 12G2: Effects of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-03-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degrees}C in the Dynamic Helium Charging Experiment (DHCE). One property of vanadium-base alloys that is not well understood in terms of their potential use as fusion reactor structural materials is the effect of simultaneous generation of helium and neutron damage under conditions relevant to fusion reactor operation. In the present Dynamic Helium Charging Experiment (DHCE), helium was produced uniformly in the specimen at linear rates of {approx}0.4 to 4.2 appm helium/dpa by the decay of tritium during irradiation to 18-31 dpa at 425-600{degrees}C in the Li-filled DHCE capsules in the Fast Flux Test Facility. This report presents results of postirradiation tests of tensile properties of V-4Cr-4Ti, an alloy identified as the most promising vanadium-base alloy for fusion reactors on the basis of its superior baseline and irradiation properties. Effects of helium on tensile strength and ductility were insignificant after irradiation and testing at >420{degrees}C. Contrary to initial expectation, room-temperature ductilities of DHCE specimens were higher than those of non-DHCE specimens (in which there was negligible helium generation), whereas strengths were lower, indicating that different types of hardening centers are produced during DHCE and non-DHCE irradiation. In strong contrast to tritium-trick experiments in which dense coalescence of helium bubbles is produced on grain boundaries in the absence of displacement damage, no intergranular fracture was observed in any tensile specimens irradiated in the DHCE. 25 refs., 2 figs., 3 tabs.

  6. Tensile properties and translaminar fracture toughness of glass fiber reinforced unsaturated polyester resin composites aged in distilled and salt water

    NASA Astrophysics Data System (ADS)

    Sugiman, Gozali, M. Hulaifi; Setyawan, Paryanto Dwi

    2016-03-01

    Glass fiber reinforced polymer has been widely used in chemical industry and transportation due to lightweight and cost effective manufacturing. However due to the ability to absorb water from the environment, the durability issue is of interest for up to days. This paper investigated the water uptake and the effect of absorbed water on the tensile properties and the translaminar fracture toughness of glass fiber reinforced unsaturated polyester composites (GFRP) aged in distilled and salt water up to 30 days at a temperature of 50°C. It has been shown that GFRP absorbed more water in distilled water than in salt water. In distilled water, the tensile strength of GFRP tends to decrease steeply at 7 days and then slightly recovered for further immersion time. In salt water, the tensile strength tends to decrease continually up to 30 days immersion. The translaminar fracture toughness of GFRP aged in both distilled and salt-water shows the similar behavior. The translaminar fracture toughness increases after 7 days immersion and then tends to decrease beyond that immersion time. In the existence of ionics content in salt water, it causes more detrimental effect on the mechanical properties of fiberglass/unsaturated polyester composites compared to that of distilled water.

  7. Tensile properties of vanadium-base alloys with a tungsten/inert-gas weld zone

    SciTech Connect

    Loomis, B.A.; Konicek, C.F.; Nowicki, L.J.; Smith, D.L.

    1992-12-31

    The tensile properties of V-(0-20)Ti and V-(O-15)Cr-5Ti alloys after butt-joining by tungsten/inert-gas (TIG) welding were determined from tests at 25{degrees}C. Tensile tests were conducted on both annealed and cold-worked materials with a TIG weld zone. The tensile properties of these materials were strongly influenced by the microstructure in the heat-affected zone adjacent to the weld zone and by the intrinsic fracture toughness of the alloys. TIG weld zones in these vanadium-base alloys had tensile properties comparable to those of recrystallized alloys without a weld zone. Least affected by the TIG welding were tensile properties of the V-5Ti and V-5Cr-5Ti alloys. Although the tensile properties of the V-5Ti and V- 5Cr-5Ti alloys with a TIG weld zone were acceptable for structural material, these properties would be improved by optimization of the welding parameters for minimum grain size in the heat-affected zone.

  8. Use of micro-tomography for validation of method to identify interfacial shear strength from tensile tests of short regenerated cellulose fibre composites

    NASA Astrophysics Data System (ADS)

    Hajlane, A.; Miettinen, A.; Madsen, B.; Beauson, J.; Joffe, R.

    2016-07-01

    The interfacial shear strength of short regenerated cellulose fibre/polylactide composites was characterized by means of an industry-friendly adhesion test method. The interfacial shear strength was back-calculated from the experimental tensile stress-strain curves of composites by using a micro-mechanical model. The parameters characterizing the microstructure of the composites, e.g. fibre length and orientation distributions, used as input in the model were obtained by micro-tomography. The investigation was carried out on composites with untreated and surface treated fibres with various fibre weight contents (5wt%, 10wt%, and 15wt% for untreated fibres, and 15wt% for treated fibres). The properties of fibres were measured by an automated single fibre tensile test method. Based on these results, the efficiency of the fibre treatment to improve fibre/matrix adhesion is evaluated, and the applicability of the method to measure the interfacial shear strength is discussed. The results are compared with data from previous work, and with other results from the literature.

  9. Root tensile strength of grey alder and mountain maple grown on a coarse grained eco-engineered slope in the Swiss Alps related to wood anatomical features

    NASA Astrophysics Data System (ADS)

    Kink, Dimitri; Bast, Alexander; Meyer, Christine; Meier, Wolfgang; Egli, Markus; Gärtner, Holger

    2014-05-01

    Steep, vegetation free slopes are a common feature in alpine areas. The material covering these slopes is prone to all kind of erosional processes, resulting in a high risk potential for population and infrastructure. This risk potential is likely to increase with the predicted change in the spatiotemporal distribution of precipitation events. A potential increase in extreme precipitation events will also result in a higher magnitude and frequency of erosional processes. In the Swiss Alps as in many other mountainous areas, there is a need to stabilize these slopes to reduce their direct or indirect hazard potential. In this regard, eco-engineering is a very promising and sustainable approach for slope stabilization. Planting trees and shrubs is a central task in eco-engineering. A developing vegetation cover will on one hand reduce the mechanical effects of rainfall by an increased interception, on the other hand, the root systems cause modifications of soil properties. Roots not only provide anchorage for the plants, they also promote soil aggregation and are able to penetrate possible shear horizons. Overall, anchorage of plants is at the same extend also stabilizing the near subsurface. When rainfall occurs, the saturated soil exerts downhill pressure to a tree or shrub. As long as the root distribution supports anchorage, the respective slope area remains stable. At this point, the tensile strength of the roots is a critical measure, because it is more likely that the supporting roots break than the entire root system being pulled out of the soil completely. As a consequence, root tensile strength is an important parameter in characterizing the soil stabilization potential of trees and shrubs. It is known that tree roots show a high variability in their anatomical structure depending on their depth below soil surface as well as their distance to the main stem. Therefore, we assume that these structural changes affect the tensile strength of every single root

  10. Tensile Properties of Poly (N-vinyl caprolactam) Gels

    NASA Technical Reports Server (NTRS)

    Morgret, Leslie D.; Hinkley, Jeffrey A.

    2004-01-01

    N-vinyl caprolactam was copolymerized with ethylene glycol dimethacrylate using a free-radical initiator in alcohol/water solution. The resulting gels were thermally-responsive in water, undergoing an approximate fivefold reversible volume shrinkage between room temperature and ca. 50 C. Tensile testing showed that the stress-strain behavior was qualitatively different in the collapsed state above the temperature-induced transition. At the higher temperature, gels were stiffer, more ductile, and showed greater time dependence. Implications for the design of gel actuators are briefly discussed.

  11. A scaffold-enhanced light-activated surgical adhesive technique: surface selection for enhanced tensile strength in wound repair

    NASA Astrophysics Data System (ADS)

    Soller, Eric C.; Hoffman, Grant T.; Heintzelman, Douglas L.; Duffy, Mark T.; Bloom, Jeffrey N.; McNally-Heintzelman, Karen M.

    2004-07-01

    An ex vivo study was conducted to determine the effect of the irregularity of the scaffold surface on the tensile strength of repairs formed using our Scaffold-Enhanced Biological Adhesive (SEBA). Two different scaffold materials were investigated: (i) a synthetic biodegradable material fabricated from poly(L-lactic-co-glycolic acid); and (ii) a biological material, small intestinal submucosa, manufactured by Cook BioTech. The scaffolds were doped with protein solder composed of 50%(w/v) bovine serum albumin solder and 0.5mg/ml indocyanine green dye mixed in deionized water, and activated with an 808-nm diode laser. The tensile strength of repairs performed on bovine thoracic aorta, liver, spleen, small intestine and lung, using the smooth and irregular surfaces of the above scaffold-enhanced materials were measured and the time-to-failure was recorded. The tensile strength of repairs formed using the irregular surfaces of the scaffolds were consistently higher than those formed using the smooth surfaces of the scaffolds. The largest difference was observed on repairs formed on the aorta and small intestine, where the repairs were, on average, 50% stronger using the irregular versus the smooth scaffold surfaces. In addition, the time-to-failure of repairs formed using the irregular surfaces of the scaffolds were between 50% and 100% longer than that achieved using the smooth surfaces of the scaffolds. It has previously been shown that distributing or dispersing the adhesive forces over the increased surface area of the scaffold, either smooth or irregular, produces stronger repairs than albumin solder alone. The increase in the absolute strength and longevity of repairs seen in this new study when the irregular surfaces of the scaffolds are used is thought to be due to the distribution of forces between the many independent micro-adhesions provided by the irregular surfaces.

  12. Influence of different brazing and welding methods on tensile strength and microhardness of orthodontic stainless steel wire.

    PubMed

    Bock, Jens Johannes; Fraenzel, Wolfgang; Bailly, Jacqueline; Gernhardt, Christian Ralf; Fuhrmann, Robert Andreas Werner

    2008-08-01

    The aim of this study was to compare the mechanical strength and microhardness of joints made by conventional brazing and tungsten inert gas (TIG) and laser welding. A standardized end-to-end joint configuration of the orthodontic wire material in spring hard quality was used. The joints were made using five different methods: brazing (soldering > 450 degrees C) with universal silver solder, two TIG, and two laser welders. Laser parameters and welding conditions were used according to the manufacturers' guidance. The tensile strengths were measured with a universal testing machine (Zwick 005). The microhardness measurements were carried out with a hardness tester (Zwick 3202). Data were analysed using one-way analysis of variance and Bonferroni's post hoc correction (P < 0.05). In all cases, brazing joints ruptured at low levels of tensile strength (198 +/- 146 MPa). Significant differences (P < 0.001) between brazing and TIG or laser welding were found. The highest means were observed for TIG welding (699-754 MPa). Laser welding showed a significantly lower mean tensile strength (369-520 MPa) compared with TIG welding. Significant differences (P < 0.001) were found between the original orthodontic wire and the mean microhardness at the centre of the welded area. The mean microhardness differed significantly between brazing (1.99 GPa), TIG (2.22-2.39 GPa) and laser welding (2.21-2.68 GPa). For orthodontic purposes, laser and TIG welding are solder-free alternatives to joining metal. TIG welding with a lower investment cost is comparable with laser welding. However, while expensive, the laser technique is a sophisticated and simple method. PMID:18617503

  13. Tensile properties of V-5Cr-5Ti alloy after exposure in air environment

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-04-01

    Oxidation studies were conducted on V-5Cr-5Ti alloy specimens in an air environment to evaluate the oxygen uptake behavior of the alloy as a function of temperature and exposure time. The oxidation rates, calculated from parabolic kinetic measurements of thermogravimetric testing and confirmed by microscopic analysis of cross sections of exposed specimens, were 5, 17, and 27 {mu}m per year after exposure at 300, 400, and 500{degrees}C, respectively. Uniaxial tensile tests were conducted at room temperature and at 500{degrees}C on preoxidized specimens of the alloy to examine the effects of oxidation and oxygen migration on tensile strength and ductility. Correlations were developed between tensile strength and ductility of the oxidized alloy and microstructural characteristics such as oxide thickness, depth of hardened layer, depth of intergranular fracture zone, and transverse crack length.

  14. Effects of Annealing Temperature on Microstructure and Tensile Properties in Ferritic Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Han, Seung Youb; Shin, Sang Yong; Lee, Hyuk-Joong; Lee, Byeong-Joo; Lee, Sunghak; Kim, Nack J.; Kwak, Jai-Hyun

    2012-03-01

    An investigation was conducted into the effects of annealing temperature on microstructure and tensile properties of ferritic lightweight steels. Two steels were fabricated by varying the C content, and were annealed at 573 K to 1173 K (300 °C to 900 °C) for 1 hour. According to the microstructural analysis results, κ-carbides were formed at about 973 K (700 °C), which was confirmed by equilibrium phase diagrams calculated from a THERMO-CALC program. In the steel containing low carbon content, needle-shaped κ-carbides were homogeneously dispersed in the ferrite matrix, whereas bulky band-shaped martensites were distributed in the steel containing high carbon content. In the 973 K (700 °C)-annealed specimen of the steel containing high carbon content, deformation bands were formed throughout the specimen, while fine carbides were sufficiently deformed inside the deformation bands, thereby resulting in the greatest level of strength and ductility. These results indicated that the appropriate annealing treatment of steel containing high carbon content was useful for the improvement of both strength and ductility over steel containing low carbon content.

  15. Ultimate Tensile Strength as a Function of Test Rate for Various Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Bansal, Narottam P.; Gyekenyesi, John P.

    2002-01-01

    Ultimate tensile strength of five different continuous fiber-reinforced ceramic composites, including SiC/BSAS (2D 2 types), SiC/MAS-5 (2D), SiC/SiC (2D enhanced), and C/SiC(2D) was determined as a function of test rate at I 100 to 1200 'C in air. All five composite materials exhibited a significant dependency of ultimate strength on test rate such that the ultimate strength decreased with decreasing test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress rate) to another (constant stress loading) for SiC/BSAS suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics.

  16. Effects of polymerization and briquetting parameters on the tensile strength of briquettes formed from coal coke and aniline-formaldehyde resin

    SciTech Connect

    Demirbas, A.; Simsek, T.

    2006-10-15

    In this work, the utilization of aniline (C{sub 6}H{sub 7}N) formaldehyde (HCHO) resins as a binding agent of coke briquetting was investigated. Aniline (AN) formaldehyde (F) resins are a family of thermoplastics synthesized by condensing AN and F in an acid solution exhibiting high dielectric strength. The tensile strength sharply increases as the ratio of F to AN from 0.5 to 1.6, and it reaches the highest values between 1.6 and 2.2 F/AN ratio; it then slightly decreases. The highest tensile strength of F-AN resin-coke briquette (23.66 MN/m{sup 2}) was obtained from the run with 1.5 of F/AN ratio by using (NH4){sub 2}S{sub 2}O{sub 8} catalyst at 310 K briquetting temperature. The tensile strength of F-AN resin-coke briquette slightly decreased with increasing the catalyst percent to 0.10%, and then it sharply decreased to zero with increasing the catalyst percent to 0.2%. The effect of pH on the tensile strength is irregular. As the pH of the mixture increases from 9.0 to 9.2, the tensile strength shows a sharp increase, and the curve reaches a plateau value between pH 9.3 and 9.9; then the tensile strength shows a slight increase after pH = 9.9.

  17. Influence of Specimen Preparation and Specimen Size on Composite Transverse Tensile Strength and Scatter

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; DeMarco, Kevin; Paris, Isabelle

    2001-01-01

    The influence of specimen polishing, configuration, and size on the transverse tension strength of two glass-epoxy materials, and one carbon-epoxy material, loaded in three and four point bending was evaluated. Polishing machined edges, arid/or tension side failure surfaces, was detrimental to specimen strength characterization instead of yielding a higher, more accurate, strength as a result of removing inherent manufacture and handling flaws. Transverse tension strength was typically lower for longer span lengths due to the classical weakest link effect. However, strength was less sensitive to volume changes achieved by increasing specimen width. The Weibull scaling law typically over-predicted changes in transverse tension strengths in three point bend tests and under-predicted changes in transverse tension strengths in four point bend tests. Furthermore, the Weibull slope varied with specimen configuration, volume, and sample size. Hence, this scaling law was not adequate for predicting transverse tension strength of heterogeneous, fiber-reinforced, polymer matrix composites.

  18. Damage Initiation and Ultimate Tensile Strength of Scaled [0 deg n/90 deg n/0 deg n]sub T Graphite-Epoxy Coupons

    NASA Technical Reports Server (NTRS)

    Jackson, Karen E.; Prosser, William H.

    1997-01-01

    Previous research on scaling effects in composite materials has demonstrated that the stress levels at first ply failure and ultimate failure of composite laminates are dependent on the size of the laminate. In particular, the thickness dimension has been shown to be the most influential parameter in strength scaling of composite coupons loaded in tension. Geometrically and constitutively scaled laminates exhibit decreasing strength with increasing specimen size, and the magnitude of the strength-size effect is a function of both material properties and laminate stacking sequence. Some of the commonly used failure criteria for composite materials such as maximum stress, maximum strain, and tensor polynomial (e.g., Tsai-Wu) cannot account for the strength-size effect. In this paper, three concepts are developed and evaluated for incorporating size dependency into failure criteria for composite materials. An experimental program of limited scope was performed to determine the first ply failure stress in scaled cross-ply laminates loaded in tension. Test specimens were fabricated of AS-4/3502 graphite-epoxy composite material with laminate stacking sequences of [0 deg n/90 deg n/o deg n]subT where n=1-6. Two experimental techniques were used to determine first ply failure, defined as a transverse matrix crack in the 90 deg ply: (1) step loading with dye penetrant x-ray of the specimen at each load interval, and (2) acoustic emission. The best correlation between first ply failure analysis and experimental data was obtained using a modified Weibull approach which incorporated the residual thermal stress and the outer ply constraint, as well as the ply thickness effect. Finally, a second set of experiments was performed to determine the tensile response and ultimate failure of the scaled cross-ply laminates. The results of these experiments indicated no influence of specimen size on tensile response or ultimate strength.

  19. Effect of small additions of silicon, iron, and aluminum on the room-temperature tensile properties of high-purity uranium

    SciTech Connect

    Ludwig, R.L.

    1983-11-14

    Eleven binary and ternary alloys of uranium and very low concentrations of iron, silicon, and aluminum were prepared and tested for room-temperature tensile properties after various heat treatments. A yield strength approximately double that of high-purity derby uranium was obtained from a U-400 ppM Si-200 ppM Fe alloy after beta solution treatment and alpha aging. Higher silicon plus iron alloy contents resulted in increased yield strength, but showed an unacceptable loss of ductility.

  20. Apparatus for measuring tensile and compressive properties of solid materials at cryogenic temperatures

    DOEpatents

    Gonczy, John D.; Markley, Finley W.; McCaw, William R.; Niemann, Ralph C.

    1992-01-01

    An apparatus for evaluating the tensile and compressive properties of material samples at very low or cryogenic temperatures employs a stationary frame and a dewar mounted below the frame. A pair of coaxial cylindrical tubes extend downward towards the bottom of the dewar. A compressive or tensile load is generated hydraulically and is transmitted by the inner tube to the material sample. The material sample is located near the bottom of the dewar in a liquid refrigerant bath. The apparatus employs a displacement measuring device, such as a linear variable differential transformer, to measure the deformation of the material sample relative to the amount of compressive or tensile force applied to the sample.

  1. Effects of aminopropyltriethoxysilane (γ-APS) on tensile properties and morphology of polypropylene (PP), recycle acrylonitrile butadiene rubber (NBRr) and sugarcane bagasse (SCB) composites

    NASA Astrophysics Data System (ADS)

    Santiagoo, Ragunathan; Omar, Latifah; Zainal, Mustaffa; Ting, Sam Sung; Ismail, Hanafi

    2015-07-01

    The performance of sugarcane baggase (SCB) treated with γ-APS filled polypropylene (PP)/recycled acrylonitrile butadiene rubber (NBRr) biocomposites were investigated. The composites with different filler loading ranging from 5 to 30 wt % were prepared using heated two roll mill by melt mixing at temperature of 180 °C. Tensile properties of the PP/NBRr/SCB composites which is tensile strength, Young Modulus and elongation at break were investigated. Increasing of treated SCB filler loading in PP/NBRr/SCB composites have increased the Young modulus however decreased the tensile strength and elongation at break of the PP/NBRr/SCB composites. From the results, γ-APS treated SCB composites shown higher tensile strength and Young Modulus but lower elongation at break when compared to the untreated SCB composites. This is due to the stronger bonding between γ-APS treated SCB with PP/NBRr matrices. These findings was supported by micrograph pictures from morphological study. SCB filler treated with γ-APS has improved the adhesion as well as gave strong interfacial bonding between SCB filler and PP/NBRr matrices which results in good tensile strength of PP/NBRr/SCB composites.

  2. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    DOE PAGES

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with nomore » sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.« less

  3. Tensile flow properties of Al-based matrix composites reinforced with a random planar network of continuous metallic fibers

    SciTech Connect

    Boland, F.; Salmon, C.; Delannay, F.; Colin, C.

    1998-11-20

    Squeeze casting was used for processing two new types of composites: pure Al matrix composites reinforced with fibers of Inconel 601, and AS13 (Al-12% Si) matrix composites reinforced with fibers of Inconel 601 or stainless steel 316L. The fibers are continuous with a diameter of 12 {micro}m and their volume fraction in the composites varied from 20 to 80%. The processing conditions were such that no trace of interfacial reaction compound or of matrix precipitate resulting from the dissolution of elements of the fibers could be detected. The quality of the process was attested by Young`s modulus and electrical conductivity measurements. Tensile tests were carried out from room temperature up to 300 C. The composites with the pure Al matrix present a remarkable tensile ductility. They thus constitute convenient materials for assessing continuum plasticity models for composites. Properties of composites with the AS13 matrix are much affected by interface adhesion strength.

  4. Effects of helium implantation on the tensile properties and microstructure of Ni₇₃P₂₇ metallic glass nanostructures

    SciTech Connect

    Liontas, Rachel; Gu, X. Wendy; Fu, Engang; Wang, Yongqiang; Li, Nan; Mara, Nathan; Greer, Julia R.

    2014-09-10

    We report fabrication and nanomechanical tension experiments on as-fabricated and helium-implanted ~130 nm diameter Ni₇₃P₂₇ metallic glass nano-cylinders. The nano-cylinders were fabricated by a templated electroplating process and implanted with He⁺ at energies of 50, 100, 150, and 200 keV to create a uniform helium concentration of ~3 at. % throughout the nano-cylinders. Transmission electron microscopy (TEM) imaging and through-focus analysis reveal that the specimens contained ~2 nm helium bubbles distributed uniformly throughout the nano-cylinder volume. In-situ tensile experiments indicate that helium-implanted specimens exhibit enhanced ductility as evidenced by a 2-fold increase in plastic strain over as-fabricated specimens, with no sacrifice in yield and ultimate tensile strengths. This improvement in mechanical properties suggests that metallic glasses may actually exhibit a favorable response to high levels of helium implantation.

  5. Studies of Microtexture and Its Effect on Tensile and High-Cycle Fatigue Properties of Laser-Powder-Deposited INCONEL 718

    NASA Astrophysics Data System (ADS)

    Qi, Huan; Azer, Magdi; Deal, Andrew

    2012-11-01

    The current work studies the microstructure, texture, and mechanical properties of INCONEL 718 alloy (IN718) produced by laser direct metal deposition. The grain microstructure exhibits an alternative distribution of banded fine and coarse grain zones as a result of the rastering scanning pattern. The effects of the anisotropic crystallographic texture on the tensile and high-cycle fatigue (HCF) properties at room temperature are investigated. Tensile test results showed that the tensile strength of laser-deposited IN718 after direct aging or solution heat treatment is equivalent to the minimum-forged IN718 properties. The transverse direction (relative to the laser scanning direction) produces >10 pct stiffer modulus of elasticity but 3 to 6 pct less tensile strength compared to the longitudinal direction due to the preferential alignment of grains having <111> and <100> directions parallel to the tensile loading direction. Laser-deposited IN718 with good metallurgical integrity showed equivalent HCF properties compared to the direct-aged wrought IN718, which can be attributed to the banded grain size variation and cyclic change of inclining grain orientations resulted from alternating rastering deposition path.

  6. The effect of ultrasonics on the strength properties of carbon steel processed by cold plastic deformation

    NASA Technical Reports Server (NTRS)

    Atanasiu, N.; Dragan, O.; Atanasiu, Z.

    1974-01-01

    A study was made of the influence of ultrasounds on the mechanical properties of OLT 35 carbon steel tubes cold-drawn on a plug ultrasonically activated by longitudinal waves. Experimental results indicate that: 1. The reduction in the values of the flow limit and tensile strength is proportional to the increase in acoustic energy introduced into the material subjected to deformation. 2. The diminution in influence of ultrasounds on tensile strength and flow rate that is due to an increased degree of deformation is explained by a reduction in specific density of the acoustic energy at the focus of deformation. 3. The relations calculated on the basis of the variation in the flow limit and tensile strength as a function of acoustic energy intensity was verified experimentally.

  7. Effect of irradiation on the tensile properties of niobium-base alloys

    SciTech Connect

    Grossbeck, M.L.; Heestand, R.L.; Atkin, S.D.

    1986-11-01

    The alloys Nb-1Zr and PWC-11 (Nb-1Zr-0.1C) were selected as prime candidate alloys for the SP-100 reactor. Since the mechanical properties of niobium alloys irradiated to end-of-life exposure levels of about 2 x 10SW neutrons/mS (E > 0.1 MeV) at temperatures above 1300 K were not available, an irradiation experiment (B-350) in EBR-II was conducted. Irradiation creep, impact properties, bending fatigue, and tensile properties were investigated; however, only tensile properties will be reported in this paper. The tensile properties were studied since they easily reveal the common irradiation phenomena of hardening and embrittlement. Most attention was directed to testing at the irradiation temperature. Further testing was conducted at lower temperatures in order to scope the behavior of the alloys in cooldown conditions.

  8. The tensile properties of AISI 316L and OPTIFER in various conditions irradiated in a spallation environment

    NASA Astrophysics Data System (ADS)

    Chen, J.; Rödig, M.; Carsughi, F.; Dai, Y.; Bauer, G. S.; Ullmaier, H.

    2005-08-01

    Tensile specimens, prepared from AISI 316L austenitic stainless steel in three conditions (solution-annealed, cold-worked and electron-beam welded) and from OPTIFER martensitic stainless steel in tempered condition, were irradiated in the Swiss spallation neutron source (SINQ) at 90-400 °C to displacement doses from 3 dpa to 11 dpa. The mechanical properties were measured by tensile testing at room temperature and 250 °C, respectively, and subsequent metallographic analysis was employed. The tensile results indicated that the strength of AISI 316L-SA is quite similar or a little higher than in 316L-EBW but elongation of SA 316L is somewhat larger than EBW for both unirradiated and irradiated samples. The cold-worked specimens revealed much higher strength but almost zero strain-to-necking after irradiation. The results from OPTIFER samples showed that irradiation hardening increases with dose, which is accompanied by a dramatic reduction of uniform elongation beginning at very low dose. The metallographic analysis showed that the samples of AISI 316L-EBW failed in the welded zone.

  9. Strength, Hardening, and Failure Observed by In Situ TEM Tensile Testing.

    PubMed

    Kiener, Daniel; Kaufmann, Petra; Minor, Andrew M

    2012-11-01

    We present in situ transmission electron microscope tensile tests on focused ion beam fabricated single and multiple slip oriented Cu tensile samples with thicknesses in the range of 100-200 nm. Both crystal orientations fail by localized shear. While failure occurs after a few percent plastic strain and limited hardening in the single slip case, the multiple slip samples exhibit extended homogenous deformation and necking due to the activation of multiple dislocation sources in conjunction with significant hardening. The hardening behavior at 1% plastic strain is even more pronounced compared to compression samples of the same orientation due to the absence of sample taper and the interface to the compression platen. Moreover, we show for the first time that the strain rate sensitivity of such FIB prepared samples is an order of magnitude higher than that of bulk Cu.

  10. Static and fatigue tensile properties of cross-ply laminates containing vascules for self-healing applications

    NASA Astrophysics Data System (ADS)

    Luterbacher, R.; Trask, R. S.; Bond, I. P.

    2016-01-01

    The effect of including hollow channels (vascules) within cross-ply laminates on static tensile properties and fatigue performance is investigated. No change in mechanical properties or damage formation is observed when a single vascule is included in the 0/90 interface, representing 0.5% of the cross sectional area within the specimen. During tensile loading, matrix cracks develop in the 90° layers leading to a reduction of stiffness and strength (defined as the loss of linearity) and a healing agent is injected through the vascules in order to heal them and mitigate the caused degradation. Two different healing agents, a commercial low viscosity epoxy resin (RT151, Resintech) and a toughened epoxy blend (bespoke, in-house formulation) have been used to successfully recover stiffness under static loading conditions. The RT151 system recovered 75% of the initial failure strength, whereas the toughened epoxy blend achieved a recovery of 67%. Under fatigue conditions, post healing, a rapid decay of stiffness was observed as the healed damage re-opened within the first 2500 cycles. This was caused by the high fatigue loading intensity, which was near the static failure strength of the healing resin. However, the potential for ameliorating (via self-healing or autonomous repair) more diffuse transverse matrix damage via a vascular network has been shown.

  11. Effect of storage and acid etching on the tensile bond strength of composite resins to glass ionomer cement.

    PubMed

    Mesquita, M F; Domitti, S S; Consani, S; de Goes, M F

    1999-01-01

    This in vitro study evaluates the effect of storage time and acid etching on the tensile bond strength of glass ionomer cement to composite resins. The bonded assemblies were stored at 100% relative humidity and 37 degrees C for 1 hour, 1 day, 1 week, 1 month and 3 months. The test specimen was loaded at tension to failure on an Otto Wolpert-Werke testing instrument with a crosshead speed of 6 mm/min. The results showed a significant statistical difference for etched Vidrion F when compared to etched Ketac Bond at all storage periods. The unetched samples were statistically similar at 3 months, with the highest values for Vidrion F.

  12. Effect of curing cycle on the tensile strength of the bond between heat cured denture base acrylic resin and acrylic resin denture teeth.

    PubMed

    Dalal, Ayesha; Juszczyk, Andrzej S; Radford, David R; Clark, Robert K F

    2009-12-01

    The effect of different curing cycles on the tensile strength of the bond between one brand of cross-linked acrylic resin teeth and three heat cured denture base acrylic resins was tested. There were differences in the tensile bond strength between the three heat cured denture base acrylic resins and the three curing cycles used. The bond strength of the acrylic resin denture base material made by the same manufacturer as the cross-linked acrylic resin denture teeth was higher. The bond strength following the short cycle was lowest in all cases, individual differences between curing cycles failed to reach statistical significance. PMID:20158054

  13. The Value Compressive Strength and Split Tensile Strength on Concrete Mixture With Expanded Polystyrene Coated by Surfactant Span 80 as a Partial Substitution of Fine Aggregate

    NASA Astrophysics Data System (ADS)

    Hidayat, Irpan; Siauwantara, Alice

    2014-03-01

    The value of the density normal concrete which ranges between 2200-2400 kg/m3. Therefore the use of Expanded Polystyrene (EPS) as a subitute to fine aggregate can reduce the density of concrete. The purpose this research is to reduce the density of normal concrete but increase compressive strength of EPS concrete, with use surfactant as coating for the EPS. Variables of substitution percentage of EPS and EPS coated by surfactant are 5%,10%,15%,20%,25%. Method of concrete mix design based on SNI 03-2834-2000 "Tata Cara Pembuatan Rencana Campuran Beton Normal (Provisions for Proportioning Normal Concrete Mixture)". The result of testing, every increase percentage of EPS substitution will decrease the compressive strength around 1,74 MPa and decrease density 34,03 kg/m3. Using Surfactant as coating of EPS , compressive strength increase from the EPS's compressive strength. Average of increasing compressive strength 0,19 MPa and increase the density 20,03 kg/m3,average decrease of the tensile split strength EPS coated surfaktan is 0,84 MPa.

  14. Validity of using average diameter for determination of tensile strength and Weibull modulus of ceramic filaments

    SciTech Connect

    Petry, M.D.; Mah, T.I.; Kerans, R.J.

    1997-10-01

    Strengths and Weibull moduli for alumina/yttrium aluminum garnet eutectic (AYE) filaments and for Si-C-O (Nicalon) filaments were calculated using measured and average filament diameters. The strengths agreed closely. Thus an average filament diameter could be used instead of the measured filament diameter in calculating strengths. The Weibull modulus obtained from an average filament diameter approximates the Weibull modulus obtained using the measured filament diameter.

  15. Effect of a ductility layer on the tensile strength of TiAl-based multilayer composite sheets prepared by EB-PVD

    SciTech Connect

    Zhang, Rubing; Zhang, Yaoyao; Liu, Qiang; Chen, Guiqing; Zhang, Deming

    2014-09-15

    TiAl/Nb and TiAl/NiCoCrAl laminate composite sheets with a thickness of 0.4–0.6 mm and dimensions of 150 mm × 100 mm were successfully fabricated by electron beam physical vapor deposition. The microstructures of the sheets were examined, and their mechanical properties were compared with those of TiAl monolithic sheet produced by electron beam physical vapor deposition. Tensile testing was performed at room temperature and 750 °C, and the fracture surfaces were examined by scanning electron microscopy. Among the three microlaminate sheets, the TiAl/NiCoCrAl micro-laminate sheet had the best comprehensive properties at room temperature, and the TiAl/Nb micro-laminate sheet showed the ideal high-temperature strength and plasticity at 750 °C. The result was discussed in terms of metal strengthening mechanism. - Highlights: • TiAl-based multilayer foils was fabricated successfully by using EB-PVD method; • The tensile properties and micro-fracture morphologies of the sheet were investigated; • The deformation behavior of the multilayer foils was discussed.

  16. Tensile properties influencing variables in eutectic Al-Si casting alloys

    SciTech Connect

    Hafiz, M.F. . Dept. of Mechanical Engineering); Kobayashi, Toshiro . Dept. of Production Systems Engineering)

    1994-09-15

    Efforts to identify and characterize the physical properties of aluminum castings alloys are envisaged to lead to a new guideline from which the mechanical behavior of these alloys can be accurately predicted. For aluminum-silicon (Al-Si) casting alloys the tensile properties of a specific composition are observed to vary depending on the production parameters. The difference in the tensile properties appears to be mainly due to the microstructural features concomitant with the imposed production parameters. The present study aims to identify, quantitatively, the tensile properties influencing variables in high purity eutectic Al-Si casting alloy produced under a variety of solidification cooling rate with different strontium (Sr) additions, as a modifying agent. The correlation between the fracture characteristics and the microstructures has also been investigated.

  17. Effect of temperature and microstructure on tensile and tensile creep properties of titanium silicon carbide in air

    NASA Astrophysics Data System (ADS)

    Radovic, Miladin

    The ternary carbide, Ti3SiC2, combines some of the best attributes of ceramics and metals. It is stable in inert atmospheres to temperatures above 2200°C, stiff and yet is readily machinable, oxidation, fatigue and thermal shock resistant and damage tolerant. Thus, Ti3SiC 2 is good candidate material for high temperature structural application. The aim of this work was to characterize its tensile and tensile creep properties. The mechanical behavior of Ti3SiC2 is characterized by a brittle-to-ductile (BTD) transition that is a function of strain rate. Its high strain rate sensitivity (≈0.50--0.6) is in the range that is more typical for superplastic materials, although it does not exhibit other attributes of superplasticity. Polycrystalline samples do not exhibit linear elastic behavior in tension even at room temperature. Room temperature loading-unloading tests result in closed hysteresis loops when the stress exceeds ≈120 MPa, suggesting that the mechanical response can be described as anelastic (viscoelastic). At high temperatures (1200°C) intense stress relaxation takes place; cycling loading-unloading tests at high temperature and low strain rates, demonstrate that the samples continue to elongate even during unloading, suggesting that Ti3SiC2 deforms viscoplastically. Tensile creep curves exhibit primary, steady state and tertiary regimes. The minimum creep rate can be represented by power law equation with a stress exponent of 1.5 for fine-grained (3--5 mum) samples, and 2 for coarse-grained (100--300 mum) ones. For both microstructures the activation energy for creep is ≈450 kJ/mol. The dependence on grain size is quite weak, implying that diffusion creep and/or creep mechanisms based on grain boundary sliding do not play a central role. Results of strain transient dip tests suggest that large internal stresses are developed during creep. Those internal stresses are believed to result in recoverable (anelastic) strains during unloading. The

  18. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  19. Metallurgical and mechanical properties of laser welded high strength low alloy steel

    PubMed Central

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-01-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure. PMID:27222751

  20. Metallurgical and mechanical properties of laser welded high strength low alloy steel.

    PubMed

    Oyyaravelu, Ramachandran; Kuppan, Palaniyandi; Arivazhagan, Natarajan

    2016-05-01

    The study aimed at investigating the microstructure and mechanical properties of Neodymium-Doped Yttrium Aluminum Garnet (Nd:YAG) laser welded high strength low alloy (HSLA) SA516 grade 70 boiler steel. The weld joint for a 4 mm thick plate was successfully produced using minimum laser power of 2 kW by employing a single pass without any weld preheat treatment. The micrographs revealed the presence of martensite phase in the weld fusion zone which could be due to faster cooling rate of the laser weldment. A good correlation was found between the microstructural features of the weld joints and their mechanical properties. The highest hardness was found to be in the fusion zone of cap region due to formation of martensite and also enrichment of carbon. The hardness results also showed a narrow soft zone at the heat affected zone (HAZ) adjacent to the weld interface, which has no effect on the weld tensile strength. The yield strength and ultimate tensile strength of the welded joints were 338 MPa and 549 MPa, respectively, which were higher than the candidate metal. These tensile results suggested that the laser welding process had improved the weld strength even without any weld preheat treatment and also the fractography of the tensile fractured samples showed the ductile mode of failure.

  1. Elastic properties and fracture strength of quasi-isotropic graphite/epoxy composites

    NASA Technical Reports Server (NTRS)

    Sullivan, T. L.

    1977-01-01

    The layups of the studied laminates are (0, + or - 60) sub s, (0, + or - 45, 90) sub s, (0, + or - 30, + or - 60, 90) sub s (0, + or - 22 1/2, + or - 45, + or - 67 1/2, 90) sub s. The properties determined were tensile modulus, Poisson's ratio, bending stiffness, fracture strength and fracture strain. Measured properties and properties predicted using laminate theory were found to be in reasonable agreement. Reasons for data scatter were determined.

  2. Improving the creep resistance and tensile property of UHMWPE sheet by radiation cross-linking and annealing

    NASA Astrophysics Data System (ADS)

    Wang, Honglong; Xu, Lu; Li, Rong; Hu, Jiangtao; Wang, Mouhua; Wu, Guozhong

    2016-08-01

    Ultra-high molecular weight polyethylene (UHMWPE) sheet was cross-linked by γ irradiation in air with a dose of up to 300 kGy at a dose rate of 5 kGy/h and further treated by post-annealing at 120 °C for 4 h in vacuum. Variations in chemical structure, thermostability, crystallinity, creep resistance, and tensile properties were investigated and compared mainly by gel content, TGA, DSC, and creep and tensile measurements. Gel content measurements indicated that cross-linking was predominant over chain scission during irradiation and post-annealing. Radiation cross-linking resulted in an obvious improvement in the creep resistance and tensile properties of UHMWPE. Through cross-linking, the operational temperature and yield strength of the irradiated and subsequently annealed UHMWPE sheet were improved by more than 100 °C and 14%, respectively, at a dose of 300 kGy. Simultaneously, Young's modulus was increased to 1413 MPa, compared with 398 MPa of pristine UHMWPE. Annealing after irradiation further improved the creep resistance and Young's modulus. Highly cross-linked UHMWPE can even be maintained at 250 °C for a long time without any obvious deformation.

  3. Effect of copper-rich regions on tensile properties of VPPA weldments of 2219-T87 aluminum

    NASA Technical Reports Server (NTRS)

    Hartman, J. A.; Beil, R. J.; Hahn, G. T.

    1987-01-01

    This study examines the relations between tensile properties and microstructural features of variable polarity plasma arc (VPPA) weldments of 2219-T87 aluminum. Crack initiation and weld failure of transverse tensile specimens of single and multipass weldments were studied. The specimens fractured on the rising portion of the stress-strain curve prior to necking, signifying that an increase in strength would accompany an increase in ductility. Of particular interest is a shallow, typically 0.001-0.003-in. (0.03-0.08-mm) deep, copper-rich region located in the crown and root corners of the weld. This region is a primary source of crack initiation and growth, due to its brittle nature and highly strained location. The brittle regions were removed by electropolishing and machining to determine their effect on weld tensile properties. The removal increased the ductility of the weld specimens, and in the case of single pass welds, actually increased the load carrying capacity. Local strain measurements and metallographic and chemical analyses are presented.

  4. Tensile Properties of the Murine Ventral Vertical Midline Incision

    PubMed Central

    Carlson, Mark A.; Chakkalakal, Dennis

    2011-01-01

    Background In clinical surgery, the vertical midline abdominal incision is popular but associated with healing failures. A murine model of the ventral vertical midline incision was developed in order to study the healing of this incision type. Methodology/Principal Findings The strength of the wild type murine ventral abdominal wall in the midline was contained within the dermis; the linea alba made a negligible contribution. Unwounded abdominal wall had a downward trend (nonsignificant) in maximal tension between 12 and 29 weeks of age. The incision attained 50% of its final strength by postoperative day 40. The maximal tension of the ventral vertical midline incision was nearly that of unwounded abdominal wall by postwounding day 60; there was no difference in unwounded vs. wounded maximal tension at postwounding day 120. Conclusions/Significance After 120 days of healing, the ventral vertical midline incision in the wild type mouse was not significantly different from age-matched nonwounded controls. About half of the final incisional strength was attained after 6 weeks of healing. The significance of this work was to establish the kinetics of wild type incisional healing in a model for which numerous genotypes and genetic tools would be available for subsequent study. PMID:21915298

  5. Tensile strength of orthodontic brackets bonded directly to fluorotic and nonfluorotic teeth: an in vitro comparative study.

    PubMed

    Ng'ang'a, P M; Ogaard, B; Cruz, R; Chindia, M L; Aasrum, E

    1992-09-01

    Information related to bonding of orthodontic brackets to fluorotic teeth is scanty. The purpose of this study was to compare, in vitro, the tensile bond strength and the bond failure site of brackets bonded directly to fluorotic and nonfluorotic teeth. The etching patterns were also evaluated. The study involved 26 teeth classified as score 3 and 4, and 26 as score 0 with the Thylstrup and Fejerskov's (TF) fluorosis index. In addition to the clinical classification, difference in the concentration of fluoride in the teeth was verified by acid etching. Brackets were bonded with a composite resin after etching the enamel surface with 40% phosphoric acid for 60 seconds. Tensile bond strength was determined with an Instron testing machine. The bond failure site was assessed by the percentage of residue cement on the tooth surface after debonding and the etching pattern by SEM. The mean concentration of fluoride was 2888.5 ppm (SD 1081.7) in the fluorotic teeth and 1227.1 ppm (SD 526.3) in the nonfluorotic teeth. The mean bond strength was 7.8 N/mm2 (SD 1.47) for the fluorotic teeth and 8.6 N/mm2 (SD 2.19) for the nonfluorotic teeth. The difference between the means for bond strength was not statistically significant (p greater than 0.05). Bond failure site was primarily at the bracket-adhesive interface. The mean percentage of adhesive on the enamel surface after debonding was 70% (SD 25.90) for the fluorotic teeth and 75% (SD 24.66) for nonfluorotic teeth. The difference in the means was not statistically significant (p greater than 0.05).(ABSTRACT TRUNCATED AT 250 WORDS)

  6. Influence of core-finishing intervals on tensile strength of cast posts-and-cores luted with zinc phosphate cement.

    PubMed

    Iglesias, Michele Andrea Lopes; Mesquita, Gabriela Campos; Pereira, Analice Giovani; Dantas, Lucas Costa de Medeiros; Raposo, Luís Henrique Araújo; Soares, Carlos José; Mota, Adérito Soares da

    2012-01-01

    The core finishing of cast posts-and-cores after luting is routine in dental practice. However, the effects of the vibrations produced by the rotary cutting instruments over the luting cements are not well-documented. This study evaluated the influence of the time intervals that elapsed between the cementation and the core-finishing procedures on the tensile strength of cast posts-and-cores luted with zinc phosphate cement. Forty-eight bovine incisor roots were selected, endodontically treated, and divided into four groups (n = 12): GA, control (without finishing); GB, GC, and GD, subjected to finishing at 20 minutes, 60 minutes, and 24 hours after cementation, respectively. Root canals were molded, and the resin patterns were cast in copper-aluminum alloy. Cast posts-and-cores were luted with zinc phosphate cement, and the core-finishing procedures were applied according to the groups. The tensile tests were performed at a crosshead speed of 0.5 mm/min for all groups, 24 hours after the core-finishing procedures. The data were subjected to one-way analysis of variance (ANOVA) and Tukey's test (α = 0.05). No significant differences were observed in the tensile strengths between the control and experimental groups, regardless of the time interval that elapsed between the luting and finishing steps. Within the limitations of the present study, it was demonstrated that the core-finishing procedures and time intervals that elapsed after luting did not appear to affect the retention of cast posts-and-cores when zinc phosphate cement was used. PMID:22790502

  7. Effect of a caries-detecting solution on the tensile bond strength of four dentin adhesive systems.

    PubMed

    Yokota, Haruka; Kubo, Shisei; Yokota, Hiroaki; Ohsawa, Masahiro; Hayashi, Yoshihiko

    2006-03-01

    This study investigated the effect of a caries-detecting solution on the tensile bond strength (TBS) to sound bovine dentin--which was either rinsed thoroughly of or contaminated with the caries-detecting solution. Caries Detector (1.0% acid red in propylene glycol) was applied on flat dentin surfaces for 10 seconds, rinsed, and dried with syringe air. In another group, Caries Detector was not rinsed but air-dried. Then, the surfaces were treated with one of the following adhesive systems: Clearfil Protect Bond, Clearfil SE Bond, One-Up Bond F, or Single Bond. Furthermore, an ingredient of Caries Detector, either 1.0% acid red aqueous solution or propylene glycol, was applied to evaluate the effect of each component. In the control groups, Caries Detector was not applied to the dentin surfaces. Finally, a resin composite was light-cured and the TBS measured. Fractured specimens and treated dentin surfaces were observed by SEM. Caries Detector did not reduce the tensile bond strength of any adhesive system (p>0.05) when rinsed thoroughly. On the other hand, when dentin surface was contaminated with Caries Detector, TBS decreased significantly with Clearfil SE Bond and Single Bond. As for the ingredients of Caries Detector, the effect of acid red on TBS was not significant, but that of propylene glycol was significant.

  8. Effects of dentin surface treatments on the fracture toughness and tensile bond strength of a dentin-composite adhesive interface.

    PubMed

    Tam, L E; Pilliar, R M

    1994-09-01

    It has been proposed that the fracture toughness test provides an appropriate method for assessing the fracture resistance of the dentin-composite interface. The plane-strain fracture toughness test was therefore applied to a dentin-composite interface, with use of a specific dentinal adhesive, so that the effects of various dentin surface treatments on dentin-bond integrity could be studied. Interfacial fracture toughness (KIC) values were determined following 24h and 180 days of specimen aging in distilled water at 37 degrees C. Tensile bond strength (TBS) results following 24-hour aging were also obtained for comparison with the 24-hour KIC results. In general, the fracture resistance of the dentin-composite interface was highest when the dentin surface was conditioned with acid but not air-dried, intermediate when the dentin surface was conditioned with acid and subsequently air-dried, and lowest when the dentin was not conditioned with acid. The tensile bond strength results differed from the fracture toughness results in indicating differences in surface preparation effects and the type of interfacial failure observed.

  9. Effect of loading rate on tensile properties and failure behavior of glass fibre/epoxy composite

    NASA Astrophysics Data System (ADS)

    Mahato, K. K.; Biswal, M.; Rathore, D. K.; Prusty, R. K.; Dutta, K.; Ray, B. C.

    2016-02-01

    Fibre reinforced polymeric (FRP) composite materials are subjected to different range of loading rates during their service life. Present investigation is focused on to study the effects of variation of loading rates on mechanical behavior and various dominating failure modes of these potential materials when subjected to tensile loading. The results revealed that on the variation of loading rates the ultimate tensile strength varies but the tensile modulus is mostly unaffected. Furthermore, the strain to failure is also increasing with increase in loading rates. Different failure patterns of glass/epoxy composite tested at 1, 10,100, 500 and 1000 mm/min loading rates are identified. Scanning electron micrographs shows various dominating failures modes in the glass/epoxy composite.

  10. Tensile Properties of Arabidopsis Cell Walls Depend on Both a Xyloglucan Cross-Linked Microfibrillar Network and Rhamnogalacturonan II-Borate Complexes1

    PubMed Central

    Ryden, Peter; Sugimoto-Shirasu, Keiko; Smith, Andrew Charles; Findlay, Kim; Reiter, Wolf-Dieter; McCann, Maureen Caroline

    2003-01-01

    The mechanical properties of plant organs depend upon anatomical structure, cell-cell adhesion, cell turgidity, and the mechanical properties of their cell walls. By testing the mechanical responses of Arabidopsis mutants, it is possible to deduce the contribution that polymers of the cell wall make to organ strength. We developed a method to measure the tensile parameters of the expanded regions of turgid or plasmolyzed dark-grown Arabidopsis hypocotyls and applied it to the fucose biosynthesis mutant mur1, the xyloglucan glycosyltransferase mutants mur2 and mur3, and the katanin mutant bot1. Hypocotyls from plants grown in the presence of increasing concentrations of dichlorobenzonitrile, an inhibitor of cellulose synthesis, were considerably weakened, indicating the validity of our approach. In order of decreasing strength, the hypocotyls of mur2 > bot1 and mur1 > mur3 were each found to have reduced strength and a proportionate reduction in modulus compared with wild type. The tensile properties of the hypocotyls and of the inflorescence stems of mur1 were rescued by growth in the presence of high concentrations of borate, which is known to cross-link the pectic component rhamnogalacturonan II. From comparison of the mechanical responses of mur2 and mur3, we deduce that galactose-containing side chains of xyloglucan make a major contribution to overall wall strength, whereas xyloglucan fucosylation plays a comparatively minor role. We conclude that borate-complexed rhamnogalacturonan II and galactosylated xyloglucan contribute to the tensile strength of cell walls. PMID:12805631

  11. Microstructure and tensile properties of Fe-40 at. pct Al alloys with C, Zr, Hf, and B additions

    NASA Technical Reports Server (NTRS)

    Gaydosh, D. J.; Draper, S. L.; Nathal, M. V.

    1989-01-01

    The influence of small additions of C, Zr, and Hf, alone or in combination with B, on the microstructure and tensile behavior of substoichiometric FeAl was investigated. Tensile properties were determined from 300 to 1100 K on powder which was consolidated by hot extrusion. All materials possessed some ductility at room temperature, although ternary additions generally reduced ductility compared to the binary alloy. Adding B to the C- and Zr-containing alloys changed the fracture mode from intergranular to transgranular and restored the ductility to approximately 5 percent elongation. Additions of Zr and Hf increased strength up to about 900 K. Fe6Al6Zr and Fe6Al6Hf precipitates, both with identical body-centered tetragonal structures, were identified as the principal second phase in these alloys. Strength decreased steadily as temperature increased above 700 K, as diffusion-assisted mechanisms became operative. Although all alloys had similar strengths at 1100 K, Hf additions significantly improved high-temperature ductility by suppressing cavitation.

  12. Effect of varying chromophores used in light-activated protein solders on tensile strength and thermal damage profile of repairs.

    PubMed

    Hoffman, Grant T; Byrd, Brian D; Soller, Eric C; Heintzelman, Douglas L; McNally-Heintzelman, Karen M

    2003-01-01

    Clinical adoption of laser tissue welding (LTW) techniques has been beleaguered by problems associated with thermal damage of tissue and insufficient strength of the resulting tissue bond. The magnitude of these problems has been significantly reduced with the incorporation of indocyanine green (ICG)-doped protein solders into the LTW procedure to form a new technique known as laser tissue soldering (LTS). With the addition of ICG, a secondary concern has arisen relating to the potential harmful effects of the degradation products of the chromophore upon thermal denaturation of the protein solder with a laser. In this study, two different food colorings were investigated, including blue #1 and green consisting of yellow #5 and blue #1, as alternative chromophores for use in LTS techniques. Food coloring has been found to have a suitable stability and safety profile for enteral use when heated to temperatures above 200 degrees C; thus, it is a promising candidate chromophore for LTS which typically requires temperatures between 50 degrees C and 100 degrees C. Experimental investigations were conducted to test the tensile strength of ex vivo repairs formed using solders doped with these alternative chromophores in a bovine model. Two commonly used chromophores, ICG and methylene blue (MB), were investigated as a reference. In addition, the temperature rise, depth of thermal coagulation in the protein solder, and the extent of thermal damage in the surrounding tissue were measured. Temperature rise at the solder/tissue interface, and consequently the degree of solder coagulation and collateral tissue thermal damage, was directly related to the penetration depth of laser light in the protein solder. Variation of the chromophore concentration such that the laser light penetrated to a depth approximately equal to half the thickness of the solder resulted in uniform results between each group of chromophores investigated. Optimal tensile strength of repairs was achieved

  13. Tensile properties of V-(4-5)Cr-(4-5)Ti alloys

    SciTech Connect

    Chung, H.M.; Nowicki, L.; Busch, D.; Smith, D.L.

    1996-04-01

    The current focus of the U.S program of research on V-base alloys is on V-(4-5)Cr(4-5)Ti that contains 500-1000 wppm Si. in this paper, we present experimental results on baseline tensile properties of two laboratory-scale heats of this alloy and of a 500-kg production heat of V-4Cr-4Ti (heat 832665) that were measured at 23-700 C. Both the production- and laboratory scale heats of the reference alloy V-4Cr-4Ti exhibited excellent tensile properties at temperatures up to {approx}650{degrees}C.

  14. Tensile properties of glass/natural jute fibre-reinforced polymer bars for concrete reinforcement

    NASA Astrophysics Data System (ADS)

    Han, J. W.; Lee, S. K.; Kim, K. W.; Park, C. G.

    2015-12-01

    The tensile performance of glass/natural jute fibre-reinforced polymer (FRP) bar, intended for concrete reinforcement was evaluated as a function of volume fraction of natural jute fibre. Natural jute fibre, mixed at a ratio of 7:3 with vinyl ester, was surface-treated with a silane coupling agent and used to replaced glass fibre in the composite in volume fractions of 0%, 30%, 50%, 70%, and 100%. The tensile load-displacement curve showed nearly linear elastic behaviour up to 50% natural jute fibre, but was partially nonlinear at a proportion of 70%. However, the glass/natural jute FRP bars prepared using 100% natural jute fibre showed linear elastic behaviour. Tensile strength decreased as the natural jute fibre volume fraction increased because the tensile strength of natural jute fibre is much lower than that of glass fibre (about 1:8.65). The degree of reduction was not proportional to the natural jute fibre volume fraction due to the low density of natural jute fibre (1/2 that of glass fibre). Thus, as the mix proportion of natural jute fibre increased, the amount (wt%) and number of fibres used also increased.

  15. Tensile and charpy impact properties of irradiated reduced-activation ferritic steels

    SciTech Connect

    Klueh, R.L.; Alexander, D.J.

    1996-10-01

    Tensile tests were conducted on eight reduced-activation Cr-W steels after irradiation to 15-17 and 26-29 dpa, and Charpy impact tests were conducted on the steels irradiated to 26-29 dpa. Irradiation was in the Fast Flux Test Facility at 365{degrees}C on steels containing 2.25-12% Cr, varying amounts of W, V, and Ta, and 0.1%C. Previously, tensile specimens were irradiated to 6-8 dpa and Charpy specimens to 6-8, 15-17, and 20-24 dpa. Tensile and Charpy specimens were also thermally aged to 20000 h at 365{degrees}C. Thermal aging had little effect on the tensile behavior or the ductile-brittle transition temperature (DBTT), but several steels showed a slight increase in the upper-shelf energy (USE). After {approx}7 dpa, the strength of the steels increased and then remained relatively unchanged through 26-29 dpa (i.e., the strength saturated with fluence). Post-irradiation Charpy impact tests after 26-29 dpa showed that the loss of impact toughness, as measured by an increase in DBTT and a decrease in the USE, remained relatively unchanged from the values after 20-24 dpa, which had been relatively unchanged from the earlier irradiations. As before, the two 9Cr steels were the most irradiation resistant.

  16. Müller glia provide essential tensile strength to the developing retina

    PubMed Central

    MacDonald, Ryan B.; Randlett, Owen; Oswald, Julia; Yoshimatsu, Takeshi

    2015-01-01

    To investigate the cellular basis of tissue integrity in a vertebrate central nervous system (CNS) tissue, we eliminated Müller glial cells (MG) from the zebrafish retina. For well over a century, glial cells have been ascribed a mechanical role in the support of neural tissues, yet this idea has not been specifically tested in vivo. We report here that retinas devoid of MG rip apart, a defect known as retinoschisis. Using atomic force microscopy, we show that retinas without MG have decreased resistance to tensile stress and are softer than controls. Laser ablation of MG processes showed that these cells are under tension in the tissue. Thus, we propose that MG act like springs that hold the neural retina together, finally confirming an active mechanical role of glial cells in the CNS. PMID:26416961

  17. Unified compaction curve model for tensile strength of tablets made by roller compaction and direct compression.

    PubMed

    Farber, Leon; Hapgood, Karen P; Michaels, James N; Fu, Xi-Young; Meyer, Robert; Johnson, Mary-Ann; Li, Feng

    2008-01-01

    A model that describes the relationship between roller-compaction conditions and tablet strength is proposed. The model assumes that compaction is cumulative during roller compaction and subsequent granule compaction, and compact strength (ribbon and tablet) is generated irreversibly as if strength is controlled by plastic deformation of primary particles only. Roller-compaction is treated as a compaction step where the macroscopic ribbon strength is subsequently destroyed in milling. This loss in strength is irreversible and tablets compressed from the resulting granulation are weaker than those compressed by direct compression at the same compression force. Roller-compacted ribbons were produced at a range of roll forces for three formulations and subsequently milled and compacted into tablets. Once the total compaction history is taken in account, the compaction behavior of the uncompacted blends and the roller-compacted granules ultimately follow a single master compaction curve--a unified compaction curve (UCC). The model successfully described the compaction behavior of DC grade starch and formulations of lactose monohydrate with 50% or more microcrystalline cellulose, and may be more generally applicable to systems containing significant proportions of any plastically deforming material, including MCC and starch. PMID:17689211

  18. Surface, interphase and tensile properties of unsized, sized and heat treated basalt fibres

    NASA Astrophysics Data System (ADS)

    Förster, T.; Sommer, G. S.; Mäder, E.; Scheffler, C.

    2016-07-01

    Recycling of fibre reinforced polymers is in the focus of several investigations. Chemical and thermal treatments of composites are the common ways to separate the reinforcing fibres from the polymer matrices. However, most sizings on glass and basalt fibre are not designed to resist high temperatures. Hence, a heat treatment might also lead to a sizing removal, a decrease of mechanical performance and deterioration in fibre-matrix adhesion. Different basalt fibres were investigated using surface analysis methods as well as single fibre tensile tests and single fibre pull-out tests in order to reveal the possible causes of these issues. Heat treatment in air reduced the fibre tensile strength in the same level like heat treatment in nitrogen atmosphere, but it influenced the wetting capability. Re-sizing by a coupling agent slightly increased the adhesion strength and reflected a decreased post-debonding friction.

  19. Tensile and characterization properties of regenerated cellulose empty fruit bunch biocomposite films using ionic liquid

    NASA Astrophysics Data System (ADS)

    Husseinsyah, Salmah; Zailuddin, Nur Liyana Izyan; Li, Chew Li; Mostapha @ Zakaria, Marliza

    2016-07-01

    The regenerated cellulose (RC) empty fruit bunch (EFB) biocomposite films were prepared using ionic liquid. The tensile strength and modulus of elasticity of regenerated cellulose biocomposite films achieved maximum value at 2 wt% of EFB contents while at 3 and 4 wt% of EFB the tensile strength and modulus of elasticity tend to decreased. The elongation at break tends to decreased at 2 wt% of EFB content but increased at 3 and 4 wt% of EFB contents. The crystallinity index reaches maximum at 2 wt% EFB content, followed by declination with further addition of EFB content. The morphology study illustrated that regenerated cellulose biocomposite films at 2 wt% of EFB contents exhibit a smooth surface that suggested the reinforcement was surrounded by the regenerated cellulose matrix, while at 4 wt% EFB content shows a rough morphology.

  20. Microstructures and Tensile Mechanical Properties of Titanium Rods Made by Powder Compact Extrusion of a Titanium Hydride Powder

    NASA Astrophysics Data System (ADS)

    Zheng, Yifeng; Yao, Xun; Liang, Jiamiao; Zhang, Deliang

    2016-04-01

    Nearly fully dense titanium with good mechanical properties was fabricated rapidly by induction heating, holding, and hot extrusion of the TiH2 powder compacts. The dehydrogenation and consolidation processes took less than 15 minutes in total. The microstructures, contents of interstitial elements (H, O), tensile mechanical properties, and fracture behaviors of titanium samples made with different holding and extrusion temperatures [1273 K, 1373 K, and 1473 K (1000 °C, 1100 °C, and 1200 °C)] were investigated. The results showed that the hydrogen content in the extruded rods was around 0.09 wt pct when the holding and extrusion temperature was 1373 K or 1473 K (1100 °C or 1200 °C), with almost all of the TiH2 phase being transformed into Ti phase during the heating, holding, and extrusion process steps. The extruded Ti samples had a lamellar structure consisting of fine α lamellae with random orientations in different lamellar colonies and the relative density of all the extruded samples exceeded 99.5 pct. The residual TiH2 phase can reduce the ductility of extruded rods. The sample extruded at 1373 K (1100 °C) has the best elongation to fracture of 21.0 pct, and its average yield strength and ultimate tensile strength reached 536.8 and 691.8 MPa, respectively.

  1. Tensile bond strength of resin-bonded non-precious alloys with chemically and mechanically roughened surfaces.

    PubMed

    Isidor, F; Hassna, N M; Josephsen, K; Kaaber, S

    1991-10-01

    The present study was carried out for investigation of the tensile bond strength of resin-bonded non-precious alloys after their surfaces were roughened by sand-blasting, chemical etching, or sugar crystal impressions. Fifty test specimens were cast in a Ni-Cr (Wiron 88) alloy and 50 in a Co-Cr (Wirobond) alloy. Twenty specimens of each alloy were surface-treated according to the sugar crystal impression method. The remaining specimens were first sand-blasted, and 20 specimens of each alloy were thereafter allocated for chemical etching and divided into subgroups with different etching conditions. The samples were chemically etched in strong inorganic acid solutions. After being etched, the specimens were bonded together in pairs by a chemically-curing resin cement (Panavia EX) with a force of 2 kg/cm2. After cementation, the specimens were stored under humid conditions at 37 degrees C for three wk. Prior to being tested, the specimens were subjected to 1000 thermal cyclings at temperatures between 10 degrees C and 55 degrees C. The tensile bond strength tests showed that Ni-Cr specimens sand-blasted and thereafter etched with a 50% conc. of HNO3 and a 50% conc. of HCl for two min and Co-Cr specimens sand-blasted and etched (conc. HCl for 15 min or three h) or sand-blasted alone resulted in similar high bonding values ranging between 33.3 and 37.2 MPa. Surface roughening with use of the sugar crystal impression method resulted in statistically significant lower bond strength values for both alloys (Ni-Cr, 17.9 MPa; Co-Cr, 10.2 MPa).

  2. Tensile bond strength of indirect composites luted with three new self-adhesive resin cements to dentin

    PubMed Central

    TÜRKMEN, Cafer; DURKAN, Meral; CİMİLLİ, Hale; ÖKSÜZ, Mustafa

    2011-01-01

    Objective The aims of this study were to evaluate the tensile bond strengths between indirect composites and dentin of 3 recently developed self-adhesive resin cements and to determine mode of failure by SEM. Material and Methods Exposed dentin surfaces of 70 mandibular third molars were used. Teeth were randomly divided into 7 groups: Group 1 (control group): direct composite resin restoration (Alert) with etch-and-rinse adhesive system (Bond 1 primer/adhesive), Group 2: indirect composite restoration (Estenia) luted with a resin cement (Cement-It) combined with the same etch-and-rinse adhesive, Group 3: direct composite resin restoration with self-etch adhesive system (Nano-Bond), Group 4: indirect composite restoration luted with the resin cement combined with the same self-etch adhesive, Groups 5-7: indirect composite restoration luted with self-adhesive resin cements (RelyX Unicem, Maxcem, and Embrace WetBond, respectively) onto the non-pretreated dentin surfaces. Tensile bond strengths of groups were tested with a universal testing machine at a constant speed of 1 mm/min using a 50 kgf load cell. Results were statistically analyzed by the Student's t-test. The failure modes of all groups were also evaluated. Results The indirect composite restorations luted with the self-adhesive resin cements (groups 5-7) showed better results compared to the other groups (p<0.05). Group 4 showed the weakest bond strength (p>0.05). The surfaces of all debonded specimens showed evidence of both adhesive and cohesive failure. Conclusion The new universal self-adhesive resins may be considered an alternative for luting indirect composite restorations onto non-pretreated dentin surfaces. PMID:21710095

  3. Relevance of impacter shape to nonvisible damage and residual tensile strength of a thick graphite/epoxy laminate

    NASA Technical Reports Server (NTRS)

    Poe, C. C., Jr.

    1990-01-01

    A study was made to determine the relevance of impacter shape to nonvisible damage and tensile residual strength of a 36 mm (1.4 in.) thick graphite/epoxy motor case. The shapes of the impacters were as follows: 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, a sharp corner, and a 6.3 mm (0.25 in.) diameter bolt-like rod. The investigation revealed that damage initiated when the contact pressure exceeded a critical level. However, the damage was not visible on the surface until an even higher pressure was exceeded. The damage on the surface consisted of a crater shaped like the impacter, and the damage below the surface consisted of broken fibers. The impact energy to initiate damage or cause visible damage on the surface increased approximately with impacter diameter to the third power. The reduction in strength for nonvisible damage increased with increasing diameter, 9 and 30 percent for the 12.7 mm (0.5 in.) and 25.4 mm (1.0 in.) diameter hemispheres, respectively. The corner impacter made visible damage on the surface for even the smallest impact energy. The rod impacter acted like a punch and sliced through the composite. Even so, the critical level of pressure to initiate damage was the same for the rod and hemispherical impacters. Factors of safety for nonvisible damage increased with increasing kinetic energy of impact. The effects of impacter shape on impact force, damage size, damage visibility, and residual tensile strength were predicted quite well assuming Hertzian contact and using maximum stress criteria and a surface crack analysis.

  4. Root tensile strength assessment of Dryas octopetala L. and implications for its engineering mechanism on lateral moraine slopes (Turtmann Valley, Switzerland)

    NASA Astrophysics Data System (ADS)

    Eibisch, Katharina; Eichel, Jana; Dikau, Richard

    2015-04-01

    Geomorphic processes and properties are influenced by vegetation. It has been shown that vegetation cover intercepts precipitation, enhances surface detention and storage, traps sediment and provides additional surface roughness. Plant roots impact the soil in a mechanical and hydrological manner and affect shear strength, infiltration capacity and moisture content. Simultaneously, geomorphic processes disturb the vegetation development. This strong coupling of the geomorphic and ecologic system is investigated in Biogeomorphology. Lateral moraine slopes are characterized by a variety of geomorphic processes, e. g. sheet wash, solifluction and linear erosion. However, some plant species, termed engineer species, possess specific functional traits which allow them to grow under these conditions and also enable them to influence the frequency, magnitude and even nature of geomorphic processes. For lateral moraine slopes, Dryas octopetala L., an alpine dwarf shrub, was identified as a potential engineer species. The engineering mechanism of D. octopetala, based on its morphological (e.g., growth form) and biomechanical (e.g., root strength) traits, yet remains unclear and only little research has been conducted on alpine plant species. The objectives of this study are to fill this gap by (A) quantifying D. octopetala root tensile strength as an important trait considering anchorage in and stabilization of the slope and (B) linking plant traits to the geomorphic process they influence on lateral moraine slopes. D. octopetala traits were studied on a lateral moraine slope in Turtmann glacier forefield, Switzerland. (A) Root strength of single root threads of Dryas octopetala L. were tested using the spring scale method (Schmidt et al., 2001; Hales et al., 2013). Measurement equipment was modified to enable field measurements of roots shortly after excavation. Tensile strength of individual root threads was calculated and statistically analyzed. First results show that

  5. The Tensile Properties of Advanced Nickel-Base Disk Superalloys During Quenching Heat Treatments

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Gayda, John; Kantzos, Pete T.; Biles, Tiffany; Konkel, William

    2001-01-01

    There is a need to increase the temperature capabilities of superalloy turbine disks. This would allow full utilization of higher temperature combustor and airfoil concepts under development. One approach to meet this goal is to modify the processing and chemistry of advanced alloys, while preserving the ability to use rapid cooling supersolvus heat treatments to achieve coarse grain, fine gamma prime microstructures. An important step in this effort is to understand the key high temperature tensile properties of advanced alloys as they exist during supersolvus heat treatments. This could help in projecting cracking tendencies of disks during quenches from supersolvus heat treatments. The objective of this study was to examine the tensile properties of two advanced disk superalloys during simulated quenching heat treatments. Specimens were cooled from the solution heat treatment temperatures at controlled rates, interrupted, and immediately tensile tested at various temperatures. The responses and failure modes were compared and related to the quench cracking tendencies of disk forgings.

  6. Tensile and impact properties of General Atomics 832864 heat of V-4Cr-4Ti alloy

    SciTech Connect

    Tsai, H.; Nowicki, L.J.; Gazda, J.; Billone, M.C.; Smith, D.L.; Johnson, W.R.; Trester, P.

    1998-09-01

    A 1300-kg heat of V-4Cr-4Ti alloy was procured by General Atomics (GA) for the DIII-D radiative divertor program. To determine the mechanical properties of this alloy, tensile and Charpy tests were conducted on specimens prepared from pieces of 4.8-mm-thick as-rolled plates, a major product form for the DIII-D application. The tensile tests were conducted at three temperatures, 26, 280 and 380 C, the last two being the anticipated peak temperatures during DIII-D boronization and postvent bake-out, respectively. Results from these tests show that the tensile and impact properties of the 832864 heat are comparable to those of the other smaller V-(4-5)Cr-(4-5)Ti alloy heats previously developed by the US Fusion Materials Program and that scale-up of vanadium alloy production can be successfully achieved as long as reasonable process control is implemented.

  7. The effect of postprocessing on tensile property and microstructure evolution of friction stir welding aluminum alloy joint

    SciTech Connect

    Hu, Z.L.; Wang, X.S.; Pang, Q.; Huang, F.; Qin, X.P.; Hua, L.

    2015-01-15

    Friction stir welding is an efficient manufacturing method for joining aluminum alloy and can dramatically reduce grain size conferring excellent plastic deformation properties. Consequently, friction stir welding is used to manufacture tailor welded blanks to optimize weight or performance in the final component. In the study, the microstructural evolution and mechanical properties of friction stir welding joint during plastic forming and subsequent heat treatment were investigated. The microstructural characteristics of the friction stir welding joints were studied by Electron Backscattered Diffraction and Transmission Electron Microscopy. The mechanical properties were evaluated by tensile and microhardness tests. It is found that the tensile and yield strengths of friction stir welding joints are significantly improved after severe plastic deformation due to the grain refinement. Following heat treatment, the strength of the friction stir welding joints significantly decrease due to the obvious abnormal grain growth. Careful attention must be given to the processing route of any friction stir welding joint intended for plastic forming, especially the annealing between forming passes. Severe plastic deforming of the friction stir welding joint leads to a high level of stored energy/dislocation density, which causes the abnormal grain growth during subsequent heat treatment, and consequently reduce the mechanical properties of the friction stir welding joint. - Highlights: • Great changes are observed in the microstructure of FSW joint after postprocessing. • Postprocessing shows great effect on the microstructure stability of FSW joint. • The weld shows more significant decrease in strength than the BM due to the AGG. • Attention must be given to the processing route of FSW joint for plastic forming.

  8. Mechanical shear and tensile properties of selected biomass stems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Lignocellulosic biomass, such as big bluestem, corn stalk, intermediate wheat grass and switchgrass stem are abundant and dominant species in the Midwest region of US. There is a need to understand the mechanical properties for these crops for better handling and processing of the biomass feedstocks...

  9. Influence of crystallization conditions on the tensile properties of radiation crosslinked, vitamin E stabilized UHMWPE.

    PubMed

    George, A; Ngo, H D; Bellare, A

    2014-12-01

    Radiation crosslinking for ultra-high molecular weight polyethylene results in improved wear resistance but a reduction in mechanical properties. Incorporation of vitamin E has been known to decrease the rate of oxidative degradation occurring through radiation crosslinking and prevents the need for post-irradiation melting with subsequent loss of crystallinity. In this study, we aimed to determine the effect of thermal treatments prior to crosslinking on the morphology and tensile properties of vitamin-E-containing polyethylene. Vitamin-E-blended polyethylene was melted and subsequently quenched in ice water in order to induce high rate crystallization. A second group was additionally annealed at 126°C following quenching and all samples were irradiated using electron beam radiation to a dose of 100kGy. The morphology of control, quenched and quench-annealed polyethylene was characterized using small angle x-ray scattering and differential scanning calorimetry. Tensile properties of these polyethylenes were measured before and after radiation crosslinking with equilibrium swelling experiments performed to assess the crosslink density of irradiated samples. This study shows how the tensile properties of polyethylene can be enhanced by varying thermal treatments prior to crosslinking; and thus how it may be possible to offset the reduction in tensile properties afforded by the crosslinking process.

  10. Effect of filler loading of nickel zinc ferrite on the tensile properties of PLA nanocomposites

    NASA Astrophysics Data System (ADS)

    Shahdan, Dalila; Ahmad, Sahrim Hj

    2013-05-01

    The mechanical strength of magnetic polymer nanocomposite (MPNC) of nickel zinc (NiZn) ferrite nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer is reported. The matrix was prepared from PLA and LNR in the ratio of 90:10. The MPNC were prepared at constant mixing temperature at 180°C, mixing time of 15 min. and mixing speed of 100 rpm. In order to achieve a good dispersion of NiZn ferrite in the matrix, firstly an ultrasonic treatment had been employed to mix the LNR and NiZn ferrite for 1 hour. The MPNC of PLA/LNR/NiZn ferrite then were prepared via Thermo Haake internal mixer using melt-blending method from different filler loading from 1-5 wt% NiZn ferrite. The result of tensile tests showed that as the filler loading increases the tensile strength also increases until an optimum value of filler loading was reached. The Young's modulus, tensile strength and elongation at break have also increased. The study proves that NiZn ferrite is excellent reinforcement filler in PLA matrix. Scanning electron micrograph (SEM) and energy dispersive X-ray spectroscopy (EDX) were meant to show the homogeneity dispersion of nanoparticles within the matrix and to confirm the elemental composition of NiZn ferrites-PLA/LNR nanocomposites respectively.

  11. Response of Slub Characteristics on Tensile Properties of Injected Slub Yarn

    NASA Astrophysics Data System (ADS)

    Ray, N. C.; Mukhopadhyay, A.; Midha, V. K.

    2016-04-01

    Injected slub yarn is one of the most promising among different types of slub yarns. Present study embodies the effect of some important parameters like base yarn twist level, number of base yarn, twist direction and injected fibre components on injected slub yarn performance in terms of tensile strength and breaking elongation. In case of single base slub yarn, final yarn tenacity and elongation increases with the reduction of base yarn twist level keeping final yarn twist multiplier constant. However, the effect of base yarn twist level is marginal in case of injected slub yarn made with double base yarn. Yarn tenacity and elongation significantly higher in case of double base injected yarns as compared to single base injected yarn. The aforementioned tensile parameters of single base injected slub yarns reduce with the reduction of yarn linear density. However, in case of double base injected slub yarns, highest tenacity and elongation value are achieved for 2/80s yarn having finest yarn liner density among 2/40s, 2/60s and 2/80s yarns. In case of single base injected slub yarn, tensile strength is slightly higher and elongation values are significantly higher when injection component fibres changed from 100 % cotton to 50/50 polyester/cotton blended fibres which is just opposite to that of double base injected slub yarn. Results also showed that the twist direction in the base and final yarn influence the strength and elongation of injected slub yarns.

  12. Evaluation of a sugar based edible adhesive utilizing a tensile strength tester

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A new method to evaluate adhesives has been developed and utilized to formulate a recently patented adhesive based on sugar and citric acid. Factors affecting adhesive performance were uncovered, such as reduced strength due to improper heating time, and an optimal curing temperature of 60oC was ac...

  13. Creep and tensile properties of several oxide-dispersion-strengthened nickel-base alloys at 1365 K

    NASA Technical Reports Server (NTRS)

    Wittenberger, J. D.

    1977-01-01

    The tensile properties at room temperature and at 1365 K and the tensile creep properties at low strain rates at 1365 K were measured for several oxide-dispersion-strengthened (ODS) alloys. The alloys examined included ODS Ni, ODS Ni-20Cr, and ODS Ni-16Cr-Al. Metallography of creep tested, large grain size ODS alloys indicated that creep of these alloys is an inhomogeneous process. All alloys appear to possess a threshold stress for creep. This threshold stress is believed to be associated with diffusional creep in the large grain size ODS alloys and normal dislocation motion in perfect single crystal (without transverse low angle boundaries) ODS alloys. Threshold stresses for large grain size ODS Ni-20Cr and Ni-16Cr-Al type alloys are dependent on the grain aspect ratio. Because of the deleterious effect of prior creep on room temperature mechanical properties of large grain size ODS alloys, it is speculated that the threshold stress may be the design limiting creep strength property.

  14. Effects of Finish Cooling Temperature on Tensile Properties After Thermal Aging of Strain-Based API X60 Linepipe Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Shin, Sang Yong; Lee, Sunghak; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul

    2015-09-01

    Two types of strain-based American Petroleum Institute (API) X60 linepipe steels were fabricated at two finish cooling temperatures, 673 K and 723 K (400 °C and 450 °C), and the effects of the finish cooling temperatures on the tensile properties after thermal aging were investigated. The strain-based API X60 linepipe steels consisted mainly of polygonal ferrite (PF) or quasi-polygonal ferrite and the volume fraction of acicular ferrite increased with the increasing finish cooling temperature. In contrast, the volume fractions of bainitic ferrite (BF) and secondary phases decreased. The tensile properties before and after thermal aging at 473 K and 523 K (200 °C and 250 °C) were measured. The yield strength, ultimate tensile strength, and yield ratio increased with the increasing thermal aging temperature. The strain hardening rate in the steel fabricated at the higher finish cooling temperature decreased rapidly after thermal aging, probably due to the Cottrell atmosphere, whereas the strain hardening rate in the steel fabricated at the lower finish cooling temperature changed slightly after thermal aging. The uniform elongation and total elongation decreased with increasing thermal aging temperature, probably due to the interactions between carbon atoms and dislocations. The uniform elongation decreased rapidly with the decreasing volume fractions of BF and martensite and secondary phases. The yield ratio increased with the increasing thermal aging temperature, whereas the strain hardening exponent decreased. The strain hardening exponent of PL steel decreased rapidly after thermal aging because of the large number of mobile dislocations between PF and BF or martensite or secondary phases.

  15. Micro-tensile bond strength of different adhesive systems on sound dentin and resin-based composite: An in-vitro study

    PubMed Central

    Mallick, Rashmirekha; Sarangi, Priyanka; Mohanty, Sandhyarani; Behera, Subasish; Nanda, Soumyaranjan; Satapathy, Sukanta Kumar

    2015-01-01

    Aim: To analyze the difference in the micro-tensile bond strength of specimens made with two different adhesive systems and compare them with two homogenous substrates. Materials and Methods: Sixty permanent mandibular molars were mounted in acrylic blocks and sectioned with exposed dentin surfaces. Samples were then divided into four groups. To Group-I Adper Single Bond 2 and to Group-II Adper Self-Etch plus bonding agents were applied. For Group-I and Group-II beams consisted of resin composite in the upper half and dentin in the lower half. In Group-III beams were made of only dentin. In Group-IV beams were made of only composite. Fifteen specimens of each group were taken for the micro-tensile bond strength test. Statistical Analysis: The results are analyzed using one-way analysis of variance and Critical Difference test. Results: The interface bonded with the two adhesive systems had lower micro-tensile bond strength than those of dentin and resin composite and the self-etching adhesive Adper Self-Etch plus had comparable bond strength with total-etch adhesive Adper Single Bond 2. Conclusion: The bond strength values for current adhesive systems cannot be compared to the micro-tensile bond strength of dentin and resin composite, and self-etching adhesives have comparable bond strength with total-etch adhesives. PMID:26430301

  16. Semi-analytical and Numerical Studies on the Flattened Brazilian Splitting Test Used for Measuring the Indirect Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Huang, Y. G.; Wang, L. G.; Lu, Y. L.; Chen, J. R.; Zhang, J. H.

    2015-09-01

    Based on the two-dimensional elasticity theory, this study established a mechanical model under chordally opposing distributed compressive loads, in order to perfect the theoretical foundation of the flattened Brazilian splitting test used for measuring the indirect tensile strength of rocks. The stress superposition method was used to obtain the approximate analytic solutions of stress components inside the flattened Brazilian disk. These analytic solutions were then verified through a comparison with the numerical results of the finite element method (FEM). Based on the theoretical derivation, this research carried out a contrastive study on the effect of the flattened loading angles on the stress value and stress concentration degree inside the disk. The results showed that the stress concentration degree near the loading point and the ratio of compressive/tensile stress inside the disk dramatically decreased as the flattened loading angle increased, avoiding the crushing failure near-loading point of Brazilian disk specimens. However, only the tensile stress value and the tensile region were slightly reduced with the increase of the flattened loading angle. Furthermore, this study found that the optimal flattened loading angle was 20°-30°; flattened load angles that were too large or too small made it difficult to guarantee the central tensile splitting failure principle of the Brazilian splitting test. According to the Griffith strength failure criterion, the calculative formula of the indirect tensile strength of rocks was derived theoretically. This study obtained a theoretical indirect tensile strength that closely coincided with existing and experimental results. Finally, this paper simulated the fracture evolution process of rocks under different loading angles through the use of the finite element numerical software ANSYS. The modeling results showed that the Flattened Brazilian Splitting Test using the optimal loading angle could guarantee the tensile

  17. A method to evaluate the tensile strength and stress-strain relationship of carbon nanofibers, carbon nanotubes, and C-chains.

    PubMed

    Márquez-Lucero, Alfredo; Gomez, Jorge A; Caudillo, Román; Miki-Yoshida, Mario; José-Yacaman, Miguel

    2005-06-01

    A method is introduced to assess the tensile strength of carbon nanofibers, carbon nanotubes (CNTs), and linear chains of carbon atoms (C-chains) obtained from thin amorphous carbon films by electron irradiation. Transmission electron microscopy images show that the nanofibers undergo a radiation-induced necking process, characterized by CNT formation and often followed by the formation of a C-chain. Simulations of the necking process are carried out to determine the tensile stress supported by the nanofiber and CNT neck.

  18. An Investigation of the Tensile Strength of a Composite-To-Metal Adhesive Joint

    NASA Astrophysics Data System (ADS)

    Tsouvalis, Nicholas G.; Karatzas, Vassilios A.

    2011-04-01

    The present study examines the feasibility of a simple concept composite-to-metal butt joint through the performance of both numerical and experimental studies. The composite part is made of glass/epoxy unidirectional layers made with the vacuum bag method. The geometry of the joint is typical for marine applications and corresponds to a low stiffness ratio. Two major parameters are investigated, namely the overlap length and the surface preparation of the steel adherent. Manufacturing of specimens and the procedure of the tensile tests are described in detail, giving hints for obtaining a better quality joint. Axial elongation and strains at various places of the joint were monitored and also numerically calculated. The tests revealed that the joint is quite effective, irrespectively of the steel surface preparation method. The failure loads are comparable and in some cases superior to other corresponding values found in the literature. The numerical models proved to adequately predict the structural response of the joint up to the loading where debonding starts.

  19. Disruption patterns of rotating self-gravitating aggregates: A survey on angle of friction and tensile strength

    NASA Astrophysics Data System (ADS)

    Sánchez, Paul; Scheeres, Daniel J.

    2016-06-01

    This paper presents a study, through the use of a SSDEM simulation code, of the possible disruption patterns and mechanisms of self-gravitating aggregates that are spun-up to the point of disruption. We do this survey by systematically changing the angle of friction and tensile stress of the aggregates. It is observed that the amount of deformation that takes place before disruption, as well as its onset, is directly related to the angle of friction. On the other hand, the change in tensile strength allows us to clearly observe a continuous transition from losing surface material to larger scale fission at higher spin rates before disruption, but in no case do we observe surface flow. These results are also compared to other simulation results and the observations of asteroids P/2013 R3, P/2013 P5, 1950 DA, 1999 KW4 and Geographos. Additionally, we propose modifications to previously discussed mechanisms for the formation of binary asteroids and asteroid pairs.

  20. Effect of dynamically charged helium on tensile properties of V-4Cr-4Ti

    SciTech Connect

    Chung, H.M.; Loomis, B.A.; Nowicki, L.; Smith, D.L.

    1995-04-01

    The objective of this work is to determine the effect of displacement damage and dynamically charged helium on tensile properties of V-4Cr-4Ti alloy irradiated to 18-31 dpa at 425-600{degree}C in the Dynamic Helium Charging Experiment (DHCE).

  1. Effect of reactive adhesives on the tensile bond strength of polyvinyl siloxane impression materials to methyl methacrylate tray material.

    PubMed

    Ona, Masahiro; Takahashi, Hidekazu; Sato, Masayuki; Igarashi, Yoshimasa; Wakabayashi, Noriyuki

    2010-05-01

    The effect of new adhesives on the bond strength of elastomeric impression materials to acrylic trays was evaluated. Two polyvinyl siloxane impression materials (Fusion and Imprinsis) with reactive adhesives and one (Examix) with a conventional adhesive were tested. Flat, double-sided plates of auto-polymerizing methyl methacrylate (10 x 10 x 2.5 mm) were prepared with one of the adhesives. Five specimens were prepared by injecting each impression material into a 2-mm gap between the two plates. Tensile tests were conducted until separation failure occurred. The mean bond strengths of Fusion (1.0 MPa) and Imprinsis (0.8 MPa) were significantly greater than that of Examix (0.2 MPa). On the contrary, one of five Fusion showed adhesive failure mode while all the Imprinsis exhibited mixed failure. The conflicting results were presumably attributed to the mean tear strength of Fusion (0.8 N/mm) being higher than that of Imprinsis (0.5 N/mm).

  2. Micro-tensile bond strength of self-etching primer adhesive systems to human coronal carious dentin.

    PubMed

    Doi, J; Itota, T; Torii, Y; Nakabo, S; Yoshiyama, M

    2004-10-01

    The aim of this study was to evaluate the micro-tensile bond strengths of three self-etching primer adhesive systems to normal dentin (ND), caries-affected dentin (CAD) and caries-infected dentin (CID). Human extracted molars with caries were used, and flat dentin surfaces ground by 600-grit SiC paper were prepared. The surfaces were dyed using Caries-Detector solution, treated with Clearfil SE Bond, Mac-Bond II and UniFil Bond, and then covered with resin composites according to manufacturer's instructions. After immersion in 37 degrees C water for 24 h, the teeth were serially sectioned into multiple slices. Each slice was distinguished into ND, CAD and CID groups by the degree of staining, and the bond strength was measured in a universal testing machine. Scanning electron microscopic (SEM) observation was also performed. For statistical analysis, anova and Scheffe's test were used (P < 0.05). The bond strengths of the three adhesive systems to CAD and CID were significantly lower than those to ND. There was significant difference in the bond strength to ND between Clearfil SE Bond and UniFil Bond, but no significant differences to CAD and CID among the three adhesive systems. On SEM, the hybrid layers in CAD and CID showed more porous structures compared with ND. The results indicated that the bond strengths to CAD and CID were not affected by a variety of self-etching primer adhesive systems because of the porous hybrid layer formation in carious dentin.

  3. Effect of Load Rate on Ultimate Tensile Strength of Ceramic Matrix Composites at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Gyekenyesi, John P.

    2001-01-01

    The strengths of three continuous fiber-reinforced ceramic composites, including SiC/CAS-II, SiC/MAS-5 and SiC/SiC, were determined as a function of test rate in air at 1100 to 1200 C. All three composite materials exhibited a strong dependency of strength on test rate, similar to the behavior observed in many advanced monolithic ceramics at elevated temperatures. The application of the preloading technique as well as the prediction of life from one loading configuration (constant stress-rate) to another (constant stress loading) suggested that the overall macroscopic failure mechanism of the composites would be the one governed by a power-law type of damage evolution/accumulation, analogous to slow crack growth commonly observed in advanced monolithic ceramics. It was further found that constant stress-rate testing could be used as an alternative to life prediction test methodology even for composite materials, at least for short range of lifetimes and when ultimate strength is used as the failure criterion.

  4. Design methodology of the strength properties of medical knitted meshes

    NASA Astrophysics Data System (ADS)

    Mikołajczyk, Z.; Walkowska, A.

    2016-07-01

    One of the most important utility properties of medical knitted meshes intended for hernia and urological treatment is their bidirectional strength along the courses and wales. The value of this parameter, expected by the manufacturers and surgeons, is estimated at 100 N per 5 cm of the sample width. The most frequently, these meshes are produced on the basis of single- or double-guide stitches. They are made of polypropylene and polyester monofilament yarns with the diameter in the range from 0.6 to 1.2 mm, characterized by a high medical purity. The aim of the study was to develop the design methodology of meshes strength based on the geometrical construction of the stitch and strength of yarn. In the environment of the ProCAD warpknit 5 software the simulated stretching process of meshes together with an analysis of their geometry changes was carried out. Simulations were made for four selected representative stitches. Both on a built, unique measuring position and on the tensile testing machine the real parameters of the loops geometry of meshes were measured. Model of mechanical stretching of warp-knitted meshes along the courses and wales was developed. The thesis argument was made, that the force that breaks the loop of warp-knitted fabric is the lowest value of breaking forces of loop link yarns or yarns that create straight sections of loop. This thesis was associate with the theory of strength that uses the “the weakest link concept”. Experimental verification of model was carried out for the basic structure of the single-guide mesh. It has been shown that the real, relative strength of the mesh related to one course is equal to the strength of the yarn breakage in a loop, while the strength along the wales is close to breaking strength of a single yarn. In relation to the specific construction of the medical mesh, based on the knowledge of the density of the loops structure, the a-jour mesh geometry and the yarns strength, it is possible, with high

  5. Dynamic tensile material properties of human pelvic cortical bone.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects. PMID:19141951

  6. Tensile Properties and Microstructure of Inconel 718 Fabricated with Electron Beam Freeform Fabrication (EBF(sup 3))

    NASA Technical Reports Server (NTRS)

    Bird, R. Keith; Hibberd, Joshua

    2009-01-01

    Electron beam freeform fabrication (EBF3) direct metal deposition processing was used to fabricate two Inconel 718 single-bead-width wall builds and one multiple-bead-width block build. Specimens were machined to evaluate microstructure and room temperature tensile properties. The tensile strength and yield strength of the as-deposited material from the wall and block builds were greater than those for conventional Inconel 718 castings but were less than those for conventional cold-rolled sheet. Ductility levels for the EBF3 material were similar to those for conventionally-processed sheet and castings. An unexpected result was that the modulus of the EBF3-deposited Inconel 718 was significantly lower than that of the conventional material. This low modulus may be associated with a preferred crystallographic orientation resultant from the deposition and rapid solidification process. A heat treatment with a high solution treatment temperature resulted in a recrystallized microstructure and an increased modulus. However, the modulus was not increased to the level that is expected for Inconel 718.

  7. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    SciTech Connect

    Natesan, K.; Soppett, W.K.

    1998-03-01

    A systematic study has been initiated to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with the hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, four heats of alloys (BL-63, BL-71, and T87, plus 44 from General Atomics) are being evaluated. Other variables of interest are the effect of initial grain size on hydrogen uptake and tensile properties, and the synergistic effects of oxygen and hydrogen on the tensile behavior of the alloys. Experiments conducted thus far on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress of uniform/total elongation. Further, preliminary tests on specimens annealed at different temperatures showed that grain size variation by a factor of {approx}2 had a negligible effect on tensile properties.

  8. Microstructures and tensile properties of as-cast iron-aluminide alloys

    SciTech Connect

    Viswanathan, S.; McKamey, C.G.; Maziasz, P.J.; Sikka, V.K.

    1994-09-01

    Room-temperature tensile properties of as-cast Fe{sub 3}Al, Fe{sub 3}Al with chromium, and Fe{sub 3}Al-based FA-129 alloy have been investigated. Tensile properties have been obtained in air in the as-cast condition for all three alloys. Samples of FA-129 alloy have also been tested in oxygen and water vapor environments, and after homogenization at 700, 900, and 1200C. Transmission electron microscopy has been used to characterize ordered phases and optical metallography and scanning electron microscopy have been used to characterize the microstructure and fracture morphology. Tensile properties in the as-cast condition exhibited an environmental effect; tensile ductilities in an oxygen atmosphere were greater than those obtained in laboratory air. Homogenized samples of FA-129 alloy exhibited almost twice the ductility of the as-cast condition. Results indicate that the low ductility of as-cast Fe{sub 3}Al-based alloys may be related to the relatively large grain size in the as-cast condition and the presence of the DO{sub 3} ordered phase. Microstructural characterization of the homogenized samples and comparison of the as-cast and homogenized microstructures may provide a clue to the poor ductility in the as-cast condition.

  9. Tensile properties of vanadium alloys irradiated at 390{degrees}C in EBR-II

    SciTech Connect

    Chung, H.M.; Tsai, H.C.; Nowicki, L.J.

    1997-08-01

    Vanadium alloys were irradiated in Li-bonded stainless steel capsules to {approx}390{degrees}C in the EBR-II X-530 experiment. This report presents results of postirradiation tests of tensile properties of two large-scale (100 and 500 kg) heats of V-4Cr-Ti and laboratory (15-30 kg) heats of boron-doped V-4Cr-4Ti, V-8Cr-6Ti, V-5Ti, and V-3Ti-1Si alloys. Tensile specimens, divided into two groups, were irradiated in two different capsules under nominally similar conditions. The 500-kg heat (No. 832665) and the 100-kg heat (VX-8) of V-4Cr-4Ti irradiated in one of the subcapsules exhibited complete loss of work-hardening capability, which was manifested by very low uniform plastic strain. In contrast, the 100-kg heat of V-4Cr-4Ti irradiated in another subcapsule exhibited good tensile properties (uniform plastic strain 2.8-4.0%). A laboratory heat of V-3Ti-1Si irradiated in the latter subcapsule also exhibited good tensile properties. These results indicate that work-hardening capability at low irradiation temperatures varies significantly from heat to heat and is influenced by nominally small differences in irradiation conditions.

  10. Tensile Properties and Failure Mechanism of a New 3D Nonorthogonal Woven Composite Material

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Sun, Jin; Cai, Deng'an; Zhou, Guangming

    2016-05-01

    Tensile properties and failure mechanism of a newly developed three-dimensional (3D) woven composite material named 3D nonorthogonal woven composite are investigated in this paper. The microstructure of the composite is studied and the tensile properties are obtained by quasi-static tensile tests. The failure mechanism of specimen is discussed based on observation of the fracture surfaces via electron microscope. It is found that the specimens always split along the oblique yarns and produce typical v-shaped fracture surfaces. The representative volume cell (RVC) is established based on the microstructure. A finite element analysis is conducted with periodical boundary conditions. The finite element simulation results agree well with the experimental data. By analyzing deformation and stress distribution under different loading conditions, it is demonstrated that finite element model based on RVC is valid in predicting tensile properties of 3D nonorthogonal woven composites. Stress distribution shows that the oblique yarns and warp yarns oriented along the x direction carry primary load under x tension and that warp yarns bear primary load under y tension.

  11. Tensile properties of human knee joint cartilage: I. Influence of ionic conditions, weight bearing, and fibrillation on the tensile modulus.

    PubMed

    Akizuki, S; Mow, V C; Müller, F; Pita, J C; Howell, D S; Manicourt, D H

    1986-01-01

    The flow-independent (intrinsic) tensile modulus of the extracellular matrix of human knee joint cartilage has been measured for normal, fibrillated, and osteoarthritic (removed from total knee joint replacements) cartilage. The modulus was determined in our isometric tensile apparatus and measured at equilibrium. We found a linear equilibrium stress-strain behavior up to approximately 15% strain. The modulus was measured for tissues from the high and low weight-bearing areas of the joint surfaces, the medial femoral condyle and lateral patello femoral groove, and from different zones (surface, subsurface, middle, and middle-deep) within the tissue. For all specimens, the intrinsic tensile modulus was always less than 30 MPa. Tissues from low weight-bearing areas (LWA) are stiffer than those from high weight-bearing areas (HWA). The tensile modulus of the ECM correlates strongly with the collagen/proteoglycan ratio; it is higher for LWA than for HWA. Osteoarthritic cartilage from total knee replacement procedures has a tensile stiffness less than 2 MPa. PMID:3783297

  12. Report on thermal aging effects on tensile properties of ferritic-martensitic steels.

    SciTech Connect

    Li, M.; Soppet, W.K.; Rink, D.L.; Listwan, J.T.; Natesan, K.

    2012-05-10

    This report provides an update on the evaluation of thermal-aging induced degradation of tensile properties of advanced ferritic-martensitic steels. The report is the first deliverable (level 3) in FY11 (M3A11AN04030103), under the Work Package A-11AN040301, 'Advanced Alloy Testing' performed by Argonne National Laboratory, as part of Advanced Structural Materials Program for the Advanced Reactor Concepts. This work package supports the advanced structural materials development by providing tensile data on aged alloys and a mechanistic model, validated by experiments, with a predictive capability on long-term performance. The scope of work is to evaluate the effect of thermal aging on the tensile properties of advanced alloys such as ferritic-martensitic steels, mod.9Cr-1Mo, NF616, and advanced austenitic stainless steel, HT-UPS. The aging experiments have been conducted over a temperature of 550-750 C for various time periods to simulate the microstructural changes in the alloys as a function of time at temperature. In addition, a mechanistic model based on thermodynamics and kinetics has been used to address the changes in microstructure of the alloys as a function of time and temperature, which is developed in the companion work package at ANL. The focus of this project is advanced alloy testing and understanding the effects of long-term thermal aging on the tensile properties. Advanced materials examined in this project include ferritic-martensitic steels mod.9Cr-1Mo and NF616, and austenitic steel, HT-UPS. The report summarizes the tensile testing results of thermally-aged mod.9Cr-1Mo, NF616 H1 and NF616 H2 ferritic-martensitic steels. NF616 H1 and NF616 H2 experienced different thermal-mechanical treatments before thermal aging experiments. NF616 H1 was normalized and tempered, and NF616 H2 was normalized and tempered and cold-rolled. By examining these two heats, we evaluated the effects of thermal-mechanical treatments on material microstructures and

  13. An evaluation of the +/-45 deg tensile test for the determination of the in-plane shear strength of composite materials

    NASA Technical Reports Server (NTRS)

    Kellas, S.; Morton, J.; Jackson, K. E.

    1991-01-01

    The applicability of the +/-45 deg tensile test for the determination of the in-plane shear strength of advanced composite laminates is studied. The assumptions used for the development of the shear strength formulas were examined, and factors such as the specimen geometry and stacking sequence were assessed experimentally. It was found that the strength of symmetric and balanced +/-45 deg laminates depends primarily upon the specimen thickness rather than the specimen width. These findings have important implications for the +/-45 deg tensile test which is recommended by several organizations for the determination of the in-plane shear stress/strain response and the shear strength of continuous fiber reinforced composites. Modifications to the recommended practices for specimen selection and shear strength determination are suggested.

  14. Elastic properties, strength and damage tolerance of pultruded composites

    NASA Astrophysics Data System (ADS)

    Saha, Mrinal Chandra

    Pultruded composites are candidate materials for civil engineering infrastructural applications due their higher corrosion resistance and lower life cycle cost. Efficient use of materials like structural members requires thorough understanding of the mechanism that affects their response. The present investigation addresses the modeling and characterization of E-glass fiber/polyester resin matrix pultruded composites in the form of sheets of various thicknesses. The elastic constants were measured using static, vibration and ultrasonic methods. Two types of piezoelectric crystals were used in ultrasonic measurements. Finally, the feasibility of using a single specimen, in the form of a circular disk, was shown in measuring all the elastic constants using ultrasonic technique. The effects of stress gradient on tensile strength were investigated. A large number of specimens, parallel and transverse to the pultrusion direction, were tested in tension, 3-point flexure, and 4-point flexure. A 2-parameter Weibull model was applied to predict the tensile strength from the flexure tests. The measured and Weibull-predicted ratios did not show consistent agreement. Microstructural observations suggested that the flaw distribution in the material was not uniform, which appears to be a basic requirement for the Weibull distribution. Compressive properties were measured using a short-block compression test specimen of 44.4-mm long and 25.4-mm wide. Specimens were tested at 0°, 30°, 45°, 60° and 90° orientations. The compression test specimen was modeled using 4-noded isoparametric layered plate and shell elements. The predicted elastic properties for the roving layer and the continuous strand mat layer was used for the finite element study. The damage resistance and damage tolerance were investigated experimentally. Using a quasi-static indentation loading, damage was induced at various incrementally increased force levels to investigate the damage growth process. Damage

  15. Weibull statistical analysis of tensile strength of vascular bundle in inner layer of moso bamboo culm in molecular parasitology and vector biology.

    PubMed

    Le, Cui; Wanxi, Peng; Zhengjun, Sun; Lili, Shang; Guoning, Chen

    2014-07-01

    Bamboo is a radial gradient variation composite material against parasitology and vector biology, but the vascular bundles in inner layer are evenly distributed. The objective is to determine the regular size pattern and Weibull statistical analysis of the vascular bundle tensile strength in inner layer of Moso bamboo. The size and shape of vascular bundles in inner layer are similar, with an average area about 0.1550 mm2. A statistical evaluation of the tensile strength of vascular bundle was conducted by means of Weibull statistics, the results show that the Weibull modulus m is 6.1121 and the accurate reliability assessment of vascular bundle is determined.

  16. Metalloproteases meprin α and meprin β are C- and N-procollagen proteinases important for collagen assembly and tensile strength

    PubMed Central

    Broder, Claudia; Arnold, Philipp; Vadon-Le Goff, Sandrine; Konerding, Moritz A.; Bahr, Kerstin; Müller, Stefan; Overall, Christopher M.; Bond, Judith S.; Koudelka, Tomas; Tholey, Andreas; Hulmes, David J. S.; Moali, Catherine; Becker-Pauly, Christoph

    2013-01-01

    Type I fibrillar collagen is the most abundant protein in the human body, crucial for the formation and strength of bones, skin, and tendon. Proteolytic enzymes are essential for initiation of the assembly of collagen fibrils by cleaving off the propeptides. We report that Mep1a−/− and Mep1b−/− mice revealed lower amounts of mature collagen I compared with WT mice and exhibited significantly reduced collagen deposition in skin, along with markedly decreased tissue tensile strength. While exploring the mechanism of this phenotype, we found that cleavage of full-length human procollagen I heterotrimers by either meprin α or meprin β led to the generation of mature collagen molecules that spontaneously assembled into collagen fibrils. Thus, meprin α and meprin β are unique in their ability to process and release both C- and N-propeptides from type I procollagen in vitro and in vivo and contribute to the integrity of connective tissue in skin, with consequent implications for inherited connective tissue disorders. PMID:23940311

  17. An investigation of the reduction in tensile strength and fatigue life of pre-corroded 7075-T6 aluminum alloy

    NASA Astrophysics Data System (ADS)

    Obert, B.; Ngo, K.; Hashemi, J.; Ekwaro-Osire, S.; Sivam, T. P.

    2000-08-01

    In aging aircraft, the synergetic interaction between corrosion and fatigue has been shown to reduce the life expectancy of aluminum alloys. The objective of this study was to quantify the effects of corrosion, in terms of mass loss per unit area, on the static strength and fatigue life of 7075-T6 aluminum alloy. This was an experimental study in which test specimens were corroded in a laboratory environment. The corrosion process was accelerated by use of a corrosion cell. Test specimens were cut from flat sheets of aluminum and covered with masking material to restrict corrosion to a confined area. After testing, the fatigue life, ultimate tensile strength (UTS), and hardness of the specimens were observed to drop significantly with small amounts of corrosion. After the initial decrease, the UTS was observed to decrease linearly with increasing corrosion levels. The fatigue life of the specimens decreased in an inverse exponential fashion as mass loss per unit area increased. The hardness values of the corroded surfaces were also observed to drop. The topology of the pits and the related subsurface damage produced areas of high stress concentration resulting in the immediate reduction of UTS and fatigue life of the specimens. Subsurface corrosion damage was responsible for the reduction in hardness.

  18. Mechanical tensile properties of the quadriceps tendon and patellar ligament in young adults.

    PubMed

    Stäubli, H U; Schatzmann, L; Brunner, P; Rincón, L; Nolte, L P

    1999-01-01

    We analyzed mechanical tensile properties of 16 10-mm wide, full-thickness central parts of quadriceps tendons and patellar ligaments from paired knees of eight male donors (mean age, 24.9 years). Uniaxial tensile testing was performed in a servohydraulic materials testing machine at an extension rate of 1 mm/sec. Sixteen specimens were tested unconditioned and 16 specimens were tested after cyclic preconditioning (200 cycles between 50 N and 800 N at 0.5 Hz). Mean cross-sectional areas measured 64.6 +/- 8.4 mm2 for seven unconditioned and 61.9 +/- 9.0 mm2 for eight preconditioned quadriceps tendons and were significantly larger than those values of seven unconditioned and seven preconditioned patellar ligaments (36.8 +/- 5.7 mm2 and 34.5 +/- 4.4 mm2, respectively). Mean ultimate tensile stress values of unconditioned patellar ligaments were significantly larger than those values of unconditioned quadriceps tendons: 53.4 +/- 7.2 N/mm2 and 33.6 +/- 8.1 N/mm2, respectively. Strain at failure was 14.4% +/- 3.3% for preconditioned patellar ligaments and 11.2% +/- 2.2% for preconditioned quadriceps tendons (P = 0.0428). Preconditioned patellar ligaments exhibited significantly higher elastic modulus than preconditioned quadriceps tendons. Based on mechanical tensile properties analyses, the quadriceps tendon-bone construct may represent a versatile alternative graft in primary and revision anterior and posterior cruciate ligament reconstruction.

  19. Effect of ultrasonic treatment on tensile properties of PLA/LNR/NiZn ferrite nanocomposite

    SciTech Connect

    Shahdan, Dalila; Ahmad, Sahrim Hj.; Flaifel, Moayad Husein

    2013-11-27

    The influence of sonication treatment time on the morphological and mechanical properties of LNR/PLA composite impregnated with different filler loadings of NiZn ferrite nanoparticles was investigated. The nanocomposite was prepared using melt blending method with assistance of ultrasonic treatment of 0, 1 and 2 hrs. Structural characterization of the nanocomposites was examined using scanning electron microscopy (SEM) with their elemental composition being confirmed by energy dispersive X-ray spectroscopy (EDX). The tensile properties of LNR/PLA composite treated with different ultrasonication times have improved with increasing magnetic nanofiller signature in the nanocomposite. Further, the optimum sonication time of 1 hr was found to produce nanocomposite with maximum tensile properties.

  20. Characterization of cure in model photocrosslinking acrylate systems: Relationships among tensile properties, Tg and ultraviolet dose

    SciTech Connect

    Rakas, M.A.

    1996-10-01

    The extent of cure of a thermosetting polymer is governed largely by polymerization kinetics and the difference between the polymerization temperature and the material`s ultimate glass transition temperature (Tg). For prepolymers which cure when exposed to ultraviolet (UV) radiation, other factors which strongly determine the extent of cure are the UV intensity and exposure time, and the interrelationship between the optical absorbance of the photoinitiator (PI) and the rate of formation of excited state PI radicals. Beers` Law can be used to understand the relationship between the PI`s molar absorptivity, its concentration, and adhesive film thickness. Many adhesives users are more concerned with bulk properties such as tensile modulus and Tg rather than a numerical measurement of degree of cure. Therefore, this research employed model acrylate formulations and determined changes in tensile properties and Tg as a function of film thickness and UV dose. These results enabled correlation of bulk and photoinitiator properties.

  1. Correlation Between Microstructures and Tensile Properties of Strain-Based API X60 Pipeline Steels

    NASA Astrophysics Data System (ADS)

    Sung, Hyo Kyung; Lee, Dong Ho; Lee, Sunghak; Kim, Hyoung Seop; Ro, Yunjo; Lee, Chang Sun; Hwang, Byoungchul; Shin, Sang Yong

    2016-06-01

    The correlation between the microstructures and tensile properties of strain-based American Petroleum Institute (API) X60 pipeline steels was investigated. Eight types of strain-based API X60 pipeline steels were fabricated by varying the chemical compositions, such as C, Ni, Cr, and Mo, and the finish cooling temperatures, such as single-phase and dual-phase regions. In the 4N and 5C steels, the volume fractions of bainitic ferrite (BF) and the secondary phases increased with the increasing C and adding Cr instead of Ni. In the 5C and 6NC steels, the volume fractions of acicular ferrite (AF) and BF decreased with increasing C and adding Ni, whereas the volume fractions of polygonal ferrite (PF) and the secondary phases increased. In the 6NC and 6NM steels, the volume fraction of BF was increased by adding Mo instead of Cr, whereas the volume fractions of PF and the secondary phases decreased. In the steels rolled in the single-phase region, the volume fraction of polygonal ferrite ranged from 40 to 60 pct and the volume fraction of AF ranged from 20 to 40 pct. In the steels rolled in the dual-phase region, however, the volume fraction of PF was more than 70 pct and the volume fraction of AF was below 20 pct. The strength of the steels with a high volume fraction of AF was higher than those of the steels with a high volume fraction of PF, whereas the yield point elongation and the strain hardening exponent were opposite. The uniform elongation after the thermal aging process decreased with increasing volume fraction of PF, whereas the uniform elongation increased with increasing volume fraction of AF. The strain hardening exponent increased with increasing volume fraction of PF, but decreased with increasing volume fraction of AF and effective grain size.

  2. Enhancing the tensile properties of continuous millimeter-scale carbon nanotube fibers by densification.

    PubMed

    Hill, Frances A; Havel, Timothy F; Hart, A John; Livermore, Carol

    2013-08-14

    This work presents a study of the tensile mechanical properties of millimeter-long fibers comprising carbon nanotubes (CNTs). These CNT fibers are made of aligned, loosely packed parallel networks of CNTs that are grown in and harvested from CNT forests without drawing or spinning. Unlike typical CNT yarn, the present fibers contain a large fraction of CNTs that span the fibers' entire gauge length. The fibers are densified after growth and network formation to study how increasing the degree of interaction among CNTs in a network by various methods influences and limits the mechanical behavior of macroscopic CNT materials, particularly for the case in which the continuity of a large fraction of CNTs across the gauge length prevents failure purely by slip. Densification is carried out using various combinations of capillary-driven densification, mechanical pressure, and twisting. All methods of densification increase the fiber density and modify the nanoscale order of the CNTs. The highest strength and stiffness values (1.8 and 88.7 N tex(-1), respectively) are observed for capillary-densified fibers, whereas the highest toughness values (94 J g(-1)) and maximum reversible energy density (1.35 kJ kg(-1) or 677 kJ m(-3)) are observed for fibers densified by mechanical pressure. The results suggest that the path to higher performance CNT materials may lie not only in the use of continuous and long CNTs but also in controlling their density and nanoscale ordering through modification of the as-grown networks, such as by capillary-driven densification. PMID:23876225

  3. Parametric studies on tensile strength in joining AA6061- T6 and AA7075-T6 by gas metal arc welding process

    NASA Astrophysics Data System (ADS)

    Ishak, M.; Noordin, N. F. M.; Shah, L. H.

    2015-12-01

    Proper selection of the welding parameters can result in better joining. In this study, the effects of various welding parameters on tensile strength in joining dissimilar aluminum alloys AA6061-T6 and AA7075-T6 were investigated. 2 mm thick samples of both base metals were welded by semi-automatic gas metal arc welding (GMAW) using filler wire ER5356. The welding current, arc voltage and welding speed were chosen as variables parameters. The strength of each specimen after the welding operations were tested and the effects of these parameters on tensile strength were identified by using Taguchi method. The range of parameter for welding current were chosen from 100 to 115 A, arc voltage from 17 to 20 V and welding speed from 2 to 5 mm/s. L16 orthogonal array was used to obtained 16 runs of experiments. It was found that the highest tensile strength (194.34 MPa) was obtained with the combination of a welding current of 115 A, welding voltage of 18 V and welding speed of 4 mm/s. Through analysis of variance (ANOVA), the welding voltage was the most effected parameter on tensile strength with percentage of contribution at 41.30%.

  4. Tensile properties and interfacial bonding of multi-layered, high-purity titanium strips fabricated by ARB process.

    PubMed

    Ghafari-Gousheh, Soroush; Nedjad, Syamak Hossein; Khalil-Allafi, Jafar

    2015-11-01

    Severe plastic deformation (SPD) processing has shown very effective in promotion of mechanical properties of metals and alloys. In this study, the results of investigating mechanical properties and also inter-layer bond performance of accumulative roll bonded high purity titanium (HP-Ti) strips are presented. High purity titanium plates were severely deformed by use of a combination of cold rolling (CR) to a thickness reduction of approximately 87% and then accumulative roll bonding (ARB) for three cycles (N=3) at ambient temperature. Optical and scanning electron microscopy, tensile testing, and hardness measurements were conducted. The ARB strips exhibited lower tensile strength and ductility in comparison to cold rolled one which can basically be attributed to the poor function of the latest bonds established in the centerlines of the strips. Fractographic examinations revealed the interfacial de-bonding along the centerline between the layers having undergone roll bonding for just one cycle. It was while the interfaces having experienced roll bonding for more cycles showed much higher resistance against delaminating. PMID:26253205

  5. Effect of Austenite Stability on Microstructural Evolution and Tensile Properties in Intercritically Annealed Medium-Mn Lightweight Steels

    NASA Astrophysics Data System (ADS)

    Song, Hyejin; Sohn, Seok Su; Kwak, Jai-Hyun; Lee, Byeong-Joo; Lee, Sunghak

    2016-06-01

    The microstructural evolution with varying intercritical-annealing temperatures of medium-Mn ( α + γ) duplex lightweight steels and its effects on tensile properties were investigated in relation to the stability of austenite. The size and volume fraction of austenite grains increased as the annealing temperature increased from 1123 K to 1173 K (850 °C to 900 °C), which corresponded with the thermodynamic calculation data. When the annealing temperature increased further to 1223 K (950 °C), the size and volume fraction were reduced by the formation of athermal α'-martensite during the cooling because the thermal stability of austenite deteriorated as a result of the decrease in C and Mn contents. In order to obtain the best combination of strength and ductility by a transformation-induced plasticity (TRIP) mechanism, an appropriate mechanical stability of austenite was needed and could be achieved when fine austenite grains (size: 1.4 μm, volume fraction: 0.26) were homogenously distributed in the ferrite matrix, as in the 1123 K (850 °C)—annealed steel. This best combination was attributed to the requirement of sufficient deformation for TRIP and the formation of many deformation bands at ferrite grains in both austenite and ferrite bands. Since this medium-Mn lightweight steel has excellent tensile properties as well as reduced alloying costs and weight savings, it holds promise for new automotive applications.

  6. The Effect of Grain Size and Dislocation Density on the Tensile Properties of Ni-SiCNP Composites During Annealing

    NASA Astrophysics Data System (ADS)

    Yang, Chao; Huang, Hefei; Thorogood, Gordon James; Jiang, Li; Ye, Xiangxi; Li, Zhijun; Zhou, Xingtai

    2016-03-01

    The grain size refinement, enhancement of mechanical properties, and static recrystallization behavior of metallic nickel-silicon carbide nano-particle (Ni-3wt.%SiCNP) composites, milled for times ranging from 8 to 48 h have been examined. One set of Ni-SiCNP composite samples were annealed at 300 °C for 250 h, while the other set of samples were maintained at room temperature for control purposes (reference). The electron backscatter diffraction results indicate that the grain size of the annealed Ni-SiCNP composite was refined due to grain restructuring during static recrystallization. The x-ray diffraction results indicate that low-temperature annealing effectively reduced the density of dislocations; this can be explained by the dislocation pile-up model. Additionally, the tensile tests indicated that the annealed Ni-SiCNP composite had a significant increase in strength due to an increase of the Hall-Petch strengthening effect with a slight increase in the total elongation. The decrease of dislocation pile-up in the grain interiors and the increase in grain boundary sliding are assumed to be the main mechanisms at play. The relationship between the microstructural evolution and the variation of tensile properties is examined in this study.

  7. Effect of different stages of tensile deformation on micromagnetic parameters in high-strength, low-alloy steel

    SciTech Connect

    Vaidyanathan, S.; Moorthy, V.; Kalyanasundaram, P.; Jayakumar, T.; Raj, B.

    1999-08-01

    The influence of tensile deformation on the magnetic Barkhausen emissions (MBE) and hysteresis loop has been studied in a high-strength, low-alloy steel (HSLA) and its weldment. The magnetic measurements were made both in loaded and unloaded conditions for different stress levels. The root-mean-square (RMS) voltage of the MBE has been used for analysis. This study shows that the preyield and postyield deformation can be identified from the change in the MBE profile. The initial elastic deformation showed a linear increase in the MBE level in the loaded condition, and the MBE level remained constant in the unloaded condition. The microplastic yielding, well below the macroyield stress, significantly reduces the MBE, indicating the operation of grain-boundary dislocation sources below the macroyield stress. This is indicated by the slow increase in the MBE level in the loaded condition and the decrease in the MBE level in the unloaded condition. The macroyielding resulted in a significant increase in the MBE level in the loaded condition and, more clearly, in the unloaded condition. The increase in the MBE level during macroyielding has been attributed to the grain rotation phenomenon, in order to maintain the boundary integrity between adjacent grains, which would preferentially align the magnetic domains along the stress direction. This study shows that MBE during tensile deformation can be classified into four stages: (1) perfectly elastic, (2) microplastic yielding, (3) macroyielding, and (4) progressive plastic deformation. A multimagnetic parameter approach, combining the hysteresis loop and MBE, has been suggested to evaluate the residual stresses.

  8. EFFECT OF CARBAMIDE PEROXIDE-BASED BLEACHING AGENTS CONTAINING FLUORIDE OR CALCIUM ON TENSILE STRENGTH OF HUMAN ENAMEL

    PubMed Central

    Giannini, Marcelo; Silva, Alessandra Peres; Cavalli, Vanessa; Leme, Adriana Franco Paes

    2006-01-01

    Objective: The aim of this study was to evaluate the effects of carbamide peroxide-based bleaching agents (CPG) containing fluoride (CF) or calcium (CCa) on the ultimate tensile strength of enamel (UTS). Method: A "cube-like" resin composite structure was built-up on the occlusal surface of twenty-two sound third molars to facilitate specimen preparation for the micro-tensile test. The restored teeth were serially sectioned in buccal-lingual direction in slices with approximate 0.7 mm thickness. Each slice was trimmed with a fine diamond bur to reduce the buccal, internal slope enamel of the cusps to a dumb-bell shape with a cross-sectional area at the "neck" of less than 0.5 mm2. The samples were randomly divided into 12 groups (n=11). The control groups were not submitted to the bleaching regimen. Specimens were treated with 10% CPG gel or with 10% CPG formulations containing CF (0.2% and 0.5%) or CCa (0.05% and 0.2%). Bleached groups received the application of the 10% CPGs for 6 hours/day at 37° C, during 14 consecutive days and were stored in artificial saliva (AS) or 100% relative humidity (RH) among each application. After bleaching, specimens were tested with the microtensile method at 0.5 mm/min. Data were analyzed by two-way ANOVA and Tukey test (5%). Results: No significant difference was observed between groups stored in AS or RH. Specimens treated with CF or CCa presented similar UTS as unbleached control groups. Conclusion: Either 10% CPG formulations containing CF or CCa can preserve the UTS after bleaching regimen. PMID:19089036

  9. Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress

    NASA Astrophysics Data System (ADS)

    Li, Gui-Rong; Xue, Fei; Wang, Hong-Ming; Zheng, Rui; Zhu, Yi; Chu, Qiang-Ze; Cheng, Jiang-Feng

    2016-10-01

    In order to explore the dependence of plasticity of metallic material on a high magnetic field, the effects of the different magnetic induction intensities ( H = 0 T, 0.5 T, 1 T, 3 T, and 5 T) and pulses number (N = 0, 10, 20, 30, 40, and 50) on tensile strength (σ b) and elongation (δ) of 2024 aluminum alloy are investigated in the synchronous presences of a high magnetic field and external stress. The results show that the magnetic field exerts apparent and positive effects on the tensile properties of the alloy. Especially under the optimized condition of H * = 1 T and N* = 30, the σ b and δ are 410 MPa and 17% that are enhanced by 9.3% and 30.8% respectively in comparison to those of the untreated sample. The synchronous increases of tensile properties are attributed to the magneto-plasticity effect on a quantum scale. That is, the magnetic field will accelerate the state conversion of radical pair generated between the dislocation and obstacles from singlet to the triplet state. The bonding energy between them is meanwhile lowered and the moving flexibility of dislocations will be enhanced. At H * = 1 T and N* = 30, the dislocation density is enhanced by 1.28 times. The relevant minimum grain size is 266.1 nm, which is reduced by 35.2%. The grain refining is attributed to the dislocation accumulation and subsequent dynamic recrystallization. The (211) and (220) peak intensities are weakened. It is deduced that together with the recrystallization, the fine grains will transfer towards the slip plane and contribute to the slipping deformation. Project supported by the National Natural Science Foundation of China (Grant Nos. 51371091, 51174099, and 51001054) and the Industrial Center of Jiangsu University, China (Grant No. ZXJG201586).

  10. Elevated-temperature tensile properties of three heats of commercially heat-treated Alloy 718

    SciTech Connect

    Booker, M.K.; Booker, B.L.P.

    1980-03-01

    Three heats of commercially heat-treated alloy 718 were tensile tested over the temperature range from room temperature to 816{degree}C and at nominal strain rates from 6.7 {times} 10{sup {minus}6} to 6.7 {times} 10{sup {minus}3}/s. We examined data for yield strength, ultimate tensile strength, uniform elongation, total elongation, and reduction in area and also inspected tensile stress-strain behavior. Yield and ultimate tensile strengths for commercially heat-treated alloy 718 decrease very gradually with temperature from room temperature up to about 600{degree}C for a strain rate of 6.7 {times} 10{sup {minus}5}/s or to about 700{degree}C for a strain rate of 6.7 {times} 10{sup {minus}4}/s. Above these temperatures the strength drops off fairly rapidly. Reduction in area and total elongation data show minimum around 700{degree}C, with each ductility measure falling to 10% or less at the minimum. This minimum is more pranced and occurs at lower temperatures as strain rate decreases. Up to about 600{degree}C the ductility is typically around 30%. As the temperature reaches 816{degree}C the ductility again increases to perhaps 60%. The uniform elongation (plastic strain at peak load) decreases only slightly with temperature to about 500{degree}C then drops off rapidly and monotonically with temperature, reaching values less than 1% at 816{degree}C. At the highest test temperatures the load maximum may result, not from necking of the specimen, but from overaging of the precipitation-hardened microstructure. Stress-strain curves showed serrated deformations in the temperature range from 316 to 649{degree}C, although they occur only for the faster strain rates at the supper end of this temperature range. The serrations can be quite large, involving load drops of perhaps 40 to 80 MPa. The serrations typically begin within the first 2% of deformation and continue until fracture, although exceptions were noted. 16 refs., 14 figs., 3 tabs.

  11. Transverse tensile and stress rupture properties of gamma/gamma prime-delta directionally solidified eutectic

    NASA Technical Reports Server (NTRS)

    Gray, H. H.

    1976-01-01

    Tensile and stress rupture properties were determined primarily at 760 C for specimens oriented at various angles (0 deg, 10 deg, 45 deg, and 90 deg) from the solidification direction of bars and/or slabs of the Ni-20Cb-6Cr-2.5A (gamma/gamma prime-delta) eutectic. Threaded-head specimens yielded longer rupture lives with significantly less scatter than did tapered-head specimens. Miniature specimens are suitable for determining traverse tensile and rupture properties of 1.2 centimeter diameter bar stock. The 300 hour rupture stress at 760 C for specimens oriented at 10 deg from the solidification direction was reduced from 740 to 460 MPa, and to 230 MPa for material oriented at either 45 deg or 90 deg.

  12. Ethylene propylene cable degradation during LOCA research tests: tensile properties at the completion of accelerated aging

    SciTech Connect

    Bustard, L.D.

    1982-05-01

    Six ethylene-propylene rubber (EPR) insulation materials were aged at elevated temperature and radiation stress exposures common in cable LOCA qualification tests. Material samples were subjected to various simultaneous and sequential aging simulations in preparation for accident environmental exposures. Tensile properties subsequent to the aging exposure sequences are reported. The tensile properties of some, but not all, specimens were sensitive to the order of radiation and elevated temperature stress exposure. Other specimens showed more severe degradation when simultaneously exposed to radiation and elevated temperature as opposed to the sequential exposure to the same stresses. Results illustrate the difficulty in defining a single test procedure for nuclear safety-related qualification of EPR elastomers. A common worst-case sequential aging sequence could not be identified.

  13. Low-output carbon dioxide laser for cutaneous wound closure of scalpel incisions: comparative tensile strength studies of the laser to the suture and staple for wound closure

    SciTech Connect

    Garden, J.M.; Robinson, J.K.; Taute, P.M.; Lautenschlager, E.P.; Leibovich, S.J.; Hartz, R.S.

    1986-01-01

    The low-output carbon dioxide (CO/sub 2/) laser was used for cutaneous wound closure of scalpel incisions. Cutaneous scalpel incisions were placed over the dorsum of three minipigs and were then closed by either the laser, sutures, or staples. At multiple time points after wound closure, up to day 90, the tensile strengths of these wounds were comparatively evaluated. All wounds, including those closed with the laser, clinically appeared to heal similarly with no evidence of wound dehiscence or infection. Tensile strength studies revealed similar sigmoid curves for all wound closure modalities with low initial tensile strengths up to days 14 to 21, which afterwards increased rapidly, with a plateau toward day 90. From our study, it appears that the CO/sub 2/ laser, in the low-output mode, can be used for cutaneous wound closure and that similar clinical healing and tensile strength measurements are obtained relative to the conventional cutaneous wound closure modalities of the suture or staple.

  14. Effect of Specimen Diameter on Tensile Properties of Austenitic Stainless Steels in Liquid Hydrogen and Gaseous Helium at 20K

    NASA Astrophysics Data System (ADS)

    Fujii, H.; Ohmiya, S.; Shibata, K.; Ogata, T.

    2006-03-01

    Tensile tests using round bar type specimens of 3, 5 and 7 mm in diameter were conducted at 20K in liquid hydrogen and also in gaseous helium at the same temperature for three major austenitic stainless steels, JIS SUS304L, 316L and 316LN, extensively used for cryogenic applications including liquid hydrogen transportation and storage vessels. Stress-strain curves were considerably different between circumstances and also specimen diameter, resulting in differences of strength and ductility. In liquid hydrogen, serrated deformation appeared after considerable work hardening and more active in specimens with larger diameter. Meanwhile serrated deformation was observed from the early stage of plastic deformation in gaseous helium at 20 K and serration was more frequent in specimens with smaller diameter. The serrated deformation behaviors were numerically simulated for 304L steel with taking thermal properties such as thermal conductivity, specific heat, heat transfer from specimens to cryogenic media into account, and some agreement with the experiments was obtained.

  15. Tensile and tribological properties of high-crystallinity radiation crosslinked UHMWPE

    SciTech Connect

    Bistolfi, Alessandro; Turell, Mary Beth; Lee, Ying-Lung; Bellare, Anuj

    2009-09-02

    Osteolysis due to particulate wear debris associated with ultrahigh molecular weight polyethylene (UHMWPE) components of total joint replacement prostheses has been a major factor determining their in vivo lifetime. In recent years, radiation crosslinking has been employed to decrease wear rates in PE components, especially in acetabular cups of total hip replacement prostheses. A drawback of radiation crosslinking is that it leads to a crosslinked PE (or XPE) with lower mechanical properties compared with uncrosslinked PE. In contrast, high-crystallinity PEs are known to have several mechanical properties higher than conventional PE. In this study, we hypothesized that increasing the crystallinity of radiation crosslinked and remelted XPE would result in an increase in tensile properties without compromising wear resistance. High-pressure crystallization was performed on PE and XPE and analyzed for the resulting morphological alterations using differential scanning calorimeter, low voltage scanning electron microscopy, and ultrasmall angle X-ray scattering. Uniaxial tensile tests showed that high-pressure crystallization increased the tensile modulus and yield stress in both PE and XPE, decreased the ultimate strain and ultimate stress in PE but had no significant effect on ultimate strain or ultimate stress in XPE. Multidirectional wear tests demonstrated that high-pressure crystallization decreased the wear resistance of PE but had no effect on the wear resistance of XPE. In conclusion, this study shows that high-pressure crystallization can be effectively used to increase the crystallinity and modulus of XPE without compromising its superior wear resistance compared with PE.

  16. Tensile Properties and Swelling Behavior of Sealing Rubber Materials Exposed to High-Pressure Hydrogen Gas

    NASA Astrophysics Data System (ADS)

    Yamabe, Junichiro; Nishimura, Shin

    Rubber O-rings exposed to high-pressure hydrogen gas swell, and the volume increase induced by swelling influences tensile properties of the O-rings. Samples of nonfilled (NF), carbon black-filled (CB), and silica-filled (SC) sulfur-vulcanized acrylonitrile-butadiene rubber were exposed to hydrogen at 30 °C and pressures of up to 100 MPa, and the effect of hydrogen exposure on the volume increase, hydrogen content, and tensile properties was investigated. The residual hydrogen content, measured 35 minutes after decompression, increased with increasing hydrogen pressure in the range 0.7-100 MPa for all three samples. In contrast, the volumes of NF, CB, and SC barely changed at pressures below 10 MPa, whereas they increased at pressures above 10 MPa. This nonlinear volume increase is probably related to the free volume of the rubber structure. The volume increase of the CB and SC samples was smaller than that of the NF samples, possibly because of the superior tensile properties of CB and SC. As the volumes of the NF, CB, and SC samples increased, their tensile elastic moduli decreased as a result of a decrease in crosslink density and elongation by volume increase. Although the true fracture stress of NF was barely dependent on the volume of the specimen, those of CB and SC clearly decreased as the volume increased. The decrease in the true fracture stress of CB and SC was related to the volume increase by swelling, showing that the boundary structure between the filler and the rubber matrix was changed by the volume increase.

  17. Clinical anatomy and mechanical tensile properties of the rectus femoris tendon

    PubMed Central

    Zhu, Xing-Fei; Zhang, Xin-Chao

    2015-01-01

    Purpose: We aimed to provide anatomical data and mechanical tensile properties for the rectus femoris tendon to determine if it is a feasible substitute for the anterior cruciate ligament during knee joint reconstruction. Methods: The length and width of the quadriceps femoris tendon were measured from ten adult cadavers (20 knees; age =48±2 years). The anatomic features of the patellar insertion on the quadriceps femoris tendon were also documented. The rectus femoris tendon and anterior cruciate ligament were harvested from an additional five fresh specimens (10 knees; age =41±3 years). To minimize dehydration, each specimen was wrapped in saline-moistened paper towels and stored at -10°C. We imposed tensile stresses on a total of twenty samples in a sample-driven machine at 10 mm/min until the specimens failed. Results: The inserted and discrete widths of the rectus femoris tendon were 3.20±0.33 and 1.28±0.25 cm, respectively. The length of the tendon tissue was 6.96±0.80 cm and the length of mixing zone was 3.81±0.53 cm. The average thickness of the upper pole of the patella was 2.22±0.14 cm. In mechanical tensile properties, the unit modulus and unit maximum load of the rectus femoris tendon were both 63% of the anterior cruciate ligament. Conclusions: Based on its anatomical and mechanical tensile properties, the rectus femoris tendon is a feasible donor site to reconstitute the anterior cruciate ligament. PMID:26885205

  18. Effect of processing parameter and filler content on tensile properties of multi-walled carbon nanotubes reinforced polylactic acid nanocomposite

    NASA Astrophysics Data System (ADS)

    Ali, Adilah Mat; Ahmad, Sahrim Hj.

    2013-05-01

    Polymer nanocomposite of multi-walled carbon nanotubes (MWCNT) nanoparticles incorporated with polylactic acid (PLA) and liquid natural rubber (LNR) as compatibilizer were prepared via melt blending method using the Haake Rheomix internal mixer. In order to obtain the optimal processing parameter, the nanocomposite with 89 wt % of PLA was blended with 10 wt % of LNR and 1 wt % of MWCNTs were mixed with various mixing parameter condition; mixing temperature, mixing speed and mixing time. The optimum processing parameter of the composites was obtained at temperature of 190°C, rotation speed of 90 rpm and mixing time of 14 min. Next, the effect of MWCNTs loading on the tensile properties of nanocomposites was investigated. The nanocomposites were melt blended using the optimal processing parameter with MWCNTs loading of 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5 and 4 wt %. The result showed that the sample with 3.5 wt % of MWCNTs gave higher tensile strength and Young's modulus. The SEM micrographs confirmed the effect of good dispersion of MWCNTs and their interfacial bonding in PLA nanocomposites. However, the elongation at break decreased with increasing the percentage of MWCNTs.

  19. A comparison of tensile properties of polyester composites reinforced with pineapple leaf fiber and pineapple peduncle fiber

    NASA Astrophysics Data System (ADS)

    Juraidi, J. M.; Shuhairul, N.; Syed Azuan, S. A.; Intan Saffinaz Anuar, Noor

    2013-12-01

    Pineapple fiber which is rich in cellulose, relatively inexpensive, and abundantly available has the potential for polymer reinforcement. This research presents a study of the tensile properties of pineapple leaf fiber and pineapple peduncle fiber reinforced polyester composites. Composites were fabricated using leaf fiber and peduncle fiber with varying fiber length and fiber loading. Both fibers were mixed with polyester composites the various fiber volume fractions of 4, 8 and 12% and with three different fiber lengths of 10, 20 and 30 mm. The composites panels were fabricated using hand lay-out technique. The tensile test was carried out in accordance to ASTM D638. The result showed that pineapple peduncle fiber with 4% fiber volume fraction and fiber length of 30 mm give highest tensile properties. From the overall results, pineapple peduncle fiber shown the higher tensile properties compared to pineapple leaf fiber. It is found that by increasing the fiber volume fraction the tensile properties has significantly decreased but by increasing the fiber length, the tensile properties will be increased proportionally. Minitab software is used to perform the two-way ANOVA analysis to measure the significant. From the analysis done, there is a significant effect of fiber volume fraction and fiber length on the tensile properties.

  20. Contributions of adipose tissue architectural and tensile properties toward defining healthy and unhealthy obesity

    PubMed Central

    Lackey, Denise E.; Burk, David H.; Ali, Mohamed R.; Mostaedi, Rouzbeh; Smith, William H.; Park, Jiyoung; Scherer, Philipp E.; Seay, Shundra A.; McCoin, Colin S.; Bonaldo, Paolo

    2013-01-01

    The extracellular matrix (ECM) plays an important role in the maintenance of white adipose tissue (WAT) architecture and function, and proper ECM remodeling is critical to support WAT malleability to accomodate changes in energy storage needs. Obesity and adipocyte hypertrophy place a strain on the ECM remodeling machinery, which may promote disordered ECM and altered tissue integrity and could promote proinflammatory and cell stress signals. To explore these questions, new methods were developed to quantify omental and subcutaneous WAT tensile strength and WAT collagen content by three-dimensional confocal imaging, using collagen VI knockout mice as a methods validation tool. These methods, combined with comprehensive measurement of WAT ECM proteolytic enzymes, transcript, and blood analyte analyses, were used to identify unique pathophenotypes of metabolic syndrome and type 2 diabetes mellitus in obese women, using multivariate statistical modeling and univariate comparisons with weight-matched healthy obese individuals. In addition to the expected differences in inflammation and glycemic control, approximately 20 ECM-related factors, including omental tensile strength, collagen, and enzyme transcripts, helped discriminate metabolically compromised obesity. This is consistent with the hypothesis that WAT ECM physiology is intimately linked to metabolic health in obese humans, and the studies provide new tools to explore this relationship. PMID:24302007

  1. Tensile Properties of Molybdenum and Tungsten from 2500 to 3700 F

    NASA Technical Reports Server (NTRS)

    Hall, Robert W.; Sikora, Paul F.

    1959-01-01

    Specimens of commercially pure sintered tungsten, arc-cast unalloyed molybdenum, and two arc-cast molybdenum-base alloys (one with 0.5 percent titanium, the other with 0.46 percent titanium and 0.07 percent zirconium) were fabricated from 1/2-inch-diameter rolled or swaged bars. All specimens were evaluated in short-time tensile tests in the as-received condition, and all except the molybdenum-titanium-zirconium alloy were tested after a 30-minute recrystallization anneal at 3800 F in a vacuum of approximately 0.1 micron. Results showed that the tungsten was considerably stronger than either the arc-cast unalloyed molybdenum or the molybdenum-base alloys over the 2500 to 3700 F temperature range. Recrystallization of swaged tungsten at 3800 F considerably reduced its tensile strength at 2500 F. However, above 3100 F, the as-swaged tungsten specimens recrystallized during testing, and had about the same strength as when recrystallized at 3800 F before evaluation. The ductility of molybdenum-base materials was very high at all test temperatures; the ductility of tungsten decreased sharply above about 3120 F.

  2. Can extended photoactivation time of resin-based fissure sealer materials improve ultimate tensile strength and decrease water sorption/solubility?

    PubMed Central

    Borges, Boniek Castillo Dutra; Souza-Júnior, Eduardo José; Catelan, Anderson; Paulillo, Luís Alexandre Maffei Sartini; Aguiar, Flávio Henrique Baggio

    2012-01-01

    Objective: This study aimed to evaluate the impact of extended photoactivation time on ultimate tensile strength (UTS), water sorption (WS) and solubility (WSB) of resin-based materials used as fissure-sealants. Methods: A fissure-sealant (Fluroshield) and a flowable composite (Permaflo) polymerized for 20 and 60 seconds were tested. For UTS, 20 hourglass shaped samples were prepared representing two materials and two photoactivation time (n=5). After 24-h dry-storage, samples were tested in tension using a universal testing machine at a cross-head speed of 0.5 mm/min (UTS was calculated in MPa). For WS and WSB, 20 disks with 5 mm diameter and 1 mm height (n=5) were prepared and volumes were calculated (mm3). They were transferred to desiccators until a constant mass was obtained (m1) and were subsequently immersed in distilled water until no alteration in mass was detected (m2). Samples were reconditioned to constant mass in desiccators (m3). WS and WSB were determined using the equations m2-m3/V and m1-m3/V, respectively. Data were subjected to two-way ANOVA and Tukey’s HSD test (P<.05). Results: There was no significant difference between materials or photoactivation times for the UTS and WS. Permaflo presented lower but negative WSB compared to Fluroshield. Conclusions: Extended photoactivation time did not improve the physical properties tested. Fluroshield presented physical properties that were similar to or better than Permaflo. PMID:23077420

  3. Relationship of microstructure and tensile properties for neutron-irradiated vanadium alloys

    SciTech Connect

    Loomis, B.A.; Smith, D.L.

    1990-01-01

    The microstructures in V-15Cr-5Ti, V-10Cr-5RTi, V-3Ti-1Si, V-15Ti-7.5Cr, and V-20Ti alloys were examined by transmission electron microscopy after neutron irradiation at 600{degree}C to 21--84 atom displacements per atom in the Materials Open Test Assembly of the Fast Flux Test Facility. The microstructures in these irradiated alloys were analyzed to determine the radiation-produced dislocation density, precipitate number density and size, and void number density and size. The results of these analyses were used to compute increases in yield stress and swelling of the irradiated alloys. The computed increase in yield stress was compared with the increase in yield stress determined from tensile tests on these irradiated alloys. This comparison made it possible to evaluate the influence of alloy composition on the evolution of radiation-damaged microstructures and the resulting tensile properties. 11 refs.

  4. Low-energy electron effects on tensile modulus and infrared transmission properties of a polypyromellitimide film

    NASA Technical Reports Server (NTRS)

    Ferl, J. E.; Long, E. R., Jr.

    1981-01-01

    Infrared (IR) spectroscopy and tensile modulus testing were used to evaluate the importance of experimental procedure on changes in properties of pyromellitic dianhydride-p,p prime-oxydianiline film exposed to electron radiation. The radiation exposures were accelerated, approximate equivalents to the total dose expected for a 30 year mission in geosynchronous Earth orbit. The change in the tensile modulus depends more on the dose rate and the time interval between exposure and testing than on total dose. The IR data vary with both total dose and dose rate. A threshold dose rate exists below which reversible radiation effects on the IR spectra occur. Above the threshold dose rate, irreversible effects occur with the appearance of a new band. Post-irradiation and in situ IR absorption bands are significantly different. It is suggested that the electron radiation induced metastable, excites molecular states.

  5. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives

    PubMed Central

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred. PMID:26539520

  6. Direct Tensile Strength and Characteristics of Dentin Restored with All-Ceramic, Resin-Composite, and Cast Metal Prostheses Cemented with Resin Adhesives.

    PubMed

    Piemjai, Morakot; Nakabayashi, Nobuo

    2015-01-01

    A dentin-cement-prosthesis complex restored with either all-porcelain, cured resin-composite, or cast base metal alloy and cemented with either of the different resin cements was trimmed into a mini-dumbbell shape for tensile testing. The fractured surfaces and characterization of the dentin-cement interface of bonded specimens were investigated using a Scanning Electron Microscope. A significantly higher tensile strength of all-porcelain (12.5 ± 2.2 MPa) than that of cast metal (9.2 ± 3.5 MPa) restorations was revealed with cohesive failure in the cement and failure at the prosthesis-cement interface in Super-Bond C&B group. No significant difference in tensile strength was found among the types of restorations using the other three cements with adhesive failure on the dentin side and cohesive failure in the cured resin. SEM micrographs demonstrated the consistent hybridized dentin in Super-Bond C&B specimens that could resist degradation when immersed in hydrochloric acid followed by NaOCl solutions whereas a detached and degraded interfacial layer was found for the other cements. The results suggest that when complete hybridization of resin into dentin occurs tensile strength at the dentin-cement is higher than at the cement-prosthesis interfaces. The impermeable hybridized dentin can protect the underlying dentin and pulp from acid demineralization, even if detachment of the prosthesis has occurred.

  7. Effects of Long-Term Thermal Exposure on Commercially Pure Titanium Grade 2 Elevated-Temperature Tensile Properties

    NASA Technical Reports Server (NTRS)

    Ellis, David L.

    2012-01-01

    Elevated-temperature tensile testing of commercially pure titanium (CP Ti) Grade 2 was conducted for as-received commercially produced sheet and following thermal exposure at 550 and 650 K (531 and 711 F) for times up to 5000 h. The tensile testing revealed some statistical differences between the 11 thermal treatments, but most thermal treatments were statistically equivalent. Previous data from room temperature tensile testing was combined with the new data to allow regression and development of mathematical models relating tensile properties to temperature and thermal exposure. The results indicate that thermal exposure temperature has a very small effect, whereas the thermal exposure duration has no statistically significant effects on the tensile properties. These results indicate that CP Ti Grade 2 will be thermally stable and suitable for long-duration space missions.

  8. The effect of aluminum alloying on strength properties and deformation mechanisms of the <123> Hadfield steel single crystals

    NASA Astrophysics Data System (ADS)

    Astafurova, E. G.; Tukeev, M. S.; Chumlyakov, Yu. I.

    2007-10-01

    The role of aluminum alloying on strength properties and deformation mechanisms (slip, twinning) of <123> single crystals of Hadfield steel under tensile loading at T = 300 K is demonstrated. It is found out that aluminum alloying suppresses twinning deformation in the <123> single crystals and, during slip, results in a dislocation structure change from a uniform dislocation distribution to a planar dislocation structure.

  9. The effects of cross-infection control procedures on the tensile and flexural properties of superelastic nickel-titanium wires.

    PubMed

    Crotty, O P; Davies, E H; Jones, S P

    1996-02-01

    The development of superelastic nickel-titanium archwires has simplified the alignment phase of orthodontic treatment by permitting the use of highly flexible, resilient archwires and avoiding the need for complex loops. The majority of these archwires appear undistorted when removed from the mouth after use. This feature, coupled with the disadvantage of relatively high cost has led to sterilization and recycling of these wires by some clinicians. This study was designed to examine the effects of currently used infection control procedures on the mechanical properties of superelastic nickel-titanium alloy (SENTA) archwires. One-hundred-and-forty lengths of a SENTA wire were subjected to various sterilization and disinfection procedures. These included cold disinfection in 2 per cent glutaraldehyde solution for 3- and 24-hour cycles, and steam autoclaving. Single and double cycles were used. The properties investigated were the 0.1 per cent yield strength, the ultimate tensile strength, and the flexural rigidity. No statistically significant differences were found between the groups or against an untreated control.

  10. The effects of cross-infection control procedures on the tensile and flexural properties of superelastic nickel-titanium wires.

    PubMed

    Crotty, O P; Davies, E H; Jones, S P

    1996-02-01

    The development of superelastic nickel-titanium archwires has simplified the alignment phase of orthodontic treatment by permitting the use of highly flexible, resilient archwires and avoiding the need for complex loops. The majority of these archwires appear undistorted when removed from the mouth after use. This feature, coupled with the disadvantage of relatively high cost has led to sterilization and recycling of these wires by some clinicians. This study was designed to examine the effects of currently used infection control procedures on the mechanical properties of superelastic nickel-titanium alloy (SENTA) archwires. One-hundred-and-forty lengths of a SENTA wire were subjected to various sterilization and disinfection procedures. These included cold disinfection in 2 per cent glutaraldehyde solution for 3- and 24-hour cycles, and steam autoclaving. Single and double cycles were used. The properties investigated were the 0.1 per cent yield strength, the ultimate tensile strength, and the flexural rigidity. No statistically significant differences were found between the groups or against an untreated control. PMID:8652496

  11. Tensile properties of the medial patellofemoral ligament: The effect of specimen orientation

    PubMed Central

    Kim, Kwang E.; Hsu, Shan-Ling; Woo, Savio L-Y.

    2014-01-01

    For recurrent patellar dislocation, reconstruction of the medial patellofemoral ligament (MPFL) with replacement autografts has often been performed but with only little data on the tensile properties of the MPFL to guide graft selection. With its complex anatomy and geometry, these properties are difficult to obtain. In this study, we showed how the orientation of the femur-MPFL-patella complex (FMPC) during uniaxial tensile testing can have a significant effect on its structural properties. Twenty two FMPCs were isolated from porcine stifle joints and randomly assigned to two groups of 11 each. For the first group, the specimens were loaded to failure with the patella oriented 30 degrees away from the direction of the applied load to mimic its orientation in situ, called natural orientation. In the second group, the patella was aligned in the direction of the tensile load, called non-natural orientation. The stiffness for the natural orientation group was 65 ± 13 N/mm, 32% higher than that for the non-natural orientation group (50 ± 17 N/mm; p < 0.05). The ultimate loads were 438 ± 128 N and 386 ± 136 N, respectively (p > 0.05). Ten out of 11 specimens in the natural orientation group failed at the femoral attachment (the narrowest portion of the MPFL) compared to 6 out of 11 in the non-natural orientation group. Our findings suggest that the specimen orientation that mimics the in-situ loading conditions of the MPFL should be used to obtain more representative data for the structural properties of the FMPC. PMID:24332616

  12. Tensile properties of ferritic/martensitic steels irradiated in STIP-I

    NASA Astrophysics Data System (ADS)

    Dai, Y.; Long, B.; Tong, Z. F.

    2008-06-01

    Specimens of ferritic/martensitic (FM) steels T91, F82H, Optimax-A and the electron beam weld (EBW) of F82H were irradiated in the Swiss spallation neutron source (SINQ) Target-3 in a temperature range of 90-370 °C to displacement doses between 3 and 12 dpa. Tensile tests were performed at room temperature and the irradiation temperatures. The tensile test results demonstrated that the irradiation hardening increased with dose up to about 10 dpa. Meanwhile, the uniform elongation decreased to less than 1%, while the total elongation remained greater than 5%, except for an F82H specimen of 9.8 dpa tested at room temperature, which failed in elastic deformation regime. At higher doses of 11-12 dpa, the ductility of some specimens recovered, which could be due to the annealing effect of a short period of high temperature excursion. The results do not show significant differences in tensile properties for the different FM steels in the present irradiation conditions.

  13. Tensile bond strength of silicone-based soft denture liner to two chemically different denture base resins after various surface treatments.

    PubMed

    Akin, Hakan; Tugut, Faik; Guney, Umit; Kirmali, Omer; Akar, Turker

    2013-01-01

    This study evaluated the effect of various surface treatments on the tensile bond strength of a silicone-based soft denture liner to two chemically different denture base resins, heat-cured polymethyl methacrylate (PMMA), and light-activated urethane dimethacrylate or Eclipse denture base resin. PMMA test specimens were fabricated and relined with a silicone-based soft denture liner (group AC). Eclipse test specimens were prepared according to the manufacturer's recommendation. Before they were relined with a silicone-based soft denture liner, each received one of three surface treatments: untreated (control, group EC), Eclipse bonding agent applied (group EB), and laser-irradiated (group EL). Tensile bond strength tests (crosshead speed = 5 mm/min) were performed for all specimens, and the results were analyzed using the analysis of variance followed by Tukey's test (p = 0.05). Eclipse denture base and PMMA resins presented similar bond strengths to the silicone-based soft denture liner. The highest mean force was observed in group EL specimens, and the tensile bond strengths in group EL were significantly different (p < 0.05) from those in the other groups.

  14. The sensitivity of the burst performance of impact damaged pressure vessels to material strength properties

    NASA Astrophysics Data System (ADS)

    Lasn, K.; Vedvik, N. P.; Echtermeyer, A. T.

    2016-07-01

    This numerical study is carried out to improve the understanding of short-term residual strength of impacted composite pressure vessels. The relationship between the impact, created damage and residual strength is predicted by finite element (FE) analysis. The burst predictions depend largely on the strength properties used in the material models. However, it is typically not possible to measure all laminate properties on filament wound structures. Reasonable testing efforts are concentrated on critical properties, while obtaining other less sensitive parameters from e.g. literature. A parametric FE model is hereby employed to identify the critical strength properties, focusing on the cylindrical section of the pressure vessel. The model simulates an impactor strike on an empty vessel, which is subsequently pressurized until burst. Monte Carlo Simulations (MCS) are employed to investigate the correlations between strength related material parameters and the burst pressure. The simulations indicate the fracture toughness of the composite, hoop layer tensile strength and the yield stress of the PE liner as the most influential parameters for current vessel and impact configurations. In addition, the conservative variation in strength parameters is shown to have a rather moderate effect (COV ca. 7%) on residual burst pressures.

  15. Self-Healing Nanofiber-Reinforced Polymer Composites. 1. Tensile Testing and Recovery of Mechanical Properties.

    PubMed

    Lee, Min Wook; An, Seongpil; Jo, Hong Seok; Yoon, Sam S; Yarin, Alexander L

    2015-09-01

    The present work aims at development of self-healing materials capable of partially restoring their mechanical properties under the conditions of prolonged periodic loading and unloading, which is characteristic, for example, of aerospace applications. Composite materials used in these and many other applications frequently reveal multiple defects stemming from their original inhomogeneity, which facilitates microcracking and delamination at ply interfaces. Self-healing nanofiber mats may effectively prevent such damage without compromising material integrity. Two types of core-shell nanofibers were simultaneously electrospun onto the same substrate in order to form a mutually entangled mat. The first type of core-shell fibers consisted of resin monomer (dimethylsiloxane) within the core and polyacrylonitrile within the shell. The second type of core-shell nanofibers consisted of cure (dimethyl-methyl hydrogen-siloxane) within the core and polyacrylonitrile within the shell. These mutually entangled nanofiber mats were used for tensile testing, and they were also encased in polydimethylsiloxane to form composites that were also subsequently subjected to tensile testing. During tensile tests, the nanofibers can be damaged in stretching up to the plastic regime of deformation. Then, the resin monomer and cure was released from the cores and the polydimethylsiloxane resin was polymerized, which might be expected to result in the self-healing properties of these materials. To reveal and evaluate the self-healing properties of the polyacrylonitrile-resin-cure nanofiber mats and their composites, the results were compared to the tensile test results of the monolithic polyacrylonitrile nanofiber mats or composites formed by encasing polyacrylonitrile nanofibers in a polydimethylsiloxane matrix. The latter do not possess self-healing properties, and indeed, do not recover their mechanical characteristics, in contrast to the polyacrylonitrile-resin-cure nanofiber mats and

  16. Molecular-Level Study of the Effect of Prior Axial Compression/Torsion on the Axial-Tensile Strength of PPTA Fibers

    NASA Astrophysics Data System (ADS)

    Grujicic, M.; Yavari, R.; Ramaswami, S.; Snipes, J. S.; Yen, C.-F.; Cheeseman, B. A.

    2013-11-01

    A comprehensive all-atom molecular-level computational investigation is carried out in order to identify and quantify: (i) the effect of prior longitudinal-compressive or axial-torsional loading on the longitudinal-tensile behavior of p-phenylene terephthalamide (PPTA) fibrils/fibers; and (ii) the role various microstructural/topological defects play in affecting this behavior. Experimental and computational results available in the relevant open literature were utilized to construct various defects within the molecular-level model and to assign the concentration to these defects consistent with the values generally encountered under "prototypical" PPTA-polymer synthesis and fiber fabrication conditions. When quantifying the effect of the prior longitudinal-compressive/axial-torsional loading on the longitudinal-tensile behavior of PPTA fibrils, the stochastic nature of the size/potency of these defects was taken into account. The results obtained revealed that: (a) due to the stochastic nature of the defect type, concentration/number density and size/potency, the PPTA fibril/fiber longitudinal-tensile strength is a statistical quantity possessing a characteristic probability density function; (b) application of the prior axial compression or axial torsion to the PPTA imperfect single-crystalline fibrils degrades their longitudinal-tensile strength and only slightly modifies the associated probability density function; and (c) introduction of the fibril/fiber interfaces into the computational analyses showed that prior axial torsion can induce major changes in the material microstructure, causing significant reductions in the PPTA-fiber longitudinal-tensile strength and appreciable changes in the associated probability density function.

  17. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  18. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  19. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    SciTech Connect

    Wang, Shupeng; Zhang, Zhihui Ren, Luquan; Liang, Yunhong; Zhao, Hongwei; Zhu, Bing

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  20. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument. PMID:24985848

  1. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data.

  2. Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.

    PubMed

    Kotha, S P; Guzelsu, N

    2007-01-01

    A porous composite model is developed to analyze the tensile mechanical properties of cortical bone. The effects of microporosity (volksman's canals, osteocyte lacunae) on the mechanical properties of bone tissue are taken into account. A simple shear lag theory, wherein tensile loads are transferred between overlapped mineral platelets by shearing of the organic matrix, is used to model the reinforcement provided by mineral platelets. It is assumed that the organic matrix is elastic in tension and elastic-perfectly plastic in shear until it fails. When organic matrix shear stresses at the ends of mineral platelets reach their yield values, the stress-strain curve of bone tissue starts to deviate from linear behavior. This is referred as the microscopic yield point. At the point where the stress-strain behavior of bone shows a sharp curvature, the organic phase reaches its shear yield stress value over the entire platelet. This is referred as the macroscopic yield point. It is assumed that after macroscopic yield, mineral platelets cannot contribute to the load bearing capacity of bone and that the mechanical behavior of cortical bone tissue is determined by the organic phase only. Bone fails when the principal stress of the organic matrix is reached. By assuming that mechanical properties of the organic matrix are dependent on bone mineral content below the macroscopic yield point, the model is used to predict the entire tensile mechanical behavior of cortical bone for different mineral contents. It is found that decreased shear yield stresses and organic matrix elastic moduli are required to explain the mechanical behavior of bones with lowered mineral contents. Under these conditions, the predicted values (elastic modulus, 0.002 yield stress and strain, and ultimate stress and strain) are within 15% of experimental data. PMID:16434048

  3. Temperature-dependent tensile strength, surface roughness diagnostics, and magnetic support and positioning of polymer ICF shells. Final report, October 1, 1993--April 30, 1995

    SciTech Connect

    Honig, A.

    1995-12-15

    During the course of this grant, we perfected emissivity and accommodation coefficient measurements on polymer ICF shells in the temperature range 250 to 350 K. Values for polystyrene shells are generally between 10{sup -2} and 10{sup -3}, which are very advantageous for ICF at cryogenic temperatures. Preliminary results on Br doped target shells indicate an accommodation coefficient, presumably associated with surface roughness on an atomic scale, about an order of magnitude larger than for ordinary polystyrene target shells. We also constructed apparatus with optical access for low temperature tensile strength and emissivity measurements, and made preliminary tests on this system. Magnetic shells were obtained both from GDP coating and from doping styrene with 10 manometer size ferromagnetic particles. The magnetic properties were measured through electron spin resonance (ESR). These experiments confirm the applicability of the Curie law, and establish the validity of using ESR measurements to determine shell temperature in the low temperature regime from 4K to 250K, thus complementing our presently accessible range. The high electron spin densities (> 10{sup 20}/CM{sup 3}) suggest magnetic levitation should be feasible at cryogenic temperatures. This work has resulted in two conference presentations, a Technical Report, a paper to be published in Fusion Technology, and a Master`s Thesis.

  4. Re-examination of the Present Stress State of the Atera Fault, Central Japan, Based on the Calibrated Crustal Stress Data of Hydraulic Fracturing Test by Measuring the Tensile Strength of Rocks

    NASA Astrophysics Data System (ADS)

    Yamashita, F.; Mizoguchi, K.; Fukuyama, E.; Omura, K.

    2008-12-01

    To infer the activity and physical state of intraplate faults in Japan, we re-examined the crustal stress with the hydraulic fracturing test by measuring the tensile strength of rocks. The tensile strength was measured by fracturing hollow cylindrical rock samples (inner and outer radius are 25.0-25.2 mm and 55.1-101.5 mm, respectively, length is 137.0-140.1 mm) which were obtained close to the in situ stress measurement locations by pressurizing the inner hole of the sample. Confining pressure is not applied to the samples in this test. To check the reliability and accuracy of this test, we conducted similar experiments with the standard rock sample (Inada granite) whose physical property is well known. Then, we measured the tensile strength of all available core samples including the Atera fault (at Ueno, Fukuoka, and Hatajiri), the Atotsugawa fault, and the Nojima fault (at Hirabayashi, Iwaya and Kabutoyama), in central Japan, which had been obtained by the National Research Institute for Earth Science and Disaster Prevention (NIED) by the stress measurement with the hydraulic fracturing method. The measured tensile strength data reveals that the in situ re- opening pressure, which is one of the parameters needed for the determination of the maximum in situ horizontal stress, was obviously biased. We re-estimated the re-opening pressure using the measured tensile strength and the in situ breakdown pressure, and re-calculated the in situ stress around the Atera fault. Although the past dislocation of the Atera fault has been considered to be left lateral from the geographical features around the fault, the re-estimated stress suggests that the present dislocation of the Atera fault is right lateral. And the shear stress decreases from the fault. The right lateral dislocation is also supported by the present-day horizontal crustal deformation observed by the triangular and GPS surveys by Geographical Survey Institute in Japan. Therefore, the dislocation direction

  5. Aligned electrospun siloxane-doped vaterite/poly(L-lactide) composite fibremats: evaluation of their tensile strength and cell compatibility.

    PubMed

    Tujunen, Noora-Maria; Fujikura, Kie; Obata, Akiko; Kasuga, Toshihiro

    2013-01-01

    Siloxane-doped vaterite (SiV)/poly(L-lactide) hybrid-composite (SiPVH) has been developed in our group as the bone repair material and successfully fabricated into a non-woven electrospun fibremat. The aim of this work is to prepare aligned electrospun SiPVH fibremats with varied SiV content and compare their tensile properties and cell compatibilities using mouse osteoblast-like cells. It was observed that the maximum stress exhibited some non-linear trend as a function of SiV content: the highest stress value was reached with 30 wt.% SiV and decreased significantly with more than 40 wt.% SiV. Cellular morphology and proliferation were taken under examination on both aligned and random electrospun SiPVH fibremats. The cells started to orient themselves only 3 h after seeding on the aligned fibremat and they continued to elongate along the fibres. The number of the cells cultured up to seven days on both random and aligned fibremats was well comparable; therefore the alignment did not show negative effect on the cellular proliferation. PMID:23914946

  6. Aligned electrospun siloxane-doped vaterite/poly(L-lactide) composite fibremats: evaluation of their tensile strength and cell compatibility.

    PubMed

    Tujunen, Noora-Maria; Fujikura, Kie; Obata, Akiko; Kasuga, Toshihiro

    2013-01-01

    Siloxane-doped vaterite (SiV)/poly(L-lactide) hybrid-composite (SiPVH) has been developed in our group as the bone repair material and successfully fabricated into a non-woven electrospun fibremat. The aim of this work is to prepare aligned electrospun SiPVH fibremats with varied SiV content and compare their tensile properties and cell compatibilities using mouse osteoblast-like cells. It was observed that the maximum stress exhibited some non-linear trend as a function of SiV content: the highest stress value was reached with 30 wt.% SiV and decreased significantly with more than 40 wt.% SiV. Cellular morphology and proliferation were taken under examination on both aligned and random electrospun SiPVH fibremats. The cells started to orient themselves only 3 h after seeding on the aligned fibremat and they continued to elongate along the fibres. The number of the cells cultured up to seven days on both random and aligned fibremats was well comparable; therefore the alignment did not show negative effect on the cellular proliferation.

  7. The influence of yarn treatment on the tensile properties of biocomposites

    NASA Astrophysics Data System (ADS)

    Širvaitienė, Anne; Jankauskaitė, Virginija; Bekampienė, Paulė; Sankauskaitė, Audronė

    2012-07-01

    The aim of this work was to investigate the influence of cotton and linen yarns treatments at different hierarchical levels on the biocomposite tensile properties. The biodegradable poly(lactic acid) (PLA) resin was used as the matrix polymer. The water based mercerization and low pressure plasma treatment were applied for chemical modification of yarns macro- and microfibrils. To improve fiber orientation of fibre bundles and single fibers the pretension of yarn was used. It was obtained that the most efficient is the complex yarns treatment, plasma treatment with subsequent pre-tension, where especially notable was the positive effect of low-pressure plasma.

  8. Tensile properties and deformation mechanisms of a 14Cr ODS ferritic steel

    NASA Astrophysics Data System (ADS)

    Steckmeyer, A.; Praud, M.; Fournier, B.; Malaplate, J.; Garnier, J.; Béchade, J. L.; Tournié, I.; Tancray, A.; Bougault, A.; Bonnaillie, P.

    2010-10-01

    The search for a new cladding material is part of the research studies carried out at CEA to develop a sodium-cooled fast reactor meeting the expectations of the Generation IV International Forum. In this study, the tensile properties of a ferritic oxide dispersion strengthened steel produced by hot extrusion at CEA have been evaluated. They prove the studied alloy to be as resistant as and more ductile than the other nano-reinforced alloys of literature. The effects of the strain rate and temperature on the total plastic strain of the material remind of diffusion phenomena. Intergranular damage and intergranular decohesion are clearly highlighted.

  9. Tensile properties of aluminized V-5Cr-5Ti alloy after exposure in air environment

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1997-08-01

    The objectives of this task are to (a) develop procedures to modify surface regions of V-Cr-Ti alloys in order to minimize oxygen uptake by the alloys when exposed to environments that contain oxygen, (b) evaluate the oxygen uptake of the surface-modified V-Cr-Ti alloys as a function of temperature an oxygen partial pressure in the exposure environment, (c) characterize the microstructures of oxide scales and oxygen trapped at the grain boundaries of the substrate alloys, and (d) evaluate the influence of oxygen uptake on the tensile properties of the modified alloys at room and elevated temperatures.

  10. Tensile Test For Arboform Samples

    NASA Astrophysics Data System (ADS)

    Plavanescu (Mazurchevici), Simona; Quadrini, Fabrizio; Nedelcu, Dumitru

    2015-07-01

    Petroleum-based plastic materials constitute a major environmental problem due to their low biodegradability and accumulation in various environments. Therefore, searching for novel biodegradable plastics is received particular attention. Our studied material, "Liquid wood" produced from lignin, natural fibres and natural additives, is completely biodegradable in natural environment, in normal conditions. This paper presents the behaviour of Arboform and Arboform reinforced with Aramidic Fibers tensile test analysis. Experimental data show that the tensile strength reached an average value of 15.8 MPa, the modulus of elasticity after tests is 3513.3MPA for Arboform and for the reinforcement the tensile strength is 23.625MPa, the modulus of elasticity after tests is 3411.5MPA, the materials present a brittle behaviour. The high mechanical properties of newly developed material, better than of other ordinary plastics, recommend it as a potential environment-friendly substituent for synthetic plastics, which are present in all fields of activity.

  11. Strength and deformation properties of basaltic lava flows on planetary surfaces

    NASA Astrophysics Data System (ADS)

    Schultz, Richard A.

    1993-03-01

    Basaltic rocks are thought to constitute a volumetrically significant rock type on the Moon, Mercury, Mars, and Venus, in addition to the Earth. Spacecraft images of surfaces with known or suspected basaltic composition on these bodies, particularly on Venus, indicate that these rocks have been deformed in the brittle regime to form faults and perhaps dilatant cracks, in addition to folding and more distributed types of deformation. Predictions of brittle fracture or other types of deformation are made by comparing calculated stresses from a tectonic model to some criterion for rock strength. Common strength criteria used in the planetary science literature for near-surface deformation include a Griffith tensile-strength criterion for intact rock, a Mohr envelope for intact basalt, and a brittle strength envelope based on Byerlee's law of rock frictional resistance. However, planetary terrains of basaltic composition consist of much more than just intact basaltic rock. The aggregate basaltic material, termed the 'rock mass,' consists of both the intact rock and the associated fracture, faults, lithologic contacts, and other discontinuous surfaces. A basaltic rock mass is the relevant material for which strength properties must be defined and calculated model stresses must be compared to in order to more accurately predict brittle deformation. For example, the various strengths of a rock mass are less than that of intact material of the same composition. This means that tectonic models which compare stresses to intact failure strengths overestimate the stresses required for fracture and so underestimate the extent and magnitude of brittle deformation predicted in these models. On the other hand, rock mass shear strength can be greater than that predicted from Byerlee's law. The concept of rock mass strength is central to many engineering design studies in which calculated stresses are used to predict brittle fracture, and this experience indicates that brittle

  12. Tensile properties of V-Cr-Ti alloys after exposure in hydrogen-containing environments

    SciTech Connect

    Natesan, K.; Soppet, W.K.

    1998-09-01

    A systematic study has been initiated at Argonne National Laboratory to evaluate the performance of several V-Cr-Ti alloys after exposure to environments containing hydrogen at various partial pressures. The goal is to correlate the chemistry of the exposure environment with hydrogen uptake in the samples and its influence on the microstructure and tensile properties of the alloys. At present, the principal effort has focused on the V-4Cr-4Ti alloy of heat identified as BL-71; however other alloys (V-5Cr-5Ti alloy of heats BL-63, and T87, plus V-4Cr-4Ti alloy from General Atomics [GA]) are also being evaluated. Other variables of interest are the effect of initial grain size on the tensile behavior of the alloys. Experiments conducted on specimens of various V-Cr-Ti alloys exposed to pH{sub 2} levels of 0.01 and 3 {times} 10{sup {minus}6} torr showed negligible effect of H{sub 2} on either maximum engineering stress or uniform and total elongation. However, uniform and total elongation decreased substantially when the alloys were exposed to 1.0 torr H{sub 2} pressure. Preliminary data from sequential exposures of the materials to low-pO{sub 2} and several low-pH{sub 2} environments did not reveal an adverse effect on the maximum engineering stress or on uniform and total elongation. Further, tests in H{sub 2} environments on specimens annealed at different temperatures showed that grain-size variation by a factor of {approx}2 had little or no effect on tensile properties.

  13. In Vitro Comparison of Compressive and Tensile Strengths ofAcrylic Resins Reinforced by Silver Nanoparticles at 2% and0.2% Concentrations

    PubMed Central

    Ghaffari, Tahereh; Hamedirad, Fahimeh; Ezzati, Baharak

    2014-01-01

    Background and aims. Polymethyl methacrylate, PMMA, is widely used in prosthodontics for fabrication of removable prostheses. This study was undertaken to investigate the effect of adding silver nanoparticles (AgNPs) to PMMA at 2% and 0.2% concentrations on compressive and tensile strengths of PMMA. Materials and methods. The silver nanoparticles were mixed with heat-cured acrylic resin in an amalgamator in two groups at 0.2 and 2 wt% of AgNPs. Eighteen 2×20×200-mm samples were prepared for tensile strength test, 12 samples containing silver nanoparticle and 6 samples for the control group. Another 18 cylindrical 25×38-mm samples were prepared for compressive strength test. Scanning electron microscopy was used to verify homogeneous distribution of particles. The powder was manually mixed with a resin monomer and then the mixture was properly blended. Before curing, the paste was packed into steel molds. After curing, the specimens were removed from the molds. One-way ANOVA was used for statistical analysis, followed by multiple comparison test (Scheffé’s test). Results. This study showed that the mean compressive strength of PMMA reinforced with AgNPs was significantly higher than that of the unmodified PMMA (P<0.05). It was not statistically different between the two groups reinforced with AgNPs. The tensile strength was not significantly different between the 0.2% group and unmodified PMMA and it de-creased significantly after incorporation of 2% AgNPs (P<0.05). Conclusion. Based on the results and the desirable effect of nanoparticles of silver on improvement of compressive strength of PMMA, use of this material with proper concentration in the palatal area of maxillary acrylic resin dentures is recommended. PMID:25587381

  14. pGlcNAc Nanofiber Treatment of Cutaneous Wounds Stimulate Increased Tensile Strength and Reduced Scarring via Activation of Akt1

    PubMed Central

    Lindner, Haley Buff; Felmly, Lloyd McPherson; Demcheva, Marina; Seth, Arun; Norris, Russell; Bradshaw, Amy D.; Vournakis, John; Muise-Helmericks, Robin C.

    2015-01-01

    Treatment of cutaneous wounds with poly-N-acetyl-glucosamine containing nanofibers (pGlcNAc), a novel polysaccharide material derived from a marine diatom, results in increased wound closure, antibacterial activities and innate immune responses. We have shown that Akt1 plays a central role in the regulation of these activities. Here, we show that pGlcNAc treatment of cutaneous wounds results in a smaller scar that has increased tensile strength and elasticity. pGlcNAc treated wounds exhibit decreased collagen content, increased collagen organization and decreased myofibroblast content. A fibrin gel assay was used to assess the regulation of fibroblast alignment in vitro. In this assay, fibrin lattice is formed with two pins that provide focal points upon which the gel can exert force as the cells align from pole to pole. pGlcNAc stimulation of embedded fibroblasts results in cellular alignment as compared to untreated controls, by a process that is Akt1 dependent. We show that Akt1 is required in vivo for the pGlcNAc-induced increased tensile strength and elasticity. Taken together, our findings suggest that pGlcNAc nanofibers stimulate an Akt1 dependent pathway that results in the proper alignment of fibroblasts, decreased scarring, and increased tensile strength during cutaneous wound healing. PMID:25955155

  15. Correlation between strength properties in standard test specimens and molded phenolic parts

    NASA Technical Reports Server (NTRS)

    Turner, P S; Thomason, R H

    1946-01-01

    This report describes an investigation of the tensile, flexural, and impact properties of 10 selected types of phenolic molding materials. The materials were studied to see in what ways and to what extent their properties satisfy some assumptions on which the theory of strength of materials is based: namely, (a) isotropy, (b) linear stress-strain relationship for small strains, and (c) homogeneity. The effect of changing the dimensions of tensile and flexural specimens and the span-depth ratio in flexural tests were studied. The strengths of molded boxes and flexural specimens cut from the boxes were compared with results of tests on standard test specimens molded from the respective materials. The nonuniformity of a material, which is indicated by the coefficient of variation, affects the results of tests made with specimens of different sizes and tests with different methods of loading. The strength values were found to depend on the relationship between size and shape of the molded specimen and size and shape of the fillers. The most significant variations observed within a diversified group of materials were found to depend on the orientation of fibrous fillers. Of secondary importance was the dependence of the variability of test results on the pieces of filler incorporated into the molding powder as well as on the size of the piece. Static breaking strength tests on boxes molded from six representative phenolic materials correlated well with falling-ball impact tests on specimens cut from molded flat sheets. Good correlation was obtained with Izod impact tests on standard test specimens prepared from the molding materials. The static breaking strengths of the boxes do not correlate with the results of tensile or flexural tests on standard specimens.

  16. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    PubMed Central

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  17. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-06-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  18. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties.

  19. Novel strip-cast Mg/Al clad sheets with excellent tensile and interfacial bonding properties.

    PubMed

    Kim, Jung-Su; Lee, Dong Ho; Jung, Seung-Pill; Lee, Kwang Seok; Kim, Ki Jong; Kim, Hyoung Seop; Lee, Byeong-Joo; Chang, Young Won; Yuh, Junhan; Lee, Sunghak

    2016-01-01

    In order to broaden industrial applications of Mg alloys, as lightest-weight metal alloys in practical uses, many efforts have been dedicated to manufacture various clad sheets which can complement inherent shortcomings of Mg alloys. Here, we present a new fabrication method of Mg/Al clad sheets by bonding thin Al alloy sheet on to Mg alloy melt during strip casting. In the as-strip-cast Mg/Al clad sheet, homogeneously distributed equi-axed dendrites existed in the Mg alloy side, and two types of thin reaction layers, i.e., γ (Mg17Al12) and β (Mg2Al3) phases, were formed along the Mg/Al interface. After post-treatments (homogenization, warm rolling, and annealing), the interfacial layers were deformed in a sawtooth shape by forming deformation bands in the Mg alloy and interfacial layers, which favorably led to dramatic improvement in tensile and interfacial bonding properties. This work presents new applications to multi-functional lightweight alloy sheets requiring excellent formability, surface quality, and corrosion resistance as well as tensile and interfacial bonding properties. PMID:27245687

  20. Thickness Dependence of Electrical and Structural Properties of Tensile Strained Calcium Manganese Oxide Thin Films

    NASA Astrophysics Data System (ADS)

    Hart, Cacie; Warecki, Zoey; Chaudhry, Adeel; Ferrone, Natalie; Houston, David; Lawson, Bridget; Yong, Grace; Kolagani, Rajeswari

    We have investigated the properties of CaMnO3-δ thin films epitaxially grown by pulsed laser deposition on lattice mismatched substrates, (100)LaAlO3 and (100)SrTiO3 , leading to a tensile strain of ~4 % and 1.5 % respectively. For our films these substrates, thickness dependence of the properties is characteristically different from what has been previously observed in thin films of hole-doped manganites. We observe that the resistivity decreases significantly as the film thickness decreases. The decrease in resistivity is more pronounced in the films on (100)SrTiO3 with the larger lattice mismatch, the resistivity of the thinnest films being about 3 orders of magnitude lower than the of bulk CaMnO3. Thickness dependence of the lattice constants also show deviations from the behavior expected from strain relaxation. These results suggest a coupling between tensile strain and oxygen deficiency consistent with predictions from models based on density functional theory calculations. Our results are relevant for potential catalytic applications of CaMnO3-δ thin films. NSF Grant ECCS112856 and Seed Funding from the School of Emerging Technologies.