NASA Astrophysics Data System (ADS)
Nair, Nishant; Virpura, Hiral; Patel, Rajesh
2015-06-01
We describe here two measurement techniques to determine surface tension of magnetic fluid. (i) magneti c field dependent capillary rise method and (ii) Taylor wavelength method in which the distance between the consecutive stable spikes was measured and then surface tension was calculated. The surface tension measurements from both the methods are compared. It is observed that surface tension of magnetic fluid increases with increase in magnetic field due to field dependent structure formation in magnetic fluid at an air interface. We have also measured magnetic susceptibility and surface tension for different volume fractions. The measurement of magnetic susceptibility is carried out using Quincke's experimental techniques.
Phase-locked scroll waves defy turbulence induced by negative filament tension.
Li, Teng-Chao; Gao, Xiang; Zheng, Fei-Fei; Cai, Mei-Chun; Li, Bing-Wei; Zhang, Hong; Dierckx, Hans
2016-01-01
Scroll waves in a three-dimensional media may develop into turbulence due to negative tension of the filament. Such negative tension-induced instability of scroll waves has been observed in the Belousov-Zhabotinsky reaction systems. Here we propose a method to restabilize scroll wave turbulence caused by negative tension in three-dimensional chemical excitable media using a circularly polarized (rotating) external field. The stabilization mechanism is analyzed in terms of phase-locking caused by the external field, which makes the effective filament tension positive. The phase-locked scroll waves that have positive tension and higher frequency defy the turbulence and finally restore order. A linear theory for the change of filament tension caused by a generic rotating external field is presented and its predictions closely agree with numerical simulations.
Wang, Hsing-Won; Chu, Yueng-Hsiang; Chao, Pin-Zhir; Lee, Fei-Peng
2014-10-01
The pitch of voice is closely related to the vocal fold tension, which is the end result of coordinated movement of the intralaryngeal muscles, and especially the thyroarytenoid muscle. It is known that vocal quality may be affected by surrounding temperature; however, the effect of temperature on vocal fold tension is mostly unknown. Thus, the aim of this study was to evaluate the effect of temperature on isolated rat glottis and thyroarytenoid muscle contraction induced by electrical field stimulation. In vitro isometric tension of the glottis ring from 30 Sprague-Dawley rats was continuously recorded by the tissue bath method. Electrical field stimulation was applied to the glottis ring with two wire electrodes placed parallel to the glottis and connected to a direct-current stimulator. The tension changes of the rat glottis rings that were either untreated or treated with electrical field stimulation were recorded continuously at temperatures from 37 to 7 °C or from 7 to 37 °C. Warming from 7 to 37 °C increased the basal tension of the glottis rings and decreased the electrical field stimulation-induced glottis ring contraction, which was chiefly due to thyroarytenoid muscle contraction. In comparison, cooling from 37 to 7 °C decreased the basal tension and enhanced glottis ring contraction by electrical field stimulation. We concluded that warming increased the basal tension of the glottis in vitro and decreased the amplitude of electrical field stimulation-induced thyroarytenoid muscle contraction. Thus, vocal pitch and the fine tuning of vocal fold tension might be affected by temperature in vivo.
ERIC Educational Resources Information Center
Frederick, A. B.
This is a bibliography of literature on the subject of tension. Books, films, and periodicals with a bearing on stress, relaxation, anxiety, and/or methods of controlling stress are listed from the fields of physiology, psychology, and philosophy. New methods such as transcendental meditation and biofeedback are analyzed briefly and criteria are…
Water liquid-vapor interface subjected to various electric fields: A molecular dynamics study.
Nikzad, Mohammadreza; Azimian, Ahmad Reza; Rezaei, Majid; Nikzad, Safoora
2017-11-28
Investigation of the effects of E-fields on the liquid-vapor interface is essential for the study of floating water bridge and wetting phenomena. The present study employs the molecular dynamics method to investigate the effects of parallel and perpendicular E-fields on the water liquid-vapor interface. For this purpose, density distribution, number of hydrogen bonds, molecular orientation, and surface tension are examined to gain a better understanding of the interface structure. Results indicate enhancements in parallel E-field decrease the interface width and number of hydrogen bonds, while the opposite holds true in the case of perpendicular E-fields. Moreover, perpendicular fields disturb the water structure at the interface. Given that water molecules tend to be parallel to the interface plane, it is observed that perpendicular E-fields fail to realign water molecules in the field direction while the parallel ones easily do so. It is also shown that surface tension rises with increasing strength of parallel E-fields, while it reduces in the case of perpendicular E-fields. Enhancement of surface tension in the parallel field direction demonstrates how the floating water bridge forms between the beakers. Finally, it is found that application of external E-fields to the liquid-vapor interface does not lead to uniform changes in surface tension and that the liquid-vapor interfacial tension term in Young's equation should be calculated near the triple-line of the droplet. This is attributed to the multi-directional nature of the droplet surface, indicating that no constant value can be assigned to a droplet's surface tension in the presence of large electric fields.
Simulation of prepackaged grout bleed under field conditions : [summary].
DOT National Transportation Integrated Search
2014-04-01
Post-tensioning (PT) is a method of compensating : for concretes weakness under tension by adding : steel. Tubes (ducts) are cast into concrete : components; after the concrete sets, high-strength steel cables (tendons or strand) are run : through...
NASA Astrophysics Data System (ADS)
Yuan, H. Z.; Chen, Z.; Shu, C.; Wang, Y.; Niu, X. D.; Shu, S.
2017-09-01
In this paper, a free energy-based surface tension force (FESF) model is presented for accurately resolving the surface tension force in numerical simulation of multiphase flows by the level set method. By using the analytical form of order parameter along the normal direction to the interface in the phase-field method and the free energy principle, FESF model offers an explicit and analytical formulation for the surface tension force. The only variable in this formulation is the normal distance to the interface, which can be substituted by the distance function solved by the level set method. On one hand, as compared to conventional continuum surface force (CSF) model in the level set method, FESF model introduces no regularized delta function, due to which it suffers less from numerical diffusions and performs better in mass conservation. On the other hand, as compared to the phase field surface tension force (PFSF) model, the evaluation of surface tension force in FESF model is based on an analytical approach rather than numerical approximations of spatial derivatives. Therefore, better numerical stability and higher accuracy can be expected. Various numerical examples are tested to validate the robustness of the proposed FESF model. It turns out that FESF model performs better than CSF model and PFSF model in terms of accuracy, stability, convergence speed and mass conservation. It is also shown in numerical tests that FESF model can effectively simulate problems with high density/viscosity ratio, high Reynolds number and severe topological interfacial changes.
A Technique for Estimating the Surface Conductivity of Single Molecules
NASA Astrophysics Data System (ADS)
Bau, Haim; Arsenault, Mark; Zhao, Hui; Purohit, Prashant; Goldman, Yale
2007-11-01
When an AC electric field at 2MHz was applied across a small gap between two metal electrodes elevated above a surface, rhodamine-phalloidin-labeled actin filaments were attracted to the gap and became suspended between the two electrodes. The variance of each filament's horizontal, lateral displacement was measured as a function of electric field intensity and position along the filament. The variance significantly decreased as the electric field intensity increased. Hypothesizing that the electric field induces electroosmotic flow around the filament that, in turn, induces drag on the filament, which appears as effective tension, we estimated the tension using a linear, Brownian dynamic model. Based on the tension, we estimated the filament's surface conductivity. Our experimental method provides a novel means for trapping and manipulating biological filaments and for probing the surface conductance and mechanical properties of single polymers.
ERIC Educational Resources Information Center
Hebard, Heather
2016-01-01
Background/context: Tensions between university-based teacher preparation courses and field placements have long been identified as an obstacle to novices' uptake of promising instructional practices. This tension is particularly salient for writing instruction, which continues to receive inadequate attention in K-12 classrooms. More scholarship…
On the Support of Solar Prominence Material by the Dips of a Coronal Flux Tube
NASA Astrophysics Data System (ADS)
Hillier, Andrew; van Ballegooijen, Adriaan
2013-04-01
The dense prominence material is believed to be supported against gravity through the magnetic tension of dipped coronal magnetic field. For quiescent prominences, which exhibit many gravity-driven flows, hydrodynamic forces are likely to play an important role in the determination of both the large- and small-scale magnetic field distributions. In this study, we present the first steps toward creating a three-dimensional magneto-hydrostatic prominence model where the prominence is formed in the dips of a coronal flux tube. Here 2.5D equilibria are created by adding mass to an initially force-free magnetic field, then performing a secondary magnetohydrodynamic relaxation. Two inverse polarity magnetic field configurations are studied in detail, a simple o-point configuration with a ratio of the horizontal field (Bx ) to the axial field (By ) of 1:2 and a more complex model that also has an x-point with a ratio of 1:11. The models show that support against gravity is either by total pressure or tension, with only tension support resembling observed quiescent prominences. The o-point of the coronal flux tube was pulled down by the prominence material, leading to compression of the magnetic field at the base of the prominence. Therefore, tension support comes from the small curvature of the compressed magnetic field at the bottom and the larger curvature of the stretched magnetic field at the top of the prominence. It was found that this method does not guarantee convergence to a prominence-like equilibrium in the case where an x-point exists below the prominence flux tube. The results imply that a plasma β of ~0.1 is necessary to support prominences through magnetic tension.
Shape accuracy optimization for cable-rib tension deployable antenna structure with tensioned cables
NASA Astrophysics Data System (ADS)
Liu, Ruiwei; Guo, Hongwei; Liu, Rongqiang; Wang, Hongxiang; Tang, Dewei; Song, Xiaoke
2017-11-01
Shape accuracy is of substantial importance in deployable structures as the demand for large-scale deployable structures in various fields, especially in aerospace engineering, increases. The main purpose of this paper is to present a shape accuracy optimization method to find the optimal pretensions for the desired shape of cable-rib tension deployable antenna structure with tensioned cables. First, an analysis model of the deployable structure is established by using finite element method. In this model, geometrical nonlinearity is considered for the cable element and beam element. Flexible deformations of the deployable structure under the action of cable network and tensioned cables are subsequently analyzed separately. Moreover, the influence of pretension of tensioned cables on natural frequencies is studied. Based on the results, a genetic algorithm is used to find a set of reasonable pretension and thus minimize structural deformation under the first natural frequency constraint. Finally, numerical simulations are presented to analyze the deployable structure under two kinds of constraints. Results show that the shape accuracy and natural frequencies of deployable structure can be effectively improved by pretension optimization.
Development of DPD coarse-grained models: From bulk to interfacial properties
DOE Office of Scientific and Technical Information (OSTI.GOV)
Solano Canchaya, José G.; Dequidt, Alain, E-mail: alain.dequidt@univ-bpclermont.fr; Goujon, Florent
2016-08-07
A new Bayesian method was recently introduced for developing coarse-grain (CG) force fields for molecular dynamics. The CG models designed for dissipative particle dynamics (DPD) are optimized based on trajectory matching. Here we extend this method to improve transferability across thermodynamic conditions. We demonstrate the capability of the method by developing a CG model of n-pentane from constant-NPT atomistic simulations of bulk liquid phases and we apply the CG-DPD model to the calculation of the surface tension of the liquid-vapor interface over a large range of temperatures. The coexisting densities, vapor pressures, and surface tensions calculated with different CG andmore » atomistic models are compared to experiments. Depending on the database used for the development of the potentials, it is possible to build a CG model which performs very well in the reproduction of the surface tension on the orthobaric curve.« less
Chen, Ming-Wen; Li, Lin-Yan; Guo, Hui-Min
2017-08-28
The dynamics of nucleation and growth of a particle affected by anisotropic surface tension in the ternary alloy melt is studied. The uniformly valid asymptotic solution for temperature field, concentration field, and interface evolution of nucleation and particle growth is obtained by means of the multiple variable expansion method. The asymptotic solution reveals the critical radius of nucleation in the ternary alloy melt and an inward melting mechanism of the particle induced by the anisotropic effect of surface tension. The critical radius of nucleation is dependent on isotropic surface tension, temperature undercooling, and constitutional undercooling in the ternary alloy melt, and the solute diffusion melt decreases the critical radius of nucleation. Immediately after a nucleus forms in the initial stage of solidification, the anisotropic effect of surface tension makes some parts of its interface grow inward while some parts grow outward. Until the inward melting attains a certain distance (which is defined as "the melting depth"), these parts of interface start to grow outward with other parts. The interface of the particle evolves into an ear-like deformation, whose inner diameter may be less than two times the critical radius of nucleation within a short time in the initial stage of solidification. The solute diffusion in the ternary alloy melt decreases the effect of anisotropic surface tension on the interface deformation.
An immersed boundary method for simulating vesicle dynamics in three dimensions
NASA Astrophysics Data System (ADS)
Seol, Yunchang; Hu, Wei-Fan; Kim, Yongsam; Lai, Ming-Chih
2016-10-01
We extend our previous immersed boundary (IB) method for 3D axisymmetric inextensible vesicle in Navier-Stokes flows (Hu et al., 2014 [17]) to general three dimensions. Despite a similar spirit in numerical algorithms to the axisymmetric case, the fully 3D numerical implementation is much more complicated and is far from straightforward. A vesicle membrane surface is known to be incompressible and exhibits bending resistance. As in 3D axisymmetric case, instead of keeping the vesicle locally incompressible, we adopt a modified elastic tension energy to make the vesicle surface patch nearly incompressible so that solving the unknown tension (Lagrange multiplier for the incompressible constraint) can be avoided. Nevertheless, the new elastic force derived from the modified tension energy has exactly the same mathematical form as the original one except the different definitions of tension. The vesicle surface is discretized on a triangular mesh where the elastic tension and bending force are calculated on each vertex (Lagrangian marker in the IB method) of the triangulation. A series of numerical tests on the present scheme are conducted to illustrate the robustness and applicability of the method. We perform the convergence study for the immersed boundary forces and the fluid velocity field. We then study the vesicle dynamics in various flows such as quiescent, simple shear, and gravitational flows. Our numerical results show good agreements with those obtained in previous theoretical, experimental and numerical studies.
[Current issues, problems and prospects of tension-free hernioplasty (review)].
2014-01-01
In the present study there are discussed modern methods of the tension free hernioplastics, the complications associated with them and technical difficulties, up-to-date views and the perspectives of the issue development in terms of avoiding infectious complications, positioning of implants and their fixation. Hernia is one of the widespread surgical pathologies as it is found in 4% of the population and its share among the inpatient surgical diseases is about 18-30%. Consequently annually up to 20-21 mln hernioplasties are carried out worldwide. Despite of many years of experience in the field of hernia surgical treatment there still exist many unsolved problems such as safe closure of defects of abdominal cavity wall. Up to 200 methods of hernioplastics, various implantations and application of synthetic materials refer to lack of the optimal surgical strategy. In modern herniology priorities are given to tension free plastics. The merge of the synthetic implants and "tension free hernioplastics" concepts enabled sharp reduction of the side effects list, making it possible to perform successful surgeries in that contingent whose treatment by the method of tissue-plasty was related with high risk of lethality. Large scale introduction of tension free hernioplastics caused intensification of the associated problems such as migration, dissection and shortening of the net.
Leroy, Frédéric; Müller-Plathe, Florian
2015-08-04
We introduce a methodology, referred to as the dry-surface method, to calculate the work of adhesion of heterogeneous solid-liquid interfaces by molecular simulation. This method employs a straightforward thermodynamic integration approach to calculate the work of adhesion as the reversible work to turn off the attractive part of the actual solid-liquid interaction potential. It is formulated in such a way that it may be used either to evaluate the ability of force fields to reproduce reference values of the work of adhesion or to optimize force-field parameters with reference values of the work of adhesion as target quantities. The methodology is tested in the case of water on a generic model of nonpolar substrates with the structure of gold. It is validated through a quantitative comparison to phantom-wall calculations and against a previous characterization of the thermodynamics of the gold-water interface. It is found that the work of adhesion of water on nonpolar substrates is a nonlinear function of the microscopic solid-liquid interaction energy parameter. We also comment on the ability of mean-field approaches to predict the work of adhesion of water on nonpolar substrates. In addition, we discuss in detail the information on the solid-liquid interfacial thermodynamics delivered by the phantom-wall approach. We show that phantom-wall calculations yield the solid-liquid interfacial tension relative to the solid surface tension rather than the absolute solid-liquid interfacial tension as previously believed.
Kremer, J; Kilzer, A; Petermann, M
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
NASA Astrophysics Data System (ADS)
Kremer, J.; Kilzer, A.; Petermann, M.
2018-01-01
Oscillations of small liquid drops around a spherical shape have been of great interest to scientists measuring physical properties such as interfacial tension and viscosity, over the last few decades. A powerful tool for contactless positioning is acoustic levitation, which has been used to simultaneously determine the surface tension and viscosity of liquids at ambient pressure. In order to extend this acoustic levitation measurement method to high pressure systems, the method is first evaluated under ambient pressure. To measure surface tension and viscosity using acoustically levitated oscillating drops, an image analysis method has to be developed and factors which may affect measurement, such as sound field or oscillation amplitude, have to be analyzed. In this paper, we describe the simultaneous measurement of surface tension and viscosity using freely decaying shape oscillations of acoustically levitated droplets of different liquids (silicone oils AK 5 and AK 10, squalane, 1-propanol, 1-butanol, 1-pentanol, 1-hexanol, 1-heptanol, and 1-octanol) in air. These liquids vary in viscosity from 2 to about 30 mPa s. An acoustic levitation system, including an optimized standing wave acoustic levitator and a high-speed camera, was used for this study. An image analysis was performed with a self-written Matlab® code. The frequency of oscillation and the damping constant, required for the determination of surface tension and viscosity, respectively, were calculated from the evolution of the equatorial and polar radii. The results and observations are compared to data from the literature in order to analyze the accuracy of surface tension and viscosity determination, as well as the effect of non-spherical drop shape or amplitude of oscillation on measurement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lei, Huan; Baker, Nathan A.; Wu, Lei
2016-08-05
Thermal fluctuations cause perturbations of fluid-fluid interfaces and highly nonlinear hydrodynamics in multiphase flows. In this work, we develop a novel multiphase smoothed dissipative particle dynamics model. This model accounts for both bulk hydrodynamics and interfacial fluctuations. Interfacial surface tension is modeled by imposing a pairwise force between SDPD particles. We show that the relationship between the model parameters and surface tension, previously derived under the assumption of zero thermal fluctuation, is accurate for fluid systems at low temperature but overestimates the surface tension for intermediate and large thermal fluctuations. To analyze the effect of thermal fluctuations on surface tension,more » we construct a coarse-grained Euler lattice model based on the mean field theory and derive a semi-analytical formula to directly relate the surface tension to model parameters for a wide range of temperatures and model resolutions. We demonstrate that the present method correctly models the dynamic processes, such as bubble coalescence and capillary spectra across the interface.« less
Brief: Field measurements of casing tension forces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quigley, M.S.; Lewis, D.B.; Boswell, R.S.
1995-02-01
Tension forces acting on individual casing joints were accurately measured during installation of 10,158 ft of 9 5/8-in. {times} 47-lbm/ft casing and 11,960 ft of 11 7/8-in. {times} 71.8-lbm/ft casing. A unique casing load table (CLT) weighed the casing string after the addition of each casing joint. Strain gauges attached inside the pin ends of instrumented casing joints (ICJ`s) directly measured tension force on those joints. A high-speed computer data-acquisition system (DAS) automatically recorded data from all the sensors. Several casing joints were intentionally subjected to extreme deceleration to determine upper limits for dynamic tension forces. Data from these testsmore » clearly show effects of wellbore friction and casing handling conditions. In every case, tension forces in the casing during maximum deceleration were considerably less than expected. In some cases, the highest tension forces occurred when the casing lifted out of the slips. Peak tension forces caused by setting the casing slips were typically no more than 5% greater than tension forces in the casing at rest. This dynamic amplification was far less than the 60% value used in the previous casing design method. Reducing the safety factor for installation loads has permitted use of lighter, less-expensive casing than dictated by older design criteria.« less
NASA Astrophysics Data System (ADS)
Provata, Astero; Prassas, Vassilis D.; Theodorou, Doros N.
1997-10-01
A thin liquid film of lattice fluid in equilibrium with its vapor is studied in 2 and 3 dimensions with canonical Monte Carlo simulation (MC) and Self-Consistent Field Theory (SCF) in the temperature range 0.45Tc to Tc, where Tc the liquid-gas critical temperature. Extending the approach of Oates et al. [Philos. Mag. B 61, 337 (1990)] to anisotropic systems, we develop a method for the MC computation of the transverse and normal pressure profiles, hence of the surface tension, based on virtual removals of individual sites or blocks of sites from the system. Results from implementation of this new method, obtained at very modest computational cost, are in reasonable agreement with exact values and other MC estimates of the surface tension of the 2-d and 3-d model systems, respectively. SCF estimates of the interfacial density profiles, the surface tension, the vapor pressure curve and the binodal curve compare well with MC results away from Tc, but show the expected deviations at high temperatures.
Effect of surface tension on global modes of confined wake flows
NASA Astrophysics Data System (ADS)
Tammisola, Outi; Lundell, Fredrik; Söderberg, L. Daniel
2011-01-01
Many wake flows are susceptible to self-sustained oscillations, such as the well-known von Kármán vortex street behind a cylinder that makes a rope beat against a flagpole at a distinct frequency on a windy day. One appropriate method to study these global instabilities numerically is to look at the growth rates of the linear temporal global modes. If all growth rates for all modes are negative for a certain flow field then a self-sustained oscillation should not occur. On the other hand, if one growth rate for one mode is slightly positive, the oscillation will approximately obtain the frequency and shape of this global mode. In our study, we first introduce surface tension between two fluids to the wake-flow problem. Then we investigate its effects on the global linear instability of a spatially developing wake with two co-flowing immiscible fluids. The inlet profile consists of two uniform layers, which makes the problem easily parametrizable. The fluids are assumed to have the same density and viscosity, with the result that the interface position becomes dynamically important solely through the action of surface tension. Two wakes with different parameter values and surface tension are studied in detail. The results show that surface tension has a strong influence on the oscillation frequency, growth rate, and shape of the global mode(s). Finally, we make an attempt to confirm and explain the surface-tension effect based on a local stability analysis of the same flow field in the streamwise position of maximum reverse flow.
Blanchette, Craig D.; Lin, Wan-Chen; Orme, Christine A.; Ratto, Timothy V.; Longo, Marjorie L.
2008-01-01
Domains within the plane of the plasma membrane, referred to as membrane rafts, have been a topic of considerable interest in the field of membrane biophysics. Although model membrane systems have been used extensively to study lipid phase behavior as it relates to the existence of rafts, very little work has focused on either the initial stage of lipid domain nucleation, or the relevant physical parameters such as temperature and interfacial line tension which control nucleation. In this work, we utilize a method in which the kinetic process of lipid domain nucleation is imaged by atomic force microscopy and modeled using classical theory of nucleation to map interfacial line tension in ternary lipid mixtures. These mixtures consist of a fluid phase lipid component (1,2-dilauroyl-sn-glycero-3-phosphocholine, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine, or 1,2-dioleoyl-sn-glycero-3-phosphocholine), a solid phase component (galactosylceramide), and cholesterol. Interfacial line tension measurements of galactosylceramide-rich domains track with our previously measured area/perimeter ratios and height mismatches measured here. Line tension also follows known trends in cholesterol interactions and partitioning, as we observed previously with area/perimeter ratios. Our line tension measurements are discussed in combination with recent line tension measurements to address line tension regulation by cholesterol and the dynamic nature of membrane rafts. PMID:18065459
NASA Astrophysics Data System (ADS)
Fu, Guangwei; Li, Qifeng; Li, Yunpu; Yang, Jiandong; Fu, Xinghu; Bi, Weihong; Li, Yanjun
2016-10-01
A tension sensor of Photonic Crystal Fiber(PCF) is presented based on core-offset splicing and waist-enlarged fiber taper. The tension response characteristics of the sensor are studied experimentally. To analyzing the modal interference, many samples with different PCF lengths between the two splicing areas, different core-offset distances and different waist-enlarged fiber taper diameters are fabricated and tested. When the tension range is 0 to 4000μɛ, the results show that the spectrum is blue shift with the increasing of the axial tension. The sensitivity is-2.1 pm/μɛ. The experimental results show that the tension sensitivity can be not influenced by the PCF lengths, the core-offset distances.The waist-enlarged fiber taper diameters and the tension sensor is very sensitive to axial tension and the relationship between the wavelength shift and tension is linearity. To determine the number of the interfering modes, the transmission spectra of these sensor is transformed by the fast fourier transform (FFT) method. There are several peaks in the spatial frequency spectra at these sensors. Only one cladding mode is dominantly excited, while the other cladding modes are weak. The spatial frequency is proportional to the differential mode group index. Compared with the traditional fiber sensor, this sensor has some advantages including the easily fabricated, simple structure and high sensitivity. It can be used in industrial production, building monitoring, aerospace and other fields.
NASA Astrophysics Data System (ADS)
Ye, Hongfei; Zheng, Yonggang; Zhang, Zhongqiang; Zhang, Hongwu; Chen, Zhen
2016-08-01
Precisely controlling the deformation of carbon nanotubes (CNTs) has practical application in the development of nanoscale functional devices, although it is a challenging task. Here, we propose a novel method to guide the deformation of CNTs through filling them with salt water and applying an electric field. With the electric field along the axial direction, the height of CNTs is enlarged by the axial electric force due to the internal ions and polar water molecules. Under an electric field with two mutually orthogonal components, the transverse electric force could further induce the bending deformation of CNTs. Based on the classical rod and beam theories, two mechanical models are constructed to verify and quantitatively describe the relationships between the tension and bending deformations of CNTs and the electric field intensity. Moreover, by means of the electric field-driven tension behavior of CNTs, we design a stretchable molecular sieve to control the flow rate of mixed gas and collect a single high-purity gas. The present work opens up new avenues in the design and fabrication of nanoscale controlling units.
Koski, Jason P; Riggleman, Robert A
2017-04-28
Block copolymers, due to their ability to self-assemble into periodic structures with long range order, are appealing candidates to control the ordering of functionalized nanoparticles where it is well-accepted that the spatial distribution of nanoparticles in a polymer matrix dictates the resulting material properties. The large parameter space associated with block copolymer nanocomposites makes theory and simulation tools appealing to guide experiments and effectively isolate parameters of interest. We demonstrate a method for performing field-theoretic simulations in a constant volume-constant interfacial tension ensemble (nVγT) that enables the determination of the equilibrium properties of block copolymer nanocomposites, including when the composites are placed under tensile or compressive loads. Our approach is compatible with the complex Langevin simulation framework, which allows us to go beyond the mean-field approximation. We validate our approach by comparing our nVγT approach with free energy calculations to determine the ideal domain spacing and modulus of a symmetric block copolymer melt. We analyze the effect of numerical and thermodynamic parameters on the efficiency of the nVγT ensemble and subsequently use our method to investigate the ideal domain spacing, modulus, and nanoparticle distribution of a lamellar forming block copolymer nanocomposite. We find that the nanoparticle distribution is directly linked to the resultant domain spacing and is dependent on polymer chain density, nanoparticle size, and nanoparticle chemistry. Furthermore, placing the system under tension or compression can qualitatively alter the nanoparticle distribution within the block copolymer.
Simulation on Thermocapillary-Driven Drop Coalescence by Hybrid Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Xie, Haiqiong; Zeng, Zhong; Zhang, Liangqi; Yokota, Yuui; Kawazoe, Yoshiyuki; Yoshikawa, Akira
2016-04-01
A hybrid two-phase model, incorporating lattice Boltzmann method (LBM) and finite difference method (FDM), was developed to investigate the coalescence of two drops during their thermocapillary migration. The lattice Boltzmann method with a multi-relaxation-time (MRT) collision model was applied to solve the flow field for incompressible binary fluids, and the method was implemented in an axisymmetric form. The deformation of the drop interface was captured with the phase-field theory, and the continuum surface force model (CSF) was adopted to introduce the surface tension, which depends on the temperature. Both phase-field equation and the energy equation were solved with the finite difference method. The effects of Marangoni number and Capillary numbers on the drop's motion and coalescence were investigated.
ERIC Educational Resources Information Center
Johnson, Marilyn, Ed.
1982-01-01
Presents a theoretical and practical exploration of issues in teaching psychology of women. The eight articles in this special issue deal with the faculty, issues, courses, teaching methods and resources in the field, values and tensions in teaching psychology of women, related research, and the women's movement. (JAC)
Developing the Precision Magnetic Field for the E989 Muon g{2 Experiment
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Matthias W.
The experimental value ofmore » $$(g\\hbox{--}2)_\\mu$$ historically has been and contemporarily remains an important probe into the Standard Model and proposed extensions. Previous measurements of $$(g\\hbox{--}2)_\\mu$$ exhibit a persistent statistical tension with calculations using the Standard Model implying that the theory may be incomplete and constraining possible extensions. The Fermilab Muon g-2 experiment, E989, endeavors to increase the precision over previous experiments by a factor of four and probe more deeply into the tension with the Standard Model. The $$(g\\hbox{--}2)_\\mu$$ experimental implementation measures two spin precession frequencies defined by the magnetic field, proton precession and muon precession. The value of $$(g\\hbox{--}2)_\\mu$$ is derived from a relationship between the two frequencies. The precision of magnetic field measurements and the overall magnetic field uniformity achieved over the muon storage volume are then two undeniably important aspects of the e xperiment in minimizing uncertainty. The current thesis details the methods employed to achieve magnetic field goals and results of the effort.« less
NASA Astrophysics Data System (ADS)
Xie, Xi; Kan, Qianhua; Kang, Guozheng; Li, Jian; Qiu, Bo; Yu, Chao
2016-04-01
The strain field of a super-elastic NiTi shape memory alloy (SMA) and its variation during uniaxial cyclic tension-unloading were observed by a non-contact digital image correlation method, and then the transformation domains and their evolutions were indirectly investigated and discussed. It is seen that the super-elastic NiTi (SMA) exhibits a remarkable localized deformation and the transformation domains evolve periodically with the repeated cyclic tension-unloading within the first several cycles. However, the evolutions of transformation domains at the stage of stable cyclic transformation depend on applied peak stress: when the peak stress is low, no obvious transformation band is observed and the strain field is nearly uniform; when the peak stress is large enough, obvious transformation bands occur due to the residual martensite caused by the prevention of enriched dislocations to the reverse transformation from induced martensite to austenite. Temperature variations measured by an infrared thermal imaging method further verifies the formation and evolution of transformation domains.
Zhang, Zhen-yu; Zhang, Hui-sheng
2004-11-01
Surface tension effects on the behavior of a pure vapor cavity or a cavity containing some noncondensible contents, which is growing, collapsing, and rebounding axisymmetrically near a rigid wall, are investigated numerically by the boundary integral method for different values of dimensionless stand-off parameter gamma, buoyancy parameter delta, and surface tension parameter beta. It is found that at the late stage of the collapse, if the resultant action of the Bjerknes force and the buoyancy force is not small, surface tension will not have significant effects on bubble behavior except that the bubble collapse time is shortened and the liquid jet becomes wider. If the resultant action of the two force is small enough, surface tension will have significant and in some cases substantial effects on bubble behavior, such as changing the direction of the liquid jet, making a new liquid jet appear, in some cases preventing the bubble from rebound before jet impact, and in other cases causing the bubble to rebound or even recollapse before jet impact. The mechanism of surface tension effects on the collapsing behavior of a cavity has been analyzed. The mechanisms of some complicated phenomena induced by surface tension effects are illustrated by analysis of the computed velocity fields and pressure contours of the liquid flow outside the bubble at different stages of the bubble evolution.
Liu, Qiang; Chai, Tianyou; Wang, Hong; Qin, Si-Zhao Joe
2011-12-01
The continuous annealing process line (CAPL) of cold rolling is an important unit to improve the mechanical properties of steel strips in steel making. In continuous annealing processes, strip tension is an important factor, which indicates whether the line operates steadily. Abnormal tension profile distribution along the production line can lead to strip break and roll slippage. Therefore, it is essential to estimate the whole tension profile in order to prevent the occurrence of faults. However, in real annealing processes, only a limited number of strip tension sensors are installed along the machine direction. Since the effects of strip temperature, gas flow, bearing friction, strip inertia, and roll eccentricity can lead to nonlinear tension dynamics, it is difficult to apply the first-principles induced model to estimate the tension profile distribution. In this paper, a novel data-based hybrid tension estimation and fault diagnosis method is proposed to estimate the unmeasured tension between two neighboring rolls. The main model is established by an observer-based method using a limited number of measured tensions, speeds, and currents of each roll, where the tension error compensation model is designed by applying neural networks principal component regression. The corresponding tension fault diagnosis method is designed using the estimated tensions. Finally, the proposed tension estimation and fault diagnosis method was applied to a real CAPL in a steel-making company, demonstrating the effectiveness of the proposed method.
Real-time TIRF observation of vinculin recruitment to stretched α-catenin by AFM.
Maki, Koichiro; Han, Sung-Woong; Hirano, Yoshinori; Yonemura, Shigenobu; Hakoshima, Toshio; Adachi, Taiji
2018-01-25
Adherens junctions (AJs) adaptively change their intensities in response to intercellular tension; therefore, they integrate tension generated by individual cells to drive multicellular dynamics, such as morphogenetic change in embryos. Under intercellular tension, α-catenin, which is a component protein of AJs, acts as a mechano-chemical transducer to recruit vinculin to promote actin remodeling. Although in vivo and in vitro studies have suggested that α-catenin-mediated mechanotransduction is a dynamic molecular process, which involves a conformational change of α-catenin under tension to expose a cryptic vinculin binding site, there are no suitable experimental methods to directly explore the process. Therefore, in this study, we developed a novel system by combining atomic force microscopy (AFM) and total internal reflection fluorescence (TIRF). In this system, α-catenin molecules (residues 276-634; the mechano-sensitive M 1 -M 3 domain), modified on coverslips, were stretched by AFM and their recruitment of Alexa-labeled full-length vinculin molecules, dissolved in solution, were observed simultaneously, in real time, using TIRF. We applied a physiologically possible range of tensions and extensions to α-catenin and directly observed its vinculin recruitment. Our new system could be used in the fields of mechanobiology and biophysics to explore functions of proteins under tension by coupling biomechanical and biochemical information.
Bending and stretching finite element analysis of anisotropic viscoelastic composite plates
NASA Technical Reports Server (NTRS)
Hilton, Harry H.; Yi, Sung
1990-01-01
Finite element algorithms have been developed to analyze linear anisotropic viscoelastic plates, with or without holes, subjected to mechanical (bending, tension), temperature, and hygrothermal loadings. The analysis is based on Laplace transforms rather than direct time integrations in order to improve the accuracy of the results and save on extensive computational time and storage. The time dependent displacement fields in the transverse direction for the cross ply and angle ply laminates are calculated and the stacking sequence effects of the laminates are discussed in detail. Creep responses for the plates with or without a circular hole are also studied. The numerical results compare favorably with analytical solutions, i.e. within 1.8 percent for bending and 10(exp -3) 3 percent for tension. The tension results of the present method are compared with those using the direct time integration scheme.
Effect of Membrane Tension on the Electric Field and Dipole Potential of Lipid Bilayer Membrane
Warshaviak, Dora Toledo; Muellner, Michael J.; Chachisvilis, Mirianas
2011-01-01
The dipole potential of lipid bilayer membrane controls the difference in permeability of the membrane to oppositely charged ions. We have combined molecular dynamics (MD) simulations and experimental studies to determine changes in electric field and electrostatic potential of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer in response to applied membrane tension. MD simulations based on CHARMM36 force field showed that electrostatic potential of DOPC bilayer decreases by ~45 mV in the physiologically relevant range of membrane tension values (0 to 15 dyn/cm). The electrostatic field exhibits a peak (~0.8×109 V/m) near the water/lipid interface which shifts by 0.9 Å towards the bilayer center at 15 dyn/cm. Maximum membrane tension of 15 dyn/cm caused 6.4% increase in area per lipid, 4.7% decrease in bilayer thickness and 1.4% increase in the volume of the bilayer. Dipole-potential sensitive fluorescent probes were used to detect membrane tension induced changes in DOPC vesicles exposed to osmotic stress. Experiments confirmed that dipole potential of DOPC bilayer decreases at higher membrane tensions. These results are suggestive of a potentially new mechanosensing mechanism by which mechanically induced structural changes in the lipid bilayer membrane could modulate the function of membrane proteins by altering electrostatic interactions and energetics of protein conformational states. PMID:21722624
Estimating intercellular surface tension by laser-induced cell fusion.
Fujita, Masashi; Onami, Shuichi
2011-12-01
Intercellular surface tension is a key variable in understanding cellular mechanics. However, conventional methods are not well suited for measuring the absolute magnitude of intercellular surface tension because these methods require determination of the effective viscosity of the whole cell, a quantity that is difficult to measure. In this study, we present a novel method for estimating the intercellular surface tension at single-cell resolution. This method exploits the cytoplasmic flow that accompanies laser-induced cell fusion when the pressure difference between cells is large. Because the cytoplasmic viscosity can be measured using well-established technology, this method can be used to estimate the absolute magnitudes of tension. We applied this method to two-cell-stage embryos of the nematode Caenorhabditis elegans and estimated the intercellular surface tension to be in the 30-90 µN m(-1) range. Our estimate was in close agreement with cell-medium surface tensions measured at single-cell resolution.
NASA Astrophysics Data System (ADS)
Gao, Donghong
Interest in utilizing liquid metal film flows to protect the plasma-facing solid structures places increasing demand on understanding the magnetohydrodynamics (MHD) of such flows in a magnetic field with spatial variation. The field gradient effect is studied by a two-dimensional (2D) model in Cartesian coordinates. The thin film flow down an inclined plane in spanwise (z-direction) magnetic field with constant streamwise gradient and applied current is analyzed. The solution to the equilibrium flow shows forcefully the M-shaped velocity profile and dependence of side layer thickness on Ha-1/2 whose definition is based on field gradient. The major part of the dissertation is the numerical simulation of free surface film flows and understanding the results. The VOF method is employed to track the free surface, and the CSF model is combined with VOF method to account for surface dynamics condition. The code is validated with respect to Navier-Stokes solver and MHD implementation by computations of ordinary wavy films, MHD flat films and a colleague proposed film flow. The comparisons are performed against respective experimental, theoretical or numerical solutions, and the results are well matched with them. It is found for the ordinary water falling films, at low frequency and high flowrate, the small forcing disturbance at inlet flowrate develops into big roll waves preceded by small capillary bow waves; at high frequency and low Re, it develops into nearly sinusoidal waves with small amplitude and without fore-running capillary waves. The MHD surface instability is investigated for two kinds of film flows in constant streamwise field gradient: one with spatial disturbance and without surface tension, the other with inlet forcing disturbance and with surface tension. At no surface tension condition, the finite amplitude disturbance is rapidly amplified and degrades to irregular shape. With surface tension to maintain smooth interface, finite amplitude regular waves can be established only on near inlet region and they decay to nearly zero amplitude ripple on the far downstream region. At both film conditions, the wave traveling velocity is reduced by the MHD drag from field gradient. The code is also used to explore the exit-pipe and first wall conceptual designs for fusion reactor being proposed in the APEX program. It is seen that the field gradient restrains and lifts up the flow to the whole channel in the exit-pipe high field gradient condition, but an applied streamwise current can propel the flow through the gradient region. The Sn jet flow with high inertia is able to overcome the inverted gravity and MHD induction to form the desired protection liquid layer on top of the first wall.
Incorporating contact angles in the surface tension force with the ACES interface curvature scheme
NASA Astrophysics Data System (ADS)
Owkes, Mark
2017-11-01
In simulations of gas-liquid flows interacting with solid boundaries, the contact line dynamics effect the interface motion and flow field through the surface tension force. The surface tension force is directly proportional to the interface curvature and the problem of accurately imposing a contact angle must be incorporated into the interface curvature calculation. Many commonly used algorithms to compute interface curvatures (e.g., height function method) require extrapolating the interface, with defined contact angle, into the solid to allow for the calculation of a curvature near a wall. Extrapolating can be an ill-posed problem, especially in three-dimensions or when multiple contact lines are near each other. We have developed an accurate methodology to compute interface curvatures that allows for contact angles to be easily incorporated while avoiding extrapolation and the associated challenges. The method, known as Adjustable Curvature Evaluation Scale (ACES), leverages a least squares fit of a polynomial to points computed on the volume-of-fluid (VOF) representation of the gas-liquid interface. The method is tested by simulating canonical test cases and then applied to simulate the injection and motion of water droplets in a channel (relevant to PEM fuel cells).
NASA Technical Reports Server (NTRS)
Goldie, James H.; Bushko, Dariusz A.; Gerver, Michael J.
1995-01-01
In technique for measuring tensile force of bolt, specially fabricated magnetostrictive washer used as force transducer. Compact, portable inductive electronic sensor placed against washer to measure tension force. New system provides accurate, economical, and convenient way to measure bolt tension in field. Measurements on test assembly shows that tension can be measured to accuracy of about plus or minus 1 percent of load capacity of typical bolt.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
NASA Astrophysics Data System (ADS)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D.
2017-06-01
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge-Kutta method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten-Lax-van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas-liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.
A finite-volume HLLC-based scheme for compressible interfacial flows with surface tension
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garrick, Daniel P.; Owkes, Mark; Regele, Jonathan D., E-mail: jregele@iastate.edu
Shock waves are often used in experiments to create a shear flow across liquid droplets to study secondary atomization. Similar behavior occurs inside of supersonic combustors (scramjets) under startup conditions, but it is challenging to study these conditions experimentally. In order to investigate this phenomenon further, a numerical approach is developed to simulate compressible multiphase flows under the effects of surface tension forces. The flow field is solved via the compressible multicomponent Euler equations (i.e., the five equation model) discretized with the finite volume method on a uniform Cartesian grid. The solver utilizes a total variation diminishing (TVD) third-order Runge–Kuttamore » method for time-marching and second order TVD spatial reconstruction. Surface tension is incorporated using the Continuum Surface Force (CSF) model. Fluxes are upwinded with a modified Harten–Lax–van Leer Contact (HLLC) approximate Riemann solver. An interface compression scheme is employed to counter numerical diffusion of the interface. The present work includes modifications to both the HLLC solver and the interface compression scheme to account for capillary force terms and the associated pressure jump across the gas–liquid interface. A simple method for numerically computing the interface curvature is developed and an acoustic scaling of the surface tension coefficient is proposed for the non-dimensionalization of the model. The model captures the surface tension induced pressure jump exactly if the exact curvature is known and is further verified with an oscillating elliptical droplet and Mach 1.47 and 3 shock-droplet interaction problems. The general characteristics of secondary atomization at a range of Weber numbers are also captured in a series of simulations.« less
Dispersion interference in the pulsed-wire measurement method
NASA Astrophysics Data System (ADS)
Shahal, O.; Elkonin, B. V.; Sokolowski, J. S.
1990-10-01
The magnetic profile of the wiggler to be used in the planned Weizmann Institute FEL has been measured using the pulsed-wire method. The main transverse deflection pattern caused by an electrical current pulse in a wire placed along the wiggler was sometimes accompanied by minor faster and slower parasitic components. These components interfered with the main profile, resulting in distorted mapping of the wiggler magnetic field. Their periodical structure being very close to the main pattern could not be easily resolved by applying a numerical Fourier transform. A strong correlation between the wire tension and the amplitude of the parasitic patterns was found. Significant damping of these oscillations was achieved by applying high enough tension to the wire (close the yield point), allowing to disregard their contribution to the measurement accuracy.
Multi-phase-field method for surface tension induced elasticity
NASA Astrophysics Data System (ADS)
Schiedung, Raphael; Steinbach, Ingo; Varnik, Fathollah
2018-01-01
A method, based on the multi-phase-field framework, is proposed that adequately accounts for the effects of a coupling between surface free energy and elastic deformation in solids. The method is validated via a number of analytically solvable problems. In addition to stress states at mechanical equilibrium in complex geometries, the underlying multi-phase-field framework naturally allows us to account for the influence of surface energy induced stresses on phase transformation kinetics. This issue, which is of fundamental importance on the nanoscale, is demonstrated in the limit of fast diffusion for a solid sphere, which melts due to the well-known Gibbs-Thompson effect. This melting process is slowed down when coupled to surface energy induced elastic deformation.
A comparison of cation sampling in forest soils by tension and tension-free lysimeters
James H. Miller
1981-01-01
Field tests conducted in two soils with ceramic cup, ceramic plate, and tension-free lysimeters showed no concentration differences in collected cations (Ca, Mg, K, Na) between cups and plates, except for the hydrogen ion. Mean pH was 0.6 lower in cup collected samples for a sandy loam profile. Tension-free lysimeters of the design tested had persistent contamination...
Impact of carbon nanotubes based nanofluid on oil recovery efficiency using core flooding
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-06-01
This study aims to investigate the influence of carbon nanotubes based nanofluid on interfacial tension and oil recovery efficiency. Practically multi-walled carbon nanotubes were successfully synthesized using chemical vapour deposition technique and characterized using X-ray diffraction and Field Emission Scanning Electron microscope in order to understand its structure, shape, and morphology. Nanofluids are one of the interesting new agents for enhanced oil recovery (EOR) that can change the reservoir rock-fluid properties in terms of interfacial tension and wettability. In this work, different concentration of carbon nanotubes based fluids were prepared and the effect of each concentration on surface tension was determined using pendant drop method. After specifying the optimum concentration of carbon nanotubes based nanofluid, core flooding experiment was conducted by two pore volume of brine and two pore volume of nanofluid and then oil recovery factor was calculated. The results show that carbon nanotubes can bring in additional recovery factor of 18.57% in the glass bead sample. It has been observed that nanofluid with high surface tension value gives higher recovery. It was found that the optimum value of concentration is 0.3 wt% at which maximum surface tension of 33.46 mN/m and oil recovery factor of 18.57% was observed. This improvement in recovery factor can be recognized due to interfacial tension reduction and wettability alteration.
NASA Astrophysics Data System (ADS)
Philipose, K.; Shenton, B.
2011-04-01
The Containment Buildings of CANDU Nuclear Generating Stations were designed to house nuclear reactors and process equipment and also to provide confinement of releases from a potential nuclear accident such as a Loss Of Coolant Accident (LOCA). To meet this design requirement, a post-tensioning system was designed to induce compressive stresses in the structure to counteract the internal design pressure. The CANDU reactor building at Gentilly-1 (G-1), Quebec, Canada (250 MWe) was built in the early 1970s and is currently in a decommissioned state. The structure at present is under surveillance and monitoring. In the year 2000, a field investigation was conducted as part of a condition assessment and corrosion was detected in some of the grouted post-tension cable strands. However, no further work was done at that time to determine the cause, nature, impact and extent of the corrosion. An investigation of the Gentilly-1 containment building is currently underway to assess the condition of grouted post-tensioning cables and reinforced concrete. At two selected locations, concrete and steel reinforcements were removed from the containment building wall to expose horizontal cables. Individual cable strands and reinforcement bars were instrumented and measurements were taken in-situ before removing them for forensic examination and destructive testing to determine the impact of ageing and corrosion. Concrete samples were also removed and tested in a laboratory. The purpose of the field investigation and laboratory testing, using this structure as a test bed, was also to collect material ageing data and to develop potential Nondestructive Examination (NDE) methods to monitor Containment Building Integrity. The paper describes the field work conducted and the test results obtained for concrete, reinforcement and post-tensioning cables.
Marangoni-flow-induced partial coalescence of a droplet on a liquid/air interface
NASA Astrophysics Data System (ADS)
Sun, Kai; Zhang, Peng; Che, Zhizhao; Wang, Tianyou
2018-02-01
The coalescence of a droplet and a liquid/air interface of lower surface tension was numerically studied by using the lattice Boltzmann phase-field method. The experimental phenomenon of droplet ejection observed by Blanchette et al. [Phys. Fluids 21, 072107 (2009), 10.1063/1.3177339] at sufficiently large surface tension differences was successfully reproduced for the first time. Furthermore, the emergence, disappearance, and re-emergence of "partial coalescence" with increasing surface tension difference was observed and explained. The re-emergence of partial coalescence under large surface tension differences is caused by the remarkable lifting motion of the Marangoni flow, which significantly retards the vertical collapse. Two different modes of partial coalescence were identified by the simulation, namely peak injection occurs at lower Ohnesorge numbers and bottom pinch-off at higher Ohnesorge numbers. By comparing the characteristic timescales of the upward Marangoni flow with that of the downward flow driven by capillary pressure, a criterion for the transition from partial to total coalescence was derived based on scaling analysis and numerically validated.
Fracture Behavior of a Stitched Warp-Knit Carbon Fabric Composite
NASA Technical Reports Server (NTRS)
Poe, Clarence C., Jr.; Reeder, James R.; Yuan, F. G.
2001-01-01
Tests were conducted on several types of fracture specimens made from a carbon/epoxy composite. The composite material was stitched prior to introducing epoxy resin. Boeing, used this material to develop a composite wing box for a transport aircraft in the NASA Advanced Composites Transport Program. The specimens included compact, extended compact, and center notched tension specimens. The specimens were cut from panels with three orientations in order to explore the effects of anisotropy. The panels were made with various thicknesses to represent a wing, skin from tip to root. All fractures were not self-similar depending on specimen type and orientation. Unnotched tension specimens were also tested to measure elastic constants and strengths. The normal and shear strains were calculated on fracture planes using a series representation of strain fields for plane anisotropic crack problems. The fracture parameters were determined using a finite element method. Characteristic distances for critical tension and shear strains were calculated for each specimen and a failure criterion based on the interaction of tension and shear strains was proposed.
Direct Regularized Estimation of Retinal Vascular Oxygen Tension Based on an Experimental Model
Yildirim, Isa; Ansari, Rashid; Yetik, I. Samil; Shahidi, Mahnaz
2014-01-01
Phosphorescence lifetime imaging is commonly used to generate oxygen tension maps of retinal blood vessels by classical least squares (LS) estimation method. A spatial regularization method was later proposed and provided improved results. However, both methods obtain oxygen tension values from the estimates of intermediate variables, and do not yield an optimum estimate of oxygen tension values, due to their nonlinear dependence on the ratio of intermediate variables. In this paper, we provide an improved solution by devising a regularized direct least squares (RDLS) method that exploits available knowledge in studies that provide models of oxygen tension in retinal arteries and veins, unlike the earlier regularized LS approach where knowledge about intermediate variables is limited. The performance of the proposed RDLS method is evaluated by investigating and comparing the bias, variance, oxygen tension maps, 1-D profiles of arterial oxygen tension, and mean absolute error with those of earlier methods, and its superior performance both quantitatively and qualitatively is demonstrated. PMID:23732915
NASA Astrophysics Data System (ADS)
Abuzaid, A.; Hrairi, M.; Shaik Dawood, M. S. I.
2017-03-01
In this paper, the effect of piezoelectric actuators placed above a circular hole of a rectangular plate subjected to uniform uniaxial tension is studied. The core idea is to investigate the stress (compression/tension) produced by the piezoelectric actuators on the stress distribution around the hole and along the width of the host plate. For this purpose, Finite Element Analysis (FEA) was carried out through parametric study in ANSYS software. The results demonstrated that the positive electric field would decrease and change the state of the stress distribution along the width of the host plate in contrast to the negative applied electric filed which increases the stress distribution smoothly without affecting its behaviour. The results also indicated that the reduction of the stress concentration factor increases with the decrease of the ratio (D/W) for the same applied positive electric field.
"The Door Opens and the Tiger Leaps": Theory and Method in Comparative Education in the Global Era.
ERIC Educational Resources Information Center
Marginson, Simon; Mollis, Marcela
The field of international comparative education is constructed by relations of power and conflict. Comparative education contains an intrinsic tension between "sameness" and "difference." The dominant approach tends toward sameness and the elimination of variation, while one critique of the dominant approach tends toward an…
NASA Astrophysics Data System (ADS)
Hritz, Andrew D.; Raymond, Timothy M.; Dutcher, Dabrina D.
2016-08-01
Accurate estimates of particle surface tension are required for models concerning atmospheric aerosol nucleation and activation. However, it is difficult to collect the volumes of atmospheric aerosol required by typical instruments that measure surface tension, such as goniometers or Wilhelmy plates. In this work, a method that measures, ex situ, the surface tension of collected liquid nanoparticles using atomic force microscopy is presented. A film of particles is collected via impaction and is probed using nanoneedle tips with the atomic force microscope. This micro-Wilhelmy method allows for direct measurements of the surface tension of small amounts of sample. This method was verified using liquids, whose surface tensions were known. Particles of ozone oxidized α-pinene, a well-characterized system, were then produced, collected, and analyzed using this method to demonstrate its applicability for liquid aerosol samples. It was determined that oxidized α-pinene particles formed in dry conditions have a surface tension similar to that of pure α-pinene, and oxidized α-pinene particles formed in more humid conditions have a surface tension that is significantly higher.
Developing Theories and Practices of Inclusion in Australia.
ERIC Educational Resources Information Center
Slee, Roger
2002-01-01
This article explores tensions between a general theory of inclusive education and those policies directed toward the schooling of students with disabilities. It examines theories of inclusive education, highlights tensions in the field of inclusive education, discusses these tensions as they are played out in Australia, and makes suggestions.…
Curvature computation in volume-of-fluid method based on point-cloud sampling
NASA Astrophysics Data System (ADS)
Kassar, Bruno B. M.; Carneiro, João N. E.; Nieckele, Angela O.
2018-01-01
This work proposes a novel approach to compute interface curvature in multiphase flow simulation based on Volume of Fluid (VOF) method. It is well documented in the literature that curvature and normal vector computation in VOF may lack accuracy mainly due to abrupt changes in the volume fraction field across the interfaces. This may cause deterioration on the interface tension forces estimates, often resulting in inaccurate results for interface tension dominated flows. Many techniques have been presented over the last years in order to enhance accuracy in normal vectors and curvature estimates including height functions, parabolic fitting of the volume fraction, reconstructing distance functions, coupling Level Set method with VOF, convolving the volume fraction field with smoothing kernels among others. We propose a novel technique based on a representation of the interface by a cloud of points. The curvatures and the interface normal vectors are computed geometrically at each point of the cloud and projected onto the Eulerian grid in a Front-Tracking manner. Results are compared to benchmark data and significant reduction on spurious currents as well as improvement in the pressure jump are observed. The method was developed in the open source suite OpenFOAM® extending its standard VOF implementation, the interFoam solver.
Overview of Play: Its Uses and Importance in Early Intervention/Early Childhood Special Education
ERIC Educational Resources Information Center
Lifter, Karin; Foster-Sanda, Suzanne; Arzamarski, Caley; Briesch, Jacquelyn; McClure, Ellen
2011-01-01
Play is a natural activity of early childhood, which has great relevance to the fields of early intervention, early childhood special education, and early childhood education. Within these fields, ongoing tensions persist in how play is described and used. These tensions compromise activities of assessment, intervention, and curriculum development…
ERIC Educational Resources Information Center
Rahm, Jrène
2014-01-01
Informal science education is a broad field of research marked by fuzzy boundaries, tensions, and muddles among many disciplines, making for an unclear future trajectory (or trajectories) for the field of study. In this commentary, I unpack some of the hidden dimensions, tensions and challenges the five articles raise or point to implicitly in…
On the Hofmeister effect: fluctuations at the protein-water interface and the surface tension.
Bogár, Ferenc; Bartha, Ferenc; Násztor, Zoltán; Fábián, László; Leitgeb, Balázs; Dér, András
2014-07-24
We performed molecular dynamics simulations on the tryptophane-cage miniprotein using a nonpolarizable force field, in order to model the effect of concentrated water solutions of neutral salts on protein conformation, which is a manifestation of Hofmeister effects. From the equilibrium values and the fluctuations of the solvent accessible surface area of the miniprotein, the salt-induced changes of the mean value of protein-water interfacial tension were determined. At 300 K, the chaotropic ClO4(-) and NO3(-) decreased the interfacial tension according to their position in the Hofmeister series (by approximately 5 and 2.7 mN/m, respectively), while the kosmotropic F(-) increased it (by 1 mN/m). These values were compared to those obtained from the Gibbs equation using the excess surface adsorption calculated from the probability distribution of the water molecules and ions around the miniprotein, and the two sets were found to be very close to each other. Our results present a direct evidence for the central role of interfacial tension and fluctuations at the protein-water interface in Hofmeister phenomena, and provide a computational method for the determination of the protein-water interfacial tension, establishing a link between the phenomenological and microscopic description of protein-water interfaces.
Modelling bucket excavation by finite element
NASA Astrophysics Data System (ADS)
Pecingina, O. M.
2015-11-01
Changes in geological components of the layers from lignite pits have an impact on the sustainability of the cup path elements and under the action of excavation force appear efforts leading to deformation of the entire assembly. Application of finite element method in the optimization of components leads to economic growth, to increase the reliability and durability of the studied machine parts thus the machine. It is obvious usefulness of knowledge the state of mechanical tensions that the designed piece or the assembly not to break under the action of tensions that must cope during operation. In the course of excavation work on all bucket cutting force components, the first coming into contact with the material being excavated cutting edge. Therefore in the study with finite element analysis is retained only cutting edge. To study the field of stress and strain on the cutting edge will be created geometric patterns for each type of cup this will be subject to static analysis. The geometric design retains the cutting edge shape and on this on the tooth cassette location will apply an areal force on the abutment tooth. The cutting edge real pattern is subjected to finite element study for the worst case of rock cutting by symmetrical and asymmetrical cups whose profile is different. The purpose of this paper is to determine the displacement and tensions field for both profiles considering the maximum force applied on the cutting edge and the depth of the cutting is equal with the width of the cutting edge of the tooth. It will consider the worst case when on the structure will act both the tangential force and radial force on the bucket profile. For determination of stress and strain field on the form design of cutting edge profile will apply maximum force assuming uniform distribution and on the edge surface force will apply a radial force. After geometric patterns discretization on the cutting knives and determining stress field, can be seen that at the rectangular profile appears the "clogging" phenomenon of the cutting edge and at the polygonal profile the point of application remains constant without going inside. From the finite element method done in this paper it can be concluded that the polygonal profiles made of dihedral angles are much more durable and asymmetric cups tend to have uniform tension along the entire perimeter.
Ethnography in community psychology: promises and tensions.
Case, Andrew D; Todd, Nathan R; Kral, Michael J
2014-09-01
Community psychology recognizes the need for research methods that illuminate context, culture, diversity, and process. One such method, ethnography, has crossed into multiple disciplines from anthropology, and indeed, community psychologists are becoming community ethnographers. Ethnographic work stands at the intersection of bridging universal questions with the particularities of people and groups bounded in time, geographic location, and social location. Ethnography is thus historical and deeply contextual, enabling a rich, in-depth understanding of communities that is aligned with the values and goals of community psychology. The purpose of this paper is to elucidate the potential of ethnography for community psychology and to encourage its use within the field as a method to capture culture and context, to document process, and to reveal how social change and action occur within and through communities. We discuss the method of ethnography, draw connections to community psychology values and goals, and identify tensions from our experiences doing ethnography. Overall, we assert that ethnography is a method that resonates with community psychology and present this paper as a resource for those interested in using this method in their research or community activism.
Choudhary, Muhammad Ajmal; Kundin, Julia; Emmerich, Heike; Oettel, Martin
2014-08-01
Phase-field-crystal (PFC) modeling has emerged as a computationally efficient tool to address crystal growth phenomena on atomistic length and diffusive time scales. We use a two-dimensional phase-field-crystal model for a binary system based on Elder et al. [Phys. Rev. B 75, 064107 (2007)] to study critical nuclei and their liquid-solid phase boundaries, in particular the nucleus size dependence of the liquid-solid interface tension as well as of the nucleation barrier. Critical nuclei are stabilized in finite systems of various sizes, however, the extracted interface tension as function of the nucleus radius r is independent of system size. We suggest a phenomenological expression to describe the dependence of the extracted interface tension on the nucleus radius r for the liquid-solid system. Moreover, the numerical PFC results show that this dependency can not be fully described by the nonclassical Tolman formula.
Mechanics of Carbon Nanotubes and their Polymer Composites
NASA Technical Reports Server (NTRS)
Wei, Chenyu; Cho, K. J.; Srivastava, Deepak; Tang, Harry (Technical Monitor)
2002-01-01
Contents include the folloving: carbon nanotube (CNT): structures, application of carbon nanotubes, simulation method, Elastic properties of carbon nanotubes, yield strain of CNT, yielding under tensile stress, yielding: strain-rate and temperature dependence, yield strain under tension, yielding at realistic conditions, nano fibers, polymer CNT composite, force field, density dependency on temperature, diffusion coefficients, young modulus, and conclusions.
Improvements to measuring water flux in the vadose zone.
Masarik, Kevin C; Norman, John M; Brye, Kristofor R; Baker, John M
2004-01-01
Evaluating the impact of land use practices on ground water quality has been difficult because few techniques are capable of monitoring the quality and quantity of soil water flow below the root zone without disturbing the soil profile and affecting natural flow processes. A recently introduced method, known as equilibrium tension lysimetry, was a major improvement but it was not a true equilibrium since it still required manual intervention to maintain proper lysimeter suction. We addressed this issue by developing an automated equilibrium tension lysimeter (AETL) system that continuously matches lysimeter tension to soil-water matric potential of the surrounding soil. The soil-water matric potential of the bulk soil is measured with a heat-dissipation sensor, and a small DC pump is used to apply suction to a lysimeter. The improved automated approach reported here was tested in the field for a 12-mo period. Powered by a small 12-V rechargeable battery, the AETLs were able to continuously match lysimeter suction to soil-water matric potential for 2-wk periods with minimal human attention, along with the added benefit of collecting continuous soil-water matric potential data. We also demonstrated, in the laboratory, methods for continuous measurement of water depth in the AETL, a capability that quantifies drainage on a 10-min interval, making it a true water-flux meter. Equilibrium tension lysimeters have already been demonstrated to be a reliable method of measuring drainage flux, and the further improvements have created a more effective device for studying water drainage and chemical leaching through the soil matrix.
Caleman, Carl; van Maaren, Paul J; Hong, Minyan; Hub, Jochen S; Costa, Luciano T; van der Spoel, David
2012-01-10
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields.
2011-01-01
The chemical composition of small organic molecules is often very similar to amino acid side chains or the bases in nucleic acids, and hence there is no a priori reason why a molecular mechanics force field could not describe both organic liquids and biomolecules with a single parameter set. Here, we devise a benchmark for force fields in order to test the ability of existing force fields to reproduce some key properties of organic liquids, namely, the density, enthalpy of vaporization, the surface tension, the heat capacity at constant volume and pressure, the isothermal compressibility, the volumetric expansion coefficient, and the static dielectric constant. Well over 1200 experimental measurements were used for comparison to the simulations of 146 organic liquids. Novel polynomial interpolations of the dielectric constant (32 molecules), heat capacity at constant pressure (three molecules), and the isothermal compressibility (53 molecules) as a function of the temperature have been made, based on experimental data, in order to be able to compare simulation results to them. To compute the heat capacities, we applied the two phase thermodynamics method (Lin et al. J. Chem. Phys.2003, 119, 11792), which allows one to compute thermodynamic properties on the basis of the density of states as derived from the velocity autocorrelation function. The method is implemented in a new utility within the GROMACS molecular simulation package, named g_dos, and a detailed exposé of the underlying equations is presented. The purpose of this work is to establish the state of the art of two popular force fields, OPLS/AA (all-atom optimized potential for liquid simulation) and GAFF (generalized Amber force field), to find common bottlenecks, i.e., particularly difficult molecules, and to serve as a reference point for future force field development. To make for a fair playing field, all molecules were evaluated with the same parameter settings, such as thermostats and barostats, treatment of electrostatic interactions, and system size (1000 molecules). The densities and enthalpy of vaporization from an independent data set based on simulations using the CHARMM General Force Field (CGenFF) presented by Vanommeslaeghe et al. (J. Comput. Chem.2010, 31, 671) are included for comparison. We find that, overall, the OPLS/AA force field performs somewhat better than GAFF, but there are significant issues with reproduction of the surface tension and dielectric constants for both force fields. PMID:22241968
Kivits, Joëlle; Fournier, Cécile; Mino, Jean-Christophe; Frattini, Marie-Odile; Winance, Myriam; Lefève, Céline; Robelet, Magali
2013-01-01
This article proposes a reflection on an interdisciplinary seminar, initiated by philosophy and sociology researchers and public health professionals. The objective of this seminar was to explore the mechanisms involved in setting up and conducting interdisciplinary research, by investigating the practical modalities of articulating health and human and social sciences research in order to more clearly understand the conditions, tensions and contributions of collaborative research. These questions were discussed on the basis of detailed analysis of four recent or current research projects. Case studies identified four typical epistemological or methodological issues faced by researchers in the fields of health and human and social sciences: institutional conditions and their effects on research; deconstruction of the object; the researcher's commitment in his/her field; the articulation of research methods. Three prerequisites for interdisciplinary research in social and human sciences and in health were identified: mutual questioning of research positions and fields of study; awareness of the tensions related to institutional positions and disciplinary affiliation; joint elaboration and exchanges between various types of knowledge to ensure an interdisciplinary approach throughout all of the research process.
ERIC Educational Resources Information Center
Plesch, Christine; Kaendler, Celia; Rummel, Nikol; Wiedmann, Michael; Spada, Hans
2013-01-01
Despite steady progress in research in technology-enhanced learning (TEL), the translation of research findings and technology into educational practices falls short of expectations. We present five Areas of Tension which were identified and evaluated in an international Delphi study on TEL. These tensions might impede a more comprehensive…
ERIC Educational Resources Information Center
Honingh, M. E.; Hooge, E. H.
2009-01-01
This article sheds new light on the so-called "natural tension" between bureaucracy and professionalism in schools. As it is quite common in the educational field to appoint teachers, it is debatable whether the assumed tension really exists. It seems more reasonable to find hierarchical control "within" the professional group.…
Normal versus High Tension Glaucoma: A Comparison of Functional and Structural Defects
Thonginnetra, Oraorn; Greenstein, Vivienne C.; Chu, David; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.
2009-01-01
Purpose To compare visual field defects obtained with both multifocal visual evoked potential (mfVEP) and Humphrey visual field (HVF) techniques to topographic optic disc measurements in patients with normal tension glaucoma (NTG) and high tension glaucoma (HTG). Methods We studied 32 patients with NTG and 32 with HTG. All patients had reliable 24-2 HVFs with a mean deviation (MD) of −10 dB or better, a glaucomatous optic disc and an abnormal HVF in at least one eye. Multifocal VEPs were obtained from each eye and probability plots created. The mfVEP and HVF probability plots were divided into a central 10-degree (radius) and an outer arcuate subfield in both superior and inferior hemifields. Cluster analyses and counts of abnormal points were performed in each subfield. Optic disc images were obtained with the Heidelberg Retina Tomograph III (HRT III). Eleven stereometric parameters were calculated. Moorfields regression analysis (MRA) and the glaucoma probability score (GPS) were performed. Results There were no significant differences in MD and PSD values between NTG and HTG eyes. However, NTG eyes had a higher percentage of abnormal test points and clusters of abnormal points in the central subfields on both mfVEP and HVF than HTG eyes. For HRT III, there were no significant differences in the 11 stereometric parameters or in the MRA and GPS analyses of the optic disc images. Conclusions The visual field data suggest more localized and central defects for NTG than HTG. PMID:19223786
NASA Astrophysics Data System (ADS)
Schunk, P. R.; Hurd, A. J.; Brinker, C. J.
Dip coating is the primary means of depositing sol-gel films for precision optical coatings. Sols are typically multicomponent systems consisting of an inorganic phase dispersed in a solvent mixture, with each component differing in volatility and surface tension. This, together with slow coating speeds (less than 1cm/s), makes analysis of the coating process complicated; unlike most high-speed coating methods, solvent evaporation, evolving rheology, and surface tension gradients alter significantly the fluid mechanics of the deposition stage. These phenomena were studied with computer-aided predictions of the flow and species transport fields. The underlying theory involves mass, momentum, and species transport on a domain of unknown shape, with models and constitutive equations for vapor-liquid equilibria and surface tension. Due accounting is made for the unknown position of the free surface, which locates according to the capillary hydrodynamic forces and solvent loss by evaporation. Predictions of the effects of mass transfer, hydrodynamics, and surface tension gradients on final film thickness are compared with ellipsometry measurements of film thickness on a laboratory pilot coater. Although quantitative agreement is still lacking, both experiment and theory reveal that the film profile near the drying line takes on a parabolic shape.
Origin of change in molecular-weight dependence for polymer surface tension.
Thompson, R B; Macdonald, J R; Chen, P
2008-09-01
Self-consistent-field theory is used to reproduce the behavior of polymer surface tension with molecular-weight for both lower and higher molecular-weight polymers. The change in behavior of the surface tension between these two regimes is shown to be due to the almost total exclusion of polymer from the nonpolymer bulk phase. The predicted two regime surface tension behavior with molecular-weight and the exclusion explanation are shown to be valid for a range of different polymer compressibilities.
NASA Astrophysics Data System (ADS)
Ouyang, Bo; Shang, Weiwei
2016-03-01
The solution of tension distributions is infinite for cable-driven parallel manipulators(CDPMs) with redundant cables. A rapid optimization method for determining the optimal tension distribution is presented. The new optimization method is primarily based on the geometry properties of a polyhedron and convex analysis. The computational efficiency of the optimization method is improved by the designed projection algorithm, and a fast algorithm is proposed to determine which two of the lines are intersected at the optimal point. Moreover, a method for avoiding the operating point on the lower tension limit is developed. Simulation experiments are implemented on a six degree-of-freedom(6-DOF) CDPM with eight cables, and the results indicate that the new method is one order of magnitude faster than the standard simplex method. The optimal distribution of tension distribution is thus rapidly established on real-time by the proposed method.
On the interfacial thermodynamics of nanoscale droplets and bubbles
NASA Astrophysics Data System (ADS)
Corti, David S.; Kerr, Karl J.; Torabi, Korosh
2011-07-01
We present a new self-consistent thermodynamic formalism for the interfacial properties of nanoscale embryos whose interiors do not exhibit bulklike behavior and are in complete equilibrium with the surrounding mother phase. In contrast to the standard Gibbsian analysis, whereby a bulk reference pressure based on the same temperature and chemical potentials of the mother phase is introduced, our approach naturally incorporates the normal pressure at the center of the embryo as an appropriate reference pressure. While the interfacial properties of small embryos that follow from the use of these two reference pressures are different, both methods yield by construction the same reversible work of embryo formation as well as consistency between their respective thermodynamic and mechanical routes to the surface tension. Hence, there is no a priori reason to select one method over another. Nevertheless, we argue, and demonstrate via a density-functional theory (with the local density approximation) analysis of embryo formation in the pure component Lennard-Jones fluid, that our new method generates more physically appealing trends. For example, within the new approach the surface tension at all locations of the dividing surface vanishes at the spinodal where the density profile spanning the embryo and mother phase becomes completely uniform (only the surface tension at the Gibbs surface of tension vanishes in the Gibbsian method at this same limit). Also, for bubbles, the location of the surface of tension now diverges at the spinodal, similar to the divergent behavior exhibited by the equimolar dividing surface (in the Gibbsian method, the location of the surface of tension vanishes instead). For droplets, the new method allows for the appearance of negative surface tensions (the Gibbsian method always yields positive tensions) when the normal pressures within the interior of the embryo become less than the bulk pressure of the surrounding vapor phase. Such a prediction, which is allowed by thermodynamics, is consistent with the interpretation that the mother phase's attempted compression of the droplet is counterbalanced by the negative surface tension, or free energy cost to decrease the interfacial area. Furthermore, for these same droplets, the surface of tension can no longer be meaningfully defined (the surface of tension always remains well defined in the Gibbsian method). Within the new method, the dividing surface at which the surface tension equals zero emerges as a new lengthscale, which has various thermodynamic analogs to and similar behavior as the surface of tension.
A compressible multiphase framework for simulating supersonic atomization
NASA Astrophysics Data System (ADS)
Regele, Jonathan D.; Garrick, Daniel P.; Hosseinzadeh-Nik, Zahra; Aslani, Mohamad; Owkes, Mark
2016-11-01
The study of atomization in supersonic combustors is critical in designing efficient and high performance scramjets. Numerical methods incorporating surface tension effects have largely focused on the incompressible regime as most atomization applications occur at low Mach numbers. Simulating surface tension effects in high speed compressible flow requires robust numerical methods that can handle discontinuities caused by both material interfaces and shocks. A shock capturing/diffused interface method is developed to simulate high-speed compressible gas-liquid flows with surface tension effects using the five-equation model. This includes developments that account for the interfacial pressure jump that occurs in the presence of surface tension. A simple and efficient method for computing local interface curvature is developed and an acoustic non-dimensional scaling for the surface tension force is proposed. The method successfully captures a variety of droplet breakup modes over a range of Weber numbers and demonstrates the impact of surface tension in countering droplet deformation in both subsonic and supersonic cross flows.
Dependence of surface tension on curvature obtained from a diffuse-interface approach
NASA Astrophysics Data System (ADS)
Badillo, Arnoldo; Lafferty, Nathan; Matar, Omar K.
2017-11-01
From a sharp-interface viewpoint, the surface tension force is f = σκδ (x -xi) n , where σ is the surface tension, κ the local interface curvature, δ the delta function, and n the unit normal vector. The numerical implementation of this force on discrete domains poses challenges that arise from the calculation of the curvature. The continuous surface tension force model, proposed by Brackbill et al. (1992), is an alternative, used commonly in two-phase computational models. In this model, δ is replaced by the gradient of a phase indicator field, whose integral across a diffuse-interface equals unity. An alternative to the Brackbill model are Phase-Field models, which do not require an explicit calculation of the curvature. However, and just as in Brackbill's approach, there are numerical errors that depend on the thickness of the diffuse interface, the grid spacing, and the curvature. We use differential geometry to calculate the leading errors in this force when obtained from a diffuse-interface approach, and outline possible routes to eliminate them. Our results also provide a simple geometrical explanation to the dependence of surface tension on curvature, and to the problem of line tension.
Bulk renormalization and particle spectrum in codimension-two brane worlds
NASA Astrophysics Data System (ADS)
Salvio, Alberto
2013-04-01
We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).
A Method to Manipulate Surface Tension of a Liquid Metal via Surface Oxidation and Reduction
Dickey, Michael D.
2016-01-01
Controlling interfacial tension is an effective method for manipulating the shape, position, and flow of fluids at sub-millimeter length scales, where interfacial tension is a dominant force. A variety of methods exist for controlling the interfacial tension of aqueous and organic liquids on this scale; however, these techniques have limited utility for liquid metals due to their large interfacial tension. Liquid metals can form soft, stretchable, and shape-reconfigurable components in electronic and electromagnetic devices. Although it is possible to manipulate these fluids via mechanical methods (e.g., pumping), electrical methods are easier to miniaturize, control, and implement. However, most electrical techniques have their own constraints: electrowetting-on-dielectric requires large (kV) potentials for modest actuation, electrocapillarity can affect relatively small changes in the interfacial tension, and continuous electrowetting is limited to plugs of the liquid metal in capillaries. Here, we present a method for actuating gallium and gallium-based liquid metal alloys via an electrochemical surface reaction. Controlling the electrochemical potential on the surface of the liquid metal in electrolyte rapidly and reversibly changes the interfacial tension by over two orders of magnitude (~500 mN/m to near zero). Furthermore, this method requires only a very modest potential (< 1 V) applied relative to a counter electrode. The resulting change in tension is due primarily to the electrochemical deposition of a surface oxide layer, which acts as a surfactant; removal of the oxide increases the interfacial tension, and vice versa. This technique can be applied in a wide variety of electrolytes and is independent of the substrate on which it rests. PMID:26863045
NASA Astrophysics Data System (ADS)
Sirota, Dmitry; Ivanov, Vadim
2017-11-01
Any mining operations influence stability of natural and technogenic massifs are the reason of emergence of the sources of differences of mechanical tension. These sources generate a quasistationary electric field with a Newtonian potential. The paper reviews the method of determining the shape and size of a flat source field with this kind of potential. This common problem meets in many fields of mining: geological exploration mineral resources, ore deposits, control of mining by underground method, determining coal self-heating source, localization of the rock crack's sources and other applied problems of practical physics. This problems are ill-posed and inverse and solved by converting to Fredholm-Uryson integral equation of the first kind. This equation will be solved by A.N. Tikhonov regularization method.
ERIC Educational Resources Information Center
Jorgensen Zebenbergen, Robyn
2011-01-01
This paper presents a case study of contemporary retail industry and the ways in which young workers participate in that field. Public perceptions of low numeracy among young people provided the catalyst for the study. Drawing on a mixed-method approach involving survey, case studies, stimulated recall, observations, and interviews, it was found…
NASA Astrophysics Data System (ADS)
Valeri, Guillermo; Koohbor, Behrad; Kidane, Addis; Sutton, Michael A.
2017-04-01
An experimental approach based on Digital Image Correlation (DIC) is successfully applied to predict the uniaxial stress-strain response of 304 stainless steel specimens subjected to nominally uniform temperatures ranging from room temperature to 900 °C. A portable induction heating device equipped with custom made water-cooled copper coils is used to heat the specimen. The induction heater is used in conjunction with a conventional tensile frame to enable high temperature tension experiments. A stereovision camera system equipped with appropriate band pass filters is employed to facilitate the study of full-field deformation response of the material at elevated temperatures. Using the temperature and load histories along with the full-field strain data, a Virtual Fields Method (VFM) based approach is implemented to identify constitutive parameters governing the plastic deformation of the material at high temperature conditions. Results from these experiments confirm that the proposed method can be used to measure the full field deformation of materials subjected to thermo-mechanical loading.
The Buckling of Curved Tension-field Girders
NASA Technical Reports Server (NTRS)
Limpert, G
1938-01-01
The present paper reports on experiments made to determine the buckling load under shear of circular curved tension-field webs. The buckling load of the webs may be expressed with reference to the buckling load of the stiffeners. It is found that within the explored range the buckling load is approximately twice as great as that of the identically stiffened flat wall of equal web depth.
An analytical study of reduced-gravity flow dynamics
NASA Technical Reports Server (NTRS)
Bradshaw, R. D.; Kramer, J. L.; Zich, J. L.
1976-01-01
Addition of surface tension forces to a marker-and-cell code and the performance of four incompressible fluid simulations in reduced gravity, were studied. This marker-and-cell code has a variable grid capability with arbitrary curved boundaries and time dependent acceleration fields. The surface tension logic includes a spline fit of surface marker particles as well as contact angle logic for straight and curved wall boundaries. Three types of flow motion were simulated with the improved code: impulsive settling in a model Centaur LH2 tank, continuous settling in a model and full scale Centaur LO2 tank and mixing in a Centaur LH2 tank. The impulsive settling case confirmed a drop tower analysis which indicated more orderly fluid collection flow patterns with this method providing a potential savings in settling propellants. In the LO2 tank, fluid collection and flow simulation into the thrust barrel were achieved. The mixing simulation produced good results indicating both the development of the flow field and fluid interface behavior.
NASA Astrophysics Data System (ADS)
Cohen, D.; Giadrossich, F.; Schwarz, M.; Vergani, C.
2016-12-01
Roots provide mechanical anchorage and reinforcement of soils on slopes. Roots also modify soil hydrological properties (soil moisture content, pore-water pressure, preferential flow paths) via subsurface flow path associated with root architecture, root density, and root-size distribution. Interactions of root-soil mechanical and hydrological processes are an important control of shallow landslide initiation during rainfall events and slope stability. Knowledge of root-distribution and root strength are key components to estimate slope stability in vegetated slopes and for the management of protection forest in steep mountainous area. We present data that show the importance of measuring root strength directly in the field and present methods for these measurements. These data indicate that the tensile force mobilized in roots depends on root elongation (a function of soil displacement), root size, and on whether roots break in tension of slip out of the soil. Measurements indicate that large lateral roots that cross tension cracks at the scarp are important for slope stability calculations owing to their large tensional resistance. These roots are often overlooked and when included, their strength is overestimated because extrapolated from measurements on small roots. We present planned field experiments that will measure directly the force held by roots of different sizes during the triggering of a shallow landslide by rainfall. These field data are then used in a model of root reinforcement based on fiber-bundle concepts that span different spacial scales, from a single root to the stand scale, and different time scales, from timber harvest to root decay. This model computes the strength of root bundles in tension and in compression and their effect on soil strength. Up-scaled to the stand the model yields the distribution of root reinforcement as a function of tree density, distance from tree, tree species and age with the objective of providing quantitative estimates of tree root reinforcement for best management practice of protection forests.
Field emission electric propulsion thruster modeling and simulation
NASA Astrophysics Data System (ADS)
Vanderwyst, Anton Sivaram
Electric propulsion allows space rockets a much greater range of capabilities with mass efficiencies that are 1.3 to 30 times greater than chemical propulsion. Field emission electric propulsion (FEEP) thrusters provide a specific design that possesses extremely high efficiency and small impulse bits. Depending on mass flow rate, these thrusters can emit both ions and droplets. To date, fundamental experimental work has been limited in FEEP. In particular, detailed individual droplet mechanics have yet to be understood. In this thesis, theoretical and computational investigations are conducted to examine the physical characteristics associated with droplet dynamics relevant to FEEP applications. Both asymptotic analysis and numerical simulations, based on a new approach combining level set and boundary element methods, were used to simulate 2D-planar and 2D-axisymmetric probability density functions of the droplets produced for a given geometry and electrode potential. The combined algorithm allows the simulation of electrostatically-driven liquids up to and after detachment. Second order accuracy in space is achieved using a volume of fluid correction. The simulations indicate that in general, (i) lowering surface tension, viscosity, and potential, or (ii) enlarging electrode rings, and needle tips reduce operational mass efficiency. Among these factors, surface tension and electrostatic potential have the largest impact. A probability density function for the mass to charge ratio (MTCR) of detached droplets is computed, with a peak around 4,000 atoms per electron. High impedance surfaces, strong electric fields, and large liquid surface tension result in a lower MTCR ratio, which governs FEEP droplet evolution via the charge on detached droplets and their corresponding acceleration. Due to the slow mass flow along a FEEP needle, viscosity is of less importance in altering the droplet velocities. The width of the needle, the composition of the propellant, the current and the mass efficiency are interrelated. The numerical simulations indicate that more electric power per Newton of thrust on a narrow needle with a thin, high surface tension fluid layer gives better performance.
The influence of surface-active agents in gas mixture on the intensity of jet condensation
NASA Astrophysics Data System (ADS)
Yezhov, YV; Okhotin, VS
2017-11-01
The report presents: the methodology of calculation of contact condensation of steam from the steam-gas mixture into the stream of water, taking into account: the mass flow of steam through the boundary phase, particularly the change in turbulent transport properties near the interface and their connection to the interface perturbations due to the surface tension of the mixture; the method of calculation of the surface tension at the interface water - a mixture of fluorocarbon vapor and water, based on the previously established analytical methods we calculate the surface tension for simple one - component liquid-vapor systems. The obtained analytical relation to calculate the surface tension of the mixture is a function of temperature and volume concentration of the fluorocarbon gas in the mixture and is true for all sizes of gas molecules. On the newly created experimental stand is made verification of experimental studies to determine the surface tension of pure substances: water, steam, C3F8 pair C3F8, produced the first experimental data on surface tension at the water - a mixture of water vapor and fluorocarbon C3F8. The obtained experimental data allow us to refine the values of the two constants used in the calculated model of the surface tension of the mixture. Experimental study of jet condensation was carried out with the flow in the zone of condensation of different gases. The condensation process was monitored by measurement of consumption of water flowing from the nozzle, and the formed condensate. When submitting C3F8, there was a noticeable, intensification condensation process compared with the condensation of pure water vapor. The calculation results are in satisfactory agreement with the experimental data on surface tension of the mixture and steam condensation from steam-gas mixture. Analysis of calculation results shows that the presence of surfactants in the condensation zone affects the partial vapor pressure on the interfacial surface, and the thermal conductivity of the liquid jet. The first circumstance leads to deterioration of the condensation process, the second to the intensification of this process. There is obviously an optimum value of concentration of the additive surfactants to the vapour when the condensation process is maximum. According to the developed design methodology contact condensation can evaluate these optimum conditions, their practical effect in the field study.
NASA Astrophysics Data System (ADS)
Yu, Fengyi; Wei, Yanhong
2018-05-01
The effects of surface tension anisotropy and welding parameters on initial instability dynamics during gas tungsten arc welding of an Al-alloy are investigated by a quantitative phase-field model. The results show that the surface tension anisotropy and welding parameters affect the initial instability dynamics in different ways during welding. The surface tension anisotropy does not influence the solute diffusion process but does affect the stability of the solid/liquid interface during solidification. The welding parameters affect the initial instability dynamics by varying the growth rate and thermal gradient. The incubation time decreases, and the initial wavelength remains stable as the welding speed increases. When welding power increases, the incubation time increases and the initial wavelength slightly increases. Experiments were performed for the same set of welding parameters used in modeling, and the results of the experiments and simulations were in good agreement.
Molecular dynamics simulations of the surface tension and structure of salt solutions and clusters.
Sun, Lu; Li, Xin; Hede, Thomas; Tu, Yaoquan; Leck, Caroline; Ågren, Hans
2012-03-15
Sodium halides, which are abundant in sea salt aerosols, affect the optical properties of aerosols and are active in heterogeneous reactions that cause ozone depletion and acid rain problems. Interfacial properties, including surface tension and halide anion distributions, are crucial issues in the study of the aerosols. We present results from molecular dynamics simulations of water solutions and clusters containing sodium halides with the interatomic interactions described by a conventional force field. The simulations reproduce experimental observations that sodium halides increase the surface tension with respect to pure water and that iodide anions reach the outermost layer of water clusters or solutions. It is found that the van der Waals interactions have an impact on the distribution of the halide anions and that a conventional force field with optimized parameters can model the surface tension of the salt solutions with reasonable accuracy. © 2012 American Chemical Society
ERIC Educational Resources Information Center
Elstad, Eyvind
2010-01-01
Teacher education at the university has to relate both to the school and to academia. Since these two worlds have values that to some extent diverge, teacher education is placed in a field of tension between the requirement to adapt to academic standards, norms, and values and the requirement to maintain a close professional relationship with the…
Theory of the Maxwell pressure tensor and the tension in a water bridge.
Widom, A; Swain, J; Silverberg, J; Sivasubramanian, S; Srivastava, Y N
2009-07-01
A water bridge refers to an experimental "flexible cable" made up of pure de-ionized water, which can hang across two supports maintained with a sufficiently large voltage difference. The resulting electric fields within the de-ionized water flexible cable maintain a tension that sustains the water against the downward force of gravity. A detailed calculation of the water bridge tension will be provided in terms of the Maxwell pressure tensor in a dielectric fluid medium. General properties of the dielectric liquid pressure tensor are discussed along with unusual features of dielectric fluid Bernoulli flows in an electric field. The "frictionless" Bernoulli flow is closely analogous to that of a superfluid.
ERIC Educational Resources Information Center
Zimmerman, Heather Toomey; Weible, Jennifer L.
2017-01-01
Guided by sociocultural perspectives on the importance of place as a resource for learning, we investigated 14- and 15-year old students' understandings of their community and water quality during a school-based watershed unit. Methods included a theory-driven thematic analysis of field notes and video transcripts from four biology classrooms, a…
BPS Z{sub N} string tensions, sine law and Casimir scaling, and integrable field theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kneipp, Marco A. C.; International Centre for Theoretical Physics
We consider a Yang-Mills-Higgs theory with spontaneous symmetry breaking of the gauge group G{yields}U(1){sup r}{yields}C{sub G}, with C{sub G} being the center of G. We study two vacua solutions of the theory which produce this symmetry breaking. We show that for one of these vacua, the theory in the Coulomb phase has the mass spectrum of particles and monopoles which is exactly the same as the mass spectrum of particles and solitons of two-dimensional affine Toda field theory, for suitable coupling constants. That result holds also for N=4 super Yang-Mills theories. On the other hand, in the Higgs phase, wemore » show that for each of the two vacua the ratio of the tensions of the BPS Z{sub N} strings satisfy either the Casimir scaling or the sine law scaling for G=SU(N). These results are extended to other gauge groups: for the Casimir scaling, the ratios of the tensions are equal to the ratios of the quadratic Casimir constant of specific representations; for the sine law scaling, the tensions are proportional to the components of the left Perron-Frobenius eigenvector of Cartan matrix K{sub ij} and the ratios of tensions are equal to the ratios of the soliton masses of affine Toda field theories.« less
Modeling tensional homeostasis in multicellular clusters.
Tam, Sze Nok; Smith, Michael L; Stamenović, Dimitrije
2017-03-01
Homeostasis of mechanical stress in cells, or tensional homeostasis, is essential for normal physiological function of tissues and organs and is protective against disease progression, including atherosclerosis and cancer. Recent experimental studies have shown that isolated cells are not capable of maintaining tensional homeostasis, whereas multicellular clusters are, with stability increasing with the size of the clusters. Here, we proposed simple mathematical models to interpret experimental results and to obtain insight into factors that determine homeostasis. Multicellular clusters were modeled as one-dimensional arrays of linearly elastic blocks that were either jointed or disjointed. Fluctuating forces that mimicked experimentally measured cell-substrate tractions were obtained from Monte Carlo simulations. These forces were applied to the cluster models, and the corresponding stress field in the cluster was calculated by solving the equilibrium equation. It was found that temporal fluctuations of the cluster stress field became attenuated with increasing cluster size, indicating that the cluster approached tensional homeostasis. These results were consistent with previously reported experimental data. Furthermore, the models revealed that key determinants of tensional homeostasis in multicellular clusters included the cluster size, the distribution of traction forces, and mechanical coupling between adjacent cells. Based on these findings, we concluded that tensional homeostasis was a multicellular phenomenon. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
A wireless smart sensor network for automated monitoring of cable tension
NASA Astrophysics Data System (ADS)
Sim, Sung-Han; Li, Jian; Jo, Hongki; Park, Jong-Woong; Cho, Soojin; Spencer, Billie F., Jr.; Jung, Hyung-Jo
2014-02-01
As cables are primary load carrying members in cable-stayed bridges, monitoring the tension forces of the cables provides valuable information regarding structural soundness. Incorporating wireless smart sensors with vibration-based tension estimation methods provides an efficient means of autonomous long-term monitoring of cable tensions. This study develops a wireless cable tension monitoring system using MEMSIC’s Imote2 smart sensors. The monitoring system features autonomous operation, sustainable energy harvesting and power consumption, and remote access using the internet. To obtain the tension force, an in-network data processing strategy associated with the vibration-based tension estimation method is implemented on the Imote2-based sensor network, significantly reducing the wireless data transmission and the power consumption. The proposed monitoring system has been deployed and validated on the Jindo Bridge, a cable-stayed bridge located in South Korea.
Phase Field Fracture Mechanics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Robertson, Brett Anthony
For this assignment, a newer technique of fracture mechanics using a phase field approach, will be examined and compared with experimental data for a bend test and a tension test. The software being used is Sierra Solid Mechanics, an implicit/explicit finite element code developed at Sandia National Labs in Albuquerque, New Mexico. The bend test experimental data was also obtained at Sandia Labs while the tension test data was found in a report online from Purdue University.
Black holes as beads on cosmic strings
NASA Astrophysics Data System (ADS)
Ashoorioon, Amjad; Mann, Robert B.
2014-11-01
We consider the possibility of the formation of cosmic strings with black holes as beads. We focus on the simplest setup where two black holes are formed on a long cosmic string. It turns out that in the absence of a background magnetic field and for observationally viable values for cosmic string tensions, μ \\lt 2× {{10}-7}, the tension of the strut in between the black holes has to be less than the ones that run into infinity. This result does not change if a cosmological constant is present. However, if a background magnetic field is turned on, we can have stable setups where the tensions of all cosmic strings are equal. We derive the equilibrium conditions in each of these setups depending on whether the black holes are extremal or non-extremal. We obtain cosmologically acceptable solutions with solar mass black holes and an intragalactic-strength cosmic magnetic field.
Capillary wave theory of adsorbed liquid films and the structure of the liquid-vapor interface
NASA Astrophysics Data System (ADS)
MacDowell, Luis G.
2017-08-01
In this paper we try to work out in detail the implications of a microscopic theory for capillary waves under the assumption that the density is given along lines normal to the interface. Within this approximation, which may be justified in terms of symmetry arguments, the Fisk-Widom scaling of the density profile holds for frozen realizations of the interface profile. Upon thermal averaging of capillary wave fluctuations, the resulting density profile yields results consistent with renormalization group calculations in the one-loop approximation. The thermal average over capillary waves may be expressed in terms of a modified convolution approximation where normals to the interface are Gaussian distributed. In the absence of an external field we show that the phenomenological density profile applied to the square-gradient free energy functional recovers the capillary wave Hamiltonian exactly. We extend the theory to the case of liquid films adsorbed on a substrate. For systems with short-range forces, we recover an effective interface Hamiltonian with a film height dependent surface tension that stems from the distortion of the liquid-vapor interface by the substrate, in agreement with the Fisher-Jin theory of short-range wetting. In the presence of long-range interactions, the surface tension picks up an explicit dependence on the external field and recovers the wave vector dependent logarithmic contribution observed by Napiorkowski and Dietrich. Using an error function for the intrinsic density profile, we obtain closed expressions for the surface tension and the interface width. We show the external field contribution to the surface tension may be given in terms of the film's disjoining pressure. From literature values of the Hamaker constant, it is found that the fluid-substrate forces may be able to double the surface tension for films in the nanometer range. The film height dependence of the surface tension described here is in full agreement with results of the capillary wave spectrum obtained recently in computer simulations, and the predicted translation mode of surface fluctuations reproduces to linear order in field strength an exact solution of the density correlation function for the Landau-Ginzburg-Wilson Hamiltonian in an external field.
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.
We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
NASA Astrophysics Data System (ADS)
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; Carter, Emily A.; Debenedetti, Pablo G.; Panagiotopoulos, Athanassios Z.
2017-02-01
A new modified embedded-atom method (MEAM) force field is developed for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997), 10.1103/PhysRevLett.79.2482], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquid density, self-diffusivity, viscosity, and vapor-liquid surface tension. It is shown that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.
Structural and dynamic properties of liquid tin from a new modified embedded-atom method force field
Vella, Joseph R.; Chen, Mohan; Stillinger, Frank H.; ...
2017-02-01
We developed a new modified embedded-atom method (MEAM) force field for liquid tin. Starting from the Ravelo and Baskes force field [Phys. Rev. Lett. 79, 2482 (1997)], the parameters are adjusted using a simulated annealing optimization procedure in order to obtain better agreement with liquid-phase data. The predictive capabilities of the new model and the Ravelo and Baskes force field are evaluated using molecular dynamics by comparing to a wide range of first-principles and experimental data. The quantities studied include crystal properties (cohesive energy, bulk modulus, equilibrium density, and lattice constant of various crystal structures), melting temperature, liquid structure, liquidmore » density, self-diffusivity, viscosity, and vapor-liquid surface tension. We show that although the Ravelo and Baskes force field generally gives better agreement with the properties related to the solid phases of tin, the new MEAM force field gives better agreement with liquid tin properties.« less
Handheld magnetic sensor for measurement of tension
NASA Astrophysics Data System (ADS)
Singal, K.; Rajamani, R.
2012-04-01
This letter develops an analytical formulation for measurement of tension in a string using a handheld sensor. By gently pushing the sensor against the string, the tension in the string can be obtained. An experimental sensor prototype is constructed to verify the analytical formulation. The centimeter-sized prototype utilizes three moving pistons and magnetic field based measurements of their positions. Experimental data show that the sensor can accurately measure tension on a bench top rig. The developed sensor could be useful in a variety of orthopedic surgical procedures, including knee replacement, hip replacement, ligament repair, shoulder stabilization, and tendon repair.
Sensor and methods of detecting target materials and situations in closed systems
Mee, David K.; Ripley, Edward B.; Nienstedt, Zachary C.; Nienstedt, Alex W.; Howell, Jr., Layton N.
2018-03-13
Disclosed is a passive, in-situ pressure sensor. The sensor includes a sensing element having a ferromagnetic metal and a tension inducing mechanism coupled to the ferromagnetic metal. The tension inducing mechanism is operable to change a tensile stress upon the ferromagnetic metal based on a change in pressure in the sensing element. Changes in pressure are detected based on changes in the magnetic switching characteristics of the ferromagnetic metal when subjected to an alternating magnetic field caused by the change in the tensile stress. The sensing element is embeddable in a closed system for detecting pressure changes without the need for any penetrations of the system for power or data acquisition by detecting changes in the magnetic switching characteristics of the ferromagnetic metal caused by the tensile stress.
Traction force and tension fluctuations in growing axons
NASA Astrophysics Data System (ADS)
Urbach, Jeffrey; Polackwich, Jamie; Koch, Daniel; McAllister, Ryan; Geller, Herbert
Actively generated mechanical forces play a central role in axon growth and guidance during nervous system development. We describe the dynamics of traction stresses from growth cones of actively advancing axons from postnatal rat DRG neurons. By tracking the movement of the growth cone and analyzing the traction stresses in a co-moving reference frame, we show that there is a clear and consistent average stress field underlying the complex spatial stresses present at any one time. The average stress field has strong maxima on the sides of the growth cone, directed inward toward the growth cone neck. This pattern represents a Contractile stress contained within the growth cone, and a net force that is balanced by the axon tension. In addition, using high time-resolution measurements, we show that the stress field is composed of fluctuating local stress peaks, with a population of peaks whose lifetime distribution follows an exponential decay, and a small number of very long-lived peaks. We also find that the tension appears to vary randomly over short time scales, roughly consistent with the lifetime of the stress peaks, suggesting that the tension fluctuations originate from stochastic adhesion dynamics.
NASA Astrophysics Data System (ADS)
Chang, Anteng; Li, Huajun; Wang, Shuqing; Du, Junfeng
2017-08-01
Both wave-frequency (WF) and low-frequency (LF) components of mooring tension are in principle non-Gaussian due to nonlinearities in the dynamic system. This paper conducts a comprehensive investigation of applicable probability density functions (PDFs) of mooring tension amplitudes used to assess mooring-line fatigue damage via the spectral method. Short-term statistical characteristics of mooring-line tension responses are firstly investigated, in which the discrepancy arising from Gaussian approximation is revealed by comparing kurtosis and skewness coefficients. Several distribution functions based on present analytical spectral methods are selected to express the statistical distribution of the mooring-line tension amplitudes. Results indicate that the Gamma-type distribution and a linear combination of Dirlik and Tovo-Benasciutti formulas are suitable for separate WF and LF mooring tension components. A novel parametric method based on nonlinear transformations and stochastic optimization is then proposed to increase the effectiveness of mooring-line fatigue assessment due to non-Gaussian bimodal tension responses. Using time domain simulation as a benchmark, its accuracy is further validated using a numerical case study of a moored semi-submersible platform.
Pendant-Drop Surface-Tension Measurement On Molten Metal
NASA Technical Reports Server (NTRS)
Man, Kin Fung; Thiessen, David
1996-01-01
Method of measuring surface tension of molten metal based on pendant-drop method implemented in quasi-containerless manner and augmented with digital processing of image data. Electrons bombard lower end of sample rod in vacuum, generating hanging drop of molten metal. Surface tension of drop computed from its shape. Technique minimizes effects of contamination.
Measuring Surface Tension of a Flowing Soap Film
NASA Astrophysics Data System (ADS)
Sane, Aakash; Kim, Ildoo; Mandre, Shreyas
2016-11-01
It is well known that surface tension is sensitive to the presence of surfactants and many conventional methods exist to measure it. These techniques measure surface tension either by intruding into the system or by changing its geometry. Use of conventional methods in the case of a flowing soap film is not feasible because intruding the soap film changes surface tension due to Marangoni effect. We present a technique in which we measure the surface tension in situ of a flowing soap film without intruding into the film. A flowing soap film is created by letting soap solution drip between two wires. The interaction of the soap film with the wires causes the wires to deflect which can be measured. Surface tension is calculated using a relation between curvature of the wires and the surface tension. Our measurements indicate that the surface tension of the flowing soap film for our setup is around 0.05 N/m. The nature of this technique makes it favorable for measuring surface tension of flowing soap films whose properties change on intrusion.
Wagener, Marc L; Driesprong, Marco; Heesterbeek, Petra J C; Verdonschot, Nico; Eygendaal, Denise
2013-08-01
In this study three different methods for fixating the Chevron osteotomy of the olecranon are evaluated. Transcortical fixed Kirschner wires with a tension band, a large cancellous screw with a tension band, and a large cancellous screw alone are compared using Roentgen Stereophotogrammatic Analysis (RSA). The different fixation methods were tested in 17 cadaver specimens by applying increasing repetitive force to the triceps tendon. Forces applied were 200N, 350N, and 500N. Translation and rotation of the osteotomy were recorded using Roentgen Stereophotogrammatic Analysis. Both the fixations with a cancellous screw with tension band and with bi-cortical placed Kirschner wires with a tension band provide enough stability to withstand the forces of normal daily use. Since fixation with a cancellous screw with tension band is a fast and easy method and is related to minimal soft tissue damage this method can preferably be used for fixation of a Chevron osteotomy of the olecranon. © 2013.
Downie, J W; Armour, J A
1992-11-01
The relationship between vesical mechanoreceptor field dimensions and afferent nerve activity recorded in pelvic plexus nerve filaments was examined in chloralose-anesthetized cats. Orthogonal receptor field dimensions were monitored with piezoelectric ultrasonic crystals. Reflexly generated bladder contractile activity made measurements difficult, therefore data were collected from cats subjected to actual sacral rhizotomy. Afferent activity was episodic and was initiated at different pressure and receptor field dimension thresholds. Maximum afferent activity did not correlate with maximum volume or pressure. Furthermore, activity was not linearly related to intravesical pressure, receptor field dimensions, or calculated wall tension. Pressure-length hysteresis of the receptor fields occurred. The responses of identified afferent units and their associated receptor field dimensions to brief contractions elicited by the ganglion stimulant 1,1-dimethyl-4-phenylpiperazinium iodide (2.5-20 micrograms i.a.), studied under constant volume or constant pressure conditions, are compatible with bladder mechanoreceptors behaving as tension receptors. Because activity generated by bladder mechanoreceptors did not correlate in a simple fashion with intravesical pressure or receptor field dimensions, it is concluded that such receptors are influenced by the viscoelastic properties of the bladder wall. Furthermore, as a result of the heterogeneity of the bladder wall, receptor field tension appears to offer a more precise relationship with the activity of bladder wall mechanoreceptors than does intravesical pressure.
West, Ana; Ma, Kevin; Chung, Jonathan L; Kindt, James T
2013-08-15
Molecular dynamics simulations of lipid bilayer ribbons have been performed to investigate the structures and line tensions associated with free bilayer edges. Simulations carried out for dioleoyl phosphatidylcholine with three different force-field parameter sets yielded edge line tensions of 45 ± 2 pN, over 50% greater than the most recently reported experimentally determined value for this lipid. Edge tensions obtained from simulations of a series of phosphatidylcholine lipid bilayer ribbons with saturated acyl tails of length 12-16 carbons and with monounsaturated acyl tails of length 14-18 carbons could be correlated with the excess area associated with forming the edge, through a two-parameter fit. Saturated-tail lipids underwent local thickening near the edge, producing denser packing that correlated with lower line tensions, while unsaturated-tail lipids showed little or no local thickening. In a dipalmitoyl phosphatidylcholine ribbon initiated in a tilted gel-phase structure, lipid headgroups tended to tilt toward the nearer edge producing a herringbone pattern, an accommodation that may account for the reported edge-induced stabilization of an ordered structure at temperatures near a lipid gel-fluid phase transition.
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, Bernard M.; Ketterson, John B.; Bohanon, Thomas M.; Mikrut, John M.
1994-01-01
A non-contact method and apparatus for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement mechanical characteristics' fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use.
Why the water bridge does not collapse
NASA Astrophysics Data System (ADS)
Aerov, Artem A.
2011-09-01
In 2007 an interesting phenomenon was discovered [J. Phys. DJPAPBE0022-372710.1088/0022-3727/40/19/052 40, 6112 (2007)]: a horizontal thread of water, the so-called water bridge, hangs in a horizontal electrostatic field. A different explanation of the water bridge stability is proposed herein: the force supporting it is the surface tension of water, while the role of the electric field is to not allow the water bridge to reduce its surface energy by breaking into separate drops. It is proven that electrostatic field is not the origin of the tension holding the bridge.
Ozkan, A
2004-09-15
This paper contributes the shear flocculation method as a new approach to determine the critical surface tension of wetting of minerals treated with surfactants. This newly developed approach is based on the decrease of the shear flocculation of the mineral suspension, with decreasing of the surface tension of the liquids used. The solution surface tension value at which shear flocculation does not occur can be defined as the critical surface tension of wetting (gamma c) of the mineral. By using the shear flocculation method, the critical surface tensions of wetting (gamma c) for calcite and barite minerals, treated with surfactants, were obtained as 30.9 and 35.0 mN/m, respectively. These values are in good agreement with data reported previously on the same minerals obtained by the contact angle measurement and flotation methods. The chemical agents used for the treatment of calcite and barite particles were sodium oleate and sodium dodecyl sulfate, respectively.
Anazawa, T; Yasuda, K; Ishiwata, S
1992-05-01
We have devised a simple method for measuring tension development of single myofibrils by micromanipulation with a pair of glass micro-needles. The tension was estimated from the deflection of a flexible needle under an inverted phase-contrast microscope equipped with an image processor, so that the tension development is always accompanied by the shortening of the myofibril (auxotonic condition) in the present setup. The advantage of this method is that the measurement of tension (1/30 s for time resolution and about 0.05 micrograms for accuracy of tension measurement; 0.05 microns as a spatial resolution for displacement of the micro-needle) and the observation of sarcomere structure are possible at the same time, and the technique to hold myofibrils, even single myofibrils, is very simple. This method has been applied to study the tension development of glycerinated skeletal myofibrils under the condition where spontaneous oscillation of sarcomeres is induced, i.e., the coexistence of MgATP, MgADP and inorganic phosphate without free Ca2+. Under this condition, we found that the tension of myofibrils spontaneously oscillates accompanied by the oscillation of sarcomere length with a main period of a few seconds; the period was lengthened and shortened with stretch and release of myofibrils. A possible mechanism of the oscillation is discussed.
NASA Technical Reports Server (NTRS)
2002-01-01
Developed in response to a NASA requirement to remotely measure tension in critical bolts on the International Space Station, the SureBolt(TM) Correlation Bolt Gage is the first ultrasonic system to capture an entire "echo" pulse for determining the change in time of flight of an ultrasonic signal traversing a fastener for tension measurement. The standard SureBolt system hardware has the capability of recording over 1 million bolt tension readings-with their complete waveforms-in Microsoft Excel-compatible format. The user- friendly Tension-Not-Torque(Copyright) software interface offers tension change graphing in real time, and a place to store field notes, special parameters, tension calibration constants, and temperature changes for each measurement. The technology has been used on fasteners as small as fine-threaded, 1-inch bolts, and as large as 18-inch-diameter by 30-foot-long tie rods. SureBolt is finding increased application within NASA and the aerospace industry, as well as in the automotive and nuclear industries.
Direct numerical simulation of variable surface tension flows using a Volume-of-Fluid method
NASA Astrophysics Data System (ADS)
Seric, Ivana; Afkhami, Shahriar; Kondic, Lou
2018-01-01
We develop a general methodology for the inclusion of a variable surface tension coefficient into a Volume-of-Fluid based Navier-Stokes solver. This new numerical model provides a robust and accurate method for computing the surface gradients directly by finding the tangent directions on the interface using height functions. The implementation is applicable to both temperature and concentration dependent surface tension coefficient, along with the setups involving a large jump in the temperature between the fluid and its surrounding, as well as the situations where the concentration should be strictly confined to the fluid domain, such as the mixing of fluids with different surface tension coefficients. We demonstrate the applicability of our method to the thermocapillary migration of bubbles and the coalescence of drops characterized by a different surface tension coefficient.
Restraint of Liquid Jets by Surface Tension in Microgravity Modeled
NASA Technical Reports Server (NTRS)
Chato, David J.
2001-01-01
Tension in Microgravity Modeled Microgravity poses many challenges to the designer of spacecraft tanks. Chief among these are the lack of phase separation and the need to supply vapor-free liquid or liquidfree vapor to the spacecraft processes that require fluid. One of the principal problems of phase separation is the creation of liquid jets. A jet can be created by liquid filling, settling of the fluid to one end of the tank, or even closing a valve to stop the liquid flow. Anyone who has seen a fountain knows that jets occur in normal gravity also. However, in normal gravity, the gravity controls and restricts the jet flow. In microgravity, with gravity largely absent, jets must be contained by surface tension forces. Recent NASA experiments in microgravity (Tank Pressure Control Experiment, TPCE, and Vented Tank Pressure Experiment, VTRE) resulted in a wealth of data about jet behavior in microgravity. VTRE was surprising in that, although it contained a complex geometry of baffles and vanes, the limit on liquid inflow was the emergence of a liquid jet from the top of the vane structure. Clearly understanding the restraint of liquid jets by surface tension is key to managing fluids in low gravity. To model this phenomenon, we need a numerical method that can track the fluid motion and the surface tension forces. The fluid motion is modeled with the Navier-Stokes equation formulated for low-speed incompressible flows. The quantities of velocity and pressure are placed on a staggered grid, with velocity being tracked at cell faces and pressure at cell centers. The free surface is tracked via the introduction of a color function that tracks liquid as 1/2 and gas as -1/2. A phase model developed by Jacqmin is used. This model converts the discrete surface tension force into a barrier function that peaks at the free surface and decays rapidly. Previous attempts at this formulation have been criticized for smearing the interface. However, by sharpening the phase function, double gridding the fluid function, and using a higher order solution for the fluid function, interface smearing is avoided. These equations can be rewritten as two coupled Poisson equations that also include the velocity. The method of solution is as follows: first, the phase equations are solved from this solution, a velocity field is generated, then a successive overrelaxation scheme is used to solve for a pressure field consistent with the velocity solution. After the code was implemented in axisymmetric form and verified by several test cases, the drop tower runs of Aydelott were modeled. The model handed the free-surface deformation quite nicely, even to the point of modeling geyser growth in the regime where the free surface was no longer restrained. A representative run is shown.
Tension on the Farm Fields: The Death of Traditional Agriculture?
ERIC Educational Resources Information Center
Oguamanam, Chidi
2007-01-01
Taking into account the historic transitions and progressions in agricultural science, this article examines the emergence of the phenomenon of agricultural biotechnology. It identifies pivotal sites of tension between agricultural biotechnology and alternative approaches to agriculture. The article identifies two distinct sources of contemporary…
Measurements of Hk and Ms in thin magnetic films by the angular dependence of the planar Hall effect
NASA Astrophysics Data System (ADS)
Vatskicheva, M.; Vatskichev, L.
1987-11-01
It is shown that the angular dependences of the planar Hall effect measured with infinite magnetic field and with magnetic field H⩾ Hk have an intersection point and this fact is enough for measuring the anisotropy field Hk applying the method presented by Pastor, Ferreiro and Torres in J. Magn. Magn. Mat. 53 (1986) 349, 62 (1986) 101. The scaling of the Hall tension U proportional to M2s in mV/Am -1 gives a possibility for calculating the Ms-values of the films. These assumptions are verified for NiFe- and NiFeGe films with a uniaxial magnetic anisotropy.
Legland, Jean-Baptiste; Zhang, Yuxiang; Abraham, Odile; Durand, Olivier; Tournat, Vincent
2017-10-01
The field of civil engineering is in need of new methods of non-destructive testing, especially in order to prevent and monitor the serious deterioration of concrete structures. In this work, experimental results are reported on fault detection and characterization in a meter-scale concrete structure using an ultrasonic nonlinear coda wave interferometry (NCWI) method. This method entails the nonlinear mixing of strong pump waves with multiple scattered probe (coda) waves, along with analysis of the net effect using coda wave interferometry. A controlled damage protocol is implemented on a post-tensioned, meter-scale concrete structure in order to generate cracking within a specific area being monitored by NCWI. The nonlinear acoustic response due to the high amplitude of acoustic modulation yields information on the elastic nonlinearities of concrete, as evaluated by two specific nonlinear observables. The increase in nonlinearity level corresponds to the creation of a crack with a network of microcracks localized at its base. In addition, once the crack closes as a result of post-tensioning, the residual nonlinearities confirm the presence of the closed crack. Last, the benefits and applicability of this NCWI method to the characterization and monitoring of large structures are discussed.
NASA Astrophysics Data System (ADS)
Sorba, Grégoire; Binetruy, Christophe; Chinesta, Francisco
2016-10-01
In this paper a model of Transversely Isotropic Fluid (TIF), developed by Pipkin in [1], is presented and used for example to model in 2D the in-plane shearing of UD prepreg. This problem demonstrates the need to have a continuous fiber tension field over the elements, with the final objective of detecting the wrinkling of fibers during the forming process, at the price of a lower accuracy of the velocity field.
NASA Astrophysics Data System (ADS)
Ma, Lin
2017-11-01
This paper develops a method for precisely determining the tension of an inclined cable with unknown boundary conditions. First, the nonlinear motion equation of an inclined cable is derived, and a numerical model of the motion of the cable is proposed using the finite difference method. The proposed numerical model includes the sag-extensibility, flexural stiffness, inclination angle and rotational stiffness at two ends of the cable. Second, the influence of the dynamic parameters of the cable on its frequencies is discussed in detail, and a method for precisely determining the tension of an inclined cable is proposed based on the derivatives of the eigenvalues of the matrices. Finally, a multiparameter identification method is developed that can simultaneously identify multiple parameters, including the rotational stiffness at two ends. This scheme is applicable to inclined cables with varying sag, varying flexural stiffness and unknown boundary conditions. Numerical examples indicate that the method provides good precision. Because the parameters of cables other than tension (e.g., the flexural stiffness and rotational stiffness at the ends) are not accurately known in practical engineering, the multiparameter identification method could further improve the accuracy of cable tension measurements.
NASA Astrophysics Data System (ADS)
Ibrahim, MH Wan; Hadi, MN Abdul; Hooi Min, Yee
2018-04-01
Tensioned fabric structure with different surface form could be realized. Their variations as possible choice form of minimal surface for tensioned fabric structure have been studied. The form of used in TFS is Handkerchief Surface. Handkerchief Surface used in TFS because Handkerchief Surface is the form of minimal surface and Handkerchief Surface has not been studied by other researcher. Besides, no other work on Handkerchief Surface as idea in tensioned fabric structure has been found. The aim of the study is to propose converged shape of Handkerchief Surface with variable u=v=0.4 and u=v=1.0. The method used for Form-Finding is nonlinear analysis method. From the result, the surface of Handkerchief TFS model, u=v=0.4 and u=v=1.0 show the total warp and fill stress deviation is less than 0.01. The initial equilibrium shape of Handkerchief tensioned fabric structure model, u=v=0.4 and u=v=1.0 is corresponding to equal tension surface. Tensioned fabric structure in the form of Handikerchief Surface is a structurally viable surface form to be considered by engineer.
NASA Astrophysics Data System (ADS)
Dutykh, Denys; Hoefer, Mark; Mitsotakis, Dimitrios
2018-04-01
Some effects of surface tension on fully nonlinear, long, surface water waves are studied by numerical means. The differences between various solitary waves and their interactions in subcritical and supercritical surface tension regimes are presented. Analytical expressions for new peaked traveling wave solutions are presented in the dispersionless case of critical surface tension. Numerical experiments are performed using a high-accurate finite element method based on smooth cubic splines and the four-stage, classical, explicit Runge-Kutta method of order 4.
Marjoram, R.J.; Guilluy, C; Burridge, K.
2015-01-01
Cellular tension has implications in normal biology and pathology. Membrane adhesion receptors serve as conduits for mechanotransduction that lead to cellular responses. Ligand-conjugated magnetic beads are a useful tool in the study of how cells sense and respond to tension. Here we detail methods for their use in applying tension to cells and strategies for analyzing the results. We demonstrate the methods by analyzing mechanotransduction through VE-cadherin on endothelial cells using both permanent magnets and magnetic tweezers. PMID:26427549
Design of an experimental apparatus for measurement of the surface tension of metastable fluids
NASA Astrophysics Data System (ADS)
Vinš, V.; Hrubý, J.; Hykl, J.; Blaha, J.; Šmíd, B.
2013-04-01
A unique experimental apparatus for measurement of the surface tension of aqueous mixtures has been designed, manufactured, and tested in our laboratory. The novelty of the setup is that it allows measurement of surface tension by two different methods: a modified capillary elevation method in a long vertical capillary tube and a method inspired by the approach of Hacker (National Advisory Committee for Aeronautics, Technical Note 2510, 1-20, 1951), i.e. in a short horizontal capillary tube. Functionality of all main components of the apparatus, e.g., glass chamber with the capillary tube, temperature control unit consisting of two thermostatic baths with special valves for rapid temperature jumps, helium distribution setup allowing pressure variation above the liquid meniscus inside the capillary tube, has been successfully tested. Preliminary results for the surface tension of the stable and metastable supercooled water measured by the capillary elevation method at atmospheric pressure are provided. The surface tension of water measured at temperatures between +26 °C and -11 °C is in good agreement with the extrapolated IAPWS correlation (IAPWS Release on Surface Tension of Ordinary Water Substance, September 1994); however it disagrees with data by Hacker.
Prediction of Phase Separation of Immiscible Ga-Tl Alloys
NASA Astrophysics Data System (ADS)
Kim, Yunkyum; Kim, Han Gyeol; Kang, Youn-Bae; Kaptay, George; Lee, Joonho
2017-06-01
Phase separation temperature of Ga-Tl liquid alloys was investigated using the constrained drop method. With this method, density and surface tension were investigated together. Despite strong repulsive interactions, molar volume showed ideal mixing behavior, whereas surface tension of the alloy was close to that of pure Tl due to preferential adsorption of Tl. Phase separation temperatures and surface tension values obtained with this method were close to the theoretically calculated values using three different thermodynamic models.
Modeling the dynamics of pressure propagation and diameter variation in tree sapwood.
Perämäki, Martti; Vesala, Timo; Nikinmaa, Eero
2005-09-01
A non-steady-state model of water tension propagation in tree stems was developed. The model is based on the cohesion theory and the assumption that fluctuating water tension driven by transpiration together with the elasticity of wood cause variations in the diameter of a tree stem. The change in xylem diameter can be linked to water tension in accordance with Hooke's law. The model was tested against field measurements of the diurnal change in xylem diameter at different heights in a 180-year-old Scots pine tree at Hyytiälä, southern Finland. Model predictions agreed well with measurements. The effect of tree dimensions on pressure propagation was examined with the model. The model outcomes were also consistent with results of several field measurements presented in the literature.
Essential Tension: Specialization with Broad and General Training in Psychology
ERIC Educational Resources Information Center
Roberts, Michael C.
2006-01-01
The practice fields of psychology develop through specialization in training and education. The recognized specialties play a major role in developing new opportunities for professional psychology and providing quality services for the public. The essential tension comes from the balance of innovation and tradition and, in professional psychology,…
The Humanistic Psychology-Positive Psychology Divide: Contrasts in Philosophical Foundations
ERIC Educational Resources Information Center
Waterman, Alan S.
2013-01-01
The relationship between the fields of humanistic and positive psychology has been marked by continued tension and ambivalence. This tension can be traced to extensive differences in the philosophical grounding characterizing the two perspectives within psychology. These differences exist with respect to (a) ontology, including the ways in which…
Veen, I; Killian, D; Vlaminck, L; Vernooij, J C M; Back, W
2018-03-08
Debate surrounds the use of high rein tension for obtaining different head and neck positions in the training of sport horses on account of possible welfare issues. To compare auxiliary rein tension in two methods (Draw Reins and Concord Leader) for obtaining a standardised head and neck position on a hard and a soft surface. Intervention study. Left and right rein tensions were measured in 11 base-level trained client-owned sport horses (mean age ± s.d.; 10 ± 3.2 years) exercised in-hand with, in a random order, conventional draw reins or the newly developed Concord Leader in a standardised head and neck position. Rein tension was measured using a calibrated device operating at 10 Hz during six runs of 15 s in a straight line for each training method on both a hard and a soft surface. A linear mixed model and grouped logistic regression analysis were applied to compare the two methods (P<0.05). The odds of a tension of 0 N were lower with draw reins than with the Concord Leader. The rein tension (mean sum of the force applied, in N) of the draw reins was 13.8 times higher than that of the Concord Leader. This study was performed on horses exercised in-hand; however, these auxiliary aids are normally used when lungeing. Possible redirection of rein tension towards the poll was not measured. We showed that when using the Concord Leader a similar head and neck position is achieved with a much lower rein tension than with the draw reins and, more importantly, with a much greater likelihood of 0 N. It is unnecessary to use high auxiliary rein tension to obtain a standard, flexed head and neck position. © 2018 The Authors. Equine Veterinary Journal published by John Wiley & Sons Ltd on behalf of EVJ Ltd.
2014-08-01
installing high-capacity, post-tensioned foundation anchors. These stressed steel tendons have been used to strengthen hydraulic concrete structures and to...Field Inspection in Mass Concrete .................................... 32 3.3 NDT Technologies in General for Seven Strand Wire Cable Inspection...rod end of a 1.31-inch-diameter grease embedded trunion anchor rod with concrete termination. ..................... 37 Figure 32. 441 Khz narrow
A Modified Jaeger's Method for Measuring Surface Tension.
ERIC Educational Resources Information Center
Ntibi, J. Effiom-Edem
1991-01-01
A static method of measuring the surface tension of a liquid is presented. Jaeger's method is modified by replacing the pressure source with a variable pressure head. By using this method, stationary air bubbles are obtained thus resulting in controllable external parameters. (Author/KR)
Karasz, Alison; Patel, Viraj; Kabita, Mahbhooba; Shimu, Parvin
2013-01-01
Although common mental disorder (CMD) is highly prevalent among South Asian immigrant women, they rarely seek mental treatment. This may be owing in part to the lack of conceptual synchrony between medical models of mental disorder and the social models of distress common in South Asian communities. Furthermore, common mental health screening and diagnostic measures may not adequately capture distress in this group. Community-based participatory research (CBPR) is ideally suited to help address measurement issues in CMD as well as to develop culturally appropriate treatment models. To use participatory methods to identify an appropriate, culturally specific mental health syndrome and develop an instrument to measure this syndrome. We formed a partnership between researchers, clinicians, and community members. The partnership selected a culturally specific model of emotional distress/illness, "tension," as a focus for further study. Partners developed a scale to measure Tension and tested the new scale on 162 Bangladeshi immigrant women living in the Bronx. The 24-item "Tension Scale" had high internal consistency (α = 0.83). On bivariate analysis, the scale significantly correlated in the expected direction with depressed as measured by the Patient Health Questionnaire (PHQ-2), age, education, self-rated health, having seen a physician in the past year, and other variables. Using participatory techniques, we created a new measure designed to assess CMD in an isolated immigrant group. The new measure shows excellent psychometric properties and will be helpful in the implementation of a community-based, culturally synchronous intervention for depression. We describe a useful strategy for the rapid development and field testing of culturally appropriate measures of mental distress and disorder.
Tang, Yuye; Cao, Guoxin; Chen, Xi; Yoo, Jejoong; Yethiraj, Arun; Cui, Qiang
2006-01-01
The gating pathways of mechanosensitive channels of large conductance (MscL) in two bacteria (Mycobacterium tuberculosis and Escherichia coli) are studied using the finite element method. The phenomenological model treats transmembrane helices as elastic rods and the lipid membrane as an elastic sheet of finite thickness; the model is inspired by the crystal structure of MscL. The interactions between various continuum components are derived from molecular-mechanics energy calculations using the CHARMM all-atom force field. Both bacterial MscLs open fully upon in-plane tension in the membrane and the variation of pore diameter with membrane tension is found to be essentially linear. The estimated gating tension is close to the experimental value. The structural variations along the gating pathway are consistent with previous analyses based on structural models with experimental constraints and biased atomistic molecular-dynamics simulations. Upon membrane bending, neither MscL opens substantially, although there is notable and nonmonotonic variation in the pore radius. This emphasizes that the gating behavior of MscL depends critically on the form of the mechanical perturbation and reinforces the idea that the crucial gating parameter is lateral tension in the membrane rather than the curvature of the membrane. Compared to popular all-atom-based techniques such as targeted or steered molecular-dynamics simulations, the finite element method-based continuum-mechanics framework offers a unique alternative to bridge detailed intermolecular interactions and biological processes occurring at large spatial scales and long timescales. It is envisioned that such a hierarchical multiscale framework will find great value in the study of a variety of biological processes involving complex mechanical deformations such as muscle contraction and mechanotransduction. PMID:16731564
Gödel universes in string theory
NASA Astrophysics Data System (ADS)
Barrow, John D.; Dabrowski, Mariusz P.
1998-11-01
We show that homogeneous Gödel spacetimes need not contain closed timelike curves in low-energy-effective string theories. We find exact solutions for the Gödel metric in string theory for the full O(α') action including both dilaton and axion fields. The results are valid for bosonic, heterotic and super-strings. To first order in the inverse string tension α', these solutions display a simple relation between the angular velocity of the Gödel universe, Ω, and the inverse string tension of the form α'=1/Ω2 in the absence of the axion field. The generalization of this relationship is also found when the axion field is present.
NASA Astrophysics Data System (ADS)
Bodner, G.; Schwen, A.; Scholl, P.; Kammerer, G.; Buchan, G.; Kaul, H.-P.; Loiskandl, W.
2010-05-01
Soil macroporosity is a highly dynamic property influenced by environmental factors, such as raindrop impact, wetting-drying and freezing-thawing cycles, soil biota and plant roots, as well as agricultural management measures. Macroporosity represents an important indicator of soil physical quality, particularly in relation to the site specific water transmission properties, and can be used as a sensitive measure to assess soil structural degradation. Its quantification is also required for the parameterization of dual porosity models that are frequently used in environmental impact studies on erosion and solute (pesticide, nitrate) leaching. The importance of soil macroporosity for the water transport properties of the soil and its complexity due to high spatio-temporal heterogeneity make its quantitative assessment still a challenging task. Tension infiltrometers have been shown to be adequate measurement devices to obtain data in the near-saturated range of water flow where structural (macro)pores are dominating the transport process. Different methods have been used to derive water transmission characteristics from tension infiltrometer measurements. Moret and Arrúe (2007) differentiated between using a minimum equivalent capillary pore radius and a flow weighted mean pore radius to obtain representative macropore flow properties from tension infiltrometer data. Beside direct approaches based on Wooding's equation, also inverse methods have been applied to obtain soil hydraulic properties (Šimůnek et al. 1998). Using a dual porosity model in the inverse procedure allows estimating parameters in the dynamic near-saturated range by numerical optimization to the infiltration measurements, while fixing parameters in the more stable textural range of small pores using e.g. pressure plate data or even pedotransfer functions. The present work presents a comparison of quantitative measures of soil macroporosity derived from tension infiltrometer data by different approaches (direct vs. inverse evaluation, capillary vs. flow weighted pore radius). We will show the influence of the distinct evaluation procedures on the resulting effective macroporosity, as well as on the relationships between macropore radius and hydraulic conductivity (Moret and Arrúe, 2007) and pore fraction respectively (Carey et al., 2007). The infiltration measurements used in this study were obtained in a long-term tillage trial located in the semi-arid region of Eastern Austria. Measurements were taken five times over the vegetation period, starting immediately after tillage until harvest of the winter wheat crop. Three tillage systems were evaluated, being conventional tillage with plough, minimum tillage with chisel and no-tillage. Additional to infiltration measurements, also soil water content was monitored continuously by a capacitance probe in all three replicates of each tillage treatment in 10, 20 and 40 cm soil depth. Water content time series are used to derive flow velocity in the wet range by cross-correlation analysis (Wu et al., 1997). This effective parameter of water transmission will then be compared to the flow behaviour expected from the characterization of soil macroporosity. We will show that mainly in no-tillage systems large macropores contribute essentially to flow and therefore the decision on pore measure and evaluation procedure to be used leads to substantial differences. For a detailed comparison of tillage effects on soil hydraulic properties it is therefore essential to analyse the contribution of different tension infiltrometry based evaluation methods to explain effective water transmission through the complex porous network of the soil. References Carey, S.K., Quinton, W.L., Goeller, N.T. 2007. Field and laboratory estimates of pore size properties and hydraulic characteristics for subarctic organic soils. Hydrol. Process. 21, 2560-2571. Moret, D., Arrúe, J.L. 2007. Characterizing soil water conducting macro- and mesoporosity as influences by tillage using tension infiltrmetry. Soil Sci. Soc. Am. J. 71, 500-506. Šimůnek, J., Wang Dong, Shouse, P. J., van Genuchten, M. T. 1998. Analysis of field tension disc infiltrometer data by parameter estimation. Int. Agrophys. 12. 167-180. Wu, L., Jury, W.A., Chang, A.C. 1997. Time series analysis of field-measured watr content of a sandy soil. Soil Sci. Soc. Am. J. 61. 742-745.
Quality of life in healthy children and in children with tension headaches--a comparative analysis.
Talarska, D
2005-01-01
The aim of this study was the assessment of the quality of life of children and adolescents with tension headaches in comparison with healthy peers. The study was conducted on 135 middle school and high school students in Poznań and on 86 children with tension headaches, that were treated in the out-patient clinic of The Chair and Clinic of Development Age Neurology of Karol Marcinkowski University of Medical Sciences in Poznań. The research tool for both groups was Pediatric Quality of Life Inventory, version 4.0 (PedsQL 4.0) questionnaire. In the analysed groups dominated 14- and 16-year-old children. Among children with tension headaches, the ailments usually appeared once or twice a week in 39 (45%) of them. With the use of the PedsQL 4.0 questionnaire the following fields of activity were analyzed: biological, emotional, social functioning and mood. The biggest discrepancies between the group of healthy children and those with headaches were noted in the field of emotional functioning and mood. Adolescents with tension headaches more frequently reported the feeling of fear and sleep disorders in comparison to healthy students. Children with headaches look at the future in a more pessimistic way and are less satisfied with their lives.
NASA Astrophysics Data System (ADS)
Li, Xingli; Guo, Fang; Kuang, Hua; Zhou, Huaguo
2017-12-01
Psychology tells us that the different level of tension may lead to different behavior variation for individuals. In this paper, an extended cost potential field cellular automaton is proposed to simulate pedestrian counter flow under an emergency by considering behavior variation of pedestrian induced by psychological tension. A quantitative formula is introduced to describe behavioral changes caused by psychological tension, which also leads to the increasing cost of discomfort. The numerical simulations are performed under the periodic boundary condition and show that the presented model can capture some essential features of pedestrian counter flow, such as lane formation and segregation phenomenon for normal condition. Furthermore, an interesting feature is found that when pedestrians are in an extremely nervous state, a stable lane formation will be broken by a disordered mixture flow. The psychological nervousness under an emergency is not always negative to moving efficiency and a moderate level of tension will delay the occurrence of jamming phase. In addition, a larger asymmetrical ratio of left walkers to right walkers will improve the critical density related to the jamming phase and retard the occurrence of completely jammed phase. These findings will be helpful in pedestrian control and management under an emergency.
Method of driving liquid flow at or near the free surface using magnetic microparticles
Snezhko, Oleksiy [Woodridge, IL; Aronson, Igor [Darien, IL; Kwok, Wai-Kwong [Evanston, IL; Belkin, Maxim V [Woodridge, IL
2011-10-11
The present invention provides a method of driving liquid flow at or near a free surface using self-assembled structures composed of magnetic particles subjected to an external AC magnetic field. A plurality of magnetic particles are supported at or near a free surface of liquid by surface tension or buoyancy force. An AC magnetic field traverses the free surface and dipole-dipole interaction between particles produces in self-assembled snake structures which oscillate at the frequency of the traverse AC magnetic field. The snake structures independently move across the free surface and may merge with other snake structures or break up and coalesce into additional snake structures experiencing independent movement across the liquid surface. During this process, the snake structures produce asymmetric flow vortices across substantially the entirety of the free surface, effectuating liquid flow across the free surface.
The role of magnetic fields in the collapse of protostellar gas clouds
NASA Technical Reports Server (NTRS)
Scott, E. H.; Black, D. C.
1980-01-01
The paper presents the results of a numerical calculation of the collapse of an idealized protostellar gas cloud including the effects of a 'frozen-in' magnetic field. The 'traditional' picture of magnetic effects on gas clouds and recent observational and theoretical work on the subject are summarized. Attention is given to the method of calculation and the results are interpreted. It is found that the central magnetic field in the collapsing cloud model follows a rho to the 1/2 power relation, and the discussion implies that this is a general result which should hold true for some range of initial conditions around those chosen. In addition, it is found that the outer envelope of the cloud will be held up by tension in the field lines.
Method for evaluating moisture tensions of soils using spectral data
NASA Technical Reports Server (NTRS)
Peterson, John B. (Inventor)
1982-01-01
A method is disclosed which permits evaluation of soil moisture utilizing remote sensing. Spectral measurements at a plurality of different wavelengths are taken with respect to sample soils and the bidirectional reflectance factor (BRF) measurements produced are submitted to regression analysis for development therefrom of predictable equations calculated for orderly relationships. Soil of unknown reflective and unknown soil moisture tension is thereafter analyzed for bidirectional reflectance and the resulting data utilized to determine the soil moisture tension of the soil as well as providing a prediction as to the bidirectional reflectance of the soil at other moisture tensions.
Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery
NASA Astrophysics Data System (ADS)
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-02-01
Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.
NASA Astrophysics Data System (ADS)
Peng, Zhang
2018-03-01
the prestress under anchorage is directly related to the structural security and performance of PC beam bridge. The reverse tension method is a kind of inspection which confirms the prestress by exerting reversed tension load on the exposed prestressing tendon of beam bridge anchoring system. The thesis elaborately expounds the inspection mechanism and mechanical effect of reverse tension method, theoretically analyzes the influential elements of inspection like tool anchorage deformation, compression of conjuncture, device glide, friction of anchorage loop mouth and elastic compression of concrete, and then presents the following formula to calculate prestress under anchorage. On the basis of model experiment, the thesis systematically studies some key issues during the reverse tension process of PC beam bridge anchorage system like the formation of stress-elongation curve, influential factors, judgment method of prestress under anchorage, variation trend and compensation scale, verifies the accuracy of mechanism analysis and demonstrates: the prestress under anchorage is less than or equal to 75% of the ultimate strength of prestressing tendon, the error of inspect result is less than 1%, which can meet with the demands of construction. The research result has provided theoretical basis and technical foundation for the promotion and application of reverse tension in bridge construction.
Membrane Tension Inhibits Rapid and Slow Endocytosis in Secretory Cells.
Wu, Xin-Sheng; Elias, Sharon; Liu, Huisheng; Heureaux, Johanna; Wen, Peter J; Liu, Allen P; Kozlov, Michael M; Wu, Ling-Gang
2017-12-05
Endocytosis generates spherical or ellipsoid-like vesicles from the plasma membrane, which recycles vesicles that fuse with the plasma member during exocytosis in neurons and endocrine secretory cells. Although tension in the plasma membrane is generally considered to be an important factor in regulating endocytosis, whether membrane tension inhibits or facilitates endocytosis remains debated in the endocytosis field, and has been rarely studied for vesicular endocytosis in secretory cells. Here we report that increasing membrane tension by adjusting osmolarity inhibited both the rapid (a few seconds) and slow (tens of seconds) endocytosis in calyx-type nerve terminals containing conventional active zones and in neuroendocrine chromaffin cells. We address the mechanism of this phenomenon by computational modeling of the energy barrier that the system must overcome at the stage of membrane budding by an assembling protein coat. We show that this barrier grows with increasing tension, which may slow down or prevent membrane budding. These results suggest that in live secretory cells, membrane tension exerts inhibitory action on endocytosis. Published by Elsevier Inc.
Guo, Xinxing; Kong, Xiangbin; Huang, Rui; Jin, Ling; Ding, Xiaohu; He, Mingguang; Liu, Xing; Patel, Mehul Chimanlal; Congdon, Nathan G
2014-01-07
We evaluated the effect of ginkgo biloba extract on visual field defect and contrast sensitivity in a Chinese cohort with normal tension glaucoma. In this prospective, randomized, placebo-controlled crossover study, patients newly diagnosed with normal tension glaucoma, either in a tertiary glaucoma clinic (n = 5) or in a cohort undergoing routine general physical examinations in a primary care clinic (n = 30), underwent two 4-week phases of treatment, separated by a washout period of 8 weeks. Randomization determined whether ginkgo biloba extract (40 mg, 3 times per day) or placebo (identical-appearing tablets) was received first. Primary outcomes were change in contrast sensitivity and mean deviation on 24-2 SITA standard visual field testing, while secondary outcomes included IOP and self-reported adverse events. A total of 35 patients with mean age 63.7 (6.5) years were randomized to the ginkgo biloba extract-placebo (n = 18) or the placebo-ginkgo biloba extract (n = 17) sequence. A total of 28 patients (80.0%, 14 in each group) who completed testing did not differ at baseline in age, sex, visual field mean deviation, contrast sensitivity, IOP, or blood pressure. Changes in visual field and contrast sensitivity did not differ by treatment received or sequence (P > 0.2 for all). Power to have detected a difference in mean defect as large as previously reported was 80%. In contrast to some previous reports, ginkgo biloba extract treatment had no effect on mean defect or contrast sensitivity in this group of normal tension glaucoma patients. (http://www.chictr.org number, ChiCTR-TRC-08000724).
Automatic control of arterial carbon dioxide tension in mechanically ventilated patients.
Fernando, Tyrone; Cade, John; Packer, John
2002-12-01
This paper presents a method of controlling the arterial carbon dioxide tension of patients receiving mechanical ventilation. Controlling of the CO2 tension is achieved by regulating the ventilator initiated breath frequency and also volume per breath.
Deformation analysis of vesicles in an alternating-current electric field.
Tang, Yu-Gang; Liu, Ying; Feng, Xi-Qiao
2014-08-01
In this paper the shape equation for axisymmetric vesicles subjected to an ac electric field is derived on the basis of the liquid-crystal model. The equilibrium morphology of a lipid vesicle is determined by the minimization of its free energy in coupled mechanical and ac electric fields. Besides elastic bending, the effects of the osmotic pressure difference, surface tension, Maxwell pressure, and flexoelectric and dielectric properties of phospholipid membrane as well are taken into account. The influences of elastic bending, osmotic pressure difference, and surface tension on the frequency-dependent behavior of a vesicle membrane in an ac electric field are examined. The singularity of the ac electric field is also investigated. Our theoretical results of vesicle deformation agree well with previous experimental and numerical results. The present study provides insights into the physical mechanisms underpinning the frequency-dependent morphological evolution of vesicles in the electric and mechanical fields.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asahina, Yuta; Ohsuga, Ken; Nomura, Mariko, E-mail: asahina@cfca.jp
By performing three-dimensional magnetohydrodynamics simulations of subrelativistic jets and disk winds propagating into the magnetized inhomogeneous interstellar medium (ISM), we investigate the magnetic effects on the active galactic nucleus feedback. Our simulations reveal that the magnetic tension force promotes the acceleration of the dense gas clouds, since the magnetic field lines, which are initially straight, bend around the gas clouds. In the jet models, the velocity dispersion of the clouds increases with an increase in the initial magnetic fields. The increment of the kinetic energy of the clouds is proportional to the initial magnetic fields, implying that the magnetic tensionmore » force increases the energy conversion efficiency from the jet to the gas clouds. Through simulations of the mildly collimated disk wind and the funnel-shaped disk wind, we confirm that such an enhancement of the energy conversion efficiency via the magnetic fields appears even if the energy is injected via the disk winds. The enhancement of the acceleration of the dense part of the magnetized ISM via the magnetic tension force will occur wherever the magnetized inhomogeneous matter is blown away.« less
Self-reported symptoms associated with exposure to electromagnetic fields: a questionnaire study.
Küçer, Nermin; Pamukçu, Tuğba
2014-01-01
Abstract In the last years, it has been discussed frequently whether there are any harmful effects of electromagnetic fields on human health. Electromagnetic fields are generated by several natural and man-made sources. Part of the electromagnetic spectrum called Radiofrequency is used in communication systems such as mobile (cellular) phone and computer. The aim of our study was to explore different self-reported symptoms that may be associated with exposure to electromagnetic fields. This survey study was conducted, using a questionnaire, on 350 people aged +9 years in Turkey. The chi-square test was used for data analysis. Self-reported symptoms were headache, vertigo/dizziness, fatigue, forgetfulness, sleep disturbance-insomnia, tension-anxiety, joint and bone pain, lacrimation of the eyes, hearing loss and tinnitus. As a result of the survey, the study has shown that users of mobile phone and computer more often complained of headache, joint and bone pain, hearing loss, vertigo/dizziness, tension-anxiety symptoms according to time of daily usage (p < 0.05). In users of mobile phone and computer, women significantly (p < 0.05) complained more often of headache, vertigo/dizziness, fatigue, forgetfulness and tension-anxiety than men.
Mountain Logging Symposium Proceedings Held in West Virginia on Jun 5-7, 1984
1984-06-07
and board" analysis ( Lysons and Mann 1967) provided a method to make skyline payload determination feasible using topographic maps or field run... Lysons , Hilton H.; Mann, Charles N. Skyline tension and deflection handbook. Res. Pap. PNW-39. Portland, OR: U.S. Department of Agriculture, Forest...those described by Mifflin and Lysons (1978)and Miyata (1980). The estimated cost for the Clearwater Yarder and a four-man crew was $48.27 per
Dargel, Jens; Koebke, Jürgen; Brüggemann, Gert-Peter; Pennig, Dietmar; Schmidt-Wiethoff, Rüdiger
2009-10-01
This study investigates the influence of various femoral anterior cruciate ligament graft fixation methods on the amount of tension degradation and the initial fixation strength after cyclic flexion-extension loading in a porcine knee model. One hundred twenty porcine digital extensor tendons, used as 4-stranded free tendon grafts, were fixated within porcine femoral bone tunnels by use of extracortical button, cross-pin, or interference screw fixation. One hundred twenty porcine patellar tendon-bone grafts were fixated by use of cross-pin, interference screw, or press-fit fixation. Each femur-graft complex was submitted to cyclic flexion-extension loading for 1,000 cycles throughout different loading ranges, and the total loss of tension was determined. After cyclic testing, the grafts were loaded to failure, and the data were compared with a pullout series without cyclic loading. Tension degradation after 1,000 cycles of flexion-extension loading averaged 62.6% +/- 10.0% in free tendon grafts and 48.9% +/- 13.35% in patellar tendon-bone grafts. There was no influence of the loading range on the total amount of tension degradation. The total amount of tension degradation was the highest with interference screw fixation of free tendon and patellar tendon-bone grafts. Despite excessive loss of tension, the initial fixation strength of the femur-graft complex was not reduced. The method of femoral graft fixation significantly influenced tension degradation during dynamic flexion-extension loading. Femoral graft fixation methods that secure the graft close to the tunnel entrance and that displace the graft substance from the center of the bone tunnel show the largest amount of tension degradation during cyclic flexion-extension loading. The graft substance, not the fixation site, was the weakest link of the graft complex within this investigation. We believe that the graft fixation method should be considered when aiming to improve the precision of femoral graft placement in anterior cruciate ligament reconstruction.
Measurement of Surface Interfacial Tension as a Function of Temperature Using Pendant Drop Images
NASA Astrophysics Data System (ADS)
Yakhshi-Tafti, Ehsan; Kumar, Ranganathan; Cho, Hyoung J.
2011-10-01
Accurate and reliable measurements of surface tension at the interface of immiscible phases are crucial to understanding various physico-chemical reactions taking place between those. Based on the pendant drop method, an optical (graphical)-numerical procedure was developed to determine surface tension and its dependency on the surrounding temperature. For modeling and experimental verification, chemically inert and thermally stable perfluorocarbon (PFC) oil and water was used. Starting with geometrical force balance, governing equations were derived to provide non-dimensional parameters which were later used to extract values for surface tension. Comparative study verified the accuracy and reliability of the proposed method.
Catch and release: How do kinetochores hook the right microtubules during mitosis?
Sarangapani, Krishna K.; Asbury, Charles L.
2014-01-01
Sport fishermen keep tension on their lines to prevent hooked fish from releasing. A molecular version of this angler’s trick, operating at kinetochores, ensures accuracy during mitosis: The mitotic spindle attaches randomly to chromosomes and then correctly bioriented attachments are stabilized due to the tension exerted on them by opposing microtubules. Incorrect attachments, which lack tension, are unstable and release quickly, allowing another chance for biorientation. Stabilization of molecular interactions by tension also occurs in other physiological contexts such as cell adhesion, motility, hemostasis, and tissue morphogenesis. Here we review models for the stabilization of kinetochore attachments with an eye toward emerging models for other force-activated systems. While attention in the mitosis field has focused mainly on one kinase-based mechanism, multiple mechanisms may act together to stabilize properly bioriented kinetochores and some principles governing other tension-sensitive systems may apply to kinetochores as well. PMID:24631209
Kalantarian, Ali; Ninomiya, Hiromasa; Saad, Sameh M I; David, Robert; Winklbauer, Rudolf; Neumann, A Wilhelm
2009-02-18
Biological tissues behave in certain respects like liquids. Consequently, the surface tension concept can be used to explain aspects of the in vitro and in vivo behavior of multicellular aggregates. Unfortunately, conventional methods of surface tension measurement cannot be readily applied to small cell aggregates. This difficulty can be overcome by an experimentally straightforward method consisting of centrifugation followed by axisymmetric drop shape analysis (ADSA). Since the aggregates typically show roughness, standard ADSA cannot be applied and we introduce a novel numerical method called ADSA-IP (ADSA for imperfect profile) for this purpose. To examine the new methodology, embryonic tissues from the gastrula of the frog, Xenopus laevis, deformed in the centrifuge are used. It is confirmed that surface tension measurements are independent of centrifugal force and aggregate size. Surface tension is measured for ectodermal cells in four sample batches, and varies between 1.1 and 7.7 mJ/m2. Surface tension is also measured for aggregates of cells expressing cytoplasmically truncated EP/C-cadherin, and is approximately half as large. In parallel, such aggregates show a reduction in convergent extension-driven elongation after activin treatment, reflecting diminished intercellular cohesion.
Recent tectonic stress field, active faults and geothermal fields (hot-water type) in China
NASA Astrophysics Data System (ADS)
Wan, Tianfeng
1984-10-01
It is quite probable that geothermal fields of the hot-water type in China do not develop in the absence of recently active faults. Such active faults are all controlled by tectonic stress fields. Using the data of earthquake fault-plane solutions, active faults, and surface thermal manifestations, a map showing the recent tectonic stress field, and the location of active faults and geothermal fields in China is presented. Data collected from 89 investigated prospects with geothermal manifestations indicate that the locations of geothermal fields are controlled by active faults and the recent tectonic stress field. About 68% of the prospects are controlled by tensional or tensional-shear faults. The angle between these faults and the direction of maximum compressive stress is less than 45°, and both tend to be parallel. About 15% of the prospects are controlled by conjugate faults. Another 14% are controlled by compressive-shear faults where the angle between these faults and the direction maximum compressive stress is greater than 45°.
Test methods for textile composites
NASA Technical Reports Server (NTRS)
Minguet, Pierre J.; Fedro, Mark J.; Gunther, Christian K.
1994-01-01
Various test methods commonly used for measuring properties of tape laminate composites were evaluated to determine their suitability for the testing of textile composites. Three different types of textile composites were utilized in this investigation: two-dimensional (2-D) triaxial braids, stitched uniweave fabric, and three-dimensional (3-D) interlock woven fabric. Four 2-D braid architectures, five stitched laminates, and six 3-D woven architectures were tested. All preforms used AS4 fibers and were resin-transfer-molded with Shell RSL-1895 epoxy resin. Ten categories of material properties were investigated: tension, open-hole tension, compression, open-hole compression, in-plane shear, filled-hole tension, bolt bearing, interlaminar tension, interlaminar shear, and interlaminar fracture toughness. Different test methods and specimen sizes were considered for each category of test. Strength and stiffness properties obtained with each of these methods are documented in this report for all the material systems mentioned above.
Some numerical methods for the Hele-Shaw equations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Whitaker, N.
1994-03-01
Tryggvason and Aref used a boundary integral method and the vortex-in-cell method to evolve the interface between two fluids in a Hele-Shaw cell. The method gives excellent results for intermediate values of the nondimensional surface tension parameter. The results are different from the predicted results of McLean and Saffman for small surface tension. For large surface tension, there are some numerical problems. In this paper, we implement the method of Tryggvason and Aref but use the point vortex method instead of the vortex-in-cell method. A parametric spline is used to represent the interface. The finger widths obtained agree well withmore » those predicted by McLean and Saffman. We conclude the the method of Tryggvason and Aref can provide excellent results but that the vortex-in-cell method may not be the method of choice for extreme values of the surface tension parameter. In a second method, we represent the interface with a Fourier representation. In addition, an alternative way of discretizing the boundary integral is used. Our results are compared to the linearized theory and the results of McLean and Saffman and are shown to be highly accurate. 21 refs., 4 figs., 2 tabs.« less
ERIC Educational Resources Information Center
Craig, Cheryl J.; You, JeongAe; Oh, Suhak
2014-01-01
In this article, tensions in teacher community arose when the school's "rainy day" policy was invoked in the middle of a class period, disturbing instruction on the athletic field and subsequently in the gymnasium. The narrative inquiry takes a multiperspectival stance towards competing commitments to educational policy, on one hand, and…
Surface tension in human pathophysiology and its application as a medical diagnostic tool
Fathi-Azarbayjani, Anahita; Jouyban, Abolghasem
2015-01-01
Introduction: Pathological features of disease appear to be quite different. Despite this diversity, the common feature of various disorders underlies physicochemical and biochemical factors such as surface tension. Human biological fluids comprise various proteins and phospholipids which are capable of adsorption at fluid interfaces and play a vital role in the physiological function of human organs. Surface tension of body fluids correlates directly to the development of pathological states. Methods: In this review, the variety of human diseases mediated by the surface tension changes of biological phenomena and the failure of biological fluids to remain in their native state are discussed. Results: Dynamic surface tension measurements of human biological fluids depend on various parameters such as sex, age and changes during pregnancy or certain disease. It is expected that studies of surface tension behavior of human biological fluids will provide additional information and might become useful in medical practice. Theoretical background on surface tension measurement and surface tension values of reference fluids obtained from healthy and sick patients are depicted. Conclusion: It is well accepted that no single biomarker will be effective in clinical diagnosis. The surface tension measurement combined with routine lab tests may be a novel non-invasive method which can not only facilitate the discovery of diagnostic models for various diseases and its severity, but also be a useful tool for monitoring treatment efficacy. We therefore expect that studies of surface tension behavior of human biological fluids will provide additional useful information in medical practice. PMID:25901295
Lateral migration of a microdroplet under optical forces in a uniform flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cho, Hyunjun; Chang, Cheong Bong; Jung, Jin Ho
2014-12-15
The behavior of a microdroplet in a uniform flow and subjected to a vertical optical force applied by a loosely focused Gaussian laser beam was studied numerically. The lattice Boltzmann method was applied to obtain the two-phase flow field, and the dynamic ray tracing method was adopted to calculate the optical force. The optical forces acting on the spherical droplets agreed well with the analytical values. The numerically predicted droplet migration distances agreed well with the experimentally obtained values. Simulations of the various flow and optical parameters showed that the droplet migration distance nondimensionalized by the droplet radius is proportionalmore » to the S number (z{sub d}/r{sub p} = 0.377S), which is the ratio of the optical force to the viscous drag. The effect of the surface tension was also examined. These results indicated that the surface tension influenced the droplet migration distance to a lesser degree than the flow and optical parameters. The results of the present work hold for the refractive indices of the mean fluid and the droplet being 1.33 and 1.59, respectively.« less
Method and apparatus for monitoring and measuring the surface tension of a fluid using fiber optics
Abraham, B.M.; Ketterson, J.B.; Bohanon, T.M.; Mikrut, J.M.
1994-04-12
A non-contact method and apparatus are described for measuring and monitoring the surface of a fluid using fiber optics and interferometric detection to permit measurement of mechanical characteristics of fluid surfaces. The apparatus employs an alternating electric field gradient for generating a capillary wave on the surface of the fluid. A fiber optic coupler and optical fiber directs a portion of a laser beam onto the surface of the fluid, another portion of the laser beam onto the photo sensor, and directs light reflected from the surface of the fluid onto the photo sensor. The output of the photo sensor is processed and coupled to a phase sensitive detector to permit measurement of phase shift between the drive signal creating the capillary wave and the detected signal. This phase shift information is then used to determine mechanical properties of the fluid surface such as surface tension, surface elasticity, and surface inhomogeneity. The resulting test structure is easily made compact, portable, and easy to align and use. 4 figures.
Müller, Erich A; Mejía, Andrés
2014-04-03
Literature values regarding the pressure dependence of the interfacial tension of the system of carbon dioxide (CO2) + water (H2O) show an unexplained divergence and scatter at the transition between low-pressure gas-liquid equilibrium and the high-pressure liquid-liquid equilibrium. We employ the Statistical Associating Fluid Theory (SAFT) and canonical molecular dynamics simulations based on the corresponding coarse grained force field to map out the phase diagram of the mixture and the interfacial tension for this system. We showcase how at ambient temperatures a triple point (gas-liquid-liquid) is expected and detail the implications that the appearance of the third phase has on the interfacial tensions of the system.
Effect of molding conditions on fracture mechanisms and stiffness of a composite of grid structure
NASA Astrophysics Data System (ADS)
Nikolaev, V. P.; Pichugin, V. S.; Korobeinikov, A. G.
1999-01-01
Methods of determining a complex of stiffness and deformability characteristics of a composite with rhomb-type grid structure were elaborated. Rhomb-type specimens were used for testing the ribs of the structure in tension, compression, and bending and the nodal points in shear in the plane of the ribs. The effect of additional tensioning of the ribs preceding the curing of the binder was investigated (ten tensioning levels ranging from 8 to 70 N/bundle with a linear density of 390 tex were applied). In testing epoxy-carbon specimens (UKN-5000+EHD-MK) in compression and tension, the failure mode changed depending on the tensioning level, i.e., the presence or absence of delamination and the appearance of "dry" fibers were detected. Dependences of the mechanical properties on tensioning were of a markedly pronounced extreme nature. The methods elaborated allow us to investigate the effect of other molding parameters, as well as the conditions and nature of loading, on the mechanical characteristics of composites.
Two-order parameters theory of the metal-insulator phase transition kinetics in the magnetic field
NASA Astrophysics Data System (ADS)
Dubovskii, L. B.
2018-05-01
The metal-insulator phase transition is considered within the framework of the Ginzburg-Landau approach for the phase transition described with two coupled order parameters. One of the order parameters is the mass density which variation is responsible for the origin of nonzero overlapping of the two different electron bands and the appearance of free electron carriers. This transition is assumed to be a first-order phase one. The free electron carriers are described with the vector-function representing the second-order parameter responsible for the continuous phase transition. This order parameter determines mostly the physical properties of the metal-insulator transition and leads to a singularity of the surface tension at the metal-insulator interface. The magnetic field is involved into the consideration of the system. The magnetic field leads to new singularities of the surface tension at the metal-insulator interface and results in a drastic variation of the phase transition kinetics. A strong singularity in the surface tension results from the Landau diamagnetism and determines anomalous features of the metal-insulator transition kinetics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx
2013-12-16
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation processmore » between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.« less
NASA Astrophysics Data System (ADS)
Muñoz-Andrade, Juan D.
2013-12-01
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.
Physical properties of ambient and laboratory-generated secondary organic aerosol
NASA Astrophysics Data System (ADS)
O'Brien, Rachel E.; Neu, Alexander; Epstein, Scott A.; MacMillan, Amanda C.; Wang, Bingbing; Kelly, Stephen T.; Nizkorodov, Sergey A.; Laskin, Alexander; Moffet, Ryan C.; Gilles, Mary K.
2014-06-01
The size and thickness of organic aerosol particles collected by impaction in five field campaigns were compared to those of laboratory-generated secondary organic aerosols (SOA). Scanning transmission X-ray microscopy was used to measure the total carbon absorbance (TCA) by individual particles as a function of their projection areas on the substrate. Particles with higher viscosity/surface tension can be identified by a steeper slope on a plot of TCA versus size because they flatten less upon impaction. The slopes of the ambient data are statistically similar indicating a small range of average viscosities/surface tensions across five field campaigns. Steeper slopes were observed for the plots corresponding to ambient particles, while smaller slopes were indicative of the laboratory-generated SOA. This comparison indicates that ambient organic particles have higher viscosities/surface tensions than those typically generated in laboratory SOA studies.
Acoustic measurement of the surface tension of levitated drops
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Marston, P. L.; Robey, J. L.
1988-01-01
The measurement of the frequency of the fundamental mode of shape oscillation of acoustically levitated drops has been carried out to determine the surface tension of the drop material. Sound fields of about 20 kHz in frequency allow the suspension of drops a few millimeters in size, as well as the necessary drive for oscillations. The surface tension of water, hexadecane, silicone oil, and aqueous solutions of glycerin levitated in air has been measured, and the results have been compared with those obtained with standard ring tensiometry. The two sets of data are in good agreement, the largest discrepancy being about 10 percent. Uncertainties in the effects of the nonspherical static shape of drops levitated in the earth's gravitational field and the rotation state of the sample are the major contributors to the experimental error. A decrease of the resonance frequency of the fundamental mode indicates a soft nonlinearity as the oscillation amplitude increases.
Kasson, Peter M.; Hess, Berk; Lindahl, Erik
2013-01-01
Cellular lipid membranes are spatially inhomogeneous soft materials. Materials properties such as pressure and surface tension thus show important microscopic-scale variation that is critical to many biological functions. We present a means to calculate pressure and surface tension in a 3D-resolved manner within molecular-dynamics simulations and show how such measurements can yield important insight. We also present the first corrections to local virial and pressure fields to account for the constraints typically used in lipid simulations that otherwise cause problems in highly oriented systems such as bilayers. Based on simulations of an asymmetric bacterial ion channel in a POPC bilayer, we demonstrate how 3D-resolved pressure can probe for both short-range and long-range effects from the protein on the membrane environment. We also show how surface tension is a sensitive metric for inter-leaflet equilibrium and can be used to detect even subtle imbalances between bilayer leaflets in a membrane-protein simulation. Since surface tension is known to modulate the function of many proteins, this effect is an important consideration for predictions of ion channel function. We outline a strategy by which our local pressure measurements, which we make available within a version of the GROMACS simulation package, may be used to design optimally equilibrated membrane-protein simulations. PMID:23318532
Measurement of surface tension by sessile drop tensiometer with superoleophobic surface
NASA Astrophysics Data System (ADS)
Kwak, Wonshik; Park, Jun Kwon; Yoon, Jinsung; Lee, Sanghyun; Hwang, Woonbong
2018-03-01
A sessile drop tensiometer provides a simple and efficient method of determining the surface tension of various liquids. The technique involves obtaining the shape of an axisymmetric liquid droplet and iterative fitting of the Young-Laplace equation, which balances the gravitational deformation of the drop. Since the advent of high quality digital cameras and desktop computers, this process has been automated with precision. However, despite its appealing simplicity, there are complications and limitations in a sessile drop tensiometer, i.e., it must dispense spherical droplets with low surface tension. We propose a method of measuring surface tension using a sessile drop tensiometer with a superoleophobic surface fabricated by acidic etching and anodization for liquids with low surface tension and investigate the accuracy of the measurement by changing the wettability of the measuring plate surface.
Tensions in Distributed Leadership
ERIC Educational Resources Information Center
Ho, Jeanne; Ng, David
2017-01-01
Purpose: This article proposes the utility of using activity theory as an analytical lens to examine the theoretical construct of distributed leadership, specifically to illuminate tensions encountered by leaders and how they resolved these tensions. Research Method: The study adopted the naturalistic inquiry approach of a case study of an…
Basic approaches to and tasks of space technology
NASA Technical Reports Server (NTRS)
Okhotin, A. S.
1978-01-01
The high vacuum and weightlessness of outer space offer great possibilities for the new field of space technology. To take advantage of this, it is necessary to study such physical and chemical phenomena as diffusion, surface tension, heat exchange, and crystallization. The research shows the possibility of obtaining materials with a more perfect structure. Methods of treating materials can be used in space which are impossible on earth. Achievements in material science in outer space will have a large impact on the national economy.
DOT National Transportation Integrated Search
2015-11-01
The objectives were to evaluate the ability of different NDE methods to detect and quantify : defects associated with corrosion of steel reinforcement and grout defects in post-tensioning : applications; and to evaluate the effectiveness of selected ...
Filament Tension and Phase Locking of Meandering Scroll Waves
NASA Astrophysics Data System (ADS)
Dierckx, Hans; Biktasheva, I. V.; Verschelde, H.; Panfilov, A. V.; Biktashev, V. N.
2017-12-01
Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.
Filament Tension and Phase Locking of Meandering Scroll Waves.
Dierckx, Hans; Biktasheva, I V; Verschelde, H; Panfilov, A V; Biktashev, V N
2017-12-22
Meandering spiral waves are often observed in excitable media such as the Belousov-Zhabotinsky reaction and cardiac tissue. We derive a theory for drift dynamics of meandering rotors in general reaction-diffusion systems and apply it to two types of external disturbances: an external field and curvature-induced drift in three dimensions. We find two distinct regimes: with small filament curvature, meandering scroll waves exhibit filament tension, whose sign determines the stability and drift direction. In the regimes of strong external fields or meandering motion close to resonance, however, phase locking of the meander pattern is predicted and observed.
ERIC Educational Resources Information Center
House, Richard; Musgrave, Arthur
2013-01-01
This paper argues that the field of counselling and psychotherapy needs to find values-congruent ways of managing, and creatively engaging with, the challenging tension between accountability and diversity in therapy work. The authors strongly support the preservation of pluralism and diversity in therapy practice, in the face of the increasingly…
ERIC Educational Resources Information Center
Perez, Jose Gutierrez; Llorente, Ma Teresa Pozo
2005-01-01
The main idea this article develops is the conceptual chaos, methodological tensions and epistemological conflicts that are being experienced in the field of environmental education as a result of the uncertainty generated by some institutions and international organisms. The authors' perspective starts from the idea that too many expectations…
Evaluation on Dorsey Method in Surface Tension Measurement of Solder Liquids Containing Surfactants
NASA Astrophysics Data System (ADS)
Zhao, Xingke; Xie, Feiming; Fan, Jinsheng; Liu, Dayong; Huang, Jihua; Chen, Shuhai
2018-06-01
With the purpose of developing a feasible approach for measuring the surface tension of solders containing surfactants, the surface tension of Sn-3Ag-0.5Cu-xP solder alloys, with various drop sizes as well as different phosphorus (P) content, was evaluated using the Dorsey method based on the sessile drop test. The results show that the accuracy of the surface tension calculations depends on both of sessile drop size and the liquid metal composition. With a proper drop size, in the range of 4.5 mm to 5.3 mm in equivalent spherical diameters, the deviation of the surface tension calculation can be limited to 1.43 mN·m-1 and 6.30 mN·m-1 for SnAgCu and SnAgCu-P, respectively. The surface tension of SnAgCu-xP solder alloys decreases quickly to a minimum value when the P content reaches 0.5 wt% and subsequently increases slowly with the P content further increasing. The formation of a P-enriched surface layer and Sn4P3 intermetallic phases is regarded to be responsible for the decreasing and subsequent increasing of surface tension, respectively.
Method and apparatus for deregistering multi-filament tow and product thereof
Lukhard, Craig R.; Potter, Jerry F.; Todd, Maurice C.
1995-01-01
A method and apparatus for deregistering drawn crimped nylon multifilament tow includes the steps of stretching the tow under constant controlled tension at a temperature below the glass transition temperature of the nylon. The apparatus includes means for sensing the tension of the tow between the feed and draw sections of a stretching device and producing a signal representative of the tension sensed and a controller for changing the speed of the draw section actuated by said signal.
A dynamic magnetic tension force as the cause of failed solar eruptions
Myers, Clayton E. [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000345398406); Yamada, Maasaki [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000349961649); Ji, Hantao [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China] (ORCID:0000000196009963); Yoo, Jongsoo [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:0000000338811995); Fox, William [Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)] (ORCID:000000016289858X); Jara-Almonte, Jonathan [Princeton Univ., NJ (United States). Dept. of Astrophysical Sciences; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); ] (ORCID:0000000307606198); Savcheva, Antonia [Harvardâ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:000000025598046X); DeLuca, Edward E. [Harvardâ Smithsonian Center for Astrophysics, Cambridge, Massachusetts 02138, USA] (ORCID:0000000174162895)
2015-12-11
Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun’s corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has not yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. Here we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such ‘failed torus’ events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. This magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.
Measurement of Surface Tension of Solid Cu by Improved Multiphase Equilibrium
NASA Astrophysics Data System (ADS)
Nakamoto, Masashi; Liukkonen, Matti; Friman, Michael; Heikinheimo, Erkki; Hämäläinen, Marko; Holappa, Lauri
2008-08-01
The surface tension of solid Cu was measured with the multiphase equilibrium (MPE) method in a Pb-Cu system at 700 °C, 800 °C, and 900 °C. A special focus was on the measurement of angles involved in MPE. First, the effect of reading error in each angle measurement on the final result of surface tension of solid was simulated. It was found that the two groove measurements under atmosphere conditions are the primary sources of error in the surface tension of solid in the present system. Atomic force microscopy (AFM) was applied to these angle measurements as a new method with high accuracy. The obtained surface-tension values of solid Cu in the present work were 1587, 1610, and 1521 mN/m at 700 °C, 800 °C, and 900 °C, respectively, representing reasonable temperature dependence.
Surface tension of undercooled liquid cobalt
NASA Astrophysics Data System (ADS)
Yao, W. J.; Han, X. J.; Chen, M.; Wei, B.; Guo, Z. Y.
2002-08-01
This paper provides the results on experimentally measured and numerically predicted surface tensions of undercooled liquid cobalt. The experiments were performed by using the oscillation drop technique combined with electromagnetic levitation. The simulations are carried out with the Monte Carlo (MC) method, where the surface tension is predicted through calculations of the work of cohesion, and the interatomic interaction is described with an embedded-atom method. The maximum undercooling of the liquid cobalt is reached at 231 K (0.13Tm) in the experiment and 268 K (0.17Tm) in the simulation. The surface tension and its relationship with temperature obtained in the experiment and simulation are σexp = 1.93 - 0.000 33 (T - T m) N m-1 and σcal = 2.26 - 0.000 32 (T - T m) N m-1 respectively. The temperature dependence of the surface tension calculated from the MC simulation is in reasonable agreement with that measured in the experiment.
Layering of inertial confinement fusion targets in microgravity environments
NASA Astrophysics Data System (ADS)
Parks, P. B.; Fagaly, R. L.
1995-02-01
A critical concern in the fabrication of targets for inertial confinement fusion is ensuring that the hydrogenic (D2 or DT) fuel layer maintains spherical symmetry. Because of gravitationally induced sagging of the liquid prior to freezing, only relatively thin (less than 10 micrometers) layers of solid fuel can be produced by fast refreeze methods. One method to reduce the effective gravitational field environment is free-fall insertion into the target chamber. Another method to counterbalance the gravitational force is to use an applied magnetic field combined with a gradient field to induce a magnetic dipole force (F(sub m)) on the liquid fuel layer. For liquid deuterium, the required B dot product del(vector differential operator) B product to counterbalance the gravitational force (F(sub g)) is approximately 10 T(exp 2)/cm. In this paper, we examine the time-dependent dynamics of the liquid fuel layer in a reduced gravitational field environment. We employ an energy method which takes into account the sum of the free energy associated with the surface tension forces, net vertical force (F = F(sub m) - F(sub g) (in the case of magnetic field-assisted microgravity) or F(sub D) (the drag force in the case of free fall)), London-van der Waals forces, the kinetic energy of motion and viscous dissipation. By assuming that the motions are incompressible and irrotational, the volume integrals of the free energies over the deformed liquid fuel layer may be converted to surface integrals. With the surface expressed as the sum of Legendre polynomials, r(sub surface) = a + Sigma a(sub l)(t)P(sub l)(mu), the perturbed amplitude of the individual modes, a(sub l)(t) can be obtained. We show that the l = 1 vertical shift mode takes the longest to damp out, and may be problematic for free-fall insertion even for thin approximately 1 micrometer overfilled foam targets. For a given liquid fuel layer thickness delta, the equilibrium value of a(sub 1)/a (the concentricity of the inner fuel layer) is shown to be dependent on the net vertical force F and layer thickness, i.e., a(sub 1) approximately F delta(exp 5), but independent of the surface tension.
Interfacial tension measurement of immiscible liq uids using a capillary tube
NASA Technical Reports Server (NTRS)
Rashidnia, N.; Balasubramaniam, R.; Delsignore, D.
1992-01-01
The interfacial tension of immiscible liquids is an important thermophysical property that is useful in the behavior of liquids both in microgravity (Martinez et al. (1987) and Karri and Mathur (1988)) and in enhanced oil recovery processes under normal gravity (Slattery (1974)). Many techniques are available for its measurement, such as the ring method, drop weight method, spinning drop method, and capillary height method (Adamson (1960) and Miller and Neogi (1985)). Karri and Mathur mention that many of the techniques use equations that contain a density difference term and are inappropriate for equal density liquids. They reported a new method that is suitable for both equal and unequal density liquids. In their method, a capillary tube forms one of the legs of a U-tube. The interfacial tension is related to the heights of the liquids in the cups of the U-tube above the interface in the capillary. Our interest in this area arose from a need to measure small interfacial tension (around 1 mN/m) for a vegetable oil/silicon oil system that was used in a thermocapillary drop migration experiment (Rashidnia and Balasubramaniam (1991)). In our attempts to duplicate the method proposed by Karri and Mathur, we found it quite difficult to anchor the interface inside the capillary tube; small differences of the liquid heights in the cups drove the interface out of the capillary. We present an alternative method using a capillary tube to measure the interfacial tensions of liquids of equal or unequal density. The method is based on the combined capillary rises of both liquids in the tube.
Karasz, Alison; Patel, Viraj; Kabita, Mahbhooba; Shimu, Parvin
2015-01-01
Background Though common mental disorder (CMD) is highly prevalent among South Asian immigrant women, they rarely seek mental treatment. This may be due in part to the lack of conceptual synchrony between medical models of mental disorder and the social models of distress common in South Asian communities. Furthermore, common mental health screening and diagnostic measures may not adequately capture distress in this group. CBPR is ideally suited to help address measurement issues in CMD as well as develop culturally appropriate treatment models. Objectives To use participatory methods to identify an appropriate, culturally specific mental health syndrome and develop an instrument to measure this syndrome. Methods We formed a partnership between researchers, clinicians, and community members. The partnership selected a culturally specific model of emotional distress/ illness, “Tension,” as a focus for further study. Partners developed a scale to measure Tension and tested the new scale on 162 Bangladeshi immigrant women living in the Bronx. Results The 24-item “Tension Scale” had high internal consistency (alpha =0.83). In bivariate analysis, the scale significantly correlated in the expected direction with depressed as measured by the PHQ-2, age, education, self-rated health, having seen a physician in the past year, and other variables. Conclusions Using participatory techniques, we created a new measure designed to assess common mental disorder in an isolated immigrant group. The new measure shows excellent psychometric properties and will be helpful in the implementation of a community-based, culturally synchronous intervention for depression. We describe a useful strategy for the rapid development and field testing of culturally appropriate measures of mental distress and disorder. PMID:24375184
NASA Astrophysics Data System (ADS)
Zong, Yali; Hu, Naigang; Duan, Baoyan; Yang, Guigeng; Cao, Hongjun; Xu, Wanye
2016-03-01
Inevitable manufacturing errors and inconsistency between assumed and actual boundary conditions can affect the shape precision and cable tensions of a cable-network antenna, and even result in failure of the structure in service. In this paper, an analytical sensitivity analysis method of the shape precision and cable tensions with respect to the parameters carrying uncertainty was studied. Based on the sensitivity analysis, an optimal design procedure was proposed to alleviate the effects of the parameters that carry uncertainty. The validity of the calculated sensitivities is examined by those computed by a finite difference method. Comparison with a traditional design method shows that the presented design procedure can remarkably reduce the influence of the uncertainties on the antenna performance. Moreover, the results suggest that especially slender front net cables, thick tension ties, relatively slender boundary cables and high tension level can improve the ability of cable-network antenna structures to resist the effects of the uncertainties on the antenna performance.
Surface tension isotherms of the dioxane-acetone-water and glycerol-ethanol-water ternary systems
NASA Astrophysics Data System (ADS)
Dzhambulatov, R. S.; Dadashev, R. Kh.; Elimkhanov, D. Z.; Dadashev, I. N.
2016-10-01
The results of the experimental and theoretical studies of the concentration dependence of surface tension of aqueous solutions of the 1,4-dioxane-acetone-water and glycerol-ethanol-water ternary systems were given. The studies were performed by the hanging-drop method on a DSA100 tensiometer. The maximum error of surface tension was 1%. The theoretical models for calculating the surface tension of the ternary systems of organic solutions were analyzed.
ERIC Educational Resources Information Center
Zepeda, Sally J.; Lanoue, Philip D.; Price, Noris F.; Jimenez, Albert M.
2014-01-01
The article examines the tensions one superintendent in the USA experienced as he evaluated principals in a high-stakes environment that had undergone numerous transformations at the central office. Using qualitative methods, primarily, shadowing techniques, observations and debriefing, the following tensions emerged and were examined in light of…
The difficulty in determining the effective interfacial tension limits the prediction of the wavelength of fingering of immiscible fluids in porous media. A method to estimate the effective interfacial tension using fractal concepts was presented by Chang et al. [Water Resour. Re...
Modal analysis of a nonuniform string with end mass and variable tension
NASA Technical Reports Server (NTRS)
Rheinfurth, M. H.; Galaboff, Z. J.
1983-01-01
Modal synthesis techniques for dynamic systems containing strings describe the lateral displacements of these strings by properly chosen shape functions. An iterative algorithm is provided to calculate the natural modes of a nonuniform string and variable tension for some typical boundary conditions including one end mass. Numerical examples are given for a string in a constant and a gravity gradient force field.
Surface tension and density of Si-Ge melts
NASA Astrophysics Data System (ADS)
Ricci, Enrica; Amore, Stefano; Giuranno, Donatella; Novakovic, Rada; Tuissi, Ausonio; Sobczak, Natalia; Nowak, Rafal; Korpala, Bartłomiej; Bruzda, Grzegorz
2014-06-01
In this work, the surface tension and density of Si-Ge liquid alloys were determined by the pendant drop method. Over the range of measurements, both properties show a linear temperature dependence and a nonlinear concentration dependence. Indeed, the density decreases with increasing silicon content exhibiting positive deviation from ideality, while the surface tension increases and deviates negatively with respect to the ideal solution model. Taking into account the Si-Ge phase diagram, a simple lens type, the surface tension behavior of the Si-Ge liquid alloys was analyzed in the framework of the Quasi-Chemical Approximation for the Regular Solutions model. The new experimental results were compared with a few data available in the literature, obtained by the containerless method.
Mohammadi, Hamid; Pinto, Vanessa I.; Wang, Yongqiang; Hinz, Boris; Janmey, Paul A.; McCulloch, Christopher A.
2016-01-01
Cell-mediated remodeling and wound closure are critical for efficient wound healing, but the contribution of actin-binding proteins to contraction of the extracellular matrix is not defined. We examined the role of filamin A (FLNa), an actin filament cross-linking protein, in wound contraction and maintenance of matrix tension. Conditional deletion of FLNa in fibroblasts in mice was associated with ~ 4 day delay of full-thickness skin wound contraction compared with wild-type (WT) mice. We modeled the healing wound matrix using cultured fibroblasts plated on grid-supported collagen gels that create lateral boundaries, which are analogues to wound margins. In contrast to WT cells, FLNa knockdown (KD) cells could not completely maintain tension when matrix compaction was resisted by boundaries, which manifested as relaxed matrix tension. Similarly, WT cells on cross-linked collagen, which requires higher levels of sustained tension, exhibited approximately fivefold larger deformation fields and approximately twofold greater fiber alignment compared with FLNa KD cells. Maintenance of boundary-resisted tension markedly influenced the elongation of cell extensions: in WT cells, the number (~50%) and length (~300%) of cell extensions were greater than FLNa KD cells. We conclude that FLNa is required for wound contraction, in part by enabling elastic deformation and maintenance of tension in the matrix. PMID:26134946
Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A
2015-06-01
Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.
Chemical evaluation of soil-solution in acid forest soils
Lawrence, G.B.; David, M.B.
1996-01-01
Soil-solution chemistry is commonly studied in forests through the use of soil lysimeters.This approach is impractical for regional survey studies, however, because lysimeter installation and operation is expensive and time consuming. To address these problems, a new technique was developed to compare soil-solution chemistry among red spruce stands in New York, Vermont, New Hampshire, Maine. Soil solutions were expelled by positive air pressure from soil that had been placed in a sealed cylinder. Before the air pressure was applied, a solution chemically similar to throughfall was added to the soil to bring it to approximate field capacity. After the solution sample was expelled, the soil was removed from the cylinder and chemically analyzed. The method was tested with homogenized Oa and Bs horizon soils collected from a red spruce stand in the Adirondack Mountains of New York, a red spruce stand in east-central Vermont, and a mixed hardwood stand in the Catskill Mountains of New York. Reproducibility, effects of varying the reaction time between adding throughfall and expelling soil solution (5-65 minutes) and effects of varying the chemical composition of added throughfall, were evaluated. In general, results showed that (i) the method was reproducible (coefficients of variation were generally < 15%), (ii) variations in the length of reaction-time did not affect expelled solution concentrations, and (iii) adding and expelling solution did not cause detectable changes in soil exchange chemistry. Concentrations of expelled solutions varied with the concentrations of added throughfall; the lower the CEC, the more sensitive expelled solution concentrations were to the chemical concentrations of added throughfall. Addition of a tracer (NaBr) showed that the expelled solution was a mixture of added solution and solution that preexisted in the soil. Comparisons of expelled solution concentrations with concentrations of soil solutions collected by zero-tension and tension lysimetry indicated that expelled solution concentrations were higher than those obtained with either type of lysimeter, although there was less difference with tension lysimeters than zero-tension lysimeters. The method used for collection of soil solution should be taken into consideration whenever soil solution data are being interpreted.
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-11-22
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.
Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices
NASA Astrophysics Data System (ADS)
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-11-01
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs.
Ultrasonic spray coating polymer and small molecular organic film for organic light-emitting devices
Liu, Shihao; Zhang, Xiang; Zhang, Letian; Xie, Wenfa
2016-01-01
Ultrasonic spray coating process (USCP) with high material -utilization, low manufacture costs and compatibility to streamline production has been attractive in researches on photoelectric devices. However, surface tension exists in the solvent is still a huge obstacle to realize smooth organic film for organic light emitting devices (OLEDs) by USCP. Here, high quality polymer anode buffer layer and small molecular emitting layer are successfully realized through USCP by introducing extra-low surface tension diluent and surface tension control method. The introduction of low surface tension methyl alcohol is beneficial to the formation of poly (3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) films and brings obvious phase separation and improved conductivity to PEDOT:PSS film. Besides, a surface tension control method, in which new stable tension equilibrium is built at the border of wetting layer, is proposed to eliminate the effect of surface tension during the solvent evaporation stage of ultrasonic spray coating the film consists of 9,9-Spirobifluoren-2-yl-diphenyl-phosphine oxide doped with 10 wt% tris [2-(p -tolyl) pyridine] iridium (III). A smooth and homogenous small molecular emitting layer without wrinkles is successfully realized. The effectiveness of the ultrasonic spray coating polymer anode buffer layer and small molecular emitting layer are also proved by introducing them in OLEDs. PMID:27874030
Dynamic Fracture Behavior of Plastic-Bonded Explosives
NASA Astrophysics Data System (ADS)
Fu, Hua; Li, Jun-Ling; Tan, Duo-Wang; Ifp, Caep Team
2011-06-01
Plastic-Bonded Explosives (PBX) are used as important energetic materials in nuclear or conventional weapons. Arms Warhead in the service process and the ballistic phase, may experience complex process such as long pulse and higher loading, compresson, tension and reciprocating compression - tension, friction with the projectile shell, which would lead to explosive deformation and fracture.And the dynamic deformation and fracture behavior of PBX subsequently affect reaction characteristics and initiation mechanism in explosives, then having influence on explosives safety. The dynamic fracure behavior of PBX are generally complex and not well studied or understood. In this paper, the dynamic fracture of explosives are conducted using a Kolsky bar. The Brazilian test, also known as a indirect tensile test or splitting test, is chosen as the test method. Tensile strength under different strain rates are obtained using quartz crystal embedded in rod end. The dynamic deformation and fracture process are captured in real-time by high-speed digital camera, and the displacement and strain fields distribution before specimen fracture are obtained by digital correlation method. Considering the non-uniform microstructure of explosives,the dynamic fracture behavior of explosive are simulated by discrete element method, the simulation results can reproduce the deformation and fracture process in Brazilian test using a maximum tensile strain criterion.
Gravitational tension, spacetime pressure and black hole volume
NASA Astrophysics Data System (ADS)
Armas, Jay; Obers, Niels A.; Sanchioni, Marco
2016-09-01
We study the first law of black hole thermodynamics in the presence of surrounding gravitational fields and argue that variations of these fields are naturally incorporated in the first law by defining gravitational tension or gravitational binding energy. We demonstrate that this notion can also be applied in Anti-de Sitter spacetime, in which the surrounding gravitational field is sourced by a cosmological fluid, therefore showing that spacetime volume and gravitational tension encode the same physics as spacetime pressure and black hole volume. We furthermore show that it is possible to introduce a definition of spacetime pressure and black hole volume for any spacetime with characteristic length scales which does not necessarily require a cosmological constant sourcing Einstein equations. However, we show that black hole volume is non-universal in the flat spacetime limit, questioning its significance. We illustrate these ideas by studying the resulting black hole volume of Kaluza-Klein black holes and of a toy model for a black hole binary system in five spacetime dimensions (the black saturn solution) as well as of several novel perturbative black hole solutions. These include the higher-dimensional Kerr-Newman solution in Anti-de Sitter spacetime as well as other black holes in plane wave and Lifshitz spacetimes.
Design and Application of a Field Sensing System for Ground Anchors in Slopes
Choi, Se Woon; Lee, Jihoon; Kim, Jong Moon; Park, Hyo Seon
2013-01-01
In a ground anchor system, cables or tendons connected to a bearing plate are used for stabilization of slopes. Then, the stability of a slope is dependent on maintaining the tension levels in the cables. So far, no research on a strain-based field sensing system for ground anchors has been reported. Therefore, in this study, a practical monitoring system for long-term sensing of tension levels in tendons for anchor-reinforced slopes is proposed. The system for anchor-reinforced slopes is composed of: (1) load cells based on vibrating wire strain gauges (VWSGs), (2) wireless sensor nodes which receive and process the signals from load cells and then transmit the result to a master node through local area communication, (3) master nodes which transmit the data sent from sensor nodes to the server through mobile communication, and (4) a server located at the base station. The system was applied to field sensing of ground anchors in the 62 m-long and 26 m-high slope at the side of the highway. Based on the long-term monitoring, the safety of the anchor-reinforced slope can be secured by the timely applications of re-tensioning processes in tendons. PMID:23507820
Liquid Droplets Act as "Compass Needles" for the Stresses in a Deformable Membrane.
Schulman, Rafael D; Ledesma-Alonso, René; Salez, Thomas; Raphaël, Elie; Dalnoki-Veress, Kari
2017-05-12
We examine the shape of droplets atop deformable thin elastomeric films prepared with an anisotropic tension. As the droplets generate a deformation in the taut film through capillary forces, they assume a shape that is elongated along the high tension direction. By measuring the contact line profile, the tension in the membrane can be completely determined. Minimal theoretical arguments lead to predictions for the droplet shape and membrane deformation that are in excellent agreement with the data. On the whole, the results demonstrate that droplets can be used as probes to map out the stress field in a membrane.
Radial-based tail methods for Monte Carlo simulations of cylindrical interfaces
NASA Astrophysics Data System (ADS)
Goujon, Florent; Bêche, Bruno; Malfreyt, Patrice; Ghoufi, Aziz
2018-03-01
In this work, we implement for the first time the radial-based tail methods for Monte Carlo simulations of cylindrical interfaces. The efficiency of this method is then evaluated through the calculation of surface tension and coexisting properties. We show that the inclusion of tail corrections during the course of the Monte Carlo simulation impacts the coexisting and the interfacial properties. We establish that the long range corrections to the surface tension are the same order of magnitude as those obtained from planar interface. We show that the slab-based tail method does not amend the localization of the Gibbs equimolar dividing surface. Additionally, a non-monotonic behavior of surface tension is exhibited as a function of the radius of the equimolar dividing surface.
Tension Stiffened and Tendon Actuated Manipulator
NASA Technical Reports Server (NTRS)
Dorsey, John T. (Inventor); Mercer, Charles D. (Inventor); Ganoe, George G. (Inventor); Doggett, William R. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Corbin, Cole K. (Inventor)
2015-01-01
A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.
Taylor, Graham J.; Venkatesan, Guru A.; Collier, C. Patrick; ...
2015-08-05
In this study, thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow formore » determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.« less
Stem Cell-based Tissue Engineering Approaches for Musculoskeletal Regeneration
Brown, Patrick T.; Handorf, Andrew M.; Jeon, Won Bae; Li, Wan-Ju
2014-01-01
The field of regenerative medicine and tissue engineering is an ever evolving field that holds promise in treating numerous musculoskeletal diseases and injuries. An important impetus in the development of the field was the discovery and implementation of stem cells. The utilization of mesenchymal stem cells, and later embryonic and induced pluripotent stem cells, opens new arenas for tissue engineering and presents the potential of developing stem cell-based therapies for disease treatment. Multipotent and pluripotent stem cells can produce various lineage tissues, and allow for derivation of a tissue that may be comprised of multiple cell types. As the field grows, the combination of biomaterial scaffolds and bioreactors provides methods to create an environment for stem cells that better represent their microenvironment for new tissue formation. As technologies for the fabrication of biomaterial scaffolds advance, the ability of scaffolds to modulate stem cell behavior advances as well. The composition of scaffolds could be of natural or synthetic materials and could be tailored to enhance cell self-renewal and/or direct cell fates. In addition to biomaterial scaffolds, studies of tissue development and cellular microenvironments have determined other factors, such as growth factors and oxygen tension, that are crucial to the regulation of stem cell activity. The overarching goal of stem cell-based tissue engineering research is to precisely control differentiation of stem cells in culture. In this article, we review current developments in tissue engineering, focusing on several stem cell sources, induction factors including growth factors, oxygen tension, biomaterials, and mechanical stimulation, and the internal and external regulatory mechanisms that govern proliferation and differentiation. PMID:23432679
NASA Astrophysics Data System (ADS)
Dadashev, R. Kh.; Dzhambulatov, R. S.; Mezhidov, V. Kh.; Elimkhanov, D. Z.
2018-05-01
Concentration dependences of the surface tension and density of solutions of three-component acetone-ethanol-water systems and the bounding binary systems at 273 K are studied. The molar volume, adsorption, and composition of surface layers are calculated. Experimental data and calculations show that three-component solutions are close to ideal ones. The surface tensions of these solutions are calculated using semi-empirical and theoretical equations. Theoretical equations qualitatively convey the concentration dependence of surface tension. A semi-empirical method based on the Köhler equation allows us to predict the concentration dependence of surface tension within the experimental error.
Effect of surface tension anisotropy on cellular morphologies
NASA Technical Reports Server (NTRS)
Mcfadden, G. B.; Coriell, S. R.; Sekerka, R. F.
1988-01-01
A three-dimensional weakly nonlinear analysis for conditions near the onset of instability at the crystal-melt interface was carried out to second order, taking into account the effects of latent heat generation and surface-tension anisotropy of the crystal-melt interface; particular consideration was given to the growth of a cubic crystal in the 001-, 011-, and 111-line directions. Numerical calculations by McFadden et al. (1987), performed for an aluminum-chromium alloy with the assumption of a linear temperature field and an isotropic surface tension, showed that only hexagonal nodes (and not hexagonal cells) occurred near the onset of instability. The results of the present analysis indicate that the nonlinear temperature field (which occurs when thermal conductivities of the crystal and the melt are different and/or the latent heat effects are not negligible) can modify this result and, for certain alloys and processing conditions, can cause the occurrence of hexagonal cells near the onset of instability.
Characteristics of high-tension magnetos
NASA Technical Reports Server (NTRS)
Silsbee, F B
1920-01-01
This report gives the results of an investigation made into the fundamental physical characteristics of high-tension ignition magnetos, and also describes the methods used for measuring the quantities involved.
Assessment and reduction of diaphragmatic tension during hiatal hernia repair.
Bradley, Daniel Davila; Louie, Brian E; Farivar, Alexander S; Wilshire, Candice L; Baik, Peter U; Aye, Ralph W
2015-04-01
During hiatal hernia repair there are two vectors of tension: axial and radial. An optimal repair minimizes the tension along these vectors. Radial tension is not easily recognized. There are no simple maneuvers like measuring length that facilitate assessment of radial tension. The aims of this project were to: (1) establish a simple intraoperative method to evaluate baseline tension of the diaphragmatic hiatal muscle closure; and, (2) assess if tension is reduced by relaxing maneuvers and if so, to what degree. Diaphragmatic characteristics and tension were assessed during hiatal hernia repair with a tension gage. We compared tension measured after hiatal dissection and after relaxing maneuvers were performed. Sixty-four patients (29 M:35F) underwent laparoscopic hiatal hernia repair. Baseline hiatal width was 2.84 cm and tension 13.6 dag. There was a positive correlation between hiatal width and tension (r = 0.55) but the strength of association was low (r (2) = 0.31). Four different hiatal shapes (slit, teardrop, "D", and oval) were identified and appear to influence tension and the need for relaxing incision. Tension was reduced by 35.8 % after a left pleurotomy (12 patients); by 46.2 % after a right crural relaxing incision (15 patients); and by 56.1 % if both maneuvers were performed (6 patients). Tension on the diaphragmatic hiatus can be measured with a novel device. There was a limited correlation with width of the hiatal opening. Relaxing maneuvers such as a left pleurotomy or a right crural relaxing incision reduced tension. Longer term follow-up will determine whether outcomes are improved by quantifying and reducing radial tension.
Autonomous Control of Fluids in a Wide Surface Tension Range in Microfluidics.
Ge, Peng; Wang, Shuli; Liu, Yongshun; Liu, Wendong; Yu, Nianzuo; Zhang, Jianglei; Shen, Huaizhong; Zhang, Junhu; Yang, Bai
2017-07-25
In this paper, we report the preparation of anisotropic wetting surfaces that could control various wetting behaviors of liquids in a wide surface tension range (from water to oil), which could be employed as a platform for controlling the flow of liquids in microfluidics (MFs). The anisotropic wetting surfaces are chemistry-asymmetric "Janus" silicon cylinder arrays, which are fabricated via selecting and regulating the functional groups on the surface of each cylinder unit. Liquids (in a wide surface tension range) wet in a unidirectional manner along the direction that was modified by the group with large surface energy. Through introducing the Janus structure into a T-shaped pattern and integrating it with an identical T-shaped poly(dimethylsiloxane) microchannel, the as-prepared chips can be utilized to perform as a surface tension admeasuring apparatus or a one-way valve for liquids in a wide surface tension range, even oil. Furthermore, because of the excellent ability in controlling the flowing behavior of liquids in a wide surface tension range in an open system or a microchannel, the anisotropic wetting surfaces are potential candidates to be applied both in open MFs and conventional MFs, which would broaden the application fields of MFs.
A dynamic magnetic tension force as the cause of failed solar eruptions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao
Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less
A dynamic magnetic tension force as the cause of failed solar eruptions
Myers, Clayton E.; Yamada, Masaaki; Ji, Hantao; ...
2015-12-23
Coronal mass ejections are solar eruptions driven by a sudden release of magnetic energy stored in the Sun's corona. In many cases, this magnetic energy is stored in long-lived, arched structures called magnetic flux ropes. When a flux rope destabilizes, it can either erupt and produce a coronal mass ejection or fail and collapse back towards the Sun. The prevailing belief is that the outcome of a given event is determined by a magnetohydrodynamic force imbalance called the torus instability. This belief is challenged, however, by observations indicating that torus-unstable flux ropes sometimes fail to erupt. This contradiction has notmore » yet been resolved because of a lack of coronal magnetic field measurements and the limitations of idealized numerical modelling. In this paper, we report the results of a laboratory experiment that reveal a previously unknown eruption criterion below which torus-unstable flux ropes fail to erupt. We find that such 'failed torus' events occur when the guide magnetic field (that is, the ambient field that runs toroidally along the flux rope) is strong enough to prevent the flux rope from kinking. Under these conditions, the guide field interacts with electric currents in the flux rope to produce a dynamic toroidal field tension force that halts the eruption. Lastly, this magnetic tension force is missing from existing eruption models, which is why such models cannot explain or predict failed torus events.« less
NASA Astrophysics Data System (ADS)
Ozawa, S.; Suzuki, S.; Hibiya, T.; Fukuyama, H.
2011-01-01
Influences of oxygen partial pressure, PO2, of ambient atmosphere and temperature on surface tension and its temperature coefficient for molten iron were experimentally investigated by an oscillating droplet method using an electromagnetic levitation furnace. We successfully measured the surface tension of molten iron over a very wide temperature range of 780 K including undercooling condition in a well controlled PO2 atmosphere. When PO2 is fixed at 10-2 Pa at the inlet of the chamber, a "boomerang shape" temperature dependence of surface tension was experimentally observed; surface tension increased and then decreased with increasing temperature. The pure surface tension of molten iron was deduced from the negative temperature coefficient in the boomerang shape temperature dependence. When the surface tension was measured under the H2-containing gas atmosphere, surface tension did not show a linear relationship against temperature. The temperature dependence of the surface tension shows anomalous kink at around 1850 K due to competition between the temperature dependence of PO2 and that of the equilibrium constant of oxygen adsorption.
[Somatization disorders of the urogenital tract].
Günthert, E A
2002-11-01
Diffuse symptoms in the urogenital region can frequently be explained by somatization disorders. Since they cannot be proven either by laboratory tests or with common technical diagnostic methods, somatization disorders should always be taken into consideration. Somatization disorders are to be considered functional disorders. Since somatization disorders due to muscular tension prevail in the urogenital region, the functional disturbance can be explained by the muscular tension. Subsequently, muscular tension causes the pathophysiological development of symptoms. As a rule they appear as myofascial pain or disorder. Muscular tension can have a psychic origin. The absence of urological findings is typical. Males and females between the ages of 16 and 75 can be affected by somatization disorders in the urogenital region. Somatization disorders due to muscular tension belong to the large group of symptoms due to tension. Diagnostic and therapeutic procedures as well as the pathophysiology of somatization disorders due to muscular tension are illustrated by two detailed case-reports.
Variational Methods For Sloshing Problems With Surface Tension
NASA Astrophysics Data System (ADS)
Tan, Chee Han; Carlson, Max; Hohenegger, Christel; Osting, Braxton
2016-11-01
We consider the sloshing problem for an incompressible, inviscid, irrotational fluid in a container, including effects due to surface tension on the free surface. We restrict ourselves to a constant contact angle and we seek time-harmonic solutions of the linearized problem, which describes the time-evolution of the fluid due to a small initial disturbance of the surface at rest. As opposed to the zero surface tension case, where the problem reduces to a partial differential equation for the velocity potential, we obtain a coupled system for the velocity potential and the free surface displacement. We derive a new variational formulation of the coupled problem and establish the existence of solutions using the direct method from the Calculus of Variations. In the limit of zero surface tension, we recover the variational formulation of the classical Steklov eigenvalue problem, as derived by B. A. Troesch. For the particular case of an axially symmetric container, we propose a finite element numerical method for computing the sloshing modes of the coupled system. The scheme is implemented in FEniCS and we obtain a qualitative description of the effect of surface tension on the sloshing modes.
A thermodynamical model for the surface tension of silicate melts in contact with H2O gas
Colucci, Simone; Battaglia, Maurizio; Trigila, Raffaello
2016-01-01
Surface tension plays an important role in the nucleation of H2O gas bubbles in magmatic melts and in the time-dependent rheology of bubble-bearing magmas. Despite several experimental studies, a physics based model of the surface tension of magmatic melts in contact with H2O is lacking. This paper employs gradient theory to develop a thermodynamical model of equilibrium surface tension of silicate melts in contact with H2O gas at low to moderate pressures. In the last decades, this approach has been successfully applied in studies of industrial mixtures but never to magmatic systems. We calibrate and verify the model against literature experimental data, obtained by the pendant drop method, and by inverting bubble nucleation experiments using the Classical Nucleation Theory (CNT). Our model reproduces the systematic decrease in surface tension with increased H2O pressure observed in the experiments. On the other hand, the effect of temperature is confirmed by the experiments only at high pressure. At atmospheric pressure, the model shows a decrease of surface tension with temperature. This is in contrast with a number of experimental observations and could be related to microstructural effects that cannot be reproduced by our model. Finally, our analysis indicates that the surface tension measured inverting the CNT may be lower than the value measured by the pendant drop method, most likely because of changes in surface tension controlled by the supersaturation.
Magnetoelastic Effect-Based Transmissive Stress Detection for Steel Strips: Theory and Experiment
Zhang, Qingdong; Su, Yuanxiao; Zhang, Liyuan; Bi, Jia; Luo, Jiang
2016-01-01
For the deficiencies of traditional stress detection methods for steel strips in industrial production, this paper proposes a non-contact stress detection scheme based on the magnetoelastic effect. The theoretical model of the transmission-type stress detection is established, in which the output voltage and the tested stress obey a linear relation. Then, a stress detection device is built for the experiment, and Q235 steel under uniaxial tension is tested as an example. The result shows that the output voltage rises linearly with the increase of the tensile stress, consistent with the theoretical prediction. To ensure the accuracy of the stress detection method in actual application, the temperature compensation, magnetic shielding and some other key technologies are investigated to reduce the interference of the external factors, such as environment temperature and surrounding magnetic field. The present research develops the theoretical and experimental foundations for the magnetic stress detection system, which can be used for online non-contact monitoring of strip flatness-related stress (tension distribution or longitudinal residual stress) in the steel strip rolling process, the quality evaluation of strip flatness after rolling, the life and safety assessment of metal construction and other industrial production links. PMID:27589742
Line tension effects on the wetting of nanostructures: an energy method
NASA Astrophysics Data System (ADS)
Guo, Hao-Yuan; Li, Bo; Feng, Xi-Qiao
2017-09-01
The superhydrophobicity and self-cleaning property of micro/nano-structured solid surfaces require a stable Cassie-Baxter (CB) wetting state at the liquid-solid interface. We present an energy method to investigate how the three-phase line tension affects the CB wetting state on nanostructured materials. For some nanostructures, the line tension may engender a distinct energy barrier, which restricts the position of the three-phase contact line and affects the stability of the CB wetting state. We ascertain the upper and lower limits of the critical pressure at the CB-Wenzel transition. Our results suggest that superhydrophobicity on nanostructures can be modulated by tailoring the line tension and harnessing the curvature effect. This study also provides new insights into the sinking phenomena observed in the nanoparticle-floating experiment.
Gaudelli, Cinzia; Ménard, Jérémie; Mutch, Jennifer; Laflamme, G-Yves; Petit, Yvan; Rouleau, Dominique M
2014-11-01
This paper aims to determine the strongest fixation method for split type greater tuberosity fractures of the proximal humerus by testing and comparing three fixation methods: a tension band with No. 2 wire suture, a double-row suture bridge with suture anchors, and a manually contoured calcaneal locking plate. Each method was tested on eight porcine humeri. A osteotomy of the greater tuberosity was performed 50° to the humeral shaft and then fixed according to one of three methods. The humeri were then placed in a testing apparatus and tension was applied along the supraspinatus tendon using a thermoelectric cooling clamp. The load required to produce 3mm and 5mm of displacement, as well as complete failure, was recorded using an axial load cell. The average load required to produce 3mm and 5mm of displacement was 658N and 1112N for the locking plate, 199N and 247N for the double row, and 75N and 105N for the tension band. The difference between the three groups was significant (P<0.01). The average load to failure of the locking plate (810N) was significantly stronger than double row (456N) and tension band (279N) (P<0.05). The stiffness of the locking plate (404N/mm) was significantly greater than double row (71N/mm) and tension band (33N/mm) (P<0.01). Locking plate fixation provides the strongest and stiffest biomechanical fixation for split type greater tuberosity fractures. Copyright © 2014 Elsevier Ltd. All rights reserved.
Dynamic Nucleation of Supercooled Melts and Measurement of the Surface Tension and Viscosity
NASA Technical Reports Server (NTRS)
Trinh, E. H.; Ohsaka, K.
1999-01-01
We investigate the phenomenon of acoustic pressure-induced nucleation by using a novel approach involving the large amplitude resonant radial oscillations and collapse of a single bubble intentionally injected into a supercooled liquid. Using a combination of previously developed and proven techniques, the bubble is suspended in a fluid host by an ultrasonic field which supplies both the levitation capability as well as the forcing of the radial oscillations. We observe the effects of an increase in pressure (due to bubble collapse) in a region no larger than 100 microns within the supercooled melt to rigorously probe the hypothesis of pressure-induced nucleation of the solid phase. The use of single bubbles operating in narrow temporal and spatial scales will allow the direct and unambiguous correlation between the origin and location of the generation of the disturbance and the location and timing of the nucleation event. In a companion research effort, we are developing novel techniques for the non-contact measurements of the surface tension and viscosity of highly viscous supercooled liquids. Currently used non-invasive methods of surface tension measurement for the case of undercooled liquids generally rely of the quantitative determination of the resonance frequencies of drop shape oscillations, of the dynamics of surface capillary waves, or of the velocity of streaming flows. These methods become quickly ineffective when the liquid viscosity rises to a significant value. An alternate and accurate method which would be applicable to liquids of significant viscosity is therefore needed. We plan to develop such a capability by measuring the equilibrium shape of levitated undercooled melt droplets as they undergo solid-body rotation. The experimental measurement of the characteristic point of transition (bifurcation point) between axisymmetric and two-lobed shapes will be used to calculate the surface tension of the liquid. Such an approach has already been validated through the experimental verification of numerical modeling results. The experimental approach involves levitation, melting, and solidification of undercooled droplets using a hybrid ultrasonic-electrostatic technique in both a gaseous as well as a vacuum environment. A shape relaxation method will be investigated in order to derive a reliable method to measure the viscosity of undercooled melts. The analysis of the monotonic relaxation to equilibrium shape of a drastically deformed and super-critically damped free drop has been used to derive interfacial tension of immiscible liquid combinations where one of the component has high viscosity. A standard approach uses the initial elongation of a droplet through shear flows, but an equivalent method could involve the initial deformation of a drop levitated in a gas by ultrasonic radiation pressure, electric stresses, or even solid body rotation. The dynamic behavior of the free drop relaxing back to equilibrium shape will be modeled, and its characteristic time dependence should provide a quantitative means to evaluate the liquid viscosity.
Numerical simulation of heat transfer and fluid flow in laser drilling of metals
NASA Astrophysics Data System (ADS)
Zhang, Tingzhong; Ni, Chenyin; Zhou, Jie; Zhang, Hongchao; Shen, Zhonghua; Ni, Xiaowu; Lu, Jian
2015-05-01
Laser processing as laser drilling, laser welding and laser cutting, etc. is rather important in modern manufacture, and the interaction of laser and matter is a complex phenomenon which should be detailed studied in order to increase the manufacture efficiency and quality. In this paper, a two-dimensional transient numerical model was developed to study the temperature field and molten pool size during pulsed laser keyhole drilling. The volume-of-fluid method was employed to track free surfaces, and melting and evaporation enthalpy, recoil pressure, surface tension, and energy loss due to evaporating materials were considered in this model. Besides, the enthalpy-porosity technique was also applied to account for the latent heat during melting and solidification. Temperature fields and melt pool size were numerically simulated via finite element method. Moreover, the effectiveness of the developed computational procedure had been confirmed by experiments.
Lingard, Lorelei; Reznick, Richard; Espin, Sherry; Regehr, Glenn; DeVito, Isabella
2002-03-01
Although the communication that occurs within health care teams is important to both team function and the socialization of novices, the nature of team communication and its educational influence are not well documented. This study explored the nature of communications among operating room (OR) team members from surgery, nursing, and anesthesia to identify common communicative patterns, sites of tension, and their impact on novices. Paired researchers observed 128 hours of OR interactions during 35 procedures from four surgical divisions at one teaching hospital. Brief, unstructured interviews were conducted following each observation. Field notes were independently read by each researcher and coded for emergent themes in the grounded theory tradition. Coding consensus was achieved via regular discussion. Findings were returned to insider "experts" for their assessment of authenticity and adequacy. Patterns of communication were complex and socially motivated. Dominant themes were time, safety and sterility, resources, roles, and situation. Communicative tension arose regularly in relation to these themes. Each procedure had one to four "higher-tension" events, which often had a ripple effect, spreading tension to other participants and contexts. Surgical trainees responded to tension by withdrawing from the communication or mimicking the senior staff surgeon. Both responses had negative implications for their own team relations. Team communications in the OR follow observable patterns and are influenced by recurrent themes that suggest sites of team tension. Tension in team communication affects novices, who respond with behaviors that may intensify rather than resolve interprofessional conflict.
Micromechanics Modeling of Composites Subjected to Multiaxial Progressive Damage in the Constituents
NASA Technical Reports Server (NTRS)
Bednarcyk, Brett A.; Aboudi, Jacob; Amold, Steven M.
2010-01-01
The high-fidelity generalized method of cells composite micromechanics model is extended to include constituent-scale progressive damage via a proposed damage model. The damage model assumes that all material nonlinearity is due to damage in the form of reduced stiffness, and it uses six scalar damage variables (three for tension and three for compression) to track the damage. Damage strains are introduced that account for interaction among the strain components and that also allow the development of the damage evolution equations based on the constituent material uniaxial stress strain response. Local final-failure criteria are also proposed based on mode-specific strain energy release rates and total dissipated strain energy. The coupled micromechanics-damage model described herein is applied to a unidirectional E-glass/epoxy composite and a proprietary polymer matrix composite. Results illustrate the capability of the coupled model to capture the vastly different character of the monolithic (neat) resin matrix and the composite in response to far-field tension, compression, and shear loading.
Electromagnetic stress at the boundary: Photon pressure or tension?
Wang, Shubo; Ng, Jack; Xiao, Meng; Chan, Che Ting
2016-03-01
It is well known that incident photons carrying momentum ℏk exert a positive photon pressure. But if light is impinging from a negative refractive medium in which ℏk is directed toward the source of radiation, should light exert a photon "tension" instead of a photon pressure? Using an ab initio method that takes the underlying microstructure of a material into account, we find that when an electromagnetic wave propagates from one material into another, the electromagnetic stress at the boundary is, in fact, indeterminate if only the macroscopic parameters are specified. Light can either pull or push the boundary, depending not only on the macroscopic parameters but also on the microscopic lattice structure of the polarizable units that constitute the medium. Within the context of an effective-medium approach, the lattice effect is attributed to electrostriction and magnetostriction, which can be accounted for by the Helmholtz stress tensor if we use the macroscopic fields to calculate the boundary optical stress.
Gao, Zhan; Desai, Jaydev P.
2009-01-01
This paper presents several experimental techniques and concepts in the process of measuring mechanical properties of very soft tissue in an ex vivo tensile test. Gravitational body force on very soft tissue causes pre-compression and results in a non-uniform initial deformation. The global Digital Image Correlation technique is used to measure the full field deformation behavior of liver tissue in uniaxial tension testing. A maximum stretching band is observed in the incremental strain field when a region of tissue passes from compression and enters a state of tension. A new method for estimating the zero strain state is proposed: the zero strain position is close to, but ahead of the position of the maximum stretching band, or in other words, the tangent of a nominal stress-stretch curve reaches minimum at λ ≳ 1. The approach, to identify zero strain by using maximum incremental strain, can be implemented in other types of image-based soft tissue analysis. The experimental results of ten samples from seven porcine livers are presented and material parameters for the Ogden model fit are obtained. The finite element simulation based on the fitted model confirms the effect of gravity on the deformation of very soft tissue and validates our approach. PMID:20015676
High-resolution computer-aided moire
NASA Astrophysics Data System (ADS)
Sciammarella, Cesar A.; Bhat, Gopalakrishna K.
1991-12-01
This paper presents a high resolution computer assisted moire technique for the measurement of displacements and strains at the microscopic level. The detection of micro-displacements using a moire grid and the problem associated with the recovery of displacement field from the sampled values of the grid intensity are discussed. A two dimensional Fourier transform method for the extraction of displacements from the image of the moire grid is outlined. An example of application of the technique to the measurement of strains and stresses in the vicinity of the crack tip in a compact tension specimen is given.
NASA Technical Reports Server (NTRS)
Wu, Jie; Yu, Sheng-Tao; Jiang, Bo-nan
1996-01-01
In this paper a numerical procedure for simulating two-fluid flows is presented. This procedure is based on the Volume of Fluid (VOF) method proposed by Hirt and Nichols and the continuum surface force (CSF) model developed by Brackbill, et al. In the VOF method fluids of different properties are identified through the use of a continuous field variable (color function). The color function assigns a unique constant (color) to each fluid. The interfaces between different fluids are distinct due to sharp gradients of the color function. The evolution of the interfaces is captured by solving the convective equation of the color function. The CSF model is used as a means to treat surface tension effect at the interfaces. Here a modified version of the CSF model, proposed by Jacqmin, is used to calculate the tension force. In the modified version, the force term is obtained by calculating the divergence of a stress tensor defined by the gradient of the color function. In its analytical form, this stress formulation is equivalent to the original CSF model. Numerically, however, the use of the stress formulation has some advantages over the original CSF model, as it bypasses the difficulty in approximating the curvatures of the interfaces. The least-squares finite element method (LSFEM) is used to discretize the governing equation systems. The LSFEM has proven to be effective in solving incompressible Navier-Stokes equations and pure convection equations, making it an ideal candidate for the present applications. The LSFEM handles all the equations in a unified manner without any additional special treatment such as upwinding or artificial dissipation. Various bench mark tests have been carried out for both two dimensional planar and axisymmetric flows, including a dam breaking, oscillating and stationary bubbles and a conical liquid sheet in a pressure swirl atomizer.
Application of computer assisted moire to the study of a crack tip
NASA Astrophysics Data System (ADS)
Sciammarella, C. A.; Albertazzi, A., Jr.; Mourikes, J.
The basic principles of computer assisted moire are discussed. The influence of the image sensor and its finite dimensions on the sampling theorem requirements is discussed. Criteria for the selection of grating pitch on the basis of the spatial bandwidth of the pattern to be observed and the requirements arising from sensitivity considerations are given. The method is used to analyze the strain field in the neighborhood of the crack tip of a standard ASTM compact tension specimen. From the displacements the strains are computed, and from the strains the stresses are obtained using the generalized Ramberg-Osgood stress strain relationship. The stresses are used to compute the values for the J-integral in several circuits surrounding the crack. Good agreement is obtained between the values of the stress intensity factors obtained by different methods. The plastic region surrounding the crack does not show a HRR field and thus the usual rationale to justify the J-integral methods must be re-evaluated.
NASA Astrophysics Data System (ADS)
Jankowiak, Iwona; Madaj, Arkadiusz
2017-12-01
One of the methods to increase the load carrying capacity of the reinforced concrete (RC) structure is its strengthening by using carbon fiber (CFRP) strips. There are two methods of strengthening using CFRP strips - passive method and active method. In the passive method a strip is applied to the concrete surface without initial strains, unlike in the active method a strip is initially pretensioned before its application. In the case of a steel-concrete composite beam, strips may be used to strengthen the concrete slab located in the tension zone (in the parts of beams with negative bending moments). The finite element model has been developed and validated by experimental tests to evaluate the strengthening efficiency of the composite girder with pretensioned CFRP strips applied to concrete slab in its tension zone.
A Method to Calculate the Surface Tension of a Cylindrical Droplet
ERIC Educational Resources Information Center
Wang, Xiaosong; Zhu, Ruzeng
2010-01-01
The history of Laplace's equations for spherical and cylindrical droplets and the concept of dividing surface in Gibbs' thermodynamic theory of capillary phenomena are briefly reviewed. The existing theories of surface tensions of cylindrical droplets are briefly reviewed too. For cylindrical droplets, a new method to calculate the radius and the…
The Effect of Three Methods of Supporting the Double Bass on Muscle Tension.
ERIC Educational Resources Information Center
Dennis, Allan
1984-01-01
Using different methods of holding the double bass, college students performed Beethoven's Symphony No. 9. Audio recordings of performance were rated. Muscle tension readings from the left arm, right arm, upper back, and lower back were taken, using electromyography. Results suggest nonsignificant differences in both performance quality and muscle…
Nosographic analysis of osmophobia and field testing of diagnostic criteria including osmophobia.
Chalmer, Mona Ameri; Hansen, Thomas Folkmann; Olesen, Jes
2018-01-01
Introduction Osmophobia has been suggested as an additional symptom of migraine without aura, and a high prevalence of osmophobia of up to 50% has been reported in the literature. We conducted a nosographic study of osmophobia in all migraineurs and tension-type headache patients and a field testing of suggested diagnostic criteria of osmophobia, presented in the appendix of the second edition of The International Classification of Headache Disorders and suggested by Silva-Néto et al. and Wang et al ., in migraine without aura and tension-type headache patients (n = 1934). Materials and methods Each patient received a validated semi-structured interview. All subjects fulfilled the diagnostic criteria of the second edition of The International Classification of Headache Disorders for migraine or tension-type headache. Statistical analyses were performed using statistical software R. The statistical R package "Caret" was used to construct a confusion matrix and retrieve sensitivity, which is defined as the suggested criteria's ability to correctly diagnose migraine without aura patients, and specificity, defined as the suggested criteria's ability to not wrongly diagnose tension-type headache patients. Results Osmophobia was present in 33.5% of patients with migraine with aura, in 36.0% of patients with migraine without aura, and in 1.2% of patients with tension-type headache. All migraineurs with osmophobia also fulfilled the current criteria for migraine by having nausea or photophobia and phonophobia. The appendix criteria had a sensitivity of 0.96 and a specificity of 0.99 for migraine without aura, and a sensitivity of 0.65 and a specificity of 0.99 for probable migraine without aura. Both the criteria by Silva-Néto et al. and Wang et al. had a sensitivity of 0.98 and a specificity of 0.99 for migraine without aura, and a sensitivity of 0.66 and a specificity of 0.99 for probable migraine without aura. Discussion This study demonstrates the remarkable specificity of osmophobia. The criteria by Silva-Néto et al. and Wang et al. both had a higher sensitivity than the appendix criteria for migraine without aura; all three criteria had a low sensitivity for probable migraine without aura. However, neither the appendix criteria nor the criteria by Silva-Néto et al. or Wang et al. added any extra patients that would not have been diagnosed by the current diagnostic criteria for migraine. Osmophobia is a valuable symptom that may be useful to differentiate between migraine without aura and tension-type headache in difficult clinical cases. Conclusion Our results do not suggest that alterations of the current diagnostic criteria for migraine without aura are needed.
The surface tension of liquid gallium
NASA Technical Reports Server (NTRS)
Hardy, S. C.
1985-01-01
The surface tension of liquid gallium has been measured using the sessile drop technique in an Auger spectrometer. The experimental method is described. The surface tension in mJ/sq m is found to decrease linearly with increasing temperature and may be represented as 708-0.66(T-29.8), where T is the temperature in centigrade. This result is of interest because gallium has been suggested as a model fluid for Marangoni flow experiments. In addition, the surface tension is of technological significance in the processing of compound semiconductors involving gallium.
Gregersen, Hans; Villadsen, Gerda E; Liao, Donghua
2011-12-01
Systemic sclerosis (SS) patients with severe esophageal affection have impaired peristalsis. However, motor function evaluated in vivo by manometry and fluoroscopy does not provide detailed information about the individual contraction cycles. To apply, for the first time in gastrointestinal (GI) patients, a method and principles modified from cardiac research to study esophageal muscle behavior in SS patients. Muscle contraction cycles were analyzed using pressure-cross-sectional area (P-CSA) loops during distension pressure up to 5 kPa. The probe with bag and electrodes for CSA measurements was positioned 7 and 15 cm above the lower esophageal sphincter (LES) in eleven healthy volunteers and eleven SS patients. The P-CSA, the wall tension, Δtension (afterload tension - preload tension), contraction velocity, work output (area of the tension-CSA loops), and power output (preload tension × CSA rate) were analyzed. The P-CSA loops consisted of phases with relaxation and contraction behavior. The tension-stretch ratio loops in patients were shifted to the left at both distension sites, indicative of a stiffer wall in patients. Lower contraction amplitudes and smaller P-CSA loops were observed for the SS patients. The work output, power output, Δtension, and contraction velocity were lower in patients (P < 0.001). Association was found between disease duration and the work output, Δtension, and velocity at pressure steps higher than 3 kPa (P < 0.05). Distension-evoked esophageal contraction can be studied in vivo and analyzed with advanced methods. Increased esophageal stiffness and impaired muscle function that depended on disease duration were observed for SS patients. The analysis may be useful for characterization of other diseases affecting GI function.
The ensemble switch method for computing interfacial tensions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmitz, Fabian; Virnau, Peter
2015-04-14
We present a systematic thermodynamic integration approach to compute interfacial tensions for solid-liquid interfaces, which is based on the ensemble switch method. Applying Monte Carlo simulations and finite-size scaling techniques, we obtain results for hard spheres, which are in agreement with previous computations. The case of solid-liquid interfaces in a variant of the effective Asakura-Oosawa model and of liquid-vapor interfaces in the Lennard-Jones model are discussed as well. We demonstrate that a thorough finite-size analysis of the simulation data is required to obtain precise results for the interfacial tension.
A novel method for reducing gap formation in tendon repair.
Dean, Ryan; Sethi, Paul
2018-03-01
This study investigates gap formation in tendon repair using a novel tensioning method. The novel stitch will demonstrate less gap formation than the other suture configurations tested. Porcine tendons stitched with classic Krackow stitch configurations were compared to a Krackow stitch modified with a proximal Tension-Assist Loop. Each group was cyclically loaded followed by analysis of the tendon-suture construct for gap formation. The Tension-Assist Loop group produced significantly less gap formation than each of the other stitch groups. Decreasing early gap formation may be beneficial in allowing early rehabilitation and range of motion.
Modified tension band wiring of medial malleolar ankle fractures.
Georgiadis, G M; White, D B
1995-02-01
Twenty-two displaced medial malleolar ankle fractures that were treated surgically using the modified tension band method of Cleak and Dawson were retrospectively reviewed at an average follow-up of 25 months. The technique involves the use of a screw to anchor a figure-of-eight wire. There were no malreductions and all fractures healed. Problems with the technique included technical errors with hardware placement, medial ankle pain, and asymptomatic wire migration. Despite this, modified tension band wiring remains an acceptable method for fixation of selected displaced medial malleolar fractures. It is especially suited for small fracture fragments and osteoporotic bone.
Health monitoring of prestressing tendons in post-tensioned concrete structures
NASA Astrophysics Data System (ADS)
Salamone, Salvatore; Bartoli, Ivan; Nucera, Claudio; Phillips, Robert; Lanza di Scalea, Francesco
2011-04-01
Currently 90% of bridges built in California are post-tensioned box-girder. In such structures the steel tendons are the main load-carrying components. The loss of prestress, as well as the presence of defects or the tendon breakage, can be catastrophic for the entire structure. Unfortunately, today there is no well-established method for the monitoring of prestressing (PS) tendons that can provide simultaneous information related to the presence of defects and the level of prestress in a continuous, real time manner. If such a monitoring system were available, considerable savings would be achieved in bridge maintenance since repairs would be implemented in a timely manner without traffic disruptions. This paper presents a health monitoring system for PS tendons in post-tensioned structures of interest to Caltrans. Such a system uses ultrasonic guided waves and embedded sensors to provide simultaneously and in real time, (a) measurements of the level of applied prestress, and (b) defect detection at early grow stages. The proposed PS measurement technique exploits the sensitivity of ultrasonic waves to the inter-wire contact developing in a multi-wire strand as a function of prestress level. In particular the nonlinear ultrasonic behavior of the tendon under changing levels of prestress is monitored by tracking higher-order harmonics at (nω) arising under a fundamental guided-wave excitation at (ω). Moreover this paper also present real-time damage detection and location in post-tensioned bridge joints using Acoustic Emission techniques. Experimental tests on large-scale single-tendon PT joint specimens, subjected to multiple load cycles, will be presented to validate the monitoring of PS loads (through nonlinear ultrasonic probing) and the monitoring of damage progression and location (through acoustic emission techniques). Issues and potential for the use of such techniques to monitor post-tensioned bridges in the field will be discussed.
Kiriyama, Yoshimori; Matsumoto, Hideo; Toyama, Yoshiaki; Nagura, Takeo
2014-02-01
The aim of this study was to develop a new suture tension sensor for musculoskeletal soft tissue that shows deformation or movements. The suture tension sensor was 10 mm in size, which was small enough to avoid conflicting with the adjacent sensor. Furthermore, the sensor had good linearity up to a tension of 50 N, which is equivalent to the breaking strength of a size 1 absorbable suture defined by the United States Pharmacopeia. The design and mechanism were analyzed using a finite element model prior to developing the actual sensor. Based on the analysis, adequate material was selected, and the output linearity was confirmed and compared with the simulated result. To evaluate practical application, the incision of the skin and capsule were sutured during simulated total knee arthroplasty. When conventional surgery and minimally invasive surgery were performed, suture tensions were compared. In minimally invasive surgery, the distal portion of the knee was dissected, and the proximal portion of the knee was dissected additionally in conventional surgery. In the skin suturing, the maximum tension was 4.4 N, and this tension was independent of the sensor location. In contrast, the sensor suturing the capsule in the distal portion had a tension of 4.4 N in minimally invasive surgery, while the proximal sensor had a tension of 44 N in conventional surgery. The suture tensions increased nonlinearly and were dependent on the knee flexion angle. Furthermore, the tension changes showed hysteresis. This miniature tension sensor may help establish the optimal suturing method with adequate tension to ensure wound healing and early recovery.
A novel method of basal crevasse height estimation and subsequent rifting
NASA Astrophysics Data System (ADS)
Logan, L.; Catania, G. A.; Lavier, L. L.; Choi, E.
2012-12-01
Basal crevasses may play an important precursory role in the location and propagation of rifts and in ice shelf disintegration. Here we develop a novel method for estimating the locations and heights of basal crevasses formed at the grounding line of ice shelves and ice streams. We assume a thin-elastic beam formulation (TEB) with a tensional plastic yielding criterion to capture the physics of a tidally flexed grounding line. Observations of basal crevasses in the Siple Coast area match well with predictions produced by this method. Areas with large misfit can be delineated by examining the strain rate field; indeed, in our estimations those crevasses which deviate most from the TEB prediction lie directly in a shear margin. We test the method against other areas in the Larsen Ice Shelf, and find again a good match. Thus we suggest the TEB as an alternative to other crevasse estimation methods, as it produces a good fit in predominantly tensile regions, requires no tuning or prior information, and is computationally free to implement into large scale ice models which aim at physically simulating calving and fracture processes. We pursue modeling basal crevasses as they evolve with a thermomechanical finite-difference 3-dimensional model called SNAC. Viscoelastoplastic ice follows Mohr-Coulomb tension failure with Glen's flow law. We examine the conditions necessary for a basal crevasse formed on the downstream side of an ice rise to propagate the full thickness of the ice, developing into a rift.
F. J. Roethlisberger and the Elusive Phenomena of Organizational Behavior
ERIC Educational Resources Information Center
Vaill, Peter B.
2007-01-01
In 1961, Fritz Roethlisberger, coauthor of the landmark Hawthorne studies, wrote a memorandum sketching his understanding of the nascent field of organizational behavior. The memo's purpose was to discuss the relationships of theory and practice in the field, identifying in particular some of the tensions and contradictions that the field poses…
Mechanical Pre-Stressing a Transducer through a Negative DC Biasing Field
2017-04-21
13 ii LIST OF ABBREVIATIONS AND ACRONYMS AC Alternating Current DC Direct Currant FEA Finite Element Analysis NUWC Naval...at resonance into tension is shown in figure 3; it was estimated from finite element analysis (FEA) that the tensional stresses exceeded 2000 psi...PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Stephen C. Butler 5.d PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION
Stress Related Surface Tension Effects in Hard Elastic Polymers.
1982-08-19
tension 4, and viscosity and the ,_;.rain imposed csn the materials. Results indicate that these microfi-r! Slated polymers contain a substantia- surface...modulus, 2) large recoverability (up to 98%), 3) ’energetic’ elasticity, and 4) high porosity. This field was thoroughly reviewed by Cannon, McKenna, and...influenced ’N load bearing microfibrils, open to the environment. The stress sensitivity of hard elastic polymers to changes in environmental surface
2010-04-01
this heterogeneity, for the purpose of predicting water flow and reactive transport behavior at the field scale, has proven quite difficult. This...potential (soil water pressure) at the outlet and at offset points in response injections at different inlet pressure heads. 13 Task 2: Development...preferential pathways (Wu et al., 1993). A viable solution to this problem is to supply water under tension using an inflatable borehole
Treatment of singularities in a middle-crack tension specimen
NASA Technical Reports Server (NTRS)
Shivakumar, K. N.; Raju, I. S.
1990-01-01
A three-dimensional finite-element analysis of a middle-crack tension specimen subjected to mode I loading was performed to study the stress singularity along the crack front. The specimen was modeled using 20-node isoparametric elements with collapsed nonsingular elements at the crack front. The displacements and stresses from the analysis were used to estimate the power of singularities, by a log-log regression analysis, along the crack front. Analyses showed that finite-sized cracked bodies have two singular stress fields. Because of two singular stress fields near the free surface and the classical square root singularity elsewhere, the strain energy release rate appears to be an appropriate parameter all along the crack front.
Kirwan, Garry W; Bourke, Michael G; Chipchase, Lucinda; Dalton, Philip A; Russell, Trevor G
2015-12-01
The application of graft tension during anterior cruciate ligament reconstruction is considered an important feature of ACLR. However, wide variation exists in relation to graft tensioning practice limiting the ability to determine the best approach. Thus, the primary aim of this study was to describe current clinical practice amongst Australian orthopaedic surgeons with respect to graft tensioning and explore influencing factors. A survey was developed to address the aims of the study and pilot testing was completed to confirm validity and reliability. The survey population was defined as Australian orthopaedic surgeons, associated with the Australian Orthopaedic Association sub-specialty of knee to target surgeons likely to perform ACLR. The final sampling frame consisted of 192 surgeons. Manual tensioning was the most common method (80.5 %), with a maximum one-handed pull the most frequent description and estimated tension ranged between 41 and 60 N with the knee positioned near full extension. Surgeons using a tensioning device tended to use a higher tension (mean 81.85 N), with the knee positioned at 30° flexion (40 %). Sixteen percent reported individualising tension on viscoelasticity of the graft, graft diameter, patient anthropometry and age. Patient outcomes and available evidence were the primary factors influencing tensioning protocol. Tensioning practices appear to consist of three main approaches, (1) manual tension using a sustained maximum one-handed pull, with tension estimated as 41-60 N, applied near full extension, (2) tensioning device, mean tension of 81.85 N, at 30° knee flexion, (3) individual approach based on size and viscoelastic properties of the graft, patient anthropometry, contralateral comparison to the other knee and age of the patient.
NASA Astrophysics Data System (ADS)
d'Oliveira, H. D.; Davoy, X.; Arche, E.; Malfreyt, P.; Ghoufi, A.
2017-06-01
The surface tension (γ) of methane on a graphene monolayer is calculated by using the test-area approach. By using a united atom model to describe methane molecules, strong fluctuations of surface tension as a function of the surface area of the graphene are evidenced. In contrast with the liquid-vapor interfaces, the use of a larger cutoff does not fully erase the fluctuations in the surface tension. Counterintuitively, the description of methane and graphene from the Optimized Potentials for Liquid Simulations all-atom model and a flexible model, respectively, led to a lessening in the surface tension fluctuations. This result suggests that the origin of fluctuations in γ is due to a model-effect rather than size-effects. We show that the molecular origin of these fluctuations is the result of a commensurable organization between both graphene and methane. This commensurable structure can be avoided by describing methane and graphene from a flexible force field. Although differences in γ with respect to the model have been often reported, it is the first time that the model drastically affects the physics of a system.
Manual therapy in adults with tension-type headache: A systematic review.
Cumplido-Trasmonte, C; Fernández-González, P; Alguacil-Diego, I M; Molina-Rueda, F
2018-03-07
Tension-type headache is the most common primary headache, with a high prevalence and a considerable socioeconomic impact. Manual physical therapy techniques are widely used in the clinical field to treat the symptoms associated with tension-type headache. This systematic review aims to determine the effectiveness of manual and non-invasive therapies in the treatment of patients with tension-type headache. We conducted a systematic review of randomised controlled trials in the following databases: Brain, PubMed, Web of Science, PEDro, Scopus, CINAHL, and Science Direct. Ten randomised controlled trials were included for analysis. According to these studies, manual therapy improves symptoms, increasing patients' well-being and improving the outcome measures analysed. Manual therapy has positive effects on pain intensity, pain frequency, disability, overall impact, quality of life, and craniocervical range of motion in adults with tension-type headache. None of the techniques was found to be superior to the others; combining different techniques seems to be the most effective approach. Copyright © 2018 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
ERIC Educational Resources Information Center
Håkansta, Carin; Jacob, Merle
2016-01-01
This paper investigates the impact of changing science policy doctrines on the development of an academic field, working life research. Working life research is an interdisciplinary field of study in which researchers and stakeholders collaborated to produce relevant knowledge. The development of the field, we argue, was both facilitated and…
NASA Astrophysics Data System (ADS)
Ishikawa, Takehiko; Yu, Jianding; Paradis, Paul-François
2006-05-01
In order to measure the surface tension and the viscosity of molten oxides, the oscillation drop technique has been applied on a pressurized hybrid electrostatic-aerodynamic levitator. To suppress the electrical discharge between the top and bottom electrodes, the drop excitation method which has been used with high vacuum electrostatic levitators has been modified. As a demonstration, the surface tension and viscosity of liquid BaTiO3 were measured using this new method. Over the 1500-2000K interval, the surface tension was measured as γ(T )=349-0.03 (T-Tm) (10-3N/m), where Tm=1893K is the melting temperature. Similarly, the viscosity was determined as η(T )=0.53exp[5.35×104/(RT)](10-3Pas) over the same temperature interval.
Mapping surface tension induced menisci with application to tensiometry and refractometry.
Mishra, Avanish; Kulkarni, Varun; Khor, Jian-Wei; Wereley, Steve
2015-07-28
In this work, we discuss an optical method for measuring surface tension induced menisci. The principle of measurement is based upon the change in the background pattern produced by the curvature of the meniscus acting as a lens. We measure the meniscus profile over an inclined glass plate and utilize the measured meniscus for estimation of surface tension and refractive index.
Dynamic surface tension measurements of ionic surfactants using maximum bubble pressure tensiometry
NASA Astrophysics Data System (ADS)
Ortiz, Camilla U.; Moreno, Norman; Sharma, Vivek
Dynamic surface tension refers to the time dependent variation in surface tension, and is intimately linked with the rate of mass transfer of a surfactant from liquid sub-phase to the interface. The diffusion- or adsorption-limited kinetics of mass transfer to interfaces is said to impact the so-called foamability and the Gibbs-Marangoni elasticity of surfaces. Dynamic surface tension measurements carried out with conventional methods like pendant drop analysis, Wilhelmy plate, etc. are limited in their temporal resolution (>50 ms). In this study, we describe design and application of maximum bubble pressure tensiometry for the measurement of dynamic surface tension effects at extremely short (1-50 ms) timescales. Using experiments and theory, we discuss the overall adsorption kinetics of charged surfactants, paying special attention to the influence of added salt on dynamic surface tension.
NASA Astrophysics Data System (ADS)
Zhu, B.; Lin, J.; Yuan, X.; Li, Y.; Shen, C.
2016-12-01
The role of turbulent acceleration and heating in the fractal magnetic reconnection of solar flares is still not clear, especially at the X-point in the diffusion region. At virtual test aspect, it is hardly to quantitatively analyze the vortex generation, turbulence evolution, particle acceleration and heating in the magnetic islands coalesce in fractal manner, formatting into largest plasmid and ejection process in diffusion region through classical magnetohydrodynamics numerical method. With the development of physical particle numerical method (particle in cell method [PIC], Lattice Boltzmann method [LBM]) and high performance computing technology in recently two decades. Kinetic simulation has developed into an effectively manner to exploring the role of magnetic field and electric field turbulence in charged particles acceleration and heating process, since all the physical aspects relating to turbulent reconnection are taken into account. In this paper, the LBM based lattice DxQy grid and extended distribution are added into charged-particles-to-grid-interpolation of PIC based finite difference time domain scheme and Yee Grid, the hybrid PIC-LBM simulation tool is developed to investigating turbulence acceleration on TIANHE-2. The actual solar coronal condition (L≈105Km,B≈50-500G,T≈5×106K, n≈108-109, mi/me≈500-1836) is applied to study the turbulent acceleration and heating in solar flare fractal current sheet. At stage I, magnetic islands shrink due to magnetic tension forces, the process of island shrinking halts when the kinetic energy of the accelerated particles is sufficient to halt the further collapse due to magnetic tension forces, the particle energy gain is naturally a large fraction of the released magnetic energy. At stage II and III, the particles from the energized group come in to the center of the diffusion region and stay longer in the area. In contract, the particles from non energized group only skim the outer part of the diffusion regions. At stage IV, the magnetic reconnection type nanoplasmid (200km) stop expanding and carrying enough energy to eject particles as constant velocity. Last, the role of magnetic field turbulence and electric field turbulence in electron and ion acceleration at the diffusion regions in solar flare fractural current sheet is given.
ERIC Educational Resources Information Center
Xin Zhang; Shouxin Liu; Booxin Li; Na An; Fan Zhang
2004-01-01
A multipurpose apparatus that can be used to measure the viscosity of solution by the Ostwald method and the surface tension of solution by the drop-weight method or by the capillary-rise method is developed. The apparatus is convenient for in-situ preparation of solutions of different concentrations and avoids the error that frothing of the…
Brosius, Nevin; Ward, Kevin; Matsumoto, Satoshi; SanSoucie, Michael; Narayanan, Ranga
2018-01-01
In this work, a method for the measurement of surface tension using continuous periodic forcing is presented. To reduce gravitational effects, samples are electrostatically levitated prior to forcing. The method, called Faraday forcing, is particularly well suited for fluids that require high temperature measurements such as liquid metals where conventional surface tension measurement methods are not possible. It offers distinct advantages over the conventional pulse-decay analysis method when the sample viscosity is high or the levitation feedback control system is noisy. In the current method, levitated drops are continuously translated about a mean position at a small, constant forcing amplitude over a range of frequencies. At a particular frequency in this range, the drop suddenly enters a state of resonance, which is confirmed by large executions of prolate/oblate deformations about the mean spherical shape. The arrival at this resonant condition is a signature that the parametric forcing frequency is equal to the drop's natural frequency, the latter being a known function of surface tension. A description of the experimental procedure is presented. A proof of concept is given using pure Zr and a Ti 39.5 Zr 39.5 Ni 21 alloy as examples. The results compare favorably with accepted literature values obtained using the pulse-decay method.
Tian, Yun; Zhou, Fang; Ji, Hongquan; Zhang, Zhishan; Guo, Yan
2011-12-01
Although the modified tension band technique (eg, tension band supplemented by longitudinal Kirschner wires) has long been the mainstay for fixation of transverse fractures of the patella, it has shortcomings, such as bad reduction, loosening of implants, and skin irritation. We conducted a retrospective comparison of the modified tension band technique and the titanium cable-cannulated screw tension band technique. We retrospectively reviewed 101 patients aged 22 to 85 years (mean, 56.6 years) with AO/OTA 34-C1 fractures (n = 68) and 34-C2 fractures (n = 33). Fifty-two patients were in the modified tension band group and 49 were in the titanium cable-cannulated screw tension band group. Followup was at least 1 year (range, 1-3 years). Comparison criteria were fracture reduction, fracture healing time, and the Iowa score for knee function. The titanium cable-cannulated screw tension band group showed improved fracture reduction, reduced healing time, and better Iowa score, compared with the modified tension band group. In the modified tension band group, eight patients experienced wire migration, three of these requiring a second operation. There were no complications in the titanium cable-cannulated screw tension band group. The titanium cable-cannulated screw tension band technique showed superior results and should be considered as an alternative method for treatment of transverse patellar fractures. Level III, therapeutic study. See the Guidelines for Authors for a complete description of levels of evidence.
Mohandhas, Badri R; Makaram, Navnit; Drew, Tim S; Wang, Weijie; Arnold, Graham P
2016-01-01
Background Lateral epicondylitis (LE) occurs in almost half of all tennis players. Racket-string tension is considered to be an important factor influencing the development of LE. No literature yet exists that substantiates how string-tension affects force transmission to the elbow, as implicated in LE development. We establish a quantitative relationship between string-tension and elbow loading, analyzing tennis strokes using rackets with varying string-tensions. Methods Twenty recreational tennis players simulated backhand tennis strokes using three rackets strung at tensions of 200 N, 222 N and 245 N. Accelerometers recorded accelerations at the elbow, wrist and racket handle. Average peak acceleration was determined to correlate string-tension with elbow loading. Results Statistically significant differences (p < 0.05) were observed when average peak acceleration at the elbow at 200 N string-tension (acceleration of 5.58 m/s2) was compared with that at 222 N tension (acceleration of 6.83 m/s2) and 245 N tension (acceleration of 7.45 m/s2). The 200 N racket induced the least acceleration at the elbow. Conclusions Although parameters determining force transmission to the elbow during a tennis stroke are complex, the present study was able to control these parameters, isolating the effect of string-tension. Lower string-tensions transmit less force to the elbow in backhand strokes. Reducing string-tension should be considered favourably with respect to reducing the risk of developing LE. PMID:27583017
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis; ...
2017-11-06
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu -Wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. In conclusion, some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Wei; Wang, Yu-wei; Makrygiannis, Panagiotis
The martensite phase transformation dependence upon deformation modes and strain paths in a medium manganese (10 wt%) TRIP steel stamped into a T-shape panel was quantified through combination of 3D digital image correlation and synchrotron X-ray diffraction. The T-shape emulates a portion of a common anti-intrusion component. The stamping speed was kept intentionally slow (1 mm/s) so as to avoid excessive heat generation. The steel, which belongs to the third generation advanced high strength steel (3GAHSS) family, was chosen for two reasons: (1) it is two-phase, i.e. austenite and ferrite, with martensite resulting from deformation-induced phase transformation; (2) the 66more » vol.% initial retained austenite volume fraction (RAVF) enabled a thorough examination of the martensite phase transformation at large deformation levels without exhaustion. Strain fields were coupled with measured RAVF values of small specimens extracted from specific locations on a formed T-shape panel. This enabled an exploration of the effects of linear, bilinear, and non-linear strain paths as well as deformation modes such as tension, plane strain, biaxial tension, and equibiaxial tension. Results suggest a significant martensite phase transformation dependence on deformation mode and strain path in the absence of fracture and when martensite phase transformation is unaffected by heat generated during forming. In general, the uniaxial and biaxial tension deformation modes facilitate the martensite phase transformation, while the smallest amount of martensite phase transformation occurs under plane strain. Some discussion as to further application of the experimental methods detailed in this study to other 3GAHSS and the effects of fracture on martensite phase transformation is provided.« less
Percutaneous Relief of Tension Pneumomediastinum in a Child
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chau, Helen Hoi-lun; Kwok, Philip Chong-hei; Lai, Albert Kwok-hung
2003-11-15
The purpose of this article was to describe the experience of relieving tension pneumomediastinum by a fluoroscopic-guided percutaneous method. We inserted a percutaneous drainage catheter with a Heimlich valve under fluoroscopic guidance to relieve the tension pneumomediastinum in a 2-year-old girl who suffered from dermatomyositis with lung involvement. This allowed immediate relief without the need for surgery. The procedure was repeated for relapsed tension pneumomediastinum. Good immediate results were achieved in each attempt. We conclude that percutaneous relief of pneumomediastinum under fluoroscopic guidance can be performed safely and rapidly in patients not fit for surgery.
Modeling the surface tension of complex, reactive organic-inorganic mixtures
NASA Astrophysics Data System (ADS)
Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. F.
2013-01-01
Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as cloud condensation nuclei (CCN) ability. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well-described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling fits and goodness of fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.
Simple skin-stretching device in assisted tension-free wound closure
Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si
2017-01-01
Background Numerous conventional wound reconstruction methods such as wound undermining with direct suture, skin graft, and flap surgery can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. Materials and Methods This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique following a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. Results All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. Conclusion The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful. PMID:28195891
Tension-type headache: one or more headaches?
Sjaastad, Ottar
Summary In this context, the focus will be on the homogeneity of tension-type headache (T-TH): is it a disease? Or: is it more likely to be a syndrome? A multiplicity of disorders from as drastically different fields of medicine as disorders caused by environmental gases, intra-psychic conflicts, and nuchal/cervical disorders can putatively fake T-TH. T-TH is in all probability a conglomerate of disorders and not one solid, homogeneous disorder. PMID:22152438
Generalized surface tension bounds in vacuum decay
NASA Astrophysics Data System (ADS)
Masoumi, Ali; Paban, Sonia; Weinberg, Erick J.
2018-02-01
Coleman and De Luccia (CDL) showed that gravitational effects can prevent the decay by bubble nucleation of a Minkowski or AdS false vacuum. In their thin-wall approximation this happens whenever the surface tension in the bubble wall exceeds an upper bound proportional to the difference of the square roots of the true and false vacuum energy densities. Recently it was shown that there is another type of thin-wall regime that differs from that of CDL in that the radius of curvature grows substantially as one moves through the wall. Not only does the CDL derivation of the bound fail in this case, but also its very formulation becomes ambiguous because the surface tension is not well defined. We propose a definition of the surface tension and show that it obeys a bound similar in form to that of the CDL case. We then show that both thin-wall bounds are special cases of a more general bound that is satisfied for all bounce solutions with Minkowski or AdS false vacua. We discuss the limit where the parameters of the theory attain critical values and the bound is saturated. The bounce solution then disappears and a static planar domain wall solution appears in its stead. The scalar field potential then is of the form expected in supergravity, but this is only guaranteed along the trajectory in field space traced out by the bounce.
[Food and Nutrition in Public Health: constitution, contours and scientific status].
Bosi, Maria Lúcia Magalhães; Prado, Shirley Donizete
2011-01-01
This paper aims to examine the route on which Food and Nutrition in Public Health was build in the Brazilian context, from its fields of origin, identifying tensions and convergences, seeking to demarcate its boundaries and to characterize its status within the scientific field. We seek to evince the existence of a movement marked by the fruitful encounter between the field of "Public Health" and a portion of the field of "Food and Nutrition", or more precisely, one of their cores, starring actors oriented by knowledge distinguished from other nuclei in this field. Such phenomena, that we postulate as outcomes of the contact nuclei of knowledge that identify the Public Health with the field of "Food and Nutrition", led to a specific core of distinct knowledge and praxis in this context corresponds to what we call "Food and Nutrition in Public Health". This is a process marked from the outset by tensions between the biological and social paradigms, becoming the one hand, as a major challenge to be faced, and secondly, as a promising way for the approach between different fields of science, both the more practical, such as those targeted to conceptual reflection.
Maximum sustainable xylem sap tensions in Rhododendron and other species.
Crombie, D S; Milburn, J A; Hipkins, M F
1985-01-01
The acoustic technique was used in conjunction with the pressure chamber to determine the tensions causing cavitation of xylem sap in leaves of five woody angiosperms (Acer pseudoplatanus L., Alnus glutinosa L. Gaertn., Eucalyptus globulus Labill., Fraxinus excelsior L. and Rhododendron ponticum L.) and three species of herbs (Lycopersicum esculentum Mill., Plantago major L. and Ricinus communis L.). The results showed leaves of most species to suffer considerably from cavitation at sap tensions of 1.6-3 MPa. Two of the herbs, Lycopersicum and Ricinus, cavitated extensively at sap tensions below 1 MPa. Additional evidence is presented that clicks, detected by acoustic amplification, are caused by cavitation of sap in the xylem conduits. A rapid method is suggested for the determination of sap tensions in cavitating leaves and which is suitable for surveys of the critical sap tension in a large number of species.
McDonald, Ruth; Furtado, Vivek; Vollm, Birgit
2016-09-01
This paper discusses changes occurring in the field of English forensic psychiatry which appear to be linked to feelings of discomfort amongst medical professionals who manage care in such settings. These changes are neither the result of a sudden 'shock' to the system, nor small improvisations at the margins, but instead appear to reflect a growing perception amongst psychiatrists of accepted field practice as inadequate for some types of patients. To understand how feelings and emotions are implicated in these changes we draw on and develop the work of Pierre Bourdieu to suggest that changes must be seen in the context of field tensions, which have implications for habitus. However, we do not view feelings of discomfort merely as a response to these tensions. Instead we suggest a more dynamic process. The habitus plays a key role in structuring what people pay attention to, how they perceive it and therefore, whether they experience particular feelings in the first place. Copyright © 2016 Elsevier Ltd. All rights reserved.
What Is Kinesiology? Historical and Philosophical Insights
ERIC Educational Resources Information Center
Twietmeyer, Gregg
2012-01-01
Twenty years ago Karl Newell suggested in "Quest" that the proper name for the field was "kinesiology" and that its proper subject was "physical activity." Yet, despite his success, for many the purpose of the field remains enigmatic. This has led to a lack of clarity in programs, as well as tensions between scientists and humanists in the field.…
Pluralizing Methodologies in the Field of LD: From "What Works" to What Matters
ERIC Educational Resources Information Center
Ferri, Beth A.; Gallagher, Deborah; Connor, David J.
2011-01-01
The field of learning disabilities (LD) has a complex and complicated history. Tensions over definitions, eligibility criteria, service delivery models, and best practices, as well as epistemological debates, have been a part of that history from its inception. Given our collective struggles, as well as the current realities facing the field,…
NASA Astrophysics Data System (ADS)
Lewis, Ray A.; Modanese, Giovanni
Vibrating media offer an important testing ground for reconciling conflicts between General Relativity, Quantum Mechanics and other branches of physics. For sources like a Weber bar, the standard covariant formalism for elastic bodies can be applied. The vibrating string, however, is a source of gravitational waves which requires novel computational techniques, based on the explicit construction of a conserved and renormalized energy-momentum tensor. Renormalization (in a classical sense) is necessary to take into account the effect of external constraints, which affect the emission considerably. Our computation also relaxes usual simplifying assumptions like far-field approximation, spherical or plane wave symmetry, TT gauge and absence of internal interference. In a further step towards unification, the method is then adapted to give the radiation field of a transversal Alfven wave in a rarefied astrophysical plasma, where the tension is produced by an external static magnetic field.
NASA Astrophysics Data System (ADS)
Myers, C. E.; Yamada, M.; Belova, E.; Ji, H.; Yoo, J.; Fox, W.; Jara-Almonte, J.; Gao, L.
2014-10-01
Loss-of-equilibrium mechanisms such as the ideal torus instability [Kliem & Török, Phys. Rev. Lett. 96, 255002 (2006)] are predicted to drive arched flux ropes in the solar corona to erupt. In recent line-tied flux rope experiments conducted in the Magnetic Reconnection Experiment (MRX), however, we find that quasi-statically driven flux ropes remain confined well beyond the predicted torus instability threshold. In order to understand this behavior, in situ measurements from a 300 channel 2D magnetic probe array are used to comprehensively analyze the force balance between the external (vacuum) and internal (plasma-generated) magnetic fields. We find that the line-tied tension force--a force that is not included in the basic torus instability theory--plays a major role in preventing eruptions. The dependence of this tension force on various vacuum field and flux rope parameters will be discussed. This research is supported by DoE Contract Number DE-AC02-09CH11466 and by the NSF/DoE Center for Magnetic Self-Organization (CMSO).
Breaking through "The Dominion of Facts": Sarah Josepha Hale's Instructive Legacy.
ERIC Educational Resources Information Center
Henning, Martha L.
The 18th and 19th centuries saw a real tension between inductive and deductive methods of reason. Spokesperson for her era through her association with the popular "Godey's Ladies' Book," Sarah Josepha Hale addressed this tension in 1858, citing an article by Thomas Henry Buckle ascribing the method of deduction to women and that of induction to…
Kelly, Terri-Ann N; Roach, Brendan L; Weidner, Zachary D; Mackenzie-Smith, Charles R; O'Connell, Grace D; Lima, Eric G; Stoker, Aaron M; Cook, James L; Ateshian, Gerard A; Hung, Clark T
2013-07-26
The tensile modulus of articular cartilage is much larger than its compressive modulus. This tension-compression nonlinearity enhances interstitial fluid pressurization and decreases the frictional coefficient. The current set of studies examines the tensile and compressive properties of cylindrical chondrocyte-seeded agarose constructs over different developmental stages through a novel method that combines osmotic loading, video microscopy, and uniaxial unconfined compression testing. This method was previously used to examine tension-compression nonlinearity in native cartilage. Engineered cartilage, cultured under free-swelling (FS) or dynamically loaded (DL) conditions, was tested in unconfined compression in hypertonic and hypotonic salt solutions. The apparent equilibrium modulus decreased with increasing salt concentration, indicating that increasing the bath solution osmolarity shielded the fixed charges within the tissue, shifting the measured moduli along the tension-compression curve and revealing the intrinsic properties of the tissue. With this method, we were able to measure the tensile (401±83kPa for FS and 678±473kPa for DL) and compressive (161±33kPa for FS and 348±203kPa for DL) moduli of the same engineered cartilage specimens. These moduli are comparable to values obtained from traditional methods, validating this technique for measuring the tensile and compressive properties of hydrogel-based constructs. This study shows that engineered cartilage exhibits tension-compression nonlinearity reminiscent of the native tissue, and that dynamic deformational loading can yield significantly higher tensile properties. Copyright © 2013 Elsevier Ltd. All rights reserved.
Standard Test Methods for Textile Composites
NASA Technical Reports Server (NTRS)
Masters, John E.; Portanova, Marc A.
1996-01-01
Standard testing methods for composite laminates reinforced with continuous networks of braided, woven, or stitched fibers have been evaluated. The microstructure of these textile' composite materials differs significantly from that of tape laminates. Consequently, specimen dimensions and loading methods developed for tape type composites may not be applicable to textile composites. To this end, a series of evaluations were made comparing testing practices currently used in the composite industry. Information was gathered from a variety of sources and analyzed to establish a series of recommended test methods for textile composites. The current practices established for laminated composite materials by ASTM and the MIL-HDBK-17 Committee were considered. This document provides recommended test methods for determining both in-plane and out-of-plane properties. Specifically, test methods are suggested for: unnotched tension and compression; open and filled hole tension; open hole compression; bolt bearing; and interlaminar tension. A detailed description of the material architectures evaluated is also provided, as is a recommended instrumentation practice.
Stress and tension-type headache mechanisms.
Cathcart, Stuart; Winefield, Anthony H; Lushington, Kurt; Rolan, Paul
2010-10-01
Stress is widely demonstrated as a contributing factor in tension-type headache (TTH). The mechanisms underlying this remain unclear at present. Recent research indicates the importance of central pain processes in tension-type headache (TTH) pathophysiology. Concurrently, research with animals and healthy humans has begun to elucidate the relationship between stress and pain processing in the central nervous system, including central pain processes putatively dysfunctional in TTH. Combined, these two fields of research present new insights and hypotheses into possible mechanisms by which stress may contribute to TTH. To date, however, there has been no comprehensive review of this literature. The present paper provides such a review, which may be valuable in facilitating a broader understanding of the central mechanisms by which stress may contribute to TTH.
Containerless Measurement of Thermophysical Properties of Ti-Zr-Ni Alloys
NASA Technical Reports Server (NTRS)
Hyers, Robert; Bradshaw, Richard C.; Rogers, Jan C.; Rathz, Thomas J.; Lee, Geun W.; Gangopadhyay, Anup K.; Kelton, Kenneth F.
2004-01-01
The surface tension, viscosity, density, and thermal expansion of Ti-Zr-Ni alloys were measured for a number of compositions by electrostatic levitation methods. Containerless methods greatly reduce heterogeneous nucleation, increasing access to the undercooled liquid regime at finite cooling rates. The density and thermal expansion are measured optically, while the surface tension and viscosity are measured by the oscillating drop method. The measured alloys include compositions which form a metastable quasicrystal phase from the undercooled liquid, and alloys close to the composition of several multi-component bulk metallic glass-forming alloys. Measurements of surface tension show behavior typical of transition metals at high temperature, but a sudden decrease in the deeply undercooled liquid for alloys near the quasicrystal-forming composition range, but not for compositions which form the solid-solution phase first.
Biomechanical comparison of fixation methods in transverse patella fractures.
Scilaris, T A; Grantham, J L; Prayson, M J; Marshall, M P; Hamilton, J J; Williams, J L
1998-01-01
To compare monofilament wire versus braided cable for stabilizing transverse patella fractures using the modified AO tension band technique. A randomized blocked (paired) study comparing two fixation methods. Statistical analysis was performed using a nested repeated measures analysis, followed by Bonferroni post hoc testing. Seven paired embalmed knees (mean age 71.8 years, SD 14.6 years) were dissected, and transverse fractures were simulated. The knees were reduced and randomly fixed by either two parallel 0.062-inch Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel monofilament wire tension loop or two Kirschner wires with a 1.0-millimeter-diameter 316L stainless steel braided cable tension loop. Knees were tested by applying a cyclic load through the suprapatellar tendon between twenty and 300 newtons for thirty cycles. The maximum fracture displacement increased with each cycle of loading for both the braided cable and monofilament wire tension loop configurations (p = 0.0001). The average peak displacement at the thirtieth cycle was 2.25 millimeters for monofilament wire and 0.73 millimeters for the cable. When comparing both methods for all cycles, the braided cable allowed less fracture displacement than did the monofilament wire (p = 0.002), and the rate of increase per cycle of maximum fracture displacement was less for the cable than for the wire (p = 0.0001). In transverse, noncomminuted patella fractures, fixation with two Kirschner wires and a 1.0-millimeter braided cable tension loop was superior to the monofilament wire tension loop. Most importantly, the braided cable afforded more predictable results during cyclic loading.
Brady, Mark F.; Bradley, Michael P.; Fleming, Braden C.; Fadale, Paul D.; Hulstyn, Michael J.; Banerjee, Rahul
2007-01-01
Background The initial tension applied to an ACL graft at the time of fixation modulates knee motion and the tibiofemoral compressive loads. Purpose To establish the relationships between initial graft tension, tibiofemoral compressive force, and the neutral tibiofemoral position in the cadaver knee. Study Design Controlled Laboratory Study. Methods The tibiofemoral compressive forces and joint positions were determined in the ACL-intact knee at 0°, 20° and 90° knee flexion. The ACL was excised and reconstructed with a patellar tendon graft using graft tensions of 1, 15, 30, 60 and 90 N applied at 0°, 20° and 90° knee flexion. The compressive forces and neutral positions were compared between initial tension conditions and the ACL-intact knee. Results Increasing initial graft tension increased the tibiofemoral compressive forces. The forces in the medial compartment were 1.8 times those in the lateral compartment. The compressive forces were dependent on the knee angle at which the tension was applied. The greatest compressive forces occurred when the graft was tensioned with the knee in extension. An increase in initial graft tension caused the tibia to rotate externally compared to the ACL-intact knee. Increases in initial graft tension also caused a significant posterior translation of the tibia relative to the femur. Conclusions Different initial graft tension protocols produced predictable changes in the tibiofemoral compressive forces and joint positions. Clinical Relevance The tibiofemoral compressive force and neutral joint position were best replicated with a low graft tension (1–15 N) when using a patellar tendon graft. PMID:17218659
Copy Number Variations of TBK1 in Australian Patients With Primary Open-Angle Glaucoma
AWADALLA, MONA S.; FINGERT, JOHN H.; ROOS, BENJAMIN E.; CHEN, SIMON; HOLMES, RICHARD; GRAHAM, STUART L.; CHEHADE, MARK; GALANOPOLOUS, ANNA; RIDGE, BRONWYN; SOUZEAU, EMMANUELLE; ZHOU, TIGER; SIGGS, OWEN M.; HEWITT, ALEX W.; MACKEY, DAVID A.; BURDON, KATHRYN P.; CRAIG, JAMIE E.
2015-01-01
PURPOSE To investigate the presence of TBK1 copy number variations in a large, well-characterized Australian cohort of patients with glaucoma comprising both normal-tension glaucoma and high-tension glaucoma cases. DESIGN A retrospective cohort study. METHODS DNA samples from patients with normal-tension glaucoma and high-tension glaucoma and unaffected controls were screened for TBK1 copy number variations using real-time quantitative polymerase chain reaction. Samples with additional copies of the TBK1 gene were further tested using custom comparative genomic hybridization arrays. RESULTS Four out of 334 normal-tension glaucoma cases (1.2%) were found to carry TBK1 copy number variations using quantitative polymerase chain reaction. One extra dose of the TBK1 gene (duplication) was detected in 3 normal-tension glaucoma patients, while 2 extra doses of the gene (triplication) were detected in a fourth normal-tension glaucoma patient. The results were further confirmed by custom comparative genomic hybridization arrays. Further, the TBK1 copy number variation segregated with normal-tension glaucoma in the family members of the probands, showing an autosomal dominant pattern of inheritance. No TBK1 copy number variations were detected in 1045 Australian patients with high-tension glaucoma or in 254 unaffected controls. CONCLUSION We report the presence of TBK1 copy number variations in our Australian normal-tension glaucoma cohort, including the first example of more than 1 extra copy of this gene in glaucoma patients (gene triplication). These results confirm TBK1 to be an important cause of normal-tension glaucoma, but do not suggest common involvement in high-tension glaucoma. PMID:25284765
Indirect coupling of phosphate release to de novo tension generation during muscle contraction.
Davis, J S; Rodgers, M E
1995-01-01
A key question in muscle contraction is how tension generation is coupled to the chemistry of the actomyosin ATPase. Biochemical and mechanochemical experiments link tension generation to a change in structure associated with phosphate release. Length-jump and temperature-jump experiments, on the other hand, implicate phase 2slow, a significantly faster, markedly strain-sensitive kinetic process in tension generation. We use a laser temperature jump to probe the kinetics and mechanism of tension generation in skinned rabbit psoas fibers--an appropriate method since both phosphate release and phase 2slow are readily perturbed by temperature. Kinetics characteristic of the structural change associated with phosphate release are observed only when phosphate is added to fibers. When present, it causes a reduction in fiber tension; otherwise, no force is generated when it is perturbed. We therefore exclude this step from tension generation. The kinetics of de novo tension generation by the temperature-jump equivalent of phase 2slow appear unaffected by phosphate binding. We therefore propose that phosphate release is indirectly coupled to de novo tension generation via a steady-state flux through an irreversible step. We conclude that tension generation occurs in the absence of chemical change as the result of an entropy-driven transition between strongly bound crossbridges in the actomyosin-ADP state. The mechanism resembles the operation of a clock, with phosphate release providing the energy to tension the spring, and the irreversible step functions as the escapement mechanism, which is followed in turn by tension generation as the movement of the hands. Images Fig. 6 PMID:7479824
Torsion Tests of Stiffened Circular Cylinders
NASA Technical Reports Server (NTRS)
Moore, R L; Wescoat, C
1944-01-01
The design of curved sheet panels to resist shear involves a consideration of several factors: the buckling resistance of the sheet, the stress at which buckling becomes permanent, and the strength which may be developed beyond the buckling limit by tension-field action. Although some experimental as well as theoretical work has been done on the buckling and tension-field phases of this problem, neither of these types of action appears to be very well understood. The problem is of sufficient importance from the standpoint of aircraft design, it is believed, to warrant further experimental investigation. This report presents the results of the first series of torsion tests of stiffened circular cylinders to be completed in connection with this study at Aluminum Research Laboratories. (author)
Tourdot, Richard W; Ramakrishnan, N; Baumgart, Tobias; Radhakrishnan, Ravi
2015-10-01
We investigate the phenomenon of protein-induced tubulation of lipid bilayer membranes within a continuum framework using Monte Carlo simulations coupled with the Widom insertion technique to compute excess chemical potentials. Tubular morphologies are spontaneously formed when the density and the curvature-field strength of the membrane-bound proteins exceed their respective thresholds and this transition is marked by a sharp drop in the excess chemical potential. We find that the planar to tubular transition can be described by a micellar model and that the corresponding free-energy barrier increases with an increase in the curvature-field strength (i.e., of protein-membrane interactions) and also with an increase in membrane tension.
Tension pneumothorax, is it a really life-threatening condition?
2013-01-01
Background Tension pneumothorax is a life-threatening occurrence that is infrequently the consequence of spontaneous pneumothorax. The aim of this study was to identify the risk factors for the development of tension pneumothorax and its effect on clinical outcomes. Methods We reviewed patients who were admitted with spontaneous pneumothorax between August 1, 2003 and December 31, 2011. Electronic medical records and the radiological findings were reviewed with chest x-ray and high-resolution computed tomography scans that were retrieved from the Picture Archiving Communication System. Results Out of the 370 patients included in this study, tension pneumothorax developed in 60 (16.2%). The bullae were larger in patients with tension pneumothorax than in those without (23.8 ± 16.2 mm vs 16.1 ± 19.1 mm; P = 0.007). In addition, the incidence of tension pneumothorax increased with the lung bulla size. Fibrotic adhesion was more prevalent in the tension pneumothorax group than in that without (P = 0.000). The bullae were large in patients with fibrotic adhesion than in those without adhesion (35.0 ± 22.3 mm vs 10.4 ± 11.5 mm; P = 0.000). On multivariate analysis, the size of bullae (odds ratio (OR) = 1.03, P = 0.001) and fibrotic adhesion (OR = 10.76, P = 0.000) were risk factors of tension pneumothorax. Hospital mortality was 3.3% in the tension pneumothorax group and it was not significantly different from those patients without tension pneunothorax (P = 0.252). Conclusions Tension pneumothorax is not uncommon, but clinically fatal tension pneumothorax is extremely rare. The size of the lung bullae and fibrotic adhesion contributes to the development of tension pneumothorax. PMID:24128176
Quality through Holistic Simplicity
ERIC Educational Resources Information Center
Slabbert, Johannes A.
2015-01-01
It seems as though the publication of "The Oxford handbook of philosophy of education" (Siegel, 2009) had evoked considerable discourse in the fields of philosophy and philosophy of education. The tensions and inconsistencies that were exposed between and within these fields prompted the question about the role of philosophy of education…
NASA Astrophysics Data System (ADS)
Bretin, Elie; Danescu, Alexandre; Penuelas, José; Masnou, Simon
2018-07-01
The structure of many multiphase systems is governed by an energy that penalizes the area of interfaces between phases weighted by surface tension coefficients. However, interface evolution laws depend also on interface mobility coefficients. Having in mind some applications where highly contrasted or even degenerate mobilities are involved, for which classical phase field models are inapplicable, we propose a new effective phase field approach to approximate multiphase mean curvature flows with mobilities. The key aspect of our model is to incorporate the mobilities not in the phase field energy (which is conventionally the case) but in the metric which determines the gradient flow. We show the consistency of such an approach by a formal analysis of the sharp interface limit. We also propose an efficient numerical scheme which allows us to illustrate the advantages of the model on various examples, as the wetting of droplets on solid surfaces or the simulation of nanowires growth generated by the so-called vapor-liquid-solid method.
The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams
Shukri, Ahmad Azim; Darain, Kh Mahfuz ud; Jumaat, Mohd Zamin
2015-01-01
Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels. PMID:28793429
The Tension-Stiffening Contribution of NSM CFRP to the Behavior of Strengthened RC Beams.
Shukri, Ahmad Azim; Darain, Kh Mahfuz Ud; Jumaat, Mohd Zamin
2015-07-08
Tension stiffening is a characteristic behavior of reinforced concrete (RC) beams which is directly affected by the bond-slip property of steel bar and concrete interfaces. A beam strengthened with a near-surface mounted (NSM) technique would be even more affected by tension stiffening, as the NSM reinforcement also possess a bond-slip property. Yet assessing how much the tension stiffening of NSM contributes to the behavior of RC beams is difficult due to the fact that bond-slip effects cannot be directly incorporated into a strain-based moment-curvature analysis. As such, the tension stiffening is typically incorporated through various empirical formulations, which can require a great deal of testing and calibrations to be done. In this paper a relatively new method, which can be called the mechanics-based segmental approach, is used to directly simulate the tension stiffening effect of NSM reinforcements on RC beams, without the need for empirical formulations to indirectly simulate the tension stiffening. Analysis shows that the tension stiffening of NSM fiber reinforced polymer (FRP) contributes a significant portion to the stiffness and strength of the strengthened RC beam not only during serviceability, but at all load levels.
Surface tension of Nanofluid-type fuels containing suspended nanomaterials
2012-01-01
The surface tension of ethanol and n-decane based nanofluid fuels containing suspended aluminum (Al), aluminum oxide (Al2O3), and boron (B) nanoparticles as well as dispersible multi-wall carbon nanotubes (MWCNTs) were measured using the pendant drop method by solving the Young-Laplace equation. The effects of nanoparticle concentration, size and the presence of a dispersing agent (surfactant) on surface tension were determined. The results show that surface tension increases both with particle concentration (above a critical concentration) and particle size for all cases. This is because the Van der Waals force between particles at the liquid/gas interface increases surface free energy and thus increases surface tension. At low particle concentrations, however, addition of particles has little influence on surface tension because of the large distance between particles. An exception is when a surfactant was used or when (MWCNTs) was involved. For such cases, the surface tension decreases compared to the pure base fluid. The hypothesis is the polymer groups attached to (MWCNTs) and the surfactant layer between a particle and the surround fluid increases the electrostatic force between particles and thus reduce surface energy and surface tension. PMID:22513039
System and Method for Tensioning a Robotically Actuated Tendon
NASA Technical Reports Server (NTRS)
Reiland, Matthew J. (Inventor); Diftler, Myron A. (Inventor)
2013-01-01
A tendon tensioning system includes a tendon having a proximal end and a distal end, an actuator, and a motor controller. The actuator may include a drive screw and a motor, and may be coupled with the proximal end of the tendon and configured to apply a tension through the tendon in response to an electrical current. The motor controller may be electrically coupled with the actuator, and configured to provide an electrical current having a first amplitude to the actuator until a stall tension is achieved through the tendon; provide a pulse current to the actuator following the achievement of the stall tension, where the amplitude of the pulse current is greater than the first amplitude, and return the motor to a steady state holding current following the conclusion of the pulse current.
Method for Predicting and Optimizing System Parameters for Electrospinning System
NASA Technical Reports Server (NTRS)
Wincheski, Russell A. (Inventor)
2011-01-01
An electrospinning system using a spinneret and a counter electrode is first operated for a fixed amount of time at known system and operational parameters to generate a fiber mat having a measured fiber mat width associated therewith. Next, acceleration of the fiberizable material at the spinneret is modeled to determine values of mass, drag, and surface tension associated with the fiberizable material at the spinneret output. The model is then applied in an inversion process to generate predicted values of an electric charge at the spinneret output and an electric field between the spinneret and electrode required to fabricate a selected fiber mat design. The electric charge and electric field are indicative of design values for system and operational parameters needed to fabricate the selected fiber mat design.
Strengths of balloon films with flaws and repairs
NASA Technical Reports Server (NTRS)
Portanova, M. A.
1989-01-01
The effects of manufacture flaws and repairs in high altitude scientific balloons was examined. A right circular cylinder was used to induce a biaxial tension-tension stress field in the polyethlene film used to manufacture these balloons. A preliminary investigation of the effect that cylinder geometry has on stress rate as a function of inflation rate was conducted. The ultimate goal was to rank, by order of degrading effects, the flaws and repairs commonly found in current high altitude balloons.
Digital pressure transducer for use at high temperatures
Karplus, Henry H. B.
1981-01-01
A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.
Digital pressure transducer for use at high temperatures
Karplus, H.H.B.
A digital pressure sensor for measuring fluid pressures at relatively high temperatures includes an electrically conducting fiber coupled to the fluid by a force disc that causes tension in the fiber to be a function of fluid pressure. The tension causes changes in the mechanical resonant frequency of the fiber, which is caused to vibrate in a magnetic field to produce an electrical signal from a positive-feedback amplifier at the resonant frequency. A count of this frequency provides a measure of the fluid pressure.
Tension fracture of laminates for transport fuselage. Part 2: Large notches
NASA Technical Reports Server (NTRS)
Walker, Tom H.; Ilcewicz, Larry B.; Polland, D. R.; Poe, C. C., Jr.
1993-01-01
Tests were conducted on over 200 center-crack specimens to evaluate: (a) the tension-fracture performance of candidate materials and laminates for commercial fuselage applications; and (b) the accuracy of several failure criteria in predicting response. Crack lengths of up to 12 inches were considered. Other variables included fiber/matrix combination, layup, lamination manufacturing process, and intraply hybridization. Laminates fabricated using the automated tow-placement process provided significantly higher tension-fracture strengths than nominally identical tape laminates. This confirmed earlier findings for other layups, and possibly relates to a reduced stress concentration resulting from a larger scale of repeatable material inhomogeneity in the tow-placed laminates. Changes in material and layup result in a trade-off between small-notch and large-notch strengths. Toughened resins and 0 deg-dominate layups result in higher small-notch strengths but lower large-notch strengths than brittle resins, 90 deg and 45 deg dominated layups, and intraply S2-glass hybrid material forms. Test results indicate that strength-prediction methods that allow for a reduced order singularity of the crack-tip stress field are more successful at predicting failure over a range of notch sizes than those relying on the classical square-root singularity. The order of singularity required to accurately predict large-notch strength from small-notch data was affected by both material and layup. Measured crack-tip strain distributions were generally higher than those predicted using classical methods. Traditional methods of correcting for finite specimen width were found to be lacking, confirming earlier findings with other specimen geometries. Fracture tests of two stiffened panels, identical except for differing materials, with severed central stiffeners resulted in nearly identical damage progression and failure sequences. Strain-softening laws implemented within finite element models appear attractive to account for load redistribution in configured structure due to damage-induced crack tip softening
... around or behind the eye Diabetes Horner syndrome Myasthenia gravis Stroke Swelling in the eyelid, such as with ... performed include: Slit-lamp examination Tension test for myasthenia gravis Visual field testing
A new method of measurement of tension on a moving magnetic tape
NASA Technical Reports Server (NTRS)
Kurtinaytis, A. K.; Lauzhinskas, Y. S.
1973-01-01
The possibility of no-contact measurement of the tension on a moving magnetic tape, assuming the tape is uniform, is discussed. A scheme for calculation of the natural frequency of transverse vibrations of magnetic tape is shown. Mathematical models are developed to show the relationships of the parameters. The method is applicable to the analysis of accurate tape feed mechanisms design.
NASA Astrophysics Data System (ADS)
Diez, M.; Savov, I. P.; Connor, C.
2010-12-01
Veinlets, veins, sheet or layers of syenite are common structures found in alkaline basalt sills. The mechanism usually invoked to explain their formation are liquid immiscibility, multiple intrusion or crystal fractionation from primitive mafic melt. Syenite veins of few centimeters to sheets of up to 1-2 m thick are ubiquitous in remarkably well-exposed sills of the San Rafael subvolcanic field in the Colorado Plateau, Utah. In some of these exposures we have found an intriguing configuration in which the main body of the alkaline sill is underlain by a lower density sheet of syenite of ~ 1 m thick. The contact is flat and is not a chilled margin, therefore a multiple intrusion scenario with long intervals between injections can be disregarded. This implies that both layers were fluid at the time of magma emplacement. As the more felsic less dense syenite is at the bottom of the sill any mechanism governed exclusively by bouyancy would be problematic. In an attempt to shed light on this apparent riddle we propose the following geological scenario: The sill is built by continuous injections. Magma starts to cool and fractional crystallization operates at this stage to differentiate the alkaline magma into syenite. By the time ~60% of crystallization is attained the system can be described as two-phase flow consisting of pore-syenite melt in hot-creeping matrix. The forces acting to segregate melt into veins or sheets are the gravitational force and surface tension. When surface tension is stronger than the gravitational force, differences in average curvature or surface tension translates into pressure differences that drive melt flow from low to high porosity regions. If the last injections occur at the bottom of the sill a syenite layer may be formed. With the aid of dimensional analysis and two-phase numerical models that account for gravitational compaction and surface tension effects, we explore the conditions that allow for centimeter-scale veins to meter-scale sheets formation in shallow sills. After combining field observations, petrological studies and numerical models of shallow sills in the San Rafael subvolcanic field, we will report the conditions that control magma differentiation in shallow intraplate settings.
The environmental factors as reason for emotional tension
NASA Astrophysics Data System (ADS)
Prisniakova, L.
The information from environment is a reason of activation of an organism, it calls abrupt changings in nervous processes and it offers emotions. One part of emotions organizes and supports activity, others disorganize it. In fields of perception, of making decision, fulfilment of operatings, of learning the emotional excitation raises the level of carrying-out more easy problems and reduces of more difficult one. The report are presented the outcomes of quantitative determination of a level of emotional tension on successful activity. The inverse of the sign of influencing on efficiency of activity of the man is detected. The action of the emotional tension on efficiency of professional work was demonstrated to have similarly to influencing of motivation according to the law Yerkes -Dodson. The report introduces a mathematical model of connection of successful activity and motivations or the emotional tension. Introduced in the report the outcomes can serve the theoretical idealized basis of the quantitative characteristics of an estimation of activity of astronauts in conditions of the emotional factors at a phase of selection
Estimating macroporosity in a forest watershed by use of a tension infiltrometer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Watson, K.W.; Luxmoore, R.J.
The ability to obtain sufficient field hydrologic data at reasonable cost can be an important limiting factor in applying transport models. A procedure is described for using ponded-flow- and tension-infiltration measurements to calculate transport parameters in a forest watershed. Thirty infiltration measurements were taken under ponded-flow conditions and at 3, 6, and 15 cm (H/sub 2/O) tension. It was assumed from capillarity theory that pores > 0.1-, 0.05-, and 0.02-cm diam, respectively, were excluded from the transport process during the tension infiltration measurements. Under ponded flow, 73% of the flux was conducted through macropores (i.e., pores > 0.1-cm diam.). Anmore » estimated 96% of the water flux was transmitted through only 0.32% of the soil volume. In general the larger the total water flux the larger the macropore contribution to total water flux. The Shapiro-Wilk normality test indicated that water flux through both matrix pore space and macropores was log-normally distributed in space.« less
NASA Astrophysics Data System (ADS)
Graneau, P.
1984-03-01
The Ampere electrodynamics of metallic conductors and experiments supporting it predict that the interaction of a current-carrying wire with its own magnetic field should produce longitudinal mechanical forces in the conductor, existing in addition to the transverse Lorentz forces. The longitudinal forces should stretch the conductor and have been referred to as Ampere tension. In 1964 it was discovered that a current pulse would break a straight copper wire into many fragments without visible melting. A metallurgical examination of the pieces confirmed that the metal parted in the solid state. The same observation has now been made with aluminum wires. In the latest experiments the wire was bent into a semicircle and arc-connected to a capacitor discharge circuit. The arc connections ruled out rupture by Lorentz hoop tension and indicated the longitudinal forces may also arise in circular magnet windings. Explanations of wire fragmentation by thermal shock, longitudinal stress waves, Lorentz pinch-off, bending stresses, and material defects have been considered and found unconvincing. Computed Ampere tensions would be sufficient to fracture hot wires. The Ampere tension would double the hoop tension normally expected in dipole magnets. This should be borne in mind in the design of large dipole magnets contemplated for MHD power generators and railgun accelerators.
van der Waals model for the surface tension of liquid 4He near the λ point
NASA Astrophysics Data System (ADS)
Tavan, Paul; Widom, B.
1983-01-01
We develop a phenomenological model of the 4He liquid-vapor interface. With it we calculate the surface tension of liquid helium near the λ point and compare with the experimental measurements by Magerlein and Sanders. The model is a form of the van der Waals surface-tension theory, extended to apply to a phase equilibrium in which the simultaneous variation of two order parameters-here the superfluid order parameter and the total density-is essential. The properties of the model are derived analytically above the λ point and numerically below it. Just below the λ point the superfluid order parameter is found to approach its bulk-superfluid-phase value very slowly with distance on the liquid side of the interface (the characteristic distance being the superfluid coherence length), and to vanish rapidly with distance on the vapor side, while the total density approaches its bulk-phase values rapidly and nearly symmetrically on the two sides. Below the λ point the surface tension has a |ɛ|32 singularity (ɛ~T-Tλ) arising from the temperature dependence of the spatially varying superfluid order parameter. This is the mean-field form of the more general |ɛ|μ singularity predicted by Sobyanin and by Hohenberg, in which μ (which is in reality close to 1.35 at the λ point of helium) is the exponent with which the interfacial tension between two critical phases vanishes. Above the λ point the surface tension in this model is analytic in ɛ. A singular term |ɛ|μ may in reality be present in the surface tension above as well as below the λ point, although there should still be a pronounced asymmetry. The variation with temperature of the model surface tension is overall much like that in experiment.
Loads imposed on intermediate frames of stiffened shells
NASA Technical Reports Server (NTRS)
Kuhn, Paul
1939-01-01
The loads imposed on intermediate frames by the curvature of the longitudinal and by the diagonal-tension effects are treated. A new empirical method is proposed for analyzing diagonal-tension effects. The basic formulas of the pure diagonal-tension theory are used, and the part of the total shear S carried by diagonal tension is assumed to be given the expression S (sub DT) = S (1-tau sub o/tau)(sup n) where tau (sub o) is the critical shear stress, tau the total (nominal shear stress), and n = 3 - sigma/tau where sigma is the stress in the intermediate frame. Numerical examples illustrate all cases treated.
Study of the stretching force of the needle‧s thread in the work with woollen textiles
NASA Astrophysics Data System (ADS)
Andonova, Snezhina; Rahnev, Ivelin
2017-10-01
The presented paper deals with examining the thread tension force while working with woolen textile materials. The thread’s tension force is a main characteristic of a quality stitch. Its analysis and definition is characterized by the creation of a computer-integrated measuring system to determine the thread’s tension force. A statistical method (double-factor disperse analysis) is used to analyze and evaluate the fact how the factors: • F1 - surface mass of processed woolen textile materials, • F2 -the number of layers on the thread‧s influence the deviation from the maximal value of the thread’s tension force.
Electrohydrodynamic assisted droplet alignment for lens fabrication by droplet evaporation
NASA Astrophysics Data System (ADS)
Wang, Guangxu; Deng, Jia; Guo, Xing
2018-04-01
Lens fabrication by droplet evaporation has attracted a lot of attention since the fabrication approach is simple and moldless. Droplet position accuracy is a critical parameter in this approach, and thus it is of great importance to use accurate methods to realize the droplet position alignment. In this paper, we propose an electrohydrodynamic (EHD) assisted droplet alignment method. An electrostatic force was induced at the interface between materials to overcome the surface tension and gravity. The deviation of droplet position from the center region was eliminated and alignment was successfully realized. We demonstrated the capability of the proposed method theoretically and experimentally. First, we built a simulation model coupled with the three-phase flow formulations and the EHD equations to study the three-phase flowing process in an electric field. Results show that it is the uneven electric field distribution that leads to the relative movement of the droplet. Then, we conducted experiments to verify the method. Experimental results are consistent with the numerical simulation results. Moreover, we successfully fabricated a crater lens after applying the proposed method. A light emitting diode module packaging with the fabricated crater lens shows a significant light intensity distribution adjustment compared with a spherical cap lens.
Use of fiber reinforced polymer composite cable for post-tensioning application : [summary].
DOT National Transportation Integrated Search
2015-05-01
Post-tensioning is a method frequently used in construction of segmental bridges, continuous : I-girder bridges, and piers. It involves using tendons, which are multiple strands, usually : steel, installed through voids formed by ducts either inside ...
Physical effects of magnetic fields on the Kelvin-Helmholtz instability in a free shear layer
NASA Astrophysics Data System (ADS)
Liu, Y.; Chen, Z. H.; Zhang, H. H.; Lin, Z. Y.
2018-04-01
The Kelvin-Helmholtz instability of a parallel shear flow with a hyperbolic-tangent velocity profile has been simulated numerically at a high Reynolds number. The fluid is perfectly conducting with low viscosity, and the strength of the applied magnetic field varies from weak to strong. We found that the magnetic field parallel to the mainstream direction has a stabilizing effect on the shear flow. The magnetic field mainly stabilizes short-wave perturbations. Small viscosity and/or slight compressibility could introduce some instability even in the presence of a strong magnetic field in a certain circumstance. The suppressing effect of the magnetic field on the instability is accomplished by two parts: the separating effect of the transverse magnetic pressure and the anti-bending effect of magnetic tension pointing to the center of curvature. The former shows prevailingly stronger effect on the fluid interface than the latter does, which is different from the conventional opinion that magnetic tension dominates. Essentially it is mainly the Maxwell stress that weakens and balances the momentum transport conducted by the Reynolds stress, reducing the mixing degree of the upper fluid and the lower fluid.
Kean, Thomas J.; Dennis, James E.
2015-01-01
Background Current tissue engineering methods are insufficient for total joint resurfacing, and chondrocytes undergo de-differentiation when expanded on tissue culture plastic. De-differentiated chondrocytes show poor re-differentiation in culture, giving reduced glycosaminoglycan (GAG) and collagen matrix accumulation. To address this, porcine synoviocyte-derived extracellular matrix and low (5%) oxygen tension were assessed for their ability to enhance human articular chondrocyte expansion and maintain re-differentiation potential. Methods Porcine synoviocyte matrices were devitalized using 3 non-detergent methods. These devitalized synoviocyte matrices were compared against tissue culture plastic for their ability to support human chondrocyte expansion. Expansion was further compared at both low (5%), and atmospheric (20%) oxygen tension on all surfaces. Expanded cells then underwent chondrogenic re-differentiation in aggregate culture at both low and atmospheric oxygen tension. Aggregates were assessed for their GAG and collagen content both biochemically and histologically. Results Human chondrocytes expanded twice as fast on devitalized synoviocyte matrix vs. tissue culture plastic, and cells retained their re-differentiation capacity for twice the number of population doublings. There was no significant difference in growth rate between low and atmospheric oxygen tension. There was significantly less collagen type I, collagen type II, aggrecan and more MMP13 expression in cells expanded on synoviocyte matrix vs. tissue culture plastic. There were also significant effects due to oxygen tension on gene expression, wherein there was greater collagen type I, collagen type II, SOX9 and less MMP13 expression on tissue culture plastic compared to synoviocyte matrix. There was a significant increase in GAG, but not collagen, accumulation in chondrocyte aggregates re-differentiated at low oxygen tension over that achieved in atmospheric oxygen conditions. Conclusions Synoviocyte-derived matrix supports enhanced expansion of human chondrocytes such that the chondrocytes are maintained in a state from which they can re-differentiate into a cartilage phenotype after significantly more population doublings. Also, low oxygen tension supports GAG, but not collagen, accumulation. These findings are a step towards the production of a more functional, tissue engineered cartilage. PMID:26075742
Mixed-venous oxygen tension by nitrogen rebreathing - A critical, theoretical analysis.
NASA Technical Reports Server (NTRS)
Kelman, G. R.
1972-01-01
There is dispute about the validity of the nitrogen rebreathing technique for determination of mixed-venous oxygen tension. This theoretical analysis examines the circumstances under which the technique is likely to be applicable. When the plateau method is used the probable error in mixed-venous oxygen tension is plus or minus 2.5 mm Hg at rest, and of the order of plus or minus 1 mm Hg during exercise. Provided, that the rebreathing bag size is reasonably chosen, Denison's (1967) extrapolation technique gives results at least as accurate as those obtained by the plateau method. At rest, however, extrapolation should be to 30 rather than to 20 sec.
Place-Based Care Ethics: A Field Philosophy Pedagogy
ERIC Educational Resources Information Center
Goralnik, Lissy; Dobson, Tracy; Nelson, Michael Paul
2014-01-01
In this paper we argue for the need for a thoughtful and intentional pedagogy in experiential environmental learning that educates for empathetic relationships with humans, nonhuman others, and natural systems, or field philosophy. After discussing the tensions in various ecofeminist perspectives, we highlight relevant ecofeminist ideas and thread…
The method of lines in analyzing solids containing cracks
NASA Technical Reports Server (NTRS)
Gyekenyesi, John P.
1990-01-01
A semi-numerical method is reviewed for solving a set of coupled partial differential equations subject to mixed and possibly coupled boundary conditions. The line method of analysis is applied to the Navier-Cauchy equations of elastic and elastoplastic equilibrium to calculate the displacement distributions in various, simple geometry bodies containing cracks. The application of this method to the appropriate field equations leads to coupled sets of simultaneous ordinary differential equations whose solutions are obtained along sets of lines in a discretized region. When decoupling of the equations and their boundary conditions is not possible, the use of a successive approximation procedure permits the analytical solution of the resulting ordinary differential equations. The use of this method is illustrated by reviewing and presenting selected solutions of mixed boundary value problems in three dimensional fracture mechanics. These solutions are of great importance in fracture toughness testing, where accurate stress and displacement distributions are required for the calculation of certain fracture parameters. Computations obtained for typical flawed specimens include that for elastic as well as elastoplastic response. Problems in both Cartesian and cylindrical coordinate systems are included. Results are summarized for a finite geometry rectangular bar with a central through-the-thickness or rectangular surface crack under remote uniaxial tension. In addition, stress and displacement distributions are reviewed for finite circular bars with embedded penny-shaped cracks, and rods with external annular or ring cracks under opening mode tension. The results obtained show that the method of lines presents a systematic approach to the solution of some three-dimensional mechanics problems with arbitrary boundary conditions. The advantage of this method over other numerical solutions is that good results are obtained even from the use of a relatively coarse grid.
Practical significance and calculation of surface tension of glass, enamels and glazes
NASA Technical Reports Server (NTRS)
Dietzel, A.
1987-01-01
Surface tension is important in the formation of streaks in the whole procedure of enameling and glazing., in the action of TiO2 as opacifier, in the addition of borax to enamels, or metals to glasses, and in the corrosion of refractories by molten charges. By the use of known methods for measuring surface tension additive constants are found which give correct results within 1% with no discrepancy due to B2O3.
Modeling the surface tension of complex, reactive organic-inorganic mixtures
NASA Astrophysics Data System (ADS)
Schwier, A. N.; Viglione, G. A.; Li, Z.; McNeill, V. Faye
2013-11-01
Atmospheric aerosols can contain thousands of organic compounds which impact aerosol surface tension, affecting aerosol properties such as heterogeneous reactivity, ice nucleation, and cloud droplet formation. We present new experimental data for the surface tension of complex, reactive organic-inorganic aqueous mixtures mimicking tropospheric aerosols. Each solution contained 2-6 organic compounds, including methylglyoxal, glyoxal, formaldehyde, acetaldehyde, oxalic acid, succinic acid, leucine, alanine, glycine, and serine, with and without ammonium sulfate. We test two semi-empirical surface tension models and find that most reactive, complex, aqueous organic mixtures which do not contain salt are well described by a weighted Szyszkowski-Langmuir (S-L) model which was first presented by Henning et al. (2005). Two approaches for modeling the effects of salt were tested: (1) the Tuckermann approach (an extension of the Henning model with an additional explicit salt term), and (2) a new implicit method proposed here which employs experimental surface tension data obtained for each organic species in the presence of salt used with the Henning model. We recommend the use of method (2) for surface tension modeling of aerosol systems because the Henning model (using data obtained from organic-inorganic systems) and Tuckermann approach provide similar modeling results and goodness-of-fit (χ2) values, yet the Henning model is a simpler and more physical approach to modeling the effects of salt, requiring less empirically determined parameters.
Analysis of constant tension-induced rupture of lipid membranes using activation energy.
Karal, Mohammad Abu Sayem; Levadnyy, Victor; Yamazaki, Masahito
2016-05-11
The stretching of biomembranes and lipid membranes plays important roles in various physiological and physicochemical phenomena. Here we analyzed the rate constant kp of constant tension-induced rupture of giant unilamellar vesicles (GUVs) as a function of tension σ using their activation energy Ua. To determine the values of kp, we applied constant tension to a GUV membrane using the micropipette aspiration method and observed the rupture of GUVs, and then analyzed these data statistically. First, we investigated the temperature dependence of kp for GUVs of charged lipid membranes composed of negatively charged dioleoylphosphatidylglycerol (DOPG) and electrically neutral dioleoylphosphatidylcholine (DOPC). By analyzing this result, the values of Ua of tension-induced rupture of DOPG/DOPC-GUVs were obtained. Ua decreased with an increase in σ, supporting the classical theory of tension-induced pore formation. The analysis of the relationship between Ua and σ using the theory on the electrostatic interaction effects on the tension-induced rupture of GUVs provided the equation of Ua including electrostatic interaction effects, which well fits the experimental data of the tension dependence of Ua. A constant which does not depend on tension, U0, was also found to contribute significantly to Ua. The Arrhenius equations for kp using the equation of Ua and the parameters determined by the above analysis fit well to the experimental data of the tension dependence of kp for DOPG/DOPC-GUVs as well as for DOPC-GUVs. On the basis of these results, we discussed the possible elementary processes underlying the tension-induced rupture of GUVs of lipid membranes. These results indicate that the Arrhenius equation using the experimentally determined Ua is useful in the analysis of tension-induced rupture of GUVs.
Evaluation of long-term prestress losses in post-tensioned box-girder bridges.
DOT National Transportation Integrated Search
2011-03-01
Most of the recent highway bridges built in California have post-tensioned, cast-in-place, concrete box-girder superstructures rigidly connected to bridge columns. However, methods provided in the current (2007 and 2010) AASHTO LRFD Bridge Design Spe...
On-Line Laser Measurements of the Tension in Thin Fibres
NASA Astrophysics Data System (ADS)
Pearson, Matthew R. T.; Wiederick, H. D.; Sherritt, S.
1996-05-01
We have developed a non-contact method for measuring the tension in a moving nylon fibre. Experiments have been conducted primarily with thin, nylon fibres used in the industrial production of airbags, for which non-destructive tension measurements are critical for ensuring safety standards. The system relies on the standing waves produced as the nylon passes rapidly over a set of two rollers; a laser/photo- diode combination is used to monitor the vibrations between them. A Fourier analysis of the signal generated by a scan of 0.2 sec yields the fundamental frequency of vibration of the fibre. The tension in the fibre is proportional to the square of this fundamental frequency. The present system provides accurate, non-contact measurements of the tension in a moving fibre, and shows promise for industrial application.
Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment
Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C
2013-06-04
The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.
Human movement training with a cable driven ARm EXoskeleton (CAREX).
Mao, Ying; Jin, Xin; Gera Dutta, Geetanjali; Scholz, John P; Agrawal, Sunil K
2015-01-01
In recent years, the authors have proposed lightweight exoskeleton designs for upper arm rehabilitation using multi-stage cable-driven parallel mechanism. Previously, the authors have demonstrated via experiments that it is possible to apply "assist-as-needed" forces in all directions at the end-effector with such an exoskeleton acting on an anthropomorphic machine arm. A human-exoskeleton interface was also presented to show the feasibility of CAREX on human subjects. The goals of this paper are to 1) further address issues when CAREX is mounted on human subjects, e.g., generation of continuous cable tension trajectories 2) demonstrate the feasibility and effectiveness of CAREX on movement training of healthy human subjects and a stroke patient. In this research, CAREX is rigidly attached to an arm orthosis worn by human subjects. The cable routing points are optimized to achieve a relatively large "tensioned" static workspace. A new cable tension planner based on quadratic programming is used to generate continuous cable tension trajectory for smooth motion. Experiments were carried out on eight healthy subjects. The experimental results show that CAREX can help the subjects move closer to a prescribed circular path using the force fields generated by the exoskeleton. The subjects also adapt to the path shortly after training. CAREX was also evaluated on a stroke patient to test the feasibility of its use on patients with neural impairment. The results show that the patient was able to move closer to a prescribed straight line path with the "assist-as-needed" force field.
NASA Technical Reports Server (NTRS)
Mattox, D. M.
1981-01-01
Surface tension gradient in melt forces gas bubbles to surface, increasing glass strength and transparency. Conventional chemical and buoyant fining are extremely slow in viscous glasses, but tension gradient method moves 250 um bubbles as rapidly as 30 um/s. Heat required for high temperature part of melt is furnished by stationary electrical or natural-gas heater; induction and laser heating are also possible. Method has many applications in industry processes.
Surface tension and long range corrections of cylindrical interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bourasseau, E.; Malfreyt, P.; Ghoufi, A., E-mail: aziz.ghoufi@univ-rennes1.fr
2015-12-21
The calculation of the surface tension of curved interfaces has been deeply investigated from molecular simulation during this last past decade. Recently, the thermodynamic Test-Area (TA) approach has been extended to the calculation of surface tension of curved interfaces. In the case of the cylindrical vapour-liquid interfaces of water and Lennard-Jones fluids, it was shown that the surface tension was independent of the curvature of the interface. In addition, the surface tension of the cylindrical interface is higher than that of the planar interface. Molecular simulations of cylindrical interfaces have been so far performed (i) by using a shifted potential,more » (ii) by means of large cutoff without periodic boundary conditions, or (iii) by ignoring the long range corrections to the surface tension due to the difficulty to estimate them. Indeed, unlike the planar interfaces there are no available operational expressions to consider the tail corrections to the surface tension of cylindrical interfaces. We propose here to develop the long range corrections of the surface tension for cylindrical interfaces by using the non-exponential TA (TA2) method. We also extend the formulation of the Mecke-Winkelmann corrections initially developed for planar surfaces to cylindrical interfaces. We complete this study by the calculation of the surface tension of cylindrical surfaces of liquid tin and copper using the embedded atom model potentials.« less
Constitutive Theory Developed for Monolithic Ceramic Materials
NASA Technical Reports Server (NTRS)
Janosik, Lesley A.
1998-01-01
With the increasing use of advanced ceramic materials in high-temperature structural applications such as advanced heat engine components, the need arises to accurately predict thermomechanical behavior that is inherently time-dependent and that is hereditary in the sense that the current behavior depends not only on current conditions but also on the material's thermomechanical history. Most current analytical life prediction methods for both subcritical crack growth and creep models use elastic stress fields to predict the time-dependent reliability response of components subjected to elevated service temperatures. Inelastic response at high temperatures has been well documented in the materials science literature for these material systems, but this issue has been ignored by the engineering design community. From a design engineer's perspective, it is imperative to emphasize that accurate predictions of time-dependent reliability demand accurate stress field information. Ceramic materials exhibit different time-dependent behavior in tension and compression. Thus, inelastic deformation models for ceramics must be constructed in a fashion that admits both sensitivity to hydrostatic stress and differing behavior in tension and compression. A number of constitutive theories for materials that exhibit sensitivity to the hydrostatic component of stress have been proposed that characterize deformation using time-independent classical plasticity as a foundation. However, none of these theories allow different behavior in tension and compression. In addition, these theories are somewhat lacking in that they are unable to capture the creep, relaxation, and rate-sensitive phenomena exhibited by ceramic materials at high temperatures. The objective of this effort at the NASA Lewis Research Center has been to formulate a macroscopic continuum theory that captures these time-dependent phenomena. Specifically, the effort has focused on inelastic deformation behavior associated with these service conditions by developing a multiaxial viscoplastic constitutive model that accounts for time-dependent hereditary material deformation (such as creep and stress relaxation) in monolithic structural ceramics. Using continuum principles of engineering mechanics, we derived the complete viscoplastic theory from a scalar dissipative potential function.
Wormholes, emergent gauge fields, and the weak gravity conjecture
Harlow, Daniel
2016-01-20
This paper revisits the question of reconstructing bulk gauge fields as boundary operators in AdS/CFT. In the presence of the ormhole dual to the thermo field double state of two CFTs, the existence of bulk gauge fields is in some tension with the microscopic tensor factorization of the Hilbert space. Here, I explain how this tension can be resolved by splitting the gauge field into charged constituents, and I argue that this leads to a new argument for the "principle of completeness", which states that the charge lattice of a gauge theory coupled to gravity must be fully populated. Imore » also claim that it leads to a new motivation for (and a clarification of) the "weak gravity conjecture", which I interpret as a strengthening of this principle. This setup gives a simple example of a situation where describing low-energy bulk physics in CFT language requires knowledge of high-energy bulk physics. Furthermore, this contradicts to some extent the notion of "effective conformal field theory", but in fact is an expected feature of the resolution of the black hole information problem. An analogous factorization issue exists also for the gravitational field, and I comment on several of its implications for reconstructing black hole interiors and the emergence of spacetime more generally.« less
NASA Technical Reports Server (NTRS)
Hyer, Robert W.; Trapaga, G.; Flemings, M. C.
1999-01-01
The viscosity of a liquid metal was successfully measured for the first time by a containerless method, the oscillating drop technique. This method also provides a means to obtain a precise, non-contact measurement of the surface tension of the droplet. This technique involves exciting the surface of the molten sample and then measuring the resulting oscillations; the natural frequency of the oscillating sample is determined by its surface tension, and the damping of the oscillations by the viscosity. These measurements were performed in TEMPUS, a microgravity electromagnetic levitator (EML), on the Space Shuttle as a part of the First Microgravity Science Laboratory (MSL-1), which flew in April and July 1997 (STS-83 and STS-94). Some results of the surface tension and viscosity measurements are presented for Pd82Si18. Some observations of the fluid dynamic characteristics (dominant flow patterns, turbulent transition, cavitation, etc.) of levitated droplets are presented and discussed together with magnetohydrodynamic calculations, which were performed to justify these findings.
Biomechanical analysis of tension band fixation for olecranon fracture treatment.
Kozin, S H; Berglund, L J; Cooney, W P; Morrey, B F; An, K N
1996-01-01
This study assessed the strength of various tension band fixation methods with wire and cable applied to simulated olecranon fractures to compare stability and potential failure or complications between the two. Transverse olecranon fractures were simulated by osteotomy. The fracture was anatomically reduced, and various tension band fixation techniques were applied with monofilament wire or multifilament cable. With a material testing machine load displacement curves were obtained and statistical relevance determined by analysis of variance. Two loading modes were tested: loading on the posterior surface of olecranon to simulate triceps pull and loading on the anterior olecranon tip to recreate a potential compressive loading on the fragment during the resistive flexion. All fixation methods were more resistant to posterior loading than to an anterior load. Individual comparative analysis for various loading conditions concluded that tension band fixation is more resilient to tensile forces exerted by the triceps than compressive forces on the anterior olecranon tip. Neither wire passage anterior to the K-wires nor the multifilament cable provided statistically significant increased stability.
NASA Astrophysics Data System (ADS)
Tamada, Kazuhiro; Kakiuchi, Toshifumi; Uematsu, Yoshihiko
2017-07-01
Plane bending fatigue tests are conducted to investigate fatigue crack initiation mechanisms in coarse-grained magnesium alloy, AZ31, under the stress ratios R = -1 and 0.1. The initial crystallographic structures are analyzed by an electron backscatter diffraction method. The slip or twin operation during fatigue tests is identified from the line angle analyses based on Euler angles of the grains. Under the stress ratio R = -1, relatively thick tension twin bands are formed in coarse grains. Subsequently, compression twin or secondary pyramidal slip operates within the tension twin band, resulting in the fatigue crack initiation. On the other hand, under R = 0.1 with tension-tension loading cycles, twin bands are formed on the specimen surface, but the angles of those bands do not correspond to tension twins. Misorientation analyses of c-axes in the matrix grain and twin band reveal that double twins are activated. Under R = 0.1, fatigue crack initiates along the double twin boundaries. The different manners of fatigue crack initiation at R = -1 and 0.1 are related to the asymmetricity of twining under tension and compression loadings. The fatigue strengths under different stress ratios cannot be estimated by the modified Goodman diagram due to the effect of stress ratio on crack initiation mechanisms.
NASA Astrophysics Data System (ADS)
Christodoulou, Dimitris M.; Contopoulos, John; Kazanas, Demosthenes
2003-03-01
We obtain the general forms of the axisymmetric stability criteria in a magnetized compressible Couette flow using an energy variational principle, the so-called interchange or Chandrasekhar's method, which we applied successfully in the incompressible case. This formulation accounts for the simultaneous presence of gravity, rotation, a toroidal magnetic field, a weak axial magnetic field, entropy gradients, and density gradients in the initial equilibrium state. The power of the method lies in its simplicity, which allows us to derive extremely compact and physically clear expressions for the relevant stability criteria despite the inclusion of so many physical effects. In the implementation of the method, all the applicable conservation laws are explicitly taken into account during the variations of a quantity with dimensions of energy that we call the ``free-energy function.'' As in the incompressible case, the presence of an axial field invalidates the conservation laws of angular momentum and azimuthal magnetic flux and introduces instead isorotation and axial current conservation along field lines. Our results are therefore markedly different depending on whether an axial magnetic field is present, and they generalize in two simple expressions all previously known, partial stability criteria for the appearance of magnetorotational instability. Furthermore, the coupling between magnetic tension and buoyancy and its influence to the dynamics of nonhomoentropic magnetized flows become quite clear from our results. In the limits of plane-parallel atmospheres and homoentropic flows, our formulation easily recovers the stability criteria for suppression of convective and Parker instabilities, as well as some related special cases studied over 40 years ago by Newcomb and Tserkovnikov via laborious variational techniques.
New Finite Difference Methods Based on IIM for Inextensible Interfaces in Incompressible Flows
Li, Zhilin; Lai, Ming-Chih
2012-01-01
In this paper, new finite difference methods based on the augmented immersed interface method (IIM) are proposed for simulating an inextensible moving interface in an incompressible two-dimensional flow. The mathematical models arise from studying the deformation of red blood cells in mathematical biology. The governing equations are incompressible Stokes or Navier-Stokes equations with an unknown surface tension, which should be determined in such a way that the surface divergence of the velocity is zero along the interface. Thus, the area enclosed by the interface and the total length of the interface should be conserved during the evolution process. Because of the nonlinear and coupling nature of the problem, direct discretization by applying the immersed boundary or immersed interface method yields complex nonlinear systems to be solved. In our new methods, we treat the unknown surface tension as an augmented variable so that the augmented IIM can be applied. Since finding the unknown surface tension is essentially an inverse problem that is sensitive to perturbations, our regularization strategy is to introduce a controlled tangential force along the interface, which leads to a least squares problem. For Stokes equations, the forward solver at one time level involves solving three Poisson equations with an interface. For Navier-Stokes equations, we propose a modified projection method that can enforce the pressure jump condition corresponding directly to the unknown surface tension. Several numerical experiments show good agreement with other results in the literature and reveal some interesting phenomena. PMID:23795308
Warm and cold pasta phase in relativistic mean field theory
NASA Astrophysics Data System (ADS)
Avancini, S. S.; Menezes, D. P.; Alloy, M. D.; Marinelli, J. R.; Moraes, M. M. W.; Providência, C.
2008-07-01
In the present article we investigate the onset of the pasta phase with different parametrizations of the nonlinear Walecka model. At zero temperature two different methods are used, one based on coexistent phases and the other on the Thomas-Fermi approximation. At finite temperature only the coexistence phases method is used. npe matter with fixed proton fractions and in β equilibrium is studied. The pasta phase decreases with the increase of temperature. The internal pasta structure and the beginning of the homogeneous phase vary depending on the proton fraction (or the imposition of β equilibrium), on the method used, and on the chosen parametrization. It is shown that a good parametrization of the surface tension with dependence on the temperature, proton fraction, and geometry is essential to describe correctly large isospin asymmetries and the transition from pasta to homogeneous matter.
NASA Technical Reports Server (NTRS)
Zimmerman, Richard S.; Adams, Donald F.
1989-01-01
Static laminate and tension-tension fatigue tests of IM7/8551-7 composite materials was performed. The Edge Delamination Test (EDT) was utilized to evaluate the temperature and preloading history effect on the critical strain energy release rate. Static and fatigue testing was performed at room temperature and 180 F (82 C). Three preloading schemes were used to precondition fatigue test specimens prior to performing the normal tension-tension fatigue EDT testing. Computer software was written to perform all fatigue testing while monitoring the dynamic modulus to detect the onset of delamination and record the test information for later retrieval and reduction.
Calculations of the surface tensions of liquid metals
NASA Technical Reports Server (NTRS)
Stroud, D. G.
1981-01-01
The understanding of the surface tension of liquid metals and alloys from as close to first principles as possible is discussed. The two ingredients which are combined in these calculations are: the electron theory of metals, and the classical theory of liquids, as worked out within the framework of statistical mechanics. The results are a new theory of surface tensions and surface density profiles from knowledge purely of the bulk properties of the coexisting liquid and vapor phases. It is found that the method works well for the pure liquid metals on which it was tested; work is extended to mixtures of liquid metals, interfaces between immiscible liquid metals, and to the temperature derivative of the surface tension.
Glaucoma Structural and Functional Progression in American and Korean Cohorts
Kostanyan, Tigran; Sung, Kyung Rim; Schuman, Joel S.; Ling, Yun; Lucy, Katie A.; Bilonick, Richard A.; Ishikawa, Hiroshi; Kagemann, Larry; Lee, Jin Y.; Wollstein, Gadi
2016-01-01
Objective To compare the rate of glaucoma structural and functional progression in American and Korean cohorts. Design Retrospective longitudinal study. Participants 313 eyes from 189 glaucoma and glaucoma suspects, followed for an average of 38 months. Methods All subjects were examined semiannually with visual field (VF) testing and spectral-domain optical coherence tomography. All subjects had ≥5 reliable visits. Main Outcome Measurements The rates of change of retinal nerve fiber layer (RNFL) thickness, cup-to-disc (C/D) ratios, and VF mean deviation (MD) were compared between the cohorts. Variables affecting the rate of change for each parameter were determined, including ethnicity, refraction, baseline age and severity, disease subtype (high vs. normal tension glaucoma), clinical diagnosis (glaucoma vs. glaucoma suspect), and the interactions between variables. Results The Korean cohort was predominantly normal tension glaucoma, while the American cohort was high tension glaucoma. Cohorts had similar VF parameters at baseline, but the Korean eyes had significantly thinner mean RNFL and larger cups. Korean glaucoma eyes showed a faster thinning of mean RNFL (mean: −0.71 vs. −0.24μm/year, p<0.01). There was no detectable difference in the rate of change between the glaucoma cohorts for C/D ratios and VF MD and for all parameters in glaucoma suspect eyes. Different combinations of the tested variables significantly impacted the rate of change. Conclusion Ethnicity, baseline severity, disease subtype, and clinical diagnosis should be considered when comparing glaucoma progression studies. PMID:26778345
DOE Office of Scientific and Technical Information (OSTI.GOV)
Taylor, W.M.; Tison, M.; Bahoumina, A.
The tieback of eleven 10 3/4-in., high-pressure risers in Elf Congo`s offshore N`Kossa field used a cold-forge tieback system to create a metal seal. The time-saving tieback method allows for placing the risers in residual tension. The installation work was completed in the fall of 1995. Average time to complete the 10 3/4-in. casing tiebacks, including test and nipple-up and nipple-down times, averaged 52 hr/well. Tiebacks for all three casing strings averaged 90 hr for all surface and subsea operations including BOP test and nipple-up/nipple-down time. Metal sealing of the primary casing annulus has been made practical because the offshoremore » industry has gone toward compact-wellheads and hanging of the completion on a mandrel. Hanging the completion on a mandrel, however, has it own set of considerations. Exact riser length may be difficult to predict before running because the riser must first be locked into the mudline casing hanger and then landed out on the support shoulder in the surface head. Also, a general desire is that riser tieback strings should be in tension after installation. This is not always easy with a passive or dumb hanger and fixed should configuration. Threaded, adjustable mandrel hanger systems exist but can require very close casing string space-out to achieve the desired residual riser tension. The paper describes the objectives, forged sleeves, running sequence, cold forging, and the prototype test.« less
Properties of Organic Liquids when Simulated with Long-Range Lennard-Jones Interactions.
Fischer, Nina M; van Maaren, Paul J; Ditz, Jonas C; Yildirim, Ahmet; van der Spoel, David
2015-07-14
In order to increase the accuracy of classical computer simulations, existing methodologies may need to be adapted. Hitherto, most force fields employ a truncated potential function to model van der Waals interactions, sometimes augmented with an analytical correction. Although such corrections are accurate for homogeneous systems with a long cutoff, they should not be used in inherently inhomogeneous systems such as biomolecular and interface systems. For such cases, a variant of the particle mesh Ewald algorithm (Lennard-Jones PME) was already proposed 20 years ago (Essmann et al. J. Chem. Phys. 1995, 103, 8577-8593), but it was implemented only recently (Wennberg et al. J. Chem. Theory Comput. 2013, 9, 3527-3537) in a major simulation code (GROMACS). The availability of this method allows surface tensions of liquids as well as bulk properties to be established, such as density and enthalpy of vaporization, without approximations due to truncation. Here, we report on simulations of ≈150 liquids (taken from a force field benchmark: Caleman et al. J. Chem. Theory Comput. 2012, 8, 61-74) using three different force fields and compare simulations with and without explicit long-range van der Waals interactions. We find that the density and enthalpy of vaporization increase for most liquids using the generalized Amber force field (GAFF, Wang et al. J. Comput. Chem. 2004, 25, 1157-1174) and the Charmm generalized force field (CGenFF, Vanommeslaeghe et al. J. Comput. Chem. 2010, 31, 671-690) but less so for OPLS/AA (Jorgensen and Tirado-Rives, Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 6665-6670), which was parametrized with an analytical correction to the van der Waals potential. The surface tension increases by ≈10(-2) N/m for all force fields. These results suggest that van der Waals attractions in force fields are too strong, in particular for the GAFF and CGenFF. In addition to the simulation results, we introduce a new version of a web server, http://virtualchemistry.org, aimed at facilitating sharing and reuse of input files for molecular simulations.
NASA Astrophysics Data System (ADS)
Niu, Jie; Li, Jinliang; Zou, Dehua; Yang, Qi; Li, Xu; Yan, Yu; Li, Tang
2017-05-01
Non-blackout working of agricultural power supply network is significant to shorten the outage time, decrease the outage loss, and improve the supply reliability and safety. It is impossible to hang the wire rope first and then suspend the cable because of the poor bearing ability of the pole in agricultural power supply network. A kind of new cable arrangement way, its matching tools and the flexible cable that can bear the tension by itself are needed to be put forward and developed. It is necessary to calculate the electric field intensity of the flexible cable to verify that the electric field intensity meets the insulation demand. In this new design, the fiber layer is added into the flexible cable and its maximum tension force is measured to reach to 4000 N. Based on the features of live working in the agricultural power supply network, the new layout way of the cable is proposed; the matching tools and the new flexible cable that can bear the tension by itself are developed as well in this paper. All of the research achievements can give references for the live working of the agricultural power supply network.
Social Work and Juvenile Probation: Historical Tensions and Contemporary Convergences
ERIC Educational Resources Information Center
Peters, Clark M.
2011-01-01
Social work's weak presence in the field of corrections is peculiar, given that those involved in the criminal and juvenile justice systems are undeniably among the vulnerable and oppressed populations that the profession has traditionally served. The field of juvenile probation shares roots with the profession of social work but lacks a strong…
ERIC Educational Resources Information Center
Ylimaki, Rose M.; Uljens, Michael
2017-01-01
Recent neoliberal policies and societal trends point toward new and perennial tensions for nation-state education, including curriculum/Didaktik and leadership thereof. These challenges affect governance/leadership and curriculum with changes in aims and values together in ways that demand coherence, yet the traditionally disparate fields of…
Analysis of mixed-mode crack propagation using the boundary integral method
NASA Technical Reports Server (NTRS)
Mendelson, A.; Ghosn, L. J.
1986-01-01
Crack propagation in a rotating inner raceway of a high speed roller bearing is analyzed using the boundary integral equation method. The method consists of an edge crack in a plate under tension, upon which varying Hertzian stress fields are superimposed. A computer program for the boundary integral equation method was written using quadratic elements to determine the stress and displacement fields for discrete roller positions. Mode I and Mode II stress intensity factors and crack extension forces G sub 00 (energy release rate due to tensile opening mode) and G sub r0 (energy release rate due to shear displacement mode) were computed. These calculations permit determination of that crack growth angle for which the change in the crack extension forces is maximum. The crack driving force was found to be the alternating mixed-mode loading that occurs with each passage of the most heavily loaded roller. The crack is predicted to propagate in a step-like fashion alternating between radial and inclined segments, and this pattern was observed experimentally. The maximum changes DeltaG sub 00 and DeltaG sub r0 of the crack extension forces are found to be good measures of the crack propagation rate and direction.
Remotely adjustable fishing jar and method for using same
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wyatt, W.B.
1992-10-20
This patent describes a method for providing a jarring force to dislodge objects stuck in well bores, the method it comprises: connecting a jarring tool between an operating string and an object in a well bore; selecting a jarring force to be applied to the object; setting the selected reference jarring force into a mechanical memory mechanism by progressively engaging a first latch body and a second latch body; retaining the reference jarring force in the mechanical memory mechanism during diminution of tensional force applied by the operating string; and initiating an upwardly directed impact force within the jarring toolmore » by increasing tensional force on the operating string to a value greater than the tensional force corresponding with the selected jarring force. This patent also describes a remotely adjustable downhole fishing jar apparatus comprising: an operating mandrel; an impact release spring; a mechanical memory mechanism; and releasable latching means.« less
Scholz, Norman; Behnke, Thomas; Resch-Genger, Ute
2018-01-01
Micelles are of increasing importance as versatile carriers for hydrophobic substances and nanoprobes for a wide range of pharmaceutical, diagnostic, medical, and therapeutic applications. A key parameter indicating the formation and stability of micelles is the critical micelle concentration (CMC). In this respect, we determined the CMC of common anionic, cationic, and non-ionic surfactants fluorometrically using different fluorescent probes and fluorescence parameters for signal detection and compared the results with conductometric and surface tension measurements. Based upon these results, requirements, advantages, and pitfalls of each method are discussed. Our study underlines the versatility of fluorometric methods that do not impose specific requirements on surfactants and are especially suited for the quantification of very low CMC values. Conductivity and surface tension measurements yield smaller uncertainties particularly for high CMC values, yet are more time- and substance consuming and not suitable for every surfactant.
Decentralized coordinated control of elastic web winding systems without tension sensor.
Hou, Hailiang; Nian, Xiaohong; Chen, Jie; Xiao, Dengfeng
2018-06-26
In elastic web winding systems, precise regulation of web tension in each span is critical to ensure final product quality, and to achieve low cost by reducing the occurrence of web break or fold. Generally, web winding systems use load cells or swing rolls as tension sensors, which add cost, reduce system reliability and increase the difficulty of control. In this paper, a decentralized coordinated control scheme with tension observers is designed for a three-motor web-winding system. First, two tension observers are proposed to estimate the unwinding and winding tension. The designed observers consider the essential dynamic, radius, and inertial variation effects and only require the modest computational effort. Then, using the estimated tensions as feedback signals, a robust decentralized coordinated controller is adopted to reduce the interaction between subsystems. Asymptotic stabilities of the observer error dynamics and the closed-loop winding systems are demonstrated via Lyapunov stability theory. The observer gains and the controller gains can be obtained by solving matrix inequalities. Finally, some simulations and experiments are performed on a paper winding setup to test the performance of the designed observers and the observer-base DCC method, respectively. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.
Post-tensioning and splicing of precast/prestressed bridge beams to extend spans
NASA Astrophysics Data System (ADS)
Collett, Brandon S.; Saliba, Joseph E.
2002-06-01
This paper explores the status and techniques of post-tensioning and splicing precast concrete I-beams in bridge applications. It will look at the current practices that have been used in the United States and comment on the advantages of these techniques. Representative projects are presented to demonstrate the application and success of specific methods used. To demonstrate the benefits of using post-tensioning and splicing to extend spans, multiple analysis of simple span post-tensioned I-beams were performed varying such characteristics as beam spacing, beam sections, beam depth and concrete strength. Tables were then developed to compare the maximum span length of a prestressed I-beam versus a one segment or a spliced three segment post-tensioned I-beam. The lateral stability of the beam during fabrication, transportation and erection is also examined and discussed. These tables are intended to aid designers and owners in preliminary project studies to determine if post-tensioning can be beneficial to their situation. AASHTO Standard Specifications(2) will be used as basic guidelines and specifications. In many cases, post-tensioning was found to extend the maximum span length of a typical 72-inch precast I-beam more than 40 feet over conventional prestress.
NASA Astrophysics Data System (ADS)
Aqra, Fathi; Ayyad, Ahmed
2011-09-01
An improved theoretical method for calculating the surface tension of liquid metals is proposed. A recently derived equation that allows an accurate estimate of surface tension to be made for the large number of elements, based on statistical thermodynamics, is used for a means of calculating reliable values for the surface tension of pure liquid alkali, alkaline earth, and main group metals at the melting point, In order to increase the validity of the model, the surface tension of liquid lithium was calculated in the temperature range 454 K to 1300 K (181 °C to 1027 °C), where the calculated surface tension values follow a straight line behavior given by γ = 441 - 0.15 (T-Tm) (mJ m-2). The calculated surface excess entropy of liquid Li (- dγ/ dT) was found to be 0.15 mJ m-2 K-1, which agrees well with the reported experimental value (0.147 mJ/m2 K). Moreover, the relations of the calculated surface tension of alkali metals to atomic radius, heat of fusion, and specific heat capacity are described. The results are in excellent agreement with the existing experimental data.
Quantification of surface tension and internal pressure generated by single mitotic cells
NASA Astrophysics Data System (ADS)
Fischer-Friedrich, Elisabeth; Hyman, Anthony A.; Jülicher, Frank; Müller, Daniel J.; Helenius, Jonne
2014-08-01
During mitosis, adherent cells round up, by increasing the tension of the contractile actomyosin cortex while increasing the internal hydrostatic pressure. In the simple scenario of a liquid cell interior, the surface tension is related to the local curvature and the hydrostatic pressure difference by Laplace's law. However, verification of this scenario for cells requires accurate measurements of cell shape. Here, we use wedged micro-cantilevers to uniaxially confine single cells and determine confinement forces while concurrently determining cell shape using confocal microscopy. We fit experimentally measured confined cell shapes to shapes obeying Laplace's law with uniform surface tension and find quantitative agreement. Geometrical parameters derived from fitting the cell shape, and the measured force were used to calculate hydrostatic pressure excess and surface tension of cells. We find that HeLa cells increase their internal hydrostatic pressure excess and surface tension from ~ 40 Pa and 0.2 mNm-1 during interphase to ~ 400 Pa and 1.6 mNm-1 during metaphase. The method introduced provides a means to determine internal pressure excess and surface tension of rounded cells accurately and with minimal cellular perturbation, and should be applicable to characterize the mechanical properties of various cellular systems.
Boundary element analysis of post-tensioned slabs
NASA Astrophysics Data System (ADS)
Rashed, Youssef F.
2015-06-01
In this paper, the boundary element method is applied to carry out the structural analysis of post-tensioned flat slabs. The shear-deformable plate-bending model is employed. The effect of the pre-stressing cables is taken into account via the equivalent load method. The formulation is automated using a computer program, which uses quadratic boundary elements. Verification samples are presented, and finally a practical application is analyzed where results are compared against those obtained from the finite element method. The proposed method is efficient in terms of computer storage and processing time as well as the ease in data input and modifications.
Roe, S C
1997-01-01
Evaluate the mechanical properties of twist, loop, double loop, double-wrap and loop/twist cerclage. The initial tension generated by 18 cerclage of each type was determined using a materials testing machine after tying around a testing jig. Six wires from each type were distracted and the initial stiffness and yield load were determined. Yield behavior was further investigated in six wires of each type by determining the load required to reduce cerclage tension below 30 Newton (N) following and incremental (50 N) stepwise load and unload regimen. The amount of collapse of the simulated bone fragments that resulted in the reduction of initial tension to 30 N was measured for the final six wires of each group. Data were analyzed by analysis of variance and a multiple comparison test. Twist type cerclage generated less tension than loop-type cerclage. The yield load of these two types was similar. Double-loop and double-wrap cerclage generated superior tension and resisted a greater load before loosening. Loop/twist cerclage had an intermediate initial tension but had the greatest resistance to loading. In the collapse test, the greater the initial tension, the more collapse could occur before the wire was loose. For all types of cerclage wire fixation, a reduction of diameter of the testing jig of more than 1% caused loosening. Double-loop and double-wrap cerclage provide greater compression of fragments and resist loads associated with weight-bearing better than the twist and loop methods. Loop/twist cerclage may have advantages because of their superior resistance to loading. All cerclage will loosen if fracture fragments collapse.
Sarkar, Anwesha; Zhao, Yuanchang; Wang, Yongliang; Wang, Xuefeng
2018-06-25
Integrin-transmitted cellular forces are crucial mechanical signals regulating a vast range of cell functions. Although various methods have been developed to visualize and quantify cellular forces at the cell-matrix interface, a method with high performance and low technical barrier is still in demand. Here we developed a force-activatable coating (FAC), which can be simply coated on regular cell culture apparatus' surfaces by physical adsorption, and turn these surfaces to force reporting platforms that enable cellular force mapping directly by fluorescence imaging. The FAC molecule consists of an adhesive domain for surface coating and a force-reporting domain which can be activated to fluoresce by integrin molecular tension. The tension threshold required for FAC activation is tunable in 10-60 piconewton (pN), allowing the selective imaging of cellular force contributed by integrin tension at different force levels. We tested the performance of two FACs with tension thresholds of 12 and 54 pN (nominal values), respectively, on both glass and polystyrene surfaces. Cellular forces were successfully mapped by fluorescence imaging on all the surfaces. FAC-coated surfaces also enable co-imaging of cellular forces and cell structures in both live cells and immunostained cells, therefore opening a new avenue for the study of the interplay of force and structure. We demonstrated the co-imaging of integrin tension and talin clustering in live cells, and concluded that talin clustering always occurs before the generation of integrin tension above 54 pN, reinforcing the notion that talin is an important adaptor protein for integrin tension transmission. Overall, FAC provides a highly convenient approach that is accessible to general biological laboratories for the study of cellular forces with high sensitivity and resolution, thus holding the potential to greatly boost the research of cell mechanobiology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fujiwara, K., E-mail: ku.fujiwara@screen.co.jp; Department of Mechanical Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871; Shibahara, M., E-mail: siba@mech.eng.osaka-u.ac.jp
A classical molecular dynamics simulation was conducted for a system composed of fluid molecules between two planar solid surfaces, and whose interactions are described by the 12-6 Lennard-Jones form. This paper presents a general description of the pressure components and interfacial tension at a fluid-solid interface obtained by the perturbative method on the basis of statistical thermodynamics, proposes a method to consider the pressure components tangential to an interface which are affected by interactions with solid atoms, and applies this method to the calculation system. The description of the perturbative method is extended to subsystems, and the local pressure componentsmore » and interfacial tension at a liquid-solid interface are obtained and examined in one- and two-dimensions. The results are compared with those obtained by two alternative methods: (a) an evaluation of the intermolecular force acting on a plane, and (b) the conventional method based on the virial expression. The accuracy of the numerical results is examined through the comparison of the results obtained by each method. The calculated local pressure components and interfacial tension of the fluid at a liquid-solid interface agreed well with the results of the two alternative methods at each local position in one dimension. In two dimensions, the results showed a characteristic profile of the tangential pressure component which depended on the direction tangential to the liquid-solid interface, which agreed with that obtained by the evaluation of the intermolecular force acting on a plane in the present study. Such good agreement suggests that the perturbative method on the basis of statistical thermodynamics used in this study is valid to obtain the local pressure components and interfacial tension at a liquid-solid interface.« less
Molecular dynamics simulations of the surface tension of oxygen-supersaturated water
NASA Astrophysics Data System (ADS)
Jain, S.; Qiao, L.
2017-04-01
In this work, non-reactive molecular dynamic simulations were conducted to determine the surface tension of water as a function of the concentration of the dissolved gaseous molecules (O2), which would in turn help to predict the pressure inside the nanobubbles under supersaturation conditions. Knowing the bubble pressure is a prerequisite for understanding the mechanisms behind the spontaneous combustion of the H2/O2 gases inside the nanobubbles. First, the surface tension of pure water was determined using the planar interface method and the Irving and Kirkwood formula. Next, the surface tension of water containing four different supersaturation concentrations (S) of O2 gas molecules was computed considering the curved interface of a nanobubble. The surface tension of water was found to decrease with an increase in the supersaturation ratio or the concentration of the dissolved O2 gas molecules.
Surface tension of evaporating nanofluid droplets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Ruey-Hung; Phuoc, Tran X.; Martello, Donald
2011-05-01
Measurements of nanofluid surface tension were made using the pendant droplet method. Three different types of nanoparticles were used - laponite, silver and Fe 2O 3 - with de-ionized water (DW) as the base fluid. The reported results focus on the following categories; (1) because some nanoparticles require surfactants to form stable colloids, the individual effects of the surfactant and the particles were investigated; (2) due to evaporation of the pendant droplet, the particle concentration increases, affecting the apparent surface tension; (3) because of the evaporation process, a hysteresis was found where the evaporating droplet can only achieve lower valuesmore » of surface tension than that of nanofluids at the same prepared concentrations: and (4) the Stefan equation relating the apparent surface tension and heat of evaporation was found to be inapplicable for nanofluids investigated. Comparisons with findings for sessile droplets are also discussed, pointing to additional effects of nanoparticles other than the non-equilibrium evaporation process.« less
Zhao, Quan-Ming; Gu, Xiao-Feng; Cheng, Li; Feng, De-Hong
2017-07-01
Patellar fractures account for approximately 1% of all fractures. Due to the patella's importance as regards the extensor mechanism, effort should be made to preserve the patella. Several operative treatment methods have been introduced for patella fractures. This study aims to compare the clinical effect of a titanium cable tension band and nickeltitanium (NiTi) patella concentrator (NT-PC) in treating patella fractures. Thirty-nine patients with patella fractures were enrolled in this retrospective study. All the patients were treated via the open reduction internal fixation procedure using a titanium cable tension band or NT-PC. All the patients were followed up over an average period of 13 months. The main outcome measures were operation time, time of fracture union, postoperative complications, and Böstman knee scores. Statistical analyses were conducted between the 2 groups. All the patients were operated on successfully. The operation time of the NT-PC treatment group was less than that of the titanium cable tension band treatment group (p < 0.05). The mean scores at the final follow-up were 28.2 and 27.6 points in the titanium cable tension band and NT-PC groups, respectively. No significant difference was observed between the excellent and good results (p > 0.05). Both titanium cable tension band and NT-PC showed good efficacy for the treatment of patellar fractures. NT-PC fixation, a new option for the treatment of patella fractures, is a simple and effective fixation method.
Magnetic Fields and Multiple Protostar Formation
NASA Astrophysics Data System (ADS)
Boss, A. P.
2001-12-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception, and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamical calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, in spite of ample evidence for the importance of magnetic support of pre-collapse clouds. We present here the first numerical hydrodynamical survey of the full effects of magnetic fields on the collapse and fragmentation of dense cloud cores. The models are calculated with a three dimensional, finite differences code which solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of order four) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically-supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars. This work was partially supported by NSF grants AST-9983530 and MRI-9976645.
NASA Astrophysics Data System (ADS)
Boss, Alan P.
2002-04-01
Recent observations of star-forming regions suggest that binary and multiple young stars are the rule rather than the exception and implicate fragmentation as the likely mechanism for their formation. Most numerical hydrodynamic calculations of fragmentation have neglected the possibly deleterious effects of magnetic fields, despite ample evidence for the importance of magnetic support of precollapse clouds. We present here the first numerical hydrodynamic survey of the collapse and fragmentation of initially magnetically supported clouds that takes into account several magnetic field effects in an approximate manner. The models are calculated with a three-dimensional, finite differences code that solves the equations of hydrodynamics, gravitation, and radiative transfer in the Eddington and diffusion approximations. Magnetic field effects are included through two simple approximations: magnetic pressure is added to the gas pressure, and magnetic tension is approximated by gravity dilution once collapse is well underway. Ambipolar diffusion of the magnetic field leading to cloud collapse is treated approximately as well. Models are calculated for a variety of initial cloud density profiles, shapes, and rotation rates. We find that in spite of the inclusion of magnetic field effects, dense cloud cores are capable of fragmenting into binary and multiple protostar systems. Initially prolate clouds tend to fragment into binary protostars, while initially oblate clouds tend to fragment into multiple protostar systems containing a small number (of the order of 4) of fragments. The latter are likely to be subject to rapid orbital evolution, with close encounters possibly leading to the ejection of fragments. Contrary to expectation, magnetic tension effects appear to enhance fragmentation, allowing lower mass fragments to form than would otherwise be possible, because magnetic tension helps to prevent a central density singularity from forming and producing a dominant single object. Magnetically supported dense cloud cores thus seem to be capable of collapsing and fragmenting into sufficient numbers of binary and multiple protostar systems to be compatible with observations of the relative rarity of single protostars.
NASA Astrophysics Data System (ADS)
Cohen, Thomas D.
2014-08-01
SU(Nc) gauge theories containing matter fields may be invariant under transformations of some subgroup of the ZNc center; the maximum such subgroup is Zp, with p depending on Nc and the representations of the various matter fields in the theory. Confining SU(Nc) gauge theories in either 3+1 or 2+1 space-time dimensions and with matter fields in any representation have string tensions for representation R given by σR=σfp/R(p -pR)g(pR(p-pR))(p -1)g(p-1) with pR=nRmod(p), where σf is the string tension for the fundamental representation, g is a positive finite function and nR is the n-ality of R. This implies that a necessary condition for a theory in this class to have an area law is invariance of the theory under a nontrivial subgroup of the center. Significantly, these results depend on p regardless of the value of Nc.
New Transition in the Vortex Liquid State: intrinsic limit of the irreversibility line
NASA Astrophysics Data System (ADS)
Kwok, Wai-Kwong; Paulius, Lisa; Figueras, Jordi
2005-03-01
We have carried out angular dependent magneto-transport measurements on optimally doped, untwinned YBCO crystals irradiated with high energy heavy ions to determine the onset of vortex line tension in the vortex liquid state. The matching field was controlled and kept at a low level to partially preserve the first order vortex lattice melting transition. A Bose glass transition is observed below the lower critical point which then transforms into a first order phase transition near 5 Tesla. The locus of points which indicate the onset of vortex line tension overlaps with the Bose glass transition line at low fields and then deviates at higher fields, indicating a new transition line in the vortex liquid state. This new line in the vortex liquid phase extends beyond the upper critical point.This work was supported by the U.S. Department of Energy, BES, Materials Science under Contract No. W-31-109-ENG-38 at Argonne National Laboratory.
Mondal, Samir K; Mitra, Anupam; Singh, Nahar; Sarkar, S N; Kapur, Pawan
2009-10-26
We propose a technique of chemical etching for fabrication of near perfect optical fiber nanoprobe (NNP). It uses photosensitive single mode optical fiber to etch in hydro fluoric (HF) acid solution. The difference in etching rate for cladding and photosensitive core in HF acid solution creates capillary ring along core-cladding boundary under a given condition. The capillary ring is filled with acid solution due to surface tension and capillary action. Finally it creates near perfect symmetric tip at the apex of the fiber as the height of the acid level in capillary ring decreases while width of the ring increases with continuous etching. Typical tip features are short taper length (approximately 4 microm), large cone angle (approximately 38 degrees ), and small probe tip dimension (<100 nm). A finite difference time domain (FDTD) analysis is also presented to compare near field optics of the NNP with conventional nanoprobe (CNP). The probe may be ideal for near field optical imaging and sensor applications.
Surface segregation and surface tension of polydisperse polymer melts.
Minnikanti, Venkatachala S; Qian, Zhenyu; Archer, Lynden A
2007-04-14
The effect of polydispersity on surface segregation of a lower molecular weight polymer component in a higher molecular weight linear polymer melt host is investigated theoretically. We show that the integrated surface excess zM of a polymer component of molecular weight M satisfies a simple relation zM=2Ue(M/Mw-1)phiM, where Mw is the weight averaged molecular weight, phiM is the polymer volume fraction, and Ue is the attraction of polymer chain ends to the surface. Ue is principally of entropic origin, but also reflects any energetic preference of chain ends to the surface. We further show that the surface tension gammaM of a polydisperse melt of high molar mass components depends on the number average degree of polymerization Mn as, gammaM=gammainfinity+2UerhobRT/Mn. The parameter gammainfinity is the asymptotic surface tension of an infinitely long polymer of the same chemistry, rhob is the bulk density of the polymer, R is the universal gas constant, and T is the temperature. The predicted gammaM compare favorably with surface tension values obtained from self-consistent field theory simulations that include equation of state effects, which account for changes in polymer density with molecular weight. We also compare the predicted surface tension with available experimental data.
Surface Tension of Solids in the Absence of Adsorption
2009-01-01
A method has been recently proposed for determining the value of the surface tension of a solid in the absence of adsorption, γS0, using material properties determined from vapor adsorption experiments. If valid, the value obtained for γS0 must be independent of the vapor used. We apply the proposed method to determine the value of γS0 for four solids using at least two vapors for each solid and find results that support the proposed method for determining γS0. PMID:19719092
Measuring the surface tension of a liquid-gas interface by automatic stalagmometer
NASA Astrophysics Data System (ADS)
Molina, C.; Victoria, L.; Arenas, A.
2000-06-01
We present a variation of the stalagmometer method for automatically determining the surface tension of a liquid-gas interface using a pressure sensor to measure the pressure variation per drop. The presented method does not depend on a knowledge of the density of the problem liquid and obtains values with a measurement error in the range of 1%-2%. Its low cost and simplicity mean that the technique can be used in the teaching and instrumentation laboratory in the same way as other methods.
Hsu, Kai-Lan; Chang, Wei-Lun; Yang, Chyun-Yu; Yeh, Ming-Long; Chang, Chih-Wei
2017-12-01
Modified tension band wiring has been widely used to treat transverse patellar fractures. However, few studies have evaluated the clinical outcomes using different methods of Kirschner wire bending, location of the tension band, and depths of Kirschner wires. Thus, we tried to clarify these factors according to our clinical outcomes. This retrospective cohort study recruited consecutive patients underwent surgical fixation for patellar fractures using modified tension band technique between January 2010 and December 2015. Different factors in this procedure, including the bending manner of the Kirschner wires, their depth, and location of the tension band with respect to the superior and inferior border of the patella were recorded and analysed. The primary outcome was early loss of fixation. The secondary outcomes were minor loss of reduction, implant breakage, deep infection, and the need for implant removal. This study included 170 patients with patellar fractures. Regarding the bending method, similar results were obtained with bilaterally or proximally bent Kirschner wires. Regarding length, the tension band was placed closely (within 25% of the patella length) in 124 patients and distantly in 46 patients. The rates of loss of reduction and implant breakage were significantly higher in the distantly placed tension bands. Regarding depth, 37 patellar fractures were fixed with the Kirschner wires at the superficial one third of the patellae while the K- wires at the middle layer of patella were used in the remaining 133 patellar fractures. A significantly higher rate of minor loss of reduction was obtained using the superficial Kirschner wires. The modified tension band technique for transverse patella fractures provides favourable clinical outcomes, with low failure (5%) and infection (2%) rates. Implant irritation is the major complication, and almost half of cases require implant removal. The location of the tension band with respect to the superior and inferior border of the patella plays an important role in clinical outcomes. Placing the wire close to the patella may prevent major loss of reduction and implant breakage. Superficially placed Kirschner wires also affect clinical outcomes by increasing the rate of minor loss of reduction. Copyright © 2017 Elsevier Ltd. All rights reserved.
Application of the Virtual Fields Method to a relaxation behaviour of rubbers
NASA Astrophysics Data System (ADS)
Yoon, Sung-ho; Siviour, Clive R.
2018-07-01
This paper presents the application of the Virtual Fields Method (VFM) for the characterization of viscoelastic behaviour of rubbers. The relaxation behaviour of the rubbers following a dynamic loading event is characterized using the dynamic VFM in which full-field (two dimensional) strain and acceleration data, obtained from high-speed imaging, are analysed by the principle of virtual work without traction force data, instead using the acceleration fields in the specimen to provide stress information. Two (silicone and nitrile) rubbers were tested in tension using a drop-weight apparatus. It is assumed that the dynamic behaviour is described by the combination of hyperelastic and Prony series models. A VFM based procedure is designed and used to produce the identification of the modulus term of a hyperelastic model and the Prony series parameters within a time scale determined by two experimental factors: imaging speed and loading duration. Then, the time range of the data is extended using experiments at different temperatures combined with the time-temperature superposition principle. Prior to these experimental analyses, finite element simulations were performed to validate the application of the proposed VFM analysis. Therefore, for the first time, it has been possible to identify relaxation behaviour of a material following dynamic loading, using a technique that can be applied to both small and large deformations.
Unique Pathways to Resilience across Cultures
ERIC Educational Resources Information Center
Ungar, Michael; Brown, Marion; Liebenberg, Linda; Othman, Rasha; Kwong, Wai Man; Armstrong, Mary; Gilgun, Jane
2007-01-01
An international mixed methods study of resilience of 14 sites in eleven countries identified seven tensions that youth resolve in culturally specific ways. Resolution of these tensions is foundational to experiences of resilience. This paper reports on the qualitative findings from interviews with 89 youth. Results support a culturally embedded…
Psychiatric Symptoms in Children with Primary Headache
ERIC Educational Resources Information Center
Anttila, Pirjo; Sourander, Andre; Metsahonkala, Liisa; Aromaa, Minna; Helenius, Hans; Sillanpaa, Matti
2004-01-01
Objective: To examine the association of psychiatric symptoms with migraine and tension-type headache in children. Method: A questionnaire completed by 1,135 Finnish children in the sixth grade identified 154 children with migraine, 138 with tension-type headache, and 407 children who were headache-free. Seventy children were randomly selected…
ERIC Educational Resources Information Center
Folta, Bernarr
This paper discusses the rationale and teaching methods for a six-week unit, for a high school freshman English Class, on perception, semantics, and writing, which places special focus on developing tension in student writing. The first four objectives of the course focus on perception and the next two focus on semantics. The seventh…
DOT National Transportation Integrated Search
2014-06-01
This report contains a summary of the research performed to develop a replacement for the high-temperature grout : fluidity (HTGF) test. The HTGF test was employed in the past by FDOT to qualify post-tensioning (PT) grouts for use in : post-tensioned...
A method for installing zero-tension pan and wick lysimeters in soil
USDA-ARS?s Scientific Manuscript database
Zero-tension pan lysimeters and passive capillary fiberglass wick lysimeters are useful in determining water quality and volumetric aspects of subsurface water flow. Installation of pan and wick lysimeters beneath undisturbed soil may be complicated by the tendency for the soil to cave-in as the lys...
Finite element modeling as a tool for predicting the fracture behavior of robocast scaffolds.
Miranda, Pedro; Pajares, Antonia; Guiberteau, Fernando
2008-11-01
The use of finite element modeling to calculate the stress fields in complex scaffold structures and thus predict their mechanical behavior during service (e.g., as load-bearing bone implants) is evaluated. The method is applied to identifying the fracture modes and estimating the strength of robocast hydroxyapatite and beta-tricalcium phosphate scaffolds, consisting of a three-dimensional lattice of interpenetrating rods. The calculations are performed for three testing configurations: compression, tension and shear. Different testing orientations relative to the calcium phosphate rods are considered for each configuration. The predictions for the compressive configurations are compared to experimental data from uniaxial compression tests.
Tension-induced binding of semiflexible biopolymers
NASA Astrophysics Data System (ADS)
Benetatos, Panayotis; von der Heydt, Alice; Zippelius, Annette
2015-03-01
We investigate theoretically the effect of polymer tension on the collective behaviour of reversible cross-links. We use a model of two parallel-aligned, weakly-bending wormlike chains with a regularly spaced sequence of binding sites subjected to a tensile force. Reversible cross-links attach and detach at the binding sites with an affinity controlled by a chemical potential. In a mean-field approach, we calculate the free energy of the system and we show the emergence of a free energy barrier which controls the reversible (un)binding. The tension affects the conformational entropy of the chains which competes with the binding energy of the cross-links. This competition gives rise to a sudden increase in the fraction of bound sites as the polymer tension increases. The force-induced first-order transition in the number of cross-links implies a sudden force-induced stiffening of the effective stretching modulus of the polymers. This mechanism may be relevant to the formation and stress-induced strengthening of stress fibers in the cytoskeleton. We acknowledge support by the Deutsche Forschungsgemeinschaft (DFG) via grant SFB-937/A1.
NASA Technical Reports Server (NTRS)
Chao, David F.; Zhang, Neng-Li
2002-01-01
As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.
A New Model for Simulating Gas Metal Arc Welding based on Phase Field Model
NASA Astrophysics Data System (ADS)
Jiang, Yongyue; Li, Li; Zhao, Zhijiang
2017-11-01
Lots of physical process, such as metal melting, multiphase fluids flow, heat and mass transfer and thermocapillary effect (Marangoni) and so on, will occur in gas metal arc welding (GMAW) which should be considered as a mixture system. In this paper, based on the previous work, we propose a new model to simulate GMAW including Navier-Stokes equation, the phase field model and energy equation. Unlike most previous work, we take the thermocapillary effect into the phase field model considering mixture energy which is different of volume of fluid method (VOF) widely used in GMAW before. We also consider gravity, electromagnetic force, surface tension, buoyancy effect and arc pressure in momentum equation. The spray transfer especially the projected transfer in GMAW is computed as numerical examples with a continuous finite element method and a modified midpoint scheme. Pulse current is set as welding current as the numerical example to show the numerical simulation of metal transfer which fits the theory of GMAW well. From the result compared with the data of high-speed photography and VOF model, the accuracy and stability of the model and scheme are easily validated and also the new model has the higher precieion.
Morphological and functional differences between normal-tension and high-tension glaucoma.
Häntzschel, Janek; Terai, Naim; Sorgenfrei, Friederike; Haustein, Michael; Pillunat, Karin; Pillunat, Lutz E
2013-08-01
To compare visual field (VF) and nerve fibre loss in patients with normal-tension (NTG) and high-tension glaucoma (HTG) at an equal level of glaucomatous structural damage of the optic nerve head (ONH). In a retrospective, pair-matched, comparative study, 126 eyes with NTG and 126 eyes with HTG were matched according to the same glaucomatous ONH damage based on rim volume, rim area and disc size measured by the Heidelberg Retina Tomograph (HRT III). Visual field by Humphrey perimetry and nerve fibre layer thickness measured by scanning laser polarimetry (GdxVCC) were compared between both groups. Based on the HRT, NTG and HTG displayed comparable structural damage of the ONH without a statistically significant difference between both groups (mean, NTG/HTG: disc area 2.32/2.32 mm², p =0.342; rim area 1.03/1.00 mm², p = 0.279; rim volume 0.2/0.19 mm³; p = 0.274). Eyes with NTG had significantly less VF damage than eyes with HTG (mean, NTG/HTG: mean deviation (MD) -3.69/-9.77 dB, p = 0.0001; pattern standard deviation (PSD) 4.80/7.17 dB, p = 0.0001). The nerve fibre layer of NTG patients was thicker than that of HTG patients (mean, NTG/HTG: GDx total: 46.9/44.0 μm, p = 0.073; GDx superior: 57.2/49.9 μm, p = 0.0001; GDx inferior: 54.9/49.7 μm, p = 0.001). At an equal level of glaucomatous structural damage of the ONH indicated by cupping, rim area and rim volume, NTG patients seem to have a less affected visual field and a better preserved nerve fibre layer than HTG patients. © 2013 The Authors. Acta Ophthalmologica © 2013 Acta Ophthalmologica Scandinavica Foundation. Published by Blackwell Publishing Ltd.
Hagiwara, Y; Yamamoto, T; Kitazawa, Y
2000-03-01
We investigated in a prospective fashion the visual prognosis and complications in normal-tension glaucoma following unilateral trabeculectomy with adjunctive mitomycin C. Trabeculectomy with adjunctive mitomycin C was carried out unilaterally in 21 cases of normal-tension glaucoma. Intraocular pressure (IOP), visual prognosis, and complications were compared between the operated eyes and the non-operated fellow eyes. The follow-up period ranged from 2 to 7 years. The IOP dropped significantly from 14.8+/-1.8 mmHg (mean +/- SD) to 9.6+/-3.9 mmHg in the operated eyes (P=0.0002, Wilcoxon signed-rank test), but did not drop in the non-operated eyes. The mean deviation (MD) was -12.69+/-6.41 dB preoperatively and -14.70+/-5.49 dB at the last clinic visit in the operated eyes, whereas in non-operated eyes it was -7.85+/-5.65 dB and -11.15+/-5.62 dB, respectively. The MD deteriorated significantly in both operated and non-operated eyes (operated eyes P=0.0239, non-operated eyes: P=0.0002; Wilcoxon signed-rank test). The MD slope was -0.37+/-0.60 dB/year and -0.71+/-0.89 dB/year for the operated and non-operated eyes, respectively (P=0.5243, Mann-Whitney U-test). Visual field deterioration was more frequently observed in the non-operated eyes by a pointwise definition of the progression (P<0.05, McNemar test). Visual acuity deteriorated in 6 of the operated eyes and in 5 of the non-operated eyes. Cataract developed in 6 (29%) of the 21 operated eyes, while among the non-operated eyes 4 (19%) developed cataract. Mitomycin C trabeculectomy is effective in delaying progression of visual field defect in normal-tension glaucoma, but complications may arise and cause some visual disturbance.
NASA Astrophysics Data System (ADS)
Tachibana, Hideyuki; Suzuki, Takafumi; Mabuchi, Kunihiko
We address an estimation method of isometric muscle tension of fingers, as fundamental research for a neural signal-based prosthesis of fingers. We utilize needle electromyogram (EMG) signals, which have approximately equivalent information to peripheral neural signals. The estimating algorithm comprised two convolution operations. The first convolution is between normal distribution and a spike array, which is detected by needle EMG signals. The convolution estimates the probability density of spike-invoking time in the muscle. In this convolution, we hypothesize that each motor unit in a muscle activates spikes independently based on a same probability density function. The second convolution is between the result of the previous convolution and isometric twitch, viz., the impulse response of the motor unit. The result of the calculation is the sum of all estimated tensions of whole muscle fibers, i.e., muscle tension. We confirmed that there is good correlation between the estimated tension of the muscle and the actual tension, with >0.9 correlation coefficients at 59%, and >0.8 at 89% of all trials.
Surface tensions of solutions containing dicarboxylic acid mixtures
NASA Astrophysics Data System (ADS)
Lee, Jae Young; Hildemann, Lynn M.
2014-06-01
Organic solutes tend to lower the surface tension of cloud condensation nuclei, allowing them to more readily activate. The surface tension of various dicarboxylic acid aerosol mixtures was measured at 20 °C using the Wilhelmy plate method. At lower concentrations, the surface tension of a solution with equi-molar mixtures of dicarboxylic acids closely followed that of a solution with the most surface-active organic component alone. Measurements of surface tension for these mixtures were lower than predictions using Henning's model and the modified Szyszkowski equation, by ˜1-2%. The calculated maximum surface excess (Γmax) and inverse Langmuir adsorption coefficient (β) from the modified Szyszkowski equation were both larger than measured values for 6 of the 7 mixtures tested. Accounting for the reduction in surface tension in the Köhler equation reduced the critical saturation ratio for these multi-component mixtures - changes were negligible for dry diameters of 0.1 and 0.5 μm, but a reduction from 1.0068 to 1.0063 was seen for the 4-dicarboxylic acid mixture with a dry diameter of 0.05 μm.
The effect of warp tension on the colour of jacquard fabric made with different weaves structures
NASA Astrophysics Data System (ADS)
Karnoub, A.; Kadi, N.; Holmudd, O.; Peterson, J.; Skrifvars, M.
2017-10-01
The aims of this paper is to demonstrate the effect of warp tension on fabric colour for several types of weaves structures, and found a relationship between them. The image analyse technique used to determine the proportion of yarns colour appearance, the advantage of this techniques is the rapidity and reliability. The woven fabric samples are consisting of a polyester warp yarn with continuous filaments and density of 33 end/cm, a polypropylene weft yarn with a density of 24 pick/cm, and the warp tension ranged between 12-22 cN/tex. The experimental results demonstrated the effect of the warp tension on the colour of fabric, and this effect is related to several factors, where the large proportion of warp appearance leads to larger effect on fabric colour. The difference in the value of colour differences ΔEcmc is larger is in the range 16 to 20 cN/tex of warp tension. Using statistical methods, a mathematical model to calculate the amount of the colour difference ΔEcmc caused by the change in warp tension had been proposed.
Surface tension measurement of undercooled liquid Ni-based multicomponent alloys
NASA Astrophysics Data System (ADS)
Chang, J.; Wang, H. P.; Zhou, K.; Wei, B.
2012-09-01
The surface tensions of liquid ternary Ni-5%Cu-5%Fe, quaternary Ni-5%Cu-5%Fe-5%Sn and quinary Ni-5%Cu-5%Fe-5%Sn-5%Ge alloys were determined as a function of temperature by the electromagnetic levitation oscillating drop method. The maximum undercoolings obtained in the experiments are 272 (0.15T L), 349 (0.21T L) and 363 K (0.22T L), respectively. For all the three alloys, the surface tension decreases linearly with the rise of temperature. The surface tension values are 1.799, 1.546 and 1.357 N/m at their liquidus temperatures of 1719, 1644 and 1641 K. Their temperature coefficients are -4.972 × 10-4, -5.057 × 10-4 and -5.385 × 10-4 N/m/K. It is revealed that Sn and Ge are much more efficient than Cu and Fe in reducing the surface tension of Ni-based alloys. The addition of Sn can significantly enlarge the maximum undercooling at the same experimental condition. The viscosity of the three undercooled liquid alloys was also derived from the surface tension data.
Medial malleolar fractures: a biomechanical study of fixation techniques.
Fowler, T Ty; Pugh, Kevin J; Litsky, Alan S; Taylor, Benjamin C; French, Bruce G
2011-08-08
Fracture fixation of the medial malleolus in rotationally unstable ankle fractures typically results in healing with current fixation methods. However, when failure occurs, pullout of the screws from tension, compression, and rotational forces is predictable. We sought to biomechanically test a relatively new technique of bicortical screw fixation for medial malleoli fractures. Also, the AO group recommends tension-band fixation of small avulsion type fractures of the medial malleolus that are unacceptable for screw fixation. A well-documented complication of this technique is prominent symptomatic implants and secondary surgery for implant removal. Replacing stainless steel 18-gauge wire with FiberWire suture could theoretically decrease symptomatic implants. Therefore, a second goal was to biomechanically compare these 2 tension-band constructs. Using a tibial Sawbones model, 2 bicortical screws were compared with 2 unicortical cancellous screws on a servohydraulic test frame in offset axial, transverse, and tension loading. Second, tension-band fixation using stainless steel wire was compared with FiberWire under tensile loads. Bicortical screw fixation was statistically the stiffest construct under tension loading conditions compared to unicortical screw fixation and tension-band techniques with FiberWire or stainless steel wire. In fact, unicortical screw fixation had only 10% of the stiffness as demonstrated in the bicortical technique. In a direct comparison, tension-band fixation using stainless steel wire was statistically stiffer than the FiberWire construct. Copyright 2011, SLACK Incorporated.
POISON SPIDER FIELD CHEMICAL FLOOD PROJECT, WYOMING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Douglas Arnell; Malcolm Pitts; Jie Qi
2004-11-01
A reservoir engineering and geologic study concluded that approximate 7,852,000 bbls of target oil exits in Poison Spider. Field pore volume, OOIP, and initial oil saturation are defined. Potential injection water has a total dissolved solids content of 1,275 mg/L with no measurable divalent cations. If the Lakota water consistently has no measurable cations, the injection water does not require softening to dissolve alkali. Produced water total dissolved solids were 2,835 mg/L and less than 20 mg/L hardness as the sum of divalent cations. Produced water requires softening to dissolve chemicals. Softened produced water was used to dissolve chemicals inmore » these evaluations. Crude oil API gravity varies across the field from 19.7 to 22.2 degrees with a dead oil viscosity of 95 to 280 cp at 75 F. Interfacial tension reductions of up to 21,025 fold (0.001 dyne/cm) were developed with fifteen alkaline-surfactant combinations at some alkali concentration. An additional three alkaline-surfactant combinations reduced the interfacial tension greater than 5,000 fold. NaOH generally produced the lowest interfacial tension values. Interfacial tension values of less than 0.021 dyne/cm were maintained when the solutions were diluted with produced water to about 60%. Na{sub 2}CO{sub 3} when mixed with surfactants did not reduce interfacial tension values to levels at which incremental oil can be expected. NaOH without surfactant interfacial tension reduction is at a level where some additional oil might be recovered. Most of the alkaline-surfactant-polymer solutions producing ultra low interfacial tension gave type II- phase behavior. Only two solutions produced type III phase behavior. Produced water dilution resulted in maintenance of phase type for a number of solutions at produced water dilutions exceeding 80% dilution. The average loss of phase type occurred at 80% dilution. Linear corefloods were performed to determine relative permeability end points, chemical-rock compatibility, polymer injectivity, dynamic chemical retention by rock, and recommended injected polymer concentration. Average initial oil saturation was 0.796 Vp. Produced water injection recovered 53% OOIP leaving an average residual oil saturation of 0.375 Vp. Poison Spider rock was strongly water-wet with a mobility ratio for produced water displacing the 280 cp crude oil of 8.6. Core was not sensitive to either alkali or surfactant injection. Injectivity increased 60 to 80% with alkali plus surfactant injection. Low and medium molecular weight polyacrylamide polymers (Flopaam 3330S and Flopaam 3430S) dissolved in either an alkaline-surfactant solution or softened produced water injected and flowed through Poison Spider rock. Recommended injected polyacrylamide concentration is 2,100 mg/L for both polymers for a unit mobility ratio. Radial corefloods were performed to evaluate oil recovery efficiency of different chemical solutions. Waterflood oil recovery averaged 46.4 OOIP and alkaline-surfactant-polymer flood oil recovery averaged an additional 18.1% OIP for a total of 64.6% OOIP. Oil cut change due to injection of a 1.5 wt% Na{sub 2}CO{sub 3} plus 0.05 wt% Petrostep B-100 plus 0.05 wt% Stepantan AS1216 plus 2100 mg/L Flopaam 3430S was from 2% to a peak of 23.5%. Additional study might determine the impact on oil recovery of a lower polymer concentration. An alkaline-surfactant-polymer flood field implementation outline report was written.« less
Simplified Design Method for Tension Fasteners
NASA Astrophysics Data System (ADS)
Olmstead, Jim; Barker, Paul; Vandersluis, Jonathan
2012-07-01
Tension fastened joints design has traditionally been an iterative tradeoff between separation and strength requirements. This paper presents equations for the maximum external load that a fastened joint can support and the optimal preload to achieve this load. The equations, based on linear joint theory, account for separation and strength safety factors and variations in joint geometry, materials, preload, load-plane factor and thermal loading. The strength-normalized versions of the equations are applicable to any fastener and can be plotted to create a "Fastener Design Space", FDS. Any combination of preload and tension that falls within the FDS represents a safe joint design. The equation for the FDS apex represents the optimal preload and load capacity of a set of joints. The method can be used for preliminary design or to evaluate multiple pre-existing joints.
Field Theoretic Study of Bilayer Membrane Fusion. I. Hemifusion Mechanism
Katsov, K.; Müller, M.; Schick, M.
2004-01-01
Self-consistent field theory is used to determine structural and energetic properties of metastable intermediates and unstable transition states involved in the standard stalk mechanism of bilayer membrane fusion. A microscopic model of flexible amphiphilic chains dissolved in hydrophilic solvent is employed to describe these self-assembled structures. We find that the barrier to formation of the initial stalk is much smaller than previously estimated by phenomenological theories. Therefore its creation it is not the rate-limiting process. The relevant barrier is associated with the rather limited radial expansion of the stalk into a hemifusion diaphragm. It is strongly affected by the architecture of the amphiphile, decreasing as the effective spontaneous curvature of the amphiphile is made more negative. It is also reduced when the tension is increased. At high tension the fusion pore, created when a hole forms in the hemifusion diaphragm, expands without bound. At very low membrane tension, small fusion pores can be trapped in a flickering metastable state. Successful fusion is severely limited by the architecture of the lipids. If the effective spontaneous curvature is not sufficiently negative, fusion does not occur because metastable stalks, whose existence is a seemingly necessary prerequisite, do not form at all. However if the spontaneous curvature is too negative, stalks are so stable that fusion does not occur because the system is unstable either to a phase of stable radial stalks, or to an inverted-hexagonal phase induced by stable linear stalks. Our results on the architecture and tension needed for successful fusion are summarized in a phase diagram. PMID:15326031
NASA Astrophysics Data System (ADS)
Easton, Z. M.; Fuka, D.; Collick, A.; Kleinman, P. J. A.; Auerbach, D.; Sommerlot, A.; Wagena, M. B.
2015-12-01
Topography exerts critical controls on many hydrologic, geomorphologic, and environmental biophysical processes. Unfortunately many watershed modeling systems use topography only to define basin boundaries and stream channels and do not explicitly account for the topographic controls on processes such as soil genesis, soil moisture distributions and hydrological response. We develop and demonstrate a method that uses topography to spatially adjust soil morphological and soil hydrological attributes [soil texture, depth to the C-horizon, saturated conductivity, bulk density, porosity, and the field capacities at 33kpa (~ field capacity) and 1500kpa (~ wilting point) tensions]. In order to test the performance of the method the topographical adjusted soils and standard SSURGO soil (available at 1:20,000 scale) were overlaid on soil pedon pit data in the Grasslands Soil and Water Research Lab in Resiel, TX. The topographically adjusted soils exhibited significant correlations with measurements from the soil pits, while the SSURGO soil data showed almost no correlation to measured data. We also applied the method to the Grasslands Soil and Water Research watershed using the Soil and Water Assessment Tool (SWAT) model to 15 separate fields as a proxy to propagate changes in soil properties into field scale hydrological responses. Results of this test showed that the topographically adjusted soils resulted better model predictions of field runoff in 50% of the field, with the SSURGO soils preforming better in the remainder of the fields. However, the topographically adjusted soils generally predicted baseflow response more accurately, reflecting the influence of these soil properties on non-storm responses. These results indicate that adjusting soil properties based on topography can result in more accurate soil characterization and, in some cases improve model performance.
Mori, Takaharu; Jung, Jaewoon; Sugita, Yuji
2013-12-10
Conformational sampling is fundamentally important for simulating complex biomolecular systems. The generalized-ensemble algorithm, especially the temperature replica-exchange molecular dynamics method (T-REMD), is one of the most powerful methods to explore structures of biomolecules such as proteins, nucleic acids, carbohydrates, and also of lipid membranes. T-REMD simulations have focused on soluble proteins rather than membrane proteins or lipid bilayers, because explicit membranes do not keep their structural integrity at high temperature. Here, we propose a new generalized-ensemble algorithm for membrane systems, which we call the surface-tension REMD method. Each replica is simulated in the NPγT ensemble, and surface tensions in a pair of replicas are exchanged at certain intervals to enhance conformational sampling of the target membrane system. We test the method on two biological membrane systems: a fully hydrated DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine) lipid bilayer and a WALP23-POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membrane system. During these simulations, a random walk in surface tension space is realized. Large-scale lateral deformation (shrinking and stretching) of the membranes takes place in all of the replicas without collapse of the lipid bilayer structure. There is accelerated lateral diffusion of DPPC lipid molecules compared with conventional MD simulation, and a much wider range of tilt angle of the WALP23 peptide is sampled due to large deformation of the POPC lipid bilayer and through peptide-lipid interactions. Our method could be applicable to a wide variety of biological membrane systems.
Ciaccio, Edward J; Hiatt, Mark; Hegyi, Thomas; Drzewiecki, Gary M
2007-01-01
Background Monitoring of the electrocardiogram (ECG) in premature infants with conventional adhesive-backed electrodes can harm their sensitive skin. Use of an electrode belt prevents skin irritation, but the effect of belt pressure on respiratory function is unknown. A strain gauge sensor is described which measures applied belt tension. Method The device frame was comprised of an aluminum housing and slide to minimize the device weight. Velcro tabs connected housing and slide to opposite tabs located at the electrode belt ends. The slide was connected to a leaf spring, to which were bonded two piezoresistive transducers in a half-bridge circuit configuration. The device was tested for linearity and calibrated. The effect on infant respiratory function of constant belt tension in the normal range (30 g–90 g) was determined. Results The mechanical response to a step input was second order (fn = 401 Hz, ζ = 0.08). The relationship between applied tension and output voltage was linear in the range 25–225 gm of applied tension (r2 = 0.99). Measured device sensitivity was 2.18 mV/gm tension using a 5 V bridge excitation voltage. When belt tension was increased in the normal range from 30 gm to 90 gm, there was no significant change in heart rate and most respiratory functions during monitoring. At an intermediate level of tension of 50 gm, pulmonary resistance and work of breathing significantly decreased. Conclusion The mechanical and electrical design of a device for monitoring electrocardiogram electrode belt tension is described. Within the typical range of application tension, cardiovascular and respiratory function are not substantially negatively affected by electrode belt force. PMID:17445262
Moreira, Cleci M.; Meira, Eduardo F.; Vestena, Luis; Stefanon, Ivanita; Vassallo, Dalton V.; Padilha, Alessandra S.
2012-01-01
OBJECTIVES: Tension cost, the ratio of myosin ATPase activity to tension, reflects the economy of tension development in the myocardium. To evaluate the mechanical advantage represented by the tension cost, we studied papillary muscle contractility and the activity of myosin ATPase in the left ventricles in normal and pathophysiological conditions. METHODS: Experimental protocols were performed using rat left ventricles from: (1) streptozotocin-induced diabetic and control Wistar rats; (2) N-nitro-L-arginine methyl ester (L-NAME) hypertensive and untreated Wistar rats; (3) deoxycorticosterone acetate (DOCA) salt-treated, nephrectomized and salt- and DOCA-treated rats; (4) spontaneous hypertensive rats (SHR) and Wistar Kyoto (WKY) rats; (5) rats with myocardial infarction and sham-operated rats. The isometric force, tetanic tension, and the activity of myosin ATPase were measured. RESULTS: The results obtained from infarcted, diabetic, and deoxycorticosterone acetate-salt-treated rats showed reductions in twitch and tetanic tension compared to the control and sham-operated groups. Twitch and tetanic tension increased in the N-nitro-L-arginine methyl ester-treated rats compared with the Wistar rats. Myosin ATPase activity was depressed in the infarcted, diabetic, and deoxycorticosterone acetate salt-treated rats compared with control and sham-operated rats and was increased in N-nitro-L-arginine methyl ester-treated rats. These parameters did not differ between SHR and WKY rats. In the studied conditions (e.g., post-myocardial infarction, deoxycorticosterone acetate salt-induced hypertension, chronic N-nitro-L-arginine methyl ester treatment, and streptozotocin-induced diabetes), a positive correlation between force or plateau tetanic tension and myosin ATPase activity was observed. CONCLUSION: Our results suggest that the myocardium adapts to force generation by increasing or reducing the tension cost to maintain myocardial contractility with a better mechanical advantage. PMID:22666794
Measurement of interfacial tension of immiscible liquid pairs in microgravity
NASA Technical Reports Server (NTRS)
Weinberg, Michael C.; Neilson, George F.; Baertlein, Carl; Subramanian, R. Shankar; Trinh, Eugene H.
1994-01-01
A discussion is given of a containerless microgravity experiment aimed at measuring the interfacial tension of immiscible liquid pairs using a compound drop rotation method. The reasons for the failure to execute such experiments in microgravity are described. Also, the results of post-flight analyses used to confirm our arguments are presented.
Aerodynamic and Nonlinear Dynamic Acoustic Analysis of Tension Asymmetry in Excised Canine Larynges
ERIC Educational Resources Information Center
Devine, Erin E.; Bulleit, Erin E.; Hoffman, Matthew R.; McCulloch, Timothy M.; Jiang, Jack J.
2012-01-01
Purpose: To model tension asymmetry caused by superior laryngeal nerve paralysis (SLNP) in excised larynges and apply perturbation, nonlinear dynamic, and aerodynamic analyses. Method: SLNP was modeled in 8 excised larynges using sutures and weights to mimic cricothyroid (CT) muscle function. Weights were removed from one side to create tension…
Oxygen tension level and human viral infections
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morinet, Frédéric, E-mail: frederic.morinet@sls.aphp.fr; Université Denis Diderot, Sorbonne Paris Cité Paris, Paris; Casetti, Luana
2013-09-15
The role of oxygen tension level is a well-known phenomenon that has been studied in oncology and radiotherapy since about 60 years. Oxygen tension may inhibit or stimulate propagation of viruses in vitro as well as in vivo. In turn modulating oxygen metabolism may constitute a novel approach to treat viral infections as an adjuvant therapy. The major transcription factor which regulates oxygen tension level is hypoxia-inducible factor-1 alpha (HIF-1α). Down-regulating the expression of HIF-1α is a possible method in the treatment of chronic viral infection such as human immunodeficiency virus infection, chronic hepatitis B and C viral infections andmore » Kaposi sarcoma in addition to classic chemotherapy. The aim of this review is to supply an updating concerning the influence of oxygen tension level in human viral infections and to evoke possible new therapeutic strategies regarding this environmental condition. - Highlights: • Oxygen tension level regulates viral replication in vitro and possibly in vivo. • Hypoxia-inducible factor 1 (HIF-1α) is the principal factor involved in Oxygen tension level. • HIF-1α upregulates gene expression for example of HIV, JC and Kaposi sarcoma viruses. • In addition to classical chemotherapy inhibition of HIF-1α may constitute a new track to treat human viral infections.« less
Mode I Cohesive Law Characterization of Through-Crack Propagation in a Multidirectional Laminate
NASA Technical Reports Server (NTRS)
Bergan, Andrew C.; Davila, Carlos G.; Leone, Frank A.; Awerbuch, Jonathan; Tan, Tein-Min
2014-01-01
A method is proposed and assessed for the experimental characterization of through-the-thickness crack propagation in multidirectional composite laminates with a cohesive law. The fracture toughness and crack opening displacement are measured and used to determine a cohesive law. Two methods of computing fracture toughness are assessed and compared. While previously proposed cohesive characterizations based on the R-curve exhibit size effects, the proposed approach results in a cohesive law that is a material property. The compact tension specimen configuration is used to propagate damage while load and full-field displacements are recorded. These measurements are used to compute the fracture toughness and crack opening displacement from which the cohesive law is characterized. The experimental results show that a steady-state fracture toughness is not reached. However, the proposed method extrapolates to steady-state and is demonstrated capable of predicting the structural behavior of geometrically-scaled specimens.
Exact Solution for Capillary Bridges Properties by Shooting Method
NASA Astrophysics Data System (ADS)
Qiang-Nian, Li; Jia-Qi, Zhang; Feng-Xi, Zhou
2017-04-01
The investigation of liquid bridge force acting between wet particles has great significance in many fields. In this article, the exact solution of capillary force between two unequal-sized spherical particles is investigated. Firstly, The Young-Laplace equation with moving boundary is converted into a set of ordinary differential equations with two fix point boundary using variable substitution technique, in which the gravity effects have been neglected. The geometry of the liquid bridge between two particles is solved by shooting method. After that, the gorge method is applied to calculate the capillary-bridge force that is consists of contributions from the capillary suction and surface tension. Finally, the effect of various parameters including distance between two spheres, radii of spheres, and contact angles on the capillary force are investigated. It is shown that the presented approach is an efficient and accurate algorithm for capillary force between two particles in complex situations.
Fraysse, François; Milanese, Steven; Thewlis, Dominic
2016-12-01
Load restraint systems in automobile transport utilise tie-down lashings placed over the car's tyres, which are tensioned manually by the operator using a ratchet assembly. This process has been identified as a significant manual handling injury risk. The aim of this study was to gain insight on the current practices associated with tie-down lashings operation, and identify the gaps between current and optimal practice. We approached this with qualitative and quantitative assessments and one numerical simulation to establish: (i) insight into the factors involved in ratcheting; (ii) the required tension to hold the car on the trailer; and (iii) the tension achieved by drivers in practice and associated joint loads. We identified that the method recommended to the drivers was not used in practice. Drivers instead tensioned the straps to the maximum of their capability, leading to over-tensioning and mechanical overload at the shoulder and elbow. We identified the postures and strategies that resulted in the lowest loads on the upper body during ratcheting (using both hands and performing the task with their full body). This research marks the first step towards the development of a training programme aiming at changing practice to reduce injury risks associated with the operation of tie-down lashings in the automobile transport industry. Practitioner Summary: The study investigated current practice associated with the operation of tie-down lashings through qualitative (interviews) and quantitative (biomechanical analysis) methods. Operators tended to systematically over-tension the lashings and consequently overexert, increasing injury risks.
The essence of the Blandford-Znajek process
NASA Astrophysics Data System (ADS)
Kinoshita, Shunichiro; Igata, Takahisa
2018-03-01
From a spacetime perspective, the dynamics of magnetic field lines of force-free electromagnetic fields can be rewritten into a quite similar form for the dynamics of strings, i.e., dynamics of "field sheets". Using this formalism, we explicitly show that the field sheets of stationary and axisymmetric force-free electromagnetic fields have identical intrinsic properties to the world sheets of rigidly rotating Nambu-Goto strings. Thus, we conclude that the Blandford-Znajek process is kinematically identical to an energy-extraction mechanism by the Nambu-Goto string with an effective magnetic tension.
Human Uterine Wall Tension Trajectories and the Onset of Parturition
Sokolowski, Peter; Saison, Francis; Giles, Warwick; McGrath, Shaun; Smith, David; Smith, Julia; Smith, Roger
2010-01-01
Uterine wall tension is thought to be an important determinant of the onset of labor in pregnant women. We characterize human uterine wall tension using ultrasound from the second trimester of pregnancy until parturition and compare preterm, term and twin pregnancies. A total of 320 pregnant women were followed from first antenatal visit to delivery during the period 2000–2004 at the John Hunter Hospital, NSW, Australia. The uterine wall thickness, length, anterior-posterior diameter and transverse diameter were determined by serial ultrasounds. Subjects were divided into three groups: women with singleton pregnancies and spontaneous labor onset, either preterm or term and women with twin pregnancies. Intrauterine pressure results from the literature were combined with our data to form trajectories for uterine wall thickness, volume and tension for each woman using the prolate ellipsoid method and the groups were compared at 20, 25 and 30 weeks gestation. Uterine wall tension followed an exponential curve, with results increasing throughout pregnancy with the site of maximum tension on the anterior wall. For those delivering preterm, uterine wall thickness was increased compared with term. For twin pregnancies intrauterine volume was increased compared to singletons (), but wall thickness was not. There was no evidence for increased tension in those delivering preterm or those with twin gestations. These data are not consistent with a role for high uterine wall tension as a causal factor in preterm spontaneous labor in singleton or twin gestations. It seems likely that hormonal differences in multiple gestations are responsible for increased rates of preterm birth in this group rather than increased tension. PMID:20585649
Uncertainty quantification of voice signal production mechanical model and experimental updating
NASA Astrophysics Data System (ADS)
Cataldo, E.; Soize, C.; Sampaio, R.
2013-11-01
The aim of this paper is to analyze the uncertainty quantification in a voice production mechanical model and update the probability density function corresponding to the tension parameter using the Bayes method and experimental data. Three parameters are considered uncertain in the voice production mechanical model used: the tension parameter, the neutral glottal area and the subglottal pressure. The tension parameter of the vocal folds is mainly responsible for the changing of the fundamental frequency of a voice signal, generated by a mechanical/mathematical model for producing voiced sounds. The three uncertain parameters are modeled by random variables. The probability density function related to the tension parameter is considered uniform and the probability density functions related to the neutral glottal area and the subglottal pressure are constructed using the Maximum Entropy Principle. The output of the stochastic computational model is the random voice signal and the Monte Carlo method is used to solve the stochastic equations allowing realizations of the random voice signals to be generated. For each realization of the random voice signal, the corresponding realization of the random fundamental frequency is calculated and the prior pdf of this random fundamental frequency is then estimated. Experimental data are available for the fundamental frequency and the posterior probability density function of the random tension parameter is then estimated using the Bayes method. In addition, an application is performed considering a case with a pathology in the vocal folds. The strategy developed here is important mainly due to two things. The first one is related to the possibility of updating the probability density function of a parameter, the tension parameter of the vocal folds, which cannot be measured direct and the second one is related to the construction of the likelihood function. In general, it is predefined using the known pdf. Here, it is constructed in a new and different manner, using the own system considered.
NASA Astrophysics Data System (ADS)
Takeda, Osamu; Iwamoto, Hirone; Sakashita, Ryota; Iseki, Chiaki; Zhu, Hongmin
2017-07-01
A surface tension measurement method based on the maximum bubble pressure (MBP) method was developed in order to precisely determine the surface tension of molten silicates in this study. Specifically, the influence of viscosity on surface tension measurements was quantified, and the criteria for accurate measurement were investigated. It was found that the MBP apparently increased with an increase in viscosity. This was because extra pressure was required for the flowing liquid inside the capillary due to viscous resistance. It was also expected that the extra pressure would decrease by decreasing the fluid velocity. For silicone oil with a viscosity of 1000 \\hbox {mPa}{\\cdot }\\hbox {s}, the error on the MBP could be decreased to +1.7 % by increasing the bubble detachment time to 300 \\hbox {s}. However, the error was still over 1 % even when the bubble detachment time was increased to 600 \\hbox {s}. Therefore, a true value of the MBP was determined by using a curve-fitting technique with a simple relaxation function, and that was succeeded for silicone oil at 1000 \\hbox {mPa}{\\cdot } \\hbox {s} of viscosity. Furthermore, for silicone oil with a viscosity as high as 10 000 \\hbox {mPa}{\\cdot }\\hbox {s}, the apparent MBP approached a true value by interrupting the gas introduction during the pressure rising period and by re-introducing the gas at a slow flow rate. Based on the fundamental investigation at room temperature, the surface tension of the \\hbox {SiO}2-40 \\hbox {mol}%\\hbox {Na}2\\hbox {O} and \\hbox {SiO}2-50 \\hbox {mol}%\\hbox {Na}2\\hbox {O} melts was determined at a high temperature. The obtained value was slightly lower than the literature values, which might be due to the influence of viscosity on surface tension measurements being removed in this study.
Interactions of a Charged Nanoparticle with a Lipid Membrane: Implications for Gene Delivery
Ting, Christina L.; Wang, Zhen-Gang
2011-01-01
We employ self-consistent field theory to study the thermodynamics of membrane-particle interactions in the context of gene delivery systems, with the aim to guide the design of dendrimers that can overcome the endosomal escape barrier by inserting into membranes and creating pores. We consider the interaction between a model polyamidoamine dendrimer and a membrane under controlled tension as a function of the separation between the dendrimer and the membrane. In all the cases we have studied, the lowest free energy state corresponds to the membrane partially wrapping the dendrimer. However, with moderate tension, we find that a G5 (or larger) generation dendrimer, through thermal fluctuation, can induce the formation of metastable pores. These metastable pores are subsequently shown to significantly lower the critical tension necessary for membrane rupture, thus possibly enhancing the release of the trapped genetic material from the endosome. PMID:21354402
Sasaki, Satoshi; Iida, Yoshinori
2009-06-01
The effect of kinematic viscosity and surface tension of the solution was investigated by adding catalase, glucose oxidase, or glucose on the bubble movement in a catalase-hydrogen peroxide system. The kinematic viscosity was measured using a Cannon-Fenske kinematic viscometer. The surface tension of the solution was measured by the Wilhelmy method using a self-made apparatus. The effects of the hole diameter/cell wall thickness, catalase concentration, glucose concentration, and glucose oxidase concentration on the kinematic viscosity, surface tension, and bubble take-off period were investigated. With our system, the effects of the changes in the solution materiality on the bubble take-off period were proven to be very small in comparison to the change in the oxygen-producing rate.
Bonanos, Peter
1983-01-01
A toroidal magnet for confining a high magnetic field for use in fusion reactor research and nuclear particle detection. The magnet includes a series of conductor elements arranged about and fixed at its small major radius portion to the outer surface of a central cylindrical support each conductor element having a geometry such as to maintain the conductor elements in pure tension when a high current flows therein, and a support assembly which redistributes all or part of the tension which would otherwise arise in the small major radius portion of each coil element to the large major radius portion thereof.
Essential tension: specialization with broad and general training in psychology.
Roberts, Michael C
2006-11-01
The practice fields of psychology develop through specialization in training and education. The recognized specialties play a major role in developing new opportunities for professional psychology and providing quality services for the public. The essential tension comes from the balance of innovation and tradition and, in professional psychology, from the balance of fragmentation and unification. As an example, specialization in clinical child psychology is integrated within the broad and general traditions. The greater degree of focused science and practice in a specialty is the logical consequence of advances of the discipline and profession of psychology. ((c) 2006 APA, all rights reserved).
NASA Technical Reports Server (NTRS)
Yang, Charles; Sun, Wenjun; Tomblin, John S.; Smeltzer, Stanley S., III
2007-01-01
A semi-analytical method for determining the strain energy release rate due to a prescribed interface crack in an adhesively-bonded, single-lap composite joint subjected to axial tension is presented. The field equations in terms of displacements within the joint are formulated by using first-order shear deformable, laminated plate theory together with kinematic relations and force equilibrium conditions. The stress distributions for the adherends and adhesive are determined after the appropriate boundary and loading conditions are applied and the equations for the field displacements are solved. Based on the adhesive stress distributions, the forces at the crack tip are obtained and the strain energy release rate of the crack is determined by using the virtual crack closure technique (VCCT). Additionally, the test specimen geometry from both the ASTM D3165 and D1002 test standards are utilized during the derivation of the field equations in order to correlate analytical models with future test results. The system of second-order differential field equations is solved to provide the adherend and adhesive stress response using the symbolic computation tool, Maple 9. Finite element analyses using J-integral as well as VCCT were performed to verify the developed analytical model. The finite element analyses were conducted using the commercial finite element analysis software ABAQUS. The results determined using the analytical method correlated well with the results from the finite element analyses.
Nonequilibrium Interfacial Tension in Simple and Complex Fluids
NASA Astrophysics Data System (ADS)
Truzzolillo, Domenico; Mora, Serge; Dupas, Christelle; Cipelletti, Luca
2016-10-01
Interfacial tension between immiscible phases is a well-known phenomenon, which manifests itself in everyday life, from the shape of droplets and foam bubbles to the capillary rise of sap in plants or the locomotion of insects on a water surface. More than a century ago, Korteweg generalized this notion by arguing that stresses at the interface between two miscible fluids act transiently as an effective, nonequilibrium interfacial tension, before homogenization is eventually reached. In spite of its relevance in fields as diverse as geosciences, polymer physics, multiphase flows, and fluid removal, experiments and theoretical works on the interfacial tension of miscible systems are still scarce, and mostly restricted to molecular fluids. This leaves crucial questions unanswered, concerning the very existence of the effective interfacial tension, its stabilizing or destabilizing character, and its dependence on the fluid's composition and concentration gradients. We present an extensive set of measurements on miscible complex fluids that demonstrate the existence and the stabilizing character of the effective interfacial tension, unveil new regimes beyond Korteweg's predictions, and quantify its dependence on the nature of the fluids and the composition gradient at the interface. We introduce a simple yet general model that rationalizes nonequilibrium interfacial stresses to arbitrary mixtures, beyond Korteweg's small gradient regime, and show that the model captures remarkably well both our new measurements and literature data on molecular and polymer fluids. Finally, we briefly discuss the relevance of our model to a variety of interface-driven problems, from phase separation to fracture, which are not adequately captured by current approaches based on the assumption of small gradients.
Hu, Bin; Kieweg, Sarah L
2012-07-15
Gravity-driven thin film flow is of importance in many fields, as well as for the design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. There have been many prior works on gravity-driven thin films. However, the incorporation of surface tension effect has not been well studied for non-Newtonian fluids. After surface tension effect was incorporated into our 2D (i.e. 1D spreading) power-law model, we found that surface tension effect not only impacted the spreading speed of the microbicide gel, but also had an influence on the shape of the 2D spreading profile. We observed a capillary ridge at the front of the fluid bolus. Previous literature shows that the emergence of a capillary ridge is strongly related to the contact line fingering instability. Fingering instabilities during epithelial coating may change the microbicide gel distribution and therefore impact how well it can protect the epithelium. In this study, we focused on the capillary ridge in 2D flow and performed a series of simulations and showed how the capillary ridge height varies with other parameters, such as surface tension coefficient, inclination angle, initial thickness, and power-law parameters. As shown in our results, we found that capillary ridge height increased with higher surface tension, steeper inclination angle, bigger initial thickness, and more Newtonian fluids. This study provides the initial insights of how to optimize the flow and prevent the appearance of a capillary ridge and fingering instability.
Collapse of Corroded Pipelines under Combined Tension and External Pressure
Ye, Hao; Yan, Sunting; Jin, Zhijiang
2016-01-01
In this work, collapse of corroded pipeline under combined external pressure and tension is investigated through numerical method. Axially uniform corrosion with symmetric imperfections is firstly considered. After verifying with existing experimental results, the finite element model is used to study the effect of tension on collapse pressure. An extensive parametric study is carried out using Python script and FORTRAN subroutine to investigate the influence of geometric parameters on the collapse behavior under combined loads. The results are used to develop an empirical equation for estimating the collapse pressure under tension. In addition, the effects of loading path, initial imperfection length, yielding anisotropy and corrosion defect length on the collapse behavior are also investigated. It is found that tension has a significant influence on collapse pressure of corroded pipelines. Loading path and anisotropic yielding are also important factors affecting the collapse behavior. For pipelines with relatively long corrosion defect, axially uniform corrosion models could be used to estimate the collapse pressure. PMID:27111544
Chambers, Lori A; Jackson, Randy; Worthington, Catherine; Wilson, Ciann L; Tharao, Wangari; Greenspan, Nicole R; Masching, Renee; Pierre-Pierre, Valérie; Mbulaheni, Tola; Amirault, Marni; Brownlee, Patrick
2018-01-01
This article summarizes our deepened understanding of decolonizing research with, for, and by Indigenous peoples and peoples of African descent that emerged from conducting a scoping review of the methodological literature and reflecting on our review process. Although our review identified decolonizing methodologies as a promising approach, we questioned if our scoping review process engaged in decolonizing knowing. To unpack the epistemological tensions between decolonizing knowing and Western ways of doing scoping reviews, we engaged in individual and collective reflective processes- dialoguing with the tensions-moving from individual immersion in the literature to transformative dialogues among the team. In reflecting upon our tensions with the scoping review process, themes that emerged included (a) ontological/epistemological disjunctures, (b) tensions with concepts and language, and (c) relationships with the literature and beyond. This reflexive process provides valuable insight into ways in which review methods might be made a decolonizing research experience.
The Surface-Tension Method of Visually Inspecting Honeycomb-Core Sandwich Plates
NASA Technical Reports Server (NTRS)
Katzoff, Samuel
1960-01-01
When one face of a metal-honeycomb-core sandwich plate is heated or cooled relative to the other, heat transfer through the core causes the temperature on each face at the lines of contact with the core to be slightly different from that on the rest of the face. If a thin liquid film is applied to the face, the variation of surface tension with temperature causes the liquid to move from warmer to cooler areas and thus to develop a pattern corresponding to the temperature pattern on the face. Irregularities in the pattern identify the locations where the core is not adequately bonded to the face sheet. The pattern is easily observed when a fluorescent liquid is used and illumination is by means of ultraviolet light. Observation in ordinary light is also possible when a very deeply colored liquid is used. A method based on the use of a thermographic phosphor to observe the temperature pattern was found to be less sensitive than the surface-tension method. A sublimation method was found to be not only less sensitive but also far more troublesome.
Prathama, Aditya Heru; Pantano, Carlos
2017-08-09
Here, we study the inviscid linear stability of a vertical interface separating two fluids of different densities and subject to a gravitational acceleration field parallel to the interface. In this arrangement, the two free streams are constantly accelerated, which means that the linear stability analysis is not amenable to Fourier or Laplace solution in time. Instead, we derive the equations analytically by the initial-value problem method and express the solution in terms of the well-known parabolic cylinder function. The results, which can be classified as an accelerating Kelvin–Helmholtz configuration, show that even in the presence of surface tension, the interfacemore » is unconditionally unstable at all wavemodes. This is a consequence of the ever increasing momentum of the free streams, as gravity accelerates them indefinitely. The instability can be shown to grow as the exponential of a quadratic function of time.« less
Sloman, Katherine A; Mandic, Milica; Todgham, Anne E; Fangue, Nann A; Subrt, Peter; Richards, Jeffrey G
2008-03-01
Animals living in the intertidal zone experience regular, predictable fluctuations in physical parameters including temperature, oxygen and salinity and rely on behavioural, physiological and biochemical mechanisms to cope with environmental variation. In the present study, behavioural strategies induced by aquatic hypoxia (e.g. emergence) were performed at similar oxygen tensions across laboratory, mesocosm and field environments; the number of individuals performing these behaviours at any one time was similar in mesocosms and the field. The use of aquatic surface respiration (ASR) was more plastic than emergence behaviour, occurring at a lower oxygen tension in juveniles than adults and being influenced by the addition of alarm substance. Oxygen uptake was lower in air than in water in adults but, in contrast, oxygen uptake was not influenced by the respiratory medium in juveniles. In the laboratory, 72 h of forced emergence did not affect whole body concentrations of lactate but when ASR and emergence were prevented within mesocosm environments there was a significant elevation of lactate. The present study highlights the benefits of transcending traditional laboratory/field boundaries allowing the responses of laboratory-held animals to environmental fluctuation to be integrated with how these animals perform in their natural environment.
Supernovae anisotropy power spectrum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ghodsi, Hoda; Baghram, Shant; Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr
2017-10-01
We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28°more » which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.« less
NASA Astrophysics Data System (ADS)
Vu, Tuan V.; Papavassiliou, Dimitrios V.
2018-05-01
In order to investigate the interfacial region between oil and water with the presence of surfactants using coarse-grained computations, both the interaction between different components of the system and the number of surfactant molecules present at the interface play an important role. However, in many prior studies, the amount of surfactants used was chosen rather arbitrarily. In this work, a systematic approach to develop coarse-grained models for anionic surfactants (such as sodium dodecyl sulfate) and nonionic surfactants (such as octaethylene glycol monododecyl ether) in oil-water interfaces is presented. The key is to place the theoretically calculated number of surfactant molecules on the interface at the critical micelle concentration. Based on this approach, the molecular description of surfactants and the effects of various interaction parameters on the interfacial tension are investigated. The results indicate that the interfacial tension is affected mostly by the head-water and tail-oil interaction. Even though the procedure presented herein is used with dissipative particle dynamics models, it can be applied for other coarse-grained methods to obtain the appropriate set of parameters (or force fields) to describe the surfactant behavior on the oil-water interface.
Density, Molar Volume, and Surface Tension of Liquid Al-Ti
NASA Astrophysics Data System (ADS)
Wessing, Johanna Jeanette; Brillo, Jürgen
2017-02-01
Al-Ti-based alloys are of enormous technical relevance due to their specific properties. For studies in atomic dynamics, surface physics and industrial processing the precise knowledge of the thermophysical properties of the liquid phase is crucial. In the present work, we systematically measure mass density, ρ (g cm-3), and the surface tension, γ (N m-1), as functions of temperature, T, and compositions of binary Al-Ti melts. Electromagnetic levitation in combination with the optical dilatometry method is used for density measurements and the oscillating drop method for surface tension measurements. It is found that, for all compositions, density and surface tension increase linearly upon decreasing temperature in the liquid phase. Within the Al-Ti system, we find the largest values for pure titanium and the smallest for pure aluminum, which amount to ρ(L,Ti) = 4.12 ± 0.04 g cm-3 and γ(L,Ti) = 1.56 ± 0.02 N m-1; and ρ(L,Al) = 2.09 ± 0.01 g cm-3 and γ(L,Al) = 0.87 ± 0.06 N m-1, respectively. The data are analyzed concerning the temperature coefficients, ρ T and γ T, excess molar volume, V E, excess surface tension, γ E, and surface segregation of the surface active component, Al. The results are compared with thermodynamic models. Generally, it is found that Al-Ti is a highly nonideal system.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2017-09-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
A methodology for modeling surface effects on stiff and soft solids
NASA Astrophysics Data System (ADS)
He, Jin; Park, Harold S.
2018-06-01
We present a computational method that can be applied to capture surface stress and surface tension-driven effects in both stiff, crystalline nanostructures, like size-dependent mechanical properties, and soft solids, like elastocapillary effects. We show that the method is equivalent to the classical Young-Laplace model. The method is based on converting surface tension and surface elasticity on a zero-thickness surface to an initial stress and corresponding elastic properties on a finite thickness shell, where the consideration of geometric nonlinearity enables capturing the out-of-plane component of the surface tension that results for curved surfaces through evaluation of the surface stress in the deformed configuration. In doing so, we are able to use commercially available finite element technology, and thus do not require consideration and implementation of the classical Young-Laplace equation. Several examples are presented to demonstrate the capability of the methodology for modeling surface stress in both soft solids and crystalline nanostructures.
Sanborn, B.; Song, B.; Nishida, E.
2017-11-02
In order to understand interfacial interaction of a bi-material during an impact loading event, the dynamic friction coefficient is one of the key parameters that must be characterized and quantified. In this study, a new experimental method to determine the dynamic friction coefficient between two metals was developed by using a Kolsky tension bar and a custom-designed friction fixture. Polyvinylidene fluoride (PVDF) force sensors were used to measure the normal force applied to the friction tribo pairs and the friction force was measured with conventional Kolsky tension bar method. To evaluate the technique, the dynamic friction coefficient between 4340 steelmore » and 7075-T6 aluminum was investigated at an impact speed of approximately 8 m/s. Additionally, the dynamic friction coefficient of the tribo pairs with varied surface roughness was also investigated. The data suggest that higher surface roughness leads to higher friction coefficients at the same speed of 8 m/s.« less
Attempts at estimating mixed venous carbon dioxide tension by the single-breath method.
Ohta, H; Takatani, O; Matsuoka, T
1989-01-01
The single-breath method was originally proposed by Kim et al. [1] for estimating the blood carbon dioxide tension and cardiac output. Its reliability has not been proven. The present study was undertaken, using dogs, to compare the mixed venous carbon dioxide tension (PVCO2) calculated by the single-breath method with the PVCO2 measured in mixed venous blood, and to evaluate the influence of variations in the exhalation duration and the volume of expired air usually discarded from computations as the deadspace. Among the exhalation durations of 15, 30 and 45 s tested, the 15 s duration was found to be too short to obtain an analyzable O2-CO2 curve, but at either 30 or 45 s, the calculated values of PVCO2 were comparable to the measured PVCO2. A significant agreement between calculated and measured PVCO2 was obtained when the expired gas with PCO2 less than 22 Torr was considered as deadspace gas.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prasetyo, Retno Agung, E-mail: prasetyo.agung@bmkg.go.id; Heryandoko, Nova; Afnimar
The source mechanism of earthquake on July 2, 2013 was investigated by using moment tensor inversion. The result also compared by the field observation. Five waveform data of BMKG’s seismic network used to estimate the mechanism of earthquake, namely ; KCSI, MLSI, LASI, TPTI and SNSI. Main shock data taken during 200 seconds and filtered by using Butterworth band pass method from 0.03 to 0.05 Hz of frequency. Moment tensor inversion method is applied based on the point source assumption. Furthermore, the Green function calculated using the extended reflectivity method which modified by Kohketsu. The inversion result showed a strike-slipmore » faulting, where the nodal plane strike/dip/rake (124/80.6/152.8) and minimum variance value 0.3285 at a depth of 6 km (centroid). It categorized as a shallow earthquake. Field observation indicated that the building orientated to the east. It can be related to the southwest of dip direction which has 152 degrees of slip. As conclusion, the Pressure (P) and Tension (T) axis described dominant compression is happen from the south which is caused by pressure of the Indo-Australian plate.« less
Strength of surgical wire fixation. A laboratory study.
Guadagni, J R; Drummond, D S
1986-08-01
Because of the frequent use of stainless steel wire in spinal surgery and to augment fracture fixation, several methods of securing wire fixation were tested in the laboratory to determine the relative strength of fixation. Any method of fixation stronger than the yield strength of the wire is sufficient. Square knots, knot twists, symmetric twists, and the AO loop-tuck techniques afforded acceptable resistance against tension loads, but the wire wrap and AO loop technique were unacceptable. The double symmetric twist, which is frequently used for tension banding, was barely acceptable. The symmetric twist technique was the most practical because it is strong enough, efficient in maintaining tension applied during fixation, and least likely to cause damage to the wire. To optimize the fixation strength of the symmetrical twist, at least two twists are required at a reasonably tight pitch.
Asymptotic analysis of stability for prismatic solids under axial loads
NASA Astrophysics Data System (ADS)
Scherzinger, W.; Triantafyllidis, N.
1998-06-01
This work addresses the stability of axially loaded prismatic beams with any simply connected crosssection. The solids obey a general class of rate-independent constitutive laws, and can sustain finite strains in either compression or tension. The proposed method is based on multiple scale asymptotic analysis, and starts with the full Lagrangian formulation for the three-dimensional stability problem, where the boundary conditions are chosen to avoid the formation of boundary layers. The calculations proceed by taking the limit of the beam's slenderness parameter, ɛ (ɛ 2 ≡ area/length 2), going to zero, thus resulting in asymptotic expressions for the critical loads and modes. The analysis presents a consistent and unified treatment for both compressive (buckling) and tensile (necking) instabilities, and is carried out explicitly up to o( ɛ4) in each case. The present method circumvents the standard structural mechanics approach for the stability problem of beams which requires the choice of displacement and stress field approximations in order to construct a nonlinear beam theory. Moreover, this work provides a consistent way to calculate the effect of the beam's slenderness on the critical load and mode to any order of accuracy required. In contrast, engineering theories give accurately the lowest order terms ( O( ɛ2)—Euler load—in compression or O(1)—maximum load—in tension) but give only approximately the next higher order terms, with the exception of simple section geometries where exact stability results are available. The proposed method is used to calculate the critical loads and eigenmodes for bars of several different cross-sections (circular, square, cruciform and L-shaped). Elastic beams are considered in compression and elastoplastic beams are considered in tension. The O( ɛ2) and O( ɛ4) asymptotic results are compared to the exact finite element calculations for the corresponding three-dimensional prismatic solids. The O( ɛ4) results give significant improvement over the O( ɛ2) results, even for extremely stubby beams, and in particular for the case of cross-sections with commensurate dimensions.
Using action research within a school of nursing: exposing tensions in ideologies.
McAllister, M; Stockhausen, L
2001-01-01
This paper examines and critically reflects on a recent curriculum evaluation that took place in 1999 within a school of nursing. Critical theory, and in particular action research, was chosen as an approach for the research. The method aimed to foster participation and reveal and problematise aspects of nursing education which had become taken for granted. Through the process of action research a number of tensions and challenges were revealed. The exposed tensions and challenges are discussed and reframed so that they offer potential for renewed commitment to nursing education, rather than continued constraint and conformity.
Flow analysis in a vane-type surface tension propellant tank
NASA Astrophysics Data System (ADS)
Yu, A.; Ji, B.; Zhuang, B. T.; Hu, Q.; Luo, X. W.; Y Xu, H.
2013-12-01
Vane-type surface tension tanks are widely used as the propellant management devices in spacecrafts. This paper treats the two-phase flow inside a vane-type surface tension tank. The study indicates that the present numerical methods such as time-dependent Navier-Stokes equations, VOF model can reasonably predict the flow inside a propellant tank. It is clear that the vane geometry has important effects on transmission performance of the liquid. for a vane type propellant tank, the vane having larger width, folding angle, height of folded side and clearance is preferable if possible.
Evaluation of the composite wing girder bridge at Bear Creek.
DOT National Transportation Integrated Search
1984-11-01
This report documents the construction monitoring and subsequent field testing : to evaluate the performance of an innovative nloose-fit" composite post-tensioned : concrete wing girder bridge constructed over Bear Creek, south of Austin, Texas. : Th...
Wagenblass, S; Schone, R
2001-09-01
A mental illness of parents brings up a high burden for the affected children. The professionals working in psychiatry and social work are getting a rising knowledge of the specific problems these children have. Anyway, there are only a few useful treatments offered for this group of people. There are a lot of reasons for this lag in take care of. It's not only based on the financial situation or the personnel structure which must be mentioned as reasons for children of parents with mental illness for not asking for help. It's also the incomplete knowledge of the caregivers. But first of all the writer wants to show that the tension in this working field brings up the main problems. For solving these problems the article gives some advice for crossing over the borderlines and build up a communication between the institutions which are involved.
Control of Meridional Flow in Circular Cylinders by a Travelling Axial Magnetic Field
NASA Technical Reports Server (NTRS)
Mazuruk, K.; Ramachandran, N.; Volz, M. P.
1999-01-01
Convective flow in a Bridgman or float zone configuration significantly affects the interface shape and segregation phenomena. While the primary causative factor for this flow is buoyancy induced convection in an enclosed Bridgman melt, the presence of a free surface gives rise to surface tension driven flows in the floating zone processing of melts. It is of interest to curtail these flows in order to realize near quiescent growth conditions that have shown to result in crystals with good longitudinal and radial homogeneity and thereby of better overall quality. While buoyancy effects can be reduced by careful processing in a low gravity (space) environment, the reduction of Marangoni flows due to surface tension variations is not that straight forward. Attempts have been made with some limited success with the use of external fields to affect the melt thermo-fluid behavior. The use of a static magnetic field that reduces convective contamination through the effects of a non-intrusively induced, dissipative Lorentz force in an electrically conducting melt is one such approach. Experiments have shown that axial fields of the order of 5 Tesla can significantly eliminate convection and yield close to diffusion limited crystal growth conditions. The generation and use of such high magnetic fields require substantial hardware and incur significant costs for its operation. Lately, the use of rotating magnetic fields has been tested in semiconductor crystal growth. The method is fairly well known and commonly used in metal processing but its adaptation to crystal growth of semiconductors is fairly recent. The elegance of the technique rests in its low power requirement (typically 10-20 milli-Tesla at 50-400 Hz) and its efficacy in curtailing deleterious temperature fluctuations in the melt. A rotating magnetic field imposes a rotational force and thereby induces a circulation within the melt that tends to dominate other sporadic convective effects. Thus a known low level of convective flow is introduced into the system. A new novel variation of the Lorentz force mechanism is proposed and investigated in this study. Since one of the desired process conditions in melt crystal growth is the minimization of convective effects, this investigation examines the use of an external field of magnetic origin to counteract existing convective flow within the melt. This is accomplished by utilizing a running or traveling axial magnetic wave in the system. The concept is similar to the use of vibrational means in order to induce streaming flows that oppose buoyant or surface tension driven convection in the system. The rotation direction as well as the magnitude (strength) of this circulation can be easily controlled by external inputs thus affording a direct means of controlling the developing shape of the crystallizing front (interface). The theoretical model of this technique is fully developed and presented in this paper. Results from the solution of the developed governing equations and boundary conditions are also presented. An experimental demonstration of the concept is presented through the suppression of natural convective flow in a mercury column. Implications to crystal growth systems will be fully explored in the final manuscript.
76 FR 50881 - Airworthiness Directives; M7 Aerospace LP Airplanes
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-17
... interconnect primary control cables, and checking and setting of flight control cable tension. This AD was prompted by a report of a failure of a rudder control cable. We are issuing this AD to correct the unsafe... paragraphs (g)(2) or (h)(1) of this AD, check (set) flight control cable tension. (i) Alternative Methods of...
Danov, Krassimir D; Stanimirova, Rumyana D; Kralchevsky, Peter A; Marinova, Krastanka G; Stoyanov, Simeon D; Blijdenstein, Theodorus B J; Cox, Andrew R; Pelan, Eddie G
2016-07-01
Here, we review the principle and applications of two recently developed methods: the capillary meniscus dynamometry (CMD) for measuring the surface tension of bubbles/drops, and the capillary bridge dynamometry (CBD) for quantifying the bubble/drop adhesion to solid surfaces. Both methods are based on a new data analysis protocol, which allows one to decouple the two components of non-isotropic surface tension. For an axisymmetric non-fluid interface (e.g. bubble or drop covered by a protein adsorption layer with shear elasticity), the CMD determines the two different components of the anisotropic surface tension, σs and σφ, which are acting along the "meridians" and "parallels", and vary throughout the interface. The method uses data for the instantaneous bubble (drop) profile and capillary pressure, but the procedure for data processing is essentially different from that of the conventional drop shape analysis (DSA) method. In the case of bubble or drop pressed against a substrate, which forms a capillary bridge, the CBD method allows one to determine also the capillary-bridge force for both isotropic (fluid) and anisotropic (solidified) adsorption layers. The experiments on bubble (drop) detachment from the substrate show the existence of a maximal pulling force, Fmax, that can be resisted by an adherent fluid particle. Fmax can be used to quantify the strength of adhesion of bubbles and drops to solid surfaces. Its value is determined by a competition of attractive transversal tension and repulsive disjoining pressure forces. The greatest Fmax values have been measured for bubbles adherent to glass substrates in pea-protein solutions. The bubble/wall adhesion is lower in solutions containing the protein HFBII hydrophobin, which could be explained with the effect of sandwiched protein aggregates. The applicability of the CBD method to emulsion systems is illustrated by experiments with soybean-oil drops adherent to hydrophilic and hydrophobic substrates in egg yolk solutions. The results reveal how the interfacial rigidity, as well as the bubble/wall and drop/wall adhesion forces, can be quantified and controlled in relation to optimizing the properties of foams and emulsions. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Cheng, Kuok Kong; Park, Chanwoo
2017-07-01
Surface tension of pure fluids, inherently decreasing with regard to temperature, creates a thermo-capillary-driven (Marangoni) flow moving away from a hot surface. It has been known that few high-carbon alcohol-aqueous solutions exhibit an opposite behavior of the surface tension increasing with regard to temperature, such that the Marangoni flow moves towards the hot surface (self-rewetting effect). We report the surface tensions of three dilute aqueous solutions of n-Butanol, n-Pentanol and n-Hexanol as self-rewetting fluids measured for ranges of alcohol concentration (within solubility limits) and fluid temperatures (25-85 °C). A maximum bubble pressure method using a leak-tight setup was used to measure the surface tension without evaporation losses of volatile components. It was found from this study that the aqueous solutions with higher-carbon alcohols exhibit a weak self-rewetting behavior, such that the surface tensions remain constant or slightly increases above about 60 °C. These results greatly differ from the previously reported results showing a strong self-rewetting behavior, which is attributed to the measurement errors associated with the evaporation losses of test fluids during open-system experiments.
Simple Skin-Stretching Device in Assisted Tension-Free Wound Closure.
Cheng, Li-Fu; Lee, Jiunn-Tat; Hsu, Honda; Wu, Meng-Si
2017-03-01
Numerous conventional wound reconstruction methods, such as wound undermining with direct suture, skin graft, and flap surgery, can be used to treat large wounds. The adequate undermining of the skin flaps of a wound is a commonly used technique for achieving the closure of large tension wounds; however, the use of tension to approximate and suture the skin flaps can cause ischemic marginal necrosis. The purpose of this study is to use elastic rubber bands to relieve the tension of direct wound closure for simultaneously minimizing the risks of wound dehiscence and wound edge ischemia that lead to necrosis. This retrospective study was conducted to evaluate our clinical experiences with 22 large wounds, which involved performing primary closures under a considerable amount of tension by using elastic rubber bands in a skin-stretching technique after a wide undermining procedure. Assessment of the results entailed complete wound healing and related complications. All 22 wounds in our study showed fair to good results except for one. The mean success rate was approximately 95.45%. The simple skin-stretching design enabled tension-free skin closure, which pulled the bilateral undermining skin flaps as bilateral fasciocutaneous advancement flaps. The skin-stretching technique was generally successful.
Strengthening of bridges by post-tensioning using monostrands in substituted cable ducts
NASA Astrophysics Data System (ADS)
Klusáček, Ladislav; Svoboda, Adam
2017-09-01
Post-tensioning is suitable, reliable and durable method of strengthening existing engineering structures, especially bridges. The high efficiency of post-tensioning can be seen in many applications throughout the world. In this paper the method is extended by a structural system of substituted cable ducts, which allows for significantly widening application of prestressing so it’s convenient mostly for application on beam bridges or slab bridges (built in years 1920 - 1960). The method of substituted cable ducts is based on theoretical knowledge and technical procedures, which were made possible through the development in prestressing systems, particularly the development of prestressing tendons (monostrands) and encased anchorages, as well as progress in drilling technology. This technique is highly recommended due to minimization of interventions into the constructions, unseen method of cable arrangement and hence the absence of impact on appearance, which is appreciated not only in case of valuable historical structures but also in general. It is possible to summarise that posttensioning by monostrands in substituted cable ducts is a highly effective method of strengthening existing bridges in order to increase their load capacities in terms of current traffic load and to extend their service life.
NASA Astrophysics Data System (ADS)
Kovalev, A. V.; Rusina, E. Y.; Yakovlev, A. Y.
2018-03-01
The paper is devoted to the determination of the stress-strain state of a mechanical structure, which consists of a thin infinite elastoplastic plate with a hole and a continuous fine elastic inclusion. The complexity of this problem lies in the fact that the shape of the boundary between the elastic and plastic zones in the plate is not known in advance. The small parameter method is used as the solution method, while the small parameter characterizes the deviation of the shape of the contour from the circle and the perturbation of external static boundary conditions. As the zero solution, the axisymmetric elastoplastic state of the plate with inclusion is chosen. Two variants of inclusion fixation in a plate are considered: inclusion is enclosed with tension or soldered. As a result of solving the problem within the framework of ideal plasticity, the distribution of the stress and displacement fields and the shape of the elastoplastic boundary are obtained. To illustrate the case of a plane-stressed state, the results of a numerical experiment on the mathematical model obtained are presented.
Nugroho, Widyanto Dwi; Yamagishi, Yusuke; Nakaba, Satoshi; Fukuhara, Shiori; Begum, Shahanara; Marsoem, Sri Nugroho; Ko, Jae-Heung; Jin, Hyun-O; Funada, Ryo
2012-01-01
Background and Aims Angiosperm trees generally form tension wood on the upper sides of leaning stems. The formation of tension wood is an important response to gravitational stimulus. Gibberellin appears to be involved in the differentiation of secondary xylem, but it remains unclear whether gibberellin plays a key role in the formation of tension wood and plant gravitropism. Therefore, a study was designed to investigate the effects of gibberellin and of inhibitors of the synthesis of gibberellin, namely paclobutrazole and uniconazole-P, on the formation of tension wood and negative stem gravitropism in Acacia mangium seedlings. Methods Gibberellic acid (GA3), paclobutrazole and uniconazole-P were applied to seedlings via the soil in which they were growing. Distilled water was applied similarly as a control. Three days after such treatment, seedlings were tilted at an angle of 45° from the vertical, and samples of stems were collected for analysis 2 weeks, 2 months and 6 months after tilting. The effects of treatments on the stem recovery degree (Rº) were analysed as an index of the negative gravitropism of seedlings, together the width of the region of tension wood in the upper part of inclined stems. Key Results It was found that GA3 stimulated the negative gravitropism of tilted seedling stems of A. mangium, while paclobutrazole and uniconazole-P inhibited recovery to vertical growth. Moreover, GA3 stimulated the formation of tension wood in tilted A. mangium seedlings, while paclobutrazole and uniconazole-P strongly suppressed the formation of tension wood, as assessed 2 weeks after tilting. Conclusions The results suggest that gibberellin plays an important role at the initial stages of formation of tension wood and in stem gravitropism in A. mangium seedlings in response to a gravitational stimulus. PMID:22843341
Tear Oxygen Under Hydrogel and Silicone Hydrogel Contact Lenses in Humans
Bonanno, Joseph A.; Clark, Christopher; Pruitt, John; Alvord, Larry
2011-01-01
Purpose To determine the tear oxygen tension under a variety of conventional and silicone hydrogel contact lenses in human subjects. Methods Three hydrogel and five silicone hydrogel lenses (Dk/t = 17 to 329) were coated on the back surface with an oxygen sensitive, bovine serum albumin-Pd meso-tetra (4-carboxyphenyl) porphine complex (BSA-porphine). Each lens type was placed on the right eye of 15 non-contact lens wearers to obtain a steady-state open eye tear oxygen tension using oxygen sensitive phosphorescence decay of BSA-porphine. A closed-eye oxygen tension estimate was obtained by measuring the change in tear oxygen tension after 5 min of eye closure. In separate experiments, a goggle was placed over the lens wearing eye and a gas mixture (PO2 = 51 torr) flowed over the lens to simulate anterior lens oxygen tension during eye closure. Results Mean open eye oxygen tension ranged from 58 to 133 torr. Closed eye estimates ranged from 11 to 42 torr. Oxygen tension under the goggle ranged from 8 to 48 torr and was higher than the closed eye estimate for six out of the eight lenses, suggesting that the average closed eye anterior lens surface oxygen tension is <51 torr. For Dk/t >30, the measured tear oxygen tension is significantly lower than that predicted from previous studies. Conclusions The phosphorescence decay methodology is capable of directly measuring the in vivo post lens PO2 of high Dk/t lenses without disturbing the contact lens or cornea. Our data indicate that increasing Dk/t up to and beyond 140 continues to yield increased flux into the central cornea. PMID:19609230
Fields of Tension in a Boundary-Crossing World: Towards a Democratic Organization of the Self.
Hermans, Hubert J M; Konopka, Agnieszka; Oosterwegel, Annerieke; Zomer, Peter
2017-12-01
In their study of the relationship between self and society, scientists have proposed taking society as a metaphor for understanding the dynamics of the self, such as the analogy between the self and the functioning of a totalitarian state or the analogy between the self and the functioning of a bureaucratic organization. In addition to these models, the present article proposes a democratic society as a metaphor for understanding the workings of a dialogical self in a globalizing, boundary-crossing world. The article follows four steps. In the first step the self is depicted as extended to the social and societal environment and made up of fields of tension in which a multiplicity of self-positions are involved in processes of positioning and counter-positioning and in relationships of social power. In the second step, the fertility of the democratic metaphor is demonstrated by referring to theory and research from three identity perspectives: multicultural, multiracial, and transgender. In the fields of tension emerging between the multiplicity of self-positions, new, hybrid, and mixed identities have a chance to emerge as adaptive responses to the limitations of existing societal structures. In the third step, we place the democratic self in a broader societal context by linking three levels of inclusiveness, proposed by Self-Categorization Theory (personal, social, and human) to recent conceptions of a cosmopolitan democracy. In the fourth and final step, a model is presented which allows the formulation of a series of specific research questions for future studies of a democratically organized self.
Theoretical analysis for the optical deformation of emulsion droplets.
Tapp, David; Taylor, Jonathan M; Lubansky, Alex S; Bain, Colin D; Chakrabarti, Buddhapriya
2014-02-24
We propose a theoretical framework to predict the three-dimensional shapes of optically deformed micron-sized emulsion droplets with ultra-low interfacial tension. The resulting shape and size of the droplet arises out of a balance between the interfacial tension and optical forces. Using an approximation of the laser field as a Gaussian beam, working within the Rayleigh-Gans regime and assuming isotropic surface energy at the oil-water interface, we numerically solve the resulting shape equations to elucidate the three-dimensional droplet geometry. We obtain a plethora of shapes as a function of the number of optical tweezers, their laser powers and positions, surface tension, initial droplet size and geometry. Experimentally, two-dimensional droplet silhouettes have been imaged from above, but their full side-on view has not been observed and reported for current optical configurations. This experimental limitation points to ambiguity in differentiating between droplets having the same two-dimensional projection but with disparate three-dimensional shapes. Our model elucidates and quantifies this difference for the first time. We also provide a dimensionless number that indicates the shape transformation (ellipsoidal to dumbbell) at a value ≈ 1.0, obtained by balancing interfacial tension and laser forces, substantiated using a data collapse.
NASA Technical Reports Server (NTRS)
Zeng, X. C.; Stroud, D.
1989-01-01
The previously developed Ginzburg-Landau theory for calculating the crystal-melt interfacial tension of bcc elements to treat the classical one-component plasma (OCP), the charged fermion system, and the Bose crystal. For the OCP, a direct application of the theory of Shih et al. (1987) yields for the surface tension 0.0012(Z-squared e-squared/a-cubed), where Ze is the ionic charge and a is the radius of the ionic sphere. Bose crystal-melt interface is treated by a quantum extension of the classical density-functional theory, using the Feynman formalism to estimate the relevant correlation functions. The theory is applied to the metastable He-4 solid-superfluid interface at T = 0, with a resulting surface tension of 0.085 erg/sq cm, in reasonable agreement with the value extrapolated from the measured surface tension of the bcc solid in the range 1.46-1.76 K. These results suggest that the density-functional approach is a satisfactory mean-field theory for estimating the equilibrium properties of liquid-solid interfaces, given knowledge of the uniform phases.
Effects of temperature, thermal exposure, and fatigue on an alumina/aluminum composite
NASA Technical Reports Server (NTRS)
Olsen, G. C.
1980-01-01
An experimental investigation of the mechanical properties and microstructure of an aluminum matrix/polycrystalline alumina fiber composite material is discussed. The effects of fabrication, isothermal exposure (up to 10,000 hours at 590 K), thermal cycling (6000 cycles between 200 K and 590 K), fatigue (1,000,000 tension-tension cycles) were determined by mechanical testing and metallurgical analysis. The fabrication process severely degraded the fiber strength by reducing the alumina to a nonstoichiometric form and quenching in the resultant vacancies and stress fields. However, isothermal exposure, thermal cycling, and fatigue cycling all restored the fiber strength by enhancing vacancy annihilation. Comparison of the as-fabricated material with other aerospace materials shows that it is an attractive candidate for select applications. Long duration isothermal exposure weakened the matrix by overaging and through the diffusional loss of lithium to a surface reaction forming lithium carbonate. Thermal cycling initiated cracks in the matrix and fibers. Tension-tension fatigue cycling caused no apparent damage to the as-fabricated material but in fact, strengthened it to the rule-of-mixtures value. Fatigue cycling after thermal exposure did have a cumulative damage effect.
Ion size effects upon ionic exclusion from dielectric interfaces and slit nanopores
NASA Astrophysics Data System (ADS)
Buyukdagli, Sahin; Achim, C. V.; Ala-Nissila, T.
2011-05-01
A previously developed field-theoretic model (Coalson et al 1995 J. Chem. Phys. 102 4584) that treats core collisions and Coulomb interactions on the same footing is investigated in order to understand ion size effects on the partition of neutral and charged particles at planar interfaces and the ionic selectivity of slit nanopores. We introduce a variational scheme that can go beyond the mean-field (MF) regime and couple in a consistent way pore-modified core interactions, steric effects, electrostatic solvation and image-charge forces, and surface charge induced electrostatic potential. Density profiles of neutral particles in contact with a neutral hard wall, obtained from Monte Carlo (MC) simulations are compared with the solutions of mean-field and variational equations. A recently proposed random-phase approximation (RPA) method is tested as well. We show that in the dilute limit, the MF and the variational theories agree well with simulation results, in contrast to the RPA method. The partition of charged Yukawa particles at a neutral dielectric interface (e.g. an air-water or protein-water interface) is investigated. It is shown that as a result of the competition between core collisions that push the ions toward the surface, and repulsive solvation and image forces that exclude them from the interface, a concentration peak of finite size ions sets in close to the dielectric interface. This effect is amplified with increasing ion size and bulk concentration. An integral expression for the surface tension that accounts for excluded volume effects is computed and the decrease of the surface tension with increasing ion size is illustrated. We also characterize the role played by the ion size in the ionic selectivity of neutral slit nanopores. We show that the complex interplay between electrostatic forces, excluded volume effects induced by core collisions and steric effects leads to an unexpected reversal in the ionic selectivity of the pore with varying pore size: while large pores exhibit a higher conductivity for large ions, narrow pores exclude large ions more efficiently than small ones.
Saraji, Soheil; Goual, Lamia; Piri, Mohammad; Plancher, Henry
2013-06-11
Injection of carbon dioxide in deep saline aquifers is considered as a method of carbon sequestration. The efficiency of this process is dependent on the fluid-fluid and rock-fluid interactions inside the porous media. For instance, the final storage capacity and total amount of capillary-trapped CO2 inside an aquifer are affected by the interfacial tension between the fluids and the contact angle between the fluids and the rock mineral surface. A thorough study of these parameters and their variations with temperature and pressure will provide a better understanding of the carbon sequestration process and thus improve predictions of the sequestration efficiency. In this study, the controversial concept of wettability alteration of quartz surfaces in the presence of supercritical carbon dioxide (sc-CO2) was investigated. A novel apparatus for measuring interfacial tension and contact angle at high temperatures and pressures based on Axisymmetric Drop Shape Analysis with no-Apex (ADSA-NA) method was developed and validated with a simple system. Densities, interfacial tensions, and dynamic contact angles of CO2/water/quartz systems were determined for a wide range of pressures and temperatures relevant to geological sequestration of CO2 in the subcritical and supercritical states. Image analysis was performed with ADSA-NA method that allows the determination of both interfacial tensions and contact angles with high accuracy. The results show that supercritical CO2 alters the wettability of quartz surface toward less water-wet conditions compared to subcritical CO2. Also we observed an increase in the water advancing contact angles with increasing temperature indicating less water-wet quartz surfaces at higher temperatures.
Bellar, David M; Muller, Matthew D; Barkley, Jacob E; Kim, Chul-Ho; Ida, Keisuke; Ryan, Edward J; Bliss, Mathew V; Glickman, Ellen L
2011-02-01
The present study investigated the effects of training combining elastic tension, free weights, and the bench press. Eleven college-aged men (untrained) in the bench press participated in the 13-week study. The participants were first given instructions and then practiced the bench press, followed by a one-repetition maximum (1RM) test of baseline strength. Subjects were then trained in the bench press for 3 weeks to allow for the beginning of neural adaptation. After another 1RM test, participants were assigned to 1 of 2 conditions for the next 3 weeks of training: 85% Free-Weight Tension, 15% Elastic Tension (BAND), or 100% Free-Weight Tension (STAND). After 3 weeks of training and a third 1RM max test, participants switched treatments, under which they completed the final 3 weeks of training and the fourth 1RM test. Analysis via analysis of covariance revealed a significant (p ≤ 0.05) main effect for time and interaction effect for Treatment (BAND vs. STAND). Subsequent analysis via paired-samples t-test revealed the BAND condition was significantly better (p = 0.05) at producing raw gains in 1RM strength. (BAND 9.95 ± 3.7 kg vs. STAND 7.56 ± 2.8 kg). These results suggest that the addition of elastic tension to the bench press may be an effective method of increasing strength.
New solutions for steady bubbles in a Hele-Shaw cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tanveer, S.
1987-03-01
Exact solutions are presented for steadily moving bubbles in a Hele--Shaw cell when the effect of surface tension is neglected. These solutions form a three-parameter family. For specified area, both the speed of the bubble and the distance of its centroid from the channel centerline remain arbitrary when surface tension is ignored. However, numerical evidence suggests that this twofold arbitrariness is removed by the effect of surface tension, i.e., for given bubble area and surface tension, solutions exist only when the bubble velocity and the centroid distance from the channel centerline attain one or more isolated values. From a limitedmore » numerical search, no nonsymmetric solutions could be found; however, a branch of symmetric bubble solutions that was not found in earlier work was found. This branch corresponds to one of the Romero-Vanden-Broeck branch of finger solutions when the bubble size is large. A new procedure for numerical calculations of bubble solutions in the presence of surface tension is presented and is found to work very well for reasonably large bubbles, unlike the previous method of Tanveer (Phys. Fluids 29, 3537 (1986)). The precise power law dependence of bubble velocity on surface tension for small surface tension is explored for bubbles of different area. Agreement is noted with recent analytical results for a finger.« less
Health 2.0 and Medicine 2.0: Tensions and Controversies in the Field
Joshi, Indra; Wareham, Jonathan
2008-01-01
Background The term Web 2.0 became popular following the O’Reilly Media Web 2.0 conference in 2004; however, there are difficulties in its application to health and medicine. Principally, the definition published by O’Reilly is criticized for being too amorphous, where other authors claim that Web 2.0 does not really exist. Despite this skepticism, the online community using Web 2.0 tools for health continues to grow, and the term Medicine 2.0 has entered popular nomenclature. Objective This paper aims to establish a clear definition for Medicine 2.0 and delineate literature that is specific to the field. In addition, we propose a framework for categorizing the existing Medicine 2.0 literature and identify key research themes, underdeveloped research areas, as well as the underlying tensions or controversies in Medicine 2.0’s diverse interest groups. Methods In the first phase, we employ a thematic analysis of online definitions, that is, the most important linked papers, websites, or blogs in the Medicine 2.0 community itself. In a second phase, this definition is then applied across a series of academic papers to review Medicine 2.0’s core literature base, delineating it from a wider concept of eHealth. Results The terms Medicine 2.0 and Health 2.0 were found to be very similar and subsume five major salient themes: (1) the participants involved (doctors, patients, etc); (2) its impact on both traditional and collaborative practices in medicine; (3) its ability to provide personalized health care; (4) its ability to promote ongoing medical education; and (5) its associated method- and tool-related issues, such as potential inaccuracy in enduser-generated content. In comparing definitions of Medicine 2.0 to eHealth, key distinctions are made by the collaborative nature of Medicine 2.0 and its emphasis on personalized health care. However, other elements such as health or medical education remain common for both categories. In addition, this emphasis on personalized health care is not a salient theme within the academic literature. Of 2405 papers originally identified as potentially relevant, we found 56 articles that were exclusively focused on Medicine 2.0 as opposed to wider eHealth discussions. Four major tensions or debates between stakeholders were found in this literature, including (1) the lack of clear Medicine 2.0 definitions, (2) tension due to the loss of control over information as perceived by doctors, (3) the safety issues of inaccurate information, and (4) ownership and privacy issues with the growing body of information created by Medicine 2.0. Conclusion This paper is distinguished from previous reviews in that earlier studies mainly introduced specific Medicine 2.0 tools. In addressing the field’s definition via empirical online data, it establishes a literature base and delineates key topics for future research into Medicine 2.0, distinct to that of eHealth. PMID:18682374
Use of cyanoacrylate in the coaptation of edges of surgical wounds*
Lins, Ruthinéia Diógenes Alves Uchôa; Gomes, Raquel Christina Barboza; dos Santos, Kátia Simone Alves; da Silva, Paula Vanessa; da Silva, Renata Torres Moreira; Ramos, Ianny Alves
2012-01-01
Cyanoacrylate has been used in several fields of different surgical specialties as an adhesive for closure of gingival flaps and in mucous and cutaneous lacerations. One of its advantages is that it has an excellent immunological response. In view of aesthetic needs, cyanoacrylate has been applied with satisfactory results, when compared with sutures. It presents better coaptation of edges of cutaneous and mucosal lesions, smaller residual scars, and biocompatibility. However, it is limited to areas of little tissue tension. This work attempts to provide a literature review with the aim of revealing the advantages of using tissue adhesives, especially cyanoacrylates, in wound coaptation in comparison with conventional methods. PMID:23197206
Walde, T A; Bussert, J; Sehmisch, S; Balcarek, P; Stürmer, K M; Walde, H J; Frosch, K H
2010-12-01
Femoral malrotation in total knee arthroplasty is correlated to an increased number of revisions. Anatomic landmarks such as Whiteside line, posterior condyle axis and transepicondylar axis are used for determining femoral component rotation. The femoral rotation achieved with the anatomical landmarks is compared to the femoral rotation achieved by a navigated ligament tension-based tibia-first technique. Ninety-three consecutive patients with gonarthritis were prospectively enrolled. Intraoperatively the anatomical landmarks for femoral rotation and the achieved femoral rotation using a navigated tension-based tibia-first technique were determined and stored for further comparison. A pre- and postoperative functional diagram displaying the extension and flexion and varus or valgus positions was also part of the evaluation. Using anatomical landmarks the rotational errors ranged from 12.2° of internal rotation to 15.5° of external rotation from parallel to the tibial resection surface at 90° flexion. A statistical significant improved femoral rotation was achieved using the ligament tension-based method with a rotational error ranged from 3.0° of internal rotation to 2.4° of external rotation. The functional analyses demonstrated statistical significant lower varus/valgus deviations within the flexion range and an improved maximum varus deviation at 90° flexion using the ligament tension-based method. Compared to the anatomical landmarks a balanced, almost parallel flexion gap was achieved using a navigation technique taking the ligament tension of the knee joint into account. As a result the improved femoral rotation was demonstrated by the functional evaluation. Unilateral overloading of the polyethylene inlay and unilateral instability can thus be avoided. Copyright © 2009 Elsevier B.V. All rights reserved.
In situ droplet surface tension and viscosity measurements in gas metal arc welding
NASA Astrophysics Data System (ADS)
Bachmann, B.; Siewert, E.; Schein, J.
2012-05-01
In this paper, we present an adaptation of a drop oscillation technique that enables in situ measurements of thermophysical properties of an industrial pulsed gas metal arc welding (GMAW) process. Surface tension, viscosity, density and temperature were derived expanding the portfolio of existing methods and previously published measurements of surface tension in pulsed GMAW. Natural oscillations of pure liquid iron droplets are recorded during the material transfer with a high-speed camera. Frame rates up to 30 000 fps were utilized to visualize iron droplet oscillations which were in the low kHz range. Image processing algorithms were employed for edge contour extraction of the droplets and to derive parameters such as oscillation frequencies and damping rates along different dimensions of the droplet. Accurate surface tension measurements were achieved incorporating the effect of temperature on density. These are compared with a second method that has been developed to accurately determine the mass of droplets produced during the GMAW process which enables precise surface tension measurements with accuracies up to 1% and permits the study of thermophysical properties also for metals whose density highly depends on temperature. Thermophysical properties of pure liquid iron droplets formed by a wire with 1.2 mm diameter were investigated in a pulsed GMAW process with a base current of 100 A and a pulse current of 600 A. Surface tension and viscosity of a sample droplet were 1.83 ± 0.02 N m-1 and 2.9 ± 0.3 mPa s, respectively. The corresponding droplet temperature and density are 2040 ± 50 K and 6830 ± 50 kg m-3, respectively.
Focusing solar collector and method for manufacturing same
Murphy, Lawrence M.
1984-01-01
Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.
Focusing solar collector and method for manufacturing same
Murphy, L.M.
1984-01-01
Disclosed is a solar collector comprising an annular-shaped frame and a composite membrane member for concentrating and focusing sun radiation. The composite membrane member is supported and tensioned by the frame and consists of first and second differentially pretensioned sheet members which are integrally bonded to one another. The frame and one of the two sheet members are adapted to allow tensions in both of the two sheets to be adjusted. Subsequent to bonding and upon adjusting a tension in one of the two sheet members, both of the two bonded sheet members react with one another so as to cause the composite membrane member to have a contoured configuration, which enables the membrane member to be focusable. Additionally, adjusting the tension in one of the two sheet members provides a reciprocal adjustment in a focus provided by the membrane member.
Hesse-Biber, Sharlene
2016-04-01
Current trends in health care research point to a shift from disciplinary models to interdisciplinary team-based mixed methods inquiry designs. This keynote address discusses the problems and prospects of creating vibrant mixed methods health care interdisciplinary research teams that can harness their potential synergy that holds the promise of addressing complex health care issues. We examine the range of factors and issues these types of research teams need to consider to facilitate efficient interdisciplinary mixed methods team-based research. It is argued that concepts such as disciplinary comfort zones, a lack of attention to team dynamics, and low levels of reflexivity among interdisciplinary team members can inhibit the effectiveness of a research team. This keynote suggests a set of effective strategies to address the issues that emanate from the new field of research inquiry known as team science as well as lessons learned from tapping into research on organizational dynamics. © The Author(s) 2016.
The fatigue behavior of composite laminates under various mean stresses
NASA Technical Reports Server (NTRS)
Rotem, A.
1991-01-01
A method is developed for predicting the S-N curve of a composite laminate which is subjected to an arbitrary stress ratio, R (minimum stress/maximum stress). The method is based on the measuring of the S-N behavior of two distinct cases, tension-tension and compression-compression fatigue loadings. Using these parameters, expressions are formulated that estimate the fatigue behavior under any stress ratio loading. Experimental results from the testing of graphite/epoxy laminates, with various structures, are compared with the predictions and show good agreement.
ERIC Educational Resources Information Center
Connaghan, Kathryn P.; Moore, Christopher A.
2013-01-01
Purpose: In this study, the authors compared indirect estimates of jaw-muscle tension in children with suspected muscle-tone abnormalities with age- and gender-matched controls. Method: Jaw movement and muscle activation were measured in children (ages 3 years, 11 months, to 10 years) with suspected muscle-tone abnormalities (Down syndrome or…
Thrust bolting: roof bolt support apparatus
Tadolini, Stephen C.; Dolinar, Dennis R.
1992-01-01
A method of installing a tensioned roof bolt in a borehole of a rock formation without the aid of a mechanical anchoring device or threaded tensioning threads by applying thrust to the bolt (19) as the bonding material (7') is curing to compress the strata (3) surrounding the borehole (1), and then relieving the thrust when the bonding material (7') has cured.
Electrical Connector for Graphite Heating Elements
NASA Technical Reports Server (NTRS)
Mackintosh, B. H.
1982-01-01
Connection method applies force to two interfaces: that between heating element proper and heating-element support members and between heating-element support members and metal conductor. Inner rod of new connector system is maintained in tension by a spring (for example, Belleville washers). Connection is sufficiently complaint so tension remains within desired range, regardless of thermal expansion and contraction of various elements.
Myocardial correlates of helium-cold induction and maintenance of hypothermia.
NASA Technical Reports Server (NTRS)
Anderson, G. L.; Prewitt, R., Jr.; Musacchia, X. J.
1971-01-01
Hypothermia was induced in the golden hamster Mesocricetus auratus, using the helium-cold method. The first group of hamsters was sacrificed immediately after induction to rectal temperature 7 C, a second group was sacrificed after being maintained at a body temperature of 7 C for 18-24 hr, and a third group consisted of unexposed controls. The hearts were excised and the ventricles analyzed for hypoxic damage, glycogen, and catecholamines. In the short-term hypothermic animals, resting tension was increased while peak isometric tension, generated tension after 10 min of anoxic exposure, glycogen, and catecholamines were all reduced. All of the functional parameters recovered in the long-term hypothermic group, while glycogen and catecholamines showed a trend toward recovery. It is concluded that myocardial hypoxia develops during induction into hypothermia when using the helium-cold method. This effect is reversible and hypoxic damage does not increase as the hypothermic exposure is prolonged.
Fleming, Braden C.; Brady, Mark F.; Bradley, Michael P.; Banerjee, Rahul; Hulstyn, Michael J.; Fadale, Paul D.
2008-01-01
Purpose To document the tibiofemoral (TF) compression forces produced during clinical initial graft tension protocols. Methods An image analysis system was used to track the position of the tibia relative to the femur in 11 cadaver knees. TF compression forces were quantified using thin-film pressure sensors. Prior to performing ACL reconstructions with patellar tendon grafts, measurements of TF compression force were obtained from the ACL-intact knee with knee flexion. ACL reconstructions were then performed using “force-based” and “laxity-based” graft tension approaches. Within each approach, high- and low-tension conditions were compared to the ACL-intact condition over the range of knee flexion angles. Results The TF compression forces for all initial graft tension conditions were significantly greater than that of the normal knee when the knee was in full extension (0°). The TF compression forces when using the laxity-based approach were greater than those produced with the force-based approach. However the laxity-based approach was necessary to restore normal laxity at the time of surgery. Conclusions The initial graft tension conditions produce different TF compressive force profiles at the time of surgery. A compromise must be made between restoring knee laxity or TF compressive forces when reconstructing the ACL with patellar tendon graft. Clinical Relevance The TF compression forces were greater in the ACL-reconstructed knee for all the initial graft tension conditions when compared to the ACL-intact knee, and that clinically relevant initial graft tension conditions produce different TF compressive forces. PMID:18760214
The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes
NASA Astrophysics Data System (ADS)
Gao, Qiang; Min, Yi; Jiang, Maofa
2018-06-01
The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.
The Temperature and Structure Dependence of Surface Tension of CaO-SiO2-Na2O-CaF2 Mold Fluxes
NASA Astrophysics Data System (ADS)
Gao, Qiang; Min, Yi; Jiang, Maofa
2018-02-01
The surface tension of mold flux is one of the most important properties and varies with the temperature from the top to the bottom of the mold, which influences the adhesion and lubrication between the liquid mold flux and the solidified shell, further influencing the quality of the continuous billet. In the present paper, the effect of temperature on the surface tension of CaO-SiO2-Na2O-CaF2 mold-flux melts with different CaO/SiO2 mass ratios was investigated using the maximum-pull method. Furthermore, the microstructure of mold fluxes was analyzed using FT-IR and Raman spectra to discuss the change mechanism of surface tension. The results indicated that the temperature dependence of surface tension was different with different CaO/SiO2 mass ratios, and agreed with the modification of melt structure. When the CaO/SiO2 mass ratio was 0.67 and 0.85, the change of surface tension with temperature was relatively stable, and the influence of temperature on the structure was small. When the CaO/SiO2 mass ratio was 1.03 and 1.16, with an increase of temperature, the surface tension decreased linearly and the changing amplitude was large; the degree of polymerization of melts and average radii of silicon-oxygen anions also decreased, which intensified the molecular thermal motion and weakened the intermolecular interaction, resulting in a decrease of surface tension of melts.
NASA Astrophysics Data System (ADS)
Liu, Changyi; Zhao, Hongwei; Ma, Zhichao; Qiao, Yuansen; Hong, Kun; Ren, Zhuang; Zhang, Jianhai; Pei, Yongmao; Ren, Luquan
2018-02-01
Functional materials represented by ferromagnetics and ferroelectrics are widely used in advanced sensor and precision actuation due to their special characterization under coupling interactions of complex loads and external physical fields. However, the conventional devices for material characterization can only provide a limited type of loads and physical fields and cannot simulate the actual service conditions of materials. A multi-field coupling instrument for characterization has been designed and implemented to overcome this barrier and measure the comprehensive physical properties under complex service conditions. The testing forms include tension, compression, bending, torsion, and fatigue in mechanical loads, as well as different external physical fields, including electric, magnetic, and thermal fields. In order to offer a variety of information to reveal mechanical damage or deformation forms, a series of measurement methods at the microscale are integrated with the instrument including an indentation unit and in situ microimaging module. Finally, several coupling experiments which cover all the loading and measurement functions of the instrument have been implemented. The results illustrate the functions and characteristics of the instrument and then reveal the variety in mechanical and electromagnetic properties of the piezoelectric transducer ceramic, TbDyFe alloy, and carbon fiber reinforced polymer under coupling conditions.
Observation of a Coulomb flux tube
NASA Astrophysics Data System (ADS)
Greensite, Jeff; Chung, Kristian
2018-03-01
In Coulomb gauge there is a longitudinal color electric field associated with a static quark-antiquark pair. We have measured the spatial distribution of this field, and find that it falls off exponentially with transverse distance from a line joining the two quarks. In other words there is a Coulomb flux tube, with a width that is somewhat smaller than that of the minimal energy flux tube associated with the asymptotic string tension. A confinement criterion for gauge theories with matter fields is also proposed.
Surface tension mediated conversion of light to work
Okawa, David; Pastine, Stefan J; Zettl, Alexander K; Frechet, Jean M. J
2014-12-02
Disclosed are a method and apparatus for converting light energy to mechanical energy by modification of surface tension on a supporting fluid. The apparatus comprises an object which may be formed as a composite object comprising a support matrix and a highly light absorptive material. The support matrix may comprise a silicon polymer. The highly light absorptive material may comprise vertically aligned carbon nanotubes (VANTs) embedded in the support matrix. The composite object is supported on a fluid. By exposing the highly light absorptive material to light, heat is generated, which changes the surface tension of the composite object, causing it to move physically within the fluid.
Development and use of the incremental twitch subtraction MUNE method in mice.
Hegedus, Janka; Jones, Kelvin E; Gordon, Tessa
2009-01-01
We have used a technique to estimate the number of functioning motor units (MUNE) innervating a muscle in mice based on twitch tension. The MUNE technique was verified by modeling twitch tensions from isolated ventral root stimulation. Analysis by twitch tensions allowed us to identify motor unit fiber types. The MUNE technique was used to compare normal mice with transgenic superoxide dismutase-1 mutation (G94A) mice to assess the time course of motor unit loss with respect to fiber type. Motor unit loss was found to occur well in advance of behavioral changes and the degree of reinnervation is dependent upon motor unit fiber types.
NASA Astrophysics Data System (ADS)
Forquin, P.; Lukić, B.
2017-11-01
The spalling technique based on the use of a single Hopkinson bar put in contact with the tested sample has been widely adopted as a reliable method for obtaining the tensile response of concrete and rock-like materials at strain rates up-to 200 s- 1. However, the traditional processing method, based on the use of Novikov acoustic approach and the rear face velocity measurement, remains quite questionable due to strong approximations of this data processing method. Recently a new technique for deriving cross-sectional stress fields of a spalling sample filmed with an ultra-high speed camera and based on using the full field measurements and the virtual fields method (VFM) was proposed. In the present work, this topic is perused by performing several spalling tests on ordinary concrete at high acquisition speed of 1Mfps to accurately measure the tensile strength, Young's modulus, strain-rate at failure and stress-strain response of concrete at high strain-rate. The stress-strain curves contain more measurement points for a more reliable identification. The observed tensile stiffness is up-to 50% lower than the initial compressive stiffness and the obtained peak stress was about 20% lower than the one obtained by applying the Novikov method. In order to support this claim, numerical simulations were performed to show that the change of stiffness between compression and tension highly affects the rear-face velocity profile. This further suggests that the processing based only on the velocity "pullback" is quite sensitive and can produce an overestimate of the tensile strength in concrete and rock-like materials.
Optical tweezers study life under tension.
Fazal, Furqan M; Block, Steven M
2011-05-31
Optical tweezers have become one of the primary weapons in the arsenal of biophysicists, and have revolutionized the new field of single-molecule biophysics. Today's techniques allow high-resolution experiments on biological macromolecules that were mere pipe dreams only a decade ago.
Shi, Fenghui; Dai, Zhishuang; Zhang, Baoyan
2010-07-01
Inverse gas chromatography (IGC) was used to measure the surface tension and solubility parameter of E51 epoxy resin in this work. By using the Schultz method, decane, nonane, octane and heptane were chosen as the neutral probes to calculate the dispersive surface tensions (gamma(D)). Based on the Good-van Oss equation, the specific surface tension (gamma(SP)) of E51 epoxy resin was calculated with the acidic probe of dichloromethane and the basic probe of toluene. The results showed that the gamma(D) and gamma(SP) of the E51 resin decreased linearly with the increase of temperature. According to the Flory-Huggins parameters (chi) between the resin and a series of probes, the solubility parameters (delta) of E51 resin at different temperatures were estimated using the method developed by DiPaola-Baranyi and Guillet. It was found that the values of delta of the E51 resin were 11.78, 11.57, 11.48 and 11.14 MPa1/2 at 30, 40, 50 and 60 degrees C, respectively. The dispersive component (delta(D)) and the specific component (delta(SP)) of solubility parameter at different temperatures of the E51 resin were investigated according to the relationships between surface tension, cohesion energy and solubility parameter. The results showed that the values of delta(D) were higher than those of delta(SP) for the epoxy resin, and both of them decreased with the increase of temperature.
Nonlinear quasi-static analysis of ultra-deep-water top-tension riser
NASA Astrophysics Data System (ADS)
Gao, Guanghai; Qiu, Xingqi; Wang, Ke; Liu, Jianjun
2017-09-01
In order to analyse the ultra-deep-water top-tension riser deformation in drilling conditions, a nonlinear quasi-static analysis model and equation are established. The riser in this model is regarded as a simply supported beam located in the vertical plane and is subjected to non-uniform axial and lateral forces. The model and the equation are solved by the finite element method. The effects of riser outside diameter, top tension ratio, sea surface current velocity, drag force coefficient, floating system drift distance and water depth on the riser lateral displacement are discussed. Results show that the riser lateral displacement increase with the increase in the sea surface current velocity, drag force coefficient and water depth, whereas decrease with the increase in the riser outside diameter, top tension ratio. The top tension ratio has an important influence on the riser deformation and it should be set reasonably under different circumstances. The drift of the floating system has a complicated influence on the riser deformation and it should avoid a large drift distance in the proceedings of drilling and production.
Temperature dependence of surface tension of molten iron under reducing gas atmosphere
NASA Astrophysics Data System (ADS)
Ozawa, S.; Takahashi, S.; Fukuyama, H.; Watanabe, M.
2011-12-01
Surface tension of molten iron was measured under Ar-He-5vol.%H2 gas by oscillating droplet method using electromagnetic levitation furnace in consideration of the temperature dependence of oxygen partial pressure, Po2, of the gas. For comparison, the measurement was carried under Ar-He atmosphere to fix the Po2 of the inlet gas at 10-2Pa. The surface tension was successfully measured over a wide temperature range of about 780K including undercooling condition. When Po2 is fixed at 10-2 Pa, the surface tension increased and then decreased with increasing temperature like a boomerang shape. When the measurement was carried out under the H2-containing gas atmosphere, the temperature dependence of the surface tension shows unique kink at around 1810K instead of liner relationship due to competition between the temperature dependence of the Po2 and that of the equilibrium constant of oxygen adsorption reaction. The relationship between the calculated lnKad with respect to inverse temperature using Szyszkowski model was different between the atmospheric gases.
Surface properties of liquid In-Zn alloys
NASA Astrophysics Data System (ADS)
Pstruś, J.; Moser, Z.; Gąsior, W.
2011-02-01
The measurements of surface tension and density of zinc, indium and liquid In-Zn alloys containing 0.9, 0.85, 0.75, 0.70, 0.60, 0.40, 0.25 and 0.10 mole fraction of In were carried out using the method of maximum pressure in gaseous bubbles (MBP) as well as dilatometric technique. The technique of sessile drop was additionally applied in the measurements of surface tension for pure indium and zinc. The measurements were performed at temperature range 474-1151 K. The isotherms of surface tension calculated based on Butler's equation at 700 and 1100 K corresponded well with the experimental values for zinc content lower than 0.6 mole fraction. The surface tension calculated for alloys of higher zinc concentrations (0.6 < XZn < 0.95) had a positive value of the surface tension temperature coefficient (dσ/dT), which did not coincide with the experimental results. The density as well as molar volume of liquid In-Zn alloys showed almost identical behaviour like the ideal solutions. The observed little deviations were contained within assessed experimental errors.
Zehnder, Matthias; Schicht, Olivier; Sener, Beatrice; Schmidlin, Patrick
2005-08-01
The aim of this study was to evaluate the effect of reducing surface tension in endodontic chelator solutions on their ability to remove calcium from instrumented root canals. Aqueous solutions containing 15.5% EDTA, 10% citric acid, or 18% 1- hydroxyethylidene-1, 1-bisphosphonate (HEBP) were prepared with and without 1% (wt/wt) polysorbate (Tween) 80 and 9% propylene glycol. Surface tension in these solutions was measured using the Wilhelmy method. Sixty-four extracted, single-rooted human teeth of similar length were instrumented and irrigated with a 1% sodium hypochlorite solution and then randomly assigned (n = 8 per group) to receive a final one-minute rinse with 5 ml of test solutions, water, or the pure aqueous Tween/propylene glycol solution. Calcium concentration in eluates was measured using atomic absorption spectrometry. Incorporation of wetting agents resulted in a reduction of surface tension values by approximately 50% in all tested solutions. However, none of the solutions with reduced surface tension chelated more calcium from canals than their pure counterparts (p > 0.05).
Colloidal Electrolytes and the Critical Micelle Concentration
ERIC Educational Resources Information Center
Knowlton, L. G.
1970-01-01
Describes methods for determining the Critical Micelle Concentration of Colloidal Electrolytes; methods described are: (1) methods based on Colligative Properties, (2) methods based on the Electrical Conductivity of Colloidal Electrolytic Solutions, (3) Dye Method, (4) Dye Solubilization Method, and (5) Surface Tension Method. (BR)
A comparative evaluation of in-plane shear test methods for laminated graphite-epoxy composites
NASA Technical Reports Server (NTRS)
Morton, John; Ho, Henjen
1992-01-01
The objectives were to evaluate popular shear test methods for various forms of graphite-epoxy composite materials and to determine the shear response of graphite-epoxy composites with various forms of fiber architecture. Numerical and full-field experimental stress analyses were performed on four shear test configurations for unidirectional and bidirectional graphite-epoxy laminates to assess the uniformity and purity of the shear stress (strain) fields produced in the specimen test section and to determine the material in-plane shear modulus and shear response. The test methods were the 10 deg off-axis, the +/- 45 deg tension, the Iosipescu V-notch, and a compact U-notch specimen. Specimens were prepared from AS4/3501-6 graphite-epoxy panels, instrumented with conventional strain gage rosettes and with a cross-line moire grating, and loaded in a convenient testing machine. The shear responses obtained for each test method and the two methods of specimen instrumentation were compared. In a second phase of the program the shear responses obtained from Iosipescu V-notch beam specimens were determined for woven fabric geometries of different weave and fiber architectures. Again the responses of specimens obtained from strain gage rosettes and moire interferometry were compared. Additional experiments were performed on a bidirectional cruciform specimen which was also instrumented with strain gages and a moire grating.
NASA Astrophysics Data System (ADS)
Li, Panpan; Chen, Zhenqian; Shi, Juan
2018-02-01
A volume of fluid (VOF) method is adopted to simulate the condensation of R134a in a horizontal single square minichannel with 1 mm side length. The effect of gravity, surface tension and gas-liquid interfacial shear stress are taken into account. The result denotes that condensation is first appeared at the corner of channel, and then the condensation is stretched at the effect of surface tension until the whole channel boundary covered. The effect of gravity on the distribution of the liquid film depends on the channel length. In short channel, the gravity shows no significant effect, the distribution shape of steam in the cross section of the channel is approximately circular. In long channel, due to the influence of gravity, the liquid converges at the bottom under the effect of gravity, and the thickness of the liquid film at the bottom is obviously higher than that of the upper part of the channel. The effect of surface tension on condensation is also analysed. The surface tension can enhance the condensation heat transfer significantly when the inlet mass flux is low. Whilst, at high mass flux, the enhancement of surface tension on heat transfer is unobvious and can be neglected.
Caregiving, Perceptions of Maternal Favoritism, and Tension Among Siblings
Suitor, J. Jill; Gilligan, Megan; Johnson, Kaitlin; Pillemer, Karl
2014-01-01
Purpose: Studies of later-life families have revealed that sibling tension often increases in response to parents’ need for care. Both theory and research on within-family differences suggest that when parents’ health declines, sibling relations may be affected by which children assume care and whether siblings perceive that the parent favors some offspring over others. In the present study, we explore the ways in which these factors shape sibling tension both independently and in combination during caregiving. Design and Methods: In this article, we use data collected from 450 adult children nested within 214 later-life families in which the offspring reported that their mothers needed care within 2 years prior to the interview. Results: Multilevel analyses demonstrated that providing care and perceiving favoritism regarding future caregiving were associated with sibling tension following mothers’ major health events. Further, the effects of caregiving on sibling tension were greater when perceptions of favoritism were also present. Implications: These findings shed new light on the conditions under which adult children are likely to experience high levels of sibling tension during caregiving. Understanding these processes is important because siblings are typically the individuals to whom caregivers are most likely to turn for support when assuming care of older parents, yet these relationships are often a major source of interpersonal stress. PMID:23811753
NASA Astrophysics Data System (ADS)
Zhi, Jie; Zhao, Libin; Zhang, Jianyu; Liu, Zhanli
2016-06-01
In this paper, a new numerical method that combines a surface-based cohesive model and extended finite element method (XFEM) without predefining the crack paths is presented to simulate the microscopic damage evolution in composites under uniaxial transverse tension. The proposed method is verified to accurately capture the crack kinking into the matrix after fiber/matrix debonding. A statistical representative volume element (SRVE) under periodic boundary conditions is used to approximate the microstructure of the composites. The interface parameters of the cohesive models are investigated, in which the initial interface stiffness has a great effect on the predictions of the fiber/matrix debonding. The detailed debonding states of SRVE with strong and weak interfaces are compared based on the surface-based and element-based cohesive models. The mechanism of damage in composites under transverse tension is described as the appearance of the interface cracks and their induced matrix micro-cracking, both of which coalesce into transversal macro-cracks. Good agreement is found between the predictions of the model and the in situ experimental observations, demonstrating the efficiency of the presented model for simulating the microscopic damage evolution in composites.
A new field method to characterise the runoff generation potential of burned hillslopes
NASA Astrophysics Data System (ADS)
Sheridan, Gary; Lane, Patrick; Langhans, Christoph
2016-04-01
The prediction of post fire runoff generation is critical for the estimation of post fire erosion processes and rates. Typical field measures for determining infiltration model parameters include ring infiltrometers, tension infiltrometers, rainfall simulators and natural runoff plots. However predicting the runoff generating potential of post-fire hillslopes is difficult due to the high spatial variability of soil properties relative to the size of the measurement method, the poorly understood relationship between water repellence and runoff generation, known scaling issues with all the above hydraulic measurements, and logistical limitations for measurements in remote environments. In this study we tested a new field method for characterizing surface runoff generation potential that overcomes these limitations and is quick, simple and cheap to apply in the field. The new field method involves the manual application of a 40mm depth of Brilliant Blue FCF food dye along a 10cm wide and 5m long transect along the contour under slightly-ponded conditions. After 24 hours the transect is excavated to a depth of 10cm and the percentage dyed area within the soil profile recorded manually. The dyed area is an index of infiltration potential of the soil during intense rainfall events, and captures both spatial variability and water repellence effects. The dye measurements were made adjacent to long term instrumented post fire rainfall-runoff plots on 7 contrasting soil types over a 6 month period, and the results show surprisingly strong correlations (r2 = 0.9) between the runoff-ratio from the plots and the dyed area. The results are used to develop an initial conceptual model that links the dye index with an infiltration model and parameters suited to burnt hillslopes. The capacity of this method to provide a simple, and reliable indicator of post fire runoff potential from different fire severities, soil types and treatments is explored in this presentation.
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
Wang, Xu; Shen, Fuwang; Wang, Shuai; ...
2017-04-06
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper,more » the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.« less
Design and implementation of wire tension measurement system for MWPCs used in the STAR iTPC upgrade
NASA Astrophysics Data System (ADS)
Wang, Xu; Shen, Fuwang; Wang, Shuai; Feng, Cunfeng; Li, Changyu; Lu, Peng; Thomas, Jim; Xu, Qinghua; Zhu, Chengguang
2017-07-01
The STAR experiment at RHIC is planning to upgrade the Time Projection Chamber which lies at the heart of the detector. We have designed an instrument to measure the tension of the wires in the multi-wire proportional chambers (MWPCs) which will be used in the TPC upgrade. The wire tension measurement system causes the wires to vibrate and then it measures the fundamental frequency of the oscillation via a laser based optical platform. The platform can scan the entire wire plane, automatically, in a single run and obtain the wire tension on each wire with high precision. In this paper, the details about the measurement method and the system setup will be described. In addition, the test results for a prototype MWPC to be used in the STAR-iTPC upgrade will be presented.
Impact damage and residual tension strength of a thick graphite/epoxy rocket motor case
NASA Technical Reports Server (NTRS)
Poe, C. C., Jr.
1992-01-01
Impacters of various masses were dropped from various heights onto thick graphite/epoxy filament-wound cylinders. The cylinders represented filament-wound cases made for the booster motors of the Space Shuttle. Tups of various shapes were affixed to the impacters. Some of the cylinders were filled with inert propellant, and some were empty. The cylinders were impacted numerous times around the circumference and then cut into tension coupons, each containing an impact site. The size of the damage and the residual tension strength were measured. For hemispherical tups, strength was reduced as much as 30 percent by nonvisible damage. The damage consisted of matrix cracking and broken fibers. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined. For corner and rod shaped tups, any damage that resulted in strength loss was readily visible.
First-Principles Prediction of Liquid/Liquid Interfacial Tension.
Andersson, M P; Bennetzen, M V; Klamt, A; Stipp, S L S
2014-08-12
The interfacial tension between two liquids is the free energy per unit surface area required to create that interface. Interfacial tension is a determining factor for two-phase liquid behavior in a wide variety of systems ranging from water flooding in oil recovery processes and remediation of groundwater aquifers contaminated by chlorinated solvents to drug delivery and a host of industrial processes. Here, we present a model for predicting interfacial tension from first principles using density functional theory calculations. Our model requires no experimental input and is applicable to liquid/liquid systems of arbitrary compositions. The consistency of the predictions with experimental data is significant for binary, ternary, and multicomponent water/organic compound systems, which offers confidence in using the model to predict behavior where no data exists. The method is fast and can be used as a screening technique as well as to extend experimental data into conditions where measurements are technically too difficult, time consuming, or impossible.
Effect of surface tension on the behavior of adhesive contact based on Lennard-Jones potential law
NASA Astrophysics Data System (ADS)
Zhu, Xinyao; Xu, Wei
2018-02-01
The present study explores the effect of surface tension on adhesive contact behavior where the adhesion is interpreted by long-range intermolecular forces. The adhesive contact is analyzed using the equivalent system of a rigid sphere and an elastic half space covered by a membrane with surface tension. The long-range intermolecular forces are modeled with the Lennard‒Jones (L‒J) potential law. The current adhesive contact issue can be represented by a nonlinear integral equation, which can be solved by Newton‒Raphson method. In contrast to previous studies which consider intermolecular forces as short-range, the present study reveals more details of the features of adhesive contact with surface tension, in terms of jump instabilities, pull-off forces, pressure distribution within the contact area, etc. The transition of the pull-off force is not only consistent with previous studies, but also presents some new interesting characteristics in the current situation.
Normal-tension glaucoma (Low-tension glaucoma)
Anderson, Douglas R
2011-01-01
Glaucoma is now considered an abnormal physiology in the optic nerve head that interacts with the level of intraocular pressure (IOP), with the degree and rate of damage depending on the IOP and presumably the degree of abnormal physiology. Diagnosis of normal-tension glaucoma (NTG), defined as glaucoma without a clearly abnormal IOP, depends on recognizing symptoms and signs associated with optic nerve vulnerability, in addition to absence of other explanations for disc abnormality and visual field loss. Among the findings are a halo or crescent of absence of retinal pigment epithelium around the disc, bilateral pre-chiasmal visual field defects, splinter hemorrhages at the disc margin, vascular dysregulation (low blood pressure, cold hands and feet, migraine headache with aura, and the like), or a family history of glaucoma. Possibly relevant, is a history of hemodynamic crisis, arterial obstructive disease, or sleep apnea. Neurological evaluation with imaging is needed only for atypical cases or ones that progress unexpectedly. Management follows the same principle of other chronic glaucomas, to lower the IOP by a substantial amount, enough to prevent disabling visual loss. However, many NTG cases are non-progressive. Therefore, it may often be wisein mild cases to determine whether the case is progressive and the rate of progression before deciding on how aggressivene to be with therapy. Efforts at neuroprotection and improvement in blood flow have not yet been shown effective. PMID:21150042
NASA Technical Reports Server (NTRS)
Rhim, Won-Kyu; Ishikawa, Takehiko
2000-01-01
Molten aluminum and tin drops were levitated in a high vacuum by controlled electric fields, and they were systematically rotated by applying by a rotating magnetic field. When the evolution of the drop shape was measured as a function of rotation frequency, it agreed quantitatively well with the Brown and Scriven's theoretical prediction. The normalized rotation frequencies at the bifurcation point agreed with the predicted value 0.559, within 2%. An anomalous phenomenon which totally deviated from the prediction was observed in rotating molten tin drops when they were kept in a high rotation rate for several hours. No anomaly was observed in aluminum drops when they underwent similar condition. It was speculated that under the strong centrifugal force in the drop the tin isotopes must be separating. Since Al-27 is essentially the only naturally abundant isotope in the aluminum drops, the same anomaly is not expected. Based on the shape deformation of a rotating drop, an alternate approach to the surface tension measurement was verified. This new surface tension measurement technique was applied to a glassforming alloy, Zr(41.2)Ti(13.8)Cu(12.5)Ni(10.0)Be(22.5) in its highly viscous states. Also demonstrated in the paper was a use of a molten aluminum drop to verify the Busse's prediction of the influence of the drop rotation on the drop oscillation frequency.
Jody, Bassam J.; Arman, Bayram; Karvelas, Dimitrios E.; Pomykala, Jr., Joseph A.; Daniels, Edward J.
1997-01-01
An improved method is provided for separating acrylonitrile butadiene styrene (ABS) and high impact polystyrene (HIPS) plastics from each other. The ABS and HIPS plastics are shredded to provide a selected particle size. The shredded particles of the ABS and HIPS plastics are applied to a solution having a solution density in a predefined range between 1.055 gm/cm.sup.3 and 1.07 gm/cm.sup.3, a predefined surface tension in a range between 22 dynes/cm to 40 dynes/cm and a pH in the range of 1.77 and 2.05. In accordance with a feature of the invention, the novel method is provided for separating ABS and HIPS, two solid thermoplastics which have similar densities by selectively modifying the effective density of the HIPS using a binary solution with the appropriate properties, such as pH, density and surface tension, such as a solution of acetic acid and water or a quaternary solution having the appropriate density, surface tension, and pH.
Gravitational convergence, shear deformation and rotation of magnetic forcelines
NASA Astrophysics Data System (ADS)
Giantsos, Vangelis; Tsagas, Christos G.
2017-11-01
We consider the 'kinematics' of space-like congruences and apply them to a family of self-gravitating magnetic forcelines. Our aim is to investigate the convergence and the possible focusing of these lines, as well as their rotation and shear deformation. In so doing, we introduce a covariant 1+2 splitting of the 3-D space, parallel and orthogonal to the direction of the field lines. The convergence, or not, of the latter is monitored by a specific version of the Raychaudhuri equation, obtained after propagating the spatial divergence of the unit magnetic vector along its own direction. The resulting expression shows that, although the convergence of the magnetic forcelines is affected by the gravitational pull of all the other sources, it is unaffected by the field's own gravity, irrespective of how strong the latter is. This rather counterintuitive result is entirely due to the magnetic tension, namely to the negative pressure the field exerts parallel to its lines of force. In particular, the magnetic tension always cancels out the field's energy-density input to the Raychaudhuri equation, leaving the latter free of any direct magnetic-energy contribution. Similarly, the rotation and the shear deformation of the aforementioned forcelines are also unaffected by the magnetic input to the total gravitational energy. In a sense, the magnetic lines do not seem to 'feel' their own gravitational field no matter how strong the latter may be.
Finite element tension analysis of the supporting tissues of a maxillary canine.
Kalachev, Y S; Ralev, R D; Iordanov, P I
2001-01-01
The distribution of masticatory load on the teeth and the arising force tensions in them are factors that determine the origine of destructive processes in their periodontium. The development of mathematical models and application of new computer technologies make possible their precise study. They are still not thoroughly studied. To study the tensions, originating in the periodontium of a canine tooth during occlusal load by the modern method of finite elements (MFE). A three-dimensional model of a maxillary canine is built by MFE containing 304 finite elements with six varieties of geometrical form, linked in 1409 nodes. It is supposed that the tooth is fixed firmly to the outer surface of the periodontal membrane to the alveolar bone and is loaded in the lingual wall by a force perpendicular to its longitudinal axis and directed from the lingual to the vestibular wall. As a result of the calculations according to MFE the tension state of dental tissues is calculated for diferent degrees of destruction of the alveolar bone. It was established that with the increase of destruction of the alveolar bone for one and the same masticatory load, the tensions in the periodontal membrane also increase. The maximal tensions act in the apex of the root and around the clinical neck of the teeth. The results obtained provide precise information of distribution of force tensions in the periodontium of maxillary canines during occlusal load. They serve as a serious theoretical base for future investigations.
ERIC Educational Resources Information Center
Musser, P. Maureen; Caskey, Micki M.; Samek, Linda L.; Kim, Younghee M.; Greene, William L.; Carpenter, Jan M.; Casbon, Jay
2013-01-01
The purpose of this article is to share wisdom collected from the field and offer a view of meaningful learning, explore the tensions that exist in educators' work, and invite conversation about the future of educational practice. The anecdotes and data come from a series of research studies conducted from 2001 to 2011 by a cadre of middle grades…
Simulation of prepackaged grout bleed under field conditions.
DOT National Transportation Integrated Search
2014-04-01
This report contains a summary of the research performed in the area of reproducing and determining the cause of soft : grout, which has been found in several PT (Post-Tensioned) tubes around the state of Florida. A modified version of the : Euronorm...
ERIC Educational Resources Information Center
Bailey, Lucy E.; Graves, Karen
2016-01-01
The authors describe broad patterns and key developments in gender and education scholarship to provide an overview of the state of the field. They incorporate historical developments shaping research patterns, broad tensions and shifts, and emerging trajectories in inquiry. Cognizant that reviews are inherently political endeavors in both…
Preliminary investigation of steel girder end panel shear resistance.
DOT National Transportation Integrated Search
2010-01-01
Prior to 1973, steel bridges in California were designed based on Allowable Stress : Design and the shear design of web and transverse stiffeners was based on the : average shear stress in the web. The tension field action equation similar to the : c...
NASA Astrophysics Data System (ADS)
Greene, Patrick; Nourgaliev, Robert; Schofield, Sam
2015-11-01
A new sharp high-order interface tracking method for multi-material flow problems on unstructured meshes is presented. The method combines the marker-tracking algorithm with a discontinuous Galerkin (DG) level set method to implicitly track interfaces. DG projection is used to provide a mapping from the Lagrangian marker field to the Eulerian level set field. For the level set re-distancing, we developed a novel marching method that takes advantage of the unique features of the DG representation of the level set. The method efficiently marches outward from the zero level set with values in the new cells being computed solely from cell neighbors. Results are presented for a number of different interface geometries including ones with sharp corners and multiple hierarchical level sets. The method can robustly handle the level set discontinuities without explicit utilization of solution limiters. Results show that the expected high order (3rd and higher) of convergence for the DG representation of the level set is obtained for smooth solutions on unstructured meshes. High-order re-distancing on irregular meshes is a must for applications were the interfacial curvature is important for underlying physics, such as surface tension, wetting and detonation shock dynamics. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Information management release number LLNL-ABS-675636.
Does topical rifampicin reduce the risk of surgical field infection in hernia repair?
Kahramanca, Şahin; Kaya, Oskay; Azılı, Cem; Celep, Bahadır; Gökce, Emre; Küçükpınar, Tevfik
2013-01-01
Objective: Inguinal hernia operations are common procedures in general surgery. There have been many approaches in the historical development of hernia repair; tension free repair with mesh being the most commonly used technique today. Although it is a clean wound, antibiotic use is still controversial due to concerns about infection related to synthetic mesh. We aimed to determine the probable role of topical rifampicin in patients with tension-free hernia repair and mesh support. Material and Methods: The charts of patients who underwent tension-free inguinal hernia repair were retrospectively analyzed. Information and operative notes on patients, in whom synthetic materials were used, were identified. The patients were divided into two groups, placebo group (G1) and patients with application of topical rifampicin on the mesh (G2). Infection rates between the groups in the early postoperative period were compared. Results: The mean age of the 278 patients who were included in the study was 49.6±15.39 and the female/male ratio was 10/268. There were recurrent hernias in four patients and superficial wound infections in 22 patients in the early period. One patient had testicle torsion and underwent an orchiectomy. There were no significant differences between the groups in terms of age and gender. The types of hernia and body mass index were homogenous between the two groups. In the early postoperative period the infection rates were 16/144 (11.1%) and 6/134 (4.48%) in the groups, respectively, with the difference being statistically significant (p=0.041). Conclusion: We suggest that applying rifampicin locally can decrease surgical site infection in hernia operations where meshes are used. PMID:25931846
Membrane tension feedback on shape and motility of eukaryotic cells
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winkler, Benjamin; Aranson, Igor S.; Ziebert, Falko
2016-04-01
In the framework of a phase field model of a single cell crawling on a substrate, we investigate how the properties of the cell membrane affect the shape and motility of the cell. Since the membrane influences the cell dynamics on multiple levels and provides a nontrivial feedback, we consider the following fundamental interactions: (i) the reduction of the actin polymerization rate by membrane tension; (ii) area conservation of the cell’s two-dimensional cross-section vs. conservation of the circumference (i.e. membrane inextensibility); and (iii) the contribution from the membrane’s bending energy to the shape and integrity of the cell. As inmore » experiments, we investigate two pertinent observables — the cell’s velocity and its aspect ratio. We find that the most important effect is the feedback of membrane tension on the actin polymerization. Bending rigidity has only minor effects, visible mostly in dynamic reshaping events, as exemplified by collisions of the cell with an obstacle.« less
Interfacial tension and vapor-liquid equilibria in the critical region of mixtures
NASA Technical Reports Server (NTRS)
Moldover, Michael R.; Rainwater, James C.
1988-01-01
In the critical region, the concept of two-scale-factor universality can be used to accurately predict the surface tension between near-critical vapor and liquid phases from the singularity in the thermodynamic properties of the bulk fluid. In the present work, this idea is generalized to binary mixtures and is illustrated using the data of Hsu et al. (1985) for CO2 + n-butane. The pressure-temperature-composition-density data for coexisting, near-critical phases of the mixtures are fitted with a thermodynamic potential comprised of a sum of a singular term and nonsingular terms. The nonuniversal amplitudes characterizing the singular term for the mixtures are obtained from the amplitudes for the pure components by interpolation in a space of thermodynamic 'field' variables. The interfacial tensions predicted for the mixtures from the singular term are within 10 percent of the data on three isotherms in the pressure range (Pc - P)/Pc of less than 0.5. This difference is comparable to the combined experimental and model errors.
Impact Processes in the Solar System
NASA Technical Reports Server (NTRS)
Ahrens, Thomas J.
2004-01-01
Our laboratory has previously conducted impact fracture and dynamic failure tests. Polanskey and Ahrens [1990] mapped the fractures from a series of laboratory craters (Fig. 1) and Ahrens and Rubin [ 1993] inferred that the usually further extending radial cracks resulted from tensional failure during the compression of the shock propagation. The radial spreading induced by the particle velocity field caused the stresses perpendicular to the shock front to become sufficiently large and tensile. This induces "radial fractures." The concentric fractures are attributed to the tensional failure occurring after the initial compressive phase. Upon radial propagation of the stress wave the negative tension behind the stress-wave front caused failure along the quasi-spherical concentric fractures. The near-surface and spall fractures are attributed to the fractures described by Melosh [1984]. These are activated by impact and can launch relatively unshocked samples of planetary surfaces to speeds exceeding escape velocity. In the case of Mars, some of these surface samples presumably become the SNC (Mars) meteorites.
Steel Shear Walls, Behavior, Modeling and Design
NASA Astrophysics Data System (ADS)
Astaneh-Asl, Abolhassan
2008-07-01
In recent years steel shear walls have become one of the more efficient lateral load resisting systems in tall buildings. The basic steel shear wall system consists of a steel plate welded to boundary steel columns and boundary steel beams. In some cases the boundary columns have been concrete-filled steel tubes. Seismic behavior of steel shear wall systems during actual earthquakes and based on laboratory cyclic tests indicates that the systems are quite ductile and can be designed in an economical way to have sufficient stiffness, strength, ductility and energy dissipation capacity to resist seismic effects of strong earthquakes. This paper, after summarizing the past research, presents the results of two tests of an innovative steel shear wall system where the boundary elements are concrete-filled tubes. Then, a review of currently available analytical models of steel shear walls is provided with a discussion of capabilities and limitations of each model. We have observed that the tension only "strip model", forming the basis of the current AISC seismic design provisions for steel shear walls, is not capable of predicting the behavior of steel shear walls with length-to-thickness ratio less than about 600 which is the range most common in buildings. The main reasons for such shortcomings of the AISC seismic design provisions for steel shear walls is that it ignores the compression field in the shear walls, which can be significant in typical shear walls. The AISC method also is not capable of incorporating stresses in the shear wall due to overturning moments. A more rational seismic design procedure for design of shear walls proposed in 2000 by the author is summarized in the paper. The design method, based on procedures used for design of steel plate girders, takes into account both tension and compression stress fields and is applicable to all values of length-to-thickness ratios of steel shear walls. The method is also capable of including the effect of overturning moments and any normal forces that might act on the steel shear wall.
Tearing-off method based on single carbon nanocoil for liquid surface tension measurement
NASA Astrophysics Data System (ADS)
Wang, Peng; Pan, Lujun; Deng, Chenghao; Li, Chengwei
2016-11-01
A single carbon nanocoil (CNC) is used as a highly sensitive mechanical sensor to measure the surface tension coefficient of deionized water and alcohol in the tearing-off method. The error can be constrained to within 3.8%. Conversely, the elastic spring constant of a CNC can be accurately measured using a liquid, and the error is constrained to within 3.2%. Compared with traditional methods, the CNC is used as a ring and a sensor at the same time, which may simplify the measurement device and reduce error, also all measurements can be performed under a very low liquid dosage owing to the small size of the CNC.
The effects of KinesioTape on the treatment of lateral epicondylitis.
Shakeri, Hassan; Soleimanifar, Manijeh; Arab, A M; Hamneshin Behbahani, Shirin
Randomized clinical trial. KinesioTape (KT) is a noninvasive method to treat pain and muscular dysfunction. To investigate the effect of KT with and without tension on pain intensity, pain pressure threshold, grip strength and disability in individuals with lateral epicondylitis, and myofacial trigger points in forearm muscles. Thirty women with lateral epicondylitis and myofacial trigger point in forearm muscles were randomly assigned to KT with tension and placebo (KT without tension). The treatment was provided 3 times in one week, and outcome measures were assess pre-post treatment. The mean score of visual analogue scale (VAS) during activity decreased significantly from 6.4 and 6 pretest to 2.53 and 4.66 posttest, respectively, for the KT with and without tension groups. The mean score of Disabilities of the Arm, Shoulder and Hand decreased significantly from 16.82 and 22.79 pretest to 8.65 and 8.29 posttest, respectively, for the KT with and without tension groups. A paired t-test revealed a significant reduction in VAS during activity and Disabilities of the Arm, Shoulder and Hand before and after treatment in both groups (P < .05). Pain pressure threshold, grip strength, and VAS using an algometer revealed no significant differences. The study showed no significant difference in variables immediately after intervention. Improvements in functional disability were superior when KT was used with tension, than obtained with a placebo-no tension application. The application of KT produces an improvement in pain intensity and upper extremity disability in subjects with LE and MTP in forearm muscles, and KT with tension was more effective than placebo group. NA. 100-216. Copyright © 2017 Hanley & Belfus. Published by Elsevier Inc. All rights reserved.
Sellathurai, Jeeva; Nielsen, Joachim; Hejbøl, Eva Kildall; Jørgensen, Louise Helskov; Dhawan, Jyotsna; Nielsen, Michael Friberg Bruun; Schrøder, Henrik Daa
2016-01-01
Objectives Most cell culture studies have been performed at atmospheric oxygen tension of 21%, however the physiological oxygen tension is much lower and is a factor that may affect skeletal muscle myoblasts. In this study we have compared activation of G0 arrested myoblasts in 21% O2 and in 1% O2 in order to see how oxygen tension affects activation and proliferation of human myoblasts. Materials and Methods Human myoblasts were isolated from skeletal muscle tissue and G0 arrested in vitro followed by reactivation at 21% O2 and 1% O2. The effect was assesses by Real-time RT-PCR, immunocytochemistry and western blot. Results and Conclusions We found an increase in proliferation rate of myoblasts when activated at a low oxygen tension (1% O2) compared to 21% O2. In addition, the gene expression studies showed up regulation of the myogenesis related genes PAX3, PAX7, MYOD, MYOG (myogenin), MET, NCAM, DES (desmin), MEF2A, MEF2C and CDH15 (M-cadherin), however, the fraction of DES and MYOD positive cells was not increased by low oxygen tension, indicating that 1% O2 may not have a functional effect on the myogenic response. Furthermore, the expression of genes involved in the TGFβ, Notch and Wnt signaling pathways were also up regulated in low oxygen tension. The differences in gene expression were most pronounced at day one after activation from G0-arrest, thus the initial activation of myoblasts seemed most sensitive to changes in oxygen tension. Protein expression of HES1 and β-catenin indicated that notch signaling may be induced in 21% O2, while the canonical Wnt signaling may be induced in 1% O2 during activation and proliferation of myoblasts. PMID:27442119
Clinical manifestations of tension pneumothorax: protocol for a systematic review and meta-analysis
2014-01-01
Background Although health care providers utilize classically described signs and symptoms to diagnose tension pneumothorax, available literature sources differ in their descriptions of its clinical manifestations. Moreover, while the clinical manifestations of tension pneumothorax have been suggested to differ among subjects of varying respiratory status, it remains unknown if these differences are supported by clinical evidence. Thus, the primary objective of this study is to systematically describe and contrast the clinical manifestations of tension pneumothorax among patients receiving positive pressure ventilation versus those who are breathing unassisted. Methods/Design We will search electronic bibliographic databases (MEDLINE, PubMed, EMBASE, and the Cochrane Database of Systematic Reviews) and clinical trial registries from their first available date as well as personal files, identified review articles, and included article bibliographies. Two investigators will independently screen identified article titles and abstracts and select observational (cohort, case–control, and cross-sectional) studies and case reports and series that report original data on clinical manifestations of tension pneumothorax. These investigators will also independently assess risk of bias and extract data. Identified data on the clinical manifestations of tension pneumothorax will be stratified according to whether adult or pediatric study patients were receiving positive pressure ventilation or were breathing unassisted, as well as whether the two investigators independently agreed that the clinical condition of the study patient(s) aligned with a previously published tension pneumothorax working definition. These data will then be summarized using a formal narrative synthesis alongside a meta-analysis of observational studies and then case reports and series where possible. Pooled or combined estimates of the occurrence rate of clinical manifestations will be calculated using random effects models (for observational studies) and generalized estimating equations adjusted for reported potential confounding factors (for case reports and series). Discussion This study will compile the world literature on tension pneumothorax and provide the first systematic description of the clinical manifestations of the disorder according to presenting patient respiratory status. It will also demonstrate a series of methods that may be used to address difficulties likely to be encountered during the conduct of a meta-analysis of data contained in published case reports and series. PROSPERO registration number: CRD42013005826. PMID:24387082
A numeric investigation of co-flowing liquid streams using the Lattice Boltzmann Method
NASA Astrophysics Data System (ADS)
Somogyi, Andy; Tagg, Randall
2007-11-01
We present a numerical investigation of co-flowing immiscible liquid streams using the Lattice Boltzmann Method (LBM) for multi component, dissimilar viscosity, immiscible fluid flow. When a liquid is injected into another immiscible liquid, the flow will eventually transition from jetting to dripping due to interfacial tension. Our implementation of LBM models the interfacial tension through a variety of techniques. Parallelization is also straightforward for both single and multi component models as only near local interaction is required. We compare the results of our numerical investigation using LBM to several recent physical experiments.
Tensions related to implementation of postgraduate degree projects in specialist nursing education.
German Millberg, Lena; Berg, Linda; Lindström, Irma; Petzäll, Kerstin; Öhlén, Joakim
2011-04-01
In conjunction with the introduction of the Bologna process in Sweden, specialist nursing education programmes were moved up to the second cycle of higher education with the opportunity to take a one-year master's degree, which also meant that students would undertake a degree project carrying 15 ECTS. The purpose of this study was to examine the introduction of postgraduate degree projects on the second-cycle level into Swedish specialist nursing programmes in accordance with the Bologna process. Five universities were involved and the study design took the form of action research. Problem formulation, planning, evaluation and follow-up with reflection led to new actions over a period of 2 1/2 years. Through a review of local curriculum documents, the implementation of a postgraduate degree project was monitored and these reviews, together with field notes, were analysed by means of constant comparative analysis. The results revealed a variety of tensions that arose when postgraduate degree projects were introduced, taking the form of differing views on the relationship between research, clinical development, specific professional objectives and academic objectives. These tensions were reflected in six areas of change. In summary, it can be noted that implementation of the postgraduate degree projects highlighted tensions related to basic views of learning. Copyright © 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Rowe, Jeffrey D.; Baird, James K.
2007-06-01
A colloidal crystal suspended in an electrolyte solution will ordinarily exchange ions with the surrounding solution and develop a net surface charge density and a corresponding double layer. The interfacial tension of the charged surface has contributions arising from: (a) background interfacial tension of the uncharged surface, (b) the entropy associated with the adsorption of ions on the surface, and (c) the polarizing effect of the electrostatic field within the double layer. The adsorption and polarization effects make negative contributions to the surface free energy and serve to reduce the interfacial tension below the value to be expected for the uncharged surface. The diminished interfacial tension leads to a reduced capillary length scale. According to the Ostwald ripening theory of particle coarsening, the reduced capillary length will cause the solute supersaturation to decay more rapidly and the colloidal particles to be smaller in size and greater in number than in the absence of the double layer. Although the length scale for coarsening should be little affected in the case of inorganic colloids, such as AgI, it should be greatly reduced in the case of suspensions of protein crystals, such as apoferritin, catalase, and thaumatin.
Effects of high voltage transmission lines on honeybees: a feasibility study. Final report
DOE Office of Scientific and Technical Information (OSTI.GOV)
Greenberg, B.
1977-07-01
Methodology is described for the investigation of the effects of electric fields generated by high-tension power lines on honeybees (Apis mellifera L.). The parameters to be measured include colony population, honey stores, amount of acoustical noise generated by the bees, in-hive temperature, incidence of queen cell production, and tendency to swarm. Accompanying dosimetric support includes in-hive electric field measurements, development of shielding to eliminate the electric field from selected colonies, analysis of the acoustical data, and periodic checks on the ambient electric field present under the line and at the control site.
NASA Astrophysics Data System (ADS)
Liu, Zhanwei; Huang, Xianfu; Xie, Huimin
2013-02-01
Deformed liquid surface directly involves the surface tension, which can always be used to account for the kinematics of aquatic insects in gas-liquid interface and the light metal floating on the water surface. In this paper a novel method based upon deformed transmission-virtual grating is proposed for determination of deformed liquid surface. By addressing an orthogonal grating (1-5 line/mm) under the transparent water groove and then capturing images from upset of the deformed water surface, a displacement vector of full-field which directly associates the 3-D deformed liquid surface then can be evaluated by processing the recorded deformed fringe pattern in the two directions (x- and y-direction). Theories and equations for the method are thoroughly delivered. Validation test to measure the deformed water surface caused by a Chinese 1-cent coin has been conducted to demonstrate the ability of the developed method. The obtained results show that the method is robust in determination of micro 3-D surface of deformed liquid with a submicron scale resolution and with a wide range application scope.
Fluoride glass: Crystallization, surface tension
NASA Technical Reports Server (NTRS)
Doremus, R. H.
1988-01-01
Fluoride glass was levitated acoustically in the ACES apparatus on STS-11, and the recovered sample had a different microstructure from samples cooled in a container. Further experiments on levitated samples of fluoride glass are proposed. These include nucleation, crystallization, melting observations, measurement of surface tension of molten glass, and observation of bubbles in the glass. Ground experiments are required on sample preparation, outgassing, and surface reactions. The results should help in the development and evaluation of containerless processing, especially of glass, in the development of a contaminent-free method of measuring surface tensions of melts, in extending knowledge of gas and bubble behavior in fluoride glasses, and in increasing insight into the processing and properties of fluoride glasses.
Thermophysical properties of a highly superheated and undercooled Ni-Si alloy melt
NASA Astrophysics Data System (ADS)
Wang, H. P.; Cao, C. D.; Wei, B.
2004-05-01
The surface tension of superheated and undercooled liquid Ni-5 wt % Si alloy was measured by an electromagnetic oscillating drop method over a wide temperature range from 1417 to 1994 K. The maximum undercooling of 206 K (0.13TL) was achieved. The surface tension of liquid Ni-5 wt % Si alloy is 1.697 N m-1 at the liquidus temperature 1623 K, and its temperature coefficient is -3.97×10-4 N m-1 K-1. On the basis of the experimental data of surface tension, the other thermophysical properties such as the viscosity, the solute diffusion coefficient, and the density of liquid Ni-5 wt % Si alloy were also derived.
NASA Astrophysics Data System (ADS)
Paradis, Paul-François; Ishikawa, Takehiko
2005-07-01
Electrostatic levitation and multi-beam radiative heating overcame contamination and sample position instability problems associated with handling of liquid alumina. This allowed the measurements of the surface tension and viscosity in the superheated and undercooled states using the oscillation drop method. Over the 2190-2500 K interval, the surface tension of alumina was measured as σ(T)=0.64--8.2× 10-5 (T-Tm) (N/m), where Tm, the melting temperature, is 2327 K. Similarly, on the same temperature range, the viscosity was determined as η(T)=3.2\\exp[43.2× 103/(RT)] (mPa\\cdots). Both sets of data agree well with the literature values.
Exact solutions for Hele-Shaw flows with surface tension: The Schwarz-function approach
NASA Astrophysics Data System (ADS)
Vasconcelos, Giovani L.
1993-08-01
An alternative derivation of the two-parameter family of solutions for a Hele-Shaw flow with surface tension reported previously by Vasconcelos and Kadanoff [Phys. Rev. A 44, 6490 (1991)] is presented. The method of solution given here is based on the formalism of the Schwarz function: an ordinary differential equation for the Schwarz function of the moving interface is obtained and then solved.