Sample records for tensor imaging parameters

  1. Multimodal MRI in cerebral small vessel disease: its relationship with cognition and sensitivity to change over time.

    PubMed

    Nitkunan, Arani; Barrick, Tom R; Charlton, Rebecca A; Clark, Chris A; Markus, Hugh S

    2008-07-01

    Cerebral small vessel disease is the most common cause of vascular dementia. Interest in using MRI parameters as surrogate markers of disease to assess therapies is increasing. In patients with symptomatic sporadic small vessel disease, we determined which MRI parameters best correlated with cognitive function on cross-sectional analysis and which changed over a period of 1 year. Thirty-five patients with lacunar stroke and leukoaraiosis were recruited. They underwent multimodal MRI (brain volume, fluid-attenuated inversion recovery lesion load, lacunar infarct number, fractional anisotropy, and mean diffusivity from diffusion tensor imaging) and neuropsychological testing. Twenty-seven agreed to reattend for repeat MRI and neuropsychology at 1 year. An executive function score correlated most strongly with diffusion tensor imaging (fractional anisotropy histogram, r=-0.640, P=0.004) and brain volume (r=0.501, P=0.034). Associations with diffusion tensor imaging were stronger than with all other MRI parameters. On multiple regression of all imaging parameters, a model that contained brain volume and fractional anisotropy, together with age, gender, and premorbid IQ, explained 74% of the variance of the executive function score (P=0.0001). Changes in mean diffusivity and fractional anisotropy were detectable over the 1-year follow-up; in contrast, no change in other MRI parameters was detectable over this time period. A multimodal MRI model explains a large proportion of the variation in executive function in cerebral small vessel disease. In particular, diffusion tensor imaging correlates best with executive function and is the most sensitive to change. This supports the use of MRI, in particular diffusion tensor imaging, as a surrogate marker in treatment trials.

  2. Diffusion tensor imaging with direct cytopathological validation: characterisation of decorin treatment in experimental juvenile communicating hydrocephalus.

    PubMed

    Aojula, Anuriti; Botfield, Hannah; McAllister, James Patterson; Gonzalez, Ana Maria; Abdullah, Osama; Logan, Ann; Sinclair, Alexandra

    2016-05-31

    In an effort to develop novel treatments for communicating hydrocephalus, we have shown previously that the transforming growth factor-β antagonist, decorin, inhibits subarachnoid fibrosis mediated ventriculomegaly; however decorin's ability to prevent cerebral cytopathology in communicating hydrocephalus has not been fully examined. Furthermore, the capacity for diffusion tensor imaging to act as a proxy measure of cerebral pathology in multiple sclerosis and spinal cord injury has recently been demonstrated. However, the use of diffusion tensor imaging to investigate cytopathological changes in communicating hydrocephalus is yet to occur. Hence, this study aimed to determine whether decorin treatment influences alterations in diffusion tensor imaging parameters and cytopathology in experimental communicating hydrocephalus. Moreover, the study also explored whether diffusion tensor imaging parameters correlate with cellular pathology in communicating hydrocephalus. Accordingly, communicating hydrocephalus was induced by injecting kaolin into the basal cisterns in 3-week old rats followed immediately by 14 days of continuous intraventricular delivery of either human recombinant decorin (n = 5) or vehicle (n = 6). Four rats remained as intact controls and a further four rats served as kaolin only controls. At 14-days post-kaolin, just prior to sacrifice, routine magnetic resonance imaging and magnetic resonance diffusion tensor imaging was conducted and the mean diffusivity, fractional anisotropy, radial and axial diffusivity of seven cerebral regions were assessed by voxel-based analysis in the corpus callosum, periventricular white matter, caudal internal capsule, CA1 hippocampus, and outer and inner parietal cortex. Myelin integrity, gliosis and aquaporin-4 levels were evaluated by post-mortem immunohistochemistry in the CA3 hippocampus and in the caudal brain of the same cerebral structures analysed by diffusion tensor imaging. Decorin significantly decreased myelin damage in the caudal internal capsule and prevented caudal periventricular white matter oedema and astrogliosis. Furthermore, decorin treatment prevented the increase in caudal periventricular white matter mean diffusivity (p = 0.032) as well as caudal corpus callosum axial diffusivity (p = 0.004) and radial diffusivity (p = 0.034). Furthermore, diffusion tensor imaging parameters correlated primarily with periventricular white matter astrocyte and aquaporin-4 levels. Overall, these findings suggest that decorin has the therapeutic potential to reduce white matter cytopathology in hydrocephalus. Moreover, diffusion tensor imaging is a useful tool to provide surrogate measures of periventricular white matter pathology in communicating hydrocephalus.

  3. Investigating Musical Disorders with Diffusion Tensor Imaging: a Comparison of Imaging Parameters

    PubMed Central

    Loui, Psyche; Schlaug, Gottfried

    2009-01-01

    The Arcuate Fasciculus (AF) is a bundle of white matter traditionally thought to be responsible for language function. However, its role in music is not known. Here we investigate the connectivity of the AF using Diffusion Tensor Imaging (DTI) and show that musically tone-deaf individuals, who show impairments in pitch discrimination, have reduced connectivity in the AF relative to musically normal-functioning control subjects. Results were robust to variations in imaging parameters and emphasize the importance of brain connectivity in para-linguistic processes such as music. PMID:19673766

  4. Basic concepts of MR imaging, diffusion MR imaging, and diffusion tensor imaging.

    PubMed

    de Figueiredo, Eduardo H M S G; Borgonovi, Arthur F N G; Doring, Thomas M

    2011-02-01

    MR image contrast is based on intrinsic tissue properties and specific pulse sequences and parameter adjustments. A growing number of MRI imaging applications are based on diffusion properties of water. To better understand MRI diffusion-weighted imaging, a brief overview of MR physics is presented in this article followed by physics of the evolving techniques of diffusion MR imaging and diffusion tensor imaging. Copyright © 2011. Published by Elsevier Inc.

  5. Multiple sclerosis: changes in microarchitecture of white matter tracts after training with a video game balance board.

    PubMed

    Prosperini, Luca; Fanelli, Fulvia; Petsas, Nikolaos; Sbardella, Emilia; Tona, Francesca; Raz, Eytan; Fortuna, Deborah; De Angelis, Floriana; Pozzilli, Carlo; Pantano, Patrizia

    2014-11-01

    To determine if high-intensity, task-oriented, visual feedback training with a video game balance board (Nintendo Wii) induces significant changes in diffusion-tensor imaging ( DTI diffusion-tensor imaging ) parameters of cerebellar connections and other supratentorial associative bundles and if these changes are related to clinical improvement in patients with multiple sclerosis. The protocol was approved by local ethical committee; each participant provided written informed consent. In this 24-week, randomized, two-period crossover pilot study, 27 patients underwent static posturography and brain magnetic resonance (MR) imaging at study entry, after the first 12-week period, and at study termination. Thirteen patients started a 12-week training program followed by a 12-week period without any intervention, while 14 patients received the intervention in reverse order. Fifteen healthy subjects also underwent MR imaging once and underwent static posturography. Virtual dissection of white matter tracts was performed with streamline tractography; values of DTI diffusion-tensor imaging parameters were then obtained for each dissected tract. Repeated measures analyses of variance were performed to evaluate whether DTI diffusion-tensor imaging parameters significantly changed after intervention, with false discovery rate correction for multiple hypothesis testing. There were relevant differences between patients and healthy control subjects in postural sway and DTI diffusion-tensor imaging parameters (P < .05). Significant main effects of time by group interaction for fractional anisotropy and radial diffusivity of the left and right superior cerebellar peduncles were found (F2,23 range, 5.555-3.450; P = .036-.088 after false discovery rate correction). These changes correlated with objective measures of balance improvement detected at static posturography (r = -0.381 to 0.401, P < .05). However, both clinical and DTI diffusion-tensor imaging changes did not persist beyond 12 weeks after training. Despite the low statistical power (35%) due to the small sample size, the results showed that training with the balance board system modified the microstructure of superior cerebellar peduncles. The clinical improvement observed after training might be mediated by enhanced myelination-related processes, suggesting that high-intensity, task-oriented exercises could induce favorable microstructural changes in the brains of patients with multiple sclerosis.

  6. Combining Diffusion Tensor Metrics and DSC Perfusion Imaging: Can It Improve the Diagnostic Accuracy in Differentiating Tumefactive Demyelination from High-Grade Glioma?

    PubMed

    Hiremath, S B; Muraleedharan, A; Kumar, S; Nagesh, C; Kesavadas, C; Abraham, M; Kapilamoorthy, T R; Thomas, B

    2017-04-01

    Tumefactive demyelinating lesions with atypical features can mimic high-grade gliomas on conventional imaging sequences. The aim of this study was to assess the role of conventional imaging, DTI metrics ( p:q tensor decomposition), and DSC perfusion in differentiating tumefactive demyelinating lesions and high-grade gliomas. Fourteen patients with tumefactive demyelinating lesions and 21 patients with high-grade gliomas underwent brain MR imaging with conventional, DTI, and DSC perfusion imaging. Imaging sequences were assessed for differentiation of the lesions. DTI metrics in the enhancing areas and perilesional hyperintensity were obtained by ROI analysis, and the relative CBV values in enhancing areas were calculated on DSC perfusion imaging. Conventional imaging sequences had a sensitivity of 80.9% and specificity of 57.1% in differentiating high-grade gliomas ( P = .049) from tumefactive demyelinating lesions. DTI metrics ( p : q tensor decomposition) and DSC perfusion demonstrated a statistically significant difference in the mean values of ADC, the isotropic component of the diffusion tensor, the anisotropic component of the diffusion tensor, the total magnitude of the diffusion tensor, and rCBV among enhancing portions in tumefactive demyelinating lesions and high-grade gliomas ( P ≤ .02), with the highest specificity for ADC, the anisotropic component of the diffusion tensor, and relative CBV (92.9%). Mean fractional anisotropy values showed no significant statistical difference between tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI and DSC parameters improved the diagnostic accuracy (area under the curve = 0.901). Addition of a heterogeneous enhancement pattern to DTI and DSC parameters improved it further (area under the curve = 0.966). The sensitivity increased from 71.4% to 85.7% after the addition of the enhancement pattern. DTI and DSC perfusion add profoundly to conventional imaging in differentiating tumefactive demyelinating lesions and high-grade gliomas. The combination of DTI metrics and DSC perfusion markedly improved diagnostic accuracy. © 2017 by American Journal of Neuroradiology.

  7. b matrix errors in echo planar diffusion tensor imaging

    PubMed Central

    Boujraf, Saïd; Luypaert, Robert; Osteaux, Michel

    2001-01-01

    Diffusion‐weighted magnetic resonance imaging (DW‐MRI) is a recognized tool for early detection of infarction of the human brain. DW‐MRI uses the signal loss associated with the random thermal motion of water molecules in the presence of magnetic field gradients to derive parameters that reflect the translational mobility of the water molecules in tissues. If diffusion‐weighted images with different values of b matrix are acquired during one individual investigation, it is possible to calculate apparent diffusion coefficient maps that are the elements of the diffusion tensor. The diffusion tensor elements represent the apparent diffusion coefficient of protons of water molecules in each pixel in the corresponding sample. The relation between signal intensity in the diffusion‐weighted images, diffusion tensor, and b matrix is derived from the Bloch equations. Our goal is to establish the magnitude of the error made in the calculation of the elements of the diffusion tensor when the imaging gradients are ignored. PACS number(s): 87.57. –s, 87.61.–c PMID:11602015

  8. Time-Optimized High-Resolution Readout-Segmented Diffusion Tensor Imaging

    PubMed Central

    Reishofer, Gernot; Koschutnig, Karl; Langkammer, Christian; Porter, David; Jehna, Margit; Enzinger, Christian; Keeling, Stephen; Ebner, Franz

    2013-01-01

    Readout-segmented echo planar imaging with 2D navigator-based reacquisition is an uprising technique enabling the sampling of high-resolution diffusion images with reduced susceptibility artifacts. However, low signal from the small voxels and long scan times hamper the clinical applicability. Therefore, we introduce a regularization algorithm based on total variation that is applied directly on the entire diffusion tensor. The spatially varying regularization parameter is determined automatically dependent on spatial variations in signal-to-noise ratio thus, avoiding over- or under-regularization. Information about the noise distribution in the diffusion tensor is extracted from the diffusion weighted images by means of complex independent component analysis. Moreover, the combination of those features enables processing of the diffusion data absolutely user independent. Tractography from in vivo data and from a software phantom demonstrate the advantage of the spatially varying regularization compared to un-regularized data with respect to parameters relevant for fiber-tracking such as Mean Fiber Length, Track Count, Volume and Voxel Count. Specifically, for in vivo data findings suggest that tractography results from the regularized diffusion tensor based on one measurement (16 min) generates results comparable to the un-regularized data with three averages (48 min). This significant reduction in scan time renders high resolution (1×1×2.5 mm3) diffusion tensor imaging of the entire brain applicable in a clinical context. PMID:24019951

  9. MRI diffusion tensor reconstruction with PROPELLER data acquisition.

    PubMed

    Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T

    2004-02-01

    MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.

  10. Dictionary-Based Tensor Canonical Polyadic Decomposition

    NASA Astrophysics Data System (ADS)

    Cohen, Jeremy Emile; Gillis, Nicolas

    2018-04-01

    To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.

  11. Probabilistic-driven oriented Speckle reducing anisotropic diffusion with application to cardiac ultrasonic images.

    PubMed

    Vegas-Sanchez-Ferrero, G; Aja-Fernandez, S; Martin-Fernandez, M; Frangi, A F; Palencia, C

    2010-01-01

    A novel anisotropic diffusion filter is proposed in this work with application to cardiac ultrasonic images. It includes probabilistic models which describe the probability density function (PDF) of tissues and adapts the diffusion tensor to the image iteratively. For this purpose, a preliminary study is performed in order to select the probability models that best fit the stastitical behavior of each tissue class in cardiac ultrasonic images. Then, the parameters of the diffusion tensor are defined taking into account the statistical properties of the image at each voxel. When the structure tensor of the probability of belonging to each tissue is included in the diffusion tensor definition, a better boundaries estimates can be obtained instead of calculating directly the boundaries from the image. This is the main contribution of this work. Additionally, the proposed method follows the statistical properties of the image in each iteration. This is considered as a second contribution since state-of-the-art methods suppose that noise or statistical properties of the image do not change during the filter process.

  12. Q-space trajectory imaging for multidimensional diffusion MRI of the human brain

    PubMed Central

    Westin, Carl-Fredrik; Knutsson, Hans; Pasternak, Ofer; Szczepankiewicz, Filip; Özarslan, Evren; van Westen, Danielle; Mattisson, Cecilia; Bogren, Mats; O’Donnell, Lauren; Kubicki, Marek; Topgaard, Daniel; Nilsson, Markus

    2016-01-01

    This work describes a new diffusion MR framework for imaging and modeling of microstructure that we call q-space trajectory imaging (QTI). The QTI framework consists of two parts: encoding and modeling. First we propose q-space trajectory encoding, which uses time-varying gradients to probe a trajectory in q-space, in contrast to traditional pulsed field gradient sequences that attempt to probe a point in q-space. Then we propose a microstructure model, the diffusion tensor distribution (DTD) model, which takes advantage of additional information provided by QTI to estimate a distributional model over diffusion tensors. We show that the QTI framework enables microstructure modeling that is not possible with the traditional pulsed gradient encoding as introduced by Stejskal and Tanner. In our analysis of QTI, we find that the well-known scalar b-value naturally extends to a tensor-valued entity, i.e., a diffusion measurement tensor, which we call the b-tensor. We show that b-tensors of rank 2 or 3 enable estimation of the mean and covariance of the DTD model in terms of a second order tensor (the diffusion tensor) and a fourth order tensor. The QTI framework has been designed to improve discrimination of the sizes, shapes, and orientations of diffusion microenvironments within tissue. We derive rotationally invariant scalar quantities describing intuitive microstructural features including size, shape, and orientation coherence measures. To demonstrate the feasibility of QTI on a clinical scanner, we performed a small pilot study comparing a group of five healthy controls with five patients with schizophrenia. The parameter maps derived from QTI were compared between the groups, and 9 out of the 14 parameters investigated showed differences between groups. The ability to measure and model the distribution of diffusion tensors, rather than a quantity that has already been averaged within a voxel, has the potential to provide a powerful paradigm for the study of complex tissue architecture. PMID:26923372

  13. On the construction of a ground truth framework for evaluating voxel-based diffusion tensor MRI analysis methods.

    PubMed

    Van Hecke, Wim; Sijbers, Jan; De Backer, Steve; Poot, Dirk; Parizel, Paul M; Leemans, Alexander

    2009-07-01

    Although many studies are starting to use voxel-based analysis (VBA) methods to compare diffusion tensor images between healthy and diseased subjects, it has been demonstrated that VBA results depend heavily on parameter settings and implementation strategies, such as the applied coregistration technique, smoothing kernel width, statistical analysis, etc. In order to investigate the effect of different parameter settings and implementations on the accuracy and precision of the VBA results quantitatively, ground truth knowledge regarding the underlying microstructural alterations is required. To address the lack of such a gold standard, simulated diffusion tensor data sets are developed, which can model an array of anomalies in the diffusion properties of a predefined location. These data sets can be employed to evaluate the numerous parameters that characterize the pipeline of a VBA algorithm and to compare the accuracy, precision, and reproducibility of different post-processing approaches quantitatively. We are convinced that the use of these simulated data sets can improve the understanding of how different diffusion tensor image post-processing techniques affect the outcome of VBA. In turn, this may possibly lead to a more standardized and reliable evaluation of diffusion tensor data sets of large study groups with a wide range of white matter altering pathologies. The simulated DTI data sets will be made available online (http://www.dti.ua.ac.be).

  14. Assessment of diffusion tensor image quality across sites and vendors using the American College of Radiology head phantom.

    PubMed

    Wang, Zhiyue J; Seo, Youngseob; Babcock, Evelyn; Huang, Hao; Bluml, Stefan; Wisnowski, Jessica; Holshouser, Barbara; Panigrahy, Ashok; Shaw, Dennis W W; Altman, Nolan; McColl, Roderick W; Rollins, Nancy K

    2016-05-08

    The purpose of this study was to explore the feasibility of assessing quality of diffusion tensor imaging (DTI) from multiple sites and vendors using American College of Radiology (ACR) phantom. Participating sites (Siemens (n = 2), GE (n= 2), and Philips (n = 4)) reached consensus on parameters for DTI and used the widely available ACR phantom. Tensor data were processed at one site. B0 and eddy current distortions were assessed using grid line displacement on phantom Slice 5; signal-to-noise ratio (SNR) was measured at the center and periphery of the b = 0 image; fractional anisotropy (FA) and mean diffusivity (MD) were assessed using phantom Slice 7. Variations of acquisition parameters and deviations from specified sequence parameters were recorded. Nonlinear grid line distortion was higher with linear shimming and could be corrected using the 2nd order shimming. Following image registration, eddy current distortion was consistently smaller than acquisi-tion voxel size. SNR was consistently higher in the image periphery than center by a factor of 1.3-2.0. ROI-based FA ranged from 0.007 to 0.024. ROI-based MD ranged from 1.90 × 10-3 to 2.33 × 10-3 mm2/s (median = 2.04 × 10-3 mm2/s). Two sites had image void artifacts. The ACR phantom can be used to compare key qual-ity measures of diffusion images acquired from multiple vendors at multiple sites.

  15. Parameter Estimation in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark; Colarco, Peter

    2004-01-01

    In this study the structure tensor technique is used to estimate dynamical parameters in atmospheric data sets. The structure tensor is a common tool for estimating motion in image sequences. This technique can be extended to estimate other dynamical parameters such as diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. As a test scenario this technique will be applied to modeled dust data. In this case vertically integrated dust concentrations were used to derive wind information. Those results can be compared to the wind vector fields which served as input to the model. Based on this analysis, a method to compute atmospheric data parameter fields will be presented. .

  16. Tensor scale-based fuzzy connectedness image segmentation

    NASA Astrophysics Data System (ADS)

    Saha, Punam K.; Udupa, Jayaram K.

    2003-05-01

    Tangible solutions to image segmentation are vital in many medical imaging applications. Toward this goal, a framework based on fuzzy connectedness was developed in our laboratory. A fundamental notion called "affinity" - a local fuzzy hanging togetherness relation on voxels - determines the effectiveness of this segmentation framework in real applications. In this paper, we introduce the notion of "tensor scale" - a recently developed local morphometric parameter - in affinity definition and study its effectiveness. Although, our previous notion of "local scale" using the spherical model successfully incorporated local structure size into affinity and resulted in measureable improvements in segmentation results, a major limitation of the previous approach was that it ignored local structural orientation and anisotropy. The current approach of using tensor scale in affinity computation allows an effective utilization of local size, orientation, and ansiotropy in a unified manner. Tensor scale is used for computing both the homogeneity- and object-feature-based components of affinity. Preliminary results of the proposed method on several medical images and computer generated phantoms of realistic shapes are presented. Further extensions of this work are discussed.

  17. Road detection in SAR images using a tensor voting algorithm

    NASA Astrophysics Data System (ADS)

    Shen, Dajiang; Hu, Chun; Yang, Bing; Tian, Jinwen; Liu, Jian

    2007-11-01

    In this paper, the problem of the detection of road networks in Synthetic Aperture Radar (SAR) images is addressed. Most of the previous methods extract the road by detecting lines and network reconstruction. Traditional algorithms such as MRFs, GA, Level Set, used in the progress of reconstruction are iterative. The tensor voting methodology we proposed is non-iterative, and non-sensitive to initialization. Furthermore, the only free parameter is the size of the neighborhood, related to the scale. The algorithm we present is verified to be effective when it's applied to the road extraction using the real Radarsat Image.

  18. Groupwise Registration and Atlas Construction of 4th-Order Tensor Fields Using the ℝ+ Riemannian Metric*

    PubMed Central

    Barmpoutis, Angelos

    2010-01-01

    Registration of Diffusion-Weighted MR Images (DW-MRI) can be achieved by registering the corresponding 2nd-order Diffusion Tensor Images (DTI). However, it has been shown that higher-order diffusion tensors (e.g. order-4) outperform the traditional DTI in approximating complex fiber structures such as fiber crossings. In this paper we present a novel method for unbiased group-wise non-rigid registration and atlas construction of 4th-order diffusion tensor fields. To the best of our knowledge there is no other existing method to achieve this task. First we define a metric on the space of positive-valued functions based on the Riemannian metric of real positive numbers (denoted by ℝ+). Then, we use this metric in a novel functional minimization method for non-rigid 4th-order tensor field registration. We define a cost function that accounts for the 4th-order tensor re-orientation during the registration process and has analytic derivatives with respect to the transformation parameters. Finally, the tensor field atlas is computed as the minimizer of the variance defined using the Riemannian metric. We quantitatively compare the proposed method with other techniques that register scalar-valued or diffusion tensor (rank-2) representations of the DWMRI. PMID:20436782

  19. Diffusion weighted imaging for the differentiation of breast tumors: From apparent diffusion coefficient to high order diffusion tensor imaging.

    PubMed

    Teruel, Jose R; Goa, Pål E; Sjøbakk, Torill E; Østlie, Agnes; Fjøsne, Hans E; Bathen, Tone F

    2016-05-01

    To compare "standard" diffusion weighted imaging, and diffusion tensor imaging (DTI) of 2(nd) and 4(th) -order for the differentiation of malignant and benign breast lesions. Seventy-one patients were imaged at 3 Tesla with a 16-channel breast coil. A diffusion weighted MRI sequence including b = 0 and b = 700 in 30 directions was obtained for all patients. The image data were fitted to three different diffusion models: isotropic model - apparent diffusion coefficient (ADC), 2(nd) -order tensor model (the standard model used for DTI) and a 4(th) -order tensor model, with increased degrees of freedom to describe anisotropy. The ability of the fitted parameters in the different models to differentiate between malignant and benign tumors was analyzed. Seventy-two breast lesions were analyzed, out of which 38 corresponded to malignant and 34 to benign tumors. ADC (using any model) presented the highest discriminative ability of malignant from benign tumors with a receiver operating characteristic area under the curve (AUC) of 0.968, and sensitivity and specificity of 94.1% and 94.7% respectively for a 1.33 × 10(-3) mm(2) /s cutoff. Anisotropy measurements presented high statistical significance between malignant and benign tumors (P < 0.001), but with lower discriminative ability of malignant from benign tumors than ADC (AUC of 0.896 and 0.897 for fractional anisotropy and generalized anisotropy respectively). Statistical significant difference was found between generalized anisotropy and fractional anisotropy for cancers (P < 0.001) but not for benign lesions (P = 0.87). While anisotropy parameters have the potential to provide additional value for breast applications as demonstrated in this study, ADC exhibited the highest differentiation power between malignant and benign breast tumors. © 2015 Wiley Periodicals, Inc.

  20. Constraints on the cosmological parameters from BICEP2, Planck, and WMAP

    NASA Astrophysics Data System (ADS)

    Cheng, Cheng; Huang, Qing-Guo

    2014-11-01

    In this paper we constrain the cosmological parameters, in particular the tilt of tensor power spectrum, by adopting Background Imaging of Cosmic Extragalactic Polarization (B2), Planck released in 2013 and Wilkinson Microwaves Anisotropy Probe 9-year Polarization data. We find that a blue tilted tensor power spectrum is preferred at more than confidence level if the data from B2 are assumed to be totally interpreted as the relic gravitational waves, but a scale-invariant tensor power spectrum is consistent with the data once the polarized dust is taken into account. The recent Planck 353 GHz HFI dust polarization data imply that the B2 data are perfectly consistent with there being no gravitational wave signal.

  1. A Bayesian approach to distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging.

    PubMed

    Ye, Chuyang; Murano, Emi; Stone, Maureen; Prince, Jerry L

    2015-10-01

    The tongue is a critical organ for a variety of functions, including swallowing, respiration, and speech. It contains intrinsic and extrinsic muscles that play an important role in changing its shape and position. Diffusion tensor imaging (DTI) has been used to reconstruct tongue muscle fiber tracts. However, previous studies have been unable to reconstruct the crossing fibers that occur where the tongue muscles interdigitate, which is a large percentage of the tongue volume. To resolve crossing fibers, multi-tensor models on DTI and more advanced imaging modalities, such as high angular resolution diffusion imaging (HARDI) and diffusion spectrum imaging (DSI), have been proposed. However, because of the involuntary nature of swallowing, there is insufficient time to acquire a sufficient number of diffusion gradient directions to resolve crossing fibers while the in vivo tongue is in a fixed position. In this work, we address the challenge of distinguishing interdigitated tongue muscles from limited diffusion magnetic resonance imaging by using a multi-tensor model with a fixed tensor basis and incorporating prior directional knowledge. The prior directional knowledge provides information on likely fiber directions at each voxel, and is computed with anatomical knowledge of tongue muscles. The fiber directions are estimated within a maximum a posteriori (MAP) framework, and the resulting objective function is solved using a noise-aware weighted ℓ1-norm minimization algorithm. Experiments were performed on a digital crossing phantom and in vivo tongue diffusion data including three control subjects and four patients with glossectomies. On the digital phantom, effects of parameters, noise, and prior direction accuracy were studied, and parameter settings for real data were determined. The results on the in vivo data demonstrate that the proposed method is able to resolve interdigitated tongue muscles with limited gradient directions. The distributions of the computed fiber directions in both the controls and the patients were also compared, suggesting a potential clinical use for this imaging and image analysis methodology. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Susceptibility Tensor Imaging (STI) of the Brain

    PubMed Central

    Li, Wei; Liu, Chunlei; Duong, Timothy Q.; van Zijl, Peter C.M.; Li, Xu

    2016-01-01

    Susceptibility tensor imaging (STI) is a recently developed MRI technique that allows quantitative determination of orientation-independent magnetic susceptibility parameters from the dependence of gradient echo signal phase on the orientation of biological tissues with respect to the main magnetic field. By modeling the magnetic susceptibility of each voxel as a symmetric rank-2 tensor, individual magnetic susceptibility tensor elements as well as the mean magnetic susceptibility (MMS) and magnetic susceptibility anisotropy (MSA) can be determined for brain tissues that would still show orientation dependence after conventional scalar-based quantitative susceptibility mapping (QSM) to remove such dependence. Similar to diffusion tensor imaging (DTI), STI allows mapping of brain white matter fiber orientations and reconstruction of 3D white matter pathways using the principal eigenvectors of the susceptibility tensor. In contrast to diffusion anisotropy, the main determinant factor of susceptibility anisotropy in brain white matter is myelin. Another unique feature of susceptibility anisotropy of white matter is its sensitivity to gadolinium-based contrast agents. Mechanistically, MRI-observed susceptibility anisotropy is mainly attributed to the highly ordered lipid molecules in myelin sheath. STI provides a consistent interpretation of the dependence of phase and susceptibility on orientation at multiple scales. This article reviews the key experimental findings and physical theories that led to the development of STI, its practical implementations, and its applications for brain research. PMID:27120169

  3. Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE) on a 3T clinical scanner

    PubMed Central

    Baete, Steven H.; Cho, Gene; Sigmund, Eric E.

    2013-01-01

    This paper describes the concepts and implementation of an MRI method, Multiple Echo Diffusion Tensor Acquisition Technique (MEDITATE), which is capable of acquiring apparent diffusion tensor maps in two scans on a 3T clinical scanner. In each MEDITATE scan, a set of RF-pulses generates multiple echoes whose amplitudes are diffusion-weighted in both magnitude and direction by a pattern of diffusion gradients. As a result, two scans acquired with different diffusion weighting strengths suffice for accurate estimation of diffusion tensor imaging (DTI)-parameters. The MEDITATE variation presented here expands previous MEDITATE approaches to adapt to the clinical scanner platform, such as exploiting longitudinal magnetization storage to reduce T2-weighting. Fully segmented multi-shot Cartesian encoding is used for image encoding. MEDITATE was tested on isotropic (agar gel), anisotropic diffusion phantoms (asparagus), and in vivo skeletal muscle in healthy volunteers with cardiac-gating. Comparisons of accuracy were performed with standard twice-refocused spin echo (TRSE) DTI in each case and good quantitative agreement was found between diffusion eigenvalues, mean diffusivity, and fractional anisotropy derived from TRSE-DTI and from the MEDITATE sequence. Orientation patterns were correctly reproduced in both isotropic and anisotropic phantoms, and approximately so for in vivo imaging. This illustrates that the MEDITATE method of compressed diffusion encoding is feasible on the clinical scanner platform. With future development and employment of appropriate view-sharing image encoding this technique may be used in clinical applications requiring time-sensitive acquisition of DTI parameters such as dynamical DTI in muscle. PMID:23828606

  4. An adaptive tensor voting algorithm combined with texture spectrum

    NASA Astrophysics Data System (ADS)

    Wang, Gang; Su, Qing-tang; Lü, Gao-huan; Zhang, Xiao-feng; Liu, Yu-huan; He, An-zhi

    2015-01-01

    An adaptive tensor voting algorithm combined with texture spectrum is proposed. The image texture spectrum is used to get the adaptive scale parameter of voting field. Then the texture information modifies both the attenuation coefficient and the attenuation field so that we can use this algorithm to create more significant and correct structures in the original image according to the human visual perception. At the same time, the proposed method can improve the edge extraction quality, which includes decreasing the flocculent region efficiently and making image clear. In the experiment for extracting pavement cracks, the original pavement image is processed by the proposed method which is combined with the significant curve feature threshold procedure, and the resulted image displays the faint crack signals submerged in the complicated background efficiently and clearly.

  5. The physical and biological basis of quantitative parameters derived from diffusion MRI

    PubMed Central

    2012-01-01

    Diffusion magnetic resonance imaging is a quantitative imaging technique that measures the underlying molecular diffusion of protons. Diffusion-weighted imaging (DWI) quantifies the apparent diffusion coefficient (ADC) which was first used to detect early ischemic stroke. However this does not take account of the directional dependence of diffusion seen in biological systems (anisotropy). Diffusion tensor imaging (DTI) provides a mathematical model of diffusion anisotropy and is widely used. Parameters, including fractional anisotropy (FA), mean diffusivity (MD), parallel and perpendicular diffusivity can be derived to provide sensitive, but non-specific, measures of altered tissue structure. They are typically assessed in clinical studies by voxel-based or region-of-interest based analyses. The increasing recognition of the limitations of the diffusion tensor model has led to more complex multi-compartment models such as CHARMED, AxCaliber or NODDI being developed to estimate microstructural parameters including axonal diameter, axonal density and fiber orientations. However these are not yet in routine clinical use due to lengthy acquisition times. In this review, I discuss how molecular diffusion may be measured using diffusion MRI, the biological and physical bases for the parameters derived from DWI and DTI, how these are used in clinical studies and the prospect of more complex tissue models providing helpful micro-structural information. PMID:23289085

  6. Performance Analysis and Experimental Validation of the Direct Strain Imaging Method

    Treesearch

    Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson

    2013-01-01

    Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the method’s performance with respect to its operating parameter space is presented along with a preliminary...

  7. Semi-automated segmentation of neuroblastoma nuclei using the gradient energy tensor: a user driven approach

    NASA Astrophysics Data System (ADS)

    Kromp, Florian; Taschner-Mandl, Sabine; Schwarz, Magdalena; Blaha, Johanna; Weiss, Tamara; Ambros, Peter F.; Reiter, Michael

    2015-02-01

    We propose a user-driven method for the segmentation of neuroblastoma nuclei in microscopic fluorescence images involving the gradient energy tensor. Multispectral fluorescence images contain intensity and spatial information about antigene expression, fluorescence in situ hybridization (FISH) signals and nucleus morphology. The latter serves as basis for the detection of single cells and the calculation of shape features, which are used to validate the segmentation and to reject false detections. Accurate segmentation is difficult due to varying staining intensities and aggregated cells. It requires several (meta-) parameters, which have a strong influence on the segmentation results and have to be selected carefully for each sample (or group of similar samples) by user interactions. Because our method is designed for clinicians and biologists, who may have only limited image processing background, an interactive parameter selection step allows the implicit tuning of parameter values. With this simple but intuitive method, segmentation results with high precision for a large number of cells can be achieved by minimal user interaction. The strategy was validated on handsegmented datasets of three neuroblastoma cell lines.

  8. A comparative study of the sensitivity of diffusion-related parameters obtained from diffusion tensor imaging, diffusional kurtosis imaging, q-space analysis and bi-exponential modelling in the early disease course (24 h) of hyperacute (6 h) ischemic stroke patients.

    PubMed

    Duchêne, Gaëtan; Peeters, Frank; Peeters, André; Duprez, Thierry

    2017-08-01

    To compare the sensitivity and early temporal changes of diffusion parameters obtained from diffusion tensor imaging (DTI), diffusional kurtosis imaging (DKI), q-space analysis (QSA) and bi-exponential modelling in hyperacute stroke patients. A single investigational acquisition allowing the four diffusion analyses was performed on seven hyperacute stroke patients with a 3T system. The percentage change between ipsi- and contralateral regions were compared at admission and 24 h later. Two out of the seven patients were imaged every 6 h during this period. Kurtoses from both DKI and QSA were the most sensitive of the tested diffusion parameters in the few hours following ischemia. An early increase-maximum-decrease pattern of evolution was highlighted during the 24-h period for all parameters proportional to diffusion coefficients. A similar pattern was observed for both kurtoses in only one of two patients. Our comparison was performed using identical diffusion encoding timings and on patients in the same stage of their condition. Although preliminary, our findings confirm those of previous studies that showed enhanced sensitivity of kurtosis. A fine time mapping of diffusion metrics in hyperacute stroke patients was presented which advocates for further investigations on larger animal or human cohorts.

  9. On the use of water phantom images to calibrate and correct eddy current induced artefacts in MR diffusion tensor imaging.

    PubMed

    Bastin, M E; Armitage, P A

    2000-07-01

    The accurate determination of absolute measures of diffusion anisotropy in vivo using single-shot, echo-planar imaging techniques requires the acquisition of a set of high signal-to-noise ratio, diffusion-weighted images that are free from eddy current induced image distortions. Such geometric distortions can be characterized and corrected in brain imaging data using magnification (M), translation (T), and shear (S) distortion parameters derived from separate water phantom calibration experiments. Here we examine the practicalities of using separate phantom calibration data to correct high b-value diffusion tensor imaging data by investigating the stability of these distortion parameters, and hence the eddy currents, with time. It is found that M, T, and S vary only slowly with time (i.e., on the order of weeks), so that calibration scans need not be performed after every patient examination. This not only minimises the scan time required to collect the calibration data, but also the computational time needed to characterize these eddy current induced distortions. Examples of how measurements of diffusion anisotropy are improved using this post-processing scheme are also presented.

  10. A model-based reconstruction for undersampled radial spin echo DTI with variational penalties on the diffusion tensor

    PubMed Central

    Knoll, Florian; Raya, José G; Halloran, Rafael O; Baete, Steven; Sigmund, Eric; Bammer, Roland; Block, Tobias; Otazo, Ricardo; Sodickson, Daniel K

    2015-01-01

    Radial spin echo diffusion imaging allows motion-robust imaging of tissues with very low T2 values like articular cartilage with high spatial resolution and signal-to-noise ratio (SNR). However, in vivo measurements are challenging due to the significantly slower data acquisition speed of spin-echo sequences and the less efficient k-space coverage of radial sampling, which raises the demand for accelerated protocols by means of undersampling. This work introduces a new reconstruction approach for undersampled DTI. A model-based reconstruction implicitly exploits redundancies in the diffusion weighted images by reducing the number of unknowns in the optimization problem and compressed sensing is performed directly in the target quantitative domain by imposing a Total Variation (TV) constraint on the elements of the diffusion tensor. Experiments were performed for an anisotropic phantom and the knee and brain of healthy volunteers (3 and 2 volunteers, respectively). Evaluation of the new approach was conducted by comparing the results to reconstructions performed with gridding, combined parallel imaging and compressed sensing, and a recently proposed model-based approach. The experiments demonstrated improvement in terms of reduction of noise and streaking artifacts in the quantitative parameter maps as well as a reduction of angular dispersion of the primary eigenvector when using the proposed method, without introducing systematic errors into the maps. This may enable an essential reduction of the acquisition time in radial spin echo diffusion tensor imaging without degrading parameter quantification and/or SNR. PMID:25594167

  11. Bayesian CP Factorization of Incomplete Tensors with Automatic Rank Determination.

    PubMed

    Zhao, Qibin; Zhang, Liqing; Cichocki, Andrzej

    2015-09-01

    CANDECOMP/PARAFAC (CP) tensor factorization of incomplete data is a powerful technique for tensor completion through explicitly capturing the multilinear latent factors. The existing CP algorithms require the tensor rank to be manually specified, however, the determination of tensor rank remains a challenging problem especially for CP rank . In addition, existing approaches do not take into account uncertainty information of latent factors, as well as missing entries. To address these issues, we formulate CP factorization using a hierarchical probabilistic model and employ a fully Bayesian treatment by incorporating a sparsity-inducing prior over multiple latent factors and the appropriate hyperpriors over all hyperparameters, resulting in automatic rank determination. To learn the model, we develop an efficient deterministic Bayesian inference algorithm, which scales linearly with data size. Our method is characterized as a tuning parameter-free approach, which can effectively infer underlying multilinear factors with a low-rank constraint, while also providing predictive distributions over missing entries. Extensive simulations on synthetic data illustrate the intrinsic capability of our method to recover the ground-truth of CP rank and prevent the overfitting problem, even when a large amount of entries are missing. Moreover, the results from real-world applications, including image inpainting and facial image synthesis, demonstrate that our method outperforms state-of-the-art approaches for both tensor factorization and tensor completion in terms of predictive performance.

  12. Diffusive sensitivity to muscle architecture: a magnetic resonance diffusion tensor imaging study of the human calf.

    PubMed

    Galbán, Craig J; Maderwald, Stefan; Uffmann, Kai; de Greiff, Armin; Ladd, Mark E

    2004-12-01

    The aim of this study was to examine the diffusive properties of adjacent muscles at rest, and to determine the relationship between diffusive and architectural properties, which are task-specific to muscles. The principle, second, and third eigenvalues, trace of the diffusion tensor, and two anisotropic parameters, ellipsoid eccentricity (e) and fractional anisotropy (FA), of various muscles in the human calf were calculated by diffusion tensor imaging (DTI). Linear correlations of the calculated parameters to the muscle physiological cross-sectional area (PCSA), which is proportional to maximum muscle force, were performed to ascertain any linear relation between muscle architecture and diffusivity. Images of the left calf were acquired from six healthy male volunteers. Seven muscles were investigated in this study. These comprised the soleus, lateral gastrocnemius, medial gastrocnemius, posterior tibialis, anterior tibialis, extensor digitorum longus, and peroneus longus. All data were presented as the mean and standard error of the mean (SEM). In general, differences in diffusive parameter values occurred primarily between functionally different muscles. A strong correlation was also found between PCSA and the third eigenvalue, e, and FA. A mathematical derivation revealed a linear relationship between PCSA and the third eigenvalue as a result of their dependence on the average radius of all fibers within a single muscle. These findings demonstrated the ability of DTI to differentiate between functionally different muscles in the same region of the body on the basis of their diffusive properties.

  13. Trifocal Tensor-Based Adaptive Visual Trajectory Tracking Control of Mobile Robots.

    PubMed

    Chen, Jian; Jia, Bingxi; Zhang, Kaixiang

    2017-11-01

    In this paper, a trifocal tensor-based approach is proposed for the visual trajectory tracking task of a nonholonomic mobile robot equipped with a roughly installed monocular camera. The desired trajectory is expressed by a set of prerecorded images, and the robot is regulated to track the desired trajectory using visual feedback. Trifocal tensor is exploited to obtain the orientation and scaled position information used in the control system, and it works for general scenes owing to the generality of trifocal tensor. In the previous works, the start, current, and final images are required to share enough visual information to estimate the trifocal tensor. However, this requirement can be easily violated for perspective cameras with limited field of view. In this paper, key frame strategy is proposed to loosen this requirement, extending the workspace of the visual servo system. Considering the unknown depth and extrinsic parameters (installing position of the camera), an adaptive controller is developed based on Lyapunov methods. The proposed control strategy works for almost all practical circumstances, including both trajectory tracking and pose regulation tasks. Simulations are made based on the virtual experimentation platform (V-REP) to evaluate the effectiveness of the proposed approach.

  14. Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features

    PubMed Central

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-01-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159

  15. Serial proton MR spectroscopy and diffusion tensor imaging in infantile Balo's concentric sclerosis.

    PubMed

    Dreha-Kulaczewski, Steffi F; Helms, Gunther; Dechent, Peter; Hofer, Sabine; Gärtner, Jutta; Frahm, Jens

    2009-02-01

    Proton magnetic resonance spectroscopy (MRS) and diffusion tensor imaging (DTI) yield different parameters for characterizing the evolution of a demyelinating white matter disease. The purpose was to elucidate biochemical and microstructural changes in Balo's concentric sclerosis lesions and to correlate the findings with the clinical course. Localized short-echo time MRS and DTI were performed over 6 years in a left occipital lesion of a female patient (age at onset 13.8 years) with Balo's concentric sclerosis. A right homonym hemianopsia persisted. Metabolite patterns were in line with initial active demyelination followed by gliosis and partial recovery of neuroaxonal metabolites. Fractional anisotropy and mean diffusivity of tissue water remained severely altered. Fiber tracking confirmed a disruption in the geniculo-calcarine tract as well as involvement of the corpus callosum. MRS and DTI depict complementary parameters, but DTI seems to correlate better with clinical symptoms.

  16. Structural differences in interictal migraine attack after epilepsy: A diffusion tensor imaging analysis.

    PubMed

    Huang, Qi; Lv, Xin; He, Yushuang; Wei, Xing; Ma, Meigang; Liao, Yuhan; Qin, Chao; Wu, Yuan

    2017-12-01

    Patients with epilepsy (PWE) are more likely to suffer from migraine attack, and aberrant white matter (WM) organization may be the mechanism underlying this phenomenon. This study aimed to use diffusion tensor imaging (DTI) technique to quantify WM structural differences in PWE with interictal migraine. Diffusion tensor imaging data were acquired in 13 PWE with migraine and 12 PWE without migraine. Diffusion metrics were analyzed using tract-atlas-based spatial statistics analysis. Atlas-based and tract-based spatial statistical analyses were conducted for robustness analysis. Correlation was explored between altered DTI metrics and clinical parameters. The main results are as follows: (i) Axonal damage plays a key role in PWE with interictal migraine. (ii) Significant diffusing alterations included higher fractional anisotropy (FA) in the fornix, higher mean diffusivity (MD) in the middle cerebellar peduncle (CP), left superior CP, and right uncinate fasciculus, and higher axial diffusivity (AD) in the middle CP and right medial lemniscus. (iii) Diffusion tensor imaging metrics has the tendency of correlation with seizure/migraine type and duration. Results indicate that characteristic structural impairments exist in PWE with interictal migraine. Epilepsy may contribute to migraine by altering WMs in the brain stem. White matter tracts in the fornix and right uncinate fasciculus also mediate migraine after epilepsy. This finding may improve our understanding of the pathological mechanisms underlying migraine attack after epilepsy. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Differentiation of fibroblastic meningiomas from other benign subtypes using diffusion tensor imaging.

    PubMed

    Tropine, Andrei; Dellani, Paulo D; Glaser, Martin; Bohl, Juergen; Plöner, Till; Vucurevic, Goran; Perneczky, Axel; Stoeter, Peter

    2007-04-01

    To differentiate fibroblastic meningiomas, usually considered to be of a hard consistency, from other benign subtypes using diffusion tensor imaging (DTI). From DTI data sets of 30 patients with benign meningiomas, we calculated diffusion tensors and mean diffusivity (MD) and fractional anisotropy (FA) maps as well as barycentric maps representing the geometrical shape of the tensors. The findings were compared to postoperative histology. The study was approved by the local ethics committee, and informed consent was given by the patients. According to one-way analysis of variance (ANOVA), FA was the best parameter to differentiate between the subtypes (F=32.2; p<0.0001). Regarding tensor shape, endothelial meningiomas were represented by spherical tensors (80%) corresponding to isotropic diffusion, whereas the fibroblastic meningiomas showed a high percentage (43%) of nonspherical tensors, indicating planar or longitudinal diffusion. The difference was highly significant (F=28.4; p<0.0001) and may be due to the fascicular arrangement of long spindle-shaped tumor cells and the high content of intra- and interfascicular fibers as shown in the histology. In addition, a capsule-like rim of the in-plane diffusion surrounded most meningiomas irrespective of their histological type. If these results correlate to the intraoperative findings of meningioma consistency, DTI-based measurement of FA and analysis of the shape of the diffusion tensor is a promising method to differentiate between fibroblastic and other subtypes of benign meningiomas in order to get information about their "hard" or "soft" consistency prior to removal. Copyright (c) 2007 Wiley-Liss, Inc.

  18. [An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].

    PubMed

    Xu, Yonghong; Gao, Shangce; Hao, Xiaofei

    2016-04-01

    Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.

  19. Polarization-modulated second harmonic generation ellipsometric microscopy at video rate.

    PubMed

    DeWalt, Emma L; Sullivan, Shane Z; Schmitt, Paul D; Muir, Ryan D; Simpson, Garth J

    2014-08-19

    Fast 8 MHz polarization modulation coupled with analytical modeling, fast beam-scanning, and synchronous digitization (SD) have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and polarized laser transmittance imaging with image acquisition rates up to video rate. In contrast to polarimetry, in which the polarization state of the exiting beam is recorded, NOSE enables recovery of the complex-valued Jones tensor of the sample that describes all polarization-dependent observables of the measurement. Every video-rate scan produces a set of 30 images (10 for each detector with three detectors operating in parallel), each of which corresponds to a different polarization-dependent result. Linear fitting of this image set contracts it down to a set of five parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the incident beam. These parameters can in turn be used to recover the Jones tensor elements of the sample. Following validation of the approach using z-cut quartz, NOSE microscopy was performed for microcrystals of both naproxen and glucose isomerase. When weighted by the measurement time, NOSE microscopy was found to provide a substantial (>7 decades) improvement in the signal-to-noise ratio relative to our previous measurements based on the rotation of optical elements and a 3-fold improvement relative to previous single-point NOSE approaches.

  20. A decision tree for differentiating multiple system atrophy from Parkinson's disease using 3-T MR imaging.

    PubMed

    Nair, Shalini Rajandran; Tan, Li Kuo; Mohd Ramli, Norlisah; Lim, Shen Yang; Rahmat, Kartini; Mohd Nor, Hazman

    2013-06-01

    To develop a decision tree based on standard magnetic resonance imaging (MRI) and diffusion tensor imaging to differentiate multiple system atrophy (MSA) from Parkinson's disease (PD). 3-T brain MRI and DTI (diffusion tensor imaging) were performed on 26 PD and 13 MSA patients. Regions of interest (ROIs) were the putamen, substantia nigra, pons, middle cerebellar peduncles (MCP) and cerebellum. Linear, volumetry and DTI (fractional anisotropy and mean diffusivity) were measured. A three-node decision tree was formulated, with design goals being 100 % specificity at node 1, 100 % sensitivity at node 2 and highest combined sensitivity and specificity at node 3. Nine parameters (mean width, fractional anisotropy (FA) and mean diffusivity (MD) of MCP; anteroposterior diameter of pons; cerebellar FA and volume; pons and mean putamen volume; mean FA substantia nigra compacta-rostral) showed statistically significant (P < 0.05) differences between MSA and PD with mean MCP width, anteroposterior diameter of pons and mean FA MCP chosen for the decision tree. Threshold values were 14.6 mm, 21.8 mm and 0.55, respectively. Overall performance of the decision tree was 92 % sensitivity, 96 % specificity, 92 % PPV and 96 % NPV. Twelve out of 13 MSA patients were accurately classified. Formation of the decision tree using these parameters was both descriptive and predictive in differentiating between MSA and PD. • Parkinson's disease and multiple system atrophy can be distinguished on MR imaging. • Combined conventional MRI and diffusion tensor imaging improves the accuracy of diagnosis. • A decision tree is descriptive and predictive in differentiating between clinical entities. • A decision tree can reliably differentiate Parkinson's disease from multiple system atrophy.

  1. Synchronous-digitization for Video Rate Polarization Modulated Beam Scanning Second Harmonic Generation Microscopy.

    PubMed

    Sullivan, Shane Z; DeWalt, Emma L; Schmitt, Paul D; Muir, Ryan M; Simpson, Garth J

    2015-03-09

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  2. Synchronous-digitization for video rate polarization modulated beam scanning second harmonic generation microscopy

    NASA Astrophysics Data System (ADS)

    Sullivan, Shane Z.; DeWalt, Emma L.; Schmitt, Paul D.; Muir, Ryan D.; Simpson, Garth J.

    2015-03-01

    Fast beam-scanning non-linear optical microscopy, coupled with fast (8 MHz) polarization modulation and analytical modeling have enabled simultaneous nonlinear optical Stokes ellipsometry (NOSE) and linear Stokes ellipsometry imaging at video rate (15 Hz). NOSE enables recovery of the complex-valued Jones tensor that describes the polarization-dependent observables, in contrast to polarimetry, in which the polarization stated of the exciting beam is recorded. Each data acquisition consists of 30 images (10 for each detector, with three detectors operating in parallel), each of which corresponds to polarization-dependent results. Processing of this image set by linear fitting contracts down each set of 10 images to a set of 5 parameters for each detector in second harmonic generation (SHG) and three parameters for the transmittance of the fundamental laser beam. Using these parameters, it is possible to recover the Jones tensor elements of the sample at video rate. Video rate imaging is enabled by performing synchronous digitization (SD), in which a PCIe digital oscilloscope card is synchronized to the laser (the laser is the master clock.) Fast polarization modulation was achieved by modulating an electro-optic modulator synchronously with the laser and digitizer, with a simple sine-wave at 1/10th the period of the laser, producing a repeating pattern of 10 polarization states. This approach was validated using Z-cut quartz, and NOSE microscopy was performed for micro-crystals of naproxen.

  3. A Review of Tensors and Tensor Signal Processing

    NASA Astrophysics Data System (ADS)

    Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.

    Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.

  4. An Exploration into Diffusion Tensor Imaging in the Bovine Ocular Lens

    PubMed Central

    Vaghefi, Ehsan; Donaldson, Paul J.

    2013-01-01

    We describe our development of the diffusion tensor imaging modality for the bovine ocular lens. Diffusion gradients were added to a spin-echo pulse sequence and the relevant parameters of the sequence were refined to achieve good diffusion weighting in the lens tissue, which demonstrated heterogeneous regions of diffusive signal attenuation. Decay curves for b-value (loosely summarizes the strength of diffusion weighting) and TE (determines the amount of magnetic resonance imaging-obtained signal) were used to estimate apparent diffusion coefficients (ADC) and T2 in different lens regions. The ADCs varied by over an order of magnitude and revealed diffusive anisotropy in the lens. Up to 30 diffusion gradient directions, and 8 signal acquisition averages, were applied to lenses in culture in order to improve maps of diffusion tensor eigenvalues, equivalent to ADC, across the lens. From these maps, fractional anisotropy maps were calculated and compared to known spatial distributions of anisotropic molecular fluxes in the lens. This comparison suggested new hypotheses and experiments to quantitatively assess models of circulation in the avascular lens. PMID:23459990

  5. Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.

    PubMed

    Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben

    2017-08-02

    It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.

  6. 3D tensor-based blind multispectral image decomposition for tumor demarcation

    NASA Astrophysics Data System (ADS)

    Kopriva, Ivica; Peršin, Antun

    2010-03-01

    Blind decomposition of multi-spectral fluorescent image for tumor demarcation is formulated exploiting tensorial structure of the image. First contribution of the paper is identification of the matrix of spectral responses and 3D tensor of spatial distributions of the materials present in the image from Tucker3 or PARAFAC models of 3D image tensor. Second contribution of the paper is clustering based estimation of the number of the materials present in the image as well as matrix of their spectral profiles. 3D tensor of the spatial distributions of the materials is recovered through 3-mode multiplication of the multi-spectral image tensor and inverse of the matrix of spectral profiles. Tensor representation of the multi-spectral image preserves its local spatial structure that is lost, due to vectorization process, when matrix factorization-based decomposition methods (such as non-negative matrix factorization and independent component analysis) are used. Superior performance of the tensor-based image decomposition over matrix factorization-based decompositions is demonstrated on experimental red-green-blue (RGB) image with known ground truth as well as on RGB fluorescent images of the skin tumor (basal cell carcinoma).

  7. Tri-Clustered Tensor Completion for Social-Aware Image Tag Refinement.

    PubMed

    Tang, Jinhui; Shu, Xiangbo; Qi, Guo-Jun; Li, Zechao; Wang, Meng; Yan, Shuicheng; Jain, Ramesh

    2017-08-01

    Social image tag refinement, which aims to improve tag quality by automatically completing the missing tags and rectifying the noise-corrupted ones, is an essential component for social image search. Conventional approaches mainly focus on exploring the visual and tag information, without considering the user information, which often reveals important hints on the (in)correct tags of social images. Towards this end, we propose a novel tri-clustered tensor completion framework to collaboratively explore these three kinds of information to improve the performance of social image tag refinement. Specifically, the inter-relations among users, images and tags are modeled by a tensor, and the intra-relations between users, images and tags are explored by three regularizations respectively. To address the challenges of the super-sparse and large-scale tensor factorization that demands expensive computing and memory cost, we propose a novel tri-clustering method to divide the tensor into a certain number of sub-tensors by simultaneously clustering users, images and tags into a bunch of tri-clusters. And then we investigate two strategies to complete these sub-tensors by considering (in)dependence between the sub-tensors. Experimental results on a real-world social image database demonstrate the superiority of the proposed method compared with the state-of-the-art methods.

  8. Diffusion Tensor Imaging of Lumbar Nerve Roots: Comparison Between Fast Readout-Segmented and Selective-Excitation Acquisitions.

    PubMed

    Manoliu, Andrei; Ho, Michael; Nanz, Daniel; Piccirelli, Marco; Dappa, Evelyn; Klarhöfer, Markus; Del Grande, Filippo; Kuhn, Felix Pierre

    2016-08-01

    The aim of this study was to compare the quality of recently emerged advanced diffusion tensor imaging (DTI) techniques with conventional single-shot echo-planar imaging (EPI) in a functional assessment of lumbar nerve roots. The institutional review board approved the study including 12 healthy volunteers. Diffusion tensor imaging was performed at 3 T (MAGNETOM Skyra; Siemens Healthcare) with b-values of 0 and 700 s/mm and an isotropic spatial resolution for subsequent multiplanar reformatting. The nerve roots L2 to S1 were imaged in coronal orientation with readout-segmented EPI (rs-DTI) and selective-excitation EPI (sTX-DTI) with an acquisition time of 5 minutes each, and in axial orientation with single-shot EPI (ss-DTI) with an acquisition time of 12 minutes (scan parameters as in recent literature). Two independent readers qualitatively and quantitatively assessed image quality. The interobserver reliability ranged from "substantial" to "almost perfect" for all examined parameter and all 3 sequences (κ = 0.70-0.94). Overall image quality was rated higher, and artifact levels were scored lower for rs-DTI and sTX-DTI than for ss-DTI (P = 0.007-0.027), while fractional anisotropy and signal-to-noise ratio values were similar for all sequences (P ≥ 0.306 and P ≥ 0.100, respectively). Contrast-to-noise ratios were significantly higher for rs-DTI and ss-DTI than for sTX-DTI (P = 0.004-0.013). Despite shorter acquisition times, rs-DTI and sTX-DTI produced images of higher quality with smaller geometrical distortions than the current standard of reference, ss-DTI. Thus, DTI acquisitions in the coronal plane, requiring fewer slices for full coverage of exiting nerve roots, may allow for functional neurography in scan times suitable for routine clinical practice.

  9. In vivo High Angular Resolution Diffusion-Weighted Imaging of Mouse Brain at 16.4 Tesla

    PubMed Central

    Alomair, Othman I.; Brereton, Ian M.; Smith, Maree T.; Galloway, Graham J.; Kurniawan, Nyoman D.

    2015-01-01

    Magnetic Resonance Imaging (MRI) of the rodent brain at ultra-high magnetic fields (> 9.4 Tesla) offers a higher signal-to-noise ratio that can be exploited to reduce image acquisition time or provide higher spatial resolution. However, significant challenges are presented due to a combination of longer T 1 and shorter T 2/T2* relaxation times and increased sensitivity to magnetic susceptibility resulting in severe local-field inhomogeneity artefacts from air pockets and bone/brain interfaces. The Stejskal-Tanner spin echo diffusion-weighted imaging (DWI) sequence is often used in high-field rodent brain MRI due to its immunity to these artefacts. To accurately determine diffusion-tensor or fibre-orientation distribution, high angular resolution diffusion imaging (HARDI) with strong diffusion weighting (b >3000 s/mm2) and at least 30 diffusion-encoding directions are required. However, this results in long image acquisition times unsuitable for live animal imaging. In this study, we describe the optimization of HARDI acquisition parameters at 16.4T using a Stejskal-Tanner sequence with echo-planar imaging (EPI) readout. EPI segmentation and partial Fourier encoding acceleration were applied to reduce the echo time (TE), thereby minimizing signal decay and distortion artefacts while maintaining a reasonably short acquisition time. The final HARDI acquisition protocol was achieved with the following parameters: 4 shot EPI, b = 3000 s/mm2, 64 diffusion-encoding directions, 125×150 μm2 in-plane resolution, 0.6 mm slice thickness, and 2h acquisition time. This protocol was used to image a cohort of adult C57BL/6 male mice, whereby the quality of the acquired data was assessed and diffusion tensor imaging (DTI) derived parameters were measured. High-quality images with high spatial and angular resolution, low distortion and low variability in DTI-derived parameters were obtained, indicating that EPI-DWI is feasible at 16.4T to study animal models of white matter (WM) diseases. PMID:26110770

  10. Retrospective Correction of Physiological Noise in DTI Using an Extended Tensor Model and Peripheral Measurements

    PubMed Central

    Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus

    2013-01-01

    Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599

  11. Determining anisotropic conductivity using diffusion tensor imaging data in magneto-acoustic tomography with magnetic induction

    NASA Astrophysics Data System (ADS)

    Ammari, Habib; Qiu, Lingyun; Santosa, Fadil; Zhang, Wenlong

    2017-12-01

    In this paper we present a mathematical and numerical framework for a procedure of imaging anisotropic electrical conductivity tensor by integrating magneto-acoutic tomography with data acquired from diffusion tensor imaging. Magneto-acoustic tomography with magnetic induction (MAT-MI) is a hybrid, non-invasive medical imaging technique to produce conductivity images with improved spatial resolution and accuracy. Diffusion tensor imaging (DTI) is also a non-invasive technique for characterizing the diffusion properties of water molecules in tissues. We propose a model for anisotropic conductivity in which the conductivity is proportional to the diffusion tensor. Under this assumption, we propose an optimal control approach for reconstructing the anisotropic electrical conductivity tensor. We prove convergence and Lipschitz type stability of the algorithm and present numerical examples to illustrate its accuracy and feasibility.

  12. Automatic deformable diffusion tensor registration for fiber population analysis.

    PubMed

    Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V

    2008-01-01

    In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.

  13. A Local Fast Marching-Based Diffusion Tensor Image Registration Algorithm by Simultaneously Considering Spatial Deformation and Tensor Orientation

    PubMed Central

    Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.

    2010-01-01

    It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233

  14. Tensor-based dynamic reconstruction method for electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Lei, J.; Mu, H. P.; Liu, Q. B.; Li, Z. H.; Liu, S.; Wang, X. Y.

    2017-03-01

    Electrical capacitance tomography (ECT) is an attractive visualization measurement method, in which the acquisition of high-quality images is beneficial for the understanding of the underlying physical or chemical mechanisms of the dynamic behaviors of the measurement objects. In real-world measurement environments, imaging objects are often in a dynamic process, and the exploitation of the spatial-temporal correlations related to the dynamic nature will contribute to improving the imaging quality. Different from existing imaging methods that are often used in ECT measurements, in this paper a dynamic image sequence is stacked into a third-order tensor that consists of a low rank tensor and a sparse tensor within the framework of the multiple measurement vectors model and the multi-way data analysis method. The low rank tensor models the similar spatial distribution information among frames, which is slowly changing over time, and the sparse tensor captures the perturbations or differences introduced in each frame, which is rapidly changing over time. With the assistance of the Tikhonov regularization theory and the tensor-based multi-way data analysis method, a new cost function, with the considerations of the multi-frames measurement data, the dynamic evolution information of a time-varying imaging object and the characteristics of the low rank tensor and the sparse tensor, is proposed to convert the imaging task in the ECT measurement into a reconstruction problem of a third-order image tensor. An effective algorithm is developed to search for the optimal solution of the proposed cost function, and the images are reconstructed via a batching pattern. The feasibility and effectiveness of the developed reconstruction method are numerically validated.

  15. Learning to represent spatial transformations with factored higher-order Boltzmann machines.

    PubMed

    Memisevic, Roland; Hinton, Geoffrey E

    2010-06-01

    To allow the hidden units of a restricted Boltzmann machine to model the transformation between two successive images, Memisevic and Hinton (2007) introduced three-way multiplicative interactions that use the intensity of a pixel in the first image as a multiplicative gain on a learned, symmetric weight between a pixel in the second image and a hidden unit. This creates cubically many parameters, which form a three-dimensional interaction tensor. We describe a low-rank approximation to this interaction tensor that uses a sum of factors, each of which is a three-way outer product. This approximation allows efficient learning of transformations between larger image patches. Since each factor can be viewed as an image filter, the model as a whole learns optimal filter pairs for efficiently representing transformations. We demonstrate the learning of optimal filter pairs from various synthetic and real image sequences. We also show how learning about image transformations allows the model to perform a simple visual analogy task, and we show how a completely unsupervised network trained on transformations perceives multiple motions of transparent dot patterns in the same way as humans.

  16. Tensor-based Dictionary Learning for Spectral CT Reconstruction

    PubMed Central

    Zhang, Yanbo; Wang, Ge

    2016-01-01

    Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628

  17. Diffusion MRI and its role in neuropsychology

    PubMed Central

    Mueller, Bryon A; Lim, Kelvin O; Hemmy, Laura; Camchong, Jazmin

    2015-01-01

    Diffusion Magnetic Resonance Imaging (dMRI) is a popular method used by neuroscientists to uncover unique information about the structural connections within the brain. dMRI is a non-invasive imaging methodology in which image contrast is based on the diffusion of water molecules in tissue. While applicable to many tissues in the body, this review focuses exclusively on the use of dMRI to examine white matter in the brain. In this review, we begin with a definition of diffusion and how diffusion is measured with MRI. Next we introduce the diffusion tensor model, the predominant model used in dMRI. We then describe acquisition issues related to acquisition parameters and scanner hardware and software. Sources of artifacts are then discussed, followed by a brief review of analysis approaches. We provide an overview of the limitations of the traditional diffusion tensor model, and highlight several more sophisticated non-tensor models that better describe the complex architecture of the brain’s white matter. We then touch on reliability and validity issues of diffusion measurements. Finally, we describe examples of ways in which dMRI has been applied to studies of brain disorders and how identified alterations relate to symptomatology and cognition. PMID:26255305

  18. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    NASA Astrophysics Data System (ADS)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  19. Effects of Orientation and Anisometry of Magnetic Resonance Imaging Acquisitions on Diffusion Tensor Imaging and Structural Connectomes.

    PubMed

    Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe

    2017-01-01

    Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.

  20. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    PubMed

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  1. Diffusion-tensor MR imaging of the breast: hormonal regulation.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa

    2014-06-01

    To investigate the parameters obtained with magnetic resonance (MR) diffusion-tensor imaging (DTI) of the breast throughout the menstrual cycle phases, during lactation, and after menopause, with and without hormone replacement therapy (HRT). All protocols were approved by the internal review board, and signed informed consent was obtained from all participants. Forty-five healthy volunteers underwent imaging by using T2-weighted and DTI MR sequences at 3 T. Premenopausal volunteers (n = 16) underwent imaging weekly, four times during one menstrual cycle. Postmenopausal volunteers (n = 19) and lactating volunteers (n = 10) underwent imaging once. The principal diffusion coefficients (λ1, λ2, and λ3), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and maximal anisotropy (λ1-λ3) were calculated pixel by pixel for the fibroglandular tissue in the entire breast. In all premenopausal volunteers, the DTI parameters exhibited high repeatability, remaining almost equal along the menstrual cycle, with a low mean within-subject coefficient of variance of λ1, λ2, λ3, and ADC (1%-2% for all) and FA (5%), as well as a high intraclass correlation of 0.92-0.98. The diffusion coefficients were significantly lower (a) in the group without HRT use as compared with the group with HRT use (P < .01) and premenopausal volunteers (P < .01) and (b) in the lactating volunteers as compared with the premenopausal volunteers (P < .005). No significant differences in DTI parameters were found between premenopausal volunteers free of oral contraceptives and those who used oral contraceptives (P = .28-0.82) and between premenopausal volunteers and postmenopausal volunteers who used HRT (P = .31-0.93). DTI parameters are not sensitive to menstrual cycle changes, while menopause, long-term HRT, and presence of milk in lactating women affected the DTI parameters. Therefore, the timing for performing breast DTI is not restricted throughout the menstrual cycle, whereas the modulations in diffusion parameters due to HRT and lactation should be taken into account in DTI evaluation.

  2. Advanced Magnetic Resonance Imaging techniques to probe muscle structure and function

    NASA Astrophysics Data System (ADS)

    Malis, Vadim

    Structural and functional Magnetic Resonance Imaging (MRI) studies of skeletal muscle allow the elucidation of muscle physiology under normal and pathological conditions. Continuing on the efforts of the Muscle Imaging and Modeling laboratory, the focus of the thesis is to (i) extend and refine two challenging imaging modalities: structural imaging using Diffusion Tensor Imaging (DTI) and functional imaging based on Velocity Encoded Phase Contrast Imaging (VE-PC) and (ii) apply these methods to explore age related structure and functional differences of the gastrocnemius muscle. Diffusion Tensor Imaging allows the study of tissue microstructure as well as muscle fiber architecture. The images, based on an ultrafast single shot Echo Planar Imaging (EPI) sequence, suffer from geometric distortions and low signal to noise ratio. A processing pipeline was developed to correct for distortions and to improve image Signal to Noise Ratio (SNR). DTI acquired on a senior and young cohort of subjects were processed through the pipeline and differences in DTI derived indices and fiber architecture between the two cohorts were explored. The DTI indices indicated that at the microstructural level, fiber atrophy was accompanied with a reduction in fiber volume fraction. At the fiber architecture level, fiber length and pennation angles decreased with age that potentially contribute to the loss of muscle force with age. Velocity Encoded Phase Contrast imaging provides tissue (e.g. muscle) velocity at each voxel which allows the study of strain and Strain Rate (SR) under dynamic conditions. The focus of the thesis was to extract 2D strain rate tensor maps from the velocity images and apply the method to study age related differences. The tensor mapping can potentially provide unique information on the extracellular matrix and lateral transmission the role of these two elements has recently emerged as important determinants of force loss with age. In the cross sectional study on aging, strain rate during isometric contraction was significantly reduced in the seniors; presumably from decrease in muscle slack and increase in stiffness with age. Other parameters of interest from this study that allow inferences on the ECM and lateral transmission are the asymmetry of deformation in the fiber cross section as well as the angle between the SR and muscle fiber. The last part of thesis, which is a 'work-in-progress', is the extension to 3D SR tensor mapping using a 3D spatial, 3D velocity encoded imaging sequence. This is combined with Diffusion Tensor Imaging to obtain the lead eigenvector (muscle fiber direction) at each voxel. The 3D SR is then rotated to the basis of the DTI to obtain a 'Fiber Aligned Strain rate: FASR'. The off diagonal elements of FASR are shear strain terms. Detailed analysis of the shear strain will provide a unique non-invasive method to probe lateral transmission.

  3. Strain Rate Tensor Estimation in Cine Cardiac MRI Based on Elastic Image Registration

    NASA Astrophysics Data System (ADS)

    Sánchez-Ferrero, Gonzalo Vegas; Vega, Antonio Tristán; Grande, Lucilio Cordero; de La Higuera, Pablo Casaseca; Fernández, Santiago Aja; Fernández, Marcos Martín; López, Carlos Alberola

    In this work we propose an alternative method to estimate and visualize the Strain Rate Tensor (SRT) in Magnetic Resonance Images (MRI) when Phase Contrast MRI (PCMRI) and Tagged MRI (TMRI) are not available. This alternative is based on image processing techniques. Concretely, image registration algorithms are used to estimate the movement of the myocardium at each point. Additionally, a consistency checking method is presented to validate the accuracy of the estimates when no golden standard is available. Results prove that the consistency checking method provides an upper bound of the mean squared error of the estimate. Our experiments with real data show that the registration algorithm provides a useful deformation field to estimate the SRT fields. A classification between regional normal and dysfunctional contraction patterns, as compared with experts diagnosis, points out that the parameters extracted from the estimated SRT can represent these patterns. Additionally, a scheme for visualizing and analyzing the local behavior of the SRT field is presented.

  4. In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging.

    PubMed

    Morisaki, Shinsuke; Kawai, Yuko; Umeda, Masahiro; Nishi, Mayumi; Oda, Ryo; Fujiwara, Hiroyoshi; Yamada, Kei; Higuchi, Toshihiro; Tanaka, Chuzo; Kawata, Mitsuhiro; Kubo, Toshikazu

    2011-03-01

    To evaluate the sensitivity of diffusion tensor imaging (DTI) in assessing peripheral nerve regeneration in vivo. We assessed the changes in the DTI parameters and histological analyses after nerve injury to examine degeneration and regeneration in the rat sciatic nerves. For magnetic resonance imaging (MRI), 16 rats were randomly divided into two groups: group P (permanently crushed; n = 7) and group T (temporally crushed; n = 9). Serial MRI of the right leg was performed before the operation, and then performed at the timepoints of 1, 2, 3, and 4 weeks after the crush injury. The changes in fractional anisotropy (FA), axial diffusivity (λ(∥)), and radial diffusivity (λ(⟂)) were quantified. For histological analyses, the number of axons and the myelinated axon areas were quantified. Decreased FA and increased λ(⟂) were observed in the degenerative phase, and increased FA and decreased λ(⟂) were observed in the regenerative phase. The changes in FA and λ(⟂) were strongly correlated with histological changes, including axonal and myelin regeneration. DTI parameters, especially λ(⟂) , can be good indicators for peripheral nerve regeneration and can be applied as noninvasive diagnostic tools for a variety of neurological diseases. Copyright © 2011 Wiley-Liss, Inc.

  5. Motion Detection in Ultrasound Image-Sequences Using Tensor Voting

    NASA Astrophysics Data System (ADS)

    Inba, Masafumi; Yanagida, Hirotaka; Tamura, Yasutaka

    2008-05-01

    Motion detection in ultrasound image sequences using tensor voting is described. We have been developing an ultrasound imaging system adopting a combination of coded excitation and synthetic aperture focusing techniques. In our method, frame rate of the system at distance of 150 mm reaches 5000 frame/s. Sparse array and short duration coded ultrasound signals are used for high-speed data acquisition. However, many artifacts appear in the reconstructed image sequences because of the incompleteness of the transmitted code. To reduce the artifacts, we have examined the application of tensor voting to the imaging method which adopts both coded excitation and synthetic aperture techniques. In this study, the basis of applying tensor voting and the motion detection method to ultrasound images is derived. It was confirmed that velocity detection and feature enhancement are possible using tensor voting in the time and space of simulated ultrasound three-dimensional image sequences.

  6. Relaxations to Sparse Optimization Problems and Applications

    NASA Astrophysics Data System (ADS)

    Skau, Erik West

    Parsimony is a fundamental property that is applied to many characteristics in a variety of fields. Of particular interest are optimization problems that apply rank, dimensionality, or support in a parsimonious manner. In this thesis we study some optimization problems and their relaxations, and focus on properties and qualities of the solutions of these problems. The Gramian tensor decomposition problem attempts to decompose a symmetric tensor as a sum of rank one tensors.We approach the Gramian tensor decomposition problem with a relaxation to a semidefinite program. We study conditions which ensure that the solution of the relaxed semidefinite problem gives the minimal Gramian rank decomposition. Sparse representations with learned dictionaries are one of the leading image modeling techniques for image restoration. When learning these dictionaries from a set of training images, the sparsity parameter of the dictionary learning algorithm strongly influences the content of the dictionary atoms.We describe geometrically the content of trained dictionaries and how it changes with the sparsity parameter.We use statistical analysis to characterize how the different content is used in sparse representations. Finally, a method to control the structure of the dictionaries is demonstrated, allowing us to learn a dictionary which can later be tailored for specific applications. Variations of dictionary learning can be broadly applied to a variety of applications.We explore a pansharpening problem with a triple factorization variant of coupled dictionary learning. Another application of dictionary learning is computer vision. Computer vision relies heavily on object detection, which we explore with a hierarchical convolutional dictionary learning model. Data fusion of disparate modalities is a growing topic of interest.We do a case study to demonstrate the benefit of using social media data with satellite imagery to estimate hazard extents. In this case study analysis we apply a maximum entropy model, guided by the social media data, to estimate the flooded regions during a 2013 flood in Boulder, CO and show that the results are comparable to those obtained using expert information.

  7. Diffusion Tensor Imaging in Chronic Inflammatory Demyelinating Polyneuropathy: Diagnostic Accuracy and Correlation With Electrophysiology.

    PubMed

    Kronlage, Moritz; Pitarokoili, Kalliopi; Schwarz, Daniel; Godel, Tim; Heiland, Sabine; Yoon, Min-Suk; Bendszus, Martin; Bäumer, Philipp

    2017-11-01

    The aims of this study were to assess diagnostic accuracy of diffusion tensor imaging (DTI) in chronic inflammatory demyelinating polyneuropathy (CIDP), to correlate DTI with electrophysiological parameters, and to evaluate whether radial diffusivity (RD) and axial diffusivity (AD) might serve as specific biomarkers of demyelinating and axonal pathology. This prospective study was approved by the institutional ethics committee, and written informed consent was obtained from all participants. Magnetic resonance neurography of upper and lower extremity nerves (median, ulnar, radial, sciatic, tibial) was performed by single-shot DTI sequences at 3.0 T in 18 patients with a diagnosis of CIDP and 18 healthy controls, matched to age and sex. The scalar readout parameters nerve fractional anisotropy (FA), mean diffusivity (MD), RD, and AD were obtained after manual segmentation and postprocessing and compared between patients and controls. Diagnostic accuracy was assessed by receiver operating characteristic analysis, and cutoff values were calculated by maximizing the Youden index. All patients underwent a complementary electroneurography and correlation of electrophysiological markers and DTI parameters was analyzed and described by Pearson and Spearman coefficients. Nerve FA was decreased to a mean of 0.42 ± 0.08 in patients compared with 0.52 ± 0.04 in healthy controls (P < 0.001). This decrease in FA was a result of an increase of RD (P = 0.02), whereas AD did not differ between the two groups. Of all DTI parameters, FA showed best diagnostic accuracy with a receiver operating characteristic area under the curve of 0.90. Optimal cutoff for an average FA of all analyzed nerves was 0.47, yielding a sensitivity of 0.83 and a specificity of 0.94. Fractional anisotropy and RD correlated strongly with electrophysiological markers of demyelination, whereas AD did not correlate with markers of axonal neuropathy. Diffusion tensor imaging yields valid quantitative biomarkers in CIDP and might aid in diagnosis with high diagnostic accuracy. Fractional anisotropy and RD may serve as parameters of myelin sheath integrity, but AD is unable to reflect axonal damage in CIDP.

  8. Value of Formalin Fixation for the Prolonged Preservation of Rodent Myocardial Microanatomical Organization: Evidence by MR Diffusion Tensor Imaging.

    PubMed

    Giannakidis, Archontis; Gullberg, Grant T; Pennell, Dudley J; Firmin, David N

    2016-07-01

    Previous ex vivo diffusion tensor imaging (DTI) studies on formalin-fixed myocardial tissue assumed that, after some initial changes in the first 48 hr since the start of fixation, DTI parameters remain stable over time. Prolonged preservation of cardiac tissue in formalin prior to imaging has been seen many times in the DTI literature as it is considered orderly. Our objective is to define the effects of the prolonged cardiac tissue exposure to formalin on tissue microanatomical organization, as this is assessed by DTI parameters. DTI experiments were conducted on eight excised rodent hearts that were fixed by immersion in formalin. The samples were randomly divided into two equinumerous groups corresponding to shorter (∼2 weeks) and more prolonged (∼6-8 weeks) durations of tissue exposure to formalin prior to imaging. We found that when the duration of cardiac tissue exposure to formalin before imaging increased, water diffusion became less restricted, helix angle (HA) histograms flattened out and exhibited heavier tails (even though the classic HA transmural variation was preserved), and a significant loss of inter-voxel primary diffusion orientation integrity was introduced. The prolonged preservation of cardiac tissue in formalin profoundly affected its microstructural organization, as this was assessed by DTI parameters. The accurate interpretation of diffusivity profiles necessitates awareness of the pitfalls of prolonged cardiac tissue exposure duration to formalin. The acquired knowledge works to the advantage of a proper experimental design of DTI studies of fixed hearts. Anat Rec, 299:878-887, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  9. Adaptive distance metric learning for diffusion tensor image segmentation.

    PubMed

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.

  10. Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation

    PubMed Central

    Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.

    2014-01-01

    High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858

  11. Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images

    ERIC Educational Resources Information Center

    Barmpoutis, Angelos

    2009-01-01

    Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…

  12. Tensor scale: An analytic approach with efficient computation and applications☆

    PubMed Central

    Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura

    2015-01-01

    Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148

  13. Seamless Warping of Diffusion Tensor Fields

    PubMed Central

    Hao, Xuejun; Bansal, Ravi; Plessen, Kerstin J.; Peterson, Bradley S.

    2008-01-01

    To warp diffusion tensor fields accurately, tensors must be reoriented in the space to which the tensors are warped based on both the local deformation field and the orientation of the underlying fibers in the original image. Existing algorithms for warping tensors typically use forward mapping deformations in an attempt to ensure that the local deformations in the warped image remains true to the orientation of the underlying fibers; forward mapping, however, can also create “seams” or gaps and consequently artifacts in the warped image by failing to define accurately the voxels in the template space where the magnitude of the deformation is large (e.g., |Jacobian| > 1). Backward mapping, in contrast, defines voxels in the template space by mapping them back to locations in the original imaging space. Backward mapping allows every voxel in the template space to be defined without the creation of seams, including voxels in which the deformation is extensive. Backward mapping, however, cannot reorient tensors in the template space because information about the directional orientation of fiber tracts is contained in the original, unwarped imaging space only, and backward mapping alone cannot transfer that information to the template space. To combine the advantages of forward and backward mapping, we propose a novel method for the spatial normalization of diffusion tensor (DT) fields that uses a bijection (a bidirectional mapping with one-to-one correspondences between image spaces) to warp DT datasets seamlessly from one imaging space to another. Once the bijection has been achieved and tensors have been correctly relocated to the template space, we can appropriately reorient tensors in the template space using a warping method based on Procrustean estimation. PMID:18334425

  14. Quantifying white matter tract diffusion parameters in the presence of increased extra-fiber cellularity and vasogenic edema

    PubMed Central

    Chiang, Chia-Wen; Wang, Yong; Sun, Peng; Lin, Tsen-Hsuan; Trinkaus, Kathryn; Cross, Anne H.; Song, Sheng-Kwei

    2014-01-01

    The effect of extra-fiber structural and pathological components confounding diffusion tensor imaging (DTI) computation was quantitatively investigated using data generated by both Monte-Carlo simulations and tissue phantoms. Increased extent of vasogenic edema, by addition of various amount of gel to fixed normal mouse trigeminal nerves or by increasing non-restricted isotropic diffusion tensor components in Monte-Carlo simulations, significantly decreased fractional anisotropy (FA), increased radial diffusivity, while less significantly increased axial diffusivity derived by DTI. Increased cellularity, mimicked by graded increase of the restricted isotropic diffusion tensor component in Monte-Carlo simulations, significantly decreased FA and axial diffusivity with limited impact on radial diffusivity derived by DTI. The MC simulation and tissue phantom data were also analyzed by the recently developed diffusion basis spectrum imaging (DBSI) to simultaneously distinguish and quantify the axon/myelin integrity and extra-fiber diffusion components. Results showed that increased cellularity or vasogenic edema did not affect the DBSI-derived fiber FA, axial or radial diffusivity. Importantly, the extent of extra-fiber cellularity and edema estimated by DBSI correlated with experimentally added gel and Monte-Carlo simulations. We also examined the feasibility of applying 25-direction diffusion encoding scheme for DBSI analysis on coherent white matter tracts. Results from both phantom experiments and simulations suggested that the 25-direction diffusion scheme provided comparable DBSI estimation of both fiber diffusion parameters and extra-fiber cellularity/edema extent as those by 99-direction scheme. An in vivo 25-direction DBSI analysis was performed on experimental autoimmune encephalomyelitis (EAE, an animal model of human multiple sclerosis) optic nerve as an example to examine the validity of derived DBSI parameters with post-imaging immunohistochemistry verification. Results support that in vivo DBSI using 25-direction diffusion scheme correctly reflect the underlying axonal injury, demyelination, and inflammation of optic nerves in EAE mice. PMID:25017446

  15. Analytical performance bounds for multi-tensor diffusion-MRI.

    PubMed

    Ahmed Sid, Farid; Abed-Meraim, Karim; Harba, Rachid; Oulebsir-Boumghar, Fatima

    2017-02-01

    To examine the effects of MR acquisition parameters on brain white matter fiber orientation estimation and parameter of clinical interest in crossing fiber areas based on the Multi-Tensor Model (MTM). We compute the Cramér-Rao Bound (CRB) for the MTM and the parameter of clinical interest such as the Fractional Anisotropy (FA) and the dominant fiber orientations, assuming that the diffusion MRI data are recorded by a multi-coil, multi-shell acquisition system. Considering the sum-of-squares method for the reconstructed magnitude image, we introduce an approximate closed-form formula for Fisher Information Matrix that has the simplicity and easy interpretation advantages. In addition, we propose to generalize the FA and the mean diffusivity to the multi-tensor model. We show the application of the CRB to reduce the scan time while preserving a good estimation precision. We provide results showing how the increase of the number of acquisition coils compensates the decrease of the number of diffusion gradient directions. We analyze the impact of the b-value and the Signal-to-Noise Ratio (SNR). The analysis shows that the estimation error variance decreases with a quadratic rate with the SNR, and that the optimum b-values are not unique but depend on the target parameter, the context, and eventually the target cost function. In this study we highlight the importance of choosing the appropriate acquisition parameters especially when dealing with crossing fiber areas. We also provide a methodology for the optimal tuning of these parameters using the CRB. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Determination of mouse skeletal muscle architecture using three-dimensional diffusion tensor imaging.

    PubMed

    Heemskerk, Anneriet M; Strijkers, Gustav J; Vilanova, Anna; Drost, Maarten R; Nicolay, Klaas

    2005-06-01

    Muscle architecture is the main determinant of the mechanical behavior of skeletal muscles. This study explored the feasibility of diffusion tensor imaging (DTI) and fiber tracking to noninvasively determine the in vivo three-dimensional (3D) architecture of skeletal muscle in mouse hind leg. In six mice, the hindlimb was imaged with a diffusion-weighted (DW) 3D fast spin-echo (FSE) sequence followed by the acquisition of an exercise-induced, T(2)-enhanced data set. The data showed the expected fiber organization, from which the physiological cross-sectional area (PCSA), fiber length, and pennation angle for the tibialis anterior (TA) were obtained. The values of these parameters ranged from 5.4-9.1 mm(2), 5.8-7.8 mm, and 21-24 degrees , respectively, which is in agreement with values obtained previously with the use of invasive methods. This study shows that 3D DT acquisition and fiber tracking is feasible for the skeletal muscle of mice, and thus enables the quantitative determination of muscle architecture.

  17. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease.

    PubMed

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI's potential as surrogate marker for SVD.

  18. Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.

    PubMed

    Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N

    2017-05-01

    This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.

  19. Correlation of diffusion tensor imaging parameters with neural status in Pott's spine.

    PubMed

    Jain, Nikhil; Saini, Namita Singh; Kumar, Sudhir; Rajagopalan, Mukunth; Chakraborti, Kanti Lal; Jain, Anil Kumar

    2016-04-29

    Diffusion tensor imaging (DTI) has been used in cervical trauma and spondylotic myelopathy, and it has been found to correlate with neural deficit and prognosticate neural recovery. Such a correlation has not been studied in Pott's spine with paraplegia. Hence, this prospective study has been used to find correlation of DTI parameters with neural deficit in these patients. Thirty-four patients of spinal TB were enrolled and DTI was performed before the start of treatment and after six months. Fractional anisotropy (FA), Mean diffusivity (MD), and Tractography were studied. Neurological deficit was graded by the Jain and Sinha scoring. Changes in FA and MD at and below the site of lesion (SOL) were compared to above the SOL (control) using the unpaired t-test. Pre-treatment and post-treatment values were also compared using the paired t-test. Correlation of DTI parameters with neurological score was done by Pearson's correlation. Subjective assessment of Tractography images was done. Mean average FA was not significantly decreased at the SOL in patients with paraplegia as compared to control. After six months of treatment, a significant decrease (p = 0.02) in mean average FA at the SOL compared to pre-treatment was seen. Moderate positive correlation (r = 0.49) between mean average FA and neural score after six months of treatment was found. Tractography images were not consistent with severity of paraplegia. Unlike spondylotic myelopathy and trauma, epidural collection and its organized inflammatory tissue in Pott's spine precludes accurate assessment of diffusion characteristics of the compressed cord.

  20. Neurocognitive Effects of Radiotherapy

    DTIC Science & Technology

    2013-11-05

    tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time-points in regards...completed a 1 hour standard MRI as well as additional testing including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of...including diffuse tensor imaging ( DTI ), perfusion and diffusion. The majority of patients have completed baseline and at least two additional time

  1. An Adaptive Spectrally Weighted Structure Tensor Applied to Tensor Anisotropic Nonlinear Diffusion for Hyperspectral Images

    ERIC Educational Resources Information Center

    Marin Quintero, Maider J.

    2013-01-01

    The structure tensor for vector valued images is most often defined as the average of the scalar structure tensors in each band. The problem with this definition is the assumption that all bands provide the same amount of edge information giving them the same weights. As a result non-edge pixels can be reinforced and edges can be weakened…

  2. Ultra-high field diffusion tensor imaging of articular cartilage correlated with histology and scanning electron microscopy.

    PubMed

    Raya, José G; Arnoldi, Andreas P; Weber, Daniel L; Filidoro, Lucianna; Dietrich, Olaf; Adam-Neumair, Silvia; Mützel, Elisabeth; Melkus, Gerd; Putz, Reinhard; Reiser, Maximilian F; Jakob, Peter M; Glaser, Christian

    2011-08-01

    To investigate the relationship of the different diffusion tensor imaging (DTI) parameters (ADC, FA, and first eigenvector (EV)) to the constituents (proteoglycans and collagen), the zonal arrangement of the collagen network, and mechanical loading of articular cartilage. DTI of eight cartilage-on-bone samples of healthy human patellar cartilage was performed at 17.6 T. Three samples were additionally imaged under indentation loading. After DTI, samples underwent biomechanical testing, safranin-O staining for semiquantitative proteoglycan estimation, and scanning electron microscopy (SEM) for depicting collagen architecture. From the articular surface to the bone-cartilage interface, ADC continuously decreased and FA increased. Cartilage zonal heights calculated from EVs strongly correlated with SEM-derived zonal heights (P < 0.01, r (2)=0.87). Compression reduced ADC in the superficial 30% of cartilage and increased FA in the superficial 5% of cartilage. Reorientation of the EVs indicative of collagen fiber reorientation under the indenter was observed. No significant correlation was found between ADC, FA, and compressive stiffness. Correlating ADC and FA with proteoglycan and collagen content suggests that diffusion is dominated by different depth-dependent mechanisms within cartilage. Knowledge of the spatial distribution of the DTI parameters and their variation contributes to form a database for future analysis of defective cartilage.

  3. Relationship between cardiac diffusion tensor imaging parameters and anthropometrics in healthy volunteers.

    PubMed

    McGill, L A; Ferreira, P F; Scott, A D; Nielles-Vallespin, S; Giannakidis, A; Kilner, P J; Gatehouse, P D; de Silva, R; Firmin, D N; Pennell, D J

    2016-01-06

    In vivo cardiac diffusion tensor imaging (cDTI) is uniquely capable of interrogating laminar myocardial dynamics non-invasively. A comprehensive dataset of quantative parameters and comparison with subject anthropometrics is required. cDTI was performed at 3T with a diffusion weighted STEAM sequence. Data was acquired from the mid left ventricle in 43 subjects during the systolic and diastolic pauses. Global and regional values were determined for fractional anisotropy (FA), mean diffusivity (MD), helix angle gradient (HAg, degrees/%depth) and the secondary eigenvector angulation (E2A). Regression analysis was performed between global values and subject anthropometrics. All cDTI parameters displayed regional heterogeneity. The RR interval had a significant, but clinically small effect on systolic values for FA, HAg and E2A. Male sex and increasing left ventricular end diastolic volume were associated with increased systolic HAg. Diastolic HAg and systolic E2A were both directly related to left ventricular mass and body surface area. There was an inverse relationship between E2A mobility and both age and ejection fraction. Future interpretations of quantitative cDTI data should take into account anthropometric variations observed with patient age, body surface area and left ventricular measurements. Further work determining the impact of technical factors such as strain and SNR is required.

  4. Tensor Factorization for Low-Rank Tensor Completion.

    PubMed

    Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao

    2018-03-01

    Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.

  5. Software Toolbox for Low-Frequency Conductivity and Current Density Imaging Using MRI.

    PubMed

    Sajib, Saurav Z K; Katoch, Nitish; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2017-11-01

    Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes. Low-frequency conductivity and current density imaging using MRI includes magnetic resonance electrical impedance tomography (MREIT), diffusion tensor MREIT (DT-MREIT), conductivity tensor imaging (CTI), and magnetic resonance current density imaging (MRCDI). MRCDI and MREIT provide current density and isotropic conductivity images, respectively, using current-injection phase MRI techniques. DT-MREIT produces anisotropic conductivity tensor images by incorporating diffusion weighted MRI into MREIT. These current-injection techniques are finding clinical applications in diagnostic imaging and also in transcranial direct current stimulation (tDCS), deep brain stimulation (DBS), and electroporation where treatment currents can function as imaging currents. To avoid adverse effects of nerve and muscle stimulations due to injected currents, conductivity tensor imaging (CTI) utilizes B1 mapping and multi-b diffusion weighted MRI to produce low-frequency anisotropic conductivity tensor images without injecting current. This paper describes numerical implementations of several key mathematical functions for conductivity and current density image reconstructions in MRCDI, MREIT, DT-MREIT, and CTI. To facilitate experimental studies of clinical applications, we developed a software toolbox for these low-frequency conductivity and current density imaging methods. This MR-based conductivity imaging (MRCI) toolbox includes 11 toolbox functions which can be used in the MATLAB environment. The MRCI toolbox is available at http://iirc.khu.ac.kr/software.html . Its functions were tested by using several experimental datasets, which are provided together with the toolbox. Users of the toolbox can focus on experimental designs and interpretations of reconstructed images instead of developing their own image reconstruction softwares. We expect more toolbox functions to be added from future research outcomes.

  6. Accelerated High-Dimensional MR Imaging with Sparse Sampling Using Low-Rank Tensors

    PubMed Central

    He, Jingfei; Liu, Qiegen; Christodoulou, Anthony G.; Ma, Chao; Lam, Fan

    2017-01-01

    High-dimensional MR imaging often requires long data acquisition time, thereby limiting its practical applications. This paper presents a low-rank tensor based method for accelerated high-dimensional MR imaging using sparse sampling. This method represents high-dimensional images as low-rank tensors (or partially separable functions) and uses this mathematical structure for sparse sampling of the data space and for image reconstruction from highly undersampled data. More specifically, the proposed method acquires two datasets with complementary sampling patterns, one for subspace estimation and the other for image reconstruction; image reconstruction from highly undersampled data is accomplished by fitting the measured data with a sparsity constraint on the core tensor and a group sparsity constraint on the spatial coefficients jointly using the alternating direction method of multipliers. The usefulness of the proposed method is demonstrated in MRI applications; it may also have applications beyond MRI. PMID:27093543

  7. Diffusion Properties and 3D Architecture of Human Lower Leg Muscles Assessed with Ultra-High-Field-Strength Diffusion-Tensor MR Imaging and Tractography: Reproducibility and Sensitivity to Sex Difference and Intramuscular Variability.

    PubMed

    Fouré, Alexandre; Ogier, Augustin C; Le Troter, Arnaud; Vilmen, Christophe; Feiweier, Thorsten; Guye, Maxime; Gondin, Julien; Besson, Pierre; Bendahan, David

    2018-05-01

    Purpose To demonstrate the reproducibility of the diffusion properties and three-dimensional structural organization measurements of the lower leg muscles by using diffusion-tensor imaging (DTI) assessed with ultra-high-field-strength (7.0-T) magnetic resonance (MR) imaging and tractography of skeletal muscle fibers. On the basis of robust statistical mapping analyses, this study also aimed at determining the sensitivity of the measurements to sex difference and intramuscular variability. Materials and Methods All examinations were performed with ethical review board approval; written informed consent was obtained from all volunteers. Reproducibility of diffusion tensor indexes assessment including eigenvalues, mean diffusivity, and fractional anisotropy (FA) as well as muscle volume and architecture (ie, fiber length and pennation angle) were characterized in lower leg muscles (n = 8). Intramuscular variability and sex differences were characterized in young healthy men and women (n = 10 in each group). Student t test, statistical parametric mapping, correlation coefficients (Spearman rho and Pearson product-moment) and coefficient of variation (CV) were used for statistical data analysis. Results High reproducibility of measurements (mean CV ± standard deviation, 4.6% ± 3.8) was determined in diffusion properties and architectural parameters. Significant sex differences were detected in FA (4.2% in women for the entire lower leg; P = .001) and muscle volume (21.7% in men for the entire lower leg; P = .008), whereas architecture parameters were almost identical across sex. Additional differences were found independently of sex in diffusion properties and architecture along several muscles of the lower leg. Conclusion The high-spatial-resolution DTI assessed with 7.0-T MR imaging allows a reproducible assessment of structural organization of superficial and deep muscles, giving indirect information on muscle function. © RSNA, 2018 Online supplemental material is available for this article.

  8. Binocular stereo matching method based on structure tensor

    NASA Astrophysics Data System (ADS)

    Song, Xiaowei; Yang, Manyi; Fan, Yubo; Yang, Lei

    2016-10-01

    In a binocular visual system, to recover the three-dimensional information of the object, the most important step is to acquire matching points. Structure tensor is the vector representation of each point in its local neighborhood. Therefore, structure tensor performs well in region detection of local structure, and it is very suitable for detecting specific graphics such as pedestrians, cars and road signs in the image. In this paper, the structure tensor is combined with the luminance information to form the extended structure tensor. The directional derivatives of luminance in x and y directions are calculated, so that the local structure of the image is more prominent. Meanwhile, the Euclidean distance between the eigenvectors of key points is used as the similarity determination metric of key points in the two images. By matching, the coordinates of the matching points in the detected target are precisely acquired. In this paper, experiments were performed on the captured left and right images. After the binocular calibration, image matching was done to acquire the matching points, and then the target depth was calculated according to these matching points. By comparison, it is proved that the structure tensor can accurately acquire the matching points in binocular stereo matching.

  9. Through Diffusion Tensor Magnetic Resonance Imaging to Evaluate the Original Properties of Neural Pathways of Patients with Partial Seizures and Secondary Generalization by Individual Anatomic Reference Atlas

    PubMed Central

    Peng, Syu-Jyun; Harnod, Tomor; Tsai, Jang-Zern; Huang, Chien-Chun; Ker, Ming-Dou; Chiou, Jun-Chern; Chiueh, Herming; Wu, Chung-Yu; Hsin, Yue-Loong

    2014-01-01

    To investigate white matter (WM) abnormalities in neocortical epilepsy, we extract supratentorial WM parameters from raw tensor magnetic resonance images (MRI) with automated region-of-interest (ROI) registrations. Sixteen patients having neocortical seizures with secondarily generalised convulsions and 16 age-matched normal subjects were imaged with high-resolution and diffusion tensor MRIs. Automated demarcation of supratentorial fibers was accomplished with personalized fiber-labeled atlases. From the individual atlases, we observed significant elevation of mean diffusivity (MD) in fornix (cres)/stria terminalis (FX/ST) and sagittal stratum (SS) and a significant difference in fractional anisotropy (FA) among FX/ST, SS, posterior limb of the internal capsule (PLIC), and posterior thalamic radiation (PTR). For patients with early-onset epilepsy, the diffusivities of the SS and the retrolenticular part of the internal capsule were significantly elevated, and the anisotropies of the FX/ST and SS were significantly decreased. In the drug-resistant subgroup, the MDs of SS and PTR and the FAs of SS and PLIC were significantly different. Onset age was positively correlated with increases in FAs of the genu of the corpus callosum. Patients with neocortical seizures and secondary generalisation had microstructural anomalies in WM. The changes in WM are relevant to early onset, progression, and severity of epilepsy. PMID:24883310

  10. Novel region of interest interrogation technique for diffusion tensor imaging analysis in the canine brain.

    PubMed

    Li, Jonathan Y; Middleton, Dana M; Chen, Steven; White, Leonard; Ellinwood, N Matthew; Dickson, Patricia; Vite, Charles; Bradbury, Allison; Provenzale, James M

    2017-08-01

    Purpose We describe a novel technique for measuring diffusion tensor imaging metrics in the canine brain. We hypothesized that a standard method for region of interest placement could be developed that is highly reproducible, with less than 10% difference in measurements between raters. Methods Two sets of canine brains (three seven-week-old full-brains and two 17-week-old single hemispheres) were scanned ex-vivo on a 7T small-animal magnetic resonance imaging system. Strict region of interest placement criteria were developed and then used by two raters to independently measure diffusion tensor imaging metrics within four different white-matter regions within each specimen. Average values of fractional anisotropy, radial diffusivity, and the three eigenvalues (λ1, λ2, and λ3) within each region in each specimen overall and within each individual image slice were compared between raters by calculating the percentage difference between raters for each metric. Results The mean percentage difference between raters for all diffusion tensor imaging metrics when pooled by each region and specimen was 1.44% (range: 0.01-5.17%). The mean percentage difference between raters for all diffusion tensor imaging metrics when compared by individual image slice was 2.23% (range: 0.75-4.58%) per hemisphere. Conclusion Our results indicate that the technique described is highly reproducible, even when applied to canine specimens of differing age, morphology, and image resolution. We propose this technique for future studies of diffusion tensor imaging analysis in canine brains and for cross-sectional and longitudinal studies of canine brain models of human central nervous system disease.

  11. Muscle changes detected with diffusion-tensor imaging after long-distance running.

    PubMed

    Froeling, Martijn; Oudeman, Jos; Strijkers, Gustav J; Maas, Mario; Drost, Maarten R; Nicolay, Klaas; Nederveen, Aart J

    2015-02-01

    To develop a protocol for diffusion-tensor imaging (DTI) of the complete upper legs and to demonstrate feasibility of detection of subclinical sports-related muscle changes in athletes after strenuous exercise, which remain undetected by using conventional T2-weighted magnetic resonance (MR) imaging with fat suppression. The research was approved by the institutional ethics committee review board, and the volunteers provided written consent before the study. Five male amateur long-distance runners underwent an MR examination (DTI, T1-weighted MR imaging, and T2-weighted MR imaging with fat suppression) of both upper legs 1 week before, 2 days after, and 3 weeks after they participated in a marathon. The tensor eigenvalues (λ1, λ2, and λ3), the mean diffusivity, and the fractional anisotropy (FA) were derived from the DTI data. Data per muscle from the three time-points were compared by using a two-way mixed-design analysis of variance with a Bonferroni posthoc test. The DTI protocol allowed imaging of both complete upper legs with adequate signal-to-noise ratio and within a 20-minute imaging time. After the marathon, T2-weighted MR imaging revealed grade 1 muscle strains in nine of the 180 investigated muscles. The three eigenvalues, mean diffusivity, and FA were significantly increased (P < .05) in the biceps femoris muscle 2 days after running. Mean diffusivity and eigenvalues λ1 and λ2 were significantly (P < .05) increased in the semitendinosus and gracilis muscles 2 days after the marathon. A feasible method for DTI measurements of the upper legs was developed that fully included frequently injured muscles, such as hamstrings, in one single imaging session. This study also revealed changes in DTI parameters that over time were not revealed by qualitative T2-weighted MR imaging with fat suppression. © RSNA, 2014.

  12. Machine Learning Interface for Medical Image Analysis.

    PubMed

    Zhang, Yi C; Kagen, Alexander C

    2017-10-01

    TensorFlow is a second-generation open-source machine learning software library with a built-in framework for implementing neural networks in wide variety of perceptual tasks. Although TensorFlow usage is well established with computer vision datasets, the TensorFlow interface with DICOM formats for medical imaging remains to be established. Our goal is to extend the TensorFlow API to accept raw DICOM images as input; 1513 DaTscan DICOM images were obtained from the Parkinson's Progression Markers Initiative (PPMI) database. DICOM pixel intensities were extracted and shaped into tensors, or n-dimensional arrays, to populate the training, validation, and test input datasets for machine learning. A simple neural network was constructed in TensorFlow to classify images into normal or Parkinson's disease groups. Training was executed over 1000 iterations for each cross-validation set. The gradient descent optimization and Adagrad optimization algorithms were used to minimize cross-entropy between the predicted and ground-truth labels. Cross-validation was performed ten times to produce a mean accuracy of 0.938 ± 0.047 (95 % CI 0.908-0.967). The mean sensitivity was 0.974 ± 0.043 (95 % CI 0.947-1.00) and mean specificity was 0.822 ± 0.207 (95 % CI 0.694-0.950). We extended the TensorFlow API to enable DICOM compatibility in the context of DaTscan image analysis. We implemented a neural network classifier that produces diagnostic accuracies on par with excellent results from previous machine learning models. These results indicate the potential role of TensorFlow as a useful adjunct diagnostic tool in the clinical setting.

  13. Quantitative analysis of hypertrophic myocardium using diffusion tensor magnetic resonance imaging

    PubMed Central

    Tran, Nicholas; Giannakidis, Archontis; Gullberg, Grant T.; Seo, Youngho

    2016-01-01

    Abstract. Systemic hypertension is a causative factor in left ventricular hypertrophy (LVH). This study is motivated by the potential to reverse or manage the dysfunction associated with structural remodeling of the myocardium in this pathology. Using diffusion tensor magnetic resonance imaging, we present an analysis of myocardial fiber and laminar sheet orientation in ex vivo hypertrophic (6 SHR) and normal (5 WKY) rat hearts using the covariance of the diffusion tensor. First, an atlas of normal cardiac microstructure was formed using the WKY b0 images. Then, the SHR and WKY b0 hearts were registered to the atlas. The acquired deformation fields were applied to the SHR and WKY heart tensor fields followed by the preservation of principal direction (PPD) reorientation strategy. A mean tensor field was then formed from the registered WKY tensor images. Calculating the covariance of the registered tensor images about this mean for each heart, the hypertrophic myocardium exhibited significantly increased myocardial fiber derangement (p=0.017) with a mean dispersion of 38.7 deg, and an increased dispersion of the laminar sheet normal (p=0.030) of 54.8 deg compared with 34.8 deg and 51.8 deg, respectively, in the normal hearts. Results demonstrate significantly altered myocardial fiber and laminar sheet structure in rats with hypertensive LVH. PMID:27872872

  14. Whole brain fiber-based comparison (FBC)-A tool for diffusion tensor imaging-based cohort studies.

    PubMed

    Zimmerman-Moreno, Gali; Ben Bashat, Dafna; Artzi, Moran; Nefussy, Beatrice; Drory, Vivian; Aizenstein, Orna; Greenspan, Hayit

    2016-02-01

    We present a novel method for fiber-based comparison of diffusion tensor imaging (DTI) scans of groups of subjects. The method entails initial preprocessing and fiber reconstruction by tractography of each brain in its native coordinate system. Several diffusion parameters are sampled along each fiber and used in subsequent comparisons. A spatial correspondence between subjects is established based on geometric similarity between fibers in a template set (several choices for template are explored), and fibers in all other subjects. Diffusion parameters between groups are compared statistically for each template fiber. Results are presented at single fiber resolution. As an initial exploratory step in neurological population studies this method points to the locations affected by the pathology of interest, without requiring a hypothesis. It does not make any grouping assumptions on the fibers and no manual intervention is needed. The framework was applied here to 18 healthy subjects and 23 amyotrophic lateral sclerosis (ALS) patients. The results are compatible with previous findings and with the tract based spatial statistics (TBSS) method. Hum Brain Mapp 37:477-490, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  15. Parameter comparison of white matter diffusion tensor imaging (DTI) in rhesus macaques (Macaca mulatta)

    PubMed Central

    MO, Yin; CHAO, Fang; SONG, Ming; LIU, Ci-Rong; LIU, Hui-Lang; QIAN, Xi-Ying; ZHAO, Xu-Dong

    2014-01-01

    In this study, we analyzed diffusion tensor imaging (DTI) results of brain white matter in rhesus macaques (Macaca mulatta) with four different parameter settings and found that the sequence A (b=1 000 s/mm2, spatial resolution=1.25 mm×1.25 mm× 1.25 mm, numbers of direction=33, NSA=3) and B (b=800 s/mm2, spatial resolution=1.25 mm×1.25 mm×1.25 mm, numbers of direction=33, NSA=3) could accurately track coarse fibers. The fractional anisotropy (FA) derived from sequence C (b=1 000s/mm2, spatial resolution=0.55 mm×0.55 mm×2.5 mm, direction number=33, NSA=3) was too fuzzy to be used in tracking white matter fibers. By comparison, the high resolution and the FA with high contrast of gray matter and white matter derived from sequence D (b=800 s/mm2, spatial resolution=1.0 mm×1.0 mm ×1.0 mm, numbers of direction=33, NSA=3) qualified in its application in tracking both thick and thin fibers, making it an optimal DTI setting for rhesus macaques. PMID:24866488

  16. Improved object optimal synthetic description, modeling, learning, and discrimination by GEOGINE computational kernel

    NASA Astrophysics Data System (ADS)

    Fiorini, Rodolfo A.; Dacquino, Gianfranco

    2005-03-01

    GEOGINE (GEOmetrical enGINE), a state-of-the-art OMG (Ontological Model Generator) based on n-D Tensor Invariants for n-Dimensional shape/texture optimal synthetic representation, description and learning, was presented in previous conferences elsewhere recently. Improved computational algorithms based on the computational invariant theory of finite groups in Euclidean space and a demo application is presented. Progressive model automatic generation is discussed. GEOGINE can be used as an efficient computational kernel for fast reliable application development and delivery in advanced biomedical engineering, biometric, intelligent computing, target recognition, content image retrieval, data mining technological areas mainly. Ontology can be regarded as a logical theory accounting for the intended meaning of a formal dictionary, i.e., its ontological commitment to a particular conceptualization of the world object. According to this approach, "n-D Tensor Calculus" can be considered a "Formal Language" to reliably compute optimized "n-Dimensional Tensor Invariants" as specific object "invariant parameter and attribute words" for automated n-Dimensional shape/texture optimal synthetic object description by incremental model generation. The class of those "invariant parameter and attribute words" can be thought as a specific "Formal Vocabulary" learned from a "Generalized Formal Dictionary" of the "Computational Tensor Invariants" language. Even object chromatic attributes can be effectively and reliably computed from object geometric parameters into robust colour shape invariant characteristics. As a matter of fact, any highly sophisticated application needing effective, robust object geometric/colour invariant attribute capture and parameterization features, for reliable automated object learning and discrimination can deeply benefit from GEOGINE progressive automated model generation computational kernel performance. Main operational advantages over previous, similar approaches are: 1) Progressive Automated Invariant Model Generation, 2) Invariant Minimal Complete Description Set for computational efficiency, 3) Arbitrary Model Precision for robust object description and identification.

  17. Application of Diffusion Tensor Imaging Parameters to Detect Change in Longitudinal Studies in Cerebral Small Vessel Disease

    PubMed Central

    Zeestraten, Eva Anna; Benjamin, Philip; Lambert, Christian; Lawrence, Andrew John; Williams, Owen Alan; Morris, Robin Guy; Barrick, Thomas Richard; Markus, Hugh Stephen

    2016-01-01

    Cerebral small vessel disease (SVD) is the major cause of vascular cognitive impairment, resulting in significant disability and reduced quality of life. Cognitive tests have been shown to be insensitive to change in longitudinal studies and, therefore, sensitive surrogate markers are needed to monitor disease progression and assess treatment effects in clinical trials. Diffusion tensor imaging (DTI) is thought to offer great potential in this regard. Sensitivity of the various parameters that can be derived from DTI is however unknown. We aimed to evaluate the differential sensitivity of DTI markers to detect SVD progression, and to estimate sample sizes required to assess therapeutic interventions aimed at halting decline based on DTI data. We investigated 99 patients with symptomatic SVD, defined as clinical lacunar syndrome with MRI confirmation of a corresponding infarct as well as confluent white matter hyperintensities over a 3 year follow-up period. We evaluated change in DTI histogram parameters using linear mixed effect models and calculated sample size estimates. Over a three-year follow-up period we observed a decline in fractional anisotropy and increase in diffusivity in white matter tissue and most parameters changed significantly. Mean diffusivity peak height was the most sensitive marker for SVD progression as it had the smallest sample size estimate. This suggests disease progression can be monitored sensitively using DTI histogram analysis and confirms DTI’s potential as surrogate marker for SVD. PMID:26808982

  18. Diffusion Tensor Imaging Parameters in Mild Traumatic Brain Injury and Its Correlation with Early Neuropsychological Impairment: A Longitudinal Study.

    PubMed

    Veeramuthu, Vigneswaran; Narayanan, Vairavan; Kuo, Tan Li; Delano-Wood, Lisa; Chinna, Karuthan; Bondi, Mark William; Waran, Vicknes; Ganesan, Dharmendra; Ramli, Norlisah

    2015-10-01

    We explored the prognostic value of diffusion tensor imaging (DTI) parameters of selected white matter (WM) tracts in predicting neuropsychological outcome, both at baseline and 6 months later, among well-characterized patients diagnosed with mild traumatic brain injury (mTBI). Sixty-one patients with mTBI (mean age=27.08; standard deviation [SD], 8.55) underwent scanning at an average of 10 h (SD, 4.26) post-trauma along with assessment of their neuropsychological performance at an average of 4.35 h (SD, 7.08) upon full Glasgow Coma Scale recovery. Results were then compared to 19 healthy control participants (mean age=29.05; SD, 5.84), both in the acute stage and 6 months post-trauma. DTI and neuropsychological measures between acute and chronic phases were compared, and significant differences emerged. Specifically, chronic-phase fractional anisotropy and radial diffusivity values showed significant group differences in the corona radiata, anterior limb of internal capsule, cingulum, superior longitudinal fasciculus, optic radiation, and genu of corpus callosum. Findings also demonstrated associations between DTI indices and neuropsychological outcome across two time points. Our results provide new evidence for the use of DTI as an imaging biomarker and indicator of WM damage occurring in the context of mTBI, and they underscore the dynamic nature of brain injury and possible biological basis of chronic neurocognitive alterations.

  19. [Application of diffusion tensor imaging in judging infarction time of acute ischemic cerebral infarction].

    PubMed

    Dai, Zhenyu; Chen, Fei; Yao, Lizheng; Dong, Congsong; Liu, Yang; Shi, Haicun; Zhang, Zhiping; Yang, Naizhong; Zhang, Mingsheng; Dai, Yinggui

    2015-08-18

    To evaluate the clinical application value of diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) in judging infarction time phase of acute ischemic cerebral infarction. To retrospective analysis DTI images of 52 patients with unilateral acute ischemic cerebral infarction (hyper-acute, acute and sub-acute) from the Affiliated Yancheng Hospital of Southeast University Medical College, which diagnosed by clinic and magnetic resonance imaging. Set the regions of interest (ROIs) of infarction lesions, brain tissue close to infarction lesions and corresponding contra (contralateral normal brain tissue) on DTI parameters mapping of fractional anisotropy (FA), volume ratio anisotropy (VRA), average diffusion coefficient (DCavg) and exponential attenuation (Exat), record the parameters values of ROIs and calculate the relative parameters value of infarction lesion to contra. Meanwhile, reconstruct the DTT images based on the seed points (infarction lesion and contra). The study compared each parameter value of infarction lesions, brain tissue close to infarction lesions and corresponding contra, also analysed the differences of relative parameters values in different infarction time phases. The DTT images of acute ischemic cerebral infarction in each time phase could show the manifestation of fasciculi damaged. The DCavg value of cerebral infarction lesions was lower and the Exat value was higher than contra in each infarction time phase (P<0.05). The FA and VRA value of cerebral infarction lesions were reduced than contra only in acute and sub-acute infarction (P<0.05). The FA, VRA and Exat value of brain tissue close to infarction lesions were increased and DCavg value was decreased than contra in hyper-acute infarction (P<0.05). There were no statistic differences of FA, VRA, DCavg and Exat value of brain tissue close to infarction lesions in acute and sub-acute infarction. The relative FA and VRA value of infarction lesion to contra gradually decreased from hyper-acute to sub-acute cerebral infarction (P<0.05), but there were no difference of the relative VRA value between acute and sub-acute cerebral infarction. The relative DCavg value of infarction lesion to contra in hyper-acute infarction than that in acute and sub-acute infarction (P<0.05), however there was also no difference between acute and sub-acute infarction. ROC curve showed the best diagnosis cut off value of relative FA, VRA and DCavg of infarction lesions to contra were 0.852, 0.886 and 0.541 between hyper-acute and acute cerebral infarction, the best diagnosis cut off value of relative FA was 0.595 between acute and sub-acute cerebral infarction, respectively. The FA, VRA, DCavg and Exat value have specific change mode in acute ischemic cerebral infarction of different infarction time phases, which can be combine used in judging infarction time phase of acute ischemic cerebral infarction without clear onset time, thus to help selecting the reasonable treatment protocols.

  20. Diffusion tensor imaging and myelin composition analysis reveal abnormal myelination in corpus callosum of canine mucopolysaccharidosis I

    PubMed Central

    Provenzale, James M.; Nestrasil, Igor; Chen, Steven; Kan, Shih-hsin; Le, Steven Q.; Jens, Jacqueline K.; Snella, Elizabeth M.; Vondrak, Kristen N.; Yee, Jennifer K.; Vite, Charles H.; Elashoff, David; Duan, Lewei; Wang, Raymond Y.; Ellinwood, N. Matthew; Guzman, Miguel A.; Shapiro, Elsa G.; Dickson, Patricia I.

    2015-01-01

    Children with mucopolysaccharidosis I (MPS I) develop hyperintense white matter foci on T2-weighted brain magnetic resonance (MR) imaging that are associated clinically with cognitive impairment. We report here a diffusion tensor imaging (DTI) and tissue evaluation of white matter in a canine model of MPS I. We found that two DTI parameters, fractional anisotropy (a measure of white matter integrity) and radial diffusivity (which reflects degree of myelination) were abnormal in the corpus callosum of MPS I dogs compared to carrier controls. Tissue studies of the corpus callosum showed reduced expression of myelin-related genes and an abnormal composition of myelin in MPS I dogs. We treated MPS I dogs with recombinant alpha-l-iduronidase, which is the enzyme that is deficient in MPS I disease. The recombinant alpha-l-iduronidase was administered by intrathecal injection into the cisterna magna. Treated dogs showed partial correction of corpus callosum myelination. Our findings suggest that abnormal myelination occurs in the canine MPS I brain, that it may underlie clinically-relevant brain imaging findings in human MPS I patients, and that it may respond to treatment. PMID:26222335

  1. Low-dose dynamic myocardial perfusion CT image reconstruction using pre-contrast normal-dose CT scan induced structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Gong, Changfei; Han, Ce; Gan, Guanghui; Deng, Zhenxiang; Zhou, Yongqiang; Yi, Jinling; Zheng, Xiaomin; Xie, Congying; Jin, Xiance

    2017-04-01

    Dynamic myocardial perfusion CT (DMP-CT) imaging provides quantitative functional information for diagnosis and risk stratification of coronary artery disease by calculating myocardial perfusion hemodynamic parameter (MPHP) maps. However, the level of radiation delivered by dynamic sequential scan protocol can be potentially high. The purpose of this work is to develop a pre-contrast normal-dose scan induced structure tensor total variation regularization based on the penalized weighted least-squares (PWLS) criteria to improve the image quality of DMP-CT with a low-mAs CT acquisition. For simplicity, the present approach was termed as ‘PWLS-ndiSTV’. Specifically, the ndiSTV regularization takes into account the spatial-temporal structure information of DMP-CT data and further exploits the higher order derivatives of the objective images to enhance denoising performance. Subsequently, an effective optimization algorithm based on the split-Bregman approach was adopted to minimize the associative objective function. Evaluations with modified dynamic XCAT phantom and preclinical porcine datasets have demonstrated that the proposed PWLS-ndiSTV approach can achieve promising gains over other existing approaches in terms of noise-induced artifacts mitigation, edge details preservation, and accurate MPHP maps calculation.

  2. Estimation of Dynamical Parameters in Atmospheric Data Sets

    NASA Technical Reports Server (NTRS)

    Wenig, Mark O.

    2004-01-01

    In this study a new technique is used to derive dynamical parameters out of atmospheric data sets. This technique, called the structure tensor technique, can be used to estimate dynamical parameters such as motion, source strengths, diffusion constants or exponential decay rates. A general mathematical framework was developed for the direct estimation of the physical parameters that govern the underlying processes from image sequences. This estimation technique can be adapted to the specific physical problem under investigation, so it can be used in a variety of applications in trace gas, aerosol, and cloud remote sensing. The fundamental algorithm will be extended to the analysis of multi- channel (e.g. multi trace gas) image sequences and to provide solutions to the extended aperture problem. In this study sensitivity studies have been performed to determine the usability of this technique for data sets with different resolution in time and space and different dimensions.

  3. Characterizing heterogeneous properties of cerebral aneurysms with unknown stress-free geometry: a precursor to in vivo identification.

    PubMed

    Zhao, Xuefeng; Raghavan, Madhavan L; Lu, Jia

    2011-05-01

    Knowledge of elastic properties of cerebral aneurysms is crucial for understanding the biomechanical behavior of the lesion. However, characterizing tissue properties using in vivo motion data presents a tremendous challenge. Aside from the limitation of data accuracy, a pressing issue is that the in vivo motion does not expose the stress-free geometry. This is compounded by the nonlinearity, anisotropy, and heterogeneity of the tissue behavior. This article introduces a method for identifying the heterogeneous properties of aneurysm wall tissue under unknown stress-free configuration. In the proposed approach, an accessible configuration is taken as the reference; the unknown stress-free configuration is represented locally by a metric tensor describing the prestrain from the stress-free configuration to the reference configuration. Material parameters are identified together with the metric tensor pointwisely. The paradigm is tested numerically using a forward-inverse analysis loop. An image-derived sac is considered. The aneurysm tissue is modeled as an eightply laminate whose constitutive behavior is described by an anisotropic hyperelastic strain-energy function containing four material parameters. The parameters are assumed to vary continuously in two assigned patterns to represent two types of material heterogeneity. Nine configurations between the diastolic and systolic pressures are generated by forward quasi-static finite element analyses. These configurations are fed to the inverse analysis to delineate the material parameters and the metric tensor. The recovered and the assigned distributions are in good agreement. A forward verification is conducted by comparing the displacement solutions obtained from the recovered and the assigned material parameters at a different pressure. The nodal displacements are found in excellent agreement.

  4. Real-time object recognition in multidimensional images based on joined extended structural tensor and higher-order tensor decomposition methods

    NASA Astrophysics Data System (ADS)

    Cyganek, Boguslaw; Smolka, Bogdan

    2015-02-01

    In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.

  5. A unified tensor level set for image segmentation.

    PubMed

    Wang, Bin; Gao, Xinbo; Tao, Dacheng; Li, Xuelong

    2010-06-01

    This paper presents a new region-based unified tensor level set model for image segmentation. This model introduces a three-order tensor to comprehensively depict features of pixels, e.g., gray value and the local geometrical features, such as orientation and gradient, and then, by defining a weighted distance, we generalized the representative region-based level set method from scalar to tensor. The proposed model has four main advantages compared with the traditional representative method as follows. First, involving the Gaussian filter bank, the model is robust against noise, particularly the salt- and pepper-type noise. Second, considering the local geometrical features, e.g., orientation and gradient, the model pays more attention to boundaries and makes the evolving curve stop more easily at the boundary location. Third, due to the unified tensor pixel representation representing the pixels, the model segments images more accurately and naturally. Fourth, based on a weighted distance definition, the model possesses the capacity to cope with data varying from scalar to vector, then to high-order tensor. We apply the proposed method to synthetic, medical, and natural images, and the result suggests that the proposed method is superior to the available representative region-based level set method.

  6. A review of anisotropic conductivity models of brain white matter based on diffusion tensor imaging.

    PubMed

    Wu, Zhanxiong; Liu, Yang; Hong, Ming; Yu, Xiaohui

    2018-06-01

    The conductivity of brain tissues is not only essential for electromagnetic source estimation (ESI), but also a key reflector of the brain functional changes. Different from the other brain tissues, the conductivity of whiter matter (WM) is highly anisotropic and a tensor is needed to describe it. The traditional electrical property imaging methods, such as electrical impedance tomography (EIT) and magnetic resonance electrical impedance tomography (MREIT), usually fail to image the anisotropic conductivity tensor of WM with high spatial resolution. The diffusion tensor imaging (DTI) is a newly developed technique that can fulfill this purpose. This paper reviews the existing anisotropic conductivity models of WM based on the DTI and discusses their advantages and disadvantages, as well as identifies opportunities for future research on this subject. It is crucial to obtain the linear conversion coefficient between the eigenvalues of anisotropic conductivity tensor and diffusion tensor, since they share the same eigenvectors. We conclude that the electrochemical model is suitable for ESI analysis because the conversion coefficient can be directly obtained from the concentration of ions in extracellular liquid and that the volume fraction model is appropriate to study the influence of WM structural changes on electrical conductivity. Graphical abstract ᅟ.

  7. White matter structure in loneliness: preliminary findings from diffusion tensor imaging.

    PubMed

    Tian, Yin; Liang, Shanshan; Yuan, Zhen; Chen, Sifan; Xu, Peng; Yao, Dezhong

    2014-08-06

    A pilot study was carried out to determine individual differences in perceived loneliness using diffusion tensor imaging. To the best of our knowledge, this is the first preliminary diffusion tensor imaging evidence that the ventral attention network, generally activated by attentional reorienting, was also related to loneliness. Image reconstruction results indicated significantly decreased fractional anisotropy of white matter fibers and that associated nodes of the ventral attention network are highly correlated with increased loneliness ratings. By providing evidence on the structural level, our findings suggested that attention-reorienting capabilities play an important role in shaping an individual's loneliness.

  8. Fluid Registration of Diffusion Tensor Images Using Information Theory

    PubMed Central

    Chiang, Ming-Chang; Leow, Alex D.; Klunder, Andrea D.; Dutton, Rebecca A.; Barysheva, Marina; Rose, Stephen E.; McMahon, Katie L.; de Zubicaray, Greig I.; Toga, Arthur W.; Thompson, Paul M.

    2008-01-01

    We apply an information-theoretic cost metric, the symmetrized Kullback-Leibler (sKL) divergence, or J-divergence, to fluid registration of diffusion tensor images. The difference between diffusion tensors is quantified based on the sKL-divergence of their associated probability density functions (PDFs). Three-dimensional DTI data from 34 subjects were fluidly registered to an optimized target image. To allow large image deformations but preserve image topology, we regularized the flow with a large-deformation diffeomorphic mapping based on the kinematics of a Navier-Stokes fluid. A driving force was developed to minimize the J-divergence between the deforming source and target diffusion functions, while reorienting the flowing tensors to preserve fiber topography. In initial experiments, we showed that the sKL-divergence based on full diffusion PDFs is adaptable to higher-order diffusion models, such as high angular resolution diffusion imaging (HARDI). The sKL-divergence was sensitive to subtle differences between two diffusivity profiles, showing promise for nonlinear registration applications and multisubject statistical analysis of HARDI data. PMID:18390342

  9. FADTTSter: accelerating hypothesis testing with functional analysis of diffusion tensor tract statistics

    NASA Astrophysics Data System (ADS)

    Noel, Jean; Prieto, Juan C.; Styner, Martin

    2017-03-01

    Functional Analysis of Diffusion Tensor Tract Statistics (FADTTS) is a toolbox for analysis of white matter (WM) fiber tracts. It allows associating diffusion properties along major WM bundles with a set of covariates of interest, such as age, diagnostic status and gender, and the structure of the variability of these WM tract properties. However, to use this toolbox, a user must have an intermediate knowledge in scripting languages (MATLAB). FADTTSter was created to overcome this issue and make the statistical analysis accessible to any non-technical researcher. FADTTSter is actively being used by researchers at the University of North Carolina. FADTTSter guides non-technical users through a series of steps including quality control of subjects and fibers in order to setup the necessary parameters to run FADTTS. Additionally, FADTTSter implements interactive charts for FADTTS' outputs. This interactive chart enhances the researcher experience and facilitates the analysis of the results. FADTTSter's motivation is to improve usability and provide a new analysis tool to the community that complements FADTTS. Ultimately, by enabling FADTTS to a broader audience, FADTTSter seeks to accelerate hypothesis testing in neuroimaging studies involving heterogeneous clinical data and diffusion tensor imaging. This work is submitted to the Biomedical Applications in Molecular, Structural, and Functional Imaging conference. The source code of this application is available in NITRC.

  10. Uncertainties for seismic moment tensors and applications to nuclear explosions, volcanic events, and earthquakes

    NASA Astrophysics Data System (ADS)

    Tape, C.; Alvizuri, C. R.; Silwal, V.; Tape, W.

    2017-12-01

    When considered as a point source, a seismic source can be characterized in terms of its origin time, hypocenter, moment tensor, and source time function. The seismologist's task is to estimate these parameters--and their uncertainties--from three-component ground motion recorded at irregularly spaced stations. We will focus on one portion of this problem: the estimation of the moment tensor and its uncertainties. With magnitude estimated separately, we are left with five parameters describing the normalized moment tensor. A lune of normalized eigenvalue triples can be used to visualize the two parameters (lune longitude and lune latitude) describing the source type, while the conventional strike, dip, and rake angles can be used to characterize the orientation. Slight modifications of these five parameters lead to a uniform parameterization of moment tensors--uniform in the sense that equal volumes in the coordinate domain of the parameterization correspond to equal volumes of moment tensors. For a moment tensor m that we have inferred from seismic data for an earthquake, we define P(V) to be the probability that the true moment tensor for the earthquake lies in the neighborhood of m that has fractional volume V. The average value of P(V) is then a measure of our confidence in our inference of m. The calculation of P(V) requires knowing both the probability P(w) and the fractional volume V(w) of the set of moment tensors within a given angular radius w of m. We apply this approach to several different data sets, including nuclear explosions from the Nevada Test Site, volcanic events from Uturuncu (Bolivia), and earthquakes. Several challenges remain: choosing an appropriate misfit function, handling time shifts between data and synthetic waveforms, and extending the uncertainty estimation to include more source parameters (e.g., hypocenter and source time function).

  11. The Value of Neurosurgical and Intraoperative Magnetic Resonance Imaging and Diffusion Tensor Imaging Tractography in Clinically Integrated Neuroanatomy Modules: A Cross-Sectional Study

    ERIC Educational Resources Information Center

    Familiari, Giuseppe; Relucenti, Michela; Heyn, Rosemarie; Baldini, Rossella; D'Andrea, Giancarlo; Familiari, Pietro; Bozzao, Alessandro; Raco, Antonino

    2013-01-01

    Neuroanatomy is considered to be one of the most difficult anatomical subjects for students. To provide motivation and improve learning outcomes in this area, clinical cases and neurosurgical images from diffusion tensor imaging (DTI) tractographies produced using an intraoperative magnetic resonance imaging apparatus (MRI/DTI) were presented and…

  12. Experimental evaluation of electrical conductivity imaging of anisotropic brain tissues using a combination of diffusion tensor imaging and magnetic resonance electrical impedance tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In

    Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At lowmore » frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.« less

  13. Tracking the mammary architectural features and detecting breast cancer with magnetic resonance diffusion tensor imaging.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Feinberg-Shapiro, Myra; Grobgeld, Dov; Eyal, Erez; Zehavi, Tania; Degani, Hadassa

    2014-12-15

    Breast cancer is the most common cause of cancer among women worldwide. Early detection of breast cancer has a critical role in improving the quality of life and survival of breast cancer patients. In this paper a new approach for the detection of breast cancer is described, based on tracking the mammary architectural elements using diffusion tensor imaging (DTI). The paper focuses on the scanning protocols and image processing algorithms and software that were designed to fit the diffusion properties of the mammary fibroglandular tissue and its changes during malignant transformation. The final output yields pixel by pixel vector maps that track the architecture of the entire mammary ductal glandular trees and parametric maps of the diffusion tensor coefficients and anisotropy indices. The efficiency of the method to detect breast cancer was tested by scanning women volunteers including 68 patients with breast cancer confirmed by histopathology findings. Regions with cancer cells exhibited a marked reduction in the diffusion coefficients and in the maximal anisotropy index as compared to the normal breast tissue, providing an intrinsic contrast for delineating the boundaries of malignant growth. Overall, the sensitivity of the DTI parameters to detect breast cancer was found to be high, particularly in dense breasts, and comparable to the current standard breast MRI method that requires injection of a contrast agent. Thus, this method offers a completely non-invasive, safe and sensitive tool for breast cancer detection.

  14. The ionic DTI model (iDTI) of dynamic diffusion tensor imaging (dDTI)

    PubMed Central

    Makris, Nikos; Gasic, Gregory P.; Garrido, Leoncio

    2014-01-01

    Measurements of water molecule diffusion along fiber tracts in CNS by diffusion tensor imaging (DTI) provides a static map of neural connections between brain centers, but does not capture the electrical activity along axons for these fiber tracts. Here, a modification of the DTI method is presented to enable the mapping of active fibers. It is termed dynamic diffusion tensor imaging (dDTI) and is based on a hypothesized “anisotropy reduction due to axonal excitation” (“AREX”). The potential changes in water mobility accompanying the movement of ions during the propagation of action potentials along axonal tracts are taken into account. Specifically, the proposed model, termed “ionic DTI model”, was formulated as follows.•First, based on theoretical calculations, we calculated the molecular water flow accompanying the ionic flow perpendicular to the principal axis of fiber tracts produced by electrical conduction along excited myelinated and non-myelinated axons.•Based on the changes in molecular water flow we estimated the signal changes as well as the changes in fractional anisotropy of axonal tracts while performing a functional task.•The variation of fractional anisotropy in axonal tracts could allow mapping the active fiber tracts during a functional task. Although technological advances are necessary to enable the robust and routine measurement of this electrical activity-dependent movement of water molecules perpendicular to axons, the proposed model of dDTI defines the vectorial parameters that will need to be measured to bring this much needed technique to fruition. PMID:25431757

  15. Contribution of cardiac-induced brain pulsation to the noise of the diffusion tensor in Turboprop diffusion tensor imaging (DTI).

    PubMed

    Gui, Minzhi; Tamhane, Ashish A; Arfanakis, Konstantinos

    2008-05-01

    To assess the effects of cardiac-induced brain pulsation on the noise of the diffusion tensor in Turboprop (a form of periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER] imaging) diffusion tensor imaging (DTI). A total of six healthy human subjects were imaged with cardiac-gated as well as nongated Turboprop DTI. Gated and nongated Turboprop DTI datasets were also simulated using actual data acquired exclusively during the diastolic or systolic period of the cardiac cycle. The total variance of the diffusion tensor (TVDT) was measured and compared between acquisitions. The TVDT near the ventricles was significantly reduced in cardiac-gated compared to nongated Turboprop DTI acquisitions. Furthermore, the effects of brain pulsation were reduced, but not eliminated, when increasing the amount of data collected. Finally, data corrupted by cardiac-induced pulsation were not consistently detected by the step of the conventional Turboprop reconstruction algorithm that evaluates the quality of data in different blades. Thus, the inherent quality weighting of the conventional Turboprop reconstruction algorithm was unable to compensate for the increased noise in the diffusion tensor due to brain pulsation. Cardiac-induced brain pulsation increases the TVDT in Turboprop DTI. Use of cardiac gating to limit data acquisition to the diastolic period of the cardiac cycle reduces the TVDT at the expense of imaging time. (c) 2008 Wiley-Liss, Inc.

  16. Diffusion Tensor Magnetic Resonance Imaging Strategies for Color Mapping of Human Brain Anatomy

    PubMed Central

    Boujraf, Saïd

    2018-01-01

    Background: A color mapping of fiber tract orientation using diffusion tensor imaging (DTI) can be prominent in clinical practice. The goal of this paper is to perform a comparative study of visualized diffusion anisotropy in the human brain anatomical entities using three different color-mapping techniques based on diffusion-weighted imaging (DWI) and DTI. Methods: The first technique is based on calculating a color map from DWIs measured in three perpendicular directions. The second technique is based on eigenvalues derived from the diffusion tensor. The last technique is based on three eigenvectors corresponding to sorted eigenvalues derived from the diffusion tensor. All magnetic resonance imaging measurements were achieved using a 1.5 Tesla Siemens Vision whole body imaging system. A single-shot DW echoplanar imaging sequence used a Stejskal–Tanner approach. Trapezoidal diffusion gradients are used. The slice orientation was transverse. The basic measurement yielded a set of 13 images. Each series consists of a single image without diffusion weighting, besides two DWIs for each of the next six noncollinear magnetic field gradient directions. Results: The three types of color maps were calculated consequently using the DWI obtained and the DTI. Indeed, we established an excellent similarity between the image data in the color maps and the fiber directions of known anatomical structures (e.g., corpus callosum and gray matter). Conclusions: In the meantime, rotationally invariant quantities such as the eigenvectors of the diffusion tensor reflected better, the real orientation found in the studied tissue. PMID:29928631

  17. Weighted Mean of Signal Intensity for Unbiased Fiber Tracking of Skeletal Muscles: Development of a New Method and Comparison With Other Correction Techniques.

    PubMed

    Giraudo, Chiara; Motyka, Stanislav; Weber, Michael; Resinger, Christoph; Thorsten, Feiweier; Traxler, Hannes; Trattnig, Siegfried; Bogner, Wolfgang

    2017-08-01

    The aim of this study was to investigate the origin of random image artifacts in stimulated echo acquisition mode diffusion tensor imaging (STEAM-DTI), assess the role of averaging, develop an automated artifact postprocessing correction method using weighted mean of signal intensities (WMSIs), and compare it with other correction techniques. Institutional review board approval and written informed consent were obtained. The right calf and thigh of 10 volunteers were scanned on a 3 T magnetic resonance imaging scanner using a STEAM-DTI sequence.Artifacts (ie, signal loss) in STEAM-based DTI, presumably caused by involuntary muscle contractions, were investigated in volunteers and ex vivo (ie, human cadaver calf and turkey leg using the same DTI parameters as for the volunteers). An automated postprocessing artifact correction method based on the WMSI was developed and compared with previous approaches (ie, iteratively reweighted linear least squares and informed robust estimation of tensors by outlier rejection [iRESTORE]). Diffusion tensor imaging and fiber tracking metrics, using different averages and artifact corrections, were compared for region of interest- and mask-based analyses. One-way repeated measures analysis of variance with Greenhouse-Geisser correction and Bonferroni post hoc tests were used to evaluate differences among all tested conditions. Qualitative assessment (ie, images quality) for native and corrected images was performed using the paired t test. Randomly localized and shaped artifacts affected all volunteer data sets. Artifact burden during voluntary muscle contractions increased on average from 23.1% to 77.5% but were absent ex vivo. Diffusion tensor imaging metrics (mean diffusivity, fractional anisotropy, radial diffusivity, and axial diffusivity) had a heterogeneous behavior, but in the range reported by literature. Fiber track metrics (number, length, and volume) significantly improved in both calves and thighs after artifact correction in region of interest- and mask-based analyses (P < 0.05 each). Iteratively reweighted linear least squares and iRESTORE showed equivalent results, but WMSI was faster than iRESTORE. Muscle delineation and artifact load significantly improved after correction (P < 0.05 each). Weighted mean of signal intensity correction significantly improved STEAM-based quantitative DTI analyses and fiber tracking of lower-limb muscles, providing a robust tool for musculoskeletal applications.

  18. On Adapting the Tensor Voting Framework to Robust Color Image Denoising

    NASA Astrophysics Data System (ADS)

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Julià, Carme

    This paper presents an adaptation of the tensor voting framework for color image denoising, while preserving edges. Tensors are used in order to encode the CIELAB color channels, the uniformity and the edginess of image pixels. A specific voting process is proposed in order to propagate color from a pixel to its neighbors by considering the distance between pixels, the perceptual color difference (by using an optimized version of CIEDE2000), a uniformity measurement and the likelihood of the pixels being impulse noise. The original colors are corrected with those encoded by the tensors obtained after the voting process. Peak to noise ratios and visual inspection show that the proposed methodology has a better performance than state-of-the-art techniques.

  19. Comparison of scalar measures used in magnetic resonance diffusion tensor imaging.

    PubMed

    Bahn, M M

    1999-07-01

    The tensors derived from diffusion tensor imaging describe complex diffusion in tissues. However, it is difficult to compare tensors directly or to produce images that contain all of the information of the tensor. Therefore, it is convenient to produce scalar measures that extract desired aspects of the tensor. These measures map the three-dimensional eigenvalues of the diffusion tensor into scalar values. The measures impose an order on eigenvalue space. Many invariant scalar measures have been introduced in the literature. In the present manuscript, a general approach for producing invariant scalar measures is introduced. Because it is often difficult to determine in clinical practice which of the many measures is best to apply to a given situation, two formalisms are introduced for the presentation, definition, and comparison of measures applied to eigenvalues: (1) normalized eigenvalue space, and (2) parametric eigenvalue transformation plots. All of the anisotropy information contained in the three eigenvalues can be retained and displayed in a two-dimensional plot, the normalized eigenvalue plot. An example is given of how to determine the best measure to use for a given situation by superimposing isometric contour lines from various anisotropy measures on plots of actual measured eigenvalue data points. Parametric eigenvalue transformation plots allow comparison of how different measures impose order on normalized eigenvalue space to determine whether the measures are equivalent and how the measures differ. These formalisms facilitate the comparison of scalar invariant measures for diffusion tensor imaging. Normalized eigenvalue space allows presentation of eigenvalue anisotropy information. Copyright 1999 Academic Press.

  20. Diffusion tensor imaging, white matter lesions, the corpus callosum, and gait in the elderly

    USDA-ARS?s Scientific Manuscript database

    Gait impairment is common in the elderly, especially affected by stroke and white matter hyper intensities found in conventional brain magnetic resonance imaging (MRI). Diffusion tensor imaging (DTI) is more sensitive to white matter damage than conventional MRI. The relationship between DTI measure...

  1. Sparse alignment for robust tensor learning.

    PubMed

    Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming

    2014-10-01

    Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.

  2. Gaussian mixtures on tensor fields for segmentation: applications to medical imaging.

    PubMed

    de Luis-García, Rodrigo; Westin, Carl-Fredrik; Alberola-López, Carlos

    2011-01-01

    In this paper, we introduce a new approach for tensor field segmentation based on the definition of mixtures of Gaussians on tensors as a statistical model. Working over the well-known Geodesic Active Regions segmentation framework, this scheme presents several interesting advantages. First, it yields a more flexible model than the use of a single Gaussian distribution, which enables the method to better adapt to the complexity of the data. Second, it can work directly on tensor-valued images or, through a parallel scheme that processes independently the intensity and the local structure tensor, on scalar textured images. Two different applications have been considered to show the suitability of the proposed method for medical imaging segmentation. First, we address DT-MRI segmentation on a dataset of 32 volumes, showing a successful segmentation of the corpus callosum and favourable comparisons with related approaches in the literature. Second, the segmentation of bones from hand radiographs is studied, and a complete automatic-semiautomatic approach has been developed that makes use of anatomical prior knowledge to produce accurate segmentation results. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data.

    PubMed

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-05-15

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way.

  4. Estimation of integral curves from high angular resolution diffusion imaging (HARDI) data

    PubMed Central

    Carmichael, Owen; Sakhanenko, Lyudmila

    2015-01-01

    We develop statistical methodology for a popular brain imaging technique HARDI based on the high order tensor model by Özarslan and Mareci [10]. We investigate how uncertainty in the imaging procedure propagates through all levels of the model: signals, tensor fields, vector fields, and fibers. We construct asymptotically normal estimators of the integral curves or fibers which allow us to trace the fibers together with confidence ellipsoids. The procedure is computationally intense as it blends linear algebra concepts from high order tensors with asymptotical statistical analysis. The theoretical results are illustrated on simulated and real datasets. This work generalizes the statistical methodology proposed for low angular resolution diffusion tensor imaging by Carmichael and Sakhanenko [3], to several fibers per voxel. It is also a pioneering statistical work on tractography from HARDI data. It avoids all the typical limitations of the deterministic tractography methods and it delivers the same information as probabilistic tractography methods. Our method is computationally cheap and it provides well-founded mathematical and statistical framework where diverse functionals on fibers, directions and tensors can be studied in a systematic and rigorous way. PMID:25937674

  5. Magnetic resonance neurography and diffusion tensor imaging: origins, history, and clinical impact of the first 50,000 cases with an assessment of efficacy and utility in a prospective 5000-patient study group.

    PubMed

    Filler, Aaron

    2009-10-01

    Methods were invented that made it possible to image peripheral nerves in the body and to image neural tracts in the brain. The history, physical basis, and dyadic tensor concept underlying the methods are reviewed. Over a 15-year period, these techniques-magnetic resonance neurography (MRN) and diffusion tensor imaging-were deployed in the clinical and research community in more than 2500 published research reports and applied to approximately 50,000 patients. Within this group, approximately 5000 patients having MRN were carefully tracked on a prospective basis. A uniform Neurography imaging methodology was applied in the study group, and all images were reviewed and registered by referral source, clinical indication, efficacy of imaging, and quality. Various classes of image findings were identified and subjected to a variety of small targeted prospective outcome studies. Those findings demonstrated to be clinically significant were then tracked in the larger clinical volume data set. MRN demonstrates mechanical distortion of nerves, hyperintensity consistent with nerve irritation, nerve swelling, discontinuity, relations of nerves to masses, and image features revealing distortion of nerves at entrapment points. These findings are often clinically relevant and warrant full consideration in the diagnostic process. They result in specific pathological diagnoses that are comparable to electrodiagnostic testing in clinical efficacy. A review of clinical outcome studies with diffusion tensor imaging also shows convincing utility. MRN and diffusion tensor imaging neural tract imaging have been validated as indispensable clinical diagnostic methods that provide reliable anatomic pathological information. There is no alternative diagnostic method in many situations. With the elapsing of 15 years, tens of thousands of imaging studies, and thousands of publications, these methods should no longer be considered experimental.

  6. Does the use of hormonal contraceptives cause microstructural changes in cerebral white matter? Preliminary results of a DTI and tractography study.

    PubMed

    De Bondt, Timo; Van Hecke, Wim; Veraart, Jelle; Leemans, Alexander; Sijbers, Jan; Sunaert, Stefan; Jacquemyn, Yves; Parizel, Paul M

    2013-01-01

    To evaluate the effect of monophasic combined oral contraceptive pill (COCP) and menstrual cycle phase in healthy young women on white matter (WM) organization using diffusion tensor imaging (DTI). Thirty young women were included in the study; 15 women used COCP and 15 women had a natural cycle. All subjects underwent DTI magnetic resonance imaging during the follicular and luteal phase of their cycle, or in different COCP cycle phases. DTI parameters were obtained in different WM structures by performing diffusion tensor fibre tractography. Fractional anisotropy and mean diffusivity were calculated for different WM structures. Hormonal plasma concentrations were measured in peripheral venous blood samples and correlated with the DTI findings. We found a significant difference in mean diffusivity in the fornix between the COCP and the natural cycle group. Mean diffusivity values in the fornix were negatively correlated with luteinizing hormone and estradiol blood concentrations. An important part in the limbic system, the fornix, regulates emotional processes. Differences in diffusion parameters in the fornix may contribute to behavioural alternations related to COCP use. This finding also suggests that the use of oral contraceptives needs to be taken into account when designing DTI group studies.

  7. Motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment: a diffusion tensor imaging study

    PubMed Central

    Kim, Jin Hyun; Kwon, Yong Min; Son, Su Min

    2015-01-01

    Previous diffusion tensor imaging (DTI) studies regarding pediatric patients with motor dysfunction have confirmed the correlation between DTI parameters of the injured corticospinal tract and the severity of motor dysfunction. There is also evidence that DTI parameters can help predict the prognosis of motor function of patients with cerebral palsy. But few studies are reported on the DTI parameters that can reflect the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment. In the present study, 36 pediatric patients with hemiplegic cerebral palsy were included. Before and after rehabilitation treatment, DTI was used to measure the fiber number (FN), fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of bilateral corticospinal tracts. Functional Level of Hemiplegia scale (FxL) was used to assess the therapeutic effect of rehabilitative therapy on clinical hemiplegia. Correlation analysis was performed to assess the statistical interrelationship between the change amount of DTI parameters and FxL. DTI findings obtained at the initial and follow-up evaluations demonstrated that more affected corticospinal tract yielded significantly decreased FN and FA values and significantly increased ADC value compared to the less affected corticospinal tract. Correlation analysis results showed that the change amount of FxL was positively correlated to FN and FA values, and the correlation to FN was stronger than the correlation to FA. The results suggest that FN and FA values can be used to evaluate the motor function outcomes of pediatric patients with hemiplegic cerebral palsy after rehabilitation treatment and FN is of more significance for evaluation. PMID:26170825

  8. Diffusion tensor imaging of articular cartilage at 3T correlates with histology and biomechanics in a mechanical injury model.

    PubMed

    Ferizi, Uran; Rossi, Ignacio; Lee, Youjin; Lendhey, Matin; Teplensky, Jason; Kennedy, Oran D; Kirsch, Thorsten; Bencardino, Jenny; Raya, José G

    2017-07-01

    We establish a mechanical injury model for articular cartilage to assess the sensitivity of diffusion tensor imaging (DTI) in detecting cartilage damage early in time. Mechanical injury provides a more realistic model of cartilage degradation compared with commonly used enzymatic degradation. Nine cartilage-on-bone samples were obtained from patients undergoing knee replacement. The 3 Tesla DTI (0.18 × 0.18 × 1 mm 3 ) was performed before, 1 week, and 2 weeks after (zero, mild, and severe) injury, with a clinical radial spin-echo DTI (RAISED) sequence used in our hospital. We performed stress-relaxation tests and used a quasilinear-viscoelastic (QLV) model to characterize cartilage mechanical properties. Serial histology sections were dyed with Safranin-O and given an OARSI grade. We then correlated the changes in DTI parameters with the changes in QLV-parameters and OARSI grades. After severe injury the mean diffusivity increased after 1 and 2 weeks, whereas the fractional anisotropy decreased after 2 weeks (P < 0.05). The QLV-parameters and OARSI grades of the severe injury group differed from the baseline with statistical significance. The changes in mean diffusivity across all the samples correlated with the changes in the OARSI grade (r = 0.72) and QLV-parameters (r = -0.75). DTI is sensitive in tracking early changes after mechanical injury, and its changes correlate with changes in biomechanics and histology. Magn Reson Med 78:69-78, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  9. Mild hypothermia for treatment of diffuse axonal injury: a quantitative analysis of diffusion tensor imaging

    PubMed Central

    Jing, Guojie; Yao, Xiaoteng; Li, Yiyi; Xie, Yituan; Li, Wang#x2019;an; Liu, Kejun; Jing, Yingchao; Li, Baisheng; Lv, Yifan; Ma, Baoxin

    2014-01-01

    Fractional anisotropy values in diffusion tensor imaging can quantitatively reflect the consistency of nerve fibers after brain damage, where higher values generally indicate less damage to nerve fibers. Therefore, we hypothesized that diffusion tensor imaging could be used to evaluate the effect of mild hypothermia on diffuse axonal injury. A total of 102 patients with diffuse axonal injury were randomly divided into two groups: normothermic and mild hypothermic treatment groups. Patient's modified Rankin scale scores 2 months after mild hypothermia were significantly lower than those for the normothermia group. The difference in average fractional anisotropy value for each region of interest before and after mild hypothermia was 1.32-1.36 times higher than the value in the normothermia group. Quantitative assessment of diffusion tensor imaging indicates that mild hypothermia therapy may be beneficial for patients with diffuse axonal injury. PMID:25206800

  10. Structural abnormalities and altered regional brain activity in multiple sclerosis with simple spinal cord involvement.

    PubMed

    Yin, Ping; Liu, Yi; Xiong, Hua; Han, Yongliang; Sah, Shambhu Kumar; Zeng, Chun; Wang, Jingjie; Li, Yongmei

    2018-02-01

    To assess the changes of the structural and functional abnormalities in multiple sclerosis with simple spinal cord involvement (MS-SSCI) by using resting-state functional MRI (RS-fMRI), voxel based morphology (VBM) and diffusion tensor tractography. The amplitude of low-frequency fluctuation (ALFF) of 22 patients with MS-SSCI and 22 healthy controls (HCs) matched for age, gender and education were compared by using RS-fMRI. We also compared the volume, fractional anisotropy (FA) and apparent diffusion coefficient of the brain regions in baseline brain activity by using VBM and diffusion tensor imaging. The relationships between the expanded disability states scale (EDSS) scores, changed parameters of structure and function were further explored. (1) Compared with HCs, the ALFF of the bilateral hippocampus and right middle temporal gyrus in MS-SSCI decreased significantly. However, patients exhibited increased ALFF in the left middle frontal gyrus, left posterior cingulate gyrus and right middle occipital gyrus ( two-sample t-test, after AlphaSim correction, p < 0.01, voxel size > 40). The volume of right middle frontal gyrus reduced significantly (p < 0.01). The FA and ADC of right hippocampus, the FA of left hippocampus and right middle temporal gyrus were significantly different. (2) A significant correlation between EDSS scores and ALFF was noted only in the left posterior cingulate gyrus. Our results detected structural and functional abnormalities in MS-SSCI and functional parameters were associated with clinical abnormalities. Multimodal imaging plays an important role in detecting structural and functional abnormalities in MS-SSCI. Advances in knowledge: This is the first time to apply RS-fMRI, VBM and diffusion tensor tractography to study the structural and functional abnormalities in MS-SSCI, and to explore its correlation with EDSS score.

  11. Joint eigenvector estimation from mutually anisotropic tensors improves susceptibility tensor imaging of the brain, kidney, and heart.

    PubMed

    Dibb, Russell; Liu, Chunlei

    2017-06-01

    To develop a susceptibility-based MRI technique for probing microstructure and fiber architecture of magnetically anisotropic tissues-such as central nervous system white matter, renal tubules, and myocardial fibers-in three dimensions using susceptibility tensor imaging (STI) tools. STI can probe tissue microstructure, but is limited by reconstruction artifacts because of absent phase information outside the tissue and noise. STI accuracy may be improved by estimating a joint eigenvector from mutually anisotropic susceptibility and relaxation tensors. Gradient-recalled echo image data were simulated using a numerical phantom and acquired from the ex vivo mouse brain, kidney, and heart. Susceptibility tensor data were reconstructed using STI, regularized STI, and the proposed algorithm of mutually anisotropic and joint eigenvector STI (MAJESTI). Fiber map and tractography results from each technique were compared with diffusion tensor data. MAJESTI reduced the estimated susceptibility tensor orientation error by 30% in the phantom, 36% in brain white matter, 40% in the inner medulla of the kidney, and 45% in myocardium. This improved the continuity and consistency of susceptibility-based fiber tractography in each tissue. MAJESTI estimation of the susceptibility tensors yields lower orientation errors for susceptibility-based fiber mapping and tractography in the intact brain, kidney, and heart. Magn Reson Med 77:2331-2346, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Stimulated echo diffusion tensor imaging and SPAIR T2-weighted imaging in Chronic Exertional Compartment Syndrome of the lower leg muscles

    PubMed Central

    Sigmund, Eric E.; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S.; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; Mcgorty, KellyAnne; Hodnett, Phil; Bencardino, Jenny

    2013-01-01

    Purpose To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2-weighted imaging. Materials and Methods Using an IRB-approved HIPAA-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2-weighted imaging (T2w) and stimulated echo DTI were applied to 8 healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in 7 calf muscle compartments, which in patients were classified by their response on T2w: normal (<20% change), and CECS (>20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post-/pre-exercise ratios) of DTI parameters. Results All diffusivities significantly increased (p<0.0001) and FA decreased (p=.0014) with exercise. Longitudinal diffusion responses were significantly smaller than transversal diffusion responses (p<0.0001). 19 of 98 patient compartments were classified as CECS on T2w. MD increased by 3.8±3.4% (volunteer), 7.4±4.2 % (normal), and 9.1±7.0% (CECS) with exercise. Conclusion DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. PMID:23440764

  13. Longitudinal brain white matter alterations in minimal hepatic encephalopathy before and after liver transplantation.

    PubMed

    Lin, Wei-Che; Chou, Kun-Hsien; Chen, Chao-Long; Chen, Hsiu-Ling; Lu, Cheng-Hsien; Li, Shau-Hsuan; Huang, Chu-Chung; Lin, Ching-Po; Cheng, Yu-Fan

    2014-01-01

    Cerebral edema is the common pathogenic mechanism for cognitive impairment in minimal hepatic encephalopathy. Whether complete reversibility of brain edema, cognitive deficits, and their associated imaging can be achieved after liver transplantation remains an open question. To characterize white matter integrity before and after liver transplantation in patients with minimal hepatic encephalopathy, multiple diffusivity indices acquired via diffusion tensor imaging was applied. Twenty-eight patients and thirty age- and sex-matched healthy volunteers were included. Multiple diffusivity indices were obtained from diffusion tensor images, including mean diffusivity, fractional anisotropy, axial diffusivity and radial diffusivity. The assessment was repeated 6-12 month after transplantation. Differences in white matter integrity between groups, as well as longitudinal changes, were evaluated using tract-based spatial statistical analysis. Correlation analyses were performed to identify first scan before transplantation and interval changes among the neuropsychiatric tests, clinical laboratory tests, and diffusion tensor imaging indices. After transplantation, decreased water diffusivity without fractional anisotropy change indicating reversible cerebral edema was found in the left anterior cingulate, claustrum, postcentral gyrus, and right corpus callosum. However, a progressive decrease in fractional anisotropy and an increase in radial diffusivity suggesting demyelination were noted in temporal lobe. Improved pre-transplantation albumin levels and interval changes were associated with better recoveries of diffusion tensor imaging indices. Improvements in interval diffusion tensor imaging indices in the right postcentral gyrus were correlated with visuospatial function score correction. In conclusion, longitudinal voxel-wise analysis of multiple diffusion tensor imaging indices demonstrated different white matter changes in minimal hepatic encephalopathy patients. Transplantation improved extracellular cerebral edema and the results of associated cognition tests. However, white matter demyelination may advance in temporal lobe.

  14. Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.

    PubMed

    Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik

    2007-01-01

    In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.

  15. Traumatic Brain Injury Diffusion Magnetic Resonance Imaging Research Roadmap Development Project

    DTIC Science & Technology

    2011-10-01

    promising technology on the horizon is the Diffusion Tensor Imaging ( DTI ). Diffusion tensor imaging ( DTI ) is a magnetic resonance imaging (MRI)-based...in the brain. The potential for DTI to improve our understanding of TBI has not been fully explored and challenges associated with non-existent...processing tools, quality control standards, and a shared image repository. The recommendations will be disseminated and pilot tested. A DTI of TBI

  16. Diffusion Tensor Imaging Correlates of Reading Ability in Dysfluent and Non-Impaired Readers

    ERIC Educational Resources Information Center

    Lebel, Catherine; Shaywitz, Bennett; Holahan, John; Shaywitz, Sally; Marchione, Karen; Beaulieu, Christian

    2013-01-01

    Many children and adults have specific reading disabilities; insight into the brain structure underlying these difficulties is evolving from imaging. Previous research highlights the left temporal-parietal white matter as important in reading, yet the degree of involvement of other areas remains unclear. Diffusion tensor imaging (DTI) and…

  17. Dynamic diffusion tensor imaging of spinal cord contusion: A canine model.

    PubMed

    Liu, Changbin; Yang, Degang; Li, Jianjun; Li, Dapeng; Yang, Mingliang; Sun, Wei; Meng, Qianru; Zhang, Wenhao; Cai, Chang; Du, Liangjie; Li, Jun; Gao, Feng; Gu, Rui; Feng, Yutong; Dong, Xuechao; Miao, Qi; Yang, Xinghua; Zuo, Zhentao

    2018-06-01

    This study aimed to explore the dynamic diffusion tensor imaging (DTI) of changes in spinal cord contusion using a canine model of injury involving rostral and caudal levels. In this study, a spinal cord contusion model was established in female dogs using a custom-made weight-drop lesion device. DTI was performed on dogs with injured spinal cords (n=7) using a Siemens 3.0T MRI scanner at pre-contusion and at 3 h, 24 h, 6 weeks and 12 weeks post-injury. The tissue sections were stained for immunohistochemical analysis. Canine models of spinal cord contusion were created successfully using the weight-drop lesion device. The fractional anisotropy (FA) value of lesion epicenter decreased, while the apparent diffusion coefficient (ADC), mean diffusivity (MD), and radial diffusivity (RD) values increased, and the extent of the curve was apparent gradually. The site and time affected the DTI parameters significantly in the whole spinal cord, ADC (site, P < 0.001 and time, P = 0.077, respectively); FA (site, P < 0.001 and time, P = 0.002, respectively). Immunohistological analysis of GFAP and NF revealed the pathologic changes of reactive astrocytes and axons, as well as the cavity and glial scars occurring during chronic SCI. DTI is a sensitive and noninvasive imaging tool useful to assess edema, hemorrhage, cavity formation, structural damage and reconstruction of axon, and myelin in dogs. The DTI parameters after contusion vary. However, the curves of ADC, MD, and RD were nearly similar and the FA curve was distinct. All the DTI parameters were affected by distance and time. © 2018 Wiley Periodicals, Inc.

  18. White matter correlates of cognitive domains in normal aging with diffusion tensor imaging.

    PubMed

    Sasson, Efrat; Doniger, Glen M; Pasternak, Ofer; Tarrasch, Ricardo; Assaf, Yaniv

    2013-01-01

    The ability to perform complex as well as simple cognitive tasks engages a network of brain regions that is mediated by the white matter fiber bundles connecting them. Different cognitive tasks employ distinctive white matter fiber bundles. The temporal lobe and its projections subserve a variety of key functions known to deteriorate during aging. In a cohort of 52 healthy subjects (ages 25-82 years), we performed voxel-wise regression analysis correlating performance in higher-order cognitive domains (executive function, information processing speed, and memory) with white matter integrity, as measured by diffusion tensor imaging (DTI) fiber tracking in the temporal lobe projections [uncinate fasciculus (UF), fornix, cingulum, inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF)]. The fiber tracts were spatially registered and statistical parametric maps were produced to spatially localize the significant correlations. Results showed that performance in the executive function domain is correlated with DTI parameters in the left SLF and right UF; performance in the information processing speed domain is correlated with fractional anisotropy (FA) in the left cingulum, left fornix, right and left ILF and SLF; and the memory domain shows significant correlations with DTI parameters in the right fornix, right cingulum, left ILF, left SLF and right UF. These findings suggest that DTI tractography enables anatomical definition of region of interest (ROI) for correlation of behavioral parameters with diffusion indices, and functionality can be correlated with white matter integrity.

  19. Assessing the Uncertainties on Seismic Source Parameters: Towards Realistic Estimates of Moment Tensor Determinations

    NASA Astrophysics Data System (ADS)

    Magnoni, F.; Scognamiglio, L.; Tinti, E.; Casarotti, E.

    2014-12-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Moment tensor catalogues are ordinarily used by geoscientists, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their own analysis. The 2012 May 20 Emilia mainshock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. An uncertainty of ~0.5 units in magnitude leads to a controversial knowledge of the real size of the event. The possible uncertainty associated to this estimate could be critical for the inference of other seismological parameters, suggesting caution for seismic hazard assessment, coulomb stress transfer determination and other analyses where self-consistency is important. In this work, we focus on the variability of the moment tensor solution, highlighting the effect of four different velocity models, different types and ranges of filtering, and two different methodologies. Using a larger dataset, to better quantify the source parameter uncertainty, we also analyze the variability of the moment tensor solutions depending on the number, the epicentral distance and the azimuth of used stations. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, cannot be considered an absolute value and requires to come out with the related uncertainties and in a reproducible framework characterized by disclosed assumptions and explicit processing workflows.

  20. Motion immune diffusion imaging using augmented MUSE (AMUSE) for high-resolution multi-shot EPI

    PubMed Central

    Guhaniyogi, Shayan; Chu, Mei-Lan; Chang, Hing-Chiu; Song, Allen W.; Chen, Nan-kuei

    2015-01-01

    Purpose To develop new techniques for reducing the effects of microscopic and macroscopic patient motion in diffusion imaging acquired with high-resolution multi-shot EPI. Theory The previously reported Multiplexed Sensitivity Encoding (MUSE) algorithm is extended to account for macroscopic pixel misregistrations as well as motion-induced phase errors in a technique called Augmented MUSE (AMUSE). Furthermore, to obtain more accurate quantitative DTI measures in the presence of subject motion, we also account for the altered diffusion encoding among shots arising from macroscopic motion. Methods MUSE and AMUSE were evaluated on simulated and in vivo motion-corrupted multi-shot diffusion data. Evaluations were made both on the resulting imaging quality and estimated diffusion tensor metrics. Results AMUSE was found to reduce image blurring resulting from macroscopic subject motion compared to MUSE, but yielded inaccurate tensor estimations when neglecting the altered diffusion encoding. Including the altered diffusion encoding in AMUSE produced better estimations of diffusion tensors. Conclusion The use of AMUSE allows for improved image quality and diffusion tensor accuracy in the presence of macroscopic subject motion during multi-shot diffusion imaging. These techniques should facilitate future high-resolution diffusion imaging. PMID:25762216

  1. Tensor voting for image correction by global and local intensity alignment.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2005-01-01

    This paper presents a voting method to perform image correction by global and local intensity alignment. The key to our modeless approach is the estimation of global and local replacement functions by reducing the complex estimation problem to the robust 2D tensor voting in the corresponding voting spaces. No complicated model for replacement function (curve) is assumed. Subject to the monotonic constraint only, we vote for an optimal replacement function by propagating the curve smoothness constraint using a dense tensor field. Our method effectively infers missing curve segments and rejects image outliers. Applications using our tensor voting approach are proposed and described. The first application consists of image mosaicking of static scenes, where the voted replacement functions are used in our iterative registration algorithm for computing the best warping matrix. In the presence of occlusion, our replacement function can be employed to construct a visually acceptable mosaic by detecting occlusion which has large and piecewise constant color. Furthermore, by the simultaneous consideration of color matches and spatial constraints in the voting space, we perform image intensity compensation and high contrast image correction using our voting framework, when only two defective input images are given.

  2. Development of a Human Brain Diffusion Tensor Template

    PubMed Central

    Peng, Huiling; Orlichenko, Anton; Dawe, Robert J.; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos

    2009-01-01

    The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20–40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced. PMID:19341801

  3. Development of a human brain diffusion tensor template.

    PubMed

    Peng, Huiling; Orlichenko, Anton; Dawe, Robert J; Agam, Gady; Zhang, Shengwei; Arfanakis, Konstantinos

    2009-07-15

    The development of a brain template for diffusion tensor imaging (DTI) is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the development of a white matter atlas. Previous efforts to produce a DTI brain template have been compromised by factors related to image quality, the effectiveness of the image registration approach, the appropriateness of subject inclusion criteria, and the completeness and accuracy of the information summarized in the final template. The purpose of this work was to develop a DTI human brain template using techniques that address the shortcomings of previous efforts. Therefore, data containing minimal artifacts were first obtained on 67 healthy human subjects selected from an age-group with relatively similar diffusion characteristics (20-40 years of age), using an appropriate DTI acquisition protocol. Non-linear image registration based on mean diffusion-weighted and fractional anisotropy images was employed. DTI brain templates containing median and mean tensors were produced in ICBM-152 space and made publicly available. The resulting set of DTI templates is characterized by higher image sharpness, provides the ability to distinguish smaller white matter fiber structures, contains fewer image artifacts, than previously developed templates, and to our knowledge, is one of only two templates produced based on a relatively large number of subjects. Furthermore, median tensors were shown to better preserve the diffusion characteristics at the group level than mean tensors. Finally, white matter fiber tractography was applied on the template and several fiber-bundles were traced.

  4. Diffusion Tensor Imaging: Application to the Study of the Developing Brain

    ERIC Educational Resources Information Center

    Cascio, Carissa J.; Gerig, Guido; Piven, Joseph

    2007-01-01

    Objective: To provide an overview of diffusion tensor imaging (DTI) and its application to the study of white matter in the developing brain in both healthy and clinical samples. Method: The development of DTI and its application to brain imaging of white matter tracts is discussed. Forty-eight studies using DTI to examine diffusion properties of…

  5. Spatial Mapping of Translational Diffusion Coefficients Using Diffusion Tensor Imaging: A Mathematical Description

    PubMed Central

    SHETTY, ANIL N.; CHIANG, SHARON; MALETIC-SAVATIC, MIRJANA; KASPRIAN, GREGOR; VANNUCCI, MARINA; LEE, WESLEY

    2016-01-01

    In this article, we discuss the theoretical background for diffusion weighted imaging and diffusion tensor imaging. Molecular diffusion is a random process involving thermal Brownian motion. In biological tissues, the underlying microstructures restrict the diffusion of water molecules, making diffusion directionally dependent. Water diffusion in tissue is mathematically characterized by the diffusion tensor, the elements of which contain information about the magnitude and direction of diffusion and is a function of the coordinate system. Thus, it is possible to generate contrast in tissue based primarily on diffusion effects. Expressing diffusion in terms of the measured diffusion coefficient (eigenvalue) in any one direction can lead to errors. Nowhere is this more evident than in white matter, due to the preferential orientation of myelin fibers. The directional dependency is removed by diagonalization of the diffusion tensor, which then yields a set of three eigenvalues and eigenvectors, representing the magnitude and direction of the three orthogonal axes of the diffusion ellipsoid, respectively. For example, the eigenvalue corresponding to the eigenvector along the long axis of the fiber corresponds qualitatively to diffusion with least restriction. Determination of the principal values of the diffusion tensor and various anisotropic indices provides structural information. We review the use of diffusion measurements using the modified Stejskal–Tanner diffusion equation. The anisotropy is analyzed by decomposing the diffusion tensor based on symmetrical properties describing the geometry of diffusion tensor. We further describe diffusion tensor properties in visualizing fiber tract organization of the human brain. PMID:27441031

  6. Isotropic resolution diffusion tensor imaging of lumbosacral and sciatic nerves using a phase‐corrected diffusion‐prepared 3D turbo spin echo

    PubMed Central

    Van, Anh T.; Weidlich, Dominik; Kooijman, Hendrick; Hock, Andreas; Rummeny, Ernst J.; Gersing, Alexandra; Kirschke, Jan S.; Karampinos, Dimitrios C.

    2018-01-01

    Purpose To perform in vivo isotropic‐resolution diffusion tensor imaging (DTI) of lumbosacral and sciatic nerves with a phase‐navigated diffusion‐prepared (DP) 3D turbo spin echo (TSE) acquisition and modified reconstruction incorporating intershot phase‐error correction and to investigate the improvement on image quality and diffusion quantification with the proposed phase correction. Methods Phase‐navigated DP 3D TSE included magnitude stabilizers to minimize motion and eddy‐current effects on the signal magnitude. Phase navigation of motion‐induced phase errors was introduced before readout in 3D TSE. DTI of lower back nerves was performed in vivo using 3D TSE and single‐shot echo planar imaging (ss‐EPI) in 13 subjects. Diffusion data were phase‐corrected per k z plane with respect to T2‐weighted data. The effects of motion‐induced phase errors on DTI quantification was assessed for 3D TSE and compared with ss‐EPI. Results Non–phase‐corrected 3D TSE resulted in artifacts in diffusion‐weighted images and overestimated DTI parameters in the sciatic nerve (mean diffusivity [MD] = 2.06 ± 0.45). Phase correction of 3D TSE DTI data resulted in reductions in all DTI parameters (MD = 1.73 ± 0.26) of statistical significance (P ≤ 0.001) and in closer agreement with ss‐EPI DTI parameters (MD = 1.62 ± 0.21). Conclusion DP 3D TSE with phase correction allows distortion‐free isotropic diffusion imaging of lower back nerves with robustness to motion‐induced artifacts and DTI quantification errors. Magn Reson Med 80:609–618, 2018. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes. PMID:29380414

  7. Interrogating the origin and behavior of magnetic resonance diffusion tensor scalar parameters in the myocardium

    NASA Astrophysics Data System (ADS)

    Abdullah, Osama Mahmoud

    Myocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease.

  8. Motion Artifact Reduction in Pediatric Diffusion Tensor Imaging Using Fast Prospective Correction

    PubMed Central

    Alhamud, A.; Taylor, Paul A.; Laughton, Barbara; van der Kouwe, André J.W.; Meintjes, Ernesta M.

    2014-01-01

    Purpose To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Materials and Methods Eighteen pediatric subjects (aged 5–6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1-weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. Results In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Conclusion Due to the heterogeneity of brain structures and the comparatively low resolution (~2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. PMID:24935904

  9. Motion artifact reduction in pediatric diffusion tensor imaging using fast prospective correction.

    PubMed

    Alhamud, A; Taylor, Paul A; Laughton, Barbara; van der Kouwe, André J W; Meintjes, Ernesta M

    2015-05-01

    To evaluate the patterns of head motion in scans of young children and to examine the influence of corrective techniques, both qualitatively and quantitatively. We investigate changes that both retrospective (with and without diffusion table reorientation) and prospective (implemented with a short navigator sequence) motion correction induce in the resulting diffusion tensor measures. Eighteen pediatric subjects (aged 5-6 years) were scanned using 1) a twice-refocused, 2D diffusion pulse sequence, 2) a prospectively motion-corrected, navigated diffusion sequence with reacquisition of a maximum of five corrupted diffusion volumes, and 3) a T1 -weighted structural image. Mean fractional anisotropy (FA) values in white and gray matter regions, as well as tractography in the brainstem and projection fibers, were evaluated to assess differences arising from retrospective (via FLIRT in FSL) and prospective motion correction. In addition to human scans, a stationary phantom was also used for further evaluation. In several white and gray matter regions retrospective correction led to significantly (P < 0.05) reduced FA means and altered distributions compared to the navigated sequence. Spurious tractographic changes in the retrospectively corrected data were also observed in subject data, as well as in phantom and simulated data. Due to the heterogeneity of brain structures and the comparatively low resolution (∼2 mm) of diffusion data using 2D single shot sequencing, retrospective motion correction is susceptible to distortion from partial voluming. These changes often negatively bias diffusion tensor imaging parameters. Prospective motion correction was shown to produce smaller changes. © 2014 Wiley Periodicals, Inc.

  10. Overcoming the sign problem at finite temperature: Quantum tensor network for the orbital eg model on an infinite square lattice

    NASA Astrophysics Data System (ADS)

    Czarnik, Piotr; Dziarmaga, Jacek; Oleś, Andrzej M.

    2017-07-01

    The variational tensor network renormalization approach to two-dimensional (2D) quantum systems at finite temperature is applied to a model suffering the notorious quantum Monte Carlo sign problem—the orbital eg model with spatially highly anisotropic orbital interactions. Coarse graining of the tensor network along the inverse temperature β yields a numerically tractable 2D tensor network representing the Gibbs state. Its bond dimension D —limiting the amount of entanglement—is a natural refinement parameter. Increasing D we obtain a converged order parameter and its linear susceptibility close to the critical point. They confirm the existence of finite order parameter below the critical temperature Tc, provide a numerically exact estimate of Tc, and give the critical exponents within 1 % of the 2D Ising universality class.

  11. Density functional theory calculations of 95Mo NMR parameters in solid-state compounds.

    PubMed

    Cuny, Jérôme; Furet, Eric; Gautier, Régis; Le Pollès, Laurent; Pickard, Chris J; d'Espinose de Lacaillerie, Jean-Baptiste

    2009-12-21

    The application of periodic density functional theory-based methods to the calculation of (95)Mo electric field gradient (EFG) and chemical shift (CS) tensors in solid-state molybdenum compounds is presented. Calculations of EFG tensors are performed using the projector augmented-wave (PAW) method. Comparison of the results with those obtained using the augmented plane wave + local orbitals (APW+lo) method and with available experimental values shows the reliability of the approach for (95)Mo EFG tensor calculation. CS tensors are calculated using the recently developed gauge-including projector augmented-wave (GIPAW) method. This work is the first application of the GIPAW method to a 4d transition-metal nucleus. The effects of ultra-soft pseudo-potential parameters, exchange-correlation functionals and structural parameters are precisely examined. Comparison with experimental results allows the validation of this computational formalism.

  12. Separation of specular and diffuse components using tensor voting in color images.

    PubMed

    Nguyen, Tam; Vo, Quang Nhat; Yang, Hyung-Jeong; Kim, Soo-Hyung; Lee, Guee-Sang

    2014-11-20

    Most methods for the detection and removal of specular reflections suffer from nonuniform highlight regions and/or nonconverged artifacts induced by discontinuities in the surface colors, especially when dealing with highly textured, multicolored images. In this paper, a novel noniterative and predefined constraint-free method based on tensor voting is proposed to detect and remove the highlight components of a single color image. The distribution of diffuse and specular pixels in the original image is determined using tensors' saliency analysis, instead of comparing color information among neighbor pixels. The achieved diffuse reflectance distribution is used to remove specularity components. The proposed method is evaluated quantitatively and qualitatively over a dataset of highly textured, multicolor images. The experimental results show that our result outperforms other state-of-the-art techniques.

  13. Differences in Gaussian diffusion tensor imaging and non-Gaussian diffusion kurtosis imaging model-based estimates of diffusion tensor invariants in the human brain.

    PubMed

    Lanzafame, S; Giannelli, M; Garaci, F; Floris, R; Duggento, A; Guerrisi, M; Toschi, N

    2016-05-01

    An increasing number of studies have aimed to compare diffusion tensor imaging (DTI)-related parameters [e.g., mean diffusivity (MD), fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD)] to complementary new indexes [e.g., mean kurtosis (MK)/radial kurtosis (RK)/axial kurtosis (AK)] derived through diffusion kurtosis imaging (DKI) in terms of their discriminative potential about tissue disease-related microstructural alterations. Given that the DTI and DKI models provide conceptually and quantitatively different estimates of the diffusion tensor, which can also depend on fitting routine, the aim of this study was to investigate model- and algorithm-dependent differences in MD/FA/RD/AD and anisotropy mode (MO) estimates in diffusion-weighted imaging of human brain white matter. The authors employed (a) data collected from 33 healthy subjects (20-59 yr, F: 15, M: 18) within the Human Connectome Project (HCP) on a customized 3 T scanner, and (b) data from 34 healthy subjects (26-61 yr, F: 5, M: 29) acquired on a clinical 3 T scanner. The DTI model was fitted to b-value =0 and b-value =1000 s/mm(2) data while the DKI model was fitted to data comprising b-value =0, 1000 and 3000/2500 s/mm(2) [for dataset (a)/(b), respectively] through nonlinear and weighted linear least squares algorithms. In addition to MK/RK/AK maps, MD/FA/MO/RD/AD maps were estimated from both models and both algorithms. Using tract-based spatial statistics, the authors tested the null hypothesis of zero difference between the two MD/FA/MO/RD/AD estimates in brain white matter for both datasets and both algorithms. DKI-derived MD/FA/RD/AD and MO estimates were significantly higher and lower, respectively, than corresponding DTI-derived estimates. All voxelwise differences extended over most of the white matter skeleton. Fractional differences between the two estimates [(DKI - DTI)/DTI] of most invariants were seen to vary with the invariant value itself as well as with MK/RK/AK values, indicating substantial anatomical variability of these discrepancies. In the HCP dataset, the median voxelwise percentage differences across the whole white matter skeleton were (nonlinear least squares algorithm) 14.5% (8.2%-23.1%) for MD, 4.3% (1.4%-17.3%) for FA, -5.2% (-48.7% to -0.8%) for MO, 12.5% (6.4%-21.2%) for RD, and 16.1% (9.9%-25.6%) for AD (all ranges computed as 0.01 and 0.99 quantiles). All differences/trends were consistent between the discovery (HCP) and replication (local) datasets and between estimation algorithms. However, the relationships between such trends, estimated diffusion tensor invariants, and kurtosis estimates were impacted by the choice of fitting routine. Model-dependent differences in the estimation of conventional indexes of MD/FA/MO/RD/AD can be well beyond commonly seen disease-related alterations. While estimating diffusion tensor-derived indexes using the DKI model may be advantageous in terms of mitigating b-value dependence of diffusivity estimates, such estimates should not be referred to as conventional DTI-derived indexes in order to avoid confusion in interpretation as well as multicenter comparisons. In order to assess the potential and advantages of DKI with respect to DTI as well as to standardize diffusion-weighted imaging methods between centers, both conventional DTI-derived indexes and diffusion tensor invariants derived by fitting the non-Gaussian DKI model should be separately estimated and analyzed using the same combination of fitting routines.

  14. Autism Spectrum Disorder: Does Neuroimaging Support the DSM-5 Proposal for a Symptom Dyad? A Systematic Review of Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging Studies

    ERIC Educational Resources Information Center

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sanchez, Francisco J.; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-01-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with "autism spectrum disorder" (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported…

  15. Comparative study of methods for recognition of an unknown person's action from a video sequence

    NASA Astrophysics Data System (ADS)

    Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun

    2009-02-01

    This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.

  16. Tensor Rank Preserving Discriminant Analysis for Facial Recognition.

    PubMed

    Tao, Dapeng; Guo, Yanan; Li, Yaotang; Gao, Xinbo

    2017-10-12

    Facial recognition, one of the basic topics in computer vision and pattern recognition, has received substantial attention in recent years. However, for those traditional facial recognition algorithms, the facial images are reshaped to a long vector, thereby losing part of the original spatial constraints of each pixel. In this paper, a new tensor-based feature extraction algorithm termed tensor rank preserving discriminant analysis (TRPDA) for facial image recognition is proposed; the proposed method involves two stages: in the first stage, the low-dimensional tensor subspace of the original input tensor samples was obtained; in the second stage, discriminative locality alignment was utilized to obtain the ultimate vector feature representation for subsequent facial recognition. On the one hand, the proposed TRPDA algorithm fully utilizes the natural structure of the input samples, and it applies an optimization criterion that can directly handle the tensor spectral analysis problem, thereby decreasing the computation cost compared those traditional tensor-based feature selection algorithms. On the other hand, the proposed TRPDA algorithm extracts feature by finding a tensor subspace that preserves most of the rank order information of the intra-class input samples. Experiments on the three facial databases are performed here to determine the effectiveness of the proposed TRPDA algorithm.

  17. On improving the efficiency of tensor voting.

    PubMed

    Moreno, Rodrigo; Garcia, Miguel Angel; Puig, Domenec; Pizarro, Luis; Burgeth, Bernhard; Weickert, Joachim

    2011-11-01

    This paper proposes two alternative formulations to reduce the high computational complexity of tensor voting, a robust perceptual grouping technique used to extract salient information from noisy data. The first scheme consists of numerical approximations of the votes, which have been derived from an in-depth analysis of the plate and ball voting processes. The second scheme simplifies the formulation while keeping the same perceptual meaning of the original tensor voting: The stick tensor voting and the stick component of the plate tensor voting must reinforce surfaceness, the plate components of both the plate and ball tensor voting must boost curveness, whereas junctionness must be strengthened by the ball component of the ball tensor voting. Two new parameters have been proposed for the second formulation in order to control the potentially conflictive influence of the stick component of the plate vote and the ball component of the ball vote. Results show that the proposed formulations can be used in applications where efficiency is an issue since they have a complexity of order O(1). Moreover, the second proposed formulation has been shown to be more appropriate than the original tensor voting for estimating saliencies by appropriately setting the two new parameters.

  18. An introduction to diffusion tensor image analysis.

    PubMed

    O'Donnell, Lauren J; Westin, Carl-Fredrik

    2011-04-01

    Diffusion tensor magnetic resonance imaging (DTI) is a relatively new technology that is popular for imaging the white matter of the brain. This article provides a basic and broad overview of DTI to enable the reader to develop an intuitive understanding of these types of data, and an awareness of their strengths and weaknesses. Copyright © 2011 Elsevier Inc. All rights reserved.

  19. Use of diffusion tensor imaging to identify similarities and differences between cerebellar and Parkinsonism forms of multiple system atrophy.

    PubMed

    Wang, Po-Shan; Wu, Hsiu-Mei; Lin, Ching-Po; Soong, Bing-Wen

    2011-07-01

    We performed diffusion tensor imaging to determine if multiple system atrophy (MSA)-cerebellar (C) and MSA-Parkinsonism (P) show similar changes, as shown in pathological studies. Nineteen patients with MSA-C, 12 patients with MSA-P, 20 patients with Parkinson disease, and 20 healthy controls were evaluated with the use of voxel-based morphometry analysis of diffusion tensor imaging. There was an increase in apparent diffusion coefficient values in the middle cerebellar peduncles and cerebellum and a decrease in fractional anisotropy in the pyramidal tract, middle cerebellar peduncles, and white matter of the cerebellum in patients with MSA-C and MSA-P compared to the controls (P < 0.001). In addition, isotropic diffusion-weighted image values were reduced in the cerebellar cortex and deep cerebellar nuclei in patients with MSA-C and increased in the basal ganglia in patients with MSA-P. These results indicate that despite their disparate clinical manifestations, patients with MSA-C and MSA-P share similar diffusion tensor imaging features in the infratentorial region. Further, the combination of FA, ADC and iDWI images can be used to distinguish between MSA (either form) and Parkinson disease, which has potential therapeutic implications.

  20. A closed-form solution to tensor voting: theory and applications.

    PubMed

    Wu, Tai-Pang; Yeung, Sai-Kit; Jia, Jiaya; Tang, Chi-Keung; Medioni, Gérard

    2012-08-01

    We prove a closed-form solution to tensor voting (CFTV): Given a point set in any dimensions, our closed-form solution provides an exact, continuous, and efficient algorithm for computing a structure-aware tensor that simultaneously achieves salient structure detection and outlier attenuation. Using CFTV, we prove the convergence of tensor voting on a Markov random field (MRF), thus termed as MRFTV, where the structure-aware tensor at each input site reaches a stationary state upon convergence in structure propagation. We then embed structure-aware tensor into expectation maximization (EM) for optimizing a single linear structure to achieve efficient and robust parameter estimation. Specifically, our EMTV algorithm optimizes both the tensor and fitting parameters and does not require random sampling consensus typically used in existing robust statistical techniques. We performed quantitative evaluation on its accuracy and robustness, showing that EMTV performs better than the original TV and other state-of-the-art techniques in fundamental matrix estimation for multiview stereo matching. The extensions of CFTV and EMTV for extracting multiple and nonlinear structures are underway.

  1. MR Diffusion Tensor Imaging: A Window into White Matter Integrity of the Working Brain

    PubMed Central

    Chanraud, Sandra; Zahr, Natalie; Pfefferbaum, Adolf

    2010-01-01

    As Norman Geschwind asserted in 1965, syndromes resulting from white matter lesions could produce deficits in higher-order functions and “disconnexion” or the interruption of connection between gray matter regions could be as disruptive as trauma to those regions per se. The advent of in vivo diffusion tensor imaging, which allows quantitative characterization of white matter fiber integrity in health and disease, has served to strengthen Geschwind's proposal. Here we present an overview of the principles of diffusion tensor imaging (DTI) and its contribution to progress in our current understanding of normal and pathological brain function. PMID:20422451

  2. Intravoxel incoherent motion modeling in the kidneys: Comparison of mono-, bi-, and triexponential fit.

    PubMed

    van Baalen, Sophie; Leemans, Alexander; Dik, Pieter; Lilien, Marc R; Ten Haken, Bennie; Froeling, Martijn

    2017-07-01

    To evaluate if a three-component model correctly describes the diffusion signal in the kidney and whether it can provide complementary anatomical or physiological information about the underlying tissue. Ten healthy volunteers were examined at 3T, with T 2 -weighted imaging, diffusion tensor imaging (DTI), and intravoxel incoherent motion (IVIM). Diffusion tensor parameters (mean diffusivity [MD] and fractional anisotropy [FA]) were obtained by iterative weighted linear least squares fitting of the DTI data and mono-, bi-, and triexponential fit parameters (D 1 , D 2 , D 3 , f fast2 , f fast3 , and f interm ) using a nonlinear fit of the IVIM data. Average parameters were calculated for three regions of interest (ROIs) (cortex, medulla, and rest) and from fiber tractography. Goodness of fit was assessed with adjusted R 2 ( Radj2) and the Shapiro-Wilk test was used to test residuals for normality. Maps of diffusion parameters were also visually compared. Fitting the diffusion signal was feasible for all models. The three-component model was best able to describe fast signal decay at low b values (b < 50), which was most apparent in Radj2 of the ROI containing high diffusion signals (ROI rest ), which was 0.42 ± 0.14, 0.61 ± 0.11, 0.77 ± 0.09, and 0.81 ± 0.08 for DTI, one-, two-, and three-component models, respectively, and in visual comparison of the fitted and measured S 0 . None of the models showed significant differences (P > 0.05) between the diffusion constant of the medulla and cortex, whereas the f fast component of the two and three-component models were significantly different (P < 0.001). Triexponential fitting is feasible for the diffusion signal in the kidney, and provides additional information. 2 Technical Efficacy: Stage 1 J. MAGN. RESON. IMAGING 2017;46:228-239. © 2016 The Authors Journal of Magnetic Resonance Imaging published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  3. Advances in magnetic resonance neuroimaging techniques in the evaluation of neonatal encephalopathy.

    PubMed

    Panigrahy, Ashok; Blüml, Stefan

    2007-02-01

    Magnetic resonance (MR) imaging has become an essential tool in the evaluation of neonatal encephalopathy. Magnetic resonance-compatible neonatal incubators allow sick neonates to be transported to the MR scanner, and neonatal head coils can improve signal-to-noise ratio, critical for advanced MR imaging techniques. Refinement of conventional imaging techniques include the use of PROPELLER techniques for motion correction. Magnetic resonance spectroscopic imaging and diffusion tensor imaging provide quantitative assessment of both brain development and brain injury in the newborn with respect to metabolite abnormalities and hypoxic-ischemic injury. Knowledge of normal developmental changes in MR spectroscopy metabolite concentration and diffusion tensor metrics is essential to interpret pathological cases. Perfusion MR and functional MR can provide additional physiological information. Both MR spectroscopy and diffusion tensor imaging can provide additional information in the differential of neonatal encephalopathy, including perinatal white matter injury, hypoxic-ischemic brain injury, metabolic disease, infection, and birth injury.

  4. Stimulated echo diffusion tensor imaging and SPAIR T2 -weighted imaging in chronic exertional compartment syndrome of the lower leg muscles.

    PubMed

    Sigmund, Eric E; Sui, Dabang; Ukpebor, Obehi; Baete, Steven; Fieremans, Els; Babb, James S; Mechlin, Michael; Liu, Kecheng; Kwon, Jane; McGorty, KellyAnne; Hodnett, Philip A; Bencardino, Jenny

    2013-11-01

    To evaluate the performance of diffusion tensor imaging (DTI) in the evaluation of chronic exertional compartment syndrome (CECS) as compared to T2 -weighted (T2w) imaging. Using an Institutional Review Board (IRB)-approved, Health Insurance Portability and Accountability Act (HIPAA)-compliant protocol, spectral adiabatic inversion recovery (SPAIR) T2w imaging and stimulated echo DTI were applied to eight healthy volunteers and 14 suspected CECS patients before and after exertion. Longitudinal and transverse diffusion eigenvalues, mean diffusivity (MD), and fractional anisotropy (FA) were measured in seven calf muscle compartments, which in patients were classified by their response on T2w: normal (<20% change), and CECS (>20% change). Mixed model analysis of variance compared subject groups and compartments in terms of response factors (post/pre-exercise ratios) of DTI parameters. All diffusivities significantly increased (P < 0.0001) and FA decreased (P = 0.0014) with exercise. Longitudinal diffusion responses were significantly smaller than transversal diffusion responses (P < 0.0001). Nineteen of 98 patient compartments were classified as CECS on T2w. MD increased by 3.8 ± 3.4% (volunteer), 7.4 ± 4.2% (normal), and 9.1 ± 7.0% (CECS) with exercise. DTI shows promise as an ancillary imaging method in the diagnosis and understanding of the pathophysiology in CECS. Future studies may explore its utility in predicting response to treatment. Copyright © 2013 Wiley Periodicals, Inc.

  5. A general theory of linear cosmological perturbations: stability conditions, the quasistatic limit and dynamics

    NASA Astrophysics Data System (ADS)

    Lagos, Macarena; Bellini, Emilio; Noller, Johannes; Ferreira, Pedro G.; Baker, Tessa

    2018-03-01

    We analyse cosmological perturbations around a homogeneous and isotropic background for scalar-tensor, vector-tensor and bimetric theories of gravity. Building on previous results, we propose a unified view of the effective parameters of all these theories. Based on this structure, we explore the viable space of parameters for each family of models by imposing the absence of ghosts and gradient instabilities. We then focus on the quasistatic regime and confirm that all these theories can be approximated by the phenomenological two-parameter model described by an effective Newton's constant and the gravitational slip. Within the quasistatic regime we pinpoint signatures which can distinguish between the broad classes of models (scalar-tensor, vector-tensor or bimetric). Finally, we present the equations of motion for our unified approach in such a way that they can be implemented in Einstein-Boltzmann solvers.

  6. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis.

    PubMed

    Kolbe, Scott C; van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F; Kilpatrick, Trevor J

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of -2.6% per annum (control = -0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = -0.428, p = 0.009; MD: R = -0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage.

  7. Serial Diffusion Tensor Imaging of the Optic Radiations after Acute Optic Neuritis

    PubMed Central

    van der Walt, Anneke; Butzkueven, Helmut; Klistorner, Alexander; Egan, Gary F.; Kilpatrick, Trevor J.

    2016-01-01

    Previous studies have reported diffusion tensor imaging (DTI) changes within the optic radiations of patients after optic neuritis (ON). We aimed to study optic radiation DTI changes over 12 months following acute ON and to study correlations between DTI parameters and damage to the optic nerve and primary visual cortex (V1). We measured DTI parameters [fractional anisotropy (FA), axial diffusivity (AD), radial diffusivity (RD), and mean diffusivity (MD)] from the optic radiations of 38 acute ON patients at presentation and 6 and 12 months after acute ON. In addition, we measured retinal nerve fibre layer thickness, visual evoked potential amplitude, optic radiation lesion load, and V1 thickness. At baseline, FA was reduced and RD and MD were increased compared to control. Over 12 months, FA reduced in patients at an average rate of −2.6% per annum (control = −0.51%; p = 0.006). Change in FA, RD, and MD correlated with V1 thinning over 12 months (FA: R = 0.450, p = 0.006; RD: R = −0.428, p = 0.009; MD: R = −0.365, p = 0.029). In patients with no optic radiation lesions, AD significantly correlated with RNFL thinning at 12 months (R = 0.489, p = 0.039). In conclusion, DTI can detect optic radiation changes over 12 months following acute ON that correlate with optic nerve and V1 damage. PMID:27555964

  8. Methodological improvements in voxel-based analysis of diffusion tensor images: applications to study the impact of apolipoprotein E on white matter integrity.

    PubMed

    Newlander, Shawn M; Chu, Alan; Sinha, Usha S; Lu, Po H; Bartzokis, George

    2014-02-01

    To identify regional differences in apparent diffusion coefficient (ADC) and fractional anisotropy (FA) using customized preprocessing before voxel-based analysis (VBA) in 14 normal subjects with the specific genes that decrease (apolipoprotein [APO] E ε2) and that increase (APOE ε4) the risk of Alzheimer's disease. Diffusion tensor images (DTI) acquired at 1.5 Tesla were denoised with a total variation tensor regularization algorithm before affine and nonlinear registration to generate a common reference frame for the image volumes of all subjects. Anisotropic and isotropic smoothing with varying kernel sizes was applied to the aligned data before VBA to determine regional differences between cohorts segregated by allele status. VBA on the denoised tensor data identified regions of reduced FA in APOE ε4 compared with the APOE ε2 healthy older carriers. The most consistent results were obtained using the denoised tensor and anisotropic smoothing before statistical testing. In contrast, isotropic smoothing identified regional differences for small filter sizes alone, emphasizing that this method introduces bias in FA values for higher kernel sizes. Voxel-based DTI analysis can be performed on low signal to noise ratio images to detect subtle regional differences in cohorts using the proposed preprocessing techniques. Copyright © 2013 Wiley Periodicals, Inc.

  9. Quantifying the ultrastructure of carotid arteries using high-resolution micro-diffusion tensor imaging—comparison of intact versus open cut tissue

    NASA Astrophysics Data System (ADS)

    Salman Shahid, Syed; Gaul, Robert T.; Kerskens, Christian; Flamini, Vittoria; Lally, Caitríona

    2017-12-01

    Diffusion magnetic resonance imaging (dMRI) can provide insights into the microstructure of intact arterial tissue. The current study employed high magnetic field MRI to obtain ultra-high resolution dMRI at an isotropic voxel resolution of 117 µm3 in less than 2 h of scan time. A parameter selective single shell (128 directions) diffusion-encoding scheme based on Stejskel-Tanner sequence with echo-planar imaging (EPI) readout was used. EPI segmentation was used to reduce the echo time (TE) and to minimise the susceptibility-induced artefacts. The study utilised the dMRI analysis with diffusion tensor imaging (DTI) framework to investigate structural heterogeneity in intact arterial tissue and to quantify variations in tissue composition when the tissue is cut open and flattened. For intact arterial samples, the region of interest base comparison showed significant differences in fractional anisotropy and mean diffusivity across the media layer (p  <  0.05). For open cut flat samples, DTI based directionally invariant indices did not show significant differences across the media layer. For intact samples, fibre tractography based indices such as calculated helical angle and fibre dispersion showed near circumferential alignment and a high degree of fibre dispersion, respectively. This study demonstrates the feasibility of fast dMRI acquisition with ultra-high spatial and angular resolution at 7 T. Using the optimised sequence parameters, this study shows that DTI based markers are sensitive to local structural changes in intact arterial tissue samples and these markers may have clinical relevance in the diagnosis of atherosclerosis and aneurysm.

  10. A continuous tensor field approximation of discrete DT-MRI data for extracting microstructural and architectural features of tissue.

    PubMed

    Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J

    2002-01-01

    The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.

  11. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks

    PubMed Central

    Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek

    2015-01-01

    Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org. PMID:26063822

  12. Tensor methods for parameter estimation and bifurcation analysis of stochastic reaction networks.

    PubMed

    Liao, Shuohao; Vejchodský, Tomáš; Erban, Radek

    2015-07-06

    Stochastic modelling of gene regulatory networks provides an indispensable tool for understanding how random events at the molecular level influence cellular functions. A common challenge of stochastic models is to calibrate a large number of model parameters against the experimental data. Another difficulty is to study how the behaviour of a stochastic model depends on its parameters, i.e. whether a change in model parameters can lead to a significant qualitative change in model behaviour (bifurcation). In this paper, tensor-structured parametric analysis (TPA) is developed to address these computational challenges. It is based on recently proposed low-parametric tensor-structured representations of classical matrices and vectors. This approach enables simultaneous computation of the model properties for all parameter values within a parameter space. The TPA is illustrated by studying the parameter estimation, robustness, sensitivity and bifurcation structure in stochastic models of biochemical networks. A Matlab implementation of the TPA is available at http://www.stobifan.org.

  13. Reconstruction of the arcuate fasciculus for surgical planning in the setting of peritumoral edema using two-tensor unscented Kalman filter tractography.

    PubMed

    Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J

    2015-01-01

    Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p < 0.01). Two-tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.

  14. Multivariate statistical analysis of diffusion imaging parameters using partial least squares: Application to white matter variations in Alzheimer's disease.

    PubMed

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H; Fischl, Bruce

    2016-07-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer's and Huntington's diseases (Salat et al., 2010; Rosas et al., 2006). The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as diffusion tensor imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer's disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: "are there regions in the white matter where Alzheimer's disease has a different effect than aging or similar effect as aging?" and "are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer's disease but with differing multivariate effects?" Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Multivariate Statistical Analysis of Diffusion Imaging Parameters using Partial Least Squares: Application to White Matter Variations in Alzheimer’s Disease

    PubMed Central

    Konukoglu, Ender; Coutu, Jean-Philippe; Salat, David H.; Fischl, Bruce

    2016-01-01

    Diffusion magnetic resonance imaging (dMRI) is a unique technology that allows the noninvasive quantification of microstructural tissue properties of the human brain in healthy subjects as well as the probing of disease-induced variations. Population studies of dMRI data have been essential in identifying pathological structural changes in various conditions, such as Alzheimer’s and Huntington’s diseases1,2. The most common form of dMRI involves fitting a tensor to the underlying imaging data (known as Diffusion Tensor Imaging, or DTI), then deriving parametric maps, each quantifying a different aspect of the underlying microstructure, e.g. fractional anisotropy and mean diffusivity. To date, the statistical methods utilized in most DTI population studies either analyzed only one such map or analyzed several of them, each in isolation. However, it is most likely that variations in the microstructure due to pathology or normal variability would affect several parameters simultaneously, with differing variations modulating the various parameters to differing degrees. Therefore, joint analysis of the available diffusion maps can be more powerful in characterizing histopathology and distinguishing between conditions than the widely used univariate analysis. In this article, we propose a multivariate approach for statistical analysis of diffusion parameters that uses partial least squares correlation (PLSC) analysis and permutation testing as building blocks in a voxel-wise fashion. Stemming from the common formulation, we present three different multivariate procedures for group analysis, regressing-out nuisance parameters and comparing effects of different conditions. We used the proposed procedures to study the effects of non-demented aging, Alzheimer’s disease and mild cognitive impairment on the white matter. Here, we present results demonstrating that the proposed PLSC-based approach can differentiate between effects of different conditions in the same region as well as uncover spatial variations of effects across the white matter. The proposed procedures were able to answer questions on structural variations such as: “are there regions in the white matter where Alzheimer’s disease has a different effect than aging or similar effect as aging?” and “are there regions in the white matter that are affected by both mild cognitive impairment and Alzheimer’s disease but with differing multivariate effects?” PMID:27103138

  16. Correlation of dopaminergic terminal dysfunction and microstructural abnormalities of the basal ganglia and the olfactory tract in Parkinson's disease.

    PubMed

    Scherfler, Christoph; Esterhammer, Regina; Nocker, Michael; Mahlknecht, Philipp; Stockner, Heike; Warwitz, Boris; Spielberger, Sabine; Pinter, Bernadette; Donnemiller, Eveline; Decristoforo, Clemens; Virgolini, Irene; Schocke, Michael; Poewe, Werner; Seppi, Klaus

    2013-10-01

    Signal abnormalities of the substantia nigra and the olfactory tract detected either by diffusion tensor imaging, including measurements of mean diffusivity, a parameter of brain tissue integrity, and fractional anisotropy, a parameter of neuronal fibre integrity, or transcranial sonography, were recently reported in the early stages of Parkinson's disease. In this study, changes in the nigral and olfactory diffusion tensor signal, as well as nigral echogenicity, were correlated with clinical scales of motor disability, odour function and putaminal dopamine storage capacity measured with 6-[(18)F] fluorolevodopa positron emission tomography in early and advanced stages of Parkinson's disease. Diffusion tensor imaging, transcranial sonography and positron emission tomography were performed on 16 patients with Parkinson's disease (mean disease duration 3.7 ± 3.7 years, Hoehn and Yahr stage 1 to 4) and 14 age-matched healthy control subjects. Odour function was measured by the standardized Sniffin' Sticks Test. Mean putaminal 6-[(18)F] fluorolevodopa influx constant, mean nigral echogenicity, mean diffusivity and fractional anisotropy values of the substantia nigra and the olfactory tract were identified by region of interest analysis. When compared with the healthy control group, the Parkinson's disease group showed significant signal changes in the caudate and putamen by 6-[(18)F] fluorolevodopa positron emission tomography, in the substantia nigra by transcranial sonography, mean diffusivity and fractional anisotropy (P < 0.001, P < 0.01, P < 0.05, respectively) and in the olfactory tract by mean diffusivity (P < 0.05). Regional mean diffusivity values of the substantia nigra and the olfactory tract correlated significantly with putaminal 6-[(18)F] fluorolevodopa uptake (r = -0.52, P < 0.05 and r = -0.71, P < 0.01). Significant correlations were also found between nigral mean diffusivity values and the Unified Parkinson's Disease Rating Scale motor score (r = -0.48, P < 0.01) and between mean putaminal 6-[(18)F] fluorolevodopa uptake and the total odour score (r = 0.58; P < 0.05) as well as the Unified Parkinson's Disease Rating Scale motor score (r = -0.53, P < 0.05). This study reports a significant association between increased mean diffusivity signal and decreased 6-[(18)F] fluorolevodopa uptake, indicating that microstructural degradation of the substantia nigra and the olfactory tract parallels progression of putaminal dopaminergic dysfunction in Parkinson's disease. Since increases in nigral mean diffusivity signal also correlated with motor dysfunction, diffusion tensor imaging may serve as a surrogate marker for disease progression in future studies of putative disease modifying therapies.

  17. White matter microstructure in athletes with a history of concussion: Comparing diffusion tensor imaging (DTI) and neurite orientation dispersion and density imaging (NODDI).

    PubMed

    Churchill, Nathan W; Caverzasi, Eduardo; Graham, Simon J; Hutchison, Michael G; Schweizer, Tom A

    2017-08-01

    Sport concussion is associated with disturbances in brain function in the absence of gross anatomical lesions, and may have long-term health consequences. Diffusion-weighted magnetic resonance imaging (MRI) methods provide a powerful tool for investigating alterations in white matter microstructure reflecting the long-term effects of concussion. In a previous study, diffusion tensor imaging (DTI) showed that athletes with a history of concussion had elevated fractional anisotropy (FA) and reduced mean diffusivity (MD) parameters. To better understand these effects, this study compared DTI results to neurite orientation dispersion and density imaging (NODDI), which was used to estimate the intracellular volume fraction (V IC ) and orientation dispersion index (ODI). Sixty-eight (68) varsity athletes were recruited, including 37 without a history of concussion and 31 with concussion >6 months prior to imaging. Univariate analyses showed elevated FA and decreased MD for concussed athletes, along with increased V IC and reduced ODI, indicating greater neurite density and coherence of neurite orientation within white matter. Multivariate analyses also showed that for athletes with a history of concussion, white matter regions with increased FA had increased V IC and decreased ODI, with greater effects among athletes who were imaged a longer time since their last concussion. These findings enhance our understanding of the relationship between the biophysics of water diffusion and concussion neurobiology for young, healthy adults. Hum Brain Mapp 38:4201-4211, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  18. Assessment of MRI-Based Marker of Dopaminergic Integrity as a Biological Indicator of Gulf War Illness

    DTIC Science & Technology

    2016-10-01

    including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and...SUBJECT TERMS Gulf war illness; magnetic resonance imaging; dopamine; diffusion tensor imaging 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...nigra, basal ganglia and cortex as markers of integrity of the nigro-striatal dopaminergic pathway using high resolution diffusion tensor imaging (DTI

  19. Semi-Supervised Tensor-Based Graph Embedding Learning and Its Application to Visual Discriminant Tracking.

    PubMed

    Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen

    2017-01-01

    An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.

  20. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma-Foundations and Future.

    PubMed

    Salama, Gayle R; Heier, Linda A; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2017-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes.

  1. Diffusion Weighted/Tensor Imaging, Functional MRI and Perfusion Weighted Imaging in Glioblastoma—Foundations and Future

    PubMed Central

    Salama, Gayle R.; Heier, Linda A.; Patel, Praneil; Ramakrishna, Rohan; Magge, Rajiv; Tsiouris, Apostolos John

    2018-01-01

    In this article, we review the basics of diffusion tensor imaging and functional MRI, their current utility in preoperative neurosurgical mapping, and their limitations. We also discuss potential future applications, including implementation of resting state functional MRI. We then discuss perfusion and diffusion-weighted imaging and their application in advanced neuro-oncologic practice. We explain how these modalities can be helpful in guiding surgical biopsies and differentiating recurrent tumor from treatment related changes. PMID:29403420

  2. The instantaneous apparent resistivity tensor: a visualization scheme for LOTEM electric field measurements

    NASA Astrophysics Data System (ADS)

    Caldwell, T. Grant; Bibby, Hugh M.

    1998-12-01

    Long-offset transient electromagnetic (LOTEM) data have traditionally been represented as early- and late-time apparent resistivities. Time-varying electric field data recorded in a LOTEM survey made with multiple sources can be represented by an `instantaneous apparent resistivity tensor'. Three independent, coordinate-invariant, time-varying apparent resistivities can be derived from this tensor. For dipolar sources, the invariants are also independent of source orientation. In a uniform-resistivity half-space, the invariant given by the square root of the tensor determinant remains almost constant with time, deviating from the half-space resistivity by a maximum of 6 per cent. For a layered half-space, a distance-time pseudo-section of the determinant apparent resistivity produces an image of the layering beneath the measurement profile. As time increases, the instantaneous apparent resistivity tensor approaches the direct current apparent resistivity tensor. An approximate time-to-depth conversion can be achieved by integrating the diffusion depth formula with time, using the determinant apparent resistivity at each instant to represent the resistivity of the conductive medium. Localized near-surface inhomogeneities produce shifts in the time-domain apparent resistivity sounding curves that preserve the gradient, analogous to static shifts seen in magnetotelluric soundings. Instantaneous apparent resistivity tensors calculated for 3-D resistivity models suggest that profiles of LOTEM measurements across a simple 3-D structure can be used to create an image that reproduces the main features of the subsurface resistivity. Where measurements are distributed over an area, maps of the tensor invariants can be made into a sequence of images, which provides a way of `time slicing' down through the target structure.

  3. Parallel changes in serum proteins and diffusion tensor imaging in methamphetamine-associated psychosis.

    PubMed

    Breen, Michael S; Uhlmann, Anne; Ozcan, Sureyya; Chan, Man; Pinto, Dalila; Bahn, Sabine; Stein, Dan J

    2017-03-02

    Methamphetamine-associated psychosis (MAP) involves widespread neurocognitive and molecular deficits, however accurate diagnosis remains challenging. Integrating relationships between biological markers, brain imaging and clinical parameters may provide an improved mechanistic understanding of MAP, that could in turn drive the development of better diagnostics and treatment approaches. We applied selected reaction monitoring (SRM)-based proteomics, profiling 43 proteins in serum previously implicated in the etiology of major psychiatric disorders, and integrated these data with diffusion tensor imaging (DTI) and psychometric measurements from patients diagnosed with MAP (N = 12), methamphetamine dependence without psychosis (MA; N = 14) and healthy controls (N = 16). Protein analysis identified changes in APOC2 and APOH, which differed significantly in MAP compared to MA and controls. DTI analysis indicated widespread increases in mean diffusivity and radial diffusivity delineating extensive loss of white matter integrity and axon demyelination in MAP. Upon integration, several co-linear relationships between serum proteins and DTI measures reported in healthy controls were disrupted in MA and MAP groups; these involved areas of the brain critical for memory and social emotional processing. These findings suggest that serum proteomics and DTI are sensitive measures for detecting pathophysiological changes in MAP and describe a potential diagnostic fingerprint of the disorder.

  4. Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.

    2009-01-01

    We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor field. PMID:19540791

  5. Preoperative Visualization of Cranial Nerves in Skull Base Tumor Surgery Using Diffusion Tensor Imaging Technology.

    PubMed

    Ma, Jun; Su, Shaobo; Yue, Shuyuan; Zhao, Yan; Li, Yonggang; Chen, Xiaochen; Ma, Hui

    2016-01-01

    To visualize cranial nerves (CNs) using diffusion tensor imaging (DTI) with special parameters. This study also involved the evaluation of preoperative estimates and intraoperative confirmation of the relationship between nerves and tumor by verifying the accuracy of visualization. 3T magnetic resonance imaging scans including 3D-FSPGR, FIESTA, and DTI were used to collect information from 18 patients with skull base tumor. DTI data were integrated into the 3D slicer for fiber tracking and overlapped anatomic images to determine course of nerves. 3D reconstruction of tumors was achieved to perform neighboring, encasing, and invading relationship between lesion and nerves. Optic pathway including the optic chiasm could be traced in cases of tuberculum sellae meningioma and hypophysoma (pituitary tumor). The oculomotor nerve, from the interpeduncular fossa out of the brain stem to supraorbital fissure, was clearly visible in parasellar meningioma cases. Meanwhile, cisternal parts of trigeminal nerve and abducens nerve, facial nerve were also imaged well in vestibular schwannomas and petroclival meningioma cases. The 3D-spatial relationship between CNs and skull base tumor estimated preoperatively by tumor modeling and tractography corresponded to the results determined during surgery. Supported by DTI and 3D slicer, preoperative 3D reconstruction of most CNs related to skull base tumor is feasible in pathological circumstances. We consider DTI Technology to be a useful tool for predicting the course and location of most CNs, and syntopy between them and skull base tumor.

  6. Using tensor-based morphometry to detect structural brain abnormalities in rats with adolescent intermittent alcohol exposure

    NASA Astrophysics Data System (ADS)

    Paniagua, Beatriz; Ehlers, Cindy; Crews, Fulton; Budin, Francois; Larson, Garrett; Styner, Martin; Oguz, Ipek

    2011-03-01

    Understanding the effects of adolescent binge drinking that persist into adulthood is a crucial public health issue. Adolescent intermittent ethanol exposure (AIE) is an animal model that can be used to investigate these effects in rodents. In this work, we investigate the application of a particular image analysis technique, tensor-based morphometry, for detecting anatomical differences between AIE and control rats using Diffusion Tensor Imaging (DTI). Deformation field analysis is a popular method for detecting volumetric changes analyzing Jacobian determinants calculated on deformation fields. Recent studies showed that computing deformation field metrics on the full deformation tensor, often referred to as tensor-based morphometry (TBM), increases the sensitivity to anatomical differences. In this paper we conduct a comprehensive TBM study for precisely locating differences between control and AIE rats. Using a DTI RARE sequence designed for minimal geometric distortion, 12-directional images were acquired postmortem for control and AIE rats (n=9). After preprocessing, average images for the two groups were constructed using an unbiased atlas building approach. We non-rigidly register the two atlases using Large Deformation Diffeomorphic Metric Mapping, and analyze the resulting deformation field using TBM. In particular, we evaluate the tensor determinant, geodesic anisotropy, and deformation direction vector (DDV) on the deformation field to detect structural differences. This yields data on the local amount of growth, shrinkage and the directionality of deformation between the groups. We show that TBM can thus be used to measure group morphological differences between rat populations, demonstrating the potential of the proposed framework.

  7. Neurite density from magnetic resonance diffusion measurements at ultrahigh field: Comparison with light microscopy and electron microscopy

    PubMed Central

    Jespersen, Sune N.; Bjarkam, Carsten R.; Nyengaard, Jens R.; Chakravarty, M. Mallar; Hansen, Brian; Vosegaard, Thomas; Østergaard, Leif; Yablonskiy, Dmitriy; Nielsen, Niels Chr.; Vestergaard-Poulsen, Peter

    2010-01-01

    Due to its unique sensitivity to tissue microstructure, diffusion-weighted magnetic resonance imaging (MRI) has found many applications in clinical and fundamental science. With few exceptions, a more precise correspondence between physiological or biophysical properties and the obtained diffusion parameters remain uncertain due to lack of specificity. In this work, we address this problem by comparing diffusion parameters of a recently introduced model for water diffusion in brain matter to light microscopy and quantitative electron microscopy. Specifically, we compare diffusion model predictions of neurite density in rats to optical myelin staining intensity and stereological estimation of neurite volume fraction using electron microscopy. We find that the diffusion model describes data better and that its parameters show stronger correlation with optical and electron microscopy, and thus reflect myelinated neurite density better than the more frequently used diffusion tensor imaging (DTI) and cumulant expansion methods. Furthermore, the estimated neurite orientations capture dendritic architecture more faithfully than DTI diffusion ellipsoids. PMID:19732836

  8. Similar Tensor Arrays - A Framework for Storage of Tensor Array Data

    NASA Astrophysics Data System (ADS)

    Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans

    This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.

  9. Considerations in high-resolution skeletal muscle diffusion tensor imaging using single-shot echo planar imaging with stimulated-echo preparation and sensitivity encoding.

    PubMed

    Karampinos, Dimitrios C; Banerjee, Suchandrima; King, Kevin F; Link, Thomas M; Majumdar, Sharmila

    2012-05-01

    Previous studies have shown that skeletal muscle diffusion tensor imaging (DTI) can noninvasively probe changes in the muscle fiber architecture and microstructure in diseased and damaged muscles. However, DTI fiber reconstruction in small muscles and in muscle regions close to aponeuroses and tendons remains challenging because of partial volume effects. Increasing the spatial resolution of skeletal muscle single-shot diffusion-weighted echo planar imaging (DW-EPI) can be hindered by the inherently low signal-to-noise ratio (SNR) of muscle DW-EPI because of the short muscle T(2) and the high sensitivity of single-shot EPI to off-resonance effects and T(2)* blurring. In this article, eddy current-compensated diffusion-weighted stimulated-echo preparation is combined with sensitivity encoding (SENSE) to maintain good SNR properties and to reduce the sensitivity to distortions and T(2)* blurring in high-resolution skeletal muscle single-shot DW-EPI. An analytical framework is developed to optimize the reduction factor and diffusion weighting time to achieve maximum SNR. Arguments for the selection of the experimental parameters are then presented considering the compromise between SNR, B(0)-induced distortions, T(2)* blurring effects and tissue incoherent motion effects. On the basis of the selected parameters in a high-resolution skeletal muscle single-shot DW-EPI protocol, imaging protocols at lower acquisition matrix sizes are defined with matched bandwidth in the phase-encoding direction and SNR. In  vivo results show that high-resolution skeletal muscle DTI with minimized sensitivity to geometric distortions and T(2)* blurring is feasible using the proposed methodology. In particular, a significant benefit is demonstrated from a reduction in partial volume effects for resolving multi-pennate muscles and muscles with small cross-sections in calf muscle DTI. Copyright © 2011 John Wiley & Sons, Ltd.

  10. Analysis of radiological parameters associated with decreased fractional anisotropy values on diffusion tensor imaging in patients with lumbar spinal stenosis.

    PubMed

    Wang, Xiandi; Wang, Hongli; Sun, Chi; Zhou, Shuyi; Meng, Tao; Lv, Feizhou; Ma, Xiaosheng; Xia, Xinlei; Jiang, Jianyuan

    2018-04-26

    Previous studies have indicated that decreased fractional anisotropy (FA) values on diffusion tensor imaging (DTI) are well correlated with the symptoms of nerve root compression. The aim of our study is to determine primary radiological parameters associated with decreased FA values in patients with lumbar spinal stenosis involving single L5 nerve root. Patients confirmed with single L5 nerve root compression by transforaminal nerve root blocks were included in this study. FA values of L5 nerve roots on both symptomatic and asymptomatic side were obtained. Conventional radiological parameters, such as disc height, degenerative scoliosis, dural sac cross-sectional area (DSCSA), foraminal height (FH), hypertrophic facet joint degeneration (HFJD), sagittal rotation (SR), sedimentation sign, sagittal translation and traction spur were measured. Correlation and regression analyses were performed between the radiological parameters and FA values of the symptomatic L5 nerve roots. A predictive regression equation was established. Twenty-one patients were included in this study. FA values were significantly lower at the symptomatic side comparing to the asymptomatic side (0.263 ± 0.069 vs. 0.334 ± 0.080, P = 0.038). DSCSA, FH, HFJD, and SR were significantly correlated with the decreased FA values, with r = 0.518, 0.443, 0.472 and - 0.910, respectively (P < 0.05). DSCSA and SR were found to be the primary radiological parameters related to the decreased FA values, and the regression equation is FA = - 0.012 × SR + 0.002 × DSCSA. DSCSA and SR were primary contributors to decreased FA values in LSS patients involving single L5 nerve root, indicating that central canal decompression and segmental stability should be the first considerations in preoperative planning of these patients. These slides can be retrieved under Electronic Supplementary Material.

  11. MULTISCALE TENSOR ANISOTROPIC FILTERING OF FLUORESCENCE MICROSCOPY FOR DENOISING MICROVASCULATURE.

    PubMed

    Prasath, V B S; Pelapur, R; Glinskii, O V; Glinsky, V V; Huxley, V H; Palaniappan, K

    2015-04-01

    Fluorescence microscopy images are contaminated by noise and improving image quality without blurring vascular structures by filtering is an important step in automatic image analysis. The application of interest here is to automatically extract the structural components of the microvascular system with accuracy from images acquired by fluorescence microscopy. A robust denoising process is necessary in order to extract accurate vascular morphology information. For this purpose, we propose a multiscale tensor with anisotropic diffusion model which progressively and adaptively updates the amount of smoothing while preserving vessel boundaries accurately. Based on a coherency enhancing flow with planar confidence measure and fused 3D structure information, our method integrates multiple scales for microvasculature preservation and noise removal membrane structures. Experimental results on simulated synthetic images and epifluorescence images show the advantage of our improvement over other related diffusion filters. We further show that the proposed multiscale integration approach improves denoising accuracy of different tensor diffusion methods to obtain better microvasculature segmentation.

  12. Tract-Specific Analyses of Diffusion Tensor Imaging Show Widespread White Matter Compromise in Autism Spectrum Disorder

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Muller, Ralph-Axel

    2011-01-01

    Background: Previous diffusion tensor imaging (DTI) studies have shown white matter compromise in children and adults with autism spectrum disorder (ASD), which may relate to reduced connectivity and impaired function of distributed networks. However, tract-specific evidence remains limited in ASD. We applied tract-based spatial statistics (TBSS)…

  13. White Matter Compromise of Callosal and Subcortical Fiber Tracts in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Shukla, Dinesh K.; Keehn, Brandon; Lincoln, Alan J.; Muller, Ralph-Axel

    2010-01-01

    Objective: Autism spectrum disorder (ASD) is increasingly viewed as a disorder of functional networks, highlighting the importance of investigating white matter and interregional connectivity. We used diffusion tensor imaging (DTI) to examine white matter integrity for the whole brain and for corpus callosum, internal capsule, and middle…

  14. Diffusion tensor analysis with invariant gradients and rotation tangents.

    PubMed

    Kindlmann, Gordon; Ennis, Daniel B; Whitaker, Ross T; Westin, Carl-Fredrik

    2007-11-01

    Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.

  15. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments.

    PubMed

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D , observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄ . When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model.

  16. Eigenvalues of Random Matrices with Isotropic Gaussian Noise and the Design of Diffusion Tensor Imaging Experiments*

    PubMed Central

    Gasbarra, Dario; Pajevic, Sinisa; Basser, Peter J.

    2017-01-01

    Tensor-valued and matrix-valued measurements of different physical properties are increasingly available in material sciences and medical imaging applications. The eigenvalues and eigenvectors of such multivariate data provide novel and unique information, but at the cost of requiring a more complex statistical analysis. In this work we derive the distributions of eigenvalues and eigenvectors in the special but important case of m×m symmetric random matrices, D, observed with isotropic matrix-variate Gaussian noise. The properties of these distributions depend strongly on the symmetries of the mean tensor/matrix, D̄. When D̄ has repeated eigenvalues, the eigenvalues of D are not asymptotically Gaussian, and repulsion is observed between the eigenvalues corresponding to the same D̄ eigenspaces. We apply these results to diffusion tensor imaging (DTI), with m = 3, addressing an important problem of detecting the symmetries of the diffusion tensor, and seeking an experimental design that could potentially yield an isotropic Gaussian distribution. In the 3-dimensional case, when the mean tensor is spherically symmetric and the noise is Gaussian and isotropic, the asymptotic distribution of the first three eigenvalue central moment statistics is simple and can be used to test for isotropy. In order to apply such tests, we use quadrature rules of order t ≥ 4 with constant weights on the unit sphere to design a DTI-experiment with the property that isotropy of the underlying true tensor implies isotropy of the Fisher information. We also explain the potential implications of the methods using simulated DTI data with a Rician noise model. PMID:28989561

  17. Light-cone distribution amplitudes of light JPC = 2- tensor mesons in QCD

    NASA Astrophysics Data System (ADS)

    Aliev, T. M.; Bilmis, S.; Yang, Kwei-Chou

    2018-06-01

    We present a study for two-quark light-cone distribution amplitudes for the 13D2 light tensor meson states with quantum number JPC =2-. Because of the G-parity, the chiral-even two-quark light-cone distribution amplitudes of this tensor meson are antisymmetric under the interchange of momentum fractions of the quark and antiquark in the SU(3) limit, while the chiral-odd ones are symmetric. The asymptotic leading-twist LCDAs with the strange quark mass correction are shown. We estimate the relevant parameters, the decay constants fT and fT⊥, and first Gegenbauer moment a1⊥ , by using the QCD sum rule method. These parameters play a central role in the investigation of B meson decaying into the 2- tensor mesons.

  18. Higher derivative extensions of 3 d Chern-Simons models: conservation laws and stability

    NASA Astrophysics Data System (ADS)

    Kaparulin, D. S.; Karataeva, I. Yu.; Lyakhovich, S. L.

    2015-11-01

    We consider the class of higher derivative 3 d vector field models with the field equation operator being a polynomial of the Chern-Simons operator. For the nth-order theory of this type, we provide a general recipe for constructing n-parameter family of conserved second rank tensors. The family includes the canonical energy-momentum tensor, which is unbounded, while there are bounded conserved tensors that provide classical stability of the system for certain combinations of the parameters in the Lagrangian. We also demonstrate the examples of consistent interactions which are compatible with the requirement of stability.

  19. Experimental determination of the carboxylate oxygen electric-field-gradient and chemical shielding tensors in L-alanine and L-phenylalanine

    NASA Astrophysics Data System (ADS)

    Yamada, Kazuhiko; Asanuma, Miwako; Honda, Hisashi; Nemoto, Takahiro; Yamazaki, Toshio; Hirota, Hiroshi

    2007-10-01

    We report a solid-state 17O NMR study of the 17O electric-field-gradient (EFG) and chemical shielding (CS) tensors for each carboxylate group in polycrystalline L-alanine and L-phenylalanine. The magic angle spinning (MAS) and stationary 17O NMR spectra of these compounds were obtained at 9.4, 14.1, and 16.4 T. Analyzes of these 17O NMR spectra yielded reliable experimental NMR parameters including 17O CS tensor components, 17O quadrupole coupling parameters, and the relative orientations between the 17O CS and EFG tensors. The extensive quantum chemical calculations at both the restricted Hartree-Fock and density-functional theories were carried out with various basis sets to evaluate the quality of quantum chemical calculations for the 17O NMR tensors in L-alanine. For 17O CS tensors, the calculations at the B3LYP/D95 ∗∗ level could reasonably reproduce 17O CS tensors, but they still showed some discrepancies in the δ11 components by approximately 36 ppm. For 17O EFG calculations, it was advantageous to use calibrated Q value to give acceptable CQ values. The calculated results also demonstrated that not only complete intermolecular hydrogen-bonding networks to target oxygen in L-alanine, but also intermolecular interactions around the NH3+ group were significant to reproduce the 17O NMR tensors.

  20. Quantitative metrics for evaluating parallel acquisition techniques in diffusion tensor imaging at 3 Tesla.

    PubMed

    Ardekani, Siamak; Selva, Luis; Sayre, James; Sinha, Usha

    2006-11-01

    Single-shot echo-planar based diffusion tensor imaging is prone to geometric and intensity distortions. Parallel imaging is a means of reducing these distortions while preserving spatial resolution. A quantitative comparison at 3 T of parallel imaging for diffusion tensor images (DTI) using k-space (generalized auto-calibrating partially parallel acquisitions; GRAPPA) and image domain (sensitivity encoding; SENSE) reconstructions at different acceleration factors, R, is reported here. Images were evaluated using 8 human subjects with repeated scans for 2 subjects to estimate reproducibility. Mutual information (MI) was used to assess the global changes in geometric distortions. The effects of parallel imaging techniques on random noise and reconstruction artifacts were evaluated by placing 26 regions of interest and computing the standard deviation of apparent diffusion coefficient and fractional anisotropy along with the error of fitting the data to the diffusion model (residual error). The larger positive values in mutual information index with increasing R values confirmed the anticipated decrease in distortions. Further, the MI index of GRAPPA sequences for a given R factor was larger than the corresponding mSENSE images. The residual error was lowest in the images acquired without parallel imaging and among the parallel reconstruction methods, the R = 2 acquisitions had the least error. The standard deviation, accuracy, and reproducibility of the apparent diffusion coefficient and fractional anisotropy in homogenous tissue regions showed that GRAPPA acquired with R = 2 had the least amount of systematic and random noise and of these, significant differences with mSENSE, R = 2 were found only for the fractional anisotropy index. Evaluation of the current implementation of parallel reconstruction algorithms identified GRAPPA acquired with R = 2 as optimal for diffusion tensor imaging.

  1. Tensor-based tracking of the aorta in phase-contrast MR images

    NASA Astrophysics Data System (ADS)

    Azad, Yoo-Jin; Malsam, Anton; Ley, Sebastian; Rengier, Fabian; Dillmann, Rüdiger; Unterhinninghofen, Roland

    2014-03-01

    The velocity-encoded magnetic resonance imaging (PC-MRI) is a valuable technique to measure the blood flow velocity in terms of time-resolved 3D vector fields. For diagnosis, presurgical planning and therapy control monitoring the patient's hemodynamic situation is crucial. Hence, an accurate and robust segmentation of the diseased vessel is the basis for further methods like the computation of the blood pressure. In the literature, there exist some approaches to transfer the methods of processing DT-MR images to PC-MR data, but the potential of this approach is not fully exploited yet. In this paper, we present a method to extract the centerline of the aorta in PC-MR images by applying methods from the DT-MRI. On account of this, in the first step the velocity vector fields are converted into tensor fields. In the next step tensor-based features are derived and by applying a modified tensorline algorithm the tracking of the vessel course is accomplished. The method only uses features derived from the tensor imaging without the use of additional morphology information. For evaluation purposes we applied our method to 4 volunteer as well as 26 clinical patient datasets with good results. In 29 of 30 cases our algorithm accomplished to extract the vessel centerline.

  2. Fracture characterization by hybrid enumerative search and Gauss-Newton least-squares inversion methods

    NASA Astrophysics Data System (ADS)

    Alkharji, Mohammed N.

    Most fracture characterization methods provide a general description of the fracture parameters as part of the reservoirs parameters; the fracture interaction and geometry within the reservoir is given less attention. T-Matrix and Linear Slip effective medium fracture models are implemented to invert the elastic tensor for the parameters and geometries of the fractures within the reservoir. The fracture inverse problem has an ill-posed, overdetermined, underconstrained rank-deficit system of equations. Least-squares inverse methods are used to solve the problem. A good starting initial model for the parameters is a key factor in the reliability of the inversion. Most methods assume that the starting parameters are close to the solution to avoid inaccurate local minimum solutions. The prior knowledge of the fracture parameters and their geometry is not available. We develop a hybrid, enumerative and Gauss-Newton, method that estimates the fracture parameters and geometry from the elastic tensor with no prior knowledge of the initial parameter values. The fracture parameters are separated into two groups. The first group contains the fracture parameters with no prior information, and the second group contains the parameters with known prior information. Different models are generated from the first group parameters by sampling the solution space over a predefined range of possible solutions for each parameter. Each model generated by the first group is fixed and used as a starting model to invert for the second group of parameters using the Gauss-Newton method. The least-squares residual between the observed elastic tensor and the estimated elastic tensor is calculated for each model. The model parameters that yield the least-squares residual corresponds to the correct fracture reservoir parameters and geometry. Two synthetic examples of fractured reservoirs with oil and gas saturations were inverted with no prior information about the fracture properties. The results showed that the hybrid algorithm successfully predicted the fracture parametrization, geometry, and the fluid content within the modeled reservoir. The method was also applied on an elastic tensor extracted from the Weyburn field in Saskatchewan, Canada. The solution suggested no presence of fractures but only a VTI system caused by the shale layering in the targeted reservoir, this interpretation is supported by other Weyburn field data.

  3. Retrospective correction of bias in diffusion tensor imaging arising from coil combination mode.

    PubMed

    Sakaie, Ken; Lowe, Mark

    2017-04-01

    To quantify and retrospectively correct for systematic differences in diffusion tensor imaging (DTI) measurements due to differences in coil combination mode. Multi-channel coils are now standard among MRI systems. There are several options for combining signal from multiple coils during image reconstruction, including sum-of-squares (SOS) and adaptive combine (AC). This contribution examines the bias between SOS- and AC-derived measures of tissue microstructure and a strategy for limiting that bias. Five healthy subjects were scanned under an institutional review board-approved protocol. Each set of raw image data was reconstructed twice-once with SOS and once with AC. The diffusion tensor was calculated from SOS- and AC-derived data by two algorithms-standard log-linear least squares and an approach that accounts for the impact of coil combination on signal statistics. Systematic differences between SOS and AC in terms of tissue microstructure (axial diffusivity, radial diffusivity, mean diffusivity and fractional anisotropy) were evaluated on a voxel-by-voxel basis. SOS-based tissue microstructure values are systematically lower than AC-based measures throughout the brain in each subject when using the standard tensor calculation method. The difference between SOS and AC can be virtually eliminated by taking into account the signal statistics associated with coil combination. The impact of coil combination mode on diffusion tensor-based measures of tissue microstructure is statistically significant but can be corrected retrospectively. The ability to do so is expected to facilitate pooling of data among imaging protocols. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Moment tensor inversion with three-dimensional sensor configuration of mining induced seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-06-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). A stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double-couple and full moment tensor with high frequency data, is very challenging. Moreover, the application to underground mining system requires accounting for the 3-D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3-D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in the presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to eight events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double-couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip and rake configurations of the double-couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  5. Moment Tensor Inversion with 3D sensor configuration of Mining Induced Seismicity (Kiruna mine, Sweden)

    NASA Astrophysics Data System (ADS)

    Ma, Ju; Dineva, Savka; Cesca, Simone; Heimann, Sebastian

    2018-03-01

    Mining induced seismicity is an undesired consequence of mining operations, which poses significant hazard to miners and infrastructures and requires an accurate analysis of the rupture process. Seismic moment tensors of mining-induced events help to understand the nature of mining-induced seismicity by providing information about the relationship between the mining, stress redistribution and instabilities in the rock mass. In this work, we adapt and test a waveform-based inversion method on high frequency data recorded by a dense underground seismic system in one of the largest underground mines in the world (Kiruna mine, Sweden). Stable algorithm for moment tensor inversion for comparatively small mining induced earthquakes, resolving both the double couple and full moment tensor with high frequency data is very challenging. Moreover, the application to underground mining system requires accounting for the 3D geometry of the monitoring system. We construct a Green's function database using a homogeneous velocity model, but assuming a 3D distribution of potential sources and receivers. We first perform a set of moment tensor inversions using synthetic data to test the effects of different factors on moment tensor inversion stability and source parameters accuracy, including the network spatial coverage, the number of sensors and the signal-to-noise ratio. The influence of the accuracy of the input source parameters on the inversion results is also tested. Those tests show that an accurate selection of the inversion parameters allows resolving the moment tensor also in presence of realistic seismic noise conditions. Finally, the moment tensor inversion methodology is applied to 8 events chosen from mining block #33/34 at Kiruna mine. Source parameters including scalar moment, magnitude, double couple, compensated linear vector dipole and isotropic contributions as well as the strike, dip, rake configurations of the double couple term were obtained. The orientations of the nodal planes of the double-couple component in most cases vary from NNW to NNE with a dip along the ore body or in the opposite direction.

  6. High-resolution dynamic 31 P-MRSI using a low-rank tensor model.

    PubMed

    Ma, Chao; Clifford, Bryan; Liu, Yuchi; Gu, Yuning; Lam, Fan; Yu, Xin; Liang, Zhi-Pei

    2017-08-01

    To develop a rapid 31 P-MRSI method with high spatiospectral resolution using low-rank tensor-based data acquisition and image reconstruction. The multidimensional image function of 31 P-MRSI is represented by a low-rank tensor to capture the spatial-spectral-temporal correlations of data. A hybrid data acquisition scheme is used for sparse sampling, which consists of a set of "training" data with limited k-space coverage to capture the subspace structure of the image function, and a set of sparsely sampled "imaging" data for high-resolution image reconstruction. An explicit subspace pursuit approach is used for image reconstruction, which estimates the bases of the subspace from the "training" data and then reconstructs a high-resolution image function from the "imaging" data. We have validated the feasibility of the proposed method using phantom and in vivo studies on a 3T whole-body scanner and a 9.4T preclinical scanner. The proposed method produced high-resolution static 31 P-MRSI images (i.e., 6.9 × 6.9 × 10 mm 3 nominal resolution in a 15-min acquisition at 3T) and high-resolution, high-frame-rate dynamic 31 P-MRSI images (i.e., 1.5 × 1.5 × 1.6 mm 3 nominal resolution, 30 s/frame at 9.4T). Dynamic spatiospectral variations of 31 P-MRSI signals can be efficiently represented by a low-rank tensor. Exploiting this mathematical structure for data acquisition and image reconstruction can lead to fast 31 P-MRSI with high resolution, frame-rate, and SNR. Magn Reson Med 78:419-428, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  7. Dimensions of Attention Associated With the Microstructure of Corona Radiata White Matter.

    PubMed

    Stave, Elise A; De Bellis, Michael D; Hooper, Steven R; Woolley, Donald P; Chang, Suk Ki; Chen, Steven D

    2017-04-01

    Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiata subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4-17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiata subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize, and shift dimensions and imaging metrics in hypothesized corona radiata subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across 4 attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions.

  8. Dimensions of Attention Associated with the Microstructure of Corona Radiata White Matter

    PubMed Central

    Stave, Elise A.; Hooper, Stephen R.; Woolley, Donald P.; Chang, Suk Ki; Chen, Steven D.

    2016-01-01

    Mirsky proposed a model of attention that included these dimensions: focus/execute, sustain, stabilize, encode, and shift. The neural correlates of these dimensions were investigated within corona radiate subregions in healthy youth. Diffusion tensor imaging and neuropsychological assessments were conducted in 79 healthy, right-handed youth aged 4–17 years. Diffusion tensor imaging maps were analyzed using standardized parcellation methods. Partial Pearson correlations between neuropsychological standardized scores, representing these attention dimensions, and diffusion tensor imaging measures of corona radiate subregions were calculated after adjusting for gender and IQ. Significant correlations were found between the focus/execute, sustain, stabilize and shift dimensions and imaging metrics in hypothesized corona radiate subregions. Results suggest that greater microstructural white matter integrity of the corona radiata is partly associated with attention across four attention dimensions. Findings suggest that white matter microstructure of the corona radiata is a neural correlate of several, but not all, attention dimensions. PMID:28090797

  9. Abnormal Corpus Callosum Connectivity, Socio-Communicative Deficits, and Motor Deficits in Children with Autism Spectrum Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Hanaie, Ryuzo; Mohri, Ikuko; Kagitani-Shimono, Kuriko; Tachibana, Masaya; Matsuzaki, Junko; Watanabe, Yoshiyuki; Fujita, Norihiko; Taniike, Masako

    2014-01-01

    In addition to social and communicative deficits, many studies have reported motor deficits in autism spectrum disorder (ASD). This study investigated the macro and microstructural properties of the corpus callosum (CC) of 18 children with ASD and 12 typically developing controls using diffusion tensor imaging tractography. We aimed to explore…

  10. Altered Development of White Matter in Youth at High Familial Risk for Bipolar Disorder: A Diffusion Tensor Imaging Study

    ERIC Educational Resources Information Center

    Versace, Amelia; Ladouceur, Cecile D.; Romero, Soledad; Birmaher, Boris; Axelson, David A.; Kupfer, David J.; Phillips, Mary L.

    2010-01-01

    Objective: To study white matter (WM) development in youth at high familial risk for bipolar disorder (BD). WM alterations are reported in youth and adults with BD. WM undergoes important maturational changes in adolescence. Age-related changes in WM microstructure using diffusion tensor imaging with tract-based spatial statistics in healthy…

  11. Differentiation of Benign and Malignant Head and Neck Lesions With Diffusion Tensor Imaging and DWI.

    PubMed

    Koontz, Nicholas A; Wiggins, Richard H

    2017-05-01

    The purpose of this study was to determine whether diffusion tensor imaging (DTI) can be used to differentiate between benign and malignant head and neck lesions. This retrospective study included patients with head and neck lesions who underwent clinical MRI at 1.5 or 3 T with DWI or DTI parameters. ROI analysis was performed, with lesion-to-medulla apparent diffusion coefficient (ADC) ratios generated. Sixty-five patients with head and neck lesions were included (71 benign, 40 malignant). Twenty-one patients had multiple lesions. Statistically significant differences (p < 0.001) were seen in the mean ADC values ± SD of malignant and benign lesions (0.55 × 10 -3 ± 0.14 × 10 -3 mm 2 /s vs 0.89 × 10 -3 ± 0.29 × 10 -3 mm 2 /s, respectively) and in the mean ADC ratios of malignant and benign lesions (0.88 ± 0.21 vs 1.40 ± 0.44, respectively) with DTI parameters. DTI and DWI parameters produced similar mean ADC ratio values for malignant (0.88 ± 0.21 and 0.92 ± 0.54, respectively) and benign lesions (1.40 ± 0.44 and 1.79 ± 0.52, respectively). ADC ratio thresholds for predicting malignancy for DTI (ADC ratio ≤ 1) and DWI (ADC ratio ≤ 0.94) were also similar. DTI is a useful predictor of malignancy for head and neck lesions, with ADC values of malignant lesions significantly lower than those of benign lesions. DTI ADC values were lower than DWI ADC values for all head and neck lesions in our study group, often below reported malignant DWI threshold values. Normalization of ADC values to an internal control resulted in similar ADC ratios on DWI and DTI.

  12. Which Mechanical Invariants Are Associated With the Perception of Length and Heaviness of a Nonvisible Handheld Rod? Testing the Inertia Tensor Hypothesis

    ERIC Educational Resources Information Center

    Kingma, Idsart; van de Langenberg, Rolf; Beek, Peter J.

    2004-01-01

    It has been suggested that the inertia tensor governs many instances of haptic perception. However, the evidence is inconclusive because other candidate mechanical parameters (i.e., invariants) were not or were insufficiently controlled for in pertinent experiments. By independently varying all candidate mechanical parameters, the authors were…

  13. Volume illustration of muscle from diffusion tensor images.

    PubMed

    Chen, Wei; Yan, Zhicheng; Zhang, Song; Crow, John Allen; Ebert, David S; McLaughlin, Ronald M; Mullins, Katie B; Cooper, Robert; Ding, Zi'ang; Liao, Jun

    2009-01-01

    Medical illustration has demonstrated its effectiveness to depict salient anatomical features while hiding the irrelevant details. Current solutions are ineffective for visualizing fibrous structures such as muscle, because typical datasets (CT or MRI) do not contain directional details. In this paper, we introduce a new muscle illustration approach that leverages diffusion tensor imaging (DTI) data and example-based texture synthesis techniques. Beginning with a volumetric diffusion tensor image, we reformulate it into a scalar field and an auxiliary guidance vector field to represent the structure and orientation of a muscle bundle. A muscle mask derived from the input diffusion tensor image is used to classify the muscle structure. The guidance vector field is further refined to remove noise and clarify structure. To simulate the internal appearance of the muscle, we propose a new two-dimensional example based solid texture synthesis algorithm that builds a solid texture constrained by the guidance vector field. Illustrating the constructed scalar field and solid texture efficiently highlights the global appearance of the muscle as well as the local shape and structure of the muscle fibers in an illustrative fashion. We have applied the proposed approach to five example datasets (four pig hearts and a pig leg), demonstrating plausible illustration and expressiveness.

  14. Resolution of a Rank-Deficient Adjustment Model Via an Isomorphic Geometrical Setup with Tensor Structure.

    DTIC Science & Technology

    1987-03-01

    would be transcribed as L =AX - V where L, X, and V are the vectors of constant terms, parametric corrections , and b_o bresiduals, respectively. The...tensor. a Just as du’ represents the parametric corrections in tensor notations, the necessary associated metric tensor a’ corresponds to the variance...observations, n residuals, and 0 n- parametric corrections to X (an initial set of parameters), respectively. b 0 b The vctor L is formed as 1. L where

  15. DTI and VBM reveal white matter changes without associated gray matter changes in patients with idiopathic restless legs syndrome

    PubMed Central

    Belke, Marcus; Heverhagen, Johannes T; Keil, Boris; Rosenow, Felix; Oertel, Wolfgang H; Stiasny-Kolster, Karin; Knake, Susanne; Menzler, Katja

    2015-01-01

    Background and Purpose We evaluated cerebral white and gray matter changes in patients with iRLS in order to shed light on the pathophysiology of this disease. Methods Twelve patients with iRLS were compared to 12 age- and sex-matched controls using whole-head diffusion tensor imaging (DTI) and voxel-based morphometry (VBM) techniques. Evaluation of the DTI scans included the voxelwise analysis of the fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD). Results Diffusion tensor imaging revealed areas of altered FA in subcortical white matter bilaterally, mainly in temporal regions as well as in the right internal capsule, the pons, and the right cerebellum. These changes overlapped with changes in RD. Voxel-based morphometry did not reveal any gray matter alterations. Conclusions We showed altered diffusion properties in several white matter regions in patients with iRLS. White matter changes could mainly be attributed to changes in RD, a parameter thought to reflect altered myelination. Areas with altered white matter microstructure included areas in the internal capsule which include the corticospinal tract to the lower limbs, thereby supporting studies that suggest changes in sensorimotor pathways associated with RLS. PMID:26442748

  16. Tractography of white matter based on diffusion tensor imaging in ischaemic stroke involving the corticospinal tract: a preliminary study

    NASA Astrophysics Data System (ADS)

    Zhong, Chongguang; Bai, Lijun; Cui, Fangyuan; Dai, Ruwei; Xue, Ting; Wang, Hu; Wei, Wenjuan; Liu, Zhenyu; You, Youbo; Zou, Yihuai; Tian, Jie

    2012-03-01

    Diffusion tensor MR imaging (DTI) provides information on diffusion anisotropy in vivo, which can be exhibited three-dimensional white matter tractography. Five healthy volunteers and five right-hand affected patients with early subacute ischaemic infarction involving the posterior limb of the internal capsule or corona radiate were recruited in this study. We used 3D white matter tractography to show the corticospinal tract in both volunteer group and stroke group. Then we compared parameters of the corticospinal tract in patients with that in normal subjects and assessed the relationships between the fiber number of the corticospinal tract in ipsilesional hemisphere and indicators of the patients' rehabilitation using Pearson correlation analysis. The fractional anisotropy (FA) values and apparent diffusion coefficient (ADC) values in the ipsilesional corticospinal tract may significantly reduce comparing with the volunteer group. In addition, the stroke patient with less fiber number of the ipsilesional corticospinal tract may bear more possibilities of better motor rehabilitation. The FA values, ADC values and fiber number of the corticospinal tract in the ipsilesional hemisphere might be helpful to the prognosis and prediction of clinical treatment in stroke patients.

  17. Reconstruction of apparent orthotropic conductivity tensor image using magnetic resonance electrical impedance tomography

    NASA Astrophysics Data System (ADS)

    Sajib, Saurav Z. K.; Kim, Ji Eun; Jeong, Woo Chul; Kim, Hyung Joong; Kwon, Oh In; Woo, Eung Je

    2015-03-01

    Magnetic resonance electrical impedance tomography visualizes current density and/or conductivity distributions inside an electrically conductive object. Injecting currents into the imaging object along at least two different directions, induced magnetic flux density data can be measured using a magnetic resonance imaging scanner. Without rotating the object inside the scanner, we can measure only one component of the magnetic flux density denoted as Bz. Since the biological tissues such as skeletal muscle and brain white matter show strong anisotropic properties, the reconstruction of anisotropic conductivity tensor is indispensable for the accurate observations in the biological systems. In this paper, we propose a direct method to reconstruct an axial apparent orthotropic conductivity tensor by using multiple Bz data subject to multiple injection currents. To investigate the anisotropic conductivity properties, we first recover the internal current density from the measured Bz data. From the recovered internal current density and the curl-free condition of the electric field, we derive an over-determined matrix system for determining the internal absolute orthotropic conductivity tensor. The over-determined matrix system is designed to use a combination of two loops around each pixel. Numerical simulations and phantom experimental results demonstrate that the proposed algorithm stably determines the orthotropic conductivity tensor.

  18. A metamodel for the apparent permeability tensor of three-dimensional porous media in the inertial regime

    NASA Astrophysics Data System (ADS)

    Luminari, Nicola; Airiau, Christophe; Bottaro, Alessandro

    2017-11-01

    In the description of the homogenized flow through a porous medium saturated by a fluid, the apparent permeability tensor is one of the most important parameters to evaluate. In this work we compute numerically the apparent permeability tensor for a 3D porous medium constituted by rigid cylinder using the VANS (Volume-Averaged Navier-Stokes) theory. Such a tensor varies with the Reynolds number, the mean pressure gradient orientation and the porosity. A database is created exploring the space of the above parameters. Including the two Euler angles that define the mean pressure gradient is extremely important to capture well possible 3D effects. Based on the database, a kriging interpolation metamodel is used to obtain an estimate of all the tensor components for any input parameters. Preliminary results of the flow in a porous channel based on the metamodel and the VANS closure are shown; the use of such a reduced order model together with a numerical code based on the equations at the macroscopic scale permit to maintain the computational times to within reasonable levels. The authors acknowledge the IDEX Foundation of the University of Toulouse 570 for the financial support Granted to the last author under the project Attractivity Chairs.

  19. Direct Three-Dimensional Myocardial Strain Tensor Quantification and Tracking using zHARP★

    PubMed Central

    Abd-Elmoniem, Khaled Z.; Stuber, Matthias; Prince, Jerry L.

    2008-01-01

    Images of myocardial strain can be used to diagnose heart disease, plan and monitor treatment, and to learn about cardiac structure and function. Three-dimensional (3-D) strain is typically quantified using many magnetic resonance (MR) images obtained in two or three orthogonal planes. Problems with this approach include long scan times, image misregistration, and through-plane motion. This article presents a novel method for calculating cardiac 3-D strain using a stack of two or more images acquired in only one orientation. The zHARP pulse sequence encodes in-plane motion using MR tagging and out-of-plane motion using phase encoding, and has been previously shown to be capable of computing 3D displacement within a single image plane. Here, data from two adjacent image planes are combined to yield a 3-D strain tensor at each pixel; stacks of zHARP images can be used to derive stacked arrays of 3D strain tensors without imaging multiple orientations and without numerical interpolation. The performance and accuracy of the method is demonstrated in-vitro on a phantom and in-vivo in four healthy adult human subjects. PMID:18511332

  20. Neonatal Microstructural Development of the Internal Capsule on Diffusion Tensor Imaging Correlates with Severity of Gait and Motor Deficits

    ERIC Educational Resources Information Center

    Rose, Jessica; Mirmiran, Majid; Butler, Erin E.; Lin, Cindy Y.; Barnes, Patrick D.; Kermoian, Rosanne; Stevenson, David K.

    2007-01-01

    Neonatal microstructural development in the posterior limbs of the internal capsule (PLIC) was assessed using diffusion tensor imaging (DTI) fractional anisotropy (FA) in 24 very-low-birthweight preterm infants at 37 weeks' gestational age and compared with the children's gait and motor deficits at 4 years of age. There were 14 participants with…

  1. Fast estimation of diffusion tensors under Rician noise by the EM algorithm.

    PubMed

    Liu, Jia; Gasbarra, Dario; Railavo, Juha

    2016-01-15

    Diffusion tensor imaging (DTI) is widely used to characterize, in vivo, the white matter of the central nerve system (CNS). This biological tissue contains much anatomic, structural and orientational information of fibers in human brain. Spectral data from the displacement distribution of water molecules located in the brain tissue are collected by a magnetic resonance scanner and acquired in the Fourier domain. After the Fourier inversion, the noise distribution is Gaussian in both real and imaginary parts and, as a consequence, the recorded magnitude data are corrupted by Rician noise. Statistical estimation of diffusion leads a non-linear regression problem. In this paper, we present a fast computational method for maximum likelihood estimation (MLE) of diffusivities under the Rician noise model based on the expectation maximization (EM) algorithm. By using data augmentation, we are able to transform a non-linear regression problem into the generalized linear modeling framework, reducing dramatically the computational cost. The Fisher-scoring method is used for achieving fast convergence of the tensor parameter. The new method is implemented and applied using both synthetic and real data in a wide range of b-amplitudes up to 14,000s/mm(2). Higher accuracy and precision of the Rician estimates are achieved compared with other log-normal based methods. In addition, we extend the maximum likelihood (ML) framework to the maximum a posteriori (MAP) estimation in DTI under the aforementioned scheme by specifying the priors. We will describe how close numerically are the estimators of model parameters obtained through MLE and MAP estimation. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Multi-Contrast Multi-Atlas Parcellation of Diffusion Tensor Imaging of the Human Brain

    PubMed Central

    Tang, Xiaoying; Yoshida, Shoko; Hsu, John; Huisman, Thierry A. G. M.; Faria, Andreia V.; Oishi, Kenichi; Kutten, Kwame; Poretti, Andrea; Li, Yue; Miller, Michael I.; Mori, Susumu

    2014-01-01

    In this paper, we propose a novel method for parcellating the human brain into 193 anatomical structures based on diffusion tensor images (DTIs). This was accomplished in the setting of multi-contrast diffeomorphic likelihood fusion using multiple DTI atlases. DTI images are modeled as high dimensional fields, with each voxel exhibiting a vector valued feature comprising of mean diffusivity (MD), fractional anisotropy (FA), and fiber angle. For each structure, the probability distribution of each element in the feature vector is modeled as a mixture of Gaussians, the parameters of which are estimated from the labeled atlases. The structure-specific feature vector is then used to parcellate the test image. For each atlas, a likelihood is iteratively computed based on the structure-specific vector feature. The likelihoods from multiple atlases are then fused. The updating and fusing of the likelihoods is achieved based on the expectation-maximization (EM) algorithm for maximum a posteriori (MAP) estimation problems. We first demonstrate the performance of the algorithm by examining the parcellation accuracy of 18 structures from 25 subjects with a varying degree of structural abnormality. Dice values ranging 0.8–0.9 were obtained. In addition, strong correlation was found between the volume size of the automated and the manual parcellation. Then, we present scan-rescan reproducibility based on another dataset of 16 DTI images – an average of 3.73%, 1.91%, and 1.79% for volume, mean FA, and mean MD respectively. Finally, the range of anatomical variability in the normal population was quantified for each structure. PMID:24809486

  3. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation

    PubMed Central

    Duarte-Carvajalino, Julio M.; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis. PMID:23596381

  4. A Framework for Linear and Non-Linear Registration of Diffusion-Weighted MRIs Using Angular Interpolation.

    PubMed

    Duarte-Carvajalino, Julio M; Sapiro, Guillermo; Harel, Noam; Lenglet, Christophe

    2013-01-01

    Registration of diffusion-weighted magnetic resonance images (DW-MRIs) is a key step for population studies, or construction of brain atlases, among other important tasks. Given the high dimensionality of the data, registration is usually performed by relying on scalar representative images, such as the fractional anisotropy (FA) and non-diffusion-weighted (b0) images, thereby ignoring much of the directional information conveyed by DW-MR datasets itself. Alternatively, model-based registration algorithms have been proposed to exploit information on the preferred fiber orientation(s) at each voxel. Models such as the diffusion tensor or orientation distribution function (ODF) have been used for this purpose. Tensor-based registration methods rely on a model that does not completely capture the information contained in DW-MRIs, and largely depends on the accurate estimation of tensors. ODF-based approaches are more recent and computationally challenging, but also better describe complex fiber configurations thereby potentially improving the accuracy of DW-MRI registration. A new algorithm based on angular interpolation of the diffusion-weighted volumes was proposed for affine registration, and does not rely on any specific local diffusion model. In this work, we first extensively compare the performance of registration algorithms based on (i) angular interpolation, (ii) non-diffusion-weighted scalar volume (b0), and (iii) diffusion tensor image (DTI). Moreover, we generalize the concept of angular interpolation (AI) to non-linear image registration, and implement it in the FMRIB Software Library (FSL). We demonstrate that AI registration of DW-MRIs is a powerful alternative to volume and tensor-based approaches. In particular, we show that AI improves the registration accuracy in many cases over existing state-of-the-art algorithms, while providing registered raw DW-MRI data, which can be used for any subsequent analysis.

  5. Dissociating prefrontal circuitry in intelligence and memory: neuropsychological correlates of magnetic resonance and diffusion tensor imaging.

    PubMed

    Nestor, Paul G; Ohtani, Toshiyuki; Bouix, Sylvain; Hosokawa, Taiga; Saito, Yukiko; Newell, Dominick T; Kubicki, Marek

    2015-12-01

    We examined intelligence and memory in 25 healthy participants who had both prior magnetic resonance imaging (MRI) of gray matter volumes of medial orbital frontal cortex (mOFC) and rostral anterior cingulate cortex (rACC), along with diffusion tensor imaging (DTI) of posterior and anterior mOFC-rACC white matter microstructure, as assessed by fractional anisotropy (FA). Results showed distinct relationships between these basic structural brain parameters and higher cognition, highlighted by a highly significant correlation of left rACC gray matter volume with memory, and to a lesser extent, though still statistically significant, correlation of left posterior mOFC-rACC FA with intelligence. Regression analyses showed that left posterior mOFC-rACC connections and left rACC gray matter volume each contributed to intelligence, with left posterior mOFC-rACC FA uniquely accounting for between 20.43 and 24.99% of the variance in intelligence, in comparison to 13.54 to 17.98% uniquely explained by left rACC gray matter volume. For memory, only left rACC gray matter volume explained neuropsychological performance, uniquely accounting for a remarkably high portion of individual variation, ranging from 73.61 to 79.21%. These results pointed to differential contributions of white mater microstructure connections and gray matter volumes to individual differences in intelligence and memory, respectively.

  6. Insight from uncertainty: bootstrap-derived diffusion metrics differentially predict memory function among older adults.

    PubMed

    Vorburger, Robert S; Habeck, Christian G; Narkhede, Atul; Guzman, Vanessa A; Manly, Jennifer J; Brickman, Adam M

    2016-01-01

    Diffusion tensor imaging suffers from an intrinsic low signal-to-noise ratio. Bootstrap algorithms have been introduced to provide a non-parametric method to estimate the uncertainty of the measured diffusion parameters. To quantify the variability of the principal diffusion direction, bootstrap-derived metrics such as the cone of uncertainty have been proposed. However, bootstrap-derived metrics are not independent of the underlying diffusion profile. A higher mean diffusivity causes a smaller signal-to-noise ratio and, thus, increases the measurement uncertainty. Moreover, the goodness of the tensor model, which relies strongly on the complexity of the underlying diffusion profile, influences bootstrap-derived metrics as well. The presented simulations clearly depict the cone of uncertainty as a function of the underlying diffusion profile. Since the relationship of the cone of uncertainty and common diffusion parameters, such as the mean diffusivity and the fractional anisotropy, is not linear, the cone of uncertainty has a different sensitivity. In vivo analysis of the fornix reveals the cone of uncertainty to be a predictor of memory function among older adults. No significant correlation occurs with the common diffusion parameters. The present work not only demonstrates the cone of uncertainty as a function of the actual diffusion profile, but also discloses the cone of uncertainty as a sensitive predictor of memory function. Future studies should incorporate bootstrap-derived metrics to provide more comprehensive analysis.

  7. Diffusion Tensor Imaging of Heterotopia: Changes of Fractional Anisotropy during Radial Migration of Neurons

    PubMed Central

    Kim, Jinna

    2010-01-01

    Purpose Diffusion tensor imaging provides better understanding of pathophysiology of congenital anomalies, involving central nervous system. This study was aimed to specify the pathogenetic mechanism of heterotopia, proved by diffusion tensor imaging, and establish new findings of heterotopia on fractional anisotropy maps. Materials and Methods Diffusion-weighted imaging data from 11 patients (M : F = 7 : 4, aged from 1 to 22 years, mean = 12.3 years) who visited the epilepsy clinic and received a routine seizure protocol MRI exam were retrospectively analyzed. Fractional anisotropy (FA) maps were generated from diffusion tensor imaging of 11 patients with heterotopia. Regions of interests (ROI) were placed in cerebral cortex, heterotopic gray matter and deep gray matter, including putamen. ANOVA analysis was performed for comparison of different gray matter tissues. Results Heterotopic gray matter showed signal intensities similar to normal gray matter on T1 and T2 weighted MRI. The measured FA of heterotopic gray matter was higher than that of cortical gray matter (0.236 ± 0.011 vs. 0.169 ± 0.015, p < 0.01, one way ANOVA), and slightly lower than that of deep gray matter (0.236 ± 0.011 vs. 0.259 ± 0.016, p < 0.01). Conclusion Increased FA of heterotopic gray matter suggests arrested neuron during radial migration and provides better understanding of neurodevelopment. PMID:20499428

  8. An Efficient Algorithm for Mapping Imaging Data to 3D Unstructured Grids in Computational Biomechanics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Einstein, Daniel R.; Kuprat, Andrew P.; Jiao, Xiangmin

    2013-01-01

    Geometries for organ scale and multiscale simulations of organ function are now routinely derived from imaging data. However, medical images may also contain spatially heterogeneous information other than geometry that are relevant to such simulations either as initial conditions or in the form of model parameters. In this manuscript, we present an algorithm for the efficient and robust mapping of such data to imaging based unstructured polyhedral grids in parallel. We then illustrate the application of our mapping algorithm to three different mapping problems: 1) the mapping of MRI diffusion tensor data to an unstuctured ventricular grid; 2) the mappingmore » of serial cyro-section histology data to an unstructured mouse brain grid; and 3) the mapping of CT-derived volumetric strain data to an unstructured multiscale lung grid. Execution times and parallel performance are reported for each case.« less

  9. Spherical Tensor Calculus for Local Adaptive Filtering

    NASA Astrophysics Data System (ADS)

    Reisert, Marco; Burkhardt, Hans

    In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.

  10. A fast and robust method for moment tensor and depth determination of shallow seismic events in CTBT related studies.

    NASA Astrophysics Data System (ADS)

    Baker, Ben; Stachnik, Joshua; Rozhkov, Mikhail

    2017-04-01

    International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event according to the protocol to the Protocol to the Comprehensive Nuclear Test Ban Treaty. Determination of seismic event source mechanism and its depth is closely related to these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. In this presentation we demonstrate preliminary results obtained with the latter approach from an improved software design. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Posterior distributions of moment tensor parameters show narrow peaks where a significant number of reliable surface wave observations are available. For earthquake examples, fault orientation (strike, dip, and rake) posterior distributions also provide results consistent with published catalogues. Inclusion of observations on horizontal components will provide further constraints. In addition, the calculation of teleseismic P wave Green's Functions are improved through prior analysis to determine an appropriate attenuation parameter for each source-receiver path. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK events and shallow earthquakes using a new implementation of teleseismic P waves waveform fitting. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  11. Gray Matter Atrophy Is Primarily Related to Demyelination of Lesions in Multiple Sclerosis: A Diffusion Tensor Imaging MRI Study.

    PubMed

    Tóth, Eszter; Szabó, Nikoletta; Csete, Gergõ; Király, András; Faragó, Péter; Spisák, Tamás; Bencsik, Krisztina; Vécsei, László; Kincses, Zsigmond T

    2017-01-01

    Objective: Cortical pathology, periventricular demyelination, and lesion formation in multiple sclerosis (MS) are related (Hypothesis 1). Factors in the cerebrospinal fluid close to these compartments could possibly drive the parallel processes. Alternatively, the cortical atrophy could be caused by remote axonal transection (Hypothesis 2). Since MRI can differentiate between demyelination and axon loss, we used this imaging modality to investigate the correlation between the pattern of diffusion parameter changes in the periventricular- and deep white matter and the gray matter atrophy. Methods: High-resolution T1-weighted, FLAIR, and diffusion MRI images were acquired in 52 RRMS patients and 50 healthy, age-matched controls. We used EDSS to estimate the clinical disability. We used Tract Based Spatial Statistics to compare diffusion parameters (fractional anisotropy, mean, axial, and radial diffusivity) between groups. We evaluated global brain, white, and gray matter atrophy with SIENAX. Averaged, standard diffusion parameters were calculated in four compartment: periventricular lesioned and normal appearing white matter, non-periventricular lesioned and normal appearing white matter. PLS regression was used to identify which diffusion parameter and in which compartment best predicts the brain atrophy and clinical disability. Results: In our diffusion tensor imaging study compared to controls we found extensive alterations of fractional anisotropy, mean and radial diffusivity and smaller changes of axial diffusivity (maximal p > 0.0002) in patients that suggested demyelination in the lesioned and in the normal appearing white matter. We found significant reduction in total brain, total white, and gray matter (patients: 718.764 ± 14.968, 323.237 ± 7.246, 395.527 ± 8.050 cm 3 , controls: 791.772 ± 22.692, 355.350 ± 10.929, 436.422 ± 12.011 cm 3 ; mean ± SE), ( p < 0.015; p < 0.0001; p < 0.009; respectively) of patients compared to controls. The PLS analysis revealed a combination of demyelination-like diffusion parameters (higher mean and radial diffusivity in patients) in the lesions and in the non-lesioned periventricular white matter, which best predicted the gray matter atrophy ( p < 0.001). Similarly, EDSS was best predicted by the radial diffusivity of the lesions and the non-lesioned periventricular white matter, but axial diffusivity of the periventricular lesions also contributed significantly ( p < 0.0001). Interpretation: Our investigation showed that gray matter atrophy and white matter demyelination are related in MS but white matter axonal loss does not significantly contribute to the gray matter pathology.

  12. Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search

    NASA Astrophysics Data System (ADS)

    Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro

    2018-06-01

    We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.

  13. Distortion-free diffusion tensor imaging for evaluation of lumbar nerve roots: Utility of direct coronal single-shot turbo spin-echo diffusion sequence.

    PubMed

    Sakai, Takayuki; Doi, Kunio; Yoneyama, Masami; Watanabe, Atsuya; Miyati, Tosiaki; Yanagawa, Noriyuki

    2018-06-01

    Diffusion tensor imaging (DTI) based on a single-shot echo planer imaging (EPI-DTI) is an established method that has been used for evaluation of lumbar nerve disorders in previous studies, but EPI-DTI has problems such as a long acquisition time, due to a lot of axial slices, and geometric distortion. To solve these problems, we attempted to apply DTI based on a single-shot turbo spin echo (TSE-DTI) with direct coronal acquisition. Our purpose in this study was to investigate whether TSE-DTI may be more useful for evaluation of lumbar nerve disorders than EPI-DTI. First, lumbar nerve roots of five healthy volunteers were evaluated for optimization of imaging parameters with TSE-DTI including b-values and the number of motion proving gradient (MPG) directions. Subsequently, optimized TSE-DTI was quantitatively compared with conventional EPI-DTI by using fractional anisotropy (FA) values and visual scores in subjective visual evaluation of tractography. Lumbar nerve roots of six patients, who had unilateral neurologic symptoms in one leg, were evaluated by the optimized TSE-DTI. TSE-DTI with b-value of 400 s/mm 2 and 32 diffusion-directions could reduce the image distortion compared with EPI-DTI, and showed that the average FA values on the symptomatic side for six patients were significantly lower than those on the non-symptomatic side (P < 0.05). Tractography with TSE-DTI might show damaged areas of lumbar nerve roots without severe image distortion. TSE-DTI might improve the reproducibility in measurements of FA values for quantification of a nerve disorder, and would become a useful tool for diagnosis of low back pain. Copyright © 2018 Elsevier Inc. All rights reserved.

  14. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures

    PubMed Central

    Irfanoglu, M. Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B.; Sadeghi, Neda; Thomas, Cibu P.; Pierpaoli, Carlo

    2016-01-01

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. PMID:26931817

  15. DR-TAMAS: Diffeomorphic Registration for Tensor Accurate Alignment of Anatomical Structures.

    PubMed

    Irfanoglu, M Okan; Nayak, Amritha; Jenkins, Jeffrey; Hutchinson, Elizabeth B; Sadeghi, Neda; Thomas, Cibu P; Pierpaoli, Carlo

    2016-05-15

    In this work, we propose DR-TAMAS (Diffeomorphic Registration for Tensor Accurate alignMent of Anatomical Structures), a novel framework for intersubject registration of Diffusion Tensor Imaging (DTI) data sets. This framework is optimized for brain data and its main goal is to achieve an accurate alignment of all brain structures, including white matter (WM), gray matter (GM), and spaces containing cerebrospinal fluid (CSF). Currently most DTI-based spatial normalization algorithms emphasize alignment of anisotropic structures. While some diffusion-derived metrics, such as diffusion anisotropy and tensor eigenvector orientation, are highly informative for proper alignment of WM, other tensor metrics such as the trace or mean diffusivity (MD) are fundamental for a proper alignment of GM and CSF boundaries. Moreover, it is desirable to include information from structural MRI data, e.g., T1-weighted or T2-weighted images, which are usually available together with the diffusion data. The fundamental property of DR-TAMAS is to achieve global anatomical accuracy by incorporating in its cost function the most informative metrics locally. Another important feature of DR-TAMAS is a symmetric time-varying velocity-based transformation model, which enables it to account for potentially large anatomical variability in healthy subjects and patients. The performance of DR-TAMAS is evaluated with several data sets and compared with other widely-used diffeomorphic image registration techniques employing both full tensor information and/or DTI-derived scalar maps. Our results show that the proposed method has excellent overall performance in the entire brain, while being equivalent to the best existing methods in WM. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Automatic tissue characterization from ultrasound imagery

    NASA Astrophysics Data System (ADS)

    Kadah, Yasser M.; Farag, Aly A.; Youssef, Abou-Bakr M.; Badawi, Ahmed M.

    1993-08-01

    In this work, feature extraction algorithms are proposed to extract the tissue characterization parameters from liver images. Then the resulting parameter set is further processed to obtain the minimum number of parameters representing the most discriminating pattern space for classification. This preprocessing step was applied to over 120 pathology-investigated cases to obtain the learning data for designing the classifier. The extracted features are divided into independent training and test sets and are used to construct both statistical and neural classifiers. The optimal criteria for these classifiers are set to have minimum error, ease of implementation and learning, and the flexibility for future modifications. Various algorithms for implementing various classification techniques are presented and tested on the data. The best performance was obtained using a single layer tensor model functional link network. Also, the voting k-nearest neighbor classifier provided comparably good diagnostic rates.

  17. Anisotropic rotational diffusion studied by passage saturation transfer electron paramagnetic resonance

    NASA Astrophysics Data System (ADS)

    Robinson, Bruce H.; Dalton, Larry R.

    1980-01-01

    The stochastic Liouville equation for the spin density matrix is modified to consider the effects of Brownian anisotropic rotational diffusion upon electron paramagnetic resonance (EPR) and saturation transfer electron paramagnetic resonance (ST-EPR) spectra. Spectral shapes and the ST-EPR parameters L″/L, C'/C, and H″/H defined by Thomas, Dalton, and Hyde at X-band microwave frequencies [J. Chem. Phys. 65, 3006 (1976)] are examined and discussed in terms of the rotational times τ∥ and τ⊥ and in terms of other defined correlation times for systems characterized by magnetic tensors of axial symmetry and for systems characterized by nonaxially symmetric magnetic tensors. For nearly axially symmetric magnetic tensors, such as nitroxide spin labels studied employing 1-3 GHz microwaves, ST-EPR spectra for systems undergoing anisotropic rotational diffusion are virtually indistinguishable from spectra for systems characterized by isotropic diffusion. For nonaxially symmetric magnetic tensors, such as nitroxide spin labels studied employing 8-35 GHz microwaves, the high field region of the ST-EPR spectra, and hence the H″/H parameter, will be virtually indistinguishable from spectra, and parameter values, obtained for isotropic diffusion. On the other hand, the central spectral region at x-band microwave frequencies, and hence the C'/C parameter, is sensitive to the anisotropic diffusion model provided that a unique and static relationship exists between the magnetic and diffusion tensors. Random labeling or motion of the spin label relative to the biomolecule whose hydrodynamic properties are to be investigated will destroy spectral sensitivity to anisotropic motion. The sensitivity to anisotropic motion is enhanced in proceeding to 35 GHz with the increased sensitivity evident in the low field half of the EPR and ST-EPR spectra. The L″/L parameter is thus a meaningful indicator of anisotropic motion when compared with H″/H parameter analysis. However, consideration of spectral shapes suggests that the C'/C parameter definition is not meaningfully extended from 9.5 to 35 GHz. Alternative definitions of the L″/L and C'/C parameters are proposed for those microwave frequencies for which the electron Zeeman anisotropy is comparable to or greater than the electron-nitrogen nuclear hyperfine anisotropy.

  18. Insights into the Lurking Structures and Related Intraplate Earthquakes in the Region of Bay of Bengal Using Gravity and Full Gravity Gradient Tensor

    NASA Astrophysics Data System (ADS)

    Dubey, C. P.; Tiwari, V. M.; Rao, P. R.

    2017-12-01

    Comprehension of subsurface structures buried under thick sediments in the region of Bay of Bengal is vital as structural features are the key parameters that influence or are caused by the subsurface deformation and tectonic events like earthquakes. Here, we address this issue using the integrated analysis and interpretation of gravity and full gravity gradient tensor with few seismic profiles available in the poorly known region. A 2D model of the deep earth crust-mantle is constructed and interpreted with gravity gradients and seismic profiles, which made it possible to obtain a visual image of a deep seated fault below the basement associated with thick sediments strata. Gravity modelling along a NE-SW profile crossing the hypocentre of the earthquake of 21 May 2014 ( M w 6.0) in the northern Bay of Bengal suggests that the location of intraplate normal dip fault earthquake in the upper mantle is at the boundary of density anomalies, which is probably connected to the crustal fault. We also report an enhanced structural trend of two major ridges, the 85°E and the 90°E ridges hidden under the sedimentary cover from the computed full gravity gradients tensor components.

  19. Mapping Magnetic Susceptibility Anisotropies of White Matter in vivo in the Human Brain at 7 Tesla

    PubMed Central

    Li, Xu; Vikram, Deepti S; Lim, Issel Anne L; Jones, Craig K; Farrell, Jonathan A.D.; van Zijl, Peter C. M.

    2012-01-01

    High-resolution magnetic resonance phase- or frequency- shift images acquired at high field show contrast related to magnetic susceptibility differences between tissues. Such contrast varies with the orientation of the organ in the field, but the development of quantitative susceptibility mapping (QSM) has made it possible to reproducibly image the intrinsic tissue susceptibility contrast. However, recent studies indicate that magnetic susceptibility is anisotropic in brain white matter and, as such, needs to be described by a symmetric second-rank tensor (χ¯¯). To fully determine the elements of this tensor, it would be necessary to acquire frequency data at six or more orientations. Assuming cylindrical symmetry of the susceptibility tensor in myelinated white matter fibers, we propose a simplified method to reconstruct the susceptibility tensor in terms of a mean magnetic susceptibility, MMS = (χ∥ + 2χ⊥)/3 and a magnetic susceptibility anisotropy, MSA = χ∥ − χ⊥, where χ∥ and χ⊥ are susceptibility parallel and perpendicular to the white matter fiber direction, respectively. Computer simulations show that with a practical head rotation angle of around 20°–30°, four head orientations suffice to reproducibly reconstruct the tensor with good accuracy. We tested this approach on whole brain 1×1×1 mm3 frequency data acquired from five healthy subjects at 7 T. The frequency information from phase images collected at four head orientations was combined with the fiber direction information extracted from diffusion tensor imaging (DTI) to map the white matter susceptibility tensor. The MMS and MSA were quantified for regions in several large white matter fiber structures, including the corona radiata, posterior thalamic radiation and corpus callosum. MMS ranged from −0.037 to −0.053 ppm (referenced to CSF being about zero). MSA values could be quantified without the need for a reference and ranged between 0.004 and 0.029 ppm, in line with the expectation that the susceptibility perpendicular to the fiber is more diamagnetic than the one parallel to it. PMID:22561358

  20. Intermediate Templates Guided Groupwise Registration of Diffusion Tensor Images

    PubMed Central

    Jia, Hongjun; Yap, Pew-Thian; Wu, Guorong; Wang, Qian; Shen, Dinggang

    2010-01-01

    Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image. PMID:20851197

  1. Evaluation of optimized b-value sampling schemas for diffusion kurtosis imaging with an application to stroke patient data

    PubMed Central

    Yan, Xu; Zhou, Minxiong; Ying, Lingfang; Yin, Dazhi; Fan, Mingxia; Yang, Guang; Zhou, Yongdi; Song, Fan; Xu, Dongrong

    2013-01-01

    Diffusion kurtosis imaging (DKI) is a new method of magnetic resonance imaging (MRI) that provides non-Gaussian information that is not available in conventional diffusion tensor imaging (DTI). DKI requires data acquisition at multiple b-values for parameter estimation; this process is usually time-consuming. Therefore, fewer b-values are preferable to expedite acquisition. In this study, we carefully evaluated various acquisition schemas using different numbers and combinations of b-values. Acquisition schemas that sampled b-values that were distributed to two ends were optimized. Compared to conventional schemas using equally spaced b-values (ESB), optimized schemas require fewer b-values to minimize fitting errors in parameter estimation and may thus significantly reduce scanning time. Following a ranked list of optimized schemas resulted from the evaluation, we recommend the 3b schema based on its estimation accuracy and time efficiency, which needs data from only 3 b-values at 0, around 800 and around 2600 s/mm2, respectively. Analyses using voxel-based analysis (VBA) and region-of-interest (ROI) analysis with human DKI datasets support the use of the optimized 3b (0, 1000, 2500 s/mm2) DKI schema in practical clinical applications. PMID:23735303

  2. White matter tractography using diffusion tensor deflection.

    PubMed

    Lazar, Mariana; Weinstein, David M; Tsuruda, Jay S; Hasan, Khader M; Arfanakis, Konstantinos; Meyerand, M Elizabeth; Badie, Benham; Rowley, Howard A; Haughton, Victor; Field, Aaron; Alexander, Andrew L

    2003-04-01

    Diffusion tensor MRI provides unique directional diffusion information that can be used to estimate the patterns of white matter connectivity in the human brain. In this study, the behavior of an algorithm for white matter tractography is examined. The algorithm, called TEND, uses the entire diffusion tensor to deflect the estimated fiber trajectory. Simulations and imaging experiments on in vivo human brains were performed to investigate the behavior of the tractography algorithm. The simulations show that the deflection term is less sensitive than the major eigenvector to image noise. In the human brain imaging experiments, estimated tracts were generated in corpus callosum, corticospinal tract, internal capsule, corona radiata, superior longitudinal fasciculus, inferior longitudinal fasciculus, fronto-occipital fasciculus, and uncinate fasciculus. This approach is promising for mapping the organizational patterns of white matter in the human brain as well as mapping the relationship between major fiber trajectories and the location and extent of brain lesions. Copyright 2003 Wiley-Liss, Inc.

  3. Diffusion Tensor Imaging Tractography Detecting Isolated Oculomotor Nerve Damage After Traumatic Brain Injury.

    PubMed

    Jacquesson, Timothée; Frindel, Carole; Cotton, Francois

    2017-04-01

    A 24-year-old woman was hit by a bus and suffered an isolated complete oculomotor nerve palsy. Computed tomography scan did not show a skull base fracture. T2*-weighted magnetic resonance imaging revealed petechial cerebral hemorrhages sparing the brainstem. T2 constructive interference in steady state suggested a partial sectioning of the left oculomotor nerve just before entering the superior orbital fissure. Diffusion tensor imaging fiber tractography confirmed a sharp arrest of the left oculomotor nerve. This recent imaging technique could be of interest to assess white fiber damage and help make a diagnosis or prognosis. Copyright © 2017 Elsevier Inc. All rights reserved.

  4. Detection of electrophysiology catheters in noisy fluoroscopy images.

    PubMed

    Franken, Erik; Rongen, Peter; van Almsick, Markus; ter Haar Romeny, Bart

    2006-01-01

    Cardiac catheter ablation is a minimally invasive medical procedure to treat patients with heart rhythm disorders. It is useful to know the positions of the catheters and electrodes during the intervention, e.g. for the automatization of cardiac mapping. Our goal is therefore to develop a robust image analysis method that can detect the catheters in X-ray fluoroscopy images. Our method uses steerable tensor voting in combination with a catheter-specific multi-step extraction algorithm. The evaluation on clinical fluoroscopy images shows that especially the extraction of the catheter tip is successful and that the use of tensor voting accounts for a large increase in performance.

  5. Low-Dose Dynamic Cerebral Perfusion Computed Tomography Reconstruction via Kronecker-Basis Representation Tensor Sparsity Regularization

    PubMed Central

    Zeng, Dong; Xie, Qi; Cao, Wenfei; Lin, Jiahui; Zhang, Hao; Zhang, Shanli; Huang, Jing; Bian, Zhaoying; Meng, Deyu; Xu, Zongben; Liang, Zhengrong; Chen, Wufan

    2017-01-01

    Dynamic cerebral perfusion computed tomography (DCPCT) has the ability to evaluate the hemodynamic information throughout the brain. However, due to multiple 3-D image volume acquisitions protocol, DCPCT scanning imposes high radiation dose on the patients with growing concerns. To address this issue, in this paper, based on the robust principal component analysis (RPCA, or equivalently the low-rank and sparsity decomposition) model and the DCPCT imaging procedure, we propose a new DCPCT image reconstruction algorithm to improve low dose DCPCT and perfusion maps quality via using a powerful measure, called Kronecker-basis-representation tensor sparsity regularization, for measuring low-rankness extent of a tensor. For simplicity, the first proposed model is termed tensor-based RPCA (T-RPCA). Specifically, the T-RPCA model views the DCPCT sequential images as a mixture of low-rank, sparse, and noise components to describe the maximum temporal coherence of spatial structure among phases in a tensor framework intrinsically. Moreover, the low-rank component corresponds to the “background” part with spatial–temporal correlations, e.g., static anatomical contribution, which is stationary over time about structure, and the sparse component represents the time-varying component with spatial–temporal continuity, e.g., dynamic perfusion enhanced information, which is approximately sparse over time. Furthermore, an improved nonlocal patch-based T-RPCA (NL-T-RPCA) model which describes the 3-D block groups of the “background” in a tensor is also proposed. The NL-T-RPCA model utilizes the intrinsic characteristics underlying the DCPCT images, i.e., nonlocal self-similarity and global correlation. Two efficient algorithms using alternating direction method of multipliers are developed to solve the proposed T-RPCA and NL-T-RPCA models, respectively. Extensive experiments with a digital brain perfusion phantom, preclinical monkey data, and clinical patient data clearly demonstrate that the two proposed models can achieve more gains than the existing popular algorithms in terms of both quantitative and visual quality evaluations from low-dose acquisitions, especially as low as 20 mAs. PMID:28880164

  6. 4.7-T diffusion tensor imaging of acute traumatic peripheral nerve injury

    PubMed Central

    Boyer, Richard B.; Kelm, Nathaniel D.; Riley, D. Colton; Sexton, Kevin W.; Pollins, Alonda C.; Shack, R. Bruce; Dortch, Richard D.; Nanney, Lillian B.; Does, Mark D.; Thayer, Wesley P.

    2015-01-01

    Diagnosis and management of peripheral nerve injury is complicated by the inability to assess microstructural features of injured nerve fibers via clinical examination and electrophysiology. Diffusion tensor imaging (DTI) has been shown to accurately detect nerve injury and regeneration in crush models of peripheral nerve injury, but no prior studies have been conducted on nerve transection, a surgical emergency that can lead to permanent weakness or paralysis. Acute sciatic nerve injuries were performed microsurgically to produce multiple grades of nerve transection in rats that were harvested 1 hour after surgery. High-resolution diffusion tensor images from ex vivo sciatic nerves were obtained using diffusion-weighted spin-echo acquisitions at 4.7 T. Fractional anisotropy was significantly reduced at the injury sites of transected rats compared with sham rats. Additionally, minor eigenvalues and radial diffusivity were profoundly elevated at all injury sites and were negatively correlated to the degree of injury. Diffusion tensor tractography showed discontinuities at all injury sites and significantly reduced continuous tract counts. These findings demonstrate that high-resolution DTI is a promising tool for acute diagnosis and grading of traumatic peripheral nerve injuries. PMID:26323827

  7. Diffusion tensor imaging in evaluation of human skeletal muscle injury.

    PubMed

    Zaraiskaya, Tatiana; Kumbhare, Dinesh; Noseworthy, Michael D

    2006-08-01

    To explore the capability and reliability of diffusion tensor magnetic resonance imaging (DTI) in the evaluation of human skeletal muscle injury. DTI of four patients with gastrocnemius and soleus muscles injuries was compared to eight healthy controls. Imaging was performed using a GE 3.0T short-bore scanner. A diffusion-weighted 2D spin echo echo-planar imaging (EPI) pulse sequence optimized for skeletal muscle was used. From a series of axially acquired diffusion tensor images the diffusion tensor eigenparameters (eigenvalues and eigenvectors), fractional anisotropy (FA), and apparent diffusion coefficient (ADC) were calculated and compared for injured and healthy calf muscles. Two dimensional (2D) projection maps of the principal eigenvectors were plotted to visualize the healthy and pathologic muscle fiber architectures. Clear differences in FA and ADC were observed in injured skeletal muscle, compared to healthy controls. Mean control FA was 0.23 +/- 0.02 for medial and lateral gastrocnemius (mg and lg) muscles, and 0.20 +/- 0.02 for soleus (sol) muscles. In all patients FA values were reduced compared to controls, to as low as 0.08 +/- 0.02. The ADC in controls ranged from 1.41 to 1.31 x 10(-9) m(2)/second, while in patients this was consistently higher. The 2D projection maps revealed muscle fiber disorder in injured calves, while in healthy controls the 2D projection maps show a well organized (ordered) fiber structure. DTI is a suitable method to assess human calf muscle injury.

  8. Recent developments in fast kurtosis imaging

    NASA Astrophysics Data System (ADS)

    Hansen, Brian; Jespersen, Sune N.

    2017-09-01

    Diffusion kurtosis imaging (DKI) is an extension of the popular diffusion tensor imaging (DTI) technique. DKI takes into account leading deviations from Gaussian diffusion stemming from a number of effects related to the microarchitecture and compartmentalization in biological tissues. DKI therefore offers increased sensitivity to subtle microstructural alterations over conventional diffusion imaging such as DTI, as has been demonstrated in numerous reports. For this reason, interest in routine clinical application of DKI is growing rapidly. In an effort to facilitate more widespread use of DKI, recent work by our group has focused on developing experimentally fast and robust estimates of DKI metrics. A significant increase in speed is made possible by a reduction in data demand achieved through rigorous analysis of the relation between the DKI signal and the kurtosis tensor based metrics. The fast DKI methods therefore need only 13 or 19 images for DKI parameter estimation compared to more than 60 for the most modest DKI protocols applied today. Closed form solutions also ensure rapid calculation of most DKI metrics. Some parameters can even be reconstructed in real time, which may be valuable in the clinic. The fast techniques are based on conventional diffusion sequences and are therefore easily implemented on almost any clinical system, in contrast to a range of other recently proposed advanced diffusion techniques. In addition to its general applicability, this also ensures that any acceleration achieved in conventional DKI through sequence or hardware optimization will also translate directly to fast DKI acquisitions. In this review, we recapitulate the theoretical basis for the fast kurtosis techniques and their relation to conventional DKI. We then discuss the currently available variants of the fast DKI methods, their strengths and weaknesses, as well as their respective realms of application. These range from whole body applications to methods mostly suited for spinal cord or peripheral nerve, and analysis specific to brain white matter. Having covered these technical aspects, we proceed to review the fast kurtosis literature including validation studies, organ specific optimization studies and results from clinical applications.

  9. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study

    PubMed Central

    Gebauer, D.; Fink, A.; Filippini, N.; Johansen-Berg, H.; Reishofer, G.; Koschutnig, K.; Kargl, R.; Purgstaller, C.; Fazekas, F.; Enzinger, C.

    2013-01-01

    While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme- based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research. PMID:22198594

  10. Differences in integrity of white matter and changes with training in spelling impaired children: a diffusion tensor imaging study.

    PubMed

    Gebauer, D; Fink, A; Filippini, N; Johansen-Berg, H; Reishofer, G; Koschutnig, K; Kargl, R; Purgstaller, C; Fazekas, F; Enzinger, C

    2012-07-01

    While the functional correlates of spelling impairment have been rarely investigated, to our knowledge no study exists regarding the structural characteristics of spelling impairment and potential changes with interventions. Using diffusion tensor imaging at 3.0 T, we here therefore sought to investigate (a) differences between children with poor spelling abilities (training group and waiting group) and controls, and (b) the effects of a morpheme-based spelling intervention in children with poor spelling abilities on DTI parameters. A baseline comparison of white matter indices revealed significant differences between controls and spelling-impaired children, mainly located in the right hemisphere (superior corona radiata (SCR), posterior limb of internal capsule, superior longitudinal fasciculus). After 5 weeks of training, spelling ability improved in the training group, along with increases in fractional anisotropy and decreases of radial diffusivity in the right hemisphere compared to controls. In addition, significantly higher decreases of mean diffusivity in the right SCR for the spelling-impaired training group compared to the waiting group were observed. Our results suggest that spelling impairment is associated with differences in white-matter integrity in the right hemisphere. We also provide first indications that white matter changes occur during successful training, but this needs to be more specifically addressed in future research.

  11. Flexible ex vivo phantoms for validation of diffusion tensor tractography on a clinical scanner.

    PubMed

    Watanabe, Makoto; Aoki, Shigeki; Masutani, Yoshitaka; Abe, Osamu; Hayashi, Naoto; Masumoto, Tomohiko; Mori, Harushi; Kabasawa, Hiroyuki; Ohtomo, Kuni

    2006-11-01

    The aim of this study was to develop ex vivo diffusion tensor (DT) flexible phantoms. Materials were bundles of textile threads of cotton, monofilament nylon, rayon, and polyester bunched with spiral wrapping bands and immersed in water. DT images were acquired on a 1.5-Tesla clinical magnetic resonance scanner using echo planar imaging sequences with 15 motion probing gradient directions. DT tractography with seeding and a line-tracking method was carried out by software originally developed on a PC-based workstation. We observed relatively high fractional anisotropy on the polyester phantom and were able to reconstruct tractography. Straight tracts along the bundle were displayed when it was arranged linearly. It was easy to bend arcuately or bifurcate at one end; and tracts followed the course of the bundle, whether it was curved or branched and had good agreement with direct visual observation. Tractography with the other fibers was unsuccessful. The polyester phantom revealed a diffusion anisotropic structure according to its shape and would be utilizable repeatedly under the same conditions, differently from living central neuronal system. It would be useful to validate DT sequences and to optimize an algorithm or parameters of DT tractography software. Additionally, the flexibility of the phantom would enable us to model human axonal projections.

  12. An Improved Method for Seismic Event Depth and Moment Tensor Determination: CTBT Related Application

    NASA Astrophysics Data System (ADS)

    Stachnik, J.; Rozhkov, M.; Baker, B.

    2016-12-01

    According to the Protocol to CTBT, International Data Center is required to conduct expert technical analysis and special studies to improve event parameters and assist State Parties in identifying the source of specific event. Determination of seismic event source mechanism and its depth is a part of these tasks. It is typically done through a strategic linearized inversion of the waveforms for a complete or subset of source parameters, or similarly defined grid search through precomputed Greens Functions created for particular source models. We show preliminary results using the latter approach from an improved software design and applied on a moderately powered computer. In this development we tried to be compliant with different modes of CTBT monitoring regime and cover wide range of source-receiver distances (regional to teleseismic), resolve shallow source depths, provide full moment tensor solution based on body and surface waves recordings, be fast to satisfy both on-demand studies and automatic processing and properly incorporate observed waveforms and any uncertainties a priori as well as accurately estimate posteriori uncertainties. Implemented HDF5 based Green's Functions pre-packaging allows much greater flexibility in utilizing different software packages and methods for computation. Further additions will have the rapid use of Instaseis/AXISEM full waveform synthetics added to a pre-computed GF archive. Along with traditional post processing analysis of waveform misfits through several objective functions and variance reduction, we follow a probabilistic approach to assess the robustness of moment tensor solution. In a course of this project full moment tensor and depth estimates are determined for DPRK 2009, 2013 and 2016 events and shallow earthquakes using a new implementation of waveform fitting of teleseismic P waves. A full grid search over the entire moment tensor space is used to appropriately sample all possible solutions. A recent method by Tape & Tape (2012) to discretize the complete moment tensor space from a geometric perspective is used. Moment tensors for DPRK events show isotropic percentages greater than 50%. Depth estimates for the DPRK events range from 1.0-1.4 km. Probabilistic uncertainty estimates on the moment tensor parameters provide robustness to solution.

  13. Inversion of calcite twin data for paleostress (1) : improved Etchecopar technique tested on numerically-generated and natural data

    NASA Astrophysics Data System (ADS)

    Parlangeau, Camille; Lacombe, Olivier; Daniel, Jean-Marc; Schueller, Sylvie

    2015-04-01

    Inversion of calcite twin data are known to be a powerful tool to reconstruct the past-state of stress in carbonate rocks of the crust, especially in fold-and-thrust belts and sedimentary basins. This is of key importance to constrain results of geomechanical modelling. Without proposing a new inversion scheme, this contribution reports some recent improvements of the most efficient stress inversion technique to date (Etchecopar, 1984) that allows to reconstruct the 5 parameters of the deviatoric paleostress tensors (principal stress orientations and differential stress magnitudes) from monophase and polyphase twin data sets. The improvements consist in the search of the possible tensors that account for the twin data (twinned and untwinned planes) and the aid to the user to define the best stress tensor solution, among others. We perform a systematic exploration of an hypersphere in 4 dimensions by varying different parameters, Euler's angles and the stress ratio. We first record all tensors with a minimum penalization function accounting for 20% of the twinned planes. We then define clusters of tensors following a dissimilarity criterion based on the stress distance between the 4 parameters of the reduced stress tensors and a degree of disjunction of the related sets of twinned planes. The percentage of twinned data to be explained by each tensor is then progressively increased and tested using the standard Etchecopar procedure until the best solution that explains the maximum number of twinned planes and the whole set of untwinned planes is reached. This new inversion procedure is tested on monophase and polyphase numerically-generated as well as natural calcite twin data in order to more accurately define the ability of the technique to separate more or less similar deviatoric stress tensors applied in sequence on the samples, to test the impact of strain hardening through the change of the critical resolved shear stress for twinning as well as to evaluate the possible bias due to measurement uncertainties or clustering of grain optical axes in the samples.

  14. Using Perturbation Theory to Compute the Morphological Similarity of Diffusion Tensors

    PubMed Central

    Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Royal, Jason; Peterson, Bradley S.

    2008-01-01

    Computing the morphological similarity of Diffusion Tensors (DTs) at neighboring voxels within a DT image, or at corresponding locations across different DT images, is a fundamental and ubiquitous operation in the post-processing of DT images. The morphological similarity of DTs typically has been computed using either the Principal Directions (PDs) of DTs (i.e., the direction along which water molecules diffuse preferentially) or their tensor elements. Although comparing PDs allows the similarity of one morphological feature of DTs to be visualized directly in eigenspace, this method takes into account only a single eigenvector, and it is therefore sensitive to the presence of noise in the images that can introduce error into the estimation of that vector. Although comparing tensor elements, rather than PDs, is comparatively more robust to the effects of noise, the individual elements of a given tensor do not directly reflect the diffusion properties of water molecules. We propose a measure for computing the morphological similarity of DTs that uses both their eigenvalues and eigenvectors, and that also accounts for the noise levels present in DT images. Our measure presupposes that DTs in a homogeneous region within or across DT images are random perturbations of one another in the presence of noise. The similarity values that are computed using our method are smooth (in the sense that small changes in eigenvalues and eigenvectors cause only small changes in similarity), and they are symmetric when differences in eigenvalues and eigenvectors are also symmetric. In addition, our method does not presuppose that the corresponding eigenvectors across two DTs have been identified accurately, an assumption that is problematic in the presence of noise. Because we compute the similarity between DTs using their eigenspace components, our similarity measure relates directly to both the magnitude and the direction of the diffusion of water molecules. The favorable performance characteristics of our measure offer the prospect of substantially improving additional post-processing operations that are commonly performed on DTI datasets, such as image segmentation, fiber tracking, noise filtering, and spatial normalization. PMID:18450533

  15. Test-retest reliability and repeatability of renal diffusion tensor MRI in healthy subjects.

    PubMed

    Cutajar, Marica; Clayden, Jonathan D; Clark, Christopher A; Gordon, Isky

    2011-12-01

    This study assessed test-retest reliability and repeatability of diffusion tensor imaging (DTI) in the kidneys. Seven healthy volunteers (age range, 19-31 years), were imaged three consecutive times on the same day (short-term reliability) and the same imaging protocol was repeated after a month (long-term reliability). Diffusion-weighted magnetic resonance imaging scans in the coronal-oblique projection of the kidney were acquired on a 1.5 T scanner using a multi-section echo-planar sequence; six contiguous slices each 5 mm thick, diffusion sensitisation along 20 non-collinear directions, TR=730 ms, TE=73 ms and 2 b-values (0 and 400 s mm(-2)). Volunteers were asked to hold their breath throughout each data acquisition (approx. 20 s). The apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were obtained from maps generated using dedicated software MIStar (Apollo Medical Imaging, Melbourne, Australia). Statistical analyses of both short- and long-term repeats were carried out from which the within-subject coefficient of variation (wsCV) was calculated. The wsCV obtained for both the ADC and FA values were less than 10% in all the analyses carried out. In addition, paired (repeated measures) t-test was used to measure the variation between the diffusion parameters collected from the two scanning sessions a month apart. It showed no significant difference and the wsCV obtained after comparing the first and second scans were found to be smaller than 15% for both ADC and FA. Renal DTI produces reliable and repeatable results which make longitudinal investigation of patients viable. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  16. Toward Precision and Reproducibility of Diffusion Tensor Imaging: A Multicenter Diffusion Phantom and Traveling Volunteer Study.

    PubMed

    Palacios, E M; Martin, A J; Boss, M A; Ezekiel, F; Chang, Y S; Yuh, E L; Vassar, M J; Schnyer, D M; MacDonald, C L; Crawford, K L; Irimia, A; Toga, A W; Mukherjee, P

    2017-03-01

    Precision medicine is an approach to disease diagnosis, treatment, and prevention that relies on quantitative biomarkers that minimize the variability of individual patient measurements. The aim of this study was to assess the intersite variability after harmonization of a high-angular-resolution 3T diffusion tensor imaging protocol across 13 scanners at the 11 academic medical centers participating in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury multisite study. Diffusion MR imaging was acquired from a novel isotropic diffusion phantom developed at the National Institute of Standards and Technology and from the brain of a traveling volunteer on thirteen 3T MR imaging scanners representing 3 major vendors (GE Healthcare, Philips Healthcare, and Siemens). Means of the DTI parameters and their coefficients of variation across scanners were calculated for each DTI metric and white matter tract. For the National Institute of Standards and Technology diffusion phantom, the coefficients of variation of the apparent diffusion coefficient across the 13 scanners was <3.8% for a range of diffusivities from 0.4 to 1.1 × 10 -6 mm 2 /s. For the volunteer, the coefficients of variations across scanners of the 4 primary DTI metrics, each averaged over the entire white matter skeleton, were all <5%. In individual white matter tracts, large central pathways showed good reproducibility with the coefficients of variation consistently below 5%. However, smaller tracts showed more variability, with the coefficients of variation of some DTI metrics reaching 10%. The results suggest the feasibility of standardizing DTI across 3T scanners from different MR imaging vendors in a large-scale neuroimaging research study. © 2017 by American Journal of Neuroradiology.

  17. Traumatic Brain Injury: Hope Through Research

    MedlinePlus

    ... last decade to image milder TBI damage. For example, diffusion tensor imaging (DTI) can image white matter tracts, more sensitive tests like fluid-attenuated inversion recovery (FLAIR) can detect ...

  18. The effects of noise in cardiac diffusion tensor imaging and the benefits of averaging complex data.

    PubMed

    Scott, Andrew D; Nielles-Vallespin, Sonia; Ferreira, Pedro F; McGill, Laura-Ann; Pennell, Dudley J; Firmin, David N

    2016-05-01

    There is growing interest in cardiac diffusion tensor imaging (cDTI), but, unlike other diffusion MRI applications, there has been little investigation of the effects of noise on the parameters typically derived. One method of mitigating noise floor effects when there are multiple image averages, as in cDTI, is to average the complex rather than the magnitude data, but the phase contains contributions from bulk motion, which must be removed first. The effects of noise on the mean diffusivity (MD), fractional anisotropy (FA), helical angle (HA) and absolute secondary eigenvector angle (E2A) were simulated with various diffusion weightings (b values). The effect of averaging complex versus magnitude images was investigated. In vivo cDTI was performed in 10 healthy subjects with b = 500, 1000, 1500 and 2000 s/mm(2). A technique for removing the motion-induced component of the image phase present in vivo was implemented by subtracting a low-resolution copy of the phase from the original images before averaging the complex images. MD, FA, E2A and the transmural gradient in HA were compared for un-averaged, magnitude- and complex-averaged reconstructions. Simulations demonstrated an over-estimation of FA and MD at low b values and an under-estimation at high b values. The transition is relatively signal-to-noise ratio (SNR) independent and occurs at a higher b value for FA (b = 1000-1250 s/mm(2)) than MD (b ≈ 250 s/mm(2)). E2A is under-estimated at low and high b values with a transition at b ≈ 1000 s/mm(2), whereas the bias in HA is comparatively small. The under-estimation of FA and MD at high b values is caused by noise floor effects, which can be mitigated by averaging the complex data. Understanding the parameters of interest and the effects of noise informs the selection of the optimal b values. When complex data are available, they should be used to maximise the benefit from the acquisition of multiple averages. The combination of complex data is also a valuable step towards segmented acquisitions. Copyright © 2016 John Wiley & Sons, Ltd.

  19. Simultaneous Multislice Echo Planar Imaging With Blipped Controlled Aliasing in Parallel Imaging Results in Higher Acceleration: A Promising Technique for Accelerated Diffusion Tensor Imaging of Skeletal Muscle.

    PubMed

    Filli, Lukas; Piccirelli, Marco; Kenkel, David; Guggenberger, Roman; Andreisek, Gustav; Beck, Thomas; Runge, Val M; Boss, Andreas

    2015-07-01

    The aim of this study was to investigate the feasibility of accelerated diffusion tensor imaging (DTI) of skeletal muscle using echo planar imaging (EPI) applying simultaneous multislice excitation with a blipped controlled aliasing in parallel imaging results in higher acceleration unaliasing technique. After federal ethics board approval, the lower leg muscles of 8 healthy volunteers (mean [SD] age, 29.4 [2.9] years) were examined in a clinical 3-T magnetic resonance scanner using a 15-channel knee coil. The EPI was performed at a b value of 500 s/mm2 without slice acceleration (conventional DTI) as well as with 2-fold and 3-fold acceleration. Fractional anisotropy (FA) and mean diffusivity (MD) were measured in all 3 acquisitions. Fiber tracking performance was compared between the acquisitions regarding the number of tracks, average track length, and anatomical precision using multivariate analysis of variance and Mann-Whitney U tests. Acquisition time was 7:24 minutes for conventional DTI, 3:53 minutes for 2-fold acceleration, and 2:38 minutes for 3-fold acceleration. Overall FA and MD values ranged from 0.220 to 0.378 and 1.595 to 1.829 mm2/s, respectively. Two-fold acceleration yielded similar FA and MD values (P ≥ 0.901) and similar fiber tracking performance compared with conventional DTI. Three-fold acceleration resulted in comparable MD (P = 0.199) but higher FA values (P = 0.006) and significantly impaired fiber tracking in the soleus and tibialis anterior muscles (number of tracks, P < 0.001; anatomical precision, P ≤ 0.005). Simultaneous multislice EPI with blipped controlled aliasing in parallel imaging results in higher acceleration can remarkably reduce acquisition time in DTI of skeletal muscle with similar image quality and quantification accuracy of diffusion parameters. This may increase the clinical applicability of muscle anisotropy measurements.

  20. Six dimensional X-ray Tensor Tomography with a compact laboratory setup

    NASA Astrophysics Data System (ADS)

    Sharma, Y.; Wieczorek, M.; Schaff, F.; Seyyedi, S.; Prade, F.; Pfeiffer, F.; Lasser, T.

    2016-09-01

    Attenuation based X-ray micro computed tomography (XCT) provides three-dimensional images with micrometer resolution. However, there is a trade-off between the smallest size of the structures that can be resolved and the measurable sample size. In this letter, we present an imaging method using a compact laboratory setup that reveals information about micrometer-sized structures within samples that are several orders of magnitudes larger. We combine the anisotropic dark-field signal obtained in a grating interferometer and advanced tomographic reconstruction methods to reconstruct a six dimensional scattering tensor at every spatial location in three dimensions. The scattering tensor, thus obtained, encodes information about the orientation of micron-sized structures such as fibres in composite materials or dentinal tubules in human teeth. The sparse acquisition schemes presented in this letter enable the measurement of the full scattering tensor at every spatial location and can be easily incorporated in a practical, commercially feasible laboratory setup using conventional X-ray tubes, thus allowing for widespread industrial applications.

  1. Tensor Fermi liquid parameters in nuclear matter from chiral effective field theory

    NASA Astrophysics Data System (ADS)

    Holt, J. W.; Kaiser, N.; Whitehead, T. R.

    2018-05-01

    We compute from chiral two- and three-body forces the complete quasiparticle interaction in symmetric nuclear matter up to twice nuclear matter saturation density. Second-order perturbative contributions that account for Pauli blocking and medium polarization are included, allowing for an exploration of the full set of central and noncentral operator structures permitted by symmetries and the long-wavelength limit. At the Hartree-Fock level, the next-to-next-to-leading order three-nucleon force contributes to all noncentral interactions, and their strengths grow approximately linearly with the nucleon density up to that of saturated nuclear matter. Three-body forces are shown to enhance the already strong proton-neutron effective tensor interaction, while the corresponding like-particle tensor force remains small. We also find a large isovector cross-vector interaction but small center-of-mass tensor interactions in the isoscalar and isovector channels. The convergence of the expansion of the noncentral quasiparticle interaction in Landau parameters and Legendre polynomials is studied in detail.

  2. Diffusion tensor MRI shows progressive changes in the hippocampus and dentate gyrus after status epilepticus in rat - histological validation with Fourier-based analysis.

    PubMed

    Salo, Raimo A; Miettinen, Tuukka; Laitinen, Teemu; Gröhn, Olli; Sierra, Alejandra

    2017-05-15

    Imaging markers for monitoring disease progression, recovery, and treatment efficacy are a major unmet need for many neurological diseases, including epilepsy. Recent evidence suggests that diffusion tensor imaging (DTI) provides high microstructural contrast even outside major white matter tracts. We hypothesized that in vivo DTI could detect progressive microstructural changes in the dentate gyrus and the hippocampal CA3bc in the rat brain after status epilepticus (SE). To test this hypothesis, we induced SE with systemic kainic acid or pilocarpine in adult male Wistar rats and subsequently scanned them using in vivo DTI at five time-points: prior to SE, and 10, 20, 34, and 79 days post SE. In order to tie the DTI findings to changes in the tissue microstructure, myelin- and glial fibrillary acidic protein (GFAP)-stained sections from the same animals underwent Fourier analysis. We compared the Fourier analysis parameters, anisotropy index and angle of myelinated axons or astrocyte processes, to corresponding DTI parameters, fractional anisotropy (FA) and the orientation angle of the principal eigenvector. We found progressive detectable changes in DTI parameters in both the dentate gyrus (FA, axial diffusivity [D || ], linear anisotropy [CL] and spherical anisotropy [CS], p<0.001, linear mixed-effects model [LMEM]) and the CA3bc (FA, D || , CS, and angle, p<0.001, LMEM; CL and planar anisotropy [CP], p<0.01, LMEM) post SE. The Fourier analysis revealed that both myelinated axons and astrocyte processes played a role in the water diffusion anisotropy changes detected by DTI in individual portions of the dentate gyrus (suprapyramidal blade, mid-portion, and infrapyramidal blade). In the whole dentate gyrus, myelinated axons markedly contributed to the water diffusion changes. In CA3bc as well as in CA3b and CA3c, both myelinated axons and astrocyte processes contributed to water diffusion anisotropy and orientation. Our study revealed that DTI is a promising method for noninvasive detection of microstructural alterations in the hippocampus proper. These alterations may be potential imaging markers for epileptogenesis. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Inference of segmented color and texture description by tensor voting.

    PubMed

    Jia, Jiaya; Tang, Chi-Keung

    2004-06-01

    A robust synthesis method is proposed to automatically infer missing color and texture information from a damaged 2D image by (N)D tensor voting (N > 3). The same approach is generalized to range and 3D data in the presence of occlusion, missing data and noise. Our method translates texture information into an adaptive (N)D tensor, followed by a voting process that infers noniteratively the optimal color values in the (N)D texture space. A two-step method is proposed. First, we perform segmentation based on insufficient geometry, color, and texture information in the input, and extrapolate partitioning boundaries by either 2D or 3D tensor voting to generate a complete segmentation for the input. Missing colors are synthesized using (N)D tensor voting in each segment. Different feature scales in the input are automatically adapted by our tensor scale analysis. Results on a variety of difficult inputs demonstrate the effectiveness of our tensor voting approach.

  4. Classification of materials for conducting spheroids based on the first order polarization tensor

    NASA Astrophysics Data System (ADS)

    Khairuddin, TK Ahmad; Mohamad Yunos, N.; Aziz, ZA; Ahmad, T.; Lionheart, WRB

    2017-09-01

    Polarization tensor is an old terminology in mathematics and physics with many recent industrial applications including medical imaging, nondestructive testing and metal detection. In these applications, it is theoretically formulated based on the mathematical modelling either in electrics, electromagnetics or both. Generally, polarization tensor represents the perturbation in the electric or electromagnetic fields due to the presence of conducting objects and hence, it also desribes the objects. Understanding the properties of the polarization tensor is necessary and important in order to apply it. Therefore, in this study, when the conducting object is a spheroid, we show that the polarization tensor is positive-definite if and only if the conductivity of the object is greater than one. In contrast, we also prove that the polarization tensor is negative-definite if and only if the conductivity of the object is between zero and one. These features categorize the conductivity of the spheroid based on in its polarization tensor and can then help to classify the material of the spheroid.

  5. A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise

    PubMed Central

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-01-01

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313

  6. A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.

    PubMed

    Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang

    2014-02-25

    In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.

  7. Circular motion geometry using minimal data.

    PubMed

    Jiang, Guang; Quan, Long; Tsui, Hung-Tat

    2004-06-01

    Circular motion or single axis motion is widely used in computer vision and graphics for 3D model acquisition. This paper describes a new and simple method for recovering the geometry of uncalibrated circular motion from a minimal set of only two points in four images. This problem has been previously solved using nonminimal data either by computing the fundamental matrix and trifocal tensor in three images or by fitting conics to tracked points in five or more images. It is first established that two sets of tracked points in different images under circular motion for two distinct space points are related by a homography. Then, we compute a plane homography from a minimal two points in four images. After that, we show that the unique pair of complex conjugate eigenvectors of this homography are the image of the circular points of the parallel planes of the circular motion. Subsequently, all other motion and structure parameters are computed from this homography in a straighforward manner. The experiments on real image sequences demonstrate the simplicity, accuracy, and robustness of the new method.

  8. Combined Tensor Fitting and TV Regularization in Diffusion Tensor Imaging Based on a Riemannian Manifold Approach.

    PubMed

    Baust, Maximilian; Weinmann, Andreas; Wieczorek, Matthias; Lasser, Tobias; Storath, Martin; Navab, Nassir

    2016-08-01

    In this paper, we consider combined TV denoising and diffusion tensor fitting in DTI using the affine-invariant Riemannian metric on the space of diffusion tensors. Instead of first fitting the diffusion tensors, and then denoising them, we define a suitable TV type energy functional which incorporates the measured DWIs (using an inverse problem setup) and which measures the nearness of neighboring tensors in the manifold. To approach this functional, we propose generalized forward- backward splitting algorithms which combine an explicit and several implicit steps performed on a decomposition of the functional. We validate the performance of the derived algorithms on synthetic and real DTI data. In particular, we work on real 3D data. To our knowledge, the present paper describes the first approach to TV regularization in a combined manifold and inverse problem setup.

  9. Diffusion Tensor Imaging of Pedophilia.

    PubMed

    Cantor, James M; Lafaille, Sophie; Soh, Debra W; Moayedi, Massieh; Mikulis, David J; Girard, Todd A

    2015-11-01

    Pedophilia is a principal motivator of child molestation, incurring great emotional and financial burdens on victims and society. Even among pedophiles who never commit any offense,the condition requires lifelong suppression and control. Previous comparison using voxel-based morphometry (VBM)of MR images from a large sample of pedophiles and controls revealed group differences in white matter. The present study therefore sought to verify and characterize white matter involvement using diffusion tensor imaging (DTI), which better captures the microstructure of white matter than does VBM. Pedophilics ex offenders (n=24) were compared with healthy, age-matched controls with no criminal record and no indication of pedophilia (n=32). White matter microstructure was analyzed with Tract-Based Spatial Statistics, and the trajectories of implicated fiber bundles were identified by probabilistic tractography. Groups showed significant, highly focused differences in DTI parameters which related to participants’ genital responses to sexual depictions of children, but not to measures of psychopathy or to childhood histories of physical abuse, sexual abuse, or neglect. Some previously reported gray matter differences were suggested under highly liberal statistical conditions (p(uncorrected)<.005), but did not survive ordinary statistical correction (whole brain per voxel false discovery rate of 5%). These results confirm that pedophilia is characterized by neuroanatomical differences in white matter microstructure, over and above any neural characteristics attributable to psychopathy and childhood adversity, which show neuroanatomic footprints of their own. Although some gray matter structures were implicated previously, only few have emerged reliably.

  10. TWave: High-Order Analysis of Functional MRI

    PubMed Central

    Barnathan, Michael; Megalooikonomou, Vasileios; Faloutsos, Christos; Faro, Scott; Mohamed, Feroze B.

    2011-01-01

    The traditional approach to functional image analysis models images as matrices of raw voxel intensity values. Although such a representation is widely utilized and heavily entrenched both within neuroimaging and in the wider data mining community, the strong interactions among space, time, and categorical modes such as subject and experimental task inherent in functional imaging yield a dataset with “high-order” structure, which matrix models are incapable of exploiting. Reasoning across all of these modes of data concurrently requires a high-order model capable of representing relationships between all modes of the data in tandem. We thus propose to model functional MRI data using tensors, which are high-order generalizations of matrices equivalent to multidimensional arrays or data cubes. However, several unique challenges exist in the high-order analysis of functional medical data: naïve tensor models are incapable of exploiting spatiotemporal locality patterns, standard tensor analysis techniques exhibit poor efficiency, and mixtures of numeric and categorical modes of data are very often present in neuroimaging experiments. Formulating the problem of image clustering as a form of Latent Semantic Analysis and using the WaveCluster algorithm as a baseline, we propose a comprehensive hybrid tensor and wavelet framework for clustering, concept discovery, and compression of functional medical images which successfully addresses these challenges. Our approach reduced runtime and dataset size on a 9.3 GB finger opposition motor task fMRI dataset by up to 98% while exhibiting improved spatiotemporal coherence relative to standard tensor, wavelet, and voxel-based approaches. Our clustering technique was capable of automatically differentiating between the frontal areas of the brain responsible for task-related habituation and the motor regions responsible for executing the motor task, in contrast to a widely used fMRI analysis program, SPM, which only detected the latter region. Furthermore, our approach discovered latent concepts suggestive of subject handedness nearly 100x faster than standard approaches. These results suggest that a high-order model is an integral component to accurate scalable functional neuroimaging. PMID:21729758

  11. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE

    PubMed Central

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S.

    2017-01-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order-k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k}. We derive general inequalities between the lp-norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm (p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations. PMID:28286347

  12. OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.

    PubMed

    Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S

    2017-05-01

    Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.

  13. Grid-search Moment Tensor Estimation: Implementation and CTBT-related Application

    NASA Astrophysics Data System (ADS)

    Stachnik, J. C.; Baker, B. I.; Rozhkov, M.; Friberg, P. A.; Leifer, J. M.

    2017-12-01

    This abstract presents a review work related to moment tensor estimation for Expert Technical Analysis at the Comprehensive Test Ban Treaty Organization. In this context of event characterization, estimation of key source parameters provide important insights into the nature of failure in the earth. For example, if the recovered source parameters are indicative of a shallow source with large isotropic component then one conclusion is that it is a human-triggered explosive event. However, an important follow-up question in this application is - does an alternative hypothesis like a deeper source with a large double couple component explain the data approximately as well as the best solution? Here we address the issue of both finding a most likely source and assessing its uncertainty. Using the uniform moment tensor discretization of Tape and Tape (2015) we exhaustively interrogate and tabulate the source eigenvalue distribution (i.e., the source characterization), tensor orientation, magnitude, and source depth. The benefit of the grid-search is that we can quantitatively assess the extent to which model parameters are resolved. This provides a valuable opportunity during the assessment phase to focus interpretation on source parameters that are well-resolved. Another benefit of the grid-search is that it proves to be a flexible framework where different pieces of information can be easily incorporated. To this end, this work is particularly interested in fitting teleseismic body waves and regional surface waves as well as incorporating teleseismic first motions when available. Being that the moment tensor search methodology is well-established we primarily focus on the implementation and application. We present a highly scalable strategy for systematically inspecting the entire model parameter space. We then focus on application to regional and teleseismic data recorded during a handful of natural and anthropogenic events, report on the grid-search optimum, and discuss the resolution of interesting and/or important recovered source properties.

  14. The relationship between functional magnetic resonance imaging activation, diffusion tensor imaging, and training effects.

    PubMed

    Farrar, Danielle; Budson, Andrew E

    2017-04-01

    While the relationship between diffusion tensor imaging (DTI) measurements and training effects is explored by Voelker et al. (this issue), a cursory discussion of functional magnetic resonance imaging (fMRI) measurements categorizes increased activation with findings of greater white matter integrity. Evidence of the relationship between fMRI activation and white matter integrity is conflicting, as is the relationship between fMRI activation and training effects. An examination of the changes in fMRI activation in response to training is helpful, but the relationship between DTI and fMRI activation, particularly in the context of white matter changes, must be examined further before general conclusions can be drawn.

  15. Advanced diffusion MRI and biomarkers in the central nervous system: a new approach.

    PubMed

    Martín Noguerol, T; Martínez Barbero, J P

    The introduction of diffusion-weighted sequences has revolutionized the detection and characterization of central nervous system (CNS) disease. Nevertheless, the assessment of diffusion studies of the CNS is often limited to qualitative estimation. Moreover, the pathophysiological complexity of the different entities that affect the CNS cannot always be correctly explained through classical models. The development of new models for the analysis of diffusion sequences provides numerous parameters that enable a quantitative approach to both diagnosis and prognosis as well as to monitoring the response to treatment; these parameters can be considered potential biomarkers of health and disease. In this update, we review the physical bases underlying diffusion studies and diffusion tensor imaging, advanced models for their analysis (intravoxel coherent motion and kurtosis), and the biological significance of the parameters derived. Copyright © 2017 SERAM. Publicado por Elsevier España, S.L.U. All rights reserved.

  16. Active Tensor Magnetic Gradiometer System

    DTIC Science & Technology

    2007-11-01

    Modify Forward Computer Models .............................................................................................2 Modify TMGS Simulator...active magnetic gradient measurement system are based upon the existing tensor magnetic gradiometer system ( TMGS ) developed under project MM-1328...Magnetic Gradiometer System ( TMGS ) for UXO Detection, Imaging, and Discrimination.” The TMGS developed under MM-1328 was successfully tested at the

  17. Assessment of diffusion tensor imaging indices in calf muscles following postural change from standing to supine position.

    PubMed

    Elzibak, Alyaa H; Noseworthy, Michael D

    2014-10-01

    To investigate whether postural change from erect to recumbent position affects calf muscle water diffusivity. Ten healthy adults (27.2 ± 4.9 years, 3 females) were imaged at baseline (following assumption of recumbent position), and after 34 min (session 2) and 64 min (session 3) of laying supine within a 3T MRI scanner. Diffusion tensor imaging (DTI) eigenvalues, fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were evaluated in five calf muscles (anterior and posterior tibialis and triceps surae) during each of the three imaging sessions. Significant decreases were observed in all of the eigenvalues and ADC in each of the muscles with postural change. These reductions ranged from 3.2 to 6.7% and 3.4 to 7.5% for the various DTI metrics, following 34 and 64 min of supine rest, respectively (P < 0.05). No significant differences were noted in ADC or eigenvalues between the second and third imaging sessions for any muscle. FA did not change significantly with postural manipulation in any muscle compartment. Diffusion tensor imaging indices were altered with postural change. As differences were not apparent between the latter two imaging sessions, we suggest that a short supine resting period (~34 min) is sufficient for muscle diffusivity to stabilize prior to quantitative MR imaging in healthy young adults.

  18. Promote quantitative ischemia imaging via myocardial perfusion CT iterative reconstruction with tensor total generalized variation regularization

    NASA Astrophysics Data System (ADS)

    Gu, Chengwei; Zeng, Dong; Lin, Jiahui; Li, Sui; He, Ji; Zhang, Hao; Bian, Zhaoying; Niu, Shanzhou; Zhang, Zhang; Huang, Jing; Chen, Bo; Zhao, Dazhe; Chen, Wufan; Ma, Jianhua

    2018-06-01

    Myocardial perfusion computed tomography (MPCT) imaging is commonly used to detect myocardial ischemia quantitatively. A limitation in MPCT is that an additional radiation dose is required compared to unenhanced CT due to its repeated dynamic data acquisition. Meanwhile, noise and streak artifacts in low-dose cases are the main factors that degrade the accuracy of quantifying myocardial ischemia and hamper the diagnostic utility of the filtered backprojection reconstructed MPCT images. Moreover, it is noted that the MPCT images are composed of a series of 2/3D images, which can be naturally regarded as a 3/4-order tensor, and the MPCT images are globally correlated along time and are sparse across space. To obtain higher fidelity ischemia from low-dose MPCT acquisitions quantitatively, we propose a robust statistical iterative MPCT image reconstruction algorithm by incorporating tensor total generalized variation (TTGV) regularization into a penalized weighted least-squares framework. Specifically, the TTGV regularization fuses the spatial correlation of the myocardial structure and the temporal continuation of the contrast agent intake during the perfusion. Then, an efficient iterative strategy is developed for the objective function optimization. Comprehensive evaluations have been conducted on a digital XCAT phantom and a preclinical porcine dataset regarding the accuracy of the reconstructed MPCT images, the quantitative differentiation of ischemia and the algorithm’s robustness and efficiency.

  19. A diffusion tensor imaging tractography algorithm based on Navier-Stokes fluid mechanics.

    PubMed

    Hageman, Nathan S; Toga, Arthur W; Narr, Katherine L; Shattuck, David W

    2009-03-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color images of the DTI dataset.

  20. A Diffusion Tensor Imaging Tractography Algorithm Based on Navier-Stokes Fluid Mechanics

    PubMed Central

    Hageman, Nathan S.; Toga, Arthur W.; Narr, Katherine; Shattuck, David W.

    2009-01-01

    We introduce a fluid mechanics based tractography method for estimating the most likely connection paths between points in diffusion tensor imaging (DTI) volumes. We customize the Navier-Stokes equations to include information from the diffusion tensor and simulate an artificial fluid flow through the DTI image volume. We then estimate the most likely connection paths between points in the DTI volume using a metric derived from the fluid velocity vector field. We validate our algorithm using digital DTI phantoms based on a helical shape. Our method segmented the structure of the phantom with less distortion than was produced using implementations of heat-based partial differential equation (PDE) and streamline based methods. In addition, our method was able to successfully segment divergent and crossing fiber geometries, closely following the ideal path through a digital helical phantom in the presence of multiple crossing tracts. To assess the performance of our algorithm on anatomical data, we applied our method to DTI volumes from normal human subjects. Our method produced paths that were consistent with both known anatomy and directionally encoded color (DEC) images of the DTI dataset. PMID:19244007

  1. Vessel Enhancement and Segmentation of 4D CT Lung Image Using Stick Tensor Voting

    NASA Astrophysics Data System (ADS)

    Cong, Tan; Hao, Yang; Jingli, Shi; Xuan, Yang

    2016-12-01

    Vessel enhancement and segmentation plays a significant role in medical image analysis. This paper proposes a novel vessel enhancement and segmentation method for 4D CT lung image using stick tensor voting algorithm, which focuses on addressing the vessel distortion issue of vessel enhancement diffusion (VED) method. Furthermore, the enhanced results are easily segmented using level-set segmentation. In our method, firstly, vessels are filtered using Frangi's filter to reduce intrapulmonary noises and extract rough blood vessels. Secondly, stick tensor voting algorithm is employed to estimate the correct direction along the vessel. Then the estimated direction along the vessel is used as the anisotropic diffusion direction of vessel in VED algorithm, which makes the intensity diffusion of points locating at the vessel wall be consistent with the directions of vessels and enhance the tubular features of vessels. Finally, vessels can be extracted from the enhanced image by applying level-set segmentation method. A number of experiments results show that our method outperforms traditional VED method in vessel enhancement and results in satisfied segmented vessels.

  2. Adaptive local thresholding for robust nucleus segmentation utilizing shape priors

    NASA Astrophysics Data System (ADS)

    Wang, Xiuzhong; Srinivas, Chukka

    2016-03-01

    This paper describes a novel local thresholding method for foreground detection. First, a Canny edge detection method is used for initial edge detection. Then, tensor voting is applied on the initial edge pixels, using a nonsymmetric tensor field tailored to encode prior information about nucleus size, shape, and intensity spatial distribution. Tensor analysis is then performed to generate the saliency image and, based on that, the refined edge. Next, the image domain is divided into blocks. In each block, at least one foreground and one background pixel are sampled for each refined edge pixel. The saliency weighted foreground histogram and background histogram are then created. These two histograms are used to calculate a threshold by minimizing the background and foreground pixel classification error. The block-wise thresholds are then used to generate the threshold for each pixel via interpolation. Finally, the foreground is obtained by comparing the original image with the threshold image. The effective use of prior information, combined with robust techniques, results in far more reliable foreground detection, which leads to robust nucleus segmentation.

  3. Simultaneous inversion of seismic velocity and moment tensor using elastic-waveform inversion of microseismic data: Application to the Aneth CO2-EOR field

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Huang, L.

    2017-12-01

    Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.

  4. Mean template for tensor-based morphometry using deformation tensors.

    PubMed

    Leporé, Natasha; Brun, Caroline; Pennec, Xavier; Chou, Yi-Yu; Lopez, Oscar L; Aizenstein, Howard J; Becker, James T; Toga, Arthur W; Thompson, Paul M

    2007-01-01

    Tensor-based morphometry (TBM) studies anatomical differences between brain images statistically, to identify regions that differ between groups, over time, or correlate with cognitive or clinical measures. Using a nonlinear registration algorithm, all images are mapped to a common space, and statistics are most commonly performed on the Jacobian determinant (local expansion factor) of the deformation fields. In, it was shown that the detection sensitivity of the standard TBM approach could be increased by using the full deformation tensors in a multivariate statistical analysis. Here we set out to improve the common space itself, by choosing the shape that minimizes a natural metric on the deformation tensors from that space to the population of control subjects. This method avoids statistical bias and should ease nonlinear registration of new subjects data to a template that is 'closest' to all subjects' anatomies. As deformation tensors are symmetric positive-definite matrices and do not form a vector space, all computations are performed in the log-Euclidean framework. The control brain B that is already the closest to 'average' is found. A gradient descent algorithm is then used to perform the minimization that iteratively deforms this template and obtains the mean shape. We apply our method to map the profile of anatomical differences in a dataset of 26 HIV/AIDS patients and 14 controls, via a log-Euclidean Hotelling's T2 test on the deformation tensors. These results are compared to the ones found using the 'best' control, B. Statistics on both shapes are evaluated using cumulative distribution functions of the p-values in maps of inter-group differences.

  5. Diffusion tensor eigenvector directional color imaging patterns in the evaluation of cerebral white matter tracts altered by tumor.

    PubMed

    Field, Aaron S; Alexander, Andrew L; Wu, Yu-Chien; Hasan, Khader M; Witwer, Brian; Badie, Behnam

    2004-10-01

    To categorize the varied appearances of tumor-altered white matter (WM) tracts on diffusion tensor eigenvector directional color maps. Diffusion tensor imaging (DTI) was obtained preoperatively in 13 patients with brain tumors ranging from benign to high-grade malignant, including primary and metastatic lesions, and maps of apparent diffusion coefficient (ADC), fractional anisotropy (FA), and major eigenvector direction were generated. Regions of interest (ROIs) were drawn within identifiable WM tracts affected by tumor, avoiding grossly cystic and necrotic regions, known fiber crossings, and gray matter. Patterns of WM tract alteration were categorized on the basis of qualitative analysis of directional color maps and correlation analysis of ADC and FA. Four basic patterns of WM alteration were identified: 1) normal or nearly normal FA and ADC, with abnormal tract location or tensor directions attributable to bulk mass displacement, 2) moderately decreased FA and increased ADC with normal tract locations and tensor directions, 3) moderately decreased FA and increased ADC with abnormal tensor directions, and 4) near isotropy. FA and ADC were inversely correlated for Patterns 1-3 but did not discriminate edema from infiltrating tumor. However, in the absence of mass displacement, infiltrating tumor was found to produce tensor directional changes that were not observed with vasogenic edema, suggesting the possibility of discrimination on the basis of directional statistics. Tumor alteration of WM tracts tends to produce one of four patterns on FA and directional color maps. Clinical application of these patterns must await further study. Copyright 2004 Wiley-Liss, Inc.

  6. FY09 Annual Report to the Executive Agent

    DTIC Science & Technology

    2009-01-01

    tensor imaging ( DTI ) after follow-up im- aging studies. This case report was published in Neuroimage, 2009 Aug; 47 Suppl 2:T152-3. Epub 2009 Feb 10 and...27(7), 2009. Diffusion Tensor Imaging Study Shows Blast Injury May Cause Brain Inflammation Researchers from the DCoE for PH/TBI used DTI to...similar to what occurs in the brain with infection or stroke. DTI in blast patients was different from the pattern seen for the traditional impact forms

  7. No differences in brain microstructure between young KIBRA-C carriers and non-carriers.

    PubMed

    Hu, Li; Xu, Qunxing; Li, Jizhen; Wang, Feifei; Xu, Xinghua; Sun, Zhiyuan; Ma, Xiangxing; Liu, Yong; Wang, Qing; Wang, Dawei

    2018-01-02

    KIBRA rs17070145 polymorphism is associated with variations in memory function and the microstructure of related brain areas. Diffusion kurtosis imaging (DKI) as an extension of diffusion tensor imaging that can provide more information about changes in microstructure, based on the idea that water diffusion in biological tissues is heterogeneous due to structural hindrance and restriction. We used DKI to explore the relationship between KIBRA gene polymorphism and brain microstructure in young adults. We recruited 100 healthy young volunteers, including 53 TT carriers and 47 C allele carriers. No differences were detected between the TT homozygotes and C-allele carriers for any diffusion and kurtosis parameter. These results indicate KIBRA rs17070145 polymorphism likely has little or no effect on brain microstructure in young adults.

  8. Validation of buoyancy driven spectral tensor model using HATS data

    NASA Astrophysics Data System (ADS)

    Chougule, A.; Mann, J.; Kelly, M.; Larsen, G. C.

    2016-09-01

    We present a homogeneous spectral tensor model for wind velocity and temperature fluctuations, driven by mean vertical shear and mean temperature gradient. Results from the model, including one-dimensional velocity and temperature spectra and the associated co-spectra, are shown in this paper. The model also reproduces two-point statistics, such as coherence and phases, via cross-spectra between two points separated in space. Model results are compared with observations from the Horizontal Array Turbulence Study (HATS) field program (Horst et al. 2004). The spectral velocity tensor in the model is described via five parameters: the dissipation rate (ɛ), length scale of energy-containing eddies (L), a turbulence anisotropy parameter (Γ), gradient Richardson number (Ri) representing the atmospheric stability and the rate of destruction of temperature variance (ηθ).

  9. Self-adaptive tensor network states with multi-site correlators

    NASA Astrophysics Data System (ADS)

    Kovyrshin, Arseny; Reiher, Markus

    2017-12-01

    We introduce the concept of self-adaptive tensor network states (SATNSs) based on multi-site correlators. The SATNS ansatz gradually extends its variational space incorporating the most important next-order correlators into the ansatz for the wave function. The selection of these correlators is guided by entanglement-entropy measures from quantum information theory. By sequentially introducing variational parameters and adjusting them to the system under study, the SATNS ansatz achieves keeping their number significantly smaller than the total number of full-configuration interaction parameters. The SATNS ansatz is studied for manganocene in its lowest-energy sextet and doublet states; the latter of which is known to be difficult to describe. It is shown that the SATNS parametrization solves the convergence issues found for previous correlator-based tensor network states.

  10. In flight estimations of Cassini spacecraft inertia tensor and thruster magnitude

    NASA Technical Reports Server (NTRS)

    Feldman, Antonette; Lee, Allan Y.

    2006-01-01

    This paper describes two methods used by the Cassini Attitude Control team to determine these key parameters and how flight telemetry was used to estimate them. The method for estimating the spacecraft inertia tensor exploits the conservation of angular momentum during spacecraft slews under reaction wheel control.

  11. Contributions of structural connectivity and cerebrovascular parameters to functional magnetic resonance imaging signals in mice at rest and during sensory paw stimulation.

    PubMed

    Schroeter, Aileen; Grandjean, Joanes; Schlegel, Felix; Saab, Bechara J; Rudin, Markus

    2017-07-01

    Previously, we reported widespread bilateral increases in stimulus-evoked functional magnetic resonance imaging signals in mouse brain to unilateral sensory paw stimulation. We attributed the pattern to arousal-related cardiovascular changes overruling cerebral autoregulation thereby masking specific signal changes elicited by local neuronal activity. To rule out the possibility that interhemispheric neuronal communication might contribute to bilateral functional magnetic resonance imaging responses, we compared stimulus-evoked functional magnetic resonance imaging responses to unilateral hindpaw stimulation in acallosal I/LnJ, C57BL/6, and BALB/c mice. We found bilateral blood-oxygenation-level dependent signal changes in all three strains, ruling out a dominant contribution of transcallosal communication as reason for bilaterality. Analysis of functional connectivity derived from resting-state functional magnetic resonance imaging, revealed that bilateral cortical functional connectivity is largely abolished in I/LnJ animals. Cortical functional connectivity in all strains correlated with structural connectivity in corpus callosum as revealed by diffusion tensor imaging. Given the profound influence of systemic hemodynamics on stimulus-evoked functional magnetic resonance imaging outcomes, we evaluated whether functional connectivity data might be affected by cerebrovascular parameters, i.e. baseline cerebral blood volume, vascular reactivity, and reserve. We found that effects of cerebral hemodynamics on functional connectivity are largely outweighed by dominating contributions of structural connectivity. In contrast, contributions of transcallosal interhemispheric communication to the occurrence of ipsilateral functional magnetic resonance imaging response of equal amplitude to unilateral stimuli seem negligible.

  12. Diffusion tensor imaging analysis of sequential spreading of disease in amyotrophic lateral sclerosis confirms patterns of TDP-43 pathology.

    PubMed

    Kassubek, Jan; Müller, Hans-Peter; Del Tredici, Kelly; Brettschneider, Johannes; Pinkhardt, Elmar H; Lulé, Dorothée; Böhm, Sarah; Braak, Heiko; Ludolph, Albert C

    2014-06-01

    Diffusion tensor imaging can identify amyotrophic lateral sclerosis-associated patterns of brain alterations at the group level. Recently, a neuropathological staging system for amyotrophic lateral sclerosis has shown that amyotrophic lateral sclerosis may disseminate in a sequential regional pattern during four disease stages. The objective of the present study was to apply a new methodological diffusion tensor imaging-based approach to automatically analyse in vivo the fibre tracts that are prone to be involved at each neuropathological stage of amyotrophic lateral sclerosis. Two data samples, consisting of 130 diffusion tensor imaging data sets acquired at 1.5 T from 78 patients with amyotrophic lateral sclerosis and 52 control subjects; and 55 diffusion-tensor imaging data sets at 3.0 T from 33 patients with amyotrophic lateral sclerosis and 22 control subjects, were analysed by a tract of interest-based fibre tracking approach to analyse five tracts that become involved during the course of amyotrophic lateral sclerosis: the corticospinal tract (stage 1); the corticorubral and the corticopontine tracts (stage 2); the corticostriatal pathway (stage 3); the proximal portion of the perforant path (stage 4); and two reference pathways. The statistical analyses of tracts of interest showed differences between patients with amyotrophic lateral sclerosis and control subjects for all tracts. The significance level of the comparisons at the group level was lower, the higher the disease stage with corresponding involved fibre tracts. Both the clinical phenotype as assessed by the amyotrophic lateral sclerosis functional rating scale-revised and disease duration correlated significantly with the resulting staging scheme. In summary, the tract of interest-based technique allowed for individual analysis of predefined tract structures, thus making it possible to image in vivo the disease stages in amyotrophic lateral sclerosis. This approach can be used not only for individual clinical work-up purposes, but enlarges the spectrum of potential non-invasive surrogate markers as a neuroimaging-based read-out for amyotrophic lateral sclerosis studies within a clinical context. © The Author (2014). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    NASA Astrophysics Data System (ADS)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  14. Nonlocal homogenization theory in metamaterials: Effective electromagnetic spatial dispersion and artificial chirality

    NASA Astrophysics Data System (ADS)

    Ciattoni, Alessandro; Rizza, Carlo

    2015-05-01

    We develop, from first principles, a general and compact formalism for predicting the electromagnetic response of a metamaterial with nonmagnetic inclusions in the long-wavelength limit, including spatial dispersion up to the second order. Specifically, by resorting to a suitable multiscale technique, we show that the effective medium permittivity tensor and the first- and second-order tensors describing spatial dispersion can be evaluated by averaging suitable spatially rapidly varying fields, each satisfying electrostatic-like equations within the metamaterial unit cell. For metamaterials with negligible second-order spatial dispersion, we exploit the equivalence of first-order spatial dispersion and reciprocal bianisotropic electromagnetic response to deduce a simple expression for the metamaterial chirality tensor. Such an expression allows us to systematically analyze the effect of the composite spatial symmetry properties on electromagnetic chirality. We find that even if a metamaterial is geometrically achiral, i.e., it is indistinguishable from its mirror image, it shows pseudo-chiral-omega electromagnetic chirality if the rotation needed to restore the dielectric profile after the reflection is either a 0∘ or 90∘ rotation around an axis orthogonal to the reflection plane. These two symmetric situations encompass two-dimensional and one-dimensional metamaterials with chiral response. As an example admitting full analytical description, we discuss one-dimensional metamaterials whose single chirality parameter is shown to be directly related to the metamaterial dielectric profile by quadratures.

  15. A new software for dimensional measurements in 3D endodontic root canal instrumentation.

    PubMed

    Sinibaldi, Raffaele; Pecci, Raffaella; Somma, Francesco; Della Penna, Stefania; Bedini, Rossella

    2012-01-01

    The main issue to be faced to get size estimates of 3D modification of the dental canal after endodontic treatment is the co-registration of the image stacks obtained through micro computed tomography (micro-CT) scans before and after treatment. Here quantitative analysis of micro-CT images have been performed by means of new dedicated software targeted to the analysis of root canal after endodontic instrumentation. This software analytically calculates the best superposition between the pre and post structures using the inertia tensor of the tooth. This strategy avoid minimization procedures, which can be user dependent, and time consuming. Once the co-registration have been achieved dimensional measurements have then been performed by contemporary evaluation of quantitative parameters over the two superimposed stacks of micro-CT images. The software automatically calculated the changes of volume, surface and symmetry axes in 3D occurring after the instrumentation. The calculation is based on direct comparison of the canal and canal branches selected by the user on the pre treatment image stack.

  16. Diffusion tensor imaging of the sural nerve in normal controls☆

    PubMed Central

    Kim, Boklye; Srinivasan, Ashok; Sabb, Brian; Feldman, Eva L; Pop-Busui, Rodica

    2016-01-01

    Objective To develop a diffusion tensor imaging (DTI) protocol for assessing the sural nerve in healthy subjects. Methods Sural nerves in 25 controls were imaged using DTI at 3 T with 6, 15, and 32 gradient directions. Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were computed from nerve regions of interest co-registered with T2-weighted images. Results Coronal images with 0.5(RL)×2.0(FH)×0.5(AP) mm3 resolution successfully localized the sural nerve. FA maps showed less variability with 32 directions (0.559±0.071) compared to 15(0.590±0.080) and 6(0.659±0.109). Conclusions Our DTI protocol was effective in imaging sural nerves in controls to establish normative FA/ADC, with potential to be used non-invasively in diseased nerves of patients. PMID:24908367

  17. A brain MRI atlas of the common squirrel monkey, Saimiri sciureus

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Schilling, Kurt G.; Khare, Shweta P.; Panda, Swetasudha; Choe, Ann S.; Stepniewska, Iwona; Li, Xia; Ding, Zhoahua; Anderson, Adam; Landman, Bennett A.

    2014-03-01

    The common squirrel monkey, Saimiri sciureus, is a New World monkey with functional and microstructural organization of central nervous system similar to that of humans. It is one of the most commonly used South American primates in biomedical research. Unlike its Old World macaque cousins, no digital atlases have described the organization of the squirrel monkey brain. Here, we present a multi-modal magnetic resonance imaging (MRI) atlas constructed from the brain of an adult female squirrel monkey. In vivo MRI acquisitions include high resolution T2 structural imaging and low resolution diffusion tensor imaging. Ex vivo MRI acquisitions include high resolution T2 structural imaging and high resolution diffusion tensor imaging. Cortical regions were manually annotated on the co-registered volumes based on published histological sections.

  18. Gap filling of 3-D microvascular networks by tensor voting.

    PubMed

    Risser, L; Plouraboue, F; Descombes, X

    2008-05-01

    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to fill the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated.

  19. Spectral-spatial classification using tensor modeling for cancer detection with hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Lu, Guolan; Halig, Luma; Wang, Dongsheng; Chen, Zhuo Georgia; Fei, Baowei

    2014-03-01

    As an emerging technology, hyperspectral imaging (HSI) combines both the chemical specificity of spectroscopy and the spatial resolution of imaging, which may provide a non-invasive tool for cancer detection and diagnosis. Early detection of malignant lesions could improve both survival and quality of life of cancer patients. In this paper, we introduce a tensor-based computation and modeling framework for the analysis of hyperspectral images to detect head and neck cancer. The proposed classification method can distinguish between malignant tissue and healthy tissue with an average sensitivity of 96.97% and an average specificity of 91.42% in tumor-bearing mice. The hyperspectral imaging and classification technology has been demonstrated in animal models and can have many potential applications in cancer research and management.

  20. Face Hallucination with Linear Regression Model in Semi-Orthogonal Multilinear PCA Method

    NASA Astrophysics Data System (ADS)

    Asavaskulkiet, Krissada

    2018-04-01

    In this paper, we propose a new face hallucination technique, face images reconstruction in HSV color space with a semi-orthogonal multilinear principal component analysis method. This novel hallucination technique can perform directly from tensors via tensor-to-vector projection by imposing the orthogonality constraint in only one mode. In our experiments, we use facial images from FERET database to test our hallucination approach which is demonstrated by extensive experiments with high-quality hallucinated color faces. The experimental results assure clearly demonstrated that we can generate photorealistic color face images by using the SO-MPCA subspace with a linear regression model.

  1. White matter integrity in polydrug users in relation to attachment and personality: a controlled diffusion tensor imaging study.

    PubMed

    Unterrainer, H F; Hiebler, M; Ragger, K; Froehlich, L; Koschutnig, K; Schoeggl, H; Kapfhammer, H P; Papousek, I; Weiss, E M; Fink, A

    2016-12-01

    The relationship between substance use disorders (SUD) and brain deficits has been studied extensively. However, there is still a lack of research focusing on the structural neural connectivity in long-term polydrug use disorder (PUD). Since a deficiency in white matter integrity has been reported as being related to various parameters of increased psychopathology, it might be considered an aggravating factor in the treatment of SUD. In this study we compared two groups of PUD inpatients (abstinent: n = 18, in maintenance treatment: n = 15) to healthy controls (n = 16) with respect to neural connectivity in white matter, and their relation to behavioral parameters of personality factors/organization and attachment styles. Diffusion Tensor Imaging was used to investigate white matter structure. Compared with healthy controls, the PUD patients showed reduced fractional anisotropy (FA) and increased radial diffusivity (RD) mainly in the superior fasciculus longitudinalis and the superior corona radiata. These findings suggest diminished neural connectivity as a result of myelin pathology in PUD patients. In line with our assumptions, we observed FA in the biggest cluster as negatively correlated with anxious attachment (r = 0.36, p < 0.05), personality dysfunctioning (r = -0.41; p < 0.01) as well positively correlated with personality factors Openness (r = 0.34; p < 0.05) and Agreeableness (r = 0.28; p < 0.05). Correspondingly these findings were inversely mirrored by RD. Further research employing enhanced samples and addressing longitudinally neuronal plastic effects of SUD treatment in relation to changes in personality and attachment is recommended.

  2. Full Tensor Diffusion Imaging Is Not Required To Assess the White-Matter Integrity in Mouse Contusion Spinal Cord Injury

    PubMed Central

    Tu, Tsang-Wei; Kim, Joong H.; Wang, Jian

    2010-01-01

    Abstract In vivo diffusion tensor imaging (DTI) derived indices have been demonstrated to quantify accurately white-matter injury after contusion spinal cord injury (SCI) in rodents. In general, a full diffusion tensor analysis requires the acquisition of diffusion-weighted images (DWI) along at least six independent directions of diffusion-sensitizing gradients. Thus, DTI measurements of the rodent central nervous system are time consuming. In this study, diffusion indices derived using the two-direction DWI (parallel and perpendicular to axonal tracts) were compared with those obtained using six-direction DTI in a mouse model of SCI. It was hypothesized that the mouse spinal cord ventral-lateral white-matter (VLWM) tracts, T8–T10 in this study, aligned with the main magnet axis (z) allowing the apparent diffusion coefficient parallel and perpendicular to the axis of the spine to be derived with diffusion-weighting gradients in the z and y axes of the magnet coordinate respectively. Compared with six-direction full tensor DTI, two-direction DWI provided comparable diffusion indices in mouse spinal cords. The measured extent of spared white matter after injury, estimated by anisotropy indices, using both six-direction DTI and two-direction DWI were in close agreement and correlated well with histological staining and behavioral assessment. The results suggest that the two-direction DWI derived indices may be used, with significantly reduced imaging time, to estimate accurately spared white matter in mouse SCI. PMID:19715399

  3. Theoretical study of diaquamalonatozinc(II) single crystal for applications in non-linear optical devices

    NASA Astrophysics Data System (ADS)

    Chakraborty, Mitesh; Rai, Vineet Kumar

    2017-12-01

    The aim of the present paper is to employ theoretical methods to investigate the zero field splitting (ZFS) parameter and to investigate the position of the dopant in the host. These theoretical calculations have been compared with the empirical results. The superposition model (SPM) with the microscopic spin-Hamiltonian (MSH) theory and the coefficient of fractional parentage have been employed to investigate the dopant manganese(II) ion substitution in the diaquamalonatozinc(II) (DAMZ) single crystal. The magnetic parameters, viz. g-tensor and D-tensor, has been determined by using the ORCA program package developed by F Neese et al. The unrestricted Kohn-Sham orbitals-based Pederson-Khanna (PK) as the unperturbed wave function is observed to be the most suitable for the computational calculation of spin-orbit tensor (D^{SO}) of the axial ZFS parameter D. The effects of spin-spin dipolar couplings are taken into account. The unrestricted natural orbital (UNO) is used for the calculation of spin-spin dipolar contributions to the ZFS tensor. A comparative study of the quantum mechanical treatment of Pederson-Khanna (PK) with coupled perturbation (CP) is reported in the present study. The unrestricted Kohn-Sham-based natural orbital with Pederson-Khanna-type of perturbation approach validates the experimental results in the evaluation of ZFS parameters. The theoretical results are appropriate with the experimental ones and indicate the interstitial occupancy of Mn^{2+} ion in the host matrix.

  4. Artificial Vector Calibration Method for Differencing Magnetic Gradient Tensor Systems

    PubMed Central

    Li, Zhining; Zhang, Yingtang; Yin, Gang

    2018-01-01

    The measurement error of the differencing (i.e., using two homogenous field sensors at a known baseline distance) magnetic gradient tensor system includes the biases, scale factors, nonorthogonality of the single magnetic sensor, and the misalignment error between the sensor arrays, all of which can severely affect the measurement accuracy. In this paper, we propose a low-cost artificial vector calibration method for the tensor system. Firstly, the error parameter linear equations are constructed based on the single-sensor’s system error model to obtain the artificial ideal vector output of the platform, with the total magnetic intensity (TMI) scalar as a reference by two nonlinear conversions, without any mathematical simplification. Secondly, the Levenberg–Marquardt algorithm is used to compute the integrated model of the 12 error parameters by nonlinear least-squares fitting method with the artificial vector output as a reference, and a total of 48 parameters of the system is estimated simultaneously. The calibrated system outputs along the reference platform-orthogonal coordinate system. The analysis results show that the artificial vector calibrated output can track the orientation fluctuations of TMI accurately, effectively avoiding the “overcalibration” problem. The accuracy of the error parameters’ estimation in the simulation is close to 100%. The experimental root-mean-square error (RMSE) of the TMI and tensor components is less than 3 nT and 20 nT/m, respectively, and the estimation of the parameters is highly robust. PMID:29373544

  5. Classification of trabeculae into three-dimensional rodlike and platelike structures via local inertial anisotropy.

    PubMed

    Vasilić, Branimir; Rajapakse, Chamith S; Wehrli, Felix W

    2009-07-01

    Trabecular bone microarchitecture is a significant determinant of the bone's mechanical properties and is thus of major clinical relevance in predicting fracture risk. The three-dimensional nature of trabecular bone is characterized by parameters describing scale, topology, and orientation of structural elements. However, none of the current methods calculates all three types of parameters simultaneously and in three dimensions. Here the authors present a method that produces a continuous classification of voxels as belonging to platelike or rodlike structures that determines their orientation and estimates their thickness. The method, dubbed local inertial anisotropy (LIA), treats the image as a distribution of mass density and the orientation of trabeculae is determined from a locally calculated tensor of inertia at each voxel. The orientation entropies of rods and plates are introduced, which can provide new information about microarchitecture not captured by existing parameters. The robustness of the method to noise corruption, resolution reduction, and image rotation is demonstrated. Further, the method is compared with established three-dimensional parameters including the structure-model index and topological surface-to-curve ratio. Finally, the method is applied to data acquired in a previous translational pilot study showing that the trabecular bone of untreated hypogonadal men is less platelike than that of their eugonadal peers.

  6. DTI segmentation by statistical surface evolution.

    PubMed

    Lenglet, Christophe; Rousson, Mikaël; Deriche, Rachid

    2006-06-01

    We address the problem of the segmentation of cerebral white matter structures from diffusion tensor images (DTI). A DTI produces, from a set of diffusion-weighted MR images, tensor-valued images where each voxel is assigned with a 3 x 3 symmetric, positive-definite matrix. This second order tensor is simply the covariance matrix of a local Gaussian process, with zero-mean, modeling the average motion of water molecules. As we will show in this paper, the definition of a dissimilarity measure and statistics between such quantities is a nontrivial task which must be tackled carefully. We claim and demonstrate that, by using the theoretically well-founded differential geometrical properties of the manifold of multivariate normal distributions, it is possible to improve the quality of the segmentation results obtained with other dissimilarity measures such as the Euclidean distance or the Kullback-Leibler divergence. The main goal of this paper is to prove that the choice of the probability metric, i.e., the dissimilarity measure, has a deep impact on the tensor statistics and, hence, on the achieved results. We introduce a variational formulation, in the level-set framework, to estimate the optimal segmentation of a DTI according to the following hypothesis: Diffusion tensors exhibit a Gaussian distribution in the different partitions. We must also respect the geometric constraints imposed by the interfaces existing among the cerebral structures and detected by the gradient of the DTI. We show how to express all the statistical quantities for the different probability metrics. We validate and compare the results obtained on various synthetic data-sets, a biological rat spinal cord phantom and human brain DTIs.

  7. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping.

    PubMed

    Henry, Roland G; Berman, Jeffrey I; Nagarajan, Srikantan S; Mukherjee, Pratik; Berger, Mitchel S

    2004-02-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain.

  8. Subcortical pathways serving cortical language sites: initial experience with diffusion tensor imaging fiber tracking combined with intraoperative language mapping

    PubMed Central

    Henry, Roland G.; Berman, Jeffrey I.; Nagarajan, Srikantan S.; Mukherjee, Pratik; Berger, Mitchel S.

    2014-01-01

    The combination of mapping functional cortical neurons by intraoperative cortical stimulation and axonal architecture by diffusion tensor MRI fiber tracking can be used to delineate the pathways between functional regions. In this study the authors investigated the feasibility of combining these techniques to yield connectivity associated with motor speech and naming. Diffusion tensor MRI fiber tracking provides maps of axonal bundles and was combined with intraoperative mapping of eloquent cortex for a patient undergoing brain tumor surgery. Tracks from eight stimulated sites in the inferior frontal cortex including mouth motor, speech arrest, and anomia were generated from the diffusion tensor MRI data. The regions connected by the fiber tracking were compared to foci from previous functional imaging reports on language tasks. Connections were found between speech arrest, mouth motor, and anomia sites and the SMA proper and cerebral peduncle. The speech arrest and a mouth motor site were also seen to connect to the putamen via the external capsule. This is the first demonstration of delineation of subcortical pathways using diffusion tensor MRI fiber tracking with intraoperative cortical stimulation. The combined techniques may provide improved preservation of eloquent regions during neurological surgery, and may provide access to direct connectivity information between functional regions of the brain. PMID:14980564

  9. Anisotropy and phonon modes from analysis of the dielectric function tensor and the inverse dielectric function tensor of monoclinic yttrium orthosilicate

    NASA Astrophysics Data System (ADS)

    Mock, A.; Korlacki, R.; Knight, S.; Schubert, M.

    2018-04-01

    We determine the frequency dependence of the four independent Cartesian tensor elements of the dielectric function for monoclinic symmetry Y2SiO5 using generalized spectroscopic ellipsometry from 40-1200 cm-1. Three different crystal cuts, each perpendicular to a principle axis, are investigated. We apply our recently described augmentation of lattice anharmonicity onto the eigendielectric displacement vector summation approach [A. Mock et al., Phys. Rev. B 95, 165202 (2017), 10.1103/PhysRevB.95.165202], and we present and demonstrate the application of an eigendielectric displacement loss vector summation approach with anharmonic broadening. We obtain an excellent match between all measured and model-calculated dielectric function tensor elements and all dielectric loss function tensor elements. We obtain 23 Au and 22 Bu symmetry long-wavelength active transverse and longitudinal optical mode parameters including their eigenvector orientation within the monoclinic lattice. We perform density functional theory calculations and obtain 23 Au symmetry and 22 Bu transverse and longitudinal optical mode parameters and their orientation within the monoclinic lattice. We compare our results from ellipsometry and density functional theory and find excellent agreement. We also determine the static and above reststrahlen spectral range dielectric tensor values and find a recently derived generalization of the Lyddane-Sachs-Teller relation for polar phonons in monoclinic symmetry materials satisfied [M. Schubert, Phys Rev. Lett. 117, 215502 (2016), 10.1103/PhysRevLett.117.215502].

  10. Autism spectrum disorder: does neuroimaging support the DSM-5 proposal for a symptom dyad? A systematic review of functional magnetic resonance imaging and diffusion tensor imaging studies.

    PubMed

    Pina-Camacho, Laura; Villero, Sonia; Fraguas, David; Boada, Leticia; Janssen, Joost; Navas-Sánchez, Francisco J; Mayoral, Maria; Llorente, Cloe; Arango, Celso; Parellada, Mara

    2012-07-01

    A systematic review of 208 studies comprising functional magnetic resonance imaging and diffusion tensor imaging data in patients with 'autism spectrum disorder' (ASD) was conducted, in order to determine whether these data support the forthcoming DSM-5 proposal of a social communication and behavioral symptom dyad. Studies consistently reported abnormal function and structure of fronto-temporal and limbic networks with social and pragmatic language deficits, of temporo-parieto-occipital networks with syntactic-semantic language deficits, and of fronto-striato-cerebellar networks with repetitive behaviors and restricted interests in ASD patients. Therefore, this review partially supports the DSM-5 proposal for the ASD dyad.

  11. Information geometry and its application to theoretical statistics and diffusion tensor magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Wisniewski, Nicholas Andrew

    This dissertation is divided into two parts. First we present an exact solution to a generalization of the Behrens-Fisher problem by embedding the problem in the Riemannian manifold of Normal distributions. From this we construct a geometric hypothesis testing scheme. Secondly we investigate the most commonly used geometric methods employed in tensor field interpolation for DT-MRI analysis and cardiac computer modeling. We computationally investigate a class of physiologically motivated orthogonal tensor invariants, both at the full tensor field scale and at the scale of a single interpolation by doing a decimation/interpolation experiment. We show that Riemannian-based methods give the best results in preserving desirable physiological features.

  12. [A correlation between diffusion kurtosis imaging and the proliferative activity of brain glioma].

    PubMed

    Tonoyan, A S; Pronin, I N; Pitshelauri, D I; Shishkina, L V; Fadeeva, L M; Pogosbekyan, E L; Zakharova, N E; Shults, E I; Khachanova, N V; Kornienko, V N; Potapov, A A

    2015-01-01

    The aim of the study was to assess the capabilities of diffusion kurtosis imaging (DKI) in diagnosis of the glioma proliferative activity and to evaluate a relationship between the glioma proliferative activity index and diffusion parameters of the contralateral normal appearing white matter (CNAWM). The study included 47 patients with newly diagnosed brain gliomas (23 low grade, 13 grade III, and 11 grade IV gliomas). We determined a relationship between absolute and normalized parameters of the diffusion tensor (mean (MD), axial (AD), and radial (RD) diffusivities; fractional (FA) and relative (RA) anisotropies) and diffusion kurtosis (mean (MK), axial (AK), and radial (RK) kurtosis; kurtosis anisotropy (KA)) and the proliferative activity index in the most malignant glioma parts (p<0.05). We also established a relationship between the tensor and kurtosis parameters of CNAWM and the glioma proliferative activity index (p<0.05). The correlation between all the absolute and normalized diffusion parameters and the glioma proliferative activity index, except absolute and normalized FA and RA values, was found to be statistically significant (p<0.05). Kurtosis (MK, AK, and RK) and anisotropy (KA, FA, RA) values increased, and diffusivity (MD, AD, RD) values decreased as the glioma proliferative activity index increased. A strong correlation between the proliferative activity index and absolute RK (r=0,71; p=0.000001) and normalized values of MK (r=0.8; p=0.000001), AK (r=0.71; p=0.000001), RK (r=0.81; p=0.000001), and RD (r=-0.71; p=0.000001) was found. A weak, but statistically significant correlation between the glioma proliferative activity index and diffusion values RK (r=-0.36; p=0.014), KA (r=-0.39; p=0.007), RD (r=0.35; p=0.017), FA (r=-0.42; p=0.003), and RA (r=-0.41; p=0.004) of CNAWM was found. DKI has good capabilities to detect immunohistochemical changes in gliomas. DKI demonstrated a high sensitivity in detection of microstructural changes in the contralateral normal appearing white matter in patients with brain gliomas.

  13. An exploration of diffusion tensor eigenvector variability within human calf muscles.

    PubMed

    Rockel, Conrad; Noseworthy, Michael D

    2016-01-01

    To explore the effect of diffusion tensor imaging (DTI) acquisition parameters on principal and minor eigenvector stability within human lower leg skeletal muscles. Lower leg muscles were evaluated in seven healthy subjects at 3T using an 8-channel transmit/receive coil. Diffusion-encoding was performed with nine signal averages (NSA) using 6, 15, and 25 directions (NDD). Individual DTI volumes were combined into aggregate volumes of 3, 2, and 1 NSA according to number of directions. Tensor eigenvalues (λ1 , λ2 , λ3 ), eigenvectors (ε1 , ε2 , ε3 ), and DTI metrics (fractional anisotropy [FA] and mean diffusivity [MD]) were calculated for each combination of NSA and NDD. Spatial maps of signal-to-noise ratio (SNR), λ3 :λ2 ratio, and zenith angle were also calculated for region of interest (ROI) analysis of vector orientation consistency. ε1 variability was only moderately related to ε2 variability (r = 0.4045). Variation of ε1 was affected by NDD, not NSA (P < 0.0002), while variation of ε2 was affected by NSA, not NDD (P < 0.0003). In terms of tensor shape, vector variability was weakly related to FA (ε1 :r = -0.1854, ε2 : ns), but had a stronger relation to the λ3 :λ2 ratio (ε1 :r = -0.5221, ε2 :r = -0.1771). Vector variability was also weakly related to SNR (ε1 :r = -0.2873, ε2 :r = -0.3483). Zenith angle was found to be strongly associated with variability of ε1 (r = 0.8048) but only weakly with that of ε2 (r = 0.2135). The second eigenvector (ε2 ) displayed higher directional variability relative to ε1 , and was only marginally affected by experimental conditions that impacted ε1 variability. © 2015 Wiley Periodicals, Inc.

  14. A Variational Framework for Exemplar-Based Image Inpainting

    DTIC Science & Technology

    2010-04-01

    Physical Review 106(4), 620–30 (1957) 37. Jia, J., Tang, C.K.: Inference of segmented color and texture description by tensor voting . IEEE Trans. on PAMI 26...use of other patch error functions based on the comparison of structure tensors , which could provide a more robust estimation of the morpho- logical

  15. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1983-01-01

    The technical progress of researches on alternatives for jet engine control, is reported. The principal new activities involved the initial testing of an input design method for choosing the inputs to a non-linear system to aid the approximation of its tensor parameters, and the beginning of order reduction studies designed to remove unnecessary monomials from tensor models.

  16. Diffusion Tensor Imaging as a Predictor of Locomotor Function after Experimental Spinal Cord Injury and Recovery

    PubMed Central

    Kelley, Brian J.; Harel, Noam Y.; Kim, Chang-Yeon; Papademetris, Xenophon; Coman, Daniel; Wang, Xingxing; Hasan, Omar; Kaufman, Adam; Globinsky, Ronen; Staib, Lawrence H.; Cafferty, William B.J.; Hyder, Fahmeed

    2014-01-01

    Abstract Traumatic spinal cord injury (SCI) causes long-term disability with limited functional recovery linked to the extent of axonal connectivity. Quantitative diffusion tensor imaging (DTI) of axonal integrity has been suggested as a potential biomarker for prognostic and therapeutic evaluation after trauma, but its correlation with functional outcomes has not been clearly defined. To examine this application, female Sprague-Dawley rats underwent midthoracic laminectomy followed by traumatic spinal cord contusion of differing severities or laminectomy without contusion. Locomotor scores and hindlimb kinematic data were collected for 4 weeks post-injury. Ex vivo DTI was then performed to assess axonal integrity using tractography and fractional anisotropy (FA), a numerical measure of relative white matter integrity, at the injury epicenter and at specific intervals rostral and caudal to the injury site. Immunohistochemistry for tissue sparing was also performed. Statistical correlation between imaging data and functional performance was assessed as the primary outcome. All injured animals showed some recovery of locomotor function, while hindlimb kinematics revealed graded deficits consistent with injury severity. Standard T2 magnetic resonance sequences illustrated conventional spinal cord morphology adjacent to contusions while corresponding FA maps indicated graded white matter pathology within these adjacent regions. Positive correlations between locomotor (Basso, Beattie, and Bresnahan score and gait kinematics) and imaging (FA values) parameters were also observed within these adjacent regions, most strongly within caudal segments beyond the lesion. Evaluation of axonal injury by DTI provides a mechanism for functional recovery assessment in a rodent SCI model. These findings suggest that focused DTI analysis of caudal spinal cord should be studied in human cases in relationship to motor outcome to augment outcome biomarkers for clinical cases. PMID:24779685

  17. Anisotropic mesoscale eddy transport in ocean general circulation models

    NASA Astrophysics Data System (ADS)

    Reckinger, Scott; Fox-Kemper, Baylor; Bachman, Scott; Bryan, Frank; Dennis, John; Danabasoglu, Gokhan

    2014-11-01

    In modern climate models, the effects of oceanic mesoscale eddies are introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically. However, the diffusive processes that the parameterization approximates, such as shear dispersion and potential vorticity barriers, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters from one to three: major diffusivity, minor diffusivity, and alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces temperature and salinity biases. These effects can be improved by parameterizing the oceanic anisotropic transport mechanisms.

  18. Diffusion-tensor imaging of white matter tracts in patients with cerebral neoplasm.

    PubMed

    Witwer, Brian P; Moftakhar, Roham; Hasan, Khader M; Deshmukh, Praveen; Haughton, Victor; Field, Aaron; Arfanakis, Konstantinos; Noyes, Jane; Moritz, Chad H; Meyerand, M Elizabeth; Rowley, Howard A; Alexander, Andrew L; Badie, Behnam

    2002-09-01

    Preserving vital cerebral function while maximizing tumor resection is a principal goal in surgical neurooncology. Although functional magnetic resonance imaging has been useful in the localization of eloquent cerebral cortex, this method does not provide information about the white matter tracts that may be involved in invasive, intrinsic brain tumors. Recently, diffusion-tensor (DT) imaging techniques have been used to map white matter tracts in the normal brain. The aim of this study was to demonstrate the role of DT imaging in preoperative mapping of white matter tracts in relation to cerebral neoplasms. Nine patients with brain malignancies (one pilocytic astrocytoma, five oligodendrogliomas, one low-grade oligoastrocytoma, one Grade 4 astrocytoma, and one metastatic adenocarcinoma) underwent DT imaging examinations prior to tumor excision. Anatomical information about white matter tract location, orientation, and projections was obtained in every patient. Depending on the tumor type and location, evidence of white matter tract edema (two patients), infiltration (two patients), displacement (five patients), and disruption (two patients) could be assessed with the aid of DT imaging in each case. Diffusion-tensor imaging allowed for visualization of white matter tracts and was found to be beneficial in the surgical planning for patients with intrinsic brain tumors. The authors' experience with DT imaging indicates that anatomically intact fibers may be present in abnormal-appearing areas of the brain. Whether resection of these involved fibers results in subtle postoperative neurological deficits requires further systematic study.

  19. Flexible Force Field Parameterization through Fitting on the Ab Initio-Derived Elastic Tensor

    PubMed Central

    2017-01-01

    Constructing functional forms and their corresponding force field parameters for the metal–linker interface of metal–organic frameworks is challenging. We propose fitting these parameters on the elastic tensor, computed from ab initio density functional theory calculations. The advantage of this top-down approach is that it becomes evident if functional forms are missing when components of the elastic tensor are off. As a proof-of-concept, a new flexible force field for MIL-47(V) is derived. Negative thermal expansion is observed and framework flexibility has a negligible effect on adsorption and transport properties for small guest molecules. We believe that this force field parametrization approach can serve as a useful tool for developing accurate flexible force field models that capture the correct mechanical behavior of the full periodic structure. PMID:28661672

  20. Diffusion tensor imaging using multiple coils for mouse brain connectomics.

    PubMed

    Nouls, John C; Badea, Alexandra; Anderson, Robert B J; Cofer, Gary P; Allan Johnson, G

    2018-06-01

    The correlation between brain connectivity and psychiatric or neurological diseases has intensified efforts to develop brain connectivity mapping techniques on mouse models of human disease. The neural architecture of mouse brain specimens can be shown non-destructively and three-dimensionally by diffusion tensor imaging, which enables tractography, the establishment of a connectivity matrix and connectomics. However, experiments on cohorts of animals can be prohibitively long. To improve throughput in a 7-T preclinical scanner, we present a novel two-coil system in which each coil is shielded, placed off-isocenter along the axis of the magnet and connected to a receiver circuit of the scanner. Preservation of the quality factor of each coil is essential to signal-to-noise ratio (SNR) performance and throughput, because mouse brain specimen imaging at 7 T takes place in the coil-dominated noise regime. In that regime, we show a shielding configuration causing no SNR degradation in the two-coil system. To acquire data from several coils simultaneously, the coils are placed in the magnet bore, around the isocenter, in which gradient field distortions can bias diffusion tensor imaging metrics, affect tractography and contaminate measurements of the connectivity matrix. We quantified the experimental alterations in fractional anisotropy and eigenvector direction occurring in each coil. We showed that, when the coils were placed 12 mm away from the isocenter, measurements of the brain connectivity matrix appeared to be minimally altered by gradient field distortions. Simultaneous measurements on two mouse brain specimens demonstrated a full doubling of the diffusion tensor imaging throughput in practice. Each coil produced images devoid of shading or artifact. To further improve the throughput of mouse brain connectomics, we suggested a future expansion of the system to four coils. To better understand acceptable trade-offs between imaging throughput and connectivity matrix integrity, studies may seek to clarify how measurement variability, post-processing techniques and biological variability impact mouse brain connectomics. Copyright © 2018 John Wiley & Sons, Ltd.

  1. A Robust Post-Processing Workflow for Datasets with Motion Artifacts in Diffusion Kurtosis Imaging

    PubMed Central

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X.; Wan, Mingxi

    2014-01-01

    Purpose The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). Materials and methods The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). Results The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). Conclusion The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements. PMID:24727862

  2. A robust post-processing workflow for datasets with motion artifacts in diffusion kurtosis imaging.

    PubMed

    Li, Xianjun; Yang, Jian; Gao, Jie; Luo, Xue; Zhou, Zhenyu; Hu, Yajie; Wu, Ed X; Wan, Mingxi

    2014-01-01

    The aim of this study was to develop a robust post-processing workflow for motion-corrupted datasets in diffusion kurtosis imaging (DKI). The proposed workflow consisted of brain extraction, rigid registration, distortion correction, artifacts rejection, spatial smoothing and tensor estimation. Rigid registration was utilized to correct misalignments. Motion artifacts were rejected by using local Pearson correlation coefficient (LPCC). The performance of LPCC in characterizing relative differences between artifacts and artifact-free images was compared with that of the conventional correlation coefficient in 10 randomly selected DKI datasets. The influence of rejected artifacts with information of gradient directions and b values for the parameter estimation was investigated by using mean square error (MSE). The variance of noise was used as the criterion for MSEs. The clinical practicality of the proposed workflow was evaluated by the image quality and measurements in regions of interest on 36 DKI datasets, including 18 artifact-free (18 pediatric subjects) and 18 motion-corrupted datasets (15 pediatric subjects and 3 essential tremor patients). The relative difference between artifacts and artifact-free images calculated by LPCC was larger than that of the conventional correlation coefficient (p<0.05). It indicated that LPCC was more sensitive in detecting motion artifacts. MSEs of all derived parameters from the reserved data after the artifacts rejection were smaller than the variance of the noise. It suggested that influence of rejected artifacts was less than influence of noise on the precision of derived parameters. The proposed workflow improved the image quality and reduced the measurement biases significantly on motion-corrupted datasets (p<0.05). The proposed post-processing workflow was reliable to improve the image quality and the measurement precision of the derived parameters on motion-corrupted DKI datasets. The workflow provided an effective post-processing method for clinical applications of DKI in subjects with involuntary movements.

  3. Octupolar tensors for liquid crystals

    NASA Astrophysics Data System (ADS)

    Chen, Yannan; Qi, Liqun; Virga, Epifanio G.

    2018-01-01

    A third-rank three-dimensional symmetric traceless tensor, called the octupolar tensor, has been introduced to study tetrahedratic nematic phases in liquid crystals. The octupolar potential, a scalar-valued function generated on the unit sphere by that tensor, should ideally have four maxima (on the vertices of a tetrahedron), but it was recently found to possess an equally generic variant with three maxima instead of four. It was also shown that the irreducible admissible region for the octupolar tensor in a three-dimensional parameter space is bounded by a dome-shaped surface, beneath which is a separatrix surface connecting the two generic octupolar states. The latter surface, which was obtained through numerical continuation, may be physically interpreted as marking a possible intra-octupolar transition. In this paper, by using the resultant theory of algebraic geometry and the E-characteristic polynomial of spectral theory of tensors, we give a closed-form, algebraic expression for both the dome-shaped surface and the separatrix surface. This turns the envisaged intra-octupolar transition into a quantitative, possibly observable prediction.

  4. Multilinear Graph Embedding: Representation and Regularization for Images.

    PubMed

    Chen, Yi-Lei; Hsu, Chiou-Ting

    2014-02-01

    Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.

  5. Image Corruption Detection in Diffusion Tensor Imaging for Post-Processing and Real-Time Monitoring

    PubMed Central

    Li, Yue; Shea, Steven M.; Lorenz, Christine H.; Jiang, Hangyi; Chou, Ming-Chung; Mori, Susumu

    2013-01-01

    Due to the high sensitivity of diffusion tensor imaging (DTI) to physiological motion, clinical DTI scans often suffer a significant amount of artifacts. Tensor-fitting-based, post-processing outlier rejection is often used to reduce the influence of motion artifacts. Although it is an effective approach, when there are multiple corrupted data, this method may no longer correctly identify and reject the corrupted data. In this paper, we introduce a new criterion called “corrected Inter-Slice Intensity Discontinuity” (cISID) to detect motion-induced artifacts. We compared the performance of algorithms using cISID and other existing methods with regard to artifact detection. The experimental results show that the integration of cISID into fitting-based methods significantly improves the retrospective detection performance at post-processing analysis. The performance of the cISID criterion, if used alone, was inferior to the fitting-based methods, but cISID could effectively identify severely corrupted images with a rapid calculation time. In the second part of this paper, an outlier rejection scheme was implemented on a scanner for real-time monitoring of image quality and reacquisition of the corrupted data. The real-time monitoring, based on cISID and followed by post-processing, fitting-based outlier rejection, could provide a robust environment for routine DTI studies. PMID:24204551

  6. Monitoring In-Vivo the Mammary Gland Microstructure during Morphogenesis from Lactation to Post-Weaning Using Diffusion Tensor MRI.

    PubMed

    Nissan, Noam; Furman-Haran, Edna; Shapiro-Feinberg, Myra; Grobgeld, Dov; Degani, Hadassa

    2017-09-01

    Lactation and the return to the pre-conception state during post-weaning are regulated by hormonal induced processes that modify the microstructure of the mammary gland, leading to changes in the features of the ductal / glandular tissue, the stroma and the fat tissue. These changes create a challenge in the radiological workup of breast disorder during lactation and early post-weaning. Here we present non-invasive MRI protocols designed to record in vivo high spatial resolution, T 2 -weighted images and diffusion tensor images of the entire mammary gland. Advanced imaging processing tools enabled tracking the changes in the anatomical and microstructural features of the mammary gland from the time of lactation to post-weaning. Specifically, by using diffusion tensor imaging (DTI) it was possible to quantitatively distinguish between the ductal / glandular tissue distention during lactation and the post-weaning involution. The application of the T 2 -weighted imaging and DTI is completely safe, non-invasive and uses intrinsic contrast based on differences in transverse relaxation rates and water diffusion rates in various directions, respectively. This study provides a basis for further in-vivo monitoring of changes during the mammary developmental stages, as well as identifying changes due to malignant transformation in patients with pregnancy associated breast cancer (PABC).

  7. Iterative image reconstruction for multienergy computed tomography via structure tensor total variation regularization

    NASA Astrophysics Data System (ADS)

    Zeng, Dong; Bian, Zhaoying; Gong, Changfei; Huang, Jing; He, Ji; Zhang, Hua; Lu, Lijun; Feng, Qianjin; Liang, Zhengrong; Ma, Jianhua

    2016-03-01

    Multienergy computed tomography (MECT) has the potential to simultaneously offer multiple sets of energy- selective data belonging to specific energy windows. However, because sufficient photon counts are not available in the specific energy windows compared with that in the whole energy window, the MECT images reconstructed by the analytical approach often suffer from poor signal-to-noise (SNR) and strong streak artifacts. To eliminate this drawback, in this work we present a penalized weighted least-squares (PWLS) scheme by incorporating the new concept of structure tensor total variation (STV) regularization to improve the MECT images quality from low-milliampere-seconds (low-mAs) data acquisitions. Henceforth the present scheme is referred to as `PWLS- STV' for simplicity. Specifically, the STV regularization is derived by penalizing the eigenvalues of the structure tensor of every point in the MECT images. Thus it can provide more robust measures of image variation, which can eliminate the patchy artifacts often observed in total variation regularization. Subsequently, an alternating optimization algorithm was adopted to minimize the objective function. Experiments with a digital XCAT phantom clearly demonstrate that the present PWLS-STV algorithm can achieve more gains than the existing TV-based algorithms and the conventional filtered backpeojection (FBP) algorithm in terms of noise-induced artifacts suppression, resolution preservation, and material decomposition assessment.

  8. Equivalence of restricted Boltzmann machines and tensor network states

    NASA Astrophysics Data System (ADS)

    Chen, Jing; Cheng, Song; Xie, Haidong; Wang, Lei; Xiang, Tao

    2018-02-01

    The restricted Boltzmann machine (RBM) is one of the fundamental building blocks of deep learning. RBM finds wide applications in dimensional reduction, feature extraction, and recommender systems via modeling the probability distributions of a variety of input data including natural images, speech signals, and customer ratings, etc. We build a bridge between RBM and tensor network states (TNS) widely used in quantum many-body physics research. We devise efficient algorithms to translate an RBM into the commonly used TNS. Conversely, we give sufficient and necessary conditions to determine whether a TNS can be transformed into an RBM of given architectures. Revealing these general and constructive connections can cross fertilize both deep learning and quantum many-body physics. Notably, by exploiting the entanglement entropy bound of TNS, we can rigorously quantify the expressive power of RBM on complex data sets. Insights into TNS and its entanglement capacity can guide the design of more powerful deep learning architectures. On the other hand, RBM can represent quantum many-body states with fewer parameters compared to TNS, which may allow more efficient classical simulations.

  9. Ultrasound backscatter tensor imaging (BTI): analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues.

    PubMed

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-06-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as magnetic resonance diffusion tensor imaging (MR-DTI) or ultrasound elastic tensor imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in a clinical setting. In this study, we propose a new technique, backscatter tensor imaging (BTI), which enables determination of the fiber directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally because of the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotating phased-array probes or 2-D matrix probes for noninvasive evaluation of myocardial fibers.

  10. Ultrasound Backscatter Tensor Imaging (BTI): Analysis of the spatial coherence of ultrasonic speckle in anisotropic soft tissues

    PubMed Central

    Papadacci, Clement; Tanter, Mickael; Pernot, Mathieu; Fink, Mathias

    2014-01-01

    The assessment of fiber architecture is of major interest in the progression of myocardial disease. Recent techniques such as Magnetic Resonance (MR) Diffusion Tensor Imaging or Ultrasound Elastic Tensor Imaging (ETI) can derive the fiber directions by measuring the anisotropy of water diffusion or tissue elasticity, but these techniques present severe limitations in clinical setting. In this study, we propose a new technique, the Backscatter Tensor Imaging (BTI) which enables determining the fibers directions in skeletal muscles and myocardial tissues, by measuring the spatial coherence of ultrasonic speckle. We compare the results to ultrasound ETI. Acquisitions were performed using a linear transducer array connected to an ultrasonic scanner mounted on a motorized rotation device with angles from 0° to 355° by 5° increments to image ex vivo bovine skeletal muscle and porcine left ventricular myocardial samples. At each angle, multiple plane waves were transmitted and the backscattered echoes recorded. The coherence factor was measured as the ratio of coherent intensity over incoherent intensity of backscattered echoes. In skeletal muscle, maximal/minimal coherence factor was found for the probe parallel/perpendicular to the fibers. In myocardium, the coherence was assessed across the entire myocardial thickness, and the position of maxima and minima varied transmurally due to the complex fibers distribution. In ETI, the shear wave speed variation with the probe angle was found to follow the coherence variation. Spatial coherence can thus reveal the anisotropy of the ultrasonic speckle in skeletal muscle and myocardium. BTI could be used on any type of ultrasonic scanner with rotative phased-array probes or 2-D matrix probes for non-invasive evaluation of myocardial fibers. PMID:24859662

  11. Solar System constraints on massless scalar-tensor gravity with positive coupling constant upon cosmological evolution of the scalar field

    NASA Astrophysics Data System (ADS)

    Anderson, David; Yunes, Nicolás

    2017-09-01

    Scalar-tensor theories of gravity modify general relativity by introducing a scalar field that couples nonminimally to the metric tensor, while satisfying the weak-equivalence principle. These theories are interesting because they have the potential to simultaneously suppress modifications to Einstein's theory on Solar System scales, while introducing large deviations in the strong field of neutron stars. Scalar-tensor theories can be classified through the choice of conformal factor, a scalar that regulates the coupling between matter and the metric in the Einstein frame. The class defined by a Gaussian conformal factor with a negative exponent has been studied the most because it leads to spontaneous scalarization (i.e. the sudden activation of the scalar field in neutron stars), which consequently leads to large deviations from general relativity in the strong field. This class, however, has recently been shown to be in conflict with Solar System observations when accounting for the cosmological evolution of the scalar field. We here study whether this remains the case when the exponent of the conformal factor is positive, as well as in another class of theories defined by a hyperbolic conformal factor. We find that in both of these scalar-tensor theories, Solar System tests are passed only in a very small subset of coupling parameter space, for a large set of initial conditions compatible with big bang nucleosynthesis. However, while we find that it is possible for neutron stars to scalarize, one must carefully select the coupling parameter to do so, and even then, the scalar charge is typically 2 orders of magnitude smaller than in the negative-exponent case. Our study suggests that future work on scalar-tensor gravity, for example in the context of tests of general relativity with gravitational waves from neutron star binaries, should be carried out within the positive coupling parameter class.

  12. Tensor tomography on Cartan–Hadamard manifolds

    NASA Astrophysics Data System (ADS)

    Lehtonen, Jere; Railo, Jesse; Salo, Mikko

    2018-04-01

    We study the geodesic x-ray transform on Cartan–Hadamard manifolds, generalizing the x-ray transforms on Euclidean and hyperbolic spaces that arise in medical and seismic imaging. We prove solenoidal injectivity of this transform acting on functions and tensor fields of any order. The functions are assumed to be exponentially decaying if the sectional curvature is bounded, and polynomially decaying if the sectional curvature decays at infinity. This work extends the results of Lehtonen (2016 arXiv:1612.04800) to dimensions n ≥slant 3 and to the case of tensor fields of any order.

  13. Unified Stress Tensor of the Hydration Water Layer

    NASA Astrophysics Data System (ADS)

    Kim, Bongsu; Kim, QHwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-01

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  14. Unified stress tensor of the hydration water layer.

    PubMed

    Kim, Bongsu; Kim, Qhwan; Kwon, Soyoung; An, Sangmin; Lee, Kunyoung; Lee, Manhee; Jhe, Wonho

    2013-12-13

    We present the general stress tensor of the ubiquitous hydration water layer (HWL), based on the empirical hydration force, by combining the elasticity and hydrodynamics theories. The tapping and shear component of the tensor describe the elastic and damping properties of the HWL, respectively, in good agreement with experiments. In particular, a unified understanding of HWL dynamics provides the otherwise unavailable intrinsic parameters of the HWL, which offer additional but unexplored aspects to the supercooled liquidity of the confined HWL. Our results may allow deeper insight on systems where the HWL is critical.

  15. Simultaneous two-view epipolar geometry estimation and motion segmentation by 4D tensor voting.

    PubMed

    Tong, Wai-Shun; Tang, Chi-Keung; Medioni, Gérard

    2004-09-01

    We address the problem of simultaneous two-view epipolar geometry estimation and motion segmentation from nonstatic scenes. Given a set of noisy image pairs containing matches of n objects, we propose an unconventional, efficient, and robust method, 4D tensor voting, for estimating the unknown n epipolar geometries, and segmenting the static and motion matching pairs into n independent motions. By considering the 4D isotropic and orthogonal joint image space, only two tensor voting passes are needed, and a very high noise to signal ratio (up to five) can be tolerated. Epipolar geometries corresponding to multiple, rigid motions are extracted in succession. Only two uncalibrated frames are needed, and no simplifying assumption (such as affine camera model or homographic model between images) other than the pin-hole camera model is made. Our novel approach consists of propagating a local geometric smoothness constraint in the 4D joint image space, followed by global consistency enforcement for extracting the fundamental matrices corresponding to independent motions. We have performed extensive experiments to compare our method with some representative algorithms to show that better performance on nonstatic scenes are achieved. Results on challenging data sets are presented.

  16. White matter fiber tracking computation based on diffusion tensor imaging for clinical applications.

    PubMed

    Dellani, Paulo R; Glaser, Martin; Wille, Paulo R; Vucurevic, Goran; Stadie, Axel; Bauermann, Thomas; Tropine, Andrei; Perneczky, Axel; von Wangenheim, Aldo; Stoeter, Peter

    2007-03-01

    Fiber tracking allows the in vivo reconstruction of human brain white matter fiber trajectories based on magnetic resonance diffusion tensor imaging (MR-DTI), but its application in the clinical routine is still in its infancy. In this study, we present a new software for fiber tracking, developed on top of a general-purpose DICOM (digital imaging and communications in medicine) framework, which can be easily integrated into existing picture archiving and communication system (PACS) of radiological institutions. Images combining anatomical information and the localization of different fiber tract trajectories can be encoded and exported in DICOM and Analyze formats, which are valuable resources in the clinical applications of this method. Fiber tracking was implemented based on existing line propagation algorithms, but it includes a heuristic for fiber crossings in the case of disk-shaped diffusion tensors. We successfully performed fiber tracking on MR-DTI data sets from 26 patients with different types of brain lesions affecting the corticospinal tracts. In all cases, the trajectories of the central spinal tract (pyramidal tract) were reconstructed and could be applied at the planning phase of the surgery as well as in intraoperative neuronavigation.

  17. Mild traumatic brain injury: is diffusion imaging ready for primetime in forensic medicine?

    PubMed

    Grossman, Elan J; Inglese, Matilde; Bammer, Roland

    2010-12-01

    Mild traumatic brain injury (MTBI) is difficult to accurately assess with conventional imaging because such approaches usually fail to detect any evidence of brain damage. Recent studies of MTBI patients using diffusion-weighted imaging and diffusion tensor imaging suggest that these techniques have the potential to help grade tissue damage severity, track its development, and provide prognostic markers for clinical outcome. Although these results are promising and indicate that the forensic diagnosis of MTBI might eventually benefit from the use of diffusion-weighted imaging and diffusion tensor imaging, healthy skepticism and caution should be exercised with regard to interpreting their meaning because there is no consensus about which methods of data analysis to use and very few investigations have been conducted, of which most have been small in sample size and examined patients at only one time point after injury.

  18. Cortical grey matter and subcortical white matter brain microstructural changes in schizophrenia are localised and age independent: a case-control diffusion tensor imaging study.

    PubMed

    Chiapponi, Chiara; Piras, Fabrizio; Piras, Federica; Fagioli, Sabrina; Caltagirone, Carlo; Spalletta, Gianfranco

    2013-01-01

    It is still unknown whether the structural brain impairments that characterize schizophrenia (SZ) worsen during the lifetime. Here, we aimed to describe age-related microstructural brain changes in cortical grey matter and subcortical white matter of patients affected by SZ. In this diffusion tensor imaging study, we included 69 patients diagnosed with SZ and 69 healthy control (HC) subjects, age and gender matched. We carried out analyses of covariance, with diagnosis as fixed factor and brain diffusion-related parameters as dependent variables, and controlled for the effect of education. White matter fractional anisotropy decreased in the entire age range spanned (18-65 years) in both SZ and HC and was significantly lower in younger patients with SZ, with no interaction (age by diagnosis) effect in fiber tracts including corpus callosum, corona radiata, thalamic radiations and external capsule. Also, grey matter mean diffusivity increased in the entire age range in both SZ and HC and was significantly higher in younger patients, with no age by diagnosis interaction in the left frontal operculum cortex, left insula and left planum polare and in the right temporal pole and right intracalcarine cortex. In individuals with SZ we found that localized brain cortical and white matter subcortical microstructural impairments appear early in life but do not worsen in the 18-65 year age range.

  19. Patient-specific models of cardiac biomechanics

    NASA Astrophysics Data System (ADS)

    Krishnamurthy, Adarsh; Villongco, Christopher T.; Chuang, Joyce; Frank, Lawrence R.; Nigam, Vishal; Belezzuoli, Ernest; Stark, Paul; Krummen, David E.; Narayan, Sanjiv; Omens, Jeffrey H.; McCulloch, Andrew D.; Kerckhoffs, Roy C. P.

    2013-07-01

    Patient-specific models of cardiac function have the potential to improve diagnosis and management of heart disease by integrating medical images with heterogeneous clinical measurements subject to constraints imposed by physical first principles and prior experimental knowledge. We describe new methods for creating three-dimensional patient-specific models of ventricular biomechanics in the failing heart. Three-dimensional bi-ventricular geometry is segmented from cardiac CT images at end-diastole from patients with heart failure. Human myofiber and sheet architecture is modeled using eigenvectors computed from diffusion tensor MR images from an isolated, fixed human organ-donor heart and transformed to the patient-specific geometric model using large deformation diffeomorphic mapping. Semi-automated methods were developed for optimizing the passive material properties while simultaneously computing the unloaded reference geometry of the ventricles for stress analysis. Material properties of active cardiac muscle contraction were optimized to match ventricular pressures measured by cardiac catheterization, and parameters of a lumped-parameter closed-loop model of the circulation were estimated with a circulatory adaptation algorithm making use of information derived from echocardiography. These components were then integrated to create a multi-scale model of the patient-specific heart. These methods were tested in five heart failure patients from the San Diego Veteran's Affairs Medical Center who gave informed consent. The simulation results showed good agreement with measured echocardiographic and global functional parameters such as ejection fraction and peak cavity pressures.

  20. Language Dysfunction After Stroke and Damage to White Matter Tracts Evaluated Using Diffusion Tensor Imaging

    PubMed Central

    Breier, J.I.; Hasan, K.M.; Zhang, W.; Men, D.; Papanicolaou, A.C.

    2011-01-01

    BACKGROUND AND PURPOSE Knowledge of the anatomic basis of aphasia after stroke has both theoretic and clinical implications by informing models of cortical connectivity and providing data for diagnosis and prognosis. In this study we use diffusion tensor imaging to address the relationship between damage to specific white matter tracts and linguistic deficits after left hemisphere stroke. MATERIALS AND METHODS Twenty patients aged 38–77 years with a history of stroke in the left hemisphere underwent diffusion tensor imaging, structural MR imaging, and language testing. All of the patients were premorbidly right handed and underwent imaging and language testing at least 1 month after stroke. RESULTS Lower fractional anisotropy (FA) values in the superior longitudinal and arcuate fasciculi of the left hemisphere, an indication of greater damage to these tracts, were correlated with decreased ability to repeat spoken language. Comprehension deficits after stroke were associated with lower FA values in the arcuate fasciculus of the left hemisphere. The findings for repetition were independent of MR imaging ratings of the degree of damage to cortical areas of the left hemisphere involved in language function. There were no findings for homotopic tracts in the right hemisphere. CONCLUSION This study provides support for a specific role for damage to the superior longitudinal and arcuate fasciculi in the left hemisphere in patients with deficits in repetition of speech in aphasia after stroke. PMID:18039757

  1. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach.

    PubMed

    Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago

    2015-01-01

    Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel.

  2. Impact of MR Acquisition Parameters on DTI Scalar Indexes: A Tractography Based Approach

    PubMed Central

    Barrio-Arranz, Gonzalo; de Luis-García, Rodrigo; Tristán-Vega, Antonio; Martín-Fernández, Marcos; Aja-Fernández, Santiago

    2015-01-01

    Acquisition parameters play a crucial role in Diffusion Tensor Imaging (DTI), as they have a major impact on the values of scalar measures such as Fractional Anisotropy (FA) or Mean Diffusivity (MD) that are usually the focus of clinical studies based on white matter analysis. This paper presents an analysis on the impact of the variation of several acquisition parameters on these scalar measures with a novel double focus. First, a tractography-based approach is employed, motivated by the significant number of clinical studies that are carried out using this technique. Second, the consequences of simultaneous changes in multiple parameters are analyzed: number of gradient directions, b-value and voxel resolution. Results indicate that the FA is most affected by changes in the number of gradients and voxel resolution, while MD is specially influenced by variations in the b-value. Even if the choice of a tractography algorithm has an effect on the numerical values of the final scalar measures, the evolution of these measures when acquisition parameters are modified is parallel. PMID:26457415

  3. Determination of multiple sclerosis plaque size with diffusion-tensor MR Imaging: comparison study with healthy volunteers.

    PubMed

    Kealey, Susan M; Kim, Youngjoo; Whiting, Wythe L; Madden, David J; Provenzale, James M

    2005-08-01

    To use diffusion-tensor magnetic resonance (MR) imaging to measure involvement of normal-appearing white matter (WM) immediately adjacent to multiple sclerosis (MS) plaques and thus redefine actual plaque size on diffusion-tensor images through comparison with T2-weighted images of equivalent areas in healthy volunteers. Informed consent was not required given the retrospective nature of the study on an anonymized database. The study complied with requirements of the Health Insurance Portability and Accountability Act. Twelve patients with MS (four men, eight women; mean age, 35 years) and 14 healthy volunteers (six men, eight women; mean age, 25 years) were studied. The authors obtained fractional anisotropy (FA) values in MS plaques and in the adjacent normal-appearing WM in patients with MS and in equivalent areas in healthy volunteers. They placed regions of interest (ROIs) around the periphery of plaques and defined the total ROIs (ie, plaques plus peripheral ROIs) as abnormal if their mean FA values were at least 2 standard deviations below those of equivalent ROIs within equivalent regions in healthy volunteers. The combined area of the plaque and the peripheral ROI was compared with the area of the plaque seen on T2-weighted MR images by means of a Student paired t test (P = .05). The mean plaque size on T2-weighted images was 72 mm2 +/- 21 (standard deviation). The mean plaque FA value was 0.285 +/- 0.088 (0.447 +/- 0.069 in healthy volunteers [P < .001]; mean percentage reduction in FA in MS plaques, 37%). The mean plaque size on FA maps was 91 mm2 +/- 35, a mean increase of 127% compared with the size of the original plaque on T2-weighted images (P = .03). A significant increase in plaque size was seen when normal-appearing WM was interrogated with diffusion-tensor MR imaging. This imaging technique may represent a more sensitive method of assessing disease burden and may have a future role in determining disease burden and activity.

  4. AAPM/RSNA physics tutorials for residents: MR imaging: brief overview and emerging applications.

    PubMed

    Jacobs, Michael A; Ibrahim, Tamer S; Ouwerkerk, Ronald

    2007-01-01

    Magnetic resonance (MR) imaging has become established as a diagnostic and research tool in many areas of medicine because of its ability to provide excellent soft-tissue delineation in different areas of interest. In addition to T1- and T2-weighted imaging, many specialized MR techniques have been designed to extract metabolic or biophysical information. Diffusion-weighted imaging gives insight into the movement of water molecules in tissue, and diffusion-tensor imaging can reveal fiber orientation in the white matter tracts. Metabolic information about the object of interest can be obtained with spectroscopy of protons, in addition to imaging of other nuclei, such as sodium. Dynamic contrast material-enhanced imaging and recently proton spectroscopy play an important role in oncologic imaging. When these techniques are combined, they can assist the physician in making a diagnosis or monitoring a treatment regimen. One of the major advantages of the different types of MR imaging is the ability of the operator to manipulate image contrast with a variety of selectable parameters that affect the kind and quality of the information provided. The elements used to obtain MR images and the factors that affect formation of an MR image include MR instrumentation, localization of the MR signal, gradients, k-space, and pulse sequences. RSNA, 2007

  5. Limbic-Auditory Interactions of Tinnitus: An Evaluation Using Diffusion Tensor Imaging.

    PubMed

    Gunbey, H P; Gunbey, E; Aslan, K; Bulut, T; Unal, A; Incesu, L

    2017-06-01

    Tinnitus is defined as an imaginary subjective perception in the absence of an external sound. Convergent evidence proposes that tinnitus perception includes auditory, attentional and emotional components. The aim of this study was to investigate the thalamic, auditory and limbic interactions associated with tinnitus-related distress by Diffusion Tensor Imaging (DTI). A total of 36 tinnitus patients, 20 healthy controls underwent an audiological examination, as well as a magnetic resonance imaging protocol including structural and DTI sequences. All participants completed the Tinnitus Handicap Inventory (THI) and Visual Analog Scales (VAS) related with tinnitus. The fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values were obtained for the auditory cortex (AC), inferior colliculus (IC), lateral lemniscus (LL), medial geniculate body (MGB), thalamic reticular nucleus (TRN), amygdala (AMG), hippocampus (HIP), parahippocampus (PHIP) and prefrontal cortex (PFC). In tinnitus patients the FA values of IC, MGB, TRN, AMG, HIP decreased and the ADC values of IC, MGB, TRN, AMG, PHIP increased significantly. The contralateral IC-LL and bilateral MGB FA values correlated negatively with hearing loss. A negative relation was found between the AMG-HIP FA values and THI and VAS scores. Bilateral ADC values of PHIP and PFC significantly correlated with the attention deficiency-VAS scores. In conclusion, this is the first DTI study to investigate the grey matter structures related to tinnitus perception and the significant correlation of FA and ADC with clinical parameters suggests that DTI can provide helpful information for tinnitus. Magnifying the microstructures in DTI can help evaluate the three faces of tinnitus nature: hearing, emotion and attention.

  6. Adverse effects of metallic artifacts on voxel-wise analysis and tract-based spatial statistics in diffusion tensor imaging.

    PubMed

    Goto, Masami; Abe, Osamu; Hata, Junichi; Fukunaga, Issei; Shimoji, Keigo; Kunimatsu, Akira; Gomi, Tsutomu

    2017-02-01

    Background Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that reflects the Brownian motion of water molecules constrained within brain tissue. Fractional anisotropy (FA) is one of the most commonly measured DTI parameters, and can be applied to quantitative analysis of white matter as tract-based spatial statistics (TBSS) and voxel-wise analysis. Purpose To show an association between metallic implants and the results of statistical analysis (voxel-wise group comparison and TBSS) for fractional anisotropy (FA) mapping, in DTI of healthy adults. Material and Methods Sixteen healthy volunteers were scanned with 3-Tesla MRI. A magnetic keeper type of dental implant was used as the metallic implant. DTI was acquired three times in each participant: (i) without a magnetic keeper (FAnon1); (ii) with a magnetic keeper (FAimp); and (iii) without a magnetic keeper (FAnon2) as reproducibility of FAnon1. Group comparisons with paired t-test were performed as FAnon1 vs. FAnon2, and as FAnon1 vs. FAimp. Results Regions of significantly reduced and increased local FA values were revealed by voxel-wise group comparison analysis (a P value of less than 0.05, corrected with family-wise error), but not by TBSS. Conclusion Metallic implants existing outside the field of view produce artifacts that affect the statistical analysis (voxel-wise group comparisons) for FA mapping. When statistical analysis for FA mapping is conducted by researchers, it is important to pay attention to any dental implants present in the mouths of the participants.

  7. Reduced white matter integrity and verbal fluency impairment in young adults with bipolar disorder: a diffusion tensor imaging study

    PubMed Central

    Bauer, Isabelle E.; Ouyang, Austin; Mwangi, Benson; Sanches, Marsal; Zunta-Soares, Giovana B.; Keefe, Richard S. E.; Huang, Hao; Soares, Jair C.

    2015-01-01

    Background Clinical evidence shows that bipolar disorder (BD) is characterized by white matter (WM) microstructural abnormalities. However, little is known about the biological mechanisms associated with these abnormalities and their relationship with cognitive functioning. Methods 49 adult BD patients ((M±SD): 29.27 ± 7.92 years; 17 males, 32 females; 34 BD-I, 10 BD-II, and 5 BD-NOS) and 28 age-matched normal subjects ((M±SD): 29.19 ± 7.35 years; 10 males and 18 females) underwent diffusion tensor imaging (DTI) imaging. DTI metrics were computed using whole-brain tract-based spatial statistics (TBSS) as part of the FMRIB Software Library. Measures of WM coherence (fractional anisotropy - FA) and axonal structure (mean, axial and radial diffusivity - MD, AD and RD) were employed to characterize the microstructural alterations in the limbic, commissural, association and projection fiber tracts. All participants performed the Brief Assessment of Cognition for Affective disorders (BAC-A). Results BD patients performed poorly on verbal fluency tasks and exhibited large clusters of altered FA, RD and MD values within the retrolenticular part of the internal capsule, the superior and anterior corona radiata, and the corpus callosum. Increased FA values in the left IFOF and the forceps minor correlated positively with verbal fluency scores. Altered RD parameters in the corticospinal tract and the forceps minor were associated with reduced visuomotor abilities. Conclusions The reported verbal fluency deficits and FA, RD and MD alterations in WM structures are potential cognitive and neural markers of BD. Abnormal RD values may be associated with progressive demyelination. PMID:25684152

  8. Interactive Volume Rendering of Diffusion Tensor Data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hlawitschka, Mario; Weber, Gunther; Anwander, Alfred

    As 3D volumetric images of the human body become an increasingly crucial source of information for the diagnosis and treatment of a broad variety of medical conditions, advanced techniques that allow clinicians to efficiently and clearly visualize volumetric images become increasingly important. Interaction has proven to be a key concept in analysis of medical images because static images of 3D data are prone to artifacts and misunderstanding of depth. Furthermore, fading out clinically irrelevant aspects of the image while preserving contextual anatomical landmarks helps medical doctors to focus on important parts of the images without becoming disoriented. Our goal wasmore » to develop a tool that unifies interactive manipulation and context preserving visualization of medical images with a special focus on diffusion tensor imaging (DTI) data. At each image voxel, DTI provides a 3 x 3 tensor whose entries represent the 3D statistical properties of water diffusion locally. Water motion that is preferential to specific spatial directions suggests structural organization of the underlying biological tissue; in particular, in the human brain, the naturally occuring diffusion of water in the axon portion of neurons is predominantly anisotropic along the longitudinal direction of the elongated, fiber-like axons [MMM+02]. This property has made DTI an emerging source of information about the structural integrity of axons and axonal connectivity between brain regions, both of which are thought to be disrupted in a broad range of medical disorders including multiple sclerosis, cerebrovascular disease, and autism [Mos02, FCI+01, JLH+99, BGKM+04, BJB+03].« less

  9. A novel measure of reliability in Diffusion Tensor Imaging after data rejections due to subject motion.

    PubMed

    Sairanen, V; Kuusela, L; Sipilä, O; Savolainen, S; Vanhatalo, S

    2017-02-15

    Diffusion Tensor Imaging (DTI) is commonly challenged by subject motion during data acquisition, which often leads to corrupted image data. Currently used procedure in DTI analysis is to correct or completely reject such data before tensor estimations, however assessing the reliability and accuracy of the estimated tensor in such situations has evaded previous studies. This work aims to define the loss of data accuracy with increasing image rejections, and to define a robust method for assessing reliability of the result at voxel level. We carried out simulations of every possible sub-scheme (N=1,073,567,387) of Jones30 gradient scheme, followed by confirming the idea with MRI data from four newborn and three adult subjects. We assessed the relative error of the most commonly used tensor estimates for DTI and tractography studies, fractional anisotropy (FA) and the major orientation vector (V1), respectively. The error was estimated using two measures, the widely used electric potential (EP) criteria as well as the rotationally variant condition number (CN). Our results show that CN and EP are comparable in situations with very few rejections, but CN becomes clearly more sensitive to depicting errors when more gradient vectors and images were rejected. The error in FA and V1 was also found depend on the actual FA level in the given voxel; low actual FA levels were related to high relative errors in the FA and V1 estimates. Finally, the results were confirmed with clinical MRI data. This showed that the errors after rejections are, indeed, inhomogeneous across brain regions. The FA and V1 errors become progressively larger when moving from the thick white matter bundles towards more superficial subcortical structures. Our findings suggest that i) CN is a useful estimator of data reliability at voxel level, and ii) DTI preprocessing with data rejections leads to major challenges when assessing brain tissue with lower FA levels, such as all newborn brain, as well as the adult superficial, subcortical areas commonly traced in precise connectivity analyses between cortical regions. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Contemporary imaging of mild TBI: the journey toward diffusion tensor imaging to assess neuronal damage.

    PubMed

    Fox, W Christopher; Park, Min S; Belverud, Shawn; Klugh, Arnett; Rivet, Dennis; Tomlin, Jeffrey M

    2013-04-01

    To follow the progression of neuroimaging as a means of non-invasive evaluation of mild traumatic brain injury (mTBI) in order to provide recommendations based on reproducible, defined imaging findings. A comprehensive literature review and analysis of contemporary published articles was performed to study the progression of neuroimaging findings as a non-invasive 'biomarker' for mTBI. Multiple imaging modalities exist to support the evaluation of patients with mTBI, including ultrasound (US), computed tomography (CT), single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI). These techniques continue to evolve with the development of fractional anisotropy (FA), fiber tractography (FT), and diffusion tensor imaging (DTI). Modern imaging techniques, when applied in the appropriate clinical setting, may serve as a valuable tool for diagnosis and management of patients with mTBI. An understanding of modern neuroanatomical imaging will enhance our ability to analyse injury and recognize the manifestations of mTBI.

  11. Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations.

    PubMed

    Leclercq, Delphine; Duffau, Hugues; Delmaire, Christine; Capelle, Laurent; Gatignol, Peggy; Ducros, Mathieu; Chiras, Jacques; Lehéricy, Stéphane

    2010-03-01

    Diffusion tensor (DT) imaging tractography is increasingly used to map fiber tracts in patients with surgical brain lesions to reduce the risk of postoperative functional deficit. There are few validation studies of DT imaging tractography in these patients. The aim of this study was to compare DT imaging tractography of language fiber tracts by using intraoperative subcortical electrical stimulations. The authors included 10 patients with low-grade gliomas or dysplasia located in language areas. The MR imaging examination included 3D T1-weighted images for anatomical coregistration, FLAIR, and DT images. Diffusion tensors and fiber tracts were calculated using in-house software. Four tracts were reconstructed in each patient including the arcuate fasciculus, the inferior occipitofrontal fasciculus, and 2 premotor fasciculi (the subcallosal medialis fiber tract and cortical fibers originating from the medial and lateral premotor areas). The authors compared fiber tracts reconstructed using DT imaging with those evidenced using intraoperative subcortical language mapping. Seventeen (81%) of 21 positive stimulations were concordant with DT imaging fiber bundles (located within 6 mm of a fiber tract). Four positive stimulations were not located in the vicinity of a DT imaging fiber tract. Stimulations of the arcuate fasciculus mostly induced articulatory and phonemic/syntactic disorders and less frequently semantic paraphasias. Stimulations of the inferior occipitofrontal fasciculus induced semantic paraphasias. Stimulations of the premotor-related fasciculi induced dysarthria and articulatory planning deficit. There was a good correspondence between positive stimulation sites and fiber tracts, suggesting that DT imaging fiber tracking is a reliable technique but not yet optimal to map language tracts in patients with brain lesions. Negative tractography does not rule out the persistence of a fiber tract, especially when invaded by the tumor. Stimulations of the different tracts induced variable language disorders that were specific to each fiber tract.

  12. A framework for incorporating DTI Atlas Builder registration into Tract-Based Spatial Statistics and a simulated comparison to standard TBSS.

    PubMed

    Leming, Matthew; Steiner, Rachel; Styner, Martin

    2016-02-27

    Tract-based spatial statistics (TBSS) 6 is a software pipeline widely employed in comparative analysis of the white matter integrity from diffusion tensor imaging (DTI) datasets. In this study, we seek to evaluate the relationship between different methods of atlas registration for use with TBSS and different measurements of DTI (fractional anisotropy, FA, axial diffusivity, AD, radial diffusivity, RD, and medial diffusivity, MD). To do so, we have developed a novel tool that builds on existing diffusion atlas building software, integrating it into an adapted version of TBSS called DAB-TBSS (DTI Atlas Builder-Tract-Based Spatial Statistics) by using the advanced registration offered in DTI Atlas Builder 7 . To compare the effectiveness of these two versions of TBSS, we also propose a framework for simulating population differences for diffusion tensor imaging data, providing a more substantive means of empirically comparing DTI group analysis programs such as TBSS. In this study, we used 33 diffusion tensor imaging datasets and simulated group-wise changes in this data by increasing, in three different simulations, the principal eigenvalue (directly altering AD), the second and third eigenvalues (RD), and all three eigenvalues (MD) in the genu, the right uncinate fasciculus, and the left IFO. Additionally, we assessed the benefits of comparing the tensors directly using a functional analysis of diffusion tensor tract statistics (FADTTS 10 ). Our results indicate comparable levels of FA-based detection between DAB-TBSS and TBSS, with standard TBSS registration reporting a higher rate of false positives in other measurements of DTI. Within the simulated changes investigated here, this study suggests that the use of DTI Atlas Builder's registration enhances TBSS group-based studies.

  13. APPROXIMATING SYMMETRIC POSITIVE SEMIDEFINITE TENSORS OF EVEN ORDER*

    PubMed Central

    BARMPOUTIS, ANGELOS; JEFFREY, HO; VEMURI, BABA C.

    2012-01-01

    Tensors of various orders can be used for modeling physical quantities such as strain and diffusion as well as curvature and other quantities of geometric origin. Depending on the physical properties of the modeled quantity, the estimated tensors are often required to satisfy the positivity constraint, which can be satisfied only with tensors of even order. Although the space P02m of 2mth-order symmetric positive semi-definite tensors is known to be a convex cone, enforcing positivity constraint directly on P02m is usually not straightforward computationally because there is no known analytic description of P02m for m > 1. In this paper, we propose a novel approach for enforcing the positivity constraint on even-order tensors by approximating the cone P02m for the cases 0 < m < 3, and presenting an explicit characterization of the approximation Σ2m ⊂ Ω2m for m ≥ 1, using the subset Ω2m⊂P02m of semi-definite tensors that can be written as a sum of squares of tensors of order m. Furthermore, we show that this approximation leads to a non-negative linear least-squares (NNLS) optimization problem with the complexity that equals the number of generators in Σ2m. Finally, we experimentally validate the proposed approach and we present an application for computing 2mth-order diffusion tensors from Diffusion Weighted Magnetic Resonance Images. PMID:23285313

  14. Estimation of full moment tensors, including uncertainties, for earthquakes, volcanic events, and nuclear explosions

    NASA Astrophysics Data System (ADS)

    Alvizuri, Celso; Silwal, Vipul; Krischer, Lion; Tape, Carl

    2017-04-01

    A seismic moment tensor is a 3 × 3 symmetric matrix that provides a compact representation of seismic events within Earth's crust. We develop an algorithm to estimate moment tensors and their uncertainties from observed seismic data. For a given event, the algorithm performs a grid search over the six-dimensional space of moment tensors by generating synthetic waveforms at each grid point and then evaluating a misfit function between the observed and synthetic waveforms. 'The' moment tensor M for the event is then the moment tensor with minimum misfit. To describe the uncertainty associated with M, we first convert the misfit function to a probability function. The uncertainty, or rather the confidence, is then given by the 'confidence curve' P(V ), where P(V ) is the probability that the true moment tensor for the event lies within the neighborhood of M that has fractional volume V . The area under the confidence curve provides a single, abbreviated 'confidence parameter' for M. We apply the method to data from events in different regions and tectonic settings: small (Mw < 2.5) events at Uturuncu volcano in Bolivia, moderate (Mw > 4) earthquakes in the southern Alaska subduction zone, and natural and man-made events at the Nevada Test Site. Moment tensor uncertainties allow us to better discriminate among moment tensor source types and to assign physical processes to the events.

  15. Ultrasound elastic tensor imaging: comparison with MR diffusion tensor imaging in the myocardium

    NASA Astrophysics Data System (ADS)

    Lee, Wei-Ning; Larrat, Benoît; Pernot, Mathieu; Tanter, Mickaël

    2012-08-01

    We have previously proven the feasibility of ultrasound-based shear wave imaging (SWI) to non-invasively characterize myocardial fiber orientation in both in vitro porcine and in vivo ovine hearts. The SWI-estimated results were in good correlation with histology. In this study, we proposed a new and robust fiber angle estimation method through a tensor-based approach for SWI, coined together as elastic tensor imaging (ETI), and compared it with magnetic resonance diffusion tensor imaging (DTI), a current gold standard and extensively reported non-invasive imaging technique for mapping fiber architecture. Fresh porcine (n = 5) and ovine (n = 5) myocardial samples (20 × 20 × 30 mm3) were studied. ETI was firstly performed to generate shear waves and to acquire the wave events at ultrafast frame rate (8000 fps). A 2.8 MHz phased array probe (pitch = 0.28 mm), connected to a prototype ultrasound scanner, was mounted on a customized MRI-compatible rotation device, which allowed both the rotation of the probe from -90° to 90° at 5° increments and co-registration between two imaging modalities. Transmural shear wave speed at all propagation directions realized was firstly estimated. The fiber angles were determined from the shear wave speed map using the least-squares method and eigen decomposition. The test myocardial sample together with the rotation device was then placed inside a 7T MRI scanner. Diffusion was encoded in six directions. A total of 270 diffusion-weighted images (b = 1000 s mm-2, FOV = 30 mm, matrix size = 60 × 64, TR = 6 s, TE = 19 ms, 24 averages) and 45 B0 images were acquired in 14 h 30 min. The fiber structure was analyzed by the fiber-tracking module in software, MedINRIA. The fiber orientation in the overlapped myocardial region which both ETI and DTI accessed was therefore compared, thanks to the co-registered imaging system. Results from all ten samples showed good correlation (r2 = 0.81, p < 0.0001) and good agreement (3.05° bias) between ETI and DTI fiber angle estimates. The average ETI-estimated fractional anisotropy (FA) values decreased from subendocardium to subepicardium (p < 0.05, unpaired, one-tailed t-test, N = 10) by 33%, whereas the corresponding DTI-estimated FA values presented a change of -10% (p > 0.05, unpaired, one-tailed t-test, N = 10). In conclusion, we have demonstrated that the fiber orientation estimated by ETI, which assesses the shear wave speed (and thus the stiffness), was comparable to that measured by DTI, which evaluates the preferred direction of water diffusion, and have validated this concept within the myocardium. Moreover, ETI was shown capable of mapping the transmural fiber angles with as few as seven shear wave propagation directions.

  16. Tensor discriminant color space for face recognition.

    PubMed

    Wang, Su-Jing; Yang, Jian; Zhang, Na; Zhou, Chun-Guang

    2011-09-01

    Recent research efforts reveal that color may provide useful information for face recognition. For different visual tasks, the choice of a color space is generally different. How can a color space be sought for the specific face recognition problem? To address this problem, this paper represents a color image as a third-order tensor and presents the tensor discriminant color space (TDCS) model. The model can keep the underlying spatial structure of color images. With the definition of n-mode between-class scatter matrices and within-class scatter matrices, TDCS constructs an iterative procedure to obtain one color space transformation matrix and two discriminant projection matrices by maximizing the ratio of these two scatter matrices. The experiments are conducted on two color face databases, AR and Georgia Tech face databases, and the results show that both the performance and the efficiency of the proposed method are better than those of the state-of-the-art color image discriminant model, which involve one color space transformation matrix and one discriminant projection matrix, specifically in a complicated face database with various pose variations.

  17. Non-lambertian reflectance modeling and shape recovery of faces using tensor splines.

    PubMed

    Kumar, Ritwik; Barmpoutis, Angelos; Banerjee, Arunava; Vemuri, Baba C

    2011-03-01

    Modeling illumination effects and pose variations of a face is of fundamental importance in the field of facial image analysis. Most of the conventional techniques that simultaneously address both of these problems work with the Lambertian assumption and thus fall short of accurately capturing the complex intensity variation that the facial images exhibit or recovering their 3D shape in the presence of specularities and cast shadows. In this paper, we present a novel Tensor-Spline-based framework for facial image analysis. We show that, using this framework, the facial apparent BRDF field can be accurately estimated while seamlessly accounting for cast shadows and specularities. Further, using local neighborhood information, the same framework can be exploited to recover the 3D shape of the face (to handle pose variation). We quantitatively validate the accuracy of the Tensor Spline model using a more general model based on the mixture of single-lobed spherical functions. We demonstrate the effectiveness of our technique by presenting extensive experimental results for face relighting, 3D shape recovery, and face recognition using the Extended Yale B and CMU PIE benchmark data sets.

  18. Elucidating fluctuating diffusivity in center-of-mass motion of polymer models with time-averaged mean-square-displacement tensor

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige

    2017-10-01

    There have been increasing reports that the diffusion coefficient of macromolecules depends on time and fluctuates randomly. Here a method is developed to elucidate this fluctuating diffusivity from trajectory data. Time-averaged mean-square displacement (MSD), a common tool in single-particle-tracking (SPT) experiments, is generalized to a second-order tensor with which both magnitude and orientation fluctuations of the diffusivity can be clearly detected. This method is used to analyze the center-of-mass motion of four fundamental polymer models: the Rouse model, the Zimm model, a reptation model, and a rigid rodlike polymer. It is found that these models exhibit distinctly different types of magnitude and orientation fluctuations of diffusivity. This is an advantage of the present method over previous ones, such as the ergodicity-breaking parameter and a non-Gaussian parameter, because with either of these parameters it is difficult to distinguish the dynamics of the four polymer models. Also, the present method of a time-averaged MSD tensor could be used to analyze trajectory data obtained in SPT experiments.

  19. Second Harmonic Generation of Unpolarized Light

    NASA Astrophysics Data System (ADS)

    Ding, Changqin; Ulcickas, James R. W.; Deng, Fengyuan; Simpson, Garth J.

    2017-11-01

    A Mueller tensor mathematical framework was applied for predicting and interpreting the second harmonic generation (SHG) produced with an unpolarized fundamental beam. In deep tissue imaging through SHG and multiphoton fluorescence, partial or complete depolarization of the incident light complicates polarization analysis. The proposed framework has the distinct advantage of seamlessly merging the purely polarized theory based on the Jones or Cartesian susceptibility tensors with a more general Mueller tensor framework capable of handling partial depolarized fundamental and/or SHG produced. The predictions of the model are in excellent agreement with experimental measurements of z -cut quartz and mouse tail tendon obtained with polarized and depolarized incident light. The polarization-dependent SHG produced with unpolarized fundamental allowed determination of collagen fiber orientation in agreement with orthogonal methods based on image analysis. This method has the distinct advantage of being immune to birefringence or depolarization of the fundamental beam for structural analysis of tissues.

  20. Interpolation of orientation distribution functions in diffusion weighted imaging using multi-tensor model.

    PubMed

    Afzali, Maryam; Fatemizadeh, Emad; Soltanian-Zadeh, Hamid

    2015-09-30

    Diffusion weighted imaging (DWI) is a non-invasive method for investigating the brain white matter structure and can be used to evaluate fiber bundles. However, due to practical constraints, DWI data acquired in clinics are low resolution. This paper proposes a method for interpolation of orientation distribution functions (ODFs). To this end, fuzzy clustering is applied to segment ODFs based on the principal diffusion directions (PDDs). Next, a cluster is modeled by a tensor so that an ODF is represented by a mixture of tensors. For interpolation, each tensor is rotated separately. The method is applied on the synthetic and real DWI data of control and epileptic subjects. Both experiments illustrate capability of the method in increasing spatial resolution of the data in the ODF field properly. The real dataset show that the method is capable of reliable identification of differences between temporal lobe epilepsy (TLE) patients and normal subjects. The method is compared to existing methods. Comparison studies show that the proposed method generates smaller angular errors relative to the existing methods. Another advantage of the method is that it does not require an iterative algorithm to find the tensors. The proposed method is appropriate for increasing resolution in the ODF field and can be applied to clinical data to improve evaluation of white matter fibers in the brain. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Electronic structures and magnetic/optical properties of metal phthalocyanine complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baba, Shintaro; Suzuki, Atsushi, E-mail: suzuki@mat.usp.ac.jp; Oku, Takeo

    2016-02-01

    Electronic structures and magnetic / optical properties of metal phthalocyanine complexes were studied by quantum calculations using density functional theory. Effects of central metal and expansion of π orbital on aromatic ring as conjugation system on the electronic structures, magnetic, optical properties and vibration modes of infrared and Raman spectra of metal phthalocyanines were investigated. Electron and charge density distribution and energy levels near frontier orbital and excited states were influenced by the deformed structures varied with central metal and charge. The magnetic parameters of chemical shifts in {sup 13}C-nuclear magnetic resonance ({sup 13}C-NMR), principle g-tensor, A-tensor, V-tensor of electricmore » field gradient and asymmetry parameters derived from the deformed structures with magnetic interaction of nuclear quadruple interaction based on electron and charge density distribution with a bias of charge near ligand under crystal field.« less

  2. Fast and accurate 3D tensor calculation of the Fock operator in a general basis

    NASA Astrophysics Data System (ADS)

    Khoromskaia, V.; Andrae, D.; Khoromskij, B. N.

    2012-11-01

    The present paper contributes to the construction of a “black-box” 3D solver for the Hartree-Fock equation by the grid-based tensor-structured methods. It focuses on the calculation of the Galerkin matrices for the Laplace and the nuclear potential operators by tensor operations using the generic set of basis functions with low separation rank, discretized on a fine N×N×N Cartesian grid. We prove the Ch2 error estimate in terms of mesh parameter, h=O(1/N), that allows to gain a guaranteed accuracy of the core Hamiltonian part in the Fock operator as h→0. However, the commonly used problem adapted basis functions have low regularity yielding a considerable increase of the constant C, hence, demanding a rather large grid-size N of about several tens of thousands to ensure the high resolution. Modern tensor-formatted arithmetics of complexity O(N), or even O(logN), practically relaxes the limitations on the grid-size. Our tensor-based approach allows to improve significantly the standard basis sets in quantum chemistry by including simple combinations of Slater-type, local finite element and other basis functions. Numerical experiments for moderate size organic molecules show efficiency and accuracy of grid-based calculations to the core Hamiltonian in the range of grid parameter N3˜1015.

  3. Primordial perturbations from dilaton-induced gauge fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Kiwoon; Choi, Ki-Young; Kim, Hyungjin

    2015-10-01

    We study the primordial scalar and tensor perturbations in inflation scenario involving a spectator dilaton field. In our setup, the rolling spectator dilaton causes a tachyonic instability of gauge fields, leading to a copious production of gauge fields in the superhorizon regime, which generates additional scalar and tensor perturbations through gravitational interactions. Our prime concern is the possibility to enhance the tensor-to-scalar ratio r relative to the standard result, while satisfying the observational constraints. To this end, we allow the dilaton field to be stabilized before the end of inflation, but after the CMB scales exit the horizon. We showmore » that for the inflaton slow roll parameter ε ∼> 10{sup −3}, the tensor-to-scalar ratio in our setup can be enhanced only by a factor of O(1) compared to the standard result. On the other hand, for smaller ε corresponding to a lower inflation energy scale, a much bigger enhancement can be achieved, so that our setup can give rise to an observably large r∼> 10{sup −2} even when ε|| 10{sup −3}. The tensor perturbation sourced by the spectator dilaton can have a strong scale dependence, and is generically red-tilted. We also discuss a specific model to realize our scenario, and identify the parameter region giving an observably large r for relatively low inflation energy scales.« less

  4. 13C and (15)N chemical shift tensors in adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine.

    PubMed

    Stueber, Dirk; Grant, David M

    2002-09-04

    The (13)C and (15)N chemical shift tensor principal values for adenosine, guanosine dihydrate, 2'-deoxythymidine, and cytidine are measured on natural abundance samples. Additionally, the (13)C and (15)N chemical shielding tensor principal values in these four nucleosides are calculated utilizing various theoretical approaches. Embedded ion method (EIM) calculations improve significantly the precision with which the experimental principal values are reproduced over calculations on the corresponding isolated molecules with proton-optimized geometries. The (13)C and (15)N chemical shift tensor orientations are reliably assigned in the molecular frames of the nucleosides based upon chemical shielding tensor calculations employing the EIM. The differences between principal values obtained in EIM calculations and in calculations on isolated molecules with proton positions optimized inside a point charge array are used to estimate the contributions to chemical shielding arising from intermolecular interactions. Moreover, the (13)C and (15)N chemical shift tensor orientations and principal values correlate with the molecular structure and the crystallographic environment for the nucleosides and agree with data obtained previously for related compounds. The effects of variations in certain EIM parameters on the accuracy of the shielding tensor calculations are investigated.

  5. A novel registration-based methodology for prediction of trabecular bone fabric from clinical QCT: A comprehensive analysis

    PubMed Central

    Reyes, Mauricio; Zysset, Philippe

    2017-01-01

    Osteoporosis leads to hip fractures in aging populations and is diagnosed by modern medical imaging techniques such as quantitative computed tomography (QCT). Hip fracture sites involve trabecular bone, whose strength is determined by volume fraction and orientation, known as fabric. However, bone fabric cannot be reliably assessed in clinical QCT images of proximal femur. Accordingly, we propose a novel registration-based estimation of bone fabric designed to preserve tensor properties of bone fabric and to map bone fabric by a global and local decomposition of the gradient of a non-rigid image registration transformation. Furthermore, no comprehensive analysis on the critical components of this methodology has been previously conducted. Hence, the aim of this work was to identify the best registration-based strategy to assign bone fabric to the QCT image of a patient’s proximal femur. The normalized correlation coefficient and curvature-based regularization were used for image-based registration and the Frobenius norm of the stretch tensor of the local gradient was selected to quantify the distance among the proximal femora in the population. Based on this distance, closest, farthest and mean femora with a distinction of sex were chosen as alternative atlases to evaluate their influence on bone fabric prediction. Second, we analyzed different tensor mapping schemes for bone fabric prediction: identity, rotation-only, rotation and stretch tensor. Third, we investigated the use of a population average fabric atlas. A leave one out (LOO) evaluation study was performed with a dual QCT and HR-pQCT database of 36 pairs of human femora. The quality of the fabric prediction was assessed with three metrics, the tensor norm (TN) error, the degree of anisotropy (DA) error and the angular deviation of the principal tensor direction (PTD). The closest femur atlas (CTP) with a full rotation (CR) for fabric mapping delivered the best results with a TN error of 7.3 ± 0.9%, a DA error of 6.6 ± 1.3% and a PTD error of 25 ± 2°. The closest to the population mean femur atlas (MTP) using the same mapping scheme yielded only slightly higher errors than CTP for substantially less computing efforts. The population average fabric atlas yielded substantially higher errors than the MTP with the CR mapping scheme. Accounting for sex did not bring any significant improvements. The identified fabric mapping methodology will be exploited in patient-specific QCT-based finite element analysis of the proximal femur to improve the prediction of hip fracture risk. PMID:29176881

  6. Various diffusion magnetic resonance imaging techniques for pancreatic cancer

    PubMed Central

    Tang, Meng-Yue; Zhang, Xiao-Ming; Chen, Tian-Wu; Huang, Xiao-Hua

    2015-01-01

    Pancreatic cancer is one of the most common malignant tumors and remains a treatment-refractory cancer with a poor prognosis. Currently, the diagnosis of pancreatic neoplasm depends mainly on imaging and which methods are conducive to detecting small lesions. Compared to the other techniques, magnetic resonance imaging (MRI) has irreplaceable advantages and can provide valuable information unattainable with other noninvasive or minimally invasive imaging techniques. Advances in MR hardware and pulse sequence design have particularly improved the quality and robustness of MRI of the pancreas. Diffusion MR imaging serves as one of the common functional MRI techniques and is the only technique that can be used to reflect the diffusion movement of water molecules in vivo. It is generally known that diffusion properties depend on the characterization of intrinsic features of tissue microdynamics and microstructure. With the improvement of the diffusion models, diffusion MR imaging techniques are increasingly varied, from the simplest and most commonly used technique to the more complex. In this review, the various diffusion MRI techniques for pancreatic cancer are discussed, including conventional diffusion weighted imaging (DWI), multi-b DWI based on intra-voxel incoherent motion theory, diffusion tensor imaging and diffusion kurtosis imaging. The principles, main parameters, advantages and limitations of these techniques, as well as future directions for pancreatic diffusion imaging are also discussed. PMID:26753059

  7. Combining the boundary shift integral and tensor-based morphometry for brain atrophy estimation

    NASA Astrophysics Data System (ADS)

    Michalkiewicz, Mateusz; Pai, Akshay; Leung, Kelvin K.; Sommer, Stefan; Darkner, Sune; Sørensen, Lauge; Sporring, Jon; Nielsen, Mads

    2016-03-01

    Brain atrophy from structural magnetic resonance images (MRIs) is widely used as an imaging surrogate marker for Alzheimers disease. Their utility has been limited due to the large degree of variance and subsequently high sample size estimates. The only consistent and reasonably powerful atrophy estimation methods has been the boundary shift integral (BSI). In this paper, we first propose a tensor-based morphometry (TBM) method to measure voxel-wise atrophy that we combine with BSI. The combined model decreases the sample size estimates significantly when compared to BSI and TBM alone.

  8. New Views on Dark Matter from Emergent Gravity

    NASA Astrophysics Data System (ADS)

    Sun, Sichun; Zhang, Yun-Long

    2018-01-01

    We discuss a scenario that apparent dark matter comes from the induced gravity in the (3+1)- dimensional spacetime, which can be embedded into one higher dimensional flat spacetime. The stress tensor of dark energy and dark matter is identified with the Brown-York stress tensor on the hypersurface, and we find an interesting constraint relation between the dark matter and dark energy density parameter and baryonic density parameter. Our approach may show a new understanding for Verlinde's emergent gravity from higher dimensions. We also comment on some phenomenological implications, including gravitational wave solutions and MOND limit.

  9. Gaugeon formalism for the second-rank antisymmetric tensor gauge fields

    NASA Astrophysics Data System (ADS)

    Aochi, Masataka; Endo, Ryusuke; Miura, Hikaru

    2018-02-01

    We present a BRST symmetric gaugeon formalism for the second-rank antisymmetric tensor gauge fields. A set of vector gaugeon fields is introduced as a quantum gauge freedom. One of the gaugeon fields satisfies a higher-derivative field equation; this property is necessary to change the gauge-fixing parameter of the antisymmetric tensor gauge field. A naive Lagrangian for the vector gaugeon fields is itself invariant under a gauge transformation for the vector gaugeon field. The Lagrangian of our theory includes the gauge-fixing terms for the gaugeon fields and corresponding Faddeev-Popov ghost terms.

  10. Alternatives for jet engine control

    NASA Technical Reports Server (NTRS)

    Sain, M. K.

    1981-01-01

    Research centered on basic topics in the modeling and feedback control of nonlinear dynamical systems is reported. Of special interest were the following topics: (1) the role of series descriptions, especially insofar as they relate to questions of scheduling, in the control of gas turbine engines; (2) the use of algebraic tensor theory as a technique for parameterizing such descriptions; (3) the relationship between tensor methodology and other parts of the nonlinear literature; (4) the improvement of interactive methods for parameter selection within a tensor viewpoint; and (5) study of feedback gain representation as a counterpart to these modeling and parameterization ideas.

  11. Registration of High Angular Resolution Diffusion MRI Images Using 4th Order Tensors⋆

    PubMed Central

    Barmpoutis, Angelos; Vemuri, Baba C.; Forder, John R.

    2009-01-01

    Registration of Diffusion Weighted (DW)-MRI datasets has been commonly achieved to date in literature by using either scalar or 2nd-order tensorial information. However, scalar or 2nd-order tensors fail to capture complex local tissue structures, such as fiber crossings, and therefore, datasets containing fiber-crossings cannot be registered accurately by using these techniques. In this paper we present a novel method for non-rigidly registering DW-MRI datasets that are represented by a field of 4th-order tensors. We use the Hellinger distance between the normalized 4th-order tensors represented as distributions, in order to achieve this registration. Hellinger distance is easy to compute, is scale and rotation invariant and hence allows for comparison of the true shape of distributions. Furthermore, we propose a novel 4th-order tensor re-transformation operator, which plays an essential role in the registration procedure and shows significantly better performance compared to the re-orientation operator used in literature for DTI registration. We validate and compare our technique with other existing scalar image and DTI registration methods using simulated diffusion MR data and real HARDI datasets. PMID:18051145

  12. The Riemannian geometry is not sufficient for the geometrization of the Maxwell's equations

    NASA Astrophysics Data System (ADS)

    Kulyabov, Dmitry S.; Korolkova, Anna V.; Velieva, Tatyana R.

    2018-04-01

    The transformation optics uses geometrized Maxwell's constitutive equations to solve the inverse problem of optics, namely to solve the problem of finding the parameters of the medium along the paths of propagation of the electromagnetic field. For the geometrization of Maxwell's constitutive equations, the quadratic Riemannian geometry is usually used. This is due to the use of the approaches of the general relativity. However, there arises the question of the insufficiency of the Riemannian structure for describing the constitutive tensor of the Maxwell's equations. The authors analyze the structure of the constitutive tensor and correlate it with the structure of the metric tensor of Riemannian geometry. It is concluded that the use of the quadratic metric for the geometrization of Maxwell's equations is insufficient, since the number of components of the metric tensor is less than the number of components of the constitutive tensor. A possible solution to this problem may be a transition to Finslerian geometry, in particular, the use of the Berwald-Moor metric to establish the structural correspondence between the field tensors of the electromagnetic field.

  13. Diffusion tensor imaging with tract-based spatial statistics reveals local white matter abnormalities in preterm infants.

    PubMed

    Anjari, Mustafa; Srinivasan, Latha; Allsop, Joanna M; Hajnal, Joseph V; Rutherford, Mary A; Edwards, A David; Counsell, Serena J

    2007-04-15

    Infants born preterm have a high incidence of neurodevelopmental impairment in later childhood, often associated with poorly defined cerebral white matter abnormalities. Diffusion tensor imaging quantifies the diffusion of water within tissues and can assess microstructural abnormalities in the developing preterm brain. Tract-based spatial statistics (TBSS) is an automated observer-independent method of aligning fractional anisotropy (FA) images from multiple subjects to allow groupwise comparisons of diffusion tensor imaging data. We applied TBSS to test the hypothesis that preterm infants have reduced fractional anisotropy in specific regions of white matter compared to term-born controls. We studied 26 preterm infants with no evidence of focal lesions on conventional magnetic resonance imaging (MRI) at term equivalent age and 6 healthy term-born control infants. We found that the centrum semiovale, frontal white matter and the genu of the corpus callosum showed significantly lower FA in the preterm group. Infants born at less than or equal to 28 weeks gestational age (n=11) displayed additional reductions in FA in the external capsule, the posterior aspect of the posterior limb of the internal capsule and the isthmus and middle portion of the body of the corpus callosum. This study demonstrates that TBSS provides an observer-independent method of identifying white matter abnormalities in the preterm brain at term equivalent age in the absence of focal lesions.

  14. Diffusion Tensor Imaging for Outcome Prediction in Mild Traumatic Brain Injury: A TRACK-TBI Study

    PubMed Central

    Yuh, Esther L.; Cooper, Shelly R.; Mukherjee, Pratik; Yue, John K.; Lingsma, Hester F.; Gordon, Wayne A.; Valadka, Alex B.; Okonkwo, David O.; Schnyer, David M.; Vassar, Mary J.; Maas, Andrew I.R.; Casey, Scott S.; Cheong, Maxwell; Dams-O'Connor, Kristen; Hricik, Allison J.; Inoue, Tomoo; Menon, David K.; Morabito, Diane J.; Pacheco, Jennifer L.; Puccio, Ava M.; Sinha, Tuhin K.

    2014-01-01

    Abstract We evaluated 3T diffusion tensor imaging (DTI) for white matter injury in 76 adult mild traumatic brain injury (mTBI) patients at the semiacute stage (11.2±3.3 days), employing both whole-brain voxel-wise and region-of-interest (ROI) approaches. The subgroup of 32 patients with any traumatic intracranial lesion on either day-of-injury computed tomography (CT) or semiacute magnetic resonance imaging (MRI) demonstrated reduced fractional anisotropy (FA) in numerous white matter tracts, compared to 50 control subjects. In contrast, 44 CT/MRI-negative mTBI patients demonstrated no significant difference in any DTI parameter, compared to controls. To determine the clinical relevance of DTI, we evaluated correlations between 3- and 6-month outcome and imaging, demographic/socioeconomic, and clinical predictors. Statistically significant univariable predictors of 3-month Glasgow Outcome Scale-Extended (GOS-E) included MRI evidence for contusion (odds ratio [OR] 4.9 per unit decrease in GOS-E; p=0.01), ≥1 ROI with severely reduced FA (OR, 3.9; p=0.005), neuropsychiatric history (OR, 3.3; p=0.02), age (OR, 1.07/year; p=0.002), and years of education (OR, 0.79/year; p=0.01). Significant predictors of 6-month GOS-E included ≥1 ROI with severely reduced FA (OR, 2.7; p=0.048), neuropsychiatric history (OR, 3.7; p=0.01), and years of education (OR, 0.82/year; p=0.03). For the subset of 37 patients lacking neuropsychiatric and substance abuse history, MRI surpassed all other predictors for both 3- and 6-month outcome prediction. This is the first study to compare DTI in individual mTBI patients to conventional imaging, clinical, and demographic/socioeconomic characteristics for outcome prediction. DTI demonstrated utility in an inclusive group of patients with heterogeneous backgrounds, as well as in a subset of patients without neuropsychiatric or substance abuse history. PMID:24742275

  15. Comparison of quality control software tools for diffusion tensor imaging.

    PubMed

    Liu, Bilan; Zhu, Tong; Zhong, Jianhui

    2015-04-01

    Image quality of diffusion tensor imaging (DTI) is critical for image interpretation, diagnostic accuracy and efficiency. However, DTI is susceptible to numerous detrimental artifacts that may impair the reliability and validity of the obtained data. Although many quality control (QC) software tools are being developed and are widely used and each has its different tradeoffs, there is still no general agreement on an image quality control routine for DTIs, and the practical impact of these tradeoffs is not well studied. An objective comparison that identifies the pros and cons of each of the QC tools will be helpful for the users to make the best choice among tools for specific DTI applications. This study aims to quantitatively compare the effectiveness of three popular QC tools including DTI studio (Johns Hopkins University), DTIprep (University of North Carolina at Chapel Hill, University of Iowa and University of Utah) and TORTOISE (National Institute of Health). Both synthetic and in vivo human brain data were used to quantify adverse effects of major DTI artifacts to tensor calculation as well as the effectiveness of different QC tools in identifying and correcting these artifacts. The technical basis of each tool was discussed, and the ways in which particular techniques affect the output of each of the tools were analyzed. The different functions and I/O formats that three QC tools provide for building a general DTI processing pipeline and integration with other popular image processing tools were also discussed. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. The value of image coregistration during stereotactic radiosurgery.

    PubMed

    Koga, T; Maruyama, K; Igaki, H; Tago, M; Saito, N

    2009-05-01

    Coregistration of any neuroimaging studies into treatment planning for stereotactic radiosurgery became easily applicable using the Leksell Gamma Knife 4C, a new model of gamma knife. The authors investigated the advantage of this image processing. Since installation of the Leksell Gamma Knife 4C at the authors' institute, 180 sessions of radiosurgery were performed. Before completion of planning, coregistration of frameless images of other modalities or previous images was considered to refine planning. Treatment parameters were compared for planning before and after refinement by use of coregistered images. Coregistered computed tomography clarified the anatomical structures indistinct on magnetic resonance imaging. Positron emission tomography visualized lesions disclosing metabolically high activity. Coregistration of prior imaging distinguished progressing lesions from stable ones. Diffusion-tensor tractography was integrated for lesions adjacent to the corticospinal tract or the optic radiation. After refinement of planning in 36 sessions, excess treated volume decreased (p = 0.0062) and Paddick conformity index improved (p < 0.001). Maximal dose to the white matter tracts was decreased (p < 0.001). Image coregistration provided direct information on anatomy, metabolic activity, chronological changes, and adjacent critical structures. This gathered information was sufficiently informative during treatment planning to supplement ambiguous information on stereotactic images, and was useful especially in reducing irradiation to surrounding normal structures.

  17. Characterizing dielectric tensors of anisotropic materials from a single measurement

    NASA Astrophysics Data System (ADS)

    Smith, Paula Kay

    Ellipsometry techniques look at changes in polarization states to measure optical properties of thin film materials. A beam reflected from a substrate measures the real and imaginary parts of the index of the material represented as n and k, respectively. Measuring the substrate at several angles gives additional information that can be used to measure multilayer thin film stacks. However, the outstanding problem in standard ellipsometry is that it uses a limited number of incident polarization states (s and p). This limits the technique to isotropic materials. The technique discussed in this paper extends the standard process to measure anisotropic materials by using a larger set of incident polarization states. By using a polarimeter to generate several incident polarization states and measure the polarization properties of the sample, ellipsometry can be performed on biaxial materials. Use of an optimization algorithm in conjunction with biaxial ellipsometry can more accurately determine the dielectric tensor of individual layers in multilayer structures. Biaxial ellipsometry is a technique that measures the dielectric tensors of a biaxial substrate, single-layer thin film, or multi-layer structure. The dielectric tensor of a biaxial material consists of the real and imaginary parts of the three orthogonal principal indices (n x + ikx, ny +iky and nz + i kz) as well as three Euler angles (alpha, beta and gamma) to describe its orientation. The method utilized in this work measures an angle-of-incidence Mueller matrix from a Mueller matrix imaging polarimeter equipped with a pair of microscope objectives that have low polarization properties. To accurately determine the dielectric tensors for multilayer samples, the angle-of-incidence Mueller matrix images are collected for multiple wavelengths. This is done in either a transmission mode or a reflection mode, each incorporates an appropriate dispersion model. Given approximate a priori knowledge of the dielectric tensor and film thickness, a Jones reflectivity matrix is calculated by solving Maxwell's equations at each surface. Converting the Jones matrix into a Mueller matrix provides a starting point for optimization. An optimization algorithm then finds the best fit dielectric tensor based on the measured angle-of-incidence Mueller matrix image. This process can be applied to polarizing materials, birefringent crystals and the multilayer structures of liquid crystal displays. In particular, the need for such accuracy in liquid crystal displays is growing as their applications in industry evolve.

  18. Evaluation of glymphatic system activity with the diffusion MR technique: diffusion tensor image analysis along the perivascular space (DTI-ALPS) in Alzheimer's disease cases.

    PubMed

    Taoka, Toshiaki; Masutani, Yoshitaka; Kawai, Hisashi; Nakane, Toshiki; Matsuoka, Kiwamu; Yasuno, Fumihiko; Kishimoto, Toshifumi; Naganawa, Shinji

    2017-04-01

    The activity of the glymphatic system is impaired in animal models of Alzheimer's disease (AD). We evaluated the activity of the human glymphatic system in cases of AD with a diffusion-based technique called diffusion tensor image analysis along the perivascular space (DTI-ALPS). Diffusion tensor images were acquired to calculate diffusivities in the x, y, and z axes of the plane of the lateral ventricle body in 31 patients. We evaluated the diffusivity along the perivascular spaces as well as projection fibers and association fibers separately, to acquire an index for diffusivity along the perivascular space (ALPS-index) and correlated them with the mini mental state examinations (MMSE) score. We found a significant negative correlation between diffusivity along the projection fibers and association fibers. We also observed a significant positive correlation between diffusivity along perivascular spaces shown as ALPS-index and the MMSE score, indicating lower water diffusivity along the perivascular space in relation to AD severity. Activity of the glymphatic system may be evaluated with diffusion images. Lower diffusivity along the perivascular space on DTI-APLS seems to reflect impairment of the glymphatic system. This method may be useful for evaluating the activity of the glymphatic system.

  19. Impaired functional but preserved structural connectivity in limbic white matter tracts in youth with conduct disorder or oppositional defiant disorder plus psychopathic traits.

    PubMed

    Finger, Elizabeth Carrie; Marsh, Abigail; Blair, Karina Simone; Majestic, Catherine; Evangelou, Iordanis; Gupta, Karan; Schneider, Marguerite Reid; Sims, Courtney; Pope, Kayla; Fowler, Katherine; Sinclair, Stephen; Tovar-Moll, Fernanda; Pine, Daniel; Blair, Robert James

    2012-06-30

    Youths with conduct disorder or oppositional defiant disorder and psychopathic traits (CD/ODD+PT) are at high risk of adult antisocial behavior and psychopathy. Neuroimaging studies demonstrate functional abnormalities in orbitofrontal cortex and the amygdala in both youths and adults with psychopathic traits. Diffusion tensor imaging in psychopathic adults demonstrates disrupted structural connectivity between these regions (uncinate fasiculus). The current study examined whether functional neural abnormalities present in youths with CD/ODD+PT are associated with similar white matter abnormalities. Youths with CD/ODD+PT and comparison participants completed 3.0 T diffusion tensor scans and functional magnetic resonance imaging scans. Diffusion tensor imaging did not reveal disruption in structural connections within the uncinate fasiculus or other white matter tracts in youths with CD/ODD+PT, despite the demonstration of disrupted amygdala-prefrontal functional connectivity in these youths. These results suggest that disrupted amygdala-frontal white matter connectivity as measured by fractional anisotropy is less sensitive than imaging measurements of functional perturbations in youths with psychopathic traits. If white matter tracts are intact in youths with this disorder, childhood may provide a critical window for intervention and treatment, before significant structural brain abnormalities solidify. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  20. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    NASA Astrophysics Data System (ADS)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  1. Evolution of axis ratios from phase space dynamics of triaxial collapse

    NASA Astrophysics Data System (ADS)

    Nadkarni-Ghosh, Sharvari; Arya, Bhaskar

    2018-04-01

    We investigate the evolution of axis ratios of triaxial haloes using the phase space description of triaxial collapse. In this formulation, the evolution of the triaxial ellipsoid is described in terms of the dynamics of eigenvalues of three important tensors: the Hessian of the gravitational potential, the tensor of velocity derivatives, and the deformation tensor. The eigenvalues of the deformation tensor are directly related to the parameters that describe triaxiality, namely, the minor-to-major and intermediate-to-major axes ratios (s and q) and the triaxiality parameter T. Using the phase space equations, we evolve the eigenvalues and examine the evolution of the probability distribution function (PDF) of the axes ratios as a function of mass scale and redshift for Gaussian initial conditions. We find that the ellipticity and prolateness increase with decreasing mass scale and decreasing redshift. These trends agree with previous analytic studies but differ from numerical simulations. However, the PDF of the scaled parameter {\\tilde{q}} = (q-s)/(1-s) follows a universal distribution over two decades in mass range and redshifts which is in qualitative agreement with the universality for conditional PDF reported in simulations. We further show using the phase space dynamics that, in fact, {\\tilde{q}} is a phase space invariant and is conserved individually for each halo. These results demonstrate that the phase space analysis is a useful tool that provides a different perspective on the evolution of perturbations and can be applied to more sophisticated models in the future.

  2. Comparison of Single-Shot Echo-Planar and Line Scan Protocols for Diffusion Tensor Imaging1

    PubMed Central

    Kubicki, Marek; Maier, Stephan E.; Westin, Carl-Frederik; Mamata, Hatsuho; Ersner-Hershfield, Hal; Estepar, Raul; Kikinis, Ron; Jolesz, Ferenc A.

    2009-01-01

    Rationale and Objectives Both single-shot diffusion-weighted echo-planar imaging (EPI) and line scan diffusion imaging (LSDI) can be used to obtain magnetic resonance diffusion tensor data and to calculate directionally invariant diffusion anisotropy indices, ie, indirect measures of the organization and coherence of white matter fibers in the brain. To date, there has been no comparison of EPI and LSDI. Because EPI is the most commonly used technique for acquiring diffusion tensor data, it is important to understand the limitations and advantages of LSDI relative to EPI. Materials and Methods Five healthy volunteers underwent EPI and LSDI diffusion on a 1.5 Tesla magnet (General Electric Medical Systems, Milwaukee, WI). Four-mm thick coronal sections, covering the entire brain, were obtained. In addition, one subject was tested with both sequences over four sessions. For each image voxel, eigenvectors and eigenvalues of the diffusion tensor were calculated, and fractional anisotropy (FA) was derived. Several regions of interest were delineated, and for each, mean FA and estimated mean standard deviation were calculated and compared. Results Results showed no significant differences between EPI and LSDI for mean FA for the five subjects. When inter-session reproducibility for one subject was evaluated, there was a significant difference between EPI and LSDI in FA for the corpus callosum and the right uncinate fasciculus. Moreover, errors associated with each FA measure were larger for EPI than for LSDI. Conclusion Results indicate that both EPI- and LSDI-derived FA measures are sufficiently robust. However, when higher accuracy is needed, LSDI provides smaller error and smaller inter-subject and inter-session variability than EPI. PMID:14974598

  3. Near real-time estimation of the seismic source parameters in a compressed domain

    NASA Astrophysics Data System (ADS)

    Rodriguez, Ismael A. Vera

    Seismic events can be characterized by its origin time, location and moment tensor. Fast estimations of these source parameters are important in areas of geophysics like earthquake seismology, and the monitoring of seismic activity produced by volcanoes, mining operations and hydraulic injections in geothermal and oil and gas reservoirs. Most available monitoring systems estimate the source parameters in a sequential procedure: first determining origin time and location (e.g., epicentre, hypocentre or centroid of the stress glut density), and then using this information to initialize the evaluation of the moment tensor. A more efficient estimation of the source parameters requires a concurrent evaluation of the three variables. The main objective of the present thesis is to address the simultaneous estimation of origin time, location and moment tensor of seismic events. The proposed method displays the benefits of being: 1) automatic, 2) continuous and, depending on the scale of application, 3) of providing results in real-time or near real-time. The inversion algorithm is based on theoretical results from sparse representation theory and compressive sensing. The feasibility of implementation is determined through the analysis of synthetic and real data examples. The numerical experiments focus on the microseismic monitoring of hydraulic fractures in oil and gas wells, however, an example using real earthquake data is also presented for validation. The thesis is complemented with a resolvability analysis of the moment tensor. The analysis targets common monitoring geometries employed in hydraulic fracturing in oil wells. Additionally, it is presented an application of sparse representation theory for the denoising of one-component and three-component microseismicity records, and an algorithm for improved automatic time-picking using non-linear inversion constraints.

  4. Gravitational waves from quasinormal modes of a class of Lorentzian wormholes

    NASA Astrophysics Data System (ADS)

    Aneesh, S.; Bose, Sukanta; Kar, Sayan

    2018-06-01

    Quasinormal modes of a two-parameter family of Lorentzian wormhole spacetimes, which arise as solutions in a specific scalar-tensor theory associated with braneworld gravity, are obtained using standard numerical methods. Being solutions in a scalar-tensor theory, these wormholes can exist with matter satisfying the weak energy condition. If one posits that the end-state of stellar-mass binary black hole mergers, of the type observed in GW150914, can be these wormholes, then we show how their properties can be measured from their distinct signatures in the gravitational waves emitted by them as they settle down in the postmerger phase from an initially perturbed state. We propose that their scalar quasinormal modes correspond to the so-called breathing modes, which normally arise in gravitational wave solutions in scalar-tensor theories. We show how the frequency and damping time of these modes depend on the wormhole parameters, including its mass. We derive the mode solutions and use them to determine how one can measure those parameters when these wormholes are the endstate of binary black hole mergers. Specifically, we find that if a breathing mode is observed in LIGO-like detectors with design sensitivity, and has a maximum amplitude equal to that of the tensor mode that was observed of GW150914, then for a range of values of the wormhole parameters, we will be able to discern it from a black hole. If in future observations we are able to confirm the existence of such wormholes, we would, at one go, have some indirect evidence of a modified theory of gravity as well as extra spatial dimensions.

  5. Canonical single field slow-roll inflation with a non-monotonic tensor-to-scalar ratio

    NASA Astrophysics Data System (ADS)

    Germán, Gabriel; Herrera-Aguilar, Alfredo; Hidalgo, Juan Carlos; Sussman, Roberto A.

    2016-05-01

    We take a pragmatic, model independent approach to single field slow-roll canonical inflation by imposing conditions, not on the potential, but on the slow-roll parameter epsilon(phi) and its derivatives epsilon'(phi) and epsilon''(phi), thereby extracting general conditions on the tensor-to-scalar ratio r and the running nsk at phiH where the perturbations are produced, some 50-60 e-folds before the end of inflation. We find quite generally that for models where epsilon(phi) develops a maximum, a relatively large r is most likely accompanied by a positive running while a negligible tensor-to-scalar ratio implies negative running. The definitive answer, however, is given in terms of the slow-roll parameter ξ2(phi). To accommodate a large tensor-to-scalar ratio that meets the limiting values allowed by the Planck data, we study a non-monotonic epsilon(phi) decreasing during most part of inflation. Since at phiH the slow-roll parameter epsilon(phi) is increasing, we thus require that epsilon(phi) develops a maximum for phi > phiH after which epsilon(phi) decrease to small values where most e-folds are produced. The end of inflation might occur trough a hybrid mechanism and a small field excursion Δphie ≡ |phiH-phie| is obtained with a sufficiently thin profile for epsilon(phi) which, however, should not conflict with the second slow-roll parameter η(phi). As a consequence of this analysis we find bounds for Δphie, rH and for the scalar spectral index nsH. Finally we provide examples where these considerations are explicitly realised.

  6. Moment tensor inversions using strong motion waveforms of Taiwan TSMIP data, 1993–2009

    USGS Publications Warehouse

    Chang, Kaiwen; Chi, Wu-Cheng; Gung, Yuancheng; Dreger, Douglas; Lee, William H K.; Chiu, Hung-Chie

    2011-01-01

    Earthquake source parameters are important for earthquake studies and seismic hazard assessment. Moment tensors are among the most important earthquake source parameters, and are now routinely derived using modern broadband seismic networks around the world. Similar waveform inversion techniques can also apply to other available data, including strong-motion seismograms. Strong-motion waveforms are also broadband, and recorded in many regions since the 1980s. Thus, strong-motion data can be used to augment moment tensor catalogs with a much larger dataset than that available from the high-gain, broadband seismic networks. However, a systematic comparison between the moment tensors derived from strong motion waveforms and high-gain broadband waveforms has not been available. In this study, we inverted the source mechanisms of Taiwan earthquakes between 1993 and 2009 by using the regional moment tensor inversion method using digital data from several hundred stations in the Taiwan Strong Motion Instrumentation Program (TSMIP). By testing different velocity models and filter passbands, we were able to successfully derive moment tensor solutions for 107 earthquakes of Mw >= 4.8. The solutions for large events agree well with other available moment tensor catalogs derived from local and global broadband networks. However, for Mw = 5.0 or smaller events, we consistently over estimated the moment magnitudes by 0.5 to 1.0. We have tested accelerograms, and velocity waveforms integrated from accelerograms for the inversions, and found the results are similar. In addition, we used part of the catalogs to study important seismogenic structures in the area near Meishan Taiwan which was the site of a very damaging earthquake a century ago, and found that the structures were dominated by events with complex right-lateral strike-slip faulting during the recent decade. The procedures developed from this study may be applied to other strong-motion datasets to compliment or fill gaps in catalogs from regional broadband networks and teleseismic networks.

  7. Measurement of the β-asymmetry parameter of Cu67 in search for tensor-type currents in the weak interaction

    NASA Astrophysics Data System (ADS)

    Soti, G.; Wauters, F.; Breitenfeldt, M.; Finlay, P.; Herzog, P.; Knecht, A.; Köster, U.; Kraev, I. S.; Porobic, T.; Prashanth, P. N.; Towner, I. S.; Tramm, C.; Zákoucký, D.; Severijns, N.

    2014-09-01

    Background: Precision measurements at low energy search for physics beyond the standard model in a way complementary to searches for new particles at colliders. In the weak sector the most general β-decay Hamiltonian contains, besides vector and axial-vector terms, also scalar, tensor, and pseudoscalar terms. Current limits on the scalar and tensor coupling constants from neutron and nuclear β decay are on the level of several percent. Purpose: Extracting new information on tensor coupling constants by measuring the β-asymmetry parameter in the pure Gamow-Teller decay of Cu67, thereby testing the V-A structure of the weak interaction. Method: An iron sample foil into which the radioactive nuclei were implanted was cooled down to mK temperatures in a 3He-4He dilution refrigerator. An external magnetic field of 0.1 T, in combination with the internal hyperfine magnetic field, oriented the nuclei. The anisotropic β radiation was observed with planar high-purity germanium detectors operating at a temperature of about 10 K. An on-line measurement of the β asymmetry of Cu68 was performed as well for normalization purposes. Systematic effects were investigated using geant4 simulations. Results: The experimental value, Ã=0.587(14), is in agreement with the standard model value of 0.5991(2) and is interpreted in terms of physics beyond the standard model. The limits obtained on possible tensor-type charged currents in the weak interaction Hamiltonian are -0.045<(CT+CT')/CA<0.159 (90% C.L.). Conclusions: The obtained limits are comparable to limits from other correlation measurements in nuclear β decay and contribute to further constraining tensor coupling constants.

  8. Uncertainty estimations for moment tensor inversions: the issue of the 2012 May 20 Emilia earthquake

    NASA Astrophysics Data System (ADS)

    Scognamiglio, Laura; Magnoni, Federica; Tinti, Elisa; Casarotti, Emanuele

    2016-08-01

    Seismic moment tensor is one of the most important source parameters defining the earthquake dimension and style of the activated fault. Geoscientists ordinarily use moment tensor catalogues, however, few attempts have been done to assess possible impacts of moment magnitude uncertainties upon their analysis. The 2012 May 20 Emilia main shock is a representative event since it is defined in literature with a moment magnitude value (Mw) spanning between 5.63 and 6.12. A variability of ˜0.5 units in magnitude leads to a controversial knowledge of the real size of the event and reveals how the solutions could be poorly constrained. In this work, we investigate the stability of the moment tensor solution for this earthquake, studying the effect of five different 1-D velocity models, the number and the distribution of the stations used in the inversion procedure. We also introduce a 3-D velocity model to account for structural heterogeneity. We finally estimate the uncertainties associated to the computed focal planes and the obtained Mw. We conclude that our reliable source solutions provide a moment magnitude that ranges from 5.87, 1-D model, to 5.96, 3-D model, reducing the variability of the literature to ˜0.1. We endorse that the estimate of seismic moment from moment tensor solutions, as well as the estimate of the other kinematic source parameters, requires coming out with disclosed assumptions and explicit processing workflows. Finally and, probably more important, when moment tensor solution is used for secondary analyses it has to be combined with the same main boundary conditions (e.g. wave-velocity propagation model) to avoid conflicting results.

  9. Differentiating G-inflation from string gas cosmology using the effective field theory approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Minxi; Liu, Junyu; Lu, Shiyun

    A characteristic signature of String Gas Cosmology is primordial power spectra for scalar and tensor modes which are almost scale-invariant but with a red tilt for scalar modes but a blue tilt for tensor modes. This feature, however, can also be realized in the so-called G-inflation model, in which Horndeski operators are introduced which leads to a blue tensor tilt by softly breaking the Null Energy Condition. In this article we search for potential observational differences between these two cosmologies by performing detailed perturbation analyses based on the Effective Field Theory approach. Our results show that, although both two modelsmore » produce blue tilted tensor perturbations, they behave differently in three aspects. Firstly, String Gas Cosmology predicts a specific consistency relation between the index of the scalar modes n {sub s} and that of tensor ones n {sub t} , which is hard to be reproduced by G-inflation. Secondly, String Gas Cosmology typically predicts non-Gaussianities which are highly suppressed on observable scales, while G-inflation gives rise to observationally large non-Gaussianities because the kinetic terms in the action become important during inflation. However, after finely tuning the model parameters of G-inflation it is possible to obtain a blue tensor spectrum and negligible non-Gaussianities with a degeneracy between the two models. This degeneracy can be broken by a third observable, namely the scale dependence of the nonlinearity parameter, which vanishes for G-inflation but has a blue tilt in the case of String Gas Cosmology. Therefore, we conclude that String Gas Cosmology is in principle observationally distinguishable from the single field inflationary cosmology, even allowing for modifications such as G-inflation.« less

  10. Real-time image-based B-mode ultrasound image simulation of needles using tensor-product interpolation.

    PubMed

    Zhu, Mengchen; Salcudean, Septimiu E

    2011-07-01

    In this paper, we propose an interpolation-based method for simulating rigid needles in B-mode ultrasound images in real time. We parameterize the needle B-mode image as a function of needle position and orientation. We collect needle images under various spatial configurations in a water-tank using a needle guidance robot. Then we use multidimensional tensor-product interpolation to simulate images of needles with arbitrary poses and positions using collected images. After further processing, the interpolated needle and seed images are superimposed on top of phantom or tissue image backgrounds. The similarity between the simulated and the real images is measured using a correlation metric. A comparison is also performed with in vivo images obtained during prostate brachytherapy. Our results, carried out for both the convex (transverse plane) and linear (sagittal/para-sagittal plane) arrays of a trans-rectal transducer indicate that our interpolation method produces good results while requiring modest computing resources. The needle simulation method we present can be extended to the simulation of ultrasound images of other wire-like objects. In particular, we have shown that the proposed approach can be used to simulate brachytherapy seeds.

  11. High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data

    NASA Technical Reports Server (NTRS)

    Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.

    2006-01-01

    Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.

  12. anisotropic microseismic focal mechanism inversion by waveform imaging matching

    NASA Astrophysics Data System (ADS)

    Wang, L.; Chang, X.; Wang, Y.; Xue, Z.

    2016-12-01

    The focal mechanism is one of the most important parameters in source inversion, for both natural earthquakes and human-induced seismic events. It has been reported to be useful for understanding stress distribution and evaluating the fracturing effect. The conventional focal mechanism inversion method picks the first arrival waveform of P wave. This method assumes the source as a Double Couple (DC) type and the media isotropic, which is usually not the case for induced seismic focal mechanism inversion. For induced seismic events, the inappropriate source and media model in inversion processing, by introducing ambiguity or strong simulation errors, will seriously reduce the inversion effectiveness. First, the focal mechanism contains significant non-DC source type. Generally, the source contains three components: DC, isotropic (ISO) and the compensated linear vector dipole (CLVD), which makes focal mechanisms more complicated. Second, the anisotropy of media will affect travel time and waveform to generate inversion bias. The common way to describe focal mechanism inversion is based on moment tensor (MT) inversion which can be decomposed into the combination of DC, ISO and CLVD components. There are two ways to achieve MT inversion. The wave-field migration method is applied to achieve moment tensor imaging. This method can construct elements imaging of MT in 3D space without picking the first arrival, but the retrieved MT value is influenced by imaging resolution. The full waveform inversion is employed to retrieve MT. In this method, the source position and MT can be reconstructed simultaneously. However, this method needs vast numerical calculation. Moreover, the source position and MT also influence each other in the inversion process. In this paper, the waveform imaging matching (WIM) method is proposed, which combines source imaging with waveform inversion for seismic focal mechanism inversion. Our method uses the 3D tilted transverse isotropic (TTI) elastic wave equation to approximate wave propagating in anisotropic media. First, a source imaging procedure is employed to obtain the source position. Second, we refine a waveform inversion algorithm to retrieve MT. We also use a microseismic data set recorded in surface acquisition to test our method.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klima, Matej; Kucharik, MIlan; Shashkov, Mikhail Jurievich

    We analyze several new and existing approaches for limiting tensor quantities in the context of deviatoric stress remapping in an ALE numerical simulation of elastic flow. Remapping and limiting of the tensor component-by-component is shown to violate radial symmetry of derived variables such as elastic energy or force. Therefore, we have extended the symmetry-preserving Vector Image Polygon algorithm, originally designed for limiting vector variables. This limiter constrains the vector (in our case a vector of independent tensor components) within the convex hull formed by the vectors from surrounding cells – an equivalent of the discrete maximum principle in scalar variables.more » We compare this method with a limiter designed specifically for deviatoric stress limiting which aims to constrain the J 2 invariant that is proportional to the specific elastic energy and scale the tensor accordingly. We also propose a method which involves remapping and limiting the J 2 invariant independently using known scalar techniques. The deviatoric stress tensor is then scaled to match this remapped invariant, which guarantees conservation in terms of elastic energy.« less

  14. Comments on "A Closed-Form Solution to Tensor Voting: Theory and Applications".

    PubMed

    Maggiori, Emmanuel; Lotito, Pablo; Manterola, Hugo Luis; del Fresno, Mariana

    2014-12-01

    We comment on a paper that describes a closed-form formulation to Tensor Voting, a technique to perceptually group clouds of points, usually applied to infer features in images. The authors proved an analytic solution to the technique, a highly relevant contribution considering that the original formulation required numerical integration, a time-consuming task. Their work constitutes the first closed-form expression for the Tensor Voting framework. In this work we first observe that the proposed formulation leads to unexpected results which do not satisfy the constraints for a Tensor Voting output, hence they cannot be interpreted. Given that the closed-form expression is said to be an analytic equivalent solution, unexpected outputs should not be encountered unless there are flaws in the proof. We analyzed the underlying math to find which were the causes of these unexpected results. In this commentary we show that their proposal does not in fact provide a proper analytic solution to Tensor Voting and we indicate the flaws in the proof.

  15. Joint Data Management for MOVINT Data-to-Decision Making

    DTIC Science & Technology

    2011-07-01

    flux tensor , aligned motion history images, and related approaches have been shown to be versatile approaches [12, 16, 17, 18]. Scaling these...methods include voting , neural networks, fuzzy logic, neuro-dynamic programming, support vector machines, Bayesian and Dempster-Shafer methods. One way...Information Fusion, 2010. [16] F. Bunyak, K. Palaniappan, S. K. Nath, G. Seetharaman, “Flux tensor constrained geodesic active contours with sensor fusion

  16. Unified tensor model for space-frequency spreading-multiplexing (SFSM) MIMO communication systems

    NASA Astrophysics Data System (ADS)

    de Almeida, André LF; Favier, Gérard

    2013-12-01

    This paper presents a unified tensor model for space-frequency spreading-multiplexing (SFSM) multiple-input multiple-output (MIMO) wireless communication systems that combine space- and frequency-domain spreadings, followed by a space-frequency multiplexing. Spreading across space (transmit antennas) and frequency (subcarriers) adds resilience against deep channel fades and provides space and frequency diversities, while orthogonal space-frequency multiplexing enables multi-stream transmission. We adopt a tensor-based formulation for the proposed SFSM MIMO system that incorporates space, frequency, time, and code dimensions by means of the parallel factor model. The developed SFSM tensor model unifies the tensorial formulation of some existing multiple-access/multicarrier MIMO signaling schemes as special cases, while revealing interesting tradeoffs due to combined space, frequency, and time diversities which are of practical relevance for joint symbol-channel-code estimation. The performance of the proposed SFSM MIMO system using either a zero forcing receiver or a semi-blind tensor-based receiver is illustrated by means of computer simulation results under realistic channel and system parameters.

  17. Steps to reconcile inflationary tensor and scalar spectra

    NASA Astrophysics Data System (ADS)

    Miranda, Vinícius; Hu, Wayne; Adshead, Peter

    2014-05-01

    The recent BICEP2 B-mode polarization determination of an inflationary tensor-scalar ratio r=0.2-0.05+0.07 is in tension with simple scale-free models of inflation due to a lack of a corresponding low multipole excess in the temperature power spectrum which places a limit of r0.002<0.11 (95% C.L.) on such models. Single-field inflationary models that reconcile these two observations, even those where the tilt runs substantially, introduce a scale into the scalar power spectrum. To cancel the tensor excess, and simultaneously remove the excess already present without tensors, ideally the model should introduce this scale as a relatively sharp transition in the tensor-scalar ratio around the horizon at recombination. We consider models which generate such a step in this quantity and find that they can improve the joint fit to the temperature and polarization data by up to 2ΔlnL≈-14 without changing cosmological parameters. Precision E-mode polarization measurements should be able to test this explanation.

  18. Chemical (knight) shift distortions of quadrupole-split deuteron powder spectra in solids

    NASA Astrophysics Data System (ADS)

    Torgeson, D. R.; Schoenberger, R. J.; Barnes, R. G.

    In strong magnetic fields (e.g., 8 Tesla) anisotropy of the shift tensor (chemical or Knight shift) can alter the spacings of the features of quadrupole-split deuteron spectra of polycrystalline samples. Analysis of powder spectra yields both correct quadrupole coupling and symmetry parameters and all the components of the shift tensor. Synthetic and experimental examples are given to illustrate such behavior.

  19. Electrical impedance tomography in anisotropic media with known eigenvectors

    NASA Astrophysics Data System (ADS)

    Abascal, Juan-Felipe P. J.; Lionheart, William R. B.; Arridge, Simon R.; Schweiger, Martin; Atkinson, David; Holder, David S.

    2011-06-01

    Electrical impedance tomography is an imaging method, with which volumetric images of conductivity are produced by injecting electrical current and measuring boundary voltages. It has the potential to become a portable non-invasive medical imaging technique. Until now, most implementations have neglected anisotropy even though human tissues like bone, muscle and brain white matter are markedly anisotropic. The recovery of an anisotropic conductivity tensor is uniquely determined by boundary measurements only up to a diffeomorphism that fixes the boundary. Nevertheless, uniqueness can be restored by providing information about the diffeomorphism. There are uniqueness results for two constraints: one eigenvalue and a multiple scalar of a general tensor. A useable constraint for medical applications is when the eigenvectors of the underlying tissue are known, which can be approximated from MRI or estimated from DT-MRI, although the eigenvalues are unknown. However there is no known theoretical result guaranteeing uniqueness for this constraint. In fact, only a few previous inversion studies have attempted to recover one or more eigenvalues assuming certain symmetries while ignoring nonuniqueness. In this work, the aim was to undertake a numerical study of the feasibility of the recovery of a piecewise linear finite element conductivity tensor in anisotropic media with known eigenvectors from the complete boundary data. The work suggests that uniqueness holds for this constraint, in addition to proposing a methodology for the incorporation of this prior for general conductivity tensors. This was carried out by performing an analysis of the Jacobian rank and by reconstructing four conductivity distributions: two diagonal tensors whose eigenvalues were linear and sinusoidal functions, and two general tensors whose eigenvectors resembled physiological tissue, one with eigenvectors spherically orientated like a spherical layered structure, and a sample of DT-MRI data of brain white matter. The Jacobian with respect to three eigenvalues was full-rank and it was possible to recover three eigenvalues for the four simulated distributions. This encourages further theoretical study of the uniqueness for this constraint and supports the use of this as a relevant usable method for medical applications.

  20. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    NASA Astrophysics Data System (ADS)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical output can be exported into several vector or raster graphical formats or, via clipboard, pasted directly into a presentation or publication manuscript. Calculated principal directions or anisotropy parameters can be exported into various types of text files ready to be visualized or processed by any software of user's choice.

  1. Constitutive equations of a tensorial model for strain-induced damage of metals based on three invariants

    NASA Astrophysics Data System (ADS)

    Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver

    2017-01-01

    On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.

  2. Three-dimensional model-based object recognition and segmentation in cluttered scenes.

    PubMed

    Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn

    2006-10-01

    Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.

  3. A Riemannian framework for orientation distribution function computing.

    PubMed

    Cheng, Jian; Ghosh, Aurobrata; Jiang, Tianzi; Deriche, Rachid

    2009-01-01

    Compared with Diffusion Tensor Imaging (DTI), High Angular Resolution Imaging (HARDI) can better explore the complex microstructure of white matter. Orientation Distribution Function (ODF) is used to describe the probability of the fiber direction. Fisher information metric has been constructed for probability density family in Information Geometry theory and it has been successfully applied for tensor computing in DTI. In this paper, we present a state of the art Riemannian framework for ODF computing based on Information Geometry and sparse representation of orthonormal bases. In this Riemannian framework, the exponential map, logarithmic map and geodesic have closed forms. And the weighted Frechet mean exists uniquely on this manifold. We also propose a novel scalar measurement, named Geometric Anisotropy (GA), which is the Riemannian geodesic distance between the ODF and the isotropic ODF. The Renyi entropy H1/2 of the ODF can be computed from the GA. Moreover, we present an Affine-Euclidean framework and a Log-Euclidean framework so that we can work in an Euclidean space. As an application, Lagrange interpolation on ODF field is proposed based on weighted Frechet mean. We validate our methods on synthetic and real data experiments. Compared with existing Riemannian frameworks on ODF, our framework is model-free. The estimation of the parameters, i.e. Riemannian coordinates, is robust and linear. Moreover it should be noted that our theoretical results can be used for any probability density function (PDF) under an orthonormal basis representation.

  4. The ascending reticular activating system from pontine reticular formation to the hypothalamus in the human brain: a diffusion tensor imaging study.

    PubMed

    Jang, Sung Ho; Kwon, Hyeok Gyu

    2015-03-17

    The ascending reticular activating system (ARAS) is responsible for regulation of consciousness. Precise evaluation of the ARAS is important for diagnosis and management of patients with impaired consciousness. In the current study, we attempted to reconstruct the portion of the ARAS from the pontine reticular formation (RF) to the hypothalamus in normal subjects, using diffusion tensor imaging (DTI). A total of 31 healthy subjects were recruited for this study. DTI scanning was performed using 1.5-T, and the ARAS from the pontine RF to the hypothalamus was reconstructed. Values of fractional anisotropy, mean diffusivity, and tract volume of the ARAS from the pontine RF to the hypothalamus were measured. In all subjects, the ARAS from the pontine RF to the hypothalamus originated from the RF at the level of the mid-pons, where the trigeminal nerve could be seen, ascended through the periaqueductal gray matter of the midbrain anterolaterally to the anterior commissure level, and then terminated into the hypothalamus. No significant differences in DTI parameters were observed between the left and right hemispheres and between males and females (p<0.05). We identified the ARAS between the pontine RF and the hypothalamus in normal subjects using DTI. We believe that the reconstruction methodology and the results of this study would be useful to clinicians involved in the care of patients with impaired consciousness and researchers in studies of the ARAS. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  5. Non-invasive high-resolution tracking of human neuronal pathways: diffusion tensor imaging at 7T with 1.2 mm isotropic voxel size

    NASA Astrophysics Data System (ADS)

    Lützkendorf, Ralf; Hertel, Frank; Heidemann, Robin; Thiel, Andreas; Luchtmann, Michael; Plaumann, Markus; Stadler, Jörg; Baecke, Sebastian; Bernarding, Johannes

    2013-03-01

    Diffusion tensor imaging (DTI) allows characterizing and exploiting diffusion anisotropy effects, thereby providing important details about tissue microstructure. A major application in neuroimaging is the so-called fiber tracking where neuronal connections between brain regions are determined non-invasively by DTI. Combining these neural pathways within the human brain with the localization of activated brain areas provided by functional MRI offers important information about functional connectivity of brain regions. However, DTI suffers from severe signal reduction due to the diffusion-weighting. Ultra-high field (UHF) magnetic resonance imaging (MRI) should therefore be advantageous to increase the intrinsic signal-to-noise ratio (SNR). This in turn enables to acquire high quality data with increased resolution, which is beneficial for tracking more complex fiber structures. However, UHF MRI imposes some difficulties mainly due to the larger B1 inhomogeneity compared to 3T MRI. We therefore optimized the parameters to perform DTI at a 7 Tesla whole body MR scanner equipped with a high performance gradient system and a 32-channel head receive coil. A Stesjkal Tanner spin-echo EPI sequence was used, to acquire 110 slices with an isotropic voxel-size of 1.2 mm covering the whole brain. 60 diffusion directions were scanned which allows calculating the principal direction components of the diffusion vector in each voxel. The results prove that DTI can be performed with high quality at UHF and that it is possible to explore the SNT benefit of the higher field strength. Combining UHF fMRI data with UHF DTI results will therefore be a major step towards better neuroimaging methods.

  6. Centroid-moment tensor solutions for October-December 2000

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Ekström, G.; Maternovskaya, N. N.

    2003-04-01

    Centroid-moment tensor solutions are presented for 263 earthquakes that occurred during the fourth quarter of 2000. The solutions are obtained using corrections for a spherical earth structure represented by the whole mantle shear velocity model SH8/U4L8 of Dziewonski and Woodward [A.M. Dziewonski, R.L. Woodward, Acoustic imaging at the planetary scale, in: H. Emert, H.-P. Harjes (Eds.), Acoustical Imaging, Plenum Press, New York, vol. 19, 1992, pp. 785-797]. The model of an elastic attenuation of Durek and Ekström [Bull. Seism. Soc. Am. 86 (1996) 144] is used to predict the decay of the waveforms.

  7. Diffusion tensor imaging of hemispheric asymmetries in the developing brain.

    PubMed

    Wilde, Elisabeth A; McCauley, Stephen R; Chu, Zili; Hunter, Jill V; Bigler, Erin D; Yallampalli, Ragini; Wang, Zhiyue J; Hanten, Gerri; Li, Xiaoqi; Ramos, Marco A; Sabir, Sharjeel H; Vasquez, Ana C; Menefee, Deleene; Levin, Harvey S

    2009-02-01

    Diffusion tensor imaging (DTI) was performed in 39 right-handed children to examine structural hemispheric differences and the impact of age, socioeconomic status, and sex on these differences. Apparent diffusion coefficient (ADC) values were smaller in the left than in the right temporal, prefrontal, anterior internal capsular and the thalamic regions, and fractional anisotropy (FA) values were larger in the left than in the right internal capsule, thalamus, and cingulate. Significant region-by-sex interactions disclosed that the relation of DTI asymmetries to performance depended on sex including the relation of temporal lobes to reading comprehension and the relation of frontal lobes to solving applied mathematical problems.

  8. Diffusion tensor imaging demonstrates brainstem and cerebellar abnormalities in congenital central hypoventilation syndrome.

    PubMed

    Kumar, Rajesh; Macey, Paul M; Woo, Mary A; Alger, Jeffry R; Harper, Ronald M

    2008-09-01

    Congenital central hypoventilation syndrome (CCHS) patients show reduced breathing drive during sleep, decreased hypoxic and hypercapnic ventilatory responses, and autonomic and affective deficits, suggesting both brainstem and forebrain injuries. Forebrain damage was previously described in CCHS, but methodological limitations precluded detection of brainstem injury, a concern because genetic mutations in CCHS target brainstem autonomic nuclei. To assess brainstem and cerebellar areas, we used diffusion tensor imaging-based measures, namely axial diffusivity, reflecting water diffusion parallel to fibers, and sensitive to axonal injury, and radial diffusivity, measuring diffusion perpendicular to fibers, and indicative of myelin injury. Diffusion tensor imaging was performed in 12 CCHS and 26 controls, and axial and radial diffusivity maps were compared between groups using analysis of covariance (covariates; age and gender). Increased axial diffusivity in CCHS appeared within the lateral medulla and clusters with injury extended from the dorsal midbrain through the periaqueductal gray, raphé, and superior cerebellar decussation, ventrally to the basal-pons. Cerebellar cortex and deep nuclei, and the superior and inferior cerebellar peduncles showed increased radial diffusivity. Midbrain, pontine, and lateral medullary structures, and the cerebellum and its fiber systems are injured in CCHS, likely contributing to the characteristics found in the syndrome.

  9. Microstructural white matter tract alteration in Prader-Willi syndrome: A diffusion tensor imaging study.

    PubMed

    Rice, Lauren J; Lagopoulos, Jim; Brammer, Michael; Einfeld, Stewart L

    2017-09-01

    Prader-Willi Syndrome (PWS) is a genetic disorder characterized by infantile hypotonia, hyperphagia, hypogonadism, growth hormone deficiency, intellectual disability, and severe emotional and behavioral problems. The brain mechanisms that underpin these disturbances are unknown. Diffusion tensor imaging (DTI) enables in vivo investigation of the microstructural integrity of white matter pathways. To date, only one study has used DTI to examine white matter alterations in PWS. However, that study used selected regions of interest, rather than a whole brain analysis. In the present study, we used diffusion tensor and magnetic resonance (T 1-weighted) imaging to examine microstructural white matter changes in 15 individuals with PWS (17-30 years) and 15 age-and-gender-matched controls. Whole-brain voxel-wise statistical analysis of FA was carried out using tract-based spatial statistics (TBSS). Significantly decreased fractional anisotropy was found localized to the left hemisphere in individuals with PWS within the splenium of the corpus callosum, the internal capsule including the posterior thalamic radiation and the inferior frontal occipital fasciculus (IFOF). Reduced integrity of these white matter pathways in individuals with PWS may relate to orientating attention, emotion recognition, semantic processing, and sensorimotor dysfunction. © 2017 Wiley Periodicals, Inc.

  10. Frame-dependence of higher-order inflationary observables in scalar-tensor theories

    NASA Astrophysics Data System (ADS)

    Karam, Alexandros; Pappas, Thomas; Tamvakis, Kyriakos

    2017-09-01

    In the context of scalar-tensor theories of gravity we compute the third-order corrected spectral indices in the slow-roll approximation. The calculation is carried out by employing the Green's function method for scalar and tensor perturbations in both the Einstein and Jordan frames. Then, using the interrelations between the Hubble slow-roll parameters in the two frames we find that the frames are equivalent up to third order. Since the Hubble slow-roll parameters are related to the potential slow-roll parameters, we express the observables in terms of the latter which are manifestly invariant. Nevertheless, the same inflaton excursion leads to different predictions in the two frames since the definition of the number of e -folds differs. To illustrate this effect we consider a nonminimal inflationary model and find that the difference in the predictions grows with the nonminimal coupling, and it can actually be larger than the difference between the first and third order results for the observables. Finally, we demonstrate the effect of various end-of-inflation conditions on the observables. These effects will become important for the analyses of inflationary models in view of the improved sensitivity of future experiments.

  11. Hydrogen Burning in Low Mass Stars Constrains Scalar-Tensor Theories of Gravity.

    PubMed

    Sakstein, Jeremy

    2015-11-13

    The most general scalar-tensor theories of gravity predict a weakening of the gravitational force inside astrophysical bodies. There is a minimum mass for hydrogen burning in stars that is set by the interplay of plasma physics and the theory of gravity. We calculate this for alternative theories of gravity and find that it is always significantly larger than the general relativity prediction. The observation of several low mass red dwarf stars therefore rules out a large class of scalar-tensor gravity theories and places strong constraints on the cosmological parameters appearing in the effective field theory of dark energy.

  12. Innovative anisotropic phantoms for calibration of diffusion tensor imaging sequences.

    PubMed

    Kłodowski, Krzysztof; Krzyżak, Artur Tadeusz

    2016-05-01

    The paper describes a novel type of anisotropic phantoms designed for b-matrix spatial distribution diffusion tensor imaging (BSD-DTI). Cubic plate anisotropic phantom, cylinder capillary phantom and water reference phantom are described as a complete set necessary for calibration, validation and normalization of BSD-DTI. An innovative design of the phantoms basing on enclosing the anisotropic cores in glass balls filled with liquid made for the first time possible BSD calibration with usage of echo planar imaging (EPI) sequence. Susceptibility artifacts prone to occur in EPI sequences were visibly reduced in the central region of the phantoms. The phantoms were designed for usage in a clinical scanner's head coil, but can be scaled for other coil or scanner types. The phantoms can be also used for a pre-calibration of imaging of other types of phantoms having more specific applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. High Efficiency, Low Distortion 3D Diffusion Tensor Imaging with Variable Density Spiral Fast Spin Echoes (3D DW VDS RARE)

    PubMed Central

    Frank, Lawrence R.; Jung, Youngkyoo; Inati, Souheil; Tyszka, J. Michael; Wong, Eric C.

    2009-01-01

    We present an acquisition and reconstruction method designed to acquire high resolution 3D fast spin echo diffusion tensor images while mitigating the major sources of artifacts in DTI - field distortions, eddy currents and motion. The resulting images, being 3D, are of high SNR, and being fast spin echoes, exhibit greatly reduced field distortions. This sequence utilizes variable density spiral acquisition gradients, which allow for the implementation of a self-navigation scheme by which both eddy current and motion artifacts are removed. The result is that high resolution 3D DTI images are produced without the need for eddy current compensating gradients or B0 field correction. In addition, a novel method for fast and accurate reconstruction of the non-Cartesian data is employed. Results are demonstrated in the brains of normal human volunteers. PMID:19778618

  14. Diagnosis of Lumbar Foraminal Stenosis using Diffusion Tensor Imaging.

    PubMed

    Eguchi, Yawara; Ohtori, Seiji; Suzuki, Munetaka; Oikawa, Yasuhiro; Yamanaka, Hajime; Tamai, Hiroshi; Kobayashi, Tatsuya; Orita, Sumihisa; Yamauchi, Kazuyo; Suzuki, Miyako; Aoki, Yasuchika; Watanabe, Atsuya; Kanamoto, Hirohito; Takahashi, Kazuhisa

    2016-02-01

    Diagnosis of lumbar foraminal stenosis remains difficult. Here, we report on a case in which bilateral lumbar foraminal stenosis was difficult to diagnose, and in which diffusion tensor imaging (DTI) was useful. The patient was a 52-year-old woman with low back pain and pain in both legs that was dominant on the right. Right lumbosacral nerve compression due to a massive uterine myoma was apparent, but the leg pain continued after a myomectomy was performed. No abnormalities were observed during nerve conduction studies. Computed tomography and magnetic resonance imaging indicated bilateral L5 lumbar foraminal stenosis. DTI imaging was done. The extraforaminal values were decreased and tractography was interrupted in the foraminal region. Bilateral L5 vertebral foraminal stenosis was treated by transforaminal lumbar interbody fusion and the pain in both legs disappeared. The case indicates the value of DTI for diagnosing vertebral foraminal stenosis.

  15. Diffusion-weighted imaging and diffusion tensor imaging of asymptomatic lumbar disc herniation.

    PubMed

    Sakai, Toshinori; Miyagi, Ryo; Yamabe, Eiko; Fujinaga, Yasunari; N Bhatia, Nitin; Yoshioka, Hiroshi

    2014-01-01

    Diffusion-weighted imaging (DWI) and diffusion tensor imaging (DTI) were performed on a healthy 31-year-old man with asymptomatic lumbar disc herniation. Although the left S1 nerve root was obviously entrapped by a herniated mass, neither DWI nor DTI showed any significant findings for the nerve root. Decreased apparent diffusion coefficient (ADC) values and increased fractional anisotropy (FA) values were found. These results are contrary to those in previously published studies of symptomatic patients, in which a combination of increased ADC and decreased FA seem to have a relationship with nerve injury and subsequent symptoms, such as leg pain or palsy. Our results seen in an asymptomatic subject suggest that the compressed nerve with no injury, such as edema, demyelination, or persistent axonal injury, may be indicated by a combination of decreased ADC and increased FA. ADC and FA could therefore be potential tools to elucidate the pathomechanism of radiculopathy.

  16. Segmentation of the pectoral muscle in breast MR images using structure tensor and deformable model

    NASA Astrophysics Data System (ADS)

    Lee, Myungeun; Kim, Jong Hyo

    2012-02-01

    Recently, breast MR images have been used in wider clinical area including diagnosis, treatment planning, and treatment response evaluation, which requests quantitative analysis and breast tissue segmentation. Although several methods have been proposed for segmenting MR images, segmenting out breast tissues robustly from surrounding structures in a wide range of anatomical diversity still remains challenging. Therefore, in this paper, we propose a practical and general-purpose approach for segmenting the pectoral muscle boundary based on the structure tensor and deformable model. The segmentation work flow comprises four key steps: preprocessing, detection of the region of interest (ROI) within the breast region, segmenting the pectoral muscle and finally extracting and refining the pectoral muscle boundary. From experimental results we show that the proposed method can segment the pectoral muscle robustly in diverse patient cases. In addition, the proposed method will allow the application of the quantification research for various breast images.

  17. Compression of hyper-spectral images using an accelerated nonnegative tensor decomposition

    NASA Astrophysics Data System (ADS)

    Li, Jin; Liu, Zilong

    2017-12-01

    Nonnegative tensor Tucker decomposition (NTD) in a transform domain (e.g., 2D-DWT, etc) has been used in the compression of hyper-spectral images because it can remove redundancies between spectrum bands and also exploit spatial correlations of each band. However, the use of a NTD has a very high computational cost. In this paper, we propose a low complexity NTD-based compression method of hyper-spectral images. This method is based on a pair-wise multilevel grouping approach for the NTD to overcome its high computational cost. The proposed method has a low complexity under a slight decrease of the coding performance compared to conventional NTD. We experimentally confirm this method, which indicates that this method has the less processing time and keeps a better coding performance than the case that the NTD is not used. The proposed approach has a potential application in the loss compression of hyper-spectral or multi-spectral images

  18. Motion-induced phase error estimation and correction in 3D diffusion tensor imaging.

    PubMed

    Van, Anh T; Hernando, Diego; Sutton, Bradley P

    2011-11-01

    A multishot data acquisition strategy is one way to mitigate B0 distortion and T2∗ blurring for high-resolution diffusion-weighted magnetic resonance imaging experiments. However, different object motions that take place during different shots cause phase inconsistencies in the data, leading to significant image artifacts. This work proposes a maximum likelihood estimation and k-space correction of motion-induced phase errors in 3D multishot diffusion tensor imaging. The proposed error estimation is robust, unbiased, and approaches the Cramer-Rao lower bound. For rigid body motion, the proposed correction effectively removes motion-induced phase errors regardless of the k-space trajectory used and gives comparable performance to the more computationally expensive 3D iterative nonlinear phase error correction method. The method has been extended to handle multichannel data collected using phased-array coils. Simulation and in vivo data are shown to demonstrate the performance of the method.

  19. Brain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.

    PubMed

    Lu, Meng

    2015-01-01

    Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, because QBI can provide accurate information about multiple fiber crossings and branchings in a single voxel using an orientation distribution function (ODF). The presented method also uses graph theory to construct the Bayesian model-based graph, so that the fiber tracking between two voxels can be represented as the shortest path in a graph. Our experiment showed that our new method can accurately handle brain white matter fiber crossings and branchings, and reconstruct brain tractograhpy both in phantom data and real brain data.

  20. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-01

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant CQ ∝ |Vzz| and the asymmetry parameter ηQ that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  1. Extended Czjzek model applied to NMR parameter distributions in sodium metaphosphate glass.

    PubMed

    Vasconcelos, Filipe; Cristol, Sylvain; Paul, Jean-François; Delevoye, Laurent; Mauri, Francesco; Charpentier, Thibault; Le Caër, Gérard

    2013-06-26

    The extended Czjzek model (ECM) is applied to the distribution of NMR parameters of a simple glass model (sodium metaphosphate, NaPO3) obtained by molecular dynamics (MD) simulations. Accurate NMR tensors, electric field gradient (EFG) and chemical shift anisotropy (CSA) are calculated from density functional theory (DFT) within the well-established PAW/GIPAW framework. The theoretical results are compared to experimental high-resolution solid-state NMR data and are used to validate the considered structural model. The distributions of the calculated coupling constant C(Q) is proportional to |V(zz)| and the asymmetry parameter η(Q) that characterize the quadrupolar interaction are discussed in terms of structural considerations with the help of a simple point charge model. Finally, the ECM analysis is shown to be relevant for studying the distribution of CSA tensor parameters and gives new insight into the structural characterization of disordered systems by solid-state NMR.

  2. Clustering fossils in solid inflation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Akhshik, Mohammad, E-mail: m.akhshik@ipm.ir

    In solid inflation the single field non-Gaussianity consistency condition is violated. As a result, the long tenor perturbation induces observable clustering fossils in the form of quadrupole anisotropy in large scale structure power spectrum. In this work we revisit the bispectrum analysis for the scalar-scalar-scalar and tensor-scalar-scalar bispectrum for the general parameter space of solid. We consider the parameter space of the model in which the level of non-Gaussianity generated is consistent with the Planck constraints. Specializing to this allowed range of model parameter we calculate the quadrupole anisotropy induced from the long tensor perturbations on the power spectrum ofmore » the scalar perturbations. We argue that the imprints of clustering fossil from primordial gravitational waves on large scale structures can be detected from the future galaxy surveys.« less

  3. Texture Analysis of T1-Weighted and Fluid-Attenuated Inversion Recovery Images Detects Abnormalities That Correlate With Cognitive Decline in Small Vessel Disease.

    PubMed

    Tozer, Daniel J; Zeestraten, Eva; Lawrence, Andrew J; Barrick, Thomas R; Markus, Hugh S

    2018-06-04

    Magnetic resonance imaging may be useful to assess disease severity in cerebral small vessel disease (SVD), identify those individuals who are most likely to progress to dementia, monitor disease progression, and act as surrogate markers to test new therapies. Texture analysis extracts information on the relationship between signal intensities of neighboring voxels. A potential advantage over techniques, such as diffusion tensor imaging, is that it can be used on clinically obtained magnetic resonance sequences. We determined whether texture parameters (TP) were abnormal in SVD, correlated with cognitive impairment, predicted cognitive decline, or conversion to dementia. In the prospective SCANS study (St George's Cognition and Neuroimaging in Stroke), we assessed TP in 121 individuals with symptomatic SVD at baseline, 99 of whom attended annual cognitive testing for 5 years. Conversion to dementia was recorded for all subjects during the 5-year period. Texture analysis was performed on fluid-attenuated inversion recovery and T1-weighted images. The TP obtained from the SVD cohort were cross-sectionally compared with 54 age-matched controls scanned on the same magnetic resonance imaging system. There were highly significant differences in several TP between SVD cases and controls. Within the SVD population, TP were highly correlated to other magnetic resonance imaging parameters (brain volume, white matter lesion volume, lacune count). TP correlated with executive function and global function at baseline and predicted conversion to dementia, after controlling for age, sex, premorbid intelligence quotient, and magnetic resonance parameters. TP, which can be obtained from routine clinical images, are abnormal in SVD, and the degree of abnormality correlates with executive dysfunction and global cognition at baseline and decline during 5 years. TP may be useful to assess disease severity in clinically collected data. This needs testing in data clinically acquired across multiple sites. © 2018 The Authors.

  4. Ultra-high field upper extremity peripheral nerve and non-contrast enhanced vascular imaging

    PubMed Central

    Raval, Shailesh B.; Britton, Cynthia A.; Zhao, Tiejun; Krishnamurthy, Narayanan; Santini, Tales; Gorantla, Vijay S.; Ibrahim, Tamer S.

    2017-01-01

    Objective The purpose of this study was to explore the efficacy of Ultra-high field [UHF] 7 Tesla [T] MRI as compared to 3T MRI in non-contrast enhanced [nCE] imaging of structural anatomy in the elbow, forearm, and hand [upper extremity]. Materials and method A wide range of sequences including T1 weighted [T1] volumetric interpolate breath-hold exam [VIBE], T2 weighted [T2] double-echo steady state [DESS], susceptibility weighted imaging [SWI], time-of-flight [TOF], diffusion tensor imaging [DTI], and diffusion spectrum imaging [DSI] were optimized and incorporated with a radiofrequency [RF] coil system composed of a transverse electromagnetic [TEM] transmit coil combined with an 8-channel receive-only array for 7T upper extremity [UE] imaging. In addition, Siemens optimized protocol/sequences were used on a 3T scanner and the resulting images from T1 VIBE and T2 DESS were compared to that obtained at 7T qualitatively and quantitatively [SWI was only qualitatively compared]. DSI studio was utilized to identify nerves based on analysis of diffusion weighted derived fractional anisotropy images. Images of forearm vasculature were extracted using a paint grow manual segmentation method based on MIPAV [Medical Image Processing, Analysis, and Visualization]. Results High resolution and high quality signal-to-noise ratio [SNR] and contrast-to-noise ratio [CNR]—images of the hand, forearm, and elbow were acquired with nearly homogeneous 7T excitation. Measured [performed on the T1 VIBE and T2 DESS sequences] SNR and CNR values were almost doubled at 7T vs. 3T. Cartilage, synovial fluid and tendon structures could be seen with higher clarity in the 7T T1 and T2 weighted images. SWI allowed high resolution and better quality imaging of large and medium sized arteries and veins, capillary networks and arteriovenous anastomoses at 7T when compared to 3T. 7T diffusion weighted sequence [not performed at 3T] demonstrates that the forearm nerves are clearly delineated by fiber tractography. The proper digital palmar arteries and superficial palmar arch could also be clearly visualized using TOF nCE 7T MRI. Conclusion Ultra-high resolution neurovascular imaging in upper extremities is possible at 7T without use of renal toxic intravenous contrast. 7T MRI can provide superior peripheral nerve [based on fiber anisotropy and diffusion coefficient parameters derived from diffusion tensor/spectrum imaging] and vascular [nCE MRA and vessel segmentation] imaging. PMID:28662061

  5. Rotation covariant image processing for biomedical applications.

    PubMed

    Skibbe, Henrik; Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences.

  6. White matter degeneration in schizophrenia: a comparative diffusion tensor analysis

    NASA Astrophysics Data System (ADS)

    Ingalhalikar, Madhura A.; Andreasen, Nancy C.; Kim, Jinsuh; Alexander, Andrew L.; Magnotta, Vincent A.

    2010-03-01

    Schizophrenia is a serious and disabling mental disorder. Diffusion tensor imaging (DTI) studies performed on schizophrenia have demonstrated white matter degeneration either due to loss of myelination or deterioration of fiber tracts although the areas where the changes occur are variable across studies. Most of the population based studies analyze the changes in schizophrenia using scalar indices computed from the diffusion tensor such as fractional anisotropy (FA) and relative anisotropy (RA). The scalar measures may not capture the complete information from the diffusion tensor. In this paper we have applied the RADTI method on a group of 9 controls and 9 patients with schizophrenia. The RADTI method converts the tensors to log-Euclidean space where a linear regression model is applied and hypothesis testing is performed between the control and patient groups. Results show that there is a significant difference in the anisotropy between patients and controls especially in the parts of forceps minor, superior corona radiata, anterior limb of internal capsule and genu of corpus callosum. To check if the tensor analysis gives a better idea of the changes in anisotropy, we compared the results with voxelwise FA analysis as well as voxelwise geodesic anisotropy (GA) analysis.

  7. A general theory of linear cosmological perturbations: scalar-tensor and vector-tensor theories

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lagos, Macarena; Baker, Tessa; Ferreira, Pedro G.

    We present a method for parametrizing linear cosmological perturbations of theories of gravity, around homogeneous and isotropic backgrounds. The method is sufficiently general and systematic that it can be applied to theories with any degrees of freedom (DoFs) and arbitrary gauge symmetries. In this paper, we focus on scalar-tensor and vector-tensor theories, invariant under linear coordinate transformations. In the case of scalar-tensor theories, we use our framework to recover the simple parametrizations of linearized Horndeski and ''Beyond Horndeski'' theories, and also find higher-derivative corrections. In the case of vector-tensor theories, we first construct the most general quadratic action for perturbationsmore » that leads to second-order equations of motion, which propagates two scalar DoFs. Then we specialize to the case in which the vector field is time-like (à la Einstein-Aether gravity), where the theory only propagates one scalar DoF. As a result, we identify the complete forms of the quadratic actions for perturbations, and the number of free parameters that need to be defined, to cosmologically characterize these two broad classes of theories.« less

  8. Quantitative assessments of traumatic axonal injury in human brain: concordance of microdialysis and advanced MRI.

    PubMed

    Magnoni, Sandra; Mac Donald, Christine L; Esparza, Thomas J; Conte, Valeria; Sorrell, James; Macrì, Mario; Bertani, Giulio; Biffi, Riccardo; Costa, Antonella; Sammons, Brian; Snyder, Abraham Z; Shimony, Joshua S; Triulzi, Fabio; Stocchetti, Nino; Brody, David L

    2015-08-01

    Axonal injury is a major contributor to adverse outcomes following brain trauma. However, the extent of axonal injury cannot currently be assessed reliably in living humans. Here, we used two experimental methods with distinct noise sources and limitations in the same cohort of 15 patients with severe traumatic brain injury to assess axonal injury. One hundred kilodalton cut-off microdialysis catheters were implanted at a median time of 17 h (13-29 h) after injury in normal appearing (on computed tomography scan) frontal white matter in all patients, and samples were collected for at least 72 h. Multiple analytes, such as the metabolic markers glucose, lactate, pyruvate, glutamate and tau and amyloid-β proteins, were measured every 1-2 h in the microdialysis samples. Diffusion tensor magnetic resonance imaging scans at 3 T were performed 2-9 weeks after injury in 11 patients. Stability of diffusion tensor imaging findings was verified by repeat scans 1-3 years later in seven patients. An additional four patients were scanned only at 1-3 years after injury. Imaging abnormalities were assessed based on comparisons with five healthy control subjects for each patient, matched by age and sex (32 controls in total). No safety concerns arose during either microdialysis or scanning. We found that acute microdialysis measurements of the axonal cytoskeletal protein tau in the brain extracellular space correlated well with diffusion tensor magnetic resonance imaging-based measurements of reduced brain white matter integrity in the 1-cm radius white matter-masked region near the microdialysis catheter insertion sites. Specifically, we found a significant inverse correlation between microdialysis measured levels of tau 13-36 h after injury and anisotropy reductions in comparison with healthy controls (Spearman's r = -0.64, P = 0.006). Anisotropy reductions near microdialysis catheter insertion sites were highly correlated with reductions in multiple additional white matter regions. We interpret this result to mean that both microdialysis and diffusion tensor magnetic resonance imaging accurately reflect the same pathophysiological process: traumatic axonal injury. This cross-validation increases confidence in both methods for the clinical assessment of axonal injury. However, neither microdialysis nor diffusion tensor magnetic resonance imaging have been validated versus post-mortem histology in humans. Furthermore, future work will be required to determine the prognostic significance of these assessments of traumatic axonal injury when combined with other clinical and radiological measures. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gu Zhengcheng; Wen Xiaogang

    2009-10-15

    We study the renormalization group flow of the Lagrangian for statistical and quantum systems by representing their path integral in terms of a tensor network. Using a tensor-entanglement-filtering renormalization approach that removes local entanglement and produces a coarse-grained lattice, we show that the resulting renormalization flow of the tensors in the tensor network has a nice fixed-point structure. The isolated fixed-point tensors T{sub inv} plus the symmetry group G{sub sym} of the tensors (i.e., the symmetry group of the Lagrangian) characterize various phases of the system. Such a characterization can describe both the symmetry breaking phases and topological phases, asmore » illustrated by two-dimensional (2D) statistical Ising model, 2D statistical loop-gas model, and 1+1D quantum spin-1/2 and spin-1 models. In particular, using such a (G{sub sym},T{sub inv}) characterization, we show that the Haldane phase for a spin-1 chain is a phase protected by the time-reversal, parity, and translation symmetries. Thus the Haldane phase is a symmetry-protected topological phase. The (G{sub sym},T{sub inv}) characterization is more general than the characterizations based on the boundary spins and string order parameters. The tensor renormalization approach also allows us to study continuous phase transitions between symmetry breaking phases and/or topological phases. The scaling dimensions and the central charges for the critical points that describe those continuous phase transitions can be calculated from the fixed-point tensors at those critical points.« less

  10. Quantification of diffusion tensor imaging in normal white matter maturation of early childhood using an automated processing pipeline.

    PubMed

    Loh, K B; Ramli, N; Tan, L K; Roziah, M; Rahmat, K; Ariffin, H

    2012-07-01

    The degree and status of white matter myelination can be sensitively monitored using diffusion tensor imaging (DTI). This study looks at the measurement of fractional anistropy (FA) and mean diffusivity (MD) using an automated ROI with an existing DTI atlas. Anatomical MRI and structural DTI were performed cross-sectionally on 26 normal children (newborn to 48 months old), using 1.5-T MRI. The automated processing pipeline was implemented to convert diffusion-weighted images into the NIfTI format. DTI-TK software was used to register the processed images to the ICBM DTI-81 atlas, while AFNI software was used for automated atlas-based volumes of interest (VOIs) and statistical value extraction. DTI exhibited consistent grey-white matter contrast. Triphasic temporal variation of the FA and MD values was noted, with FA increasing and MD decreasing rapidly early in the first 12 months. The second phase lasted 12-24 months during which the rate of FA and MD changes was reduced. After 24 months, the FA and MD values plateaued. DTI is a superior technique to conventional MR imaging in depicting WM maturation. The use of the automated processing pipeline provides a reliable environment for quantitative analysis of high-throughput DTI data. Diffusion tensor imaging outperforms conventional MRI in depicting white matter maturation. • DTI will become an important clinical tool for diagnosing paediatric neurological diseases. • DTI appears especially helpful for developmental abnormalities, tumours and white matter disease. • An automated processing pipeline assists quantitative analysis of high throughput DTI data.

  11. Directional bilateral filters for smoothing fluorescence microscopy images

    NASA Astrophysics Data System (ADS)

    Venkatesh, Manasij; Mohan, Kavya; Seelamantula, Chandra Sekhar

    2015-08-01

    Images obtained through fluorescence microscopy at low numerical aperture (NA) are noisy and have poor resolution. Images of specimens such as F-actin filaments obtained using confocal or widefield fluorescence microscopes contain directional information and it is important that an image smoothing or filtering technique preserve the directionality. F-actin filaments are widely studied in pathology because the abnormalities in actin dynamics play a key role in diagnosis of cancer, cardiac diseases, vascular diseases, myofibrillar myopathies, neurological disorders, etc. We develop the directional bilateral filter as a means of filtering out the noise in the image without significantly altering the directionality of the F-actin filaments. The bilateral filter is anisotropic to start with, but we add an additional degree of anisotropy by employing an oriented domain kernel for smoothing. The orientation is locally adapted using a structure tensor and the parameters of the bilateral filter are optimized for within the framework of statistical risk minimization. We show that the directional bilateral filter has better denoising performance than the traditional Gaussian bilateral filter and other denoising techniques such as SURE-LET, non-local means, and guided image filtering at various noise levels in terms of peak signal-to-noise ratio (PSNR). We also show quantitative improvements in low NA images of F-actin filaments.

  12. Performance of tensor decomposition-based modal identification under nonstationary vibration

    NASA Astrophysics Data System (ADS)

    Friesen, P.; Sadhu, A.

    2017-03-01

    Health monitoring of civil engineering structures is of paramount importance when they are subjected to natural hazards or extreme climatic events like earthquake, strong wind gusts or man-made excitations. Most of the traditional modal identification methods are reliant on stationarity assumption of the vibration response and posed difficulty while analyzing nonstationary vibration (e.g. earthquake or human-induced vibration). Recently tensor decomposition based methods are emerged as powerful and yet generic blind (i.e. without requiring a knowledge of input characteristics) signal decomposition tool for structural modal identification. In this paper, a tensor decomposition based system identification method is further explored to estimate modal parameters using nonstationary vibration generated due to either earthquake or pedestrian induced excitation in a structure. The effects of lag parameters and sensor densities on tensor decomposition are studied with respect to the extent of nonstationarity of the responses characterized by the stationary duration and peak ground acceleration of the earthquake. A suite of more than 1400 earthquakes is used to investigate the performance of the proposed method under a wide variety of ground motions utilizing both complete and partial measurements of a high-rise building model. Apart from the earthquake, human-induced nonstationary vibration of a real-life pedestrian bridge is also used to verify the accuracy of the proposed method.

  13. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array

    PubMed Central

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-01-01

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank-(L1,L2,·) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method. PMID:28448431

  14. Full paleostress tensor reconstruction: case study of the Panasqueira Mine, Portugal.

    NASA Astrophysics Data System (ADS)

    Pascal, C.; Jaques Ribeiro, L. M.

    2017-12-01

    Paleostress tensor restoration methods are traditionally limited to reconstructing geometrical parameters and are unable to resolve stress magnitudes. Based on previous studies we further developed a methodology to restore full paleostress tensors. We concentrated on inversion of Mode I fractures and acquired data in Panasqueira Mine, Portugal, where optimal 3D exposures of mineralised quartz veins can be found. To carry out full paleostress restoration we needed to determine (1) pore (paleo)pressure and (2) vein attitudes. To these aims we conducted an extensive fluid inclusion study to derive fluid isochores from the quartz of the studied veins. To further constrain P-T conditions, we combined these isochores with crystallisation temperatures derived from geochemical analyses of coeval arsenopyrite. We also applied the sphalerite geobarometer and considered two other independent pressure indicators. Our results point to pore pressures of 300 MPa and formation depths of 10 km. As a second step, we measured 600 subhorizontal quartz veins in all the levels of the mine. The inversion of the attitudes of the veins allowed for reconstructing the orientations of the principal axes of stress, the unscaled Mohr circle and the relative pore pressure. After merging these results with the previously obtained absolute pore pressure we reconstructed the six parameters of the paleostress tensor.

  15. A Type-2 Block-Component-Decomposition Based 2D AOA Estimation Algorithm for an Electromagnetic Vector Sensor Array.

    PubMed

    Gao, Yu-Fei; Gui, Guan; Xie, Wei; Zou, Yan-Bin; Yang, Yue; Wan, Qun

    2017-04-27

    This paper investigates a two-dimensional angle of arrival (2D AOA) estimation algorithm for the electromagnetic vector sensor (EMVS) array based on Type-2 block component decomposition (BCD) tensor modeling. Such a tensor decomposition method can take full advantage of the multidimensional structural information of electromagnetic signals to accomplish blind estimation for array parameters with higher resolution. However, existing tensor decomposition methods encounter many restrictions in applications of the EMVS array, such as the strict requirement for uniqueness conditions of decomposition, the inability to handle partially-polarized signals, etc. To solve these problems, this paper investigates tensor modeling for partially-polarized signals of an L-shaped EMVS array. The 2D AOA estimation algorithm based on rank- ( L 1 , L 2 , · ) BCD is developed, and the uniqueness condition of decomposition is analyzed. By means of the estimated steering matrix, the proposed algorithm can automatically achieve angle pair-matching. Numerical experiments demonstrate that the present algorithm has the advantages of both accuracy and robustness of parameter estimation. Even under the conditions of lower SNR, small angular separation and limited snapshots, the proposed algorithm still possesses better performance than subspace methods and the canonical polyadic decomposition (CPD) method.

  16. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains.

    PubMed

    Onken, Arno; Liu, Jian K; Karunasekara, P P Chamanthi R; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-11-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding.

  17. Using Matrix and Tensor Factorizations for the Single-Trial Analysis of Population Spike Trains

    PubMed Central

    Onken, Arno; Liu, Jian K.; Karunasekara, P. P. Chamanthi R.; Delis, Ioannis; Gollisch, Tim; Panzeri, Stefano

    2016-01-01

    Advances in neuronal recording techniques are leading to ever larger numbers of simultaneously monitored neurons. This poses the important analytical challenge of how to capture compactly all sensory information that neural population codes carry in their spatial dimension (differences in stimulus tuning across neurons at different locations), in their temporal dimension (temporal neural response variations), or in their combination (temporally coordinated neural population firing). Here we investigate the utility of tensor factorizations of population spike trains along space and time. These factorizations decompose a dataset of single-trial population spike trains into spatial firing patterns (combinations of neurons firing together), temporal firing patterns (temporal activation of these groups of neurons) and trial-dependent activation coefficients (strength of recruitment of such neural patterns on each trial). We validated various factorization methods on simulated data and on populations of ganglion cells simultaneously recorded in the salamander retina. We found that single-trial tensor space-by-time decompositions provided low-dimensional data-robust representations of spike trains that capture efficiently both their spatial and temporal information about sensory stimuli. Tensor decompositions with orthogonality constraints were the most efficient in extracting sensory information, whereas non-negative tensor decompositions worked well even on non-independent and overlapping spike patterns, and retrieved informative firing patterns expressed by the same population in response to novel stimuli. Our method showed that populations of retinal ganglion cells carried information in their spike timing on the ten-milliseconds-scale about spatial details of natural images. This information could not be recovered from the spike counts of these cells. First-spike latencies carried the majority of information provided by the whole spike train about fine-scale image features, and supplied almost as much information about coarse natural image features as firing rates. Together, these results highlight the importance of spike timing, and particularly of first-spike latencies, in retinal coding. PMID:27814363

  18. Magma flow recorded by magmatic and magnetic fabrics in a shallow granitic pluton: La Gloria Pluton, central Chile

    NASA Astrophysics Data System (ADS)

    Payacán, I. J.; Gutiérrez, F. J.; Gelman, S. E.; Bachmann, O.; Parada, M. A.

    2013-12-01

    To better understand the dynamics of a small, shallow, silicic magma reservoir, magmatic and magnetic (AMS) fabrics are compared in samples obtained from La Gloria Pluton (LGP), a 10 Ma granitic intrusion located in southern Andes. The magnetic fabric of LGP, mainly given by magnetite, is characterized by oblate shapes. Magnetic lineations have a NW trend with subhorizontal dip, following the main pluton elongation, while magnetic foliation planes have dips varying gradually from vertical at the walls to subhorizontal toward the center and the roof of the pluton. On the basis of numerical simulations, magnetic fabric was interpreted to represent the shear record induced by magmatic convection along solidification fronts as the reservoir reached its rheological locking point. Magmatic fabric (mineral orientation) was determined on 12 samples along the pluton. Three mutually orthogonal thin sections were produced for each sample, perpendicular to the AMS tensor axes. Size and orientation of individual crystals were obtained by image analysis. A 2-D tensor for two mineral groups (plagioclase and amphibole+biotitie) was defined in each mineral plane projecting the crystal lengths on the main crystal orientation (given by Bingham statistics). A 3-D magmatic fabric tensor was obtained. In order to compare the magmatic and magnetic fabrics, magmatic anisotropy parameters were defined similar to the AMS tensors. Magmatic fabric and anisotropy parameter values vary depending on the location inside the pluton: (1) Samples located at the borders exhibit vertical foliations and lineations with a NW trend, similar to the magnetic fabric tensors and higher anisotropy values for plagioclase than amphibole+biotite,; (2) samples located at the center of the LGP commonly present subvertical foliations/lineations, which differ from the magnetic fabric, and higher magmatic anisotropy degree values for amphibole+biotite than plagioclase. Based on numerical simulations of the fluid dynamics of the LGP and the different aspect ratio of minerals, we interpret that both the magnetic and magmatic fabrics represent the shear pattern produced along solidification fronts due to rheological locking during late-stage of magma cooling. It is interesting to note that while the magmatic fabric records vertical convection patterns in the core of the pluton, in agreement with predictions from numerical simulations, the magnetic fabric does not, probably because shear rate values are too low. Acknowledgments. This research has been developed by the FONDECYT N°11100241 and PBCT-PDA07 projects granted by CONICYT (Chilean National Commission for Science and Technology). I.P. is supported by CONICYT magister grant N°22130729. We thank to FONDAP N°15090013 for supporting during the congress.

  19. Symmetric Positive 4th Order Tensors & Their Estimation from Diffusion Weighted MRI⋆

    PubMed Central

    Barmpoutis, Angelos; Jian, Bing; Vemuri, Baba C.; Shepherd, Timothy M.

    2009-01-01

    In Diffusion Weighted Magnetic Resonance Image (DW-MRI) processing a 2nd order tensor has been commonly used to approximate the diffusivity function at each lattice point of the DW-MRI data. It is now well known that this 2nd-order approximation fails to approximate complex local tissue structures, such as fibers crossings. In this paper we employ a 4th order symmetric positive semi-definite (PSD) tensor approximation to represent the diffusivity function and present a novel technique to estimate these tensors from the DW-MRI data guaranteeing the PSD property. There have been several published articles in literature on higher order tensor approximations of the diffusivity function but none of them guarantee the positive semi-definite constraint, which is a fundamental constraint since negative values of the diffusivity coefficients are not meaningful. In our methods, we parameterize the 4th order tensors as a sum of squares of quadratic forms by using the so called Gram matrix method from linear algebra and its relation to the Hilbert’s theorem on ternary quartics. This parametric representation is then used in a nonlinear-least squares formulation to estimate the PSD tensors of order 4 from the data. We define a metric for the higher-order tensors and employ it for regularization across the lattice. Finally, performance of this model is depicted on synthetic data as well as real DW-MRI from an isolated rat hippocampus. PMID:17633709

  20. Normal development of human brain white matter from infancy to early adulthood: a diffusion tensor imaging study.

    PubMed

    Uda, Satoshi; Matsui, Mie; Tanaka, Chiaki; Uematsu, Akiko; Miura, Kayoko; Kawana, Izumi; Noguchi, Kyo

    2015-01-01

    Diffusion tensor imaging (DTI), which measures the magnitude of anisotropy of water diffusion in white matter, has recently been used to visualize and quantify parameters of neural tracts connecting brain regions. In order to investigate the developmental changes and sex and hemispheric differences of neural fibers in normal white matter, we used DTI to examine 52 healthy humans ranging in age from 2 months to 25 years. We extracted the following tracts of interest (TOIs) using the region of interest method: the corpus callosum (CC), cingulum hippocampus (CGH), inferior longitudinal fasciculus (ILF), and superior longitudinal fasciculus (SLF). We measured fractional anisotropy (FA), apparent diffusion coefficient (ADC), axial diffusivity (AD), and radial diffusivity (RD). Approximate values and changes in growth rates of all DTI parameters at each age were calculated and analyzed using LOESS (locally weighted scatterplot smoothing). We found that for all TOIs, FA increased with age, whereas ADC, AD and RD values decreased with age. The turning point of growth rates was at approximately 6 years. FA in the CC was greater than that in the SLF, ILF and CGH. Moreover, FA, ADC and AD of the splenium of the CC (sCC) were greater than in the genu of the CC (gCC), whereas the RD of the sCC was lower than the RD of the gCC. The FA of right-hemisphere TOIs was significantly greater than that of left-hemisphere TOIs. In infants, growth rates of both FA and RD were larger than those of AD. Our data show that developmental patterns differ by TOIs and myelination along with the development of white matter, which can be mainly expressed as an increase in FA together with a decrease in RD. These findings clarify the long-term normal developmental characteristics of white matter microstructure from infancy to early adulthood. © 2015 S. Karger AG, Basel.

  1. White matter changes in preclinical Alzheimer's disease: a magnetic resonance imaging-diffusion tensor imaging study on cognitively normal older people with positive amyloid β protein 42 levels.

    PubMed

    Molinuevo, José Luis; Ripolles, Pablo; Simó, Marta; Lladó, Albert; Olives, Jaume; Balasa, Mircea; Antonell, Anna; Rodriguez-Fornells, Antoni; Rami, Lorena

    2014-12-01

    The aim of this study was to use diffusion tensor imaging measures to determine the existence of white matter microstructural differences in the preclinical phases of Alzheimer's disease, assessing cognitively normal older individuals with positive amyloid β protein (Aβ42) levels (CN_Aβ42+) on the basis of normal cognition and cerebrospinal fluid Aβ42 levels below 500 pg/mL. Nineteen CN_Aβ42+ and 19 subjects with Aβ42 levels above 500 pg/mL (CN_Aβ42-) were included. We encountered increases in axial diffusivity (AxD) in CN_Aβ42+ relative to CN_Aβ42- in the corpus callosum, corona radiata, internal capsule, and superior longitudinal fasciculus bilaterally, and also in the left fornix, left uncinate fasciculus, and left inferior fronto-occipital fasciculus. However, no differences were found in other diffusion tensor imaging indexes. Cognitive reserve scores were positively associated with AxD exclusively in the CN_Aβ42+ group. The finding of AxD alteration together with preserved fractional anisotropy, mean diffusivity, and radial diffusivity indexes in the CN_Aβ42+ group may indicate that, subtle axonal changes may be happening in the preclinical phases of Alzheimer's disease, whereas white matter integrity is still widely preserved. Copyright © 2014 Elsevier Inc. All rights reserved.

  2. DWI filtering using joint information for DTI and HARDI.

    PubMed

    Tristán-Vega, Antonio; Aja-Fernández, Santiago

    2010-04-01

    The filtering of the Diffusion Weighted Images (DWI) prior to the estimation of the diffusion tensor or other fiber Orientation Distribution Functions (ODF) has been proved to be of paramount importance in the recent literature. More precisely, it has been evidenced that the estimation of the diffusion tensor without a previous filtering stage induces errors which cannot be recovered by further regularization of the tensor field. A number of approaches have been intended to overcome this problem, most of them based on the restoration of each DWI gradient image separately. In this paper we propose a methodology to take advantage of the joint information in the DWI volumes, i.e., the sum of the information given by all DWI channels plus the correlations between them. This way, all the gradient images are filtered together exploiting the first and second order information they share. We adapt this methodology to two filters, namely the Linear Minimum Mean Squared Error (LMMSE) and the Unbiased Non-Local Means (UNLM). These new filters are tested over a wide variety of synthetic and real data showing the convenience of the new approach, especially for High Angular Resolution Diffusion Imaging (HARDI). Among the techniques presented, the joint LMMSE is proved a very attractive approach, since it shows an accuracy similar to UNLM (or even better in some situations) with a much lighter computational load. Copyright 2009 Elsevier B.V. All rights reserved.

  3. Helical structure of the cardiac ventricular anatomy assessed by diffusion tensor magnetic resonance imaging with multiresolution tractography.

    PubMed

    Poveda, Ferran; Gil, Debora; Martí, Enric; Andaluz, Albert; Ballester, Manel; Carreras, Francesc

    2013-10-01

    Deeper understanding of the myocardial structure linking the morphology and function of the heart would unravel crucial knowledge for medical and surgical clinical procedures and studies. Several conceptual models of myocardial fiber organization have been proposed but the lack of an automatic and objective methodology prevented an agreement. We sought to deepen this knowledge through advanced computer graphical representations of the myocardial fiber architecture by diffusion tensor magnetic resonance imaging. We performed automatic tractography reconstruction of unsegmented diffusion tensor magnetic resonance imaging datasets of canine heart from the public database of the Johns Hopkins University. Full-scale tractographies have been built with 200 seeds and are composed by streamlines computed on the vector field of primary eigenvectors at the diffusion tensor volumes. We also introduced a novel multiscale visualization technique in order to obtain a simplified tractography. This methodology retains the main geometric features of the fiber tracts, making it easier to decipher the main properties of the architectural organization of the heart. Output analysis of our tractographic representations showed exact correlation with low-level details of myocardial architecture, but also with the more abstract conceptualization of a continuous helical ventricular myocardial fiber array. Objective analysis of myocardial architecture by an automated method, including the entire myocardium and using several 3-dimensional levels of complexity, reveals a continuous helical myocardial fiber arrangement of both right and left ventricles, supporting the anatomical model of the helical ventricular myocardial band described by F. Torrent-Guasp. Copyright © 2013 Sociedad Española de Cardiología. Published by Elsevier Espana. All rights reserved.

  4. Quantification of Cardiomyocyte Alignment from Three-Dimensional (3D) Confocal Microscopy of Engineered Tissue.

    PubMed

    Kowalski, William J; Yuan, Fangping; Nakane, Takeichiro; Masumoto, Hidetoshi; Dwenger, Marc; Ye, Fei; Tinney, Joseph P; Keller, Bradley B

    2017-08-01

    Biological tissues have complex, three-dimensional (3D) organizations of cells and matrix factors that provide the architecture necessary to meet morphogenic and functional demands. Disordered cell alignment is associated with congenital heart disease, cardiomyopathy, and neurodegenerative diseases and repairing or replacing these tissues using engineered constructs may improve regenerative capacity. However, optimizing cell alignment within engineered tissues requires quantitative 3D data on cell orientations and both efficient and validated processing algorithms. We developed an automated method to measure local 3D orientations based on structure tensor analysis and incorporated an adaptive subregion size to account for multiple scales. Our method calculates the statistical concentration parameter, κ, to quantify alignment, as well as the traditional orientational order parameter. We validated our method using synthetic images and accurately measured principal axis and concentration. We then applied our method to confocal stacks of cleared, whole-mount engineered cardiac tissues generated from human-induced pluripotent stem cells or embryonic chick cardiac cells and quantified cardiomyocyte alignment. We found significant differences in alignment based on cellular composition and tissue geometry. These results from our synthetic images and confocal data demonstrate the efficiency and accuracy of our method to measure alignment in 3D tissues.

  5. Eigenvector of gravity gradient tensor for estimating fault dips considering fault type

    NASA Astrophysics Data System (ADS)

    Kusumoto, Shigekazu

    2017-12-01

    The dips of boundaries in faults and caldera walls play an important role in understanding their formation mechanisms. The fault dip is a particularly important parameter in numerical simulations for hazard map creation as the fault dip affects estimations of the area of disaster occurrence. In this study, I introduce a technique for estimating the fault dip using the eigenvector of the observed or calculated gravity gradient tensor on a profile and investigating its properties through numerical simulations. From numerical simulations, it was found that the maximum eigenvector of the tensor points to the high-density causative body, and the dip of the maximum eigenvector closely follows the dip of the normal fault. It was also found that the minimum eigenvector of the tensor points to the low-density causative body and that the dip of the minimum eigenvector closely follows the dip of the reverse fault. It was shown that the eigenvector of the gravity gradient tensor for estimating fault dips is determined by fault type. As an application of this technique, I estimated the dip of the Kurehayama Fault located in Toyama, Japan, and obtained a result that corresponded to conventional fault dip estimations by geology and geomorphology. Because the gravity gradient tensor is required for this analysis, I present a technique that estimates the gravity gradient tensor from the gravity anomaly on a profile.

  6. Tensor-Dictionary Learning with Deep Kruskal-Factor Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Andrew J.; Pu, Yunchen; Sun, Yannan

    We introduce new dictionary learning methods for tensor-variate data of any order. We represent each data item as a sum of Kruskal decomposed dictionary atoms within the framework of beta-process factor analysis (BPFA). Our model is nonparametric and can infer the tensor-rank of each dictionary atom. This Kruskal-Factor Analysis (KFA) is a natural generalization of BPFA. We also extend KFA to a deep convolutional setting and develop online learning methods. We test our approach on image processing and classification tasks achieving state of the art results for 2D & 3D inpainting and Caltech 101. The experiments also show that atom-rankmore » impacts both overcompleteness and sparsity.« less

  7. Spherical tensor analysis of polar liquid crystals with biaxial and chiral molecules

    NASA Astrophysics Data System (ADS)

    Iwamoto, Mitsumasa; Zhong-can, Ou-Yang

    2012-11-01

    With the help of spherical tensor expression, an irreducible calculus of a Lth-rank macroscopic susceptibility χ for a polar liquid crystal (PLC) of biaxial and chiral molecules written as the average of molecular hyperpolarizability tensor β associated with their spherical orientational order parameters (0⩽l⩽L) is presented. Comprehensive formulas of L=1,2 have been obtained and the latter explains the optical activity and spontaneous splay texture observed in bent-core PLC. The expression of L=3 specifies for the molecules with D2 symmetry which can be applied to analyze the nonlinear optical second harmonic generation (SHG) observed in proteins, peptides, and double-stranded DNA at interfaces.

  8. Scalar-tensor extension of the ΛCDM model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Algoner, W.C.; Velten, H.E.S.; Zimdahl, W., E-mail: w.algoner@cosmo-ufes.org, E-mail: velten@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br

    2016-11-01

    We construct a cosmological scalar-tensor-theory model in which the Brans-Dicke type scalar Φ enters the effective (Jordan-frame) Hubble rate as a simple modification of the Hubble rate of the ΛCDM model. This allows us to quantify differences between the background dynamics of scalar-tensor theories and general relativity (GR) in a transparent and observationally testable manner in terms of one single parameter. Problems of the mapping of the scalar-field degrees of freedom on an effective fluid description in a GR context are discused. Data from supernovae, the differential age of old galaxies and baryon acoustic oscillations are shown to strongly limitmore » potential deviations from the standard model.« less

  9. Full-Wave Tomographic and Moment Tensor Inversion Based on 3D Multigrid Strain Green’s Tensor Databases

    DTIC Science & Technology

    2014-04-30

    grade metamorphic rocks on the southern slope of the Himalaya is imaged as a band of high velocity anomaly...velocity structures closely follow the geological features. As an indication of resolution, the ductile extrusion of high-grade metamorphic rocks on...MATERIEL COMMAND KIRTLAND AIR FORCE BASE, NM 87117-5776 DTIC COPY NOTICE AND SIGNATURE PAGE Using Government drawings, specifications, or other data

  10. Image Based Synthesis for Airborne Minefield Data

    DTIC Science & Technology

    2005-12-01

    Jia, and C-K. Tang, "Image repairing: robust image synthesis by adaptive ND tensor voting ", Proceedings of the IEEE, Computer Society Conference on...utility is capable to synthesize a single frame data as well as list of frames along a flight path. The application is developed in MATLAB -6.5 using the

  11. T1, diffusion tensor, and quantitative magnetization transfer imaging of the hippocampus in an Alzheimer's disease mouse model.

    PubMed

    Whittaker, Heather T; Zhu, Shenghua; Di Curzio, Domenico L; Buist, Richard; Li, Xin-Min; Noy, Suzanna; Wiseman, Frances K; Thiessen, Jonathan D; Martin, Melanie

    2018-07-01

    Alzheimer's disease (AD) pathology causes microstructural changes in the brain. These changes, if quantified with magnetic resonance imaging (MRI), could be studied for use as an early biomarker for AD. The aim of our study was to determine if T 1 relaxation, diffusion tensor imaging (DTI), and quantitative magnetization transfer imaging (qMTI) metrics could reveal changes within the hippocampus and surrounding white matter structures in ex vivo transgenic mouse brains overexpressing human amyloid precursor protein with the Swedish mutation. Delineation of hippocampal cell layers using DTI color maps allows more detailed analysis of T 1 -weighted imaging, DTI, and qMTI metrics, compared with segmentation of gross anatomy based on relaxation images, and with analysis of DTI or qMTI metrics alone. These alterations are observed in the absence of robust intracellular Aβ accumulation or plaque deposition as revealed by histology. This work demonstrates that multiparametric quantitative MRI methods are useful for characterizing changes within the hippocampal substructures and surrounding white matter tracts of mouse models of AD. Copyright © 2018. Published by Elsevier Inc.

  12. Centroid-moment tensor solutions for January-March, 2000

    NASA Astrophysics Data System (ADS)

    Dziewonski, A. M.; Ekström, G.; Maternovskaya, N. N.

    2000-10-01

    Centroid-moment tensor solutions are presented for 250 earthquakes that occurred during the first quarter of 2000. The solutions are obtained using corrections for aspherical earth structure represented by a whole mantle shear velocity model SH8/U4L8 of Dziewonski and Woodward [Dziewonski, A.M., Woodward, R.L., 1992. Acoustic imaging at the planetary scale. In: Emert, H., Harjes, H.-P. (Eds.), Acoustical Imaging. Plenum Press, Reading MA, Vol. 19, pp. 785-797]. A model of an elastic attenuation of Durek and Ekström [Durek, J.J., Ekström, G., 1996. Bull. Seism. Soc. Am. 86, 144-158] is used to predict the decay of the waveforms.

  13. Correlations of diffusion tensor imaging values and symptom scores in patients with schizophrenia.

    PubMed

    Michael, Andrew M; Calhoun, Vince D; Pearlson, Godfrey D; Baum, Stefi A; Caprihan, Arvind

    2008-01-01

    Abnormalities in white matter (WM) brain regions are attributed as a possible biomarker for schizophrenia (SZ). Diffusion tensor imaging (DTI) is used to capture WM tracts. Psychometric tests that evaluate the severity of symptoms of SZ are clinically used in the diagnosis process. In this study we investigate the correlates of scalar DTI measures, such as fractional anisotropy, mean diffusivity, axial diffusivity, and radial diffusivity with behavioral test scores. The correlations were found by different schemes: mean correlation with WM atlas regions and multiple regression of DTI values with test scores. The corpus callosum, superior longitudinal fasciculus right and inferior longitudinal fasciculus left were found to be having high correlations with test scores.

  14. The exponentiated Hencky-logarithmic strain energy. Part II: Coercivity, planar polyconvexity and existence of minimizers

    NASA Astrophysics Data System (ADS)

    Neff, Patrizio; Lankeit, Johannes; Ghiba, Ionel-Dumitrel; Martin, Robert; Steigmann, David

    2015-08-01

    We consider a family of isotropic volumetric-isochoric decoupled strain energies based on the Hencky-logarithmic (true, natural) strain tensor log U, where μ > 0 is the infinitesimal shear modulus, is the infinitesimal bulk modulus with the first Lamé constant, are dimensionless parameters, is the gradient of deformation, is the right stretch tensor and is the deviatoric part (the projection onto the traceless tensors) of the strain tensor log U. For small elastic strains, the energies reduce to first order to the classical quadratic Hencky energy which is known to be not rank-one convex. The main result in this paper is that in plane elastostatics the energies of the family are polyconvex for , extending a previous finding on its rank-one convexity. Our method uses a judicious application of Steigmann's polyconvexity criteria based on the representation of the energy in terms of the principal invariants of the stretch tensor U. These energies also satisfy suitable growth and coercivity conditions. We formulate the equilibrium equations, and we prove the existence of minimizers by the direct methods of the calculus of variations.

  15. Advanced Pediatric Brain Imaging Research and Training Program

    DTIC Science & Technology

    2013-10-01

    diffusion tensor imaging and perfusion ( arterial spin labeling) MRI data and to relate measures of global and regional brain microstructural organization...AD_________________ Award Number: W81XWH-11-2-0198 TITLE: Advanced Pediatric Brain Imaging...September 2013 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Advanced Pediatric Brain Imaging Research and Training Program 5b. GRANT NUMBER W81XWH

  16. Bio-image warehouse system: concept and implementation of a diagnosis-based data warehouse for advanced imaging modalities in neuroradiology.

    PubMed

    Minati, L; Ghielmetti, F; Ciobanu, V; D'Incerti, L; Maccagnano, C; Bizzi, A; Bruzzone, M G

    2007-03-01

    Advanced neuroimaging techniques, such as functional magnetic resonance imaging (fMRI), chemical shift spectroscopy imaging (CSI), diffusion tensor imaging (DTI), and perfusion-weighted imaging (PWI) create novel challenges in terms of data storage and management: huge amounts of raw data are generated, the results of analysis may depend on the software and settings that have been used, and most often intermediate files are inherently not compliant with the current DICOM (digital imaging and communication in medicine) standard, as they contain multidimensional complex and tensor arrays and various other types of data structures. A software architecture, referred to as Bio-Image Warehouse System (BIWS), which can be used alongside a radiology information system/picture archiving and communication system (RIS/PACS) system to store neuroimaging data for research purposes, is presented. The system architecture is conceived with the purpose of enabling to query by diagnosis according to a predefined two-layered classification taxonomy. The operational impact of the system and the time needed to get acquainted with the web-based interface and with the taxonomy are found to be limited. The development of modules enabling automated creation of statistical templates is proposed.

  17. Susceptibility-Weighted Imaging and Quantitative Susceptibility Mapping in the Brain

    PubMed Central

    Liu, Chunlei; Li, Wei; Tong, Karen A.; Yeom, Kristen W.; Kuzminski, Samuel

    2015-01-01

    Susceptibility-weighted imaging (SWI) is a magnetic resonance imaging (MRI) technique that enhances image contrast by using the susceptibility differences between tissues. It is created by combining both magnitude and phase in the gradient echo data. SWI is sensitive to both paramagnetic and diamagnetic substances which generate different phase shift in MRI data. SWI images can be displayed as a minimum intensity projection that provides high resolution delineation of the cerebral venous architecture, a feature that is not available in other MRI techniques. As such, SWI has been widely applied to diagnose various venous abnormalities. SWI is especially sensitive to deoxygenated blood and intracranial mineral deposition and, for that reason, has been applied to image various pathologies including intracranial hemorrhage, traumatic brain injury, stroke, neoplasm, and multiple sclerosis. SWI, however, does not provide quantitative measures of magnetic susceptibility. This limitation is currently being addressed with the development of quantitative susceptibility mapping (QSM) and susceptibility tensor imaging (STI). While QSM treats susceptibility as isotropic, STI treats susceptibility as generally anisotropic characterized by a tensor quantity. This article reviews the basic principles of SWI, its clinical and research applications, the mechanisms governing brain susceptibility properties, and its practical implementation, with a focus on brain imaging. PMID:25270052

  18. Simulation of Changes in Diffusion Related to Different Pathologies at Cellular Level After Traumatic Brain Injury

    PubMed Central

    Lin, Mu; He, Hongjian; Schifitto, Giovanni; Zhong, Jianhui

    2016-01-01

    Purpose The goal of the current study was to investigate tissue pathology at the cellular level in traumatic brain injury (TBI) as revealed by Monte Carlo simulation of diffusion tensor imaging (DTI)-derived parameters and elucidate the possible sources of conflicting findings of DTI abnormalities as reported in the TBI literature. Methods A model with three compartments separated by permeable membranes was employed to represent the diffusion environment of water molecules in brain white matter. The dynamic diffusion process was simulated with a Monte Carlo method using adjustable parameters of intra-axonal diffusivity, axon separation, glial cell volume fraction, and myelin sheath permeability. The effects of tissue pathology on DTI parameters were investigated by adjusting the parameters of the model corresponding to different stages of brain injury. Results The results suggest that the model is appropriate and the DTI-derived parameters simulate the predominant cellular pathology after TBI. Our results further indicate that when edema is not prevalent, axial and radial diffusivity have better sensitivity to axonal injury and demyelination than other DTI parameters. Conclusion DTI is a promising biomarker to detect and stage tissue injury after TBI. The observed inconsistencies among previous studies are likely due to scanning at different stages of tissue injury after TBI. PMID:26256558

  19. Solid-state (185/187)Re NMR and GIPAW DFT study of perrhenates and Re2(CO)10: chemical shift anisotropy, NMR crystallography, and a metal-metal bond.

    PubMed

    Widdifield, Cory M; Perras, Frédéric A; Bryce, David L

    2015-04-21

    Advances in solid-state nuclear magnetic resonance (SSNMR) methods, such as dynamic nuclear polarization (DNP), intricate pulse sequences, and increased applied magnetic fields, allow for the study of systems which even very recently would be impractical. However, SSNMR methods using certain quadrupolar probe nuclei (i.e., I > 1/2), such as (185/187)Re remain far from fully developed due to the exceedingly strong interaction between the quadrupole moment of these nuclei and local electric field gradients (EFGs). We present a detailed high-field (B0 = 21.1 T) experimental SSNMR study on several perrhenates (KReO4, AgReO4, Ca(ReO4)2·2H2O), as well as ReO3 and Re2(CO)10. We propose solid ReO3 as a new rhenium SSNMR chemical shift standard due to its reproducible and sharp (185/187)Re NMR resonances. We show that for KReO4, previously poorly understood high-order quadrupole-induced effects (HOQIE) on the satellite transitions can be used to measure the EFG tensor asymmetry (i.e., ηQ) to nearly an order-of-magnitude greater precision than competing SSNMR and nuclear quadrupole resonance (NQR) approaches. Samples of AgReO4 and Ca(ReO4)2·2H2O enable us to comment on the effects of counter-ions and hydration upon Re(vii) chemical shifts. Calcium-43 and (185/187)Re NMR tensor parameters allow us to conclude that two proposed crystal structures for Ca(ReO4)2·2H2O, which would be considered as distinct, are in fact the same structure. Study of Re2(CO)10 provides insights into the effects of Re-Re bonding on the rhenium NMR tensor parameters and rhenium oxidation state on the Re chemical shift value. As overtone NQR experiments allowed us to precisely measure the (185/187)Re EFG tensor of Re2(CO)10, we were able to measure rhenium chemical shift anisotropy (CSA) for the first time in a powdered sample. Experimental observations are supported by gauge-including projector augmented-wave (GIPAW) density functional theory (DFT) calculations, with NMR tensor calculations also provided for NH4ReO4, NaReO4 and RbReO4. These calculations are able to reproduce many of the experimental trends in rhenium δiso values and EFG tensor magnitudes. Using KReO4 as a prototypical perrhenate-containing system, we establish a correlation between the tetrahedral shear strain parameter (|ψ|) and the nuclear electric quadrupolar coupling constant (CQ), which enables the refinement of the structure of ND4ReO4. Shortcomings in traditional DFT approaches, even when including relativistic effects via the zeroth-order regular approximation (ZORA), for calculating rhenium NMR tensor parameters are identified for Re2(CO)10.

  20. Diffusion tensor imaging of cingulum bundle and corpus callosum in schizophrenia vs. bipolar disorder.

    PubMed

    Nenadić, Igor; Hoof, Anna; Dietzek, Maren; Langbein, Kerstin; Reichenbach, Jürgen R; Sauer, Heinrich; Güllmar, Daniel

    2017-08-30

    Both schizophrenia and bipolar disorder show abnormalities of white matter, as seen in diffusion tensor imaging (DTI) analyses of major brain fibre bundles. While studies in each of the two conditions have indicated possible overlap in anatomical location, there are few direct comparisons between the disorders. Also, it is unclear whether phenotypically similar subgroups (e.g. patients with bipolar disorder and psychotic features) might share white matter pathologies or be rather similar. Using region-of-interest (ROI) analysis of white matter with diffusion tensor imaging (DTI) at 3 T, we analysed fractional anisotropy (FA), radial diffusivity (RD), and apparent diffusion coefficient (ADC) of the corpus callosum and cingulum bundle in 33 schizophrenia patients, 17 euthymic (previously psychotic) bipolar disorder patients, and 36 healthy controls. ANOVA analysis showed significant main effects of group for RD and ADC (both elevated in schizophrenia). Across the corpus callosum ROIs, there was not group effect on FA, but for RD (elevated in schizophrenia, lower in bipolar disorder) and ADC (higher in schizophrenia, intermediate in bipolar disorder). Our findings show similarities and difference (some gradual) across regions of the two major fibre tracts implicated in these disorders, which would be consistent with a neurobiological overlap of similar clinical phenotypes. Copyright © 2017 Elsevier Ireland Ltd. All rights reserved.

  1. Motor programme activating therapy influences adaptive brain functions in multiple sclerosis: clinical and MRI study.

    PubMed

    Rasova, Kamila; Prochazkova, Marie; Tintera, Jaroslav; Ibrahim, Ibrahim; Zimova, Denisa; Stetkarova, Ivana

    2015-03-01

    There is still little scientific evidence for the efficacy of neurofacilitation approaches and their possible influence on brain plasticity and adaptability. In this study, the outcome of a new kind of neurofacilitation approach, motor programme activating therapy (MPAT), was evaluated on the basis of a set of clinical functions and with MRI. Eighteen patients were examined four times with standardized clinical tests and diffusion tensor imaging to monitor changes without therapy, immediately after therapy and 1 month after therapy. Moreover, the strength of effective connectivity was analysed before and after therapy. Patients underwent a 1-h session of MPAT twice a week for 2 months. The data were analysed by nonparametric tests of association and were subsequently statistically evaluated. The therapy led to significant improvement in clinical functions, significant increment of fractional anisotropy and significant decrement of mean diffusivity, and decrement of effective connectivity at supplementary motor areas was observed immediately after the therapy. Changes in clinical functions and diffusion tensor images persisted 1 month after completing the programme. No statistically significant changes in clinical functions and no differences in MRI-diffusion tensor images were observed without physiotherapy. Positive immediate and long-term effects of MPAT on clinical and brain functions, as well as brain microstructure, were confirmed.

  2. Estimating cardiac fiber orientations in pig hearts using registered ultrasound and MR image volumes

    NASA Astrophysics Data System (ADS)

    Dormer, James D.; Meng, Yuguang; Zhang, Xiaodong; Jiang, Rong; Wagner, Mary B.; Fei, Baowei

    2017-03-01

    Heart fiber mechanics can be important predictors in current and future cardiac function. Accurate knowledge of these mechanics could enable cardiologists to provide a diagnosis before conditions progress. Magnetic resonance diffusion tensor imaging (MR-DTI) has been used to determine cardiac fiber orientations. Ultrasound is capable of providing anatomical information in real time, enabling a physician to quickly adjust parameters to optimize image scans. If known fiber orientations from a template heart measured using DTI can be accurately deformed onto a cardiac ultrasound volume, fiber orientations could be estimated for the patient without the need for a costly MR scan while still providing cardiologists valuable information about the heart mechanics. In this study, we apply the method to pig hearts, which are a close representation of human heart anatomy. Experiments from pig hearts show that the registration method achieved an average Dice similarity coefficient (DSC) of 0.819 +/- 0.050 between the ultrasound and deformed MR volumes and that the proposed ultrasound-based method is able to estimate the cardiac fiber orientation in pig hearts.

  3. Robust photometric invariant features from the color tensor.

    PubMed

    van de Weijer, Joost; Gevers, Theo; Smeulders, Arnold W M

    2006-01-01

    Luminance-based features are widely used as low-level input for computer vision applications, even when color data is available. The extension of feature detection to the color domain prevents information loss due to isoluminance and allows us to exploit the photometric information. To fully exploit the extra information in the color data, the vector nature of color data has to be taken into account and a sound framework is needed to combine feature and photometric invariance theory. In this paper, we focus on the structure tensor, or color tensor, which adequately handles the vector nature of color images. Further, we combine the features based on the color tensor with photometric invariant derivatives to arrive at photometric invariant features. We circumvent the drawback of unstable photometric invariants by deriving an uncertainty measure to accompany the photometric invariant derivatives. The uncertainty is incorporated in the color tensor, hereby allowing the computation of robust photometric invariant features. The combination of the photometric invariance theory and tensor-based features allows for detection of a variety of features such as photometric invariant edges, corners, optical flow, and curvature. The proposed features are tested for noise characteristics and robustness to photometric changes. Experiments show that the proposed features are robust to scene incidental events and that the proposed uncertainty measure improves the applicability of full invariants.

  4. Reversible and dissipative macroscopic contributions to the stress tensor: active or passive?

    PubMed

    Brand, H R; Pleiner, H; Svenšek, D

    2014-09-01

    The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling ("active term") of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot a priori be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.

  5. Spin echo versus stimulated echo diffusion tensor imaging of the in vivo human heart

    PubMed Central

    von Deuster, Constantin; Stoeck, Christian T.; Genet, Martin; Atkinson, David

    2015-01-01

    Purpose To compare signal‐to‐noise ratio (SNR) efficiency and diffusion tensor metrics of cardiac diffusion tensor mapping using acceleration‐compensated spin‐echo (SE) and stimulated echo acquisition mode (STEAM) imaging. Methods Diffusion weighted SE and STEAM sequences were implemented on a clinical 1.5 Tesla MR system. The SNR efficiency of SE and STEAM was measured (b = 50–450 s/mm2) in isotropic agar, anisotropic diffusion phantoms and the in vivo human heart. Diffusion tensor analysis was performed on mean diffusivity, fractional anisotropy, helix and transverse angles. Results In the isotropic phantom, the ratio of SNR efficiency for SE versus STEAM, SNRt(SE/STEAM), was 2.84 ± 0.08 for all tested b‐values. In the anisotropic diffusion phantom the ratio decreased from 2.75 ± 0.05 to 2.20 ± 0.13 with increasing b‐value, similar to the in vivo decrease from 2.91 ± 0.43 to 2.30 ± 0.30. Diffusion tensor analysis revealed reduced deviation of helix angles from a linear transmural model and reduced transverse angle standard deviation for SE compared with STEAM. Mean diffusivity and fractional anisotropy were measured to be statistically different (P < 0.001) between SE and STEAM. Conclusion Cardiac DTI using motion‐compensated SE yields a 2.3–2.9× increase in SNR efficiency relative to STEAM and improved accuracy of tensor metrics. The SE method hence presents an attractive alternative to STEAM based approaches. Magn Reson Med 76:862–872, 2016. © 2015 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. PMID:26445426

  6. Rotation Covariant Image Processing for Biomedical Applications

    PubMed Central

    Reisert, Marco

    2013-01-01

    With the advent of novel biomedical 3D image acquisition techniques, the efficient and reliable analysis of volumetric images has become more and more important. The amount of data is enormous and demands an automated processing. The applications are manifold, ranging from image enhancement, image reconstruction, and image description to object/feature detection and high-level contextual feature extraction. In most scenarios, it is expected that geometric transformations alter the output in a mathematically well-defined manner. In this paper we emphasis on 3D translations and rotations. Many algorithms rely on intensity or low-order tensorial-like descriptions to fulfill this demand. This paper proposes a general mathematical framework based on mathematical concepts and theories transferred from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. Based on two basic operations, spherical tensor differentiation and spherical tensor multiplication, we show how to design a variety of 3D image processing methods in an efficient way. The framework has already been applied to several biomedical applications ranging from feature and object detection tasks to image enhancement and image restoration techniques. In this paper, the proposed methods are applied on a variety of different 3D data modalities stemming from medical and biological sciences. PMID:23710255

  7. Enhanced ICBM Diffusion Tensor Template of the Human Brain

    PubMed Central

    Zhang, Shengwei; Peng, Huiling; Dawe, Robert J.; Arfanakis, Konstantinos

    2010-01-01

    Development of a diffusion tensor (DT) template that is representative of the micro-architecture of the human brain is crucial for comparisons of neuronal structural integrity and brain connectivity across populations, as well as for the generation of a detailed white matter atlas. Furthermore, a DT template in ICBM space may simplify consolidation of information from DT, anatomical and functional MRI studies. The previously developed “IIT DT brain template” was produced in ICBM-152 space, based on a large number of subjects from a limited age-range, using data with minimal image artifacts, and non-linear registration. That template was characterized by higher image sharpness, provided the ability to distinguish smaller white matter fiber structures, and contained fewer image artifacts, than several previously published DT templates. However, low-dimensional registration was used in the development of that template, which led to a mismatch of DT information across subjects, eventually manifested as loss of local diffusion information and errors in the final tensors. Also, low-dimensional registration led to a mismatch of the anatomy in the IIT and ICBM-152 templates. In this work, a significantly improved DT brain template in ICBM-152 space was developed, using high-dimensional non-linear registration and the raw data collected for the purposes of the IIT template. The accuracy of inter-subject DT matching was significantly increased compared to that achieved for the development of the IIT template. Consequently, the new template contained DT information that was more representative of single-subject human brain data, and was characterized by higher image sharpness than the IIT template. Furthermore, a bootstrap approach demonstrated that the variance of tensor characteristics was lower in the new template. Additionally, compared to the IIT template, brain anatomy in the new template more accurately matched ICBM-152 space. Finally, spatial normalization of a number of DT datasets through registration to the new and existing IIT templates was improved when using the new template. PMID:20851772

  8. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach

    PubMed Central

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-01-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm2 and 1.2 × 1.2 mm2, respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd. PMID:25219683

  9. High-resolution diffusion tensor imaging of the human kidneys using a free-breathing, multi-slice, targeted field of view approach.

    PubMed

    Chan, Rachel W; Von Deuster, Constantin; Stoeck, Christian T; Harmer, Jack; Punwani, Shonit; Ramachandran, Navin; Kozerke, Sebastian; Atkinson, David

    2014-11-01

    Fractional anisotropy (FA) obtained by diffusion tensor imaging (DTI) can be used to image the kidneys without any contrast media. FA of the medulla has been shown to correlate with kidney function. It is expected that higher spatial resolution would improve the depiction of small structures within the kidney. However, the achievement of high spatial resolution in renal DTI remains challenging as a result of respiratory motion and susceptibility to diffusion imaging artefacts. In this study, a targeted field of view (TFOV) method was used to obtain high-resolution FA maps and colour-coded diffusion tensor orientations, together with measures of the medullary and cortical FA, in 12 healthy subjects. Subjects were scanned with two implementations (dual and single kidney) of a TFOV DTI method. DTI scans were performed during free breathing with a navigator-triggered sequence. Results showed high consistency in the greyscale FA, colour-coded FA and diffusion tensors across subjects and between dual- and single-kidney scans, which have in-plane voxel sizes of 2 × 2 mm(2) and 1.2 × 1.2 mm(2) , respectively. The ability to acquire multiple contiguous slices allowed the medulla and cortical FA to be quantified over the entire kidney volume. The mean medulla and cortical FA values were 0.38 ± 0.017 and 0.21 ± 0.019, respectively, for the dual-kidney scan, and 0.35 ± 0.032 and 0.20 ± 0.014, respectively, for the single-kidney scan. The mean FA between the medulla and cortex was significantly different (p < 0.001) for both dual- and single-kidney implementations. High-spatial-resolution DTI shows promise for improving the characterization and non-invasive assessment of kidney function. © 2014 The Authors. NMR in Biomedicine published by John Wiley & Sons, Ltd.

  10. Estimation of inflation parameters for Perturbed Power Law model using recent CMB measurements

    NASA Astrophysics Data System (ADS)

    Mukherjee, Suvodip; Das, Santanu; Joy, Minu; Souradeep, Tarun

    2015-01-01

    Cosmic Microwave Background (CMB) is an important probe for understanding the inflationary era of the Universe. We consider the Perturbed Power Law (PPL) model of inflation which is a soft deviation from Power Law (PL) inflationary model. This model captures the effect of higher order derivative of Hubble parameter during inflation, which in turn leads to a non-zero effective mass meff for the inflaton field. The higher order derivatives of Hubble parameter at leading order sources constant difference in the spectral index for scalar and tensor perturbation going beyond PL model of inflation. PPL model have two observable independent parameters, namely spectral index for tensor perturbation νt and change in spectral index for scalar perturbation νst to explain the observed features in the scalar and tensor power spectrum of perturbation. From the recent measurements of CMB power spectra by WMAP, Planck and BICEP-2 for temperature and polarization, we estimate the feasibility of PPL model with standard ΛCDM model. Although BICEP-2 claimed a detection of r=0.2, estimates of dust contamination provided by Planck have left open the possibility that only upper bound on r will be expected in a joint analysis. As a result we consider different upper bounds on the value of r and show that PPL model can explain a lower value of tensor to scalar ratio (r<0.1 or r<0.01) for a scalar spectral index of ns=0.96 by having a non-zero value of effective mass of the inflaton field m2eff/H2. The analysis with WP + Planck likelihood shows a non-zero detection of m2eff/H2 with 5.7 σ and 8.1 σ respectively for r<0.1 and r<0.01. Whereas, with BICEP-2 likelihood m2eff/H2 = -0.0237 ± 0.0135 which is consistent with zero.

  11. A localized Richardson-Lucy algorithm for fiber orientation estimation in high angular resolution diffusion imaging.

    PubMed

    Liu, Xiaozheng; Yuan, Zhenming; Guo, Zhongwei; Xu, Dongrong

    2015-05-01

    Diffusion tensor imaging is widely used for studying neural fiber trajectories in white matter and for quantifying changes in tissue using diffusion properties at each voxel in the brain. To better model the nature of crossing fibers within complex architectures, rather than using a simplified tensor model that assumes only a single fiber direction at each image voxel, a model mixing multiple diffusion tensors is used to profile diffusion signals from high angular resolution diffusion imaging (HARDI) data. Based on the HARDI signal and a multiple tensors model, spherical deconvolution methods have been developed to overcome the limitations of the diffusion tensor model when resolving crossing fibers. The Richardson-Lucy algorithm is a popular spherical deconvolution method used in previous work. However, it is based on a Gaussian distribution, while HARDI data are always very noisy, and the distribution of HARDI data follows a Rician distribution. This current work aims to present a novel solution to address these issues. By simultaneously considering both the Rician bias and neighbor correlation in HARDI data, the authors propose a localized Richardson-Lucy (LRL) algorithm to estimate fiber orientations for HARDI data. The proposed method can simultaneously reduce noise and correct the Rician bias. Mean angular error (MAE) between the estimated Fiber orientation distribution (FOD) field and the reference FOD field was computed to examine whether the proposed LRL algorithm offered any advantage over the conventional RL algorithm at various levels of noise. Normalized mean squared error (NMSE) was also computed to measure the similarity between the true FOD field and the estimated FOD filed. For MAE comparisons, the proposed LRL approach obtained the best results in most of the cases at different levels of SNR and b-values. For NMSE comparisons, the proposed LRL approach obtained the best results in most of the cases at b-value = 3000 s/mm(2), which is the recommended schema for HARDI data acquisition. In addition, the FOD fields estimated by the proposed LRL approach in regions of fiber crossing regions using real data sets also showed similar fiber structures which agreed with common acknowledge in these regions. The novel spherical deconvolution method for improved accuracy in investigating crossing fibers can simultaneously reduce noise and correct Rician bias. With the noise smoothed and bias corrected, this algorithm is especially suitable for estimation of fiber orientations in HARDI data. Experimental results using both synthetic and real imaging data demonstrated the success and effectiveness of the proposed LRL algorithm.

  12. Characterizing Intraorbital Optic Nerve Changes on Diffusion Tensor Imaging in Thyroid Eye Disease Before Dysthyroid Optic Neuropathy.

    PubMed

    Lee, Hwa; Lee, Young Hen; Suh, Sang-Il; Jeong, Eun-Kee; Baek, Sehyun; Seo, Hyung Suk

    The aim of this study was to determine whether the optic nerve is affected by thyroid eye disease (TED) before the development of dysthyroid optic neuropathy with diffusion-tensor imaging (DTI). Twenty TED patients and 20 controls were included. The mean, axial, and radial diffusivities and fractional anisotropy (FA) value were measured at the optic nerves in DTI. Extraocular muscle diameters were measured on computed tomography. The diffusivities and FA of the optic nerves were compared between TED and controls and between active and inactive stages of TED. The correlations between these DTI parameters and the clinical features were determined. The mean, axial, and radial diffusivities were lower in TED compared with the controls (P < 0.05). In contrast, FA was higher in TED (P = 0.001). Radial diffusivity was lower in the active stage of TED than the inactive stage (P = 0.035). The FA was higher in the TED group than in the control group (P = 0.021) and was positively correlated with clinical activity score (r = 0.364, P = 0.021), modified NOSPECS score (r = 0.469, P = 0.002), and extraocular muscle thickness (r = 0.325, P = 0.041) in the TED group. Radial diffusivity was negatively correlated with modified NOSPECS score (r = -0.384, P = 0.014), and axial diffusivity was positively correlated with exophthalmos degree (r = 0.363, P = 0.025). The diffusivities and FA reflected changes in the optic nerve before dysthyroid optic neuropathy in TED. The FA, in particular, reflected TED activity and severity.

  13. The Relation Between Injury of the Spinothalamocortical Tract and Central Pain in Chronic Patients With Mild Traumatic Brain Injury.

    PubMed

    Kim, Jin Hyun; Ahn, Sang Ho; Cho, Yoon Woo; Kim, Seong Ho; Jang, Sung Ho

    2015-01-01

    Little is known about the pathogenetic etiology of central pain in patients with traumatic brain injury (TBI). We investigated the relation between injury of the spinothalamocortical tract (STT) and chronic central pain in patients with mild TBI. Retrospective survey. We recruited 40 consecutive chronic patients with mild TBI and 21 normal control subjects: 8 patients were excluded by the inclusion criteria and the remaining 32 patients were finally recruited. The patients were classified according to 2 groups based on the presence of central pain: the pain group (22 patients) and the nonpain group (10 patients). Diffusion tensor tractography for the STT was performed using the Functional Magnetic Resonance Imaging of the Brain Software Library. Values of fractional anisotropy (FA), mean diffusivity (MD), and tract volume of each STT were measured. Lower FA value and tract volume were observed in the pain group than in the nonpain group and the control group (P < .05). By contrast, higher MD value was observed in the pain group than in the nonpain group and the control group (P < .05). However, no significant differences in all diffusion tensor imaging parameters were observed between the nonpain group and the control group (P > .05). Decreased FA and tract volume and increased MD of the STTs in the pain group appeared to indicate injury of the STT. As a result, we found that injury of the STT is related to the occurrence of central pain in patients with mild TBI. We believe that injury of the STT is a pathogenetic etiology of central pain following mild TBI.

  14. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    PubMed

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  15. Robust Low-dose CT Perfusion Deconvolution via Tensor Total-Variation Regularization

    PubMed Central

    Zhang, Shaoting; Chen, Tsuhan; Sanelli, Pina C.

    2016-01-01

    Acute brain diseases such as acute strokes and transit ischemic attacks are the leading causes of mortality and morbidity worldwide, responsible for 9% of total death every year. ‘Time is brain’ is a widely accepted concept in acute cerebrovascular disease treatment. Efficient and accurate computational framework for hemodynamic parameters estimation can save critical time for thrombolytic therapy. Meanwhile the high level of accumulated radiation dosage due to continuous image acquisition in CT perfusion (CTP) raised concerns on patient safety and public health. However, low-radiation leads to increased noise and artifacts which require more sophisticated and time-consuming algorithms for robust estimation. In this paper, we focus on developing a robust and efficient framework to accurately estimate the perfusion parameters at low radiation dosage. Specifically, we present a tensor total-variation (TTV) technique which fuses the spatial correlation of the vascular structure and the temporal continuation of the blood signal flow. An efficient algorithm is proposed to find the solution with fast convergence and reduced computational complexity. Extensive evaluations are carried out in terms of sensitivity to noise levels, estimation accuracy, contrast preservation, and performed on digital perfusion phantom estimation, as well as in-vivo clinical subjects. Our framework reduces the necessary radiation dose to only 8% of the original level and outperforms the state-of-art algorithms with peak signal-to-noise ratio improved by 32%. It reduces the oscillation in the residue functions, corrects over-estimation of cerebral blood flow (CBF) and under-estimation of mean transit time (MTT), and maintains the distinction between the deficit and normal regions. PMID:25706579

  16. Tensor-product kernel-based representation encoding joint MRI view similarity.

    PubMed

    Alvarez-Meza, A; Cardenas-Pena, D; Castro-Ospina, A E; Alvarez, M; Castellanos-Dominguez, G

    2014-01-01

    To support 3D magnetic resonance image (MRI) analysis, a marginal image similarity (MIS) matrix holding MR inter-slice relationship along every axis view (Axial, Coronal, and Sagittal) can be estimated. However, mutual inference from MIS view information poses a difficult task since relationships between axes are nonlinear. To overcome this issue, we introduce a Tensor-Product Kernel-based Representation (TKR) that allows encoding brain structure patterns due to patient differences, gathering all MIS matrices into a single joint image similarity framework. The TKR training strategy is carried out into a low dimensional projected space to get less influence of voxel-derived noise. Obtained results for classifying the considered patient categories (gender and age) on real MRI database shows that the proposed TKR training approach outperforms the conventional voxel-wise sum of squared differences. The proposed approach may be useful to support MRI clustering and similarity inference tasks, which are required on template-based image segmentation and atlas construction.

  17. Examination of Cognitive Fatigue in Multiple Sclerosis using Functional Magnetic Resonance Imaging and Diffusion Tensor Imaging

    PubMed Central

    Genova, Helen M.; Rajagopalan, Venkateswaran; DeLuca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with “state” fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased “trait” fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a “fatigue-network” in MS. PMID:24223850

  18. Examination of cognitive fatigue in multiple sclerosis using functional magnetic resonance imaging and diffusion tensor imaging.

    PubMed

    Genova, Helen M; Rajagopalan, Venkateswaran; Deluca, John; Das, Abhijit; Binder, Allison; Arjunan, Aparna; Chiaravalloti, Nancy; Wylie, Glenn

    2013-01-01

    The present study investigated the neural correlates of cognitive fatigue in Multiple Sclerosis (MS), looking specifically at the relationship between self-reported fatigue and objective measures of cognitive fatigue. In Experiment 1, functional magnetic resonance imaging (fMRI) was used to examine where in the brain BOLD activity covaried with "state" fatigue, assessed during performance of a task designed to induce cognitive fatigue while in the scanner. In Experiment 2, diffusion tensor imaging (DTI) was used to examine where in the brain white matter damage correlated with increased "trait" fatigue in individuals with MS, assessed by the Fatigue Severity Scale (FSS) completed outside the scanning session. During the cognitively fatiguing task, the MS group had increased brain activity associated with fatigue in the caudate as compared with HCs. DTI findings revealed that reduced fractional anisotropy in the anterior internal capsule was associated with increased self-reported fatigue on the FSS. Results are discussed in terms of identifying a "fatigue-network" in MS.

  19. Higgs-portal assisted Higgs inflation with a sizeable tensor-to-scalar ratio

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jinsu; Ko, Pyungwon; Park, Wan-Il, E-mail: kimjinsu@kias.re.kr, E-mail: pko@kias.re.kr, E-mail: Wanil.Park@uv.es

    We show that the Higgs portal interactions involving extra dark Higgs field can save generically the original Higgs inflation of the standard model (SM) from the problem of a deep non-SM vacuum in the SM Higgs potential. Specifically, we show that such interactions disconnect the top quark pole mass from inflationary observables and allow multi-dimensional parameter space to save the Higgs inflation, thanks to the additional parameters (the dark Higgs boson mass m {sub φ}, the mixing angle α between the SM Higgs H and dark Higgs Φ, and the mixed quartic coupling) affecting RG-running of the Higgs quartic coupling.more » The effect of Higgs portal interactions may lead to a larger tensor-to-scalar ratio, 0.08 ∼< r ∼< 0.1, by adjusting relevant parameters in wide ranges of α and m {sub φ}, some region of which can be probed at future colliders. Performing a numerical analysis we find an allowed region of parameters, matching the latest Planck data.« less

  20. Director Field Analysis (DFA): Exploring Local White Matter Geometric Structure in Diffusion MRI.

    PubMed

    Cheng, Jian; Basser, Peter J

    2018-01-01

    In Diffusion Tensor Imaging (DTI) or High Angular Resolution Diffusion Imaging (HARDI), a tensor field or a spherical function field (e.g., an orientation distribution function field), can be estimated from measured diffusion weighted images. In this paper, inspired by the microscopic theoretical treatment of phases in liquid crystals, we introduce a novel mathematical framework, called Director Field Analysis (DFA), to study local geometric structural information of white matter based on the reconstructed tensor field or spherical function field: (1) We propose a set of mathematical tools to process general director data, which consists of dyadic tensors that have orientations but no direction. (2) We propose Orientational Order (OO) and Orientational Dispersion (OD) indices to describe the degree of alignment and dispersion of a spherical function in a single voxel or in a region, respectively; (3) We also show how to construct a local orthogonal coordinate frame in each voxel exhibiting anisotropic diffusion; (4) Finally, we define three indices to describe three types of orientational distortion (splay, bend, and twist) in a local spatial neighborhood, and a total distortion index to describe distortions of all three types. To our knowledge, this is the first work to quantitatively describe orientational distortion (splay, bend, and twist) in general spherical function fields from DTI or HARDI data. The proposed DFA and its related mathematical tools can be used to process not only diffusion MRI data but also general director field data, and the proposed scalar indices are useful for detecting local geometric changes of white matter for voxel-based or tract-based analysis in both DTI and HARDI acquisitions. The related codes and a tutorial for DFA will be released in DMRITool. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Brain structural changes in spasmodic dysphonia: A multimodal magnetic resonance imaging study.

    PubMed

    Kostic, Vladimir S; Agosta, Federica; Sarro, Lidia; Tomić, Aleksandra; Kresojević, Nikola; Galantucci, Sebastiano; Svetel, Marina; Valsasina, Paola; Filippi, Massimo

    2016-04-01

    The pathophysiology of spasmodic dysphonia is poorly understood. This study evaluated patterns of cortical morphology, basal ganglia, and white matter microstructural alterations in patients with spasmodic dysphonia relative to healthy controls. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) scans were obtained from 13 spasmodic dysphonia patients and 30 controls. Tract-based spatial statistics was applied to compare diffusion tensor MRI indices (i.e., mean, radial and axial diffusivities, and fractional anisotropy) between groups on a voxel-by-voxel basis. Cortical measures were analyzed using surface-based morphometry. Basal ganglia were segmented on T1-weighted images, and volumes and diffusion tensor MRI metrics of nuclei were measured. Relative to controls, patients with spasmodic dysphonia showed increased cortical surface area of the primary somatosensory cortex bilaterally in a region consistent with the buccal sensory representation, as well as right primary motor cortex, left superior temporal, supramarginal and superior frontal gyri. A decreased cortical area was found in the rolandic operculum bilaterally, left superior/inferior parietal and lingual gyri, as well as in the right angular gyrus. Compared to controls, spasmodic dysphonia patients showed increased diffusivities and decreased fractional anisotropy of the corpus callosum and major white matter tracts, in the right hemisphere. Altered diffusion tensor MRI measures were found in the right caudate and putamen nuclei with no volumetric changes. Multi-level alterations in voice-controlling networks, that included regions devoted not only to sensorimotor integration, motor preparation and motor execution, but also processing of auditory and visual information during speech, might have a role in the pathophysiology of spasmodic dysphonia. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Inversion of calcite twin data for paleostress orientations and magnitudes: A new technique tested and calibrated on numerically-generated and natural data

    NASA Astrophysics Data System (ADS)

    Parlangeau, Camille; Lacombe, Olivier; Schueller, Sylvie; Daniel, Jean-Marc

    2018-01-01

    The inversion of calcite twin data is a powerful tool to reconstruct paleostresses sustained by carbonate rocks during their geological history. Following Etchecopar's (1984) pioneering work, this study presents a new technique for the inversion of calcite twin data that reconstructs the 5 parameters of the deviatoric stress tensors from both monophase and polyphase twin datasets. The uncertainties in the parameters of the stress tensors reconstructed by this new technique are evaluated on numerically-generated datasets. The technique not only reliably defines the 5 parameters of the deviatoric stress tensor, but also reliably separates very close superimposed stress tensors (30° of difference in maximum principal stress orientation or switch between σ3 and σ2 axes). The technique is further shown to be robust to sampling bias and to slight variability in the critical resolved shear stress. Due to our still incomplete knowledge of the evolution of the critical resolved shear stress with grain size, our results show that it is recommended to analyze twin data subsets of homogeneous grain size to minimize possible errors, mainly those concerning differential stress values. The methodological uncertainty in principal stress orientations is about ± 10°; it is about ± 0.1 for the stress ratio. For differential stresses, the uncertainty is lower than ± 30%. Applying the technique to vein samples within Mesozoic limestones from the Monte Nero anticline (northern Apennines, Italy) demonstrates its ability to reliably detect and separate tectonically significant paleostress orientations and magnitudes from naturally deformed polyphase samples, hence to fingerprint the regional paleostresses of interest in tectonic studies.

  3. Nanoscale multiphase phase field approach for stress- and temperature-induced martensitic phase transformations with interfacial stresses at finite strains

    NASA Astrophysics Data System (ADS)

    Basak, Anup; Levitas, Valery I.

    2018-04-01

    A thermodynamically consistent, novel multiphase phase field approach for stress- and temperature-induced martensitic phase transformations at finite strains and with interfacial stresses has been developed. The model considers a single order parameter to describe the austenite↔martensitic transformations, and another N order parameters describing N variants and constrained to a plane in an N-dimensional order parameter space. In the free energy model coexistence of three or more phases at a single material point (multiphase junction), and deviation of each variant-variant transformation path from a straight line have been penalized. Some shortcomings of the existing models are resolved. Three different kinematic models (KMs) for the transformation deformation gradient tensors are assumed: (i) In KM-I the transformation deformation gradient tensor is a linear function of the Bain tensors for the variants. (ii) In KM-II the natural logarithms of the transformation deformation gradient is taken as a linear combination of the natural logarithm of the Bain tensors multiplied with the interpolation functions. (iii) In KM-III it is derived using the twinning equation from the crystallographic theory. The instability criteria for all the phase transformations have been derived for all the kinematic models, and their comparative study is presented. A large strain finite element procedure has been developed and used for studying the evolution of some complex microstructures in nanoscale samples under various loading conditions. Also, the stresses within variant-variant boundaries, the sample size effect, effect of penalizing the triple junctions, and twinned microstructures have been studied. The present approach can be extended for studying grain growth, solidifications, para↔ferro electric transformations, and diffusive phase transformations.

  4. A computational NMR study on zigzag aluminum nitride nanotubes

    NASA Astrophysics Data System (ADS)

    Bodaghi, Ali; Mirzaei, Mahmoud; Seif, Ahmad; Giahi, Masoud

    2008-12-01

    A computational nuclear magnetic resonance (NMR) study is performed to investigate the electronic structure properties of the single-walled zigzag aluminum nitride nanotubes (AlNNTs). The chemical-shielding (CS) tensors are calculated at the sites of Al-27 and N-15 nuclei in three structural forms of AlNNT including H-saturated, Al-terminated, and N-terminated ones. The structural forms are firstly optimized and then the calculated CS tensors in the optimized structures are converted to chemical-shielding isotropic (CSI) and chemical-shielding anisotropic (CSA) parameters. The calculated parameters reveal that various Al-27 and N-15 nuclei are divided into some layers with equivalent electrostatic properties; furthermore, Al and N can act as Lewis base and acid, respectively. In the Al-terminated and N-terminated forms of AlNNT, in which one mouth of the nanotube is terminated by aluminum and nitrogen nuclei, respectively, just the CS tensors of the nearest nuclei to the mouth of the nanotube are significantly changed due to removal of saturating hydrogen atoms. Density functional theory (DFT) calculations are performed using GAUSSIAN 98 package of program.

  5. Cosmic structures and gravitational waves in ghost-free scalar-tensor theories of gravity

    NASA Astrophysics Data System (ADS)

    Bartolo, Nicola; Karmakar, Purnendu; Matarrese, Sabino; Scomparin, Mattia

    2018-05-01

    We study cosmic structures in the quadratic Degenerate Higher Order Scalar Tensor (qDHOST) model, which has been proposed as the most general scalar-tensor theory (up to quadratic dependence on the covariant derivatives of the scalar field), which is not plagued by the presence of ghost instabilities. We then study a static, spherically symmetric object embedded in de Sitter space-time for the qDHOST model. This model exhibits breaking of the Vainshtein mechanism inside the cosmic structure and Schwarzschild-de Sitter space-time outside, where General Relativity (GR) can be recovered within the Vainshtein radius. We constrained the parameters of the qDHOST model by requiring the validity of the Vainshtein screening mechanism inside the cosmic structures and the consistency with the recently established bounds on gravitational wave speed from GW170817/GRB170817A event. We find that these two constraints rule out the same set of parameters, corresponding to the Lagrangians that are quadratic in second-order derivatives of the scalar field, for the shift symmetric qDHOST.

  6. Critical phenomena at the complex tensor ordering phase transition

    NASA Astrophysics Data System (ADS)

    Boettcher, Igor; Herbut, Igor F.

    2018-02-01

    We investigate the critical properties of the phase transition towards complex tensor order that has been proposed to occur in spin-orbit-coupled superconductors. For this purpose, we formulate the bosonic field theory for fluctuations of the complex irreducible second-rank tensor order parameter close to the transition. We then determine the scale dependence of the couplings of the theory by means of the perturbative renormalization group (RG). For the isotropic system, we generically detect a fluctuation-induced first-order phase transition. The initial values for the running couplings are determined by the underlying microscopic model for the tensorial order. As an example, we study three-dimensional Luttinger semimetals with electrons at a quadratic band-touching point. Whereas the strong-coupling transition of the model receives substantial fluctuation corrections, the weak-coupling transition at low temperatures is rendered only weakly first order due to the presence of a fixed point in the vicinity of the RG trajectory. If the number of fluctuating complex components of the order parameter is reduced by cubic anisotropy, the theory maps onto the field theory for frustrated magnetism.

  7. Myofiber Architecture of the Human Atria as Revealed by Submillimeter Diffusion Tensor Imaging.

    PubMed

    Pashakhanloo, Farhad; Herzka, Daniel A; Ashikaga, Hiroshi; Mori, Susumu; Gai, Neville; Bluemke, David A; Trayanova, Natalia A; McVeigh, Elliot R

    2016-04-01

    Accurate knowledge of the human atrial fibrous structure is paramount in understanding the mechanisms of atrial electric function in health and disease. Thus far, such knowledge has been acquired from destructive sectioning, and there is a paucity of data about atrial fiber architecture variability in the human population. In this study, we have developed a customized 3-dimensional diffusion tensor magnetic resonance imaging sequence on a clinical scanner that makes it possible to image an entire intact human heart specimen ex vivo at submillimeter resolution. The data from 8 human atrial specimens obtained with this technique present complete maps of the fibrous organization of the human atria. The findings demonstrate that the main features of atrial anatomy are mostly preserved across subjects although the exact location and orientation of atrial bundles vary. Using the full tractography data, we were able to cluster, visualize, and characterize the distinct major bundles in the human atria. Furthermore, quantitative characterization of the fiber angles across the atrial wall revealed that the transmural fiber angle distribution is heterogeneous throughout different regions of the atria. The application of submillimeter diffusion tensor magnetic resonance imaging provides an unprecedented level of information on both human atrial structure, as well as its intersubject variability. The high resolution and fidelity of this data could enhance our understanding of structural contributions to atrial rhythm and pump disorders and lead to improvements in their targeted treatment. © 2016 American Heart Association, Inc.

  8. Second harmonic generation imaging - a new method for unraveling molecular information of starch.

    PubMed

    Zhuo, Zong-Yan; Liao, Chien-Sheng; Huang, Chen-Han; Yu, Jiun-Yann; Tzeng, Yu-Yi; Lo, Wen; Dong, Chen-Yuan; Chui, Hsiang-Chen; Huang, Yu-Chan; Lai, Hsi-Mei; Chu, Shi-Wei

    2010-07-01

    We present a new method, second harmonic generation (SHG) imaging for the study of starch structure. SHG imaging can provide the structural organization and molecular orientation information of bio-tissues without centrosymmetry. In recent years, SHG has proven its capability in the study of crystallized bio-molecules such as collagen and myosin. Starch, the most important food source and a promising future energy candidate, has, for a decade, been shown to exhibit strong SHG response. By comparing SHG intensity from different starch species, we first identified that the SHG-active molecule is amylopectin, which accounts for the crystallinity in starch granules. With the aid of SHG polarization anisotropy, we extracted the complete χ((2)) tensor of amylopectin, which reflects the underlying molecular details. Through χ((2)) tensor analysis, three-dimensional orientation and packing symmetry of amylopectin are determined. The helical angle of the double-helix in amylopectin is also deduced from the tensor, and the value corresponds well to previous X-ray studies, further verifying amylopectin as SHG source. It is noteworthy that the nm-sized structure of amylopectin inside a starch granule can be determined by this far-field optical method with 1-μm excitation wavelength. Since SHG is a relatively new tool for plant research, a detailed understanding of SHG in starch structure will be useful for future high-resolution imaging and quantitative analyses for food/energy applications. Copyright © 2010 Elsevier Inc. All rights reserved.

  9. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury.

    PubMed

    Newcombe, Virginia F J; Outtrim, Joanne G; Chatfield, Doris A; Manktelow, Anne; Hutchinson, Peter J; Coles, Jonathan P; Williams, Guy B; Sahakian, Barbara J; Menon, David K

    2011-03-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways.

  10. Parcellating the neuroanatomical basis of impaired decision-making in traumatic brain injury

    PubMed Central

    Outtrim, Joanne G.; Chatfield, Doris A.; Manktelow, Anne; Hutchinson, Peter J.; Coles, Jonathan P.; Williams, Guy B.; Sahakian, Barbara J.; Menon, David K.

    2011-01-01

    Cognitive dysfunction is a devastating consequence of traumatic brain injury that affects the majority of those who survive with moderate-to-severe injury, and many patients with mild head injury. Disruption of key monoaminergic neurotransmitter systems, such as the dopaminergic system, may play a key role in the widespread cognitive dysfunction seen after traumatic axonal injury. Manifestations of injury to this system may include impaired decision-making and impulsivity. We used the Cambridge Gambling Task to characterize decision-making and risk-taking behaviour, outside of a learning context, in a cohort of 44 patients at least six months post-traumatic brain injury. These patients were found to have broadly intact processing of risk adjustment and probability judgement, and to bet similar amounts to controls. However, a patient preference for consistently early bets indicated a higher level of impulsiveness. These behavioural measures were compared with imaging findings on diffusion tensor magnetic resonance imaging. Performance in specific domains of the Cambridge Gambling Task correlated inversely and specifically with the severity of diffusion tensor imaging abnormalities in regions that have been implicated in these cognitive processes. Thus, impulsivity was associated with increased apparent diffusion coefficient bilaterally in the orbitofrontal gyrus, insula and caudate; abnormal risk adjustment with increased apparent diffusion coefficient in the right thalamus and dorsal striatum and left caudate; and impaired performance on rational choice with increased apparent diffusion coefficient in the bilateral dorsolateral prefrontal cortices, and the superior frontal gyri, right ventrolateral prefrontal cortex, the dorsal and ventral striatum, and left hippocampus. Importantly, performance in specific cognitive domains of the task did not correlate with diffusion tensor imaging abnormalities in areas not implicated in their performance. The ability to dissociate the location and extent of damage with performance on the various task components using diffusion tensor imaging allows important insights into the neuroanatomical basis of impulsivity following traumatic brain injury. The ability to detect such damage in vivo may have important implications for patient management, patient selection for trials, and to help understand complex neurocognitive pathways. PMID:21310727

  11. General tensor discriminant analysis and gabor features for gait recognition.

    PubMed

    Tao, Dacheng; Li, Xuelong; Wu, Xindong; Maybank, Stephen J

    2007-10-01

    The traditional image representations are not suited to conventional classification methods, such as the linear discriminant analysis (LDA), because of the under sample problem (USP): the dimensionality of the feature space is much higher than the number of training samples. Motivated by the successes of the two dimensional LDA (2DLDA) for face recognition, we develop a general tensor discriminant analysis (GTDA) as a preprocessing step for LDA. The benefits of GTDA compared with existing preprocessing methods, e.g., principal component analysis (PCA) and 2DLDA, include 1) the USP is reduced in subsequent classification by, for example, LDA; 2) the discriminative information in the training tensors is preserved; and 3) GTDA provides stable recognition rates because the alternating projection optimization algorithm to obtain a solution of GTDA converges, while that of 2DLDA does not. We use human gait recognition to validate the proposed GTDA. The averaged gait images are utilized for gait representation. Given the popularity of Gabor function based image decompositions for image understanding and object recognition, we develop three different Gabor function based image representations: 1) the GaborD representation is the sum of Gabor filter responses over directions, 2) GaborS is the sum of Gabor filter responses over scales, and 3) GaborSD is the sum of Gabor filter responses over scales and directions. The GaborD, GaborS and GaborSD representations are applied to the problem of recognizing people from their averaged gait images.A large number of experiments were carried out to evaluate the effectiveness (recognition rate) of gait recognition based on first obtaining a Gabor, GaborD, GaborS or GaborSD image representation, then using GDTA to extract features and finally using LDA for classification. The proposed methods achieved good performance for gait recognition based on image sequences from the USF HumanID Database. Experimental comparisons are made with nine state of the art classification methods in gait recognition.

  12. Clinical application of diffusion tensor magnetic resonance imaging in skeletal muscle

    PubMed Central

    Longwei, Xu

    2012-01-01

    Summary Diffusion tensor magnetic resonance imaging (DTI) is increasingly applied in the detection and characterization of skeletal muscle. This promising technique has aroused much enthusiasm and generated high expectations, because it is able to provide some specific information of skeletal muscle that is not available from other imaging modalities. Compared with conventional MRI, DTI could reconstruct the trajectories of skeletal muscle fibers. It makes it possible to non-invasively detect several physiological values (diffusion values), like fractional anisotropy (FA) and apparent diffusion coefficient (ADC), which have a great association with the muscle physiology and pathology. Furthermore, other advantages of DTI are the capability of investigating the muscle biomechanics and also investigate the pathological condition of skeletal muscle. Finally, several challenges, which limit the wide application of DTI in skeletal muscle, were discussed. It is believed that this review may arouse in-depth studies on the clinical application of DTI in skeletal muscle in future. PMID:23738269

  13. Cerebral White Matter Integrity and Cognitive Aging: Contributions from Diffusion Tensor Imaging

    PubMed Central

    Madden, David J.; Bennett, Ilana J.; Song, Allen W.

    2009-01-01

    The integrity of cerebral white matter is critical for efficient cognitive functioning, but little is known regarding the role of white matter integrity in age-related differences in cognition. Diffusion tensor imaging (DTI) measures the directional displacement of molecular water and as a result can characterize the properties of white matter that combine to restrict diffusivity in a spatially coherent manner. This review considers DTI studies of aging and their implications for understanding adult age differences in cognitive performance. Decline in white matter integrity contributes to a disconnection among distributed neural systems, with a consistent effect on perceptual speed and executive functioning. The relation between white matter integrity and cognition varies across brain regions, with some evidence suggesting that age-related effects exhibit an anterior-posterior gradient. With continued improvements in spatial resolution and integration with functional brain imaging, DTI holds considerable promise, both for theories of cognitive aging and for translational application. PMID:19705281

  14. Application of Bayesian model averaging to measurements of the primordial power spectrum

    NASA Astrophysics Data System (ADS)

    Parkinson, David; Liddle, Andrew R.

    2010-11-01

    Cosmological parameter uncertainties are often stated assuming a particular model, neglecting the model uncertainty, even when Bayesian model selection is unable to identify a conclusive best model. Bayesian model averaging is a method for assessing parameter uncertainties in situations where there is also uncertainty in the underlying model. We apply model averaging to the estimation of the parameters associated with the primordial power spectra of curvature and tensor perturbations. We use CosmoNest and MultiNest to compute the model evidences and posteriors, using cosmic microwave data from WMAP, ACBAR, BOOMERanG, and CBI, plus large-scale structure data from the SDSS DR7. We find that the model-averaged 95% credible interval for the spectral index using all of the data is 0.940

  15. Combined Diffusion Tensor and Magnetic Resonance Spectroscopic Imaging Methodology for Automated Regional Brain Analysis: Application in a Normal Pediatric Population.

    PubMed

    Ghosh, Nirmalya; Holshouser, Barbara; Oyoyo, Udo; Barnes, Stanley; Tong, Karen; Ashwal, Stephen

    2017-01-01

    During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. In the current study, we developed a complete battery of computational tools to execute such data analyses that include data preprocessing, tract-based statistical analysis from DTI data, automated brain anatomy parsing from T1-weighted MR images, assignment of metabolite information from MRSI data, and co-alignment of these multimodality data streams for reporting of region-specific indices. We present statistical analyses of regional DTI and MRSI data in a cohort of normal pediatric subjects (n = 72; age range: 5-18 years; mean 12.7 ± 3.3 years) to establish normative data and evaluate maturational trends. Several regions showed significant maturational changes for several DTI parameters and MRSI ratios, but the percent change over the age range tended to be small. In the subcortical region (combined basal ganglia [BG], thalami [TH], and corpus callosum [CC]), the largest combined percent change was a 10% increase in fractional anisotropy (FA) primarily due to increases in the BG (12.7%) and TH (9%). The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population. © 2017 S. Karger AG, Basel.

  16. Chaplygin gas inspired scalar fields inflation via well-known potentials

    NASA Astrophysics Data System (ADS)

    Jawad, Abdul; Butt, Sadaf; Rani, Shamaila

    2016-08-01

    Brane inflationary universe models in the context of modified Chaplygin gas and generalized cosmic Chaplygin gas are being studied. We develop these models in view of standard scalar and tachyon fields. In both models, the implemented inflationary parameters such as scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio are derived under slow roll approximations. We also use chaotic and exponential potential in high energy limits and discuss the characteristics of inflationary parameters for both potentials. These models are compatible with recent astronomical observations provided by WMAP7{+}9 and Planck data, i.e., ηs=1.027±0.051, 1.009±0.049, 0.096±0.025 and r<0.38, 0.36, 0.11.

  17. Geometric algebra description of polarization mode dispersion, polarization-dependent loss, and Stokes tensor transformations.

    PubMed

    Soliman, George; Yevick, David; Jessop, Paul

    2014-09-01

    This paper demonstrates that numerous calculations involving polarization transformations can be condensed by employing suitable geometric algebra formalism. For example, to describe polarization mode dispersion and polarization-dependent loss, both the material birefringence and differential loss enter as bivectors and can be combined into a single symmetric quantity. Their frequency and distance evolution, as well as that of the Stokes vector through an optical system, can then each be expressed as a single compact expression, in contrast to the corresponding Mueller matrix formulations. The intrinsic advantage of the geometric algebra framework is further demonstrated by presenting a simplified derivation of generalized Stokes parameters that include the electric field phase. This procedure simultaneously establishes the tensor transformation properties of these parameters.

  18. Diffusion tensor magnetic resonance imaging driven growth modeling for radiotherapy target definition in glioblastoma.

    PubMed

    Jensen, Morten B; Guldberg, Trine L; Harbøll, Anja; Lukacova, Slávka; Kallehauge, Jesper F

    2017-11-01

    The clinical target volume (CTV) in radiotherapy is routinely based on gadolinium contrast enhanced T1 weighted (T1w + Gd) and T2 weighted fluid attenuated inversion recovery (T2w FLAIR) magnetic resonance imaging (MRI) sequences which have been shown to over- or underestimate the microscopic tumor cell spread. Gliomas favor spread along the white matter fiber tracts. Tumor growth models incorporating the MRI diffusion tensors (DTI) allow to account more consistently for the glioma growth. The aim of the study was to investigate the potential of a DTI driven growth model to improve target definition in glioblastoma (GBM). Eleven GBM patients were scanned using T1w, T2w FLAIR, T1w + Gd and DTI. The brain was segmented into white matter, gray matter and cerebrospinal fluid. The Fisher-Kolmogorov growth model was used assuming uniform proliferation and a difference in white and gray matter diffusion of a ratio of 10. The tensor directionality was tested using an anisotropy weighting parameter set to zero (γ0) and twenty (γ20). The volumetric comparison was performed using Hausdorff distance, Dice similarity coefficient (DSC) and surface area. The median of the standard CTV (CTVstandard) was 180 cm 3 . The median surface area of CTVstandard was 211 cm 2 . The median surface area of respective CTV γ0 and CTV γ20 significantly increased to 338 and 376 cm 2 , respectively. The Hausdorff distance was greater than zero and significantly increased for both CTV γ0 and CTV γ20 with respective median of 18.7 and 25.2 mm. The DSC for both CTV γ0 and CTV γ20 were significantly below one with respective median of 0.74 and 0.72, which means that 74 and 72% of CTVstandard were included in CTV γ0 and CTV γ20, respectively. DTI driven growth models result in CTVs with a significantly increased surface area, a significantly increased Hausdorff distance and decreased overlap between the standard and model derived volume.

  19. Automated artifact detection and removal for improved tensor estimation in motion-corrupted DTI data sets using the combination of local binary patterns and 2D partial least squares.

    PubMed

    Zhou, Zhenyu; Liu, Wei; Cui, Jiali; Wang, Xunheng; Arias, Diana; Wen, Ying; Bansal, Ravi; Hao, Xuejun; Wang, Zhishun; Peterson, Bradley S; Xu, Dongrong

    2011-02-01

    Signal variation in diffusion-weighted images (DWIs) is influenced both by thermal noise and by spatially and temporally varying artifacts, such as rigid-body motion and cardiac pulsation. Motion artifacts are particularly prevalent when scanning difficult patient populations, such as human infants. Although some motion during data acquisition can be corrected using image coregistration procedures, frequently individual DWIs are corrupted beyond repair by sudden, large amplitude motion either within or outside of the imaging plane. We propose a novel approach to identify and reject outlier images automatically using local binary patterns (LBP) and 2D partial least square (2D-PLS) to estimate diffusion tensors robustly. This method uses an enhanced LBP algorithm to extract texture features from a local texture feature of the image matrix from the DWI data. Because the images have been transformed to local texture matrices, we are able to extract discriminating information that identifies outliers in the data set by extending a traditional one-dimensional PLS algorithm to a two-dimension operator. The class-membership matrix in this 2D-PLS algorithm is adapted to process samples that are image matrix, and the membership matrix thus represents varying degrees of importance of local information within the images. We also derive the analytic form of the generalized inverse of the class-membership matrix. We show that this method can effectively extract local features from brain images obtained from a large sample of human infants to identify images that are outliers in their textural features, permitting their exclusion from further processing when estimating tensors using the DWIs. This technique is shown to be superior in performance when compared with visual inspection and other common methods to address motion-related artifacts in DWI data. This technique is applicable to correct motion artifact in other magnetic resonance imaging (MRI) techniques (e.g., the bootstrapping estimation) that use univariate or multivariate regression methods to fit MRI data to a pre-specified model. Copyright © 2011 Elsevier Inc. All rights reserved.

  20. Studying Autism Spectrum Disorder with Structural and Diffusion Magnetic Resonance Imaging: A Survey

    PubMed Central

    Ismail, Marwa M. T.; Keynton, Robert S.; Mostapha, Mahmoud M. M. O.; ElTanboly, Ahmed H.; Casanova, Manuel F.; Gimel'farb, Georgy L.; El-Baz, Ayman

    2016-01-01

    Magnetic resonance imaging (MRI) modalities have emerged as powerful means that facilitate non-invasive clinical diagnostics of various diseases and abnormalities since their inception in the 1980s. Multiple MRI modalities, such as different types of the sMRI and DTI, have been employed to investigate facets of ASD in order to better understand this complex syndrome. This paper reviews recent applications of structural magnetic resonance imaging (sMRI) and diffusion tensor imaging (DTI), to study autism spectrum disorder (ASD). Main reported findings are sometimes contradictory due to different age ranges, hardware protocols, population types, numbers of participants, and image analysis parameters. The primary anatomical structures, such as amygdalae, cerebrum, and cerebellum, associated with clinical-pathological correlates of ASD are highlighted through successive life stages, from infancy to adulthood. This survey demonstrates the absence of consistent pathology in the brains of autistic children and lack of research investigations in patients under 2 years of age in the literature. The known publications also emphasize advances in data acquisition and analysis, as well as significance of multimodal approaches that combine resting-state, task-evoked, and sMRI measures. Initial results obtained with the sMRI and DTI show good promise toward the early and non-invasive ASD diagnostics. PMID:27242476

Top