The 1/ N Expansion of Tensor Models with Two Symmetric Tensors
NASA Astrophysics Data System (ADS)
Gurau, Razvan
2018-06-01
It is well known that tensor models for a tensor with no symmetry admit a 1/ N expansion dominated by melonic graphs. This result relies crucially on identifying jackets, which are globally defined ribbon graphs embedded in the tensor graph. In contrast, no result of this kind has so far been established for symmetric tensors because global jackets do not exist. In this paper we introduce a new approach to the 1/ N expansion in tensor models adapted to symmetric tensors. In particular we do not use any global structure like the jackets. We prove that, for any rank D, a tensor model with two symmetric tensors and interactions the complete graph K D+1 admits a 1/ N expansion dominated by melonic graphs.
Hu, Weiming; Gao, Jin; Xing, Junliang; Zhang, Chao; Maybank, Stephen
2017-01-01
An appearance model adaptable to changes in object appearance is critical in visual object tracking. In this paper, we treat an image patch as a two-order tensor which preserves the original image structure. We design two graphs for characterizing the intrinsic local geometrical structure of the tensor samples of the object and the background. Graph embedding is used to reduce the dimensions of the tensors while preserving the structure of the graphs. Then, a discriminant embedding space is constructed. We prove two propositions for finding the transformation matrices which are used to map the original tensor samples to the tensor-based graph embedding space. In order to encode more discriminant information in the embedding space, we propose a transfer-learning- based semi-supervised strategy to iteratively adjust the embedding space into which discriminative information obtained from earlier times is transferred. We apply the proposed semi-supervised tensor-based graph embedding learning algorithm to visual tracking. The new tracking algorithm captures an object's appearance characteristics during tracking and uses a particle filter to estimate the optimal object state. Experimental results on the CVPR 2013 benchmark dataset demonstrate the effectiveness of the proposed tracking algorithm.
Affinity learning with diffusion on tensor product graph.
Yang, Xingwei; Prasad, Lakshman; Latecki, Longin Jan
2013-01-01
In many applications, we are given a finite set of data points sampled from a data manifold and represented as a graph with edge weights determined by pairwise similarities of the samples. Often the pairwise similarities (which are also called affinities) are unreliable due to noise or due to intrinsic difficulties in estimating similarity values of the samples. As observed in several recent approaches, more reliable similarities can be obtained if the original similarities are diffused in the context of other data points, where the context of each point is a set of points most similar to it. Compared to the existing methods, our approach differs in two main aspects. First, instead of diffusing the similarity information on the original graph, we propose to utilize the tensor product graph (TPG) obtained by the tensor product of the original graph with itself. Since TPG takes into account higher order information, it is not a surprise that we obtain more reliable similarities. However, it comes at the price of higher order computational complexity and storage requirement. The key contribution of the proposed approach is that the information propagation on TPG can be computed with the same computational complexity and the same amount of storage as the propagation on the original graph. We prove that a graph diffusion process on TPG is equivalent to a novel iterative algorithm on the original graph, which is guaranteed to converge. After its convergence we obtain new edge weights that can be interpreted as new, learned affinities. We stress that the affinities are learned in an unsupervised setting. We illustrate the benefits of the proposed approach for data manifolds composed of shapes, images, and image patches on two very different tasks of image retrieval and image segmentation. With learned affinities, we achieve the bull's eye retrieval score of 99.99 percent on the MPEG-7 shape dataset, which is much higher than the state-of-the-art algorithms. When the data- points are image patches, the NCut with the learned affinities not only significantly outperforms the NCut with the original affinities, but it also outperforms state-of-the-art image segmentation methods.
Cai, Qing-Bo; Xu, Xiao-Wei; Zhou, Guorong
2017-01-01
In this paper, we construct a bivariate tensor product generalization of Kantorovich-type Bernstein-Stancu-Schurer operators based on the concept of [Formula: see text]-integers. We obtain moments and central moments of these operators, give the rate of convergence by using the complete modulus of continuity for the bivariate case and estimate a convergence theorem for the Lipschitz continuous functions. We also give some graphs and numerical examples to illustrate the convergence properties of these operators to certain functions.
Visualizing Dataflow Graphs of Deep Learning Models in TensorFlow.
Wongsuphasawat, Kanit; Smilkov, Daniel; Wexler, James; Wilson, Jimbo; Mane, Dandelion; Fritz, Doug; Krishnan, Dilip; Viegas, Fernanda B; Wattenberg, Martin
2018-01-01
We present a design study of the TensorFlow Graph Visualizer, part of the TensorFlow machine intelligence platform. This tool helps users understand complex machine learning architectures by visualizing their underlying dataflow graphs. The tool works by applying a series of graph transformations that enable standard layout techniques to produce a legible interactive diagram. To declutter the graph, we decouple non-critical nodes from the layout. To provide an overview, we build a clustered graph using the hierarchical structure annotated in the source code. To support exploration of nested structure on demand, we perform edge bundling to enable stable and responsive cluster expansion. Finally, we detect and highlight repeated structures to emphasize a model's modular composition. To demonstrate the utility of the visualizer, we describe example usage scenarios and report user feedback. Overall, users find the visualizer useful for understanding, debugging, and sharing the structures of their models.
Non-convex Statistical Optimization for Sparse Tensor Graphical Model
Sun, Wei; Wang, Zhaoran; Liu, Han; Cheng, Guang
2016-01-01
We consider the estimation of sparse graphical models that characterize the dependency structure of high-dimensional tensor-valued data. To facilitate the estimation of the precision matrix corresponding to each way of the tensor, we assume the data follow a tensor normal distribution whose covariance has a Kronecker product structure. The penalized maximum likelihood estimation of this model involves minimizing a non-convex objective function. In spite of the non-convexity of this estimation problem, we prove that an alternating minimization algorithm, which iteratively estimates each sparse precision matrix while fixing the others, attains an estimator with the optimal statistical rate of convergence as well as consistent graph recovery. Notably, such an estimator achieves estimation consistency with only one tensor sample, which is unobserved in previous work. Our theoretical results are backed by thorough numerical studies. PMID:28316459
Lamplighter groups, de Brujin graphs, spider-web graphs and their spectra
NASA Astrophysics Data System (ADS)
Grigorchuk, R.; Leemann, P.-H.; Nagnibeda, T.
2016-05-01
We study the infinite family of spider-web graphs \\{{{ S }}k,N,M\\}, k≥slant 2, N≥slant 0 and M≥slant 1, initiated in the 50s in the context of network theory. It was later shown in physical literature that these graphs have remarkable percolation and spectral properties. We provide a mathematical explanation of these properties by putting the spider-web graphs in the context of group theory and algebraic graph theory. Namely, we realize them as tensor products of the well-known de Bruijn graphs \\{{{ B }}k,N\\} with cyclic graphs \\{{C}M\\} and show that these graphs are described by the action of the lamplighter group {{ L }}k={Z}/k{Z}\\wr {Z} on the infinite binary tree. Our main result is the identification of the infinite limit of \\{{{ S }}k,N,M\\}, as N,M\\to ∞ , with the Cayley graph of the lamplighter group {{ L }}k which, in turn, is one of the famous Diestel-Leader graphs {{DL}}k,k. As an application we compute the spectra of all spider-web graphs and show their convergence to the discrete spectral distribution associated with the Laplacian on the lamplighter group.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures.
Benson, Austin R; Gleich, David F; Leskovec, Jure
2015-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.
Tensor Spectral Clustering for Partitioning Higher-order Network Structures
Benson, Austin R.; Gleich, David F.; Leskovec, Jure
2016-01-01
Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms. PMID:27812399
Graph embedding and extensions: a general framework for dimensionality reduction.
Yan, Shuicheng; Xu, Dong; Zhang, Benyu; Zhang, Hong-Jiang; Yang, Qiang; Lin, Stephen
2007-01-01
Over the past few decades, a large family of algorithms - supervised or unsupervised; stemming from statistics or geometry theory - has been designed to provide different solutions to the problem of dimensionality reduction. Despite the different motivations of these algorithms, we present in this paper a general formulation known as graph embedding to unify them within a common framework. In graph embedding, each algorithm can be considered as the direct graph embedding or its linear/kernel/tensor extension of a specific intrinsic graph that describes certain desired statistical or geometric properties of a data set, with constraints from scale normalization or a penalty graph that characterizes a statistical or geometric property that should be avoided. Furthermore, the graph embedding framework can be used as a general platform for developing new dimensionality reduction algorithms. By utilizing this framework as a tool, we propose a new supervised dimensionality reduction algorithm called Marginal Fisher Analysis in which the intrinsic graph characterizes the intraclass compactness and connects each data point with its neighboring points of the same class, while the penalty graph connects the marginal points and characterizes the interclass separability. We show that MFA effectively overcomes the limitations of the traditional Linear Discriminant Analysis algorithm due to data distribution assumptions and available projection directions. Real face recognition experiments show the superiority of our proposed MFA in comparison to LDA, also for corresponding kernel and tensor extensions.
Topology in colored tensor models via crystallization theory
NASA Astrophysics Data System (ADS)
Casali, Maria Rita; Cristofori, Paola; Dartois, Stéphane; Grasselli, Luigi
2018-07-01
The aim of this paper is twofold. On the one hand, it provides a review of the links between random tensor models, seen as quantum gravity theories, and the PL-manifolds representation by means of edge-colored graphs (crystallization theory). On the other hand, the core of the paper is to establish results about the topological and geometrical properties of the Gurau-degree (or G-degree) of the represented manifolds, in relation with the motivations coming from physics. In fact, the G-degree appears naturally in higher dimensional tensor models as the quantity driving their 1 / N expansion, exactly as it happens for the genus of surfaces in the two-dimensional matrix model setting. In particular, the G-degree of PL-manifolds is proved to be finite-to-one in any dimension, while in dimension 3 and 4 a series of classification theorems are obtained for PL-manifolds represented by graphs with a fixed G-degree. All these properties have specific relevance in the tensor models framework, showing a direct fruitful interaction between tensor models and discrete geometry, via crystallization theory.
Adaptive distance metric learning for diffusion tensor image segmentation.
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C N; Chu, Winnie C W
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework.
Adaptive Distance Metric Learning for Diffusion Tensor Image Segmentation
Kong, Youyong; Wang, Defeng; Shi, Lin; Hui, Steve C. N.; Chu, Winnie C. W.
2014-01-01
High quality segmentation of diffusion tensor images (DTI) is of key interest in biomedical research and clinical application. In previous studies, most efforts have been made to construct predefined metrics for different DTI segmentation tasks. These methods require adequate prior knowledge and tuning parameters. To overcome these disadvantages, we proposed to automatically learn an adaptive distance metric by a graph based semi-supervised learning model for DTI segmentation. An original discriminative distance vector was first formulated by combining both geometry and orientation distances derived from diffusion tensors. The kernel metric over the original distance and labels of all voxels were then simultaneously optimized in a graph based semi-supervised learning approach. Finally, the optimization task was efficiently solved with an iterative gradient descent method to achieve the optimal solution. With our approach, an adaptive distance metric could be available for each specific segmentation task. Experiments on synthetic and real brain DTI datasets were performed to demonstrate the effectiveness and robustness of the proposed distance metric learning approach. The performance of our approach was compared with three classical metrics in the graph based semi-supervised learning framework. PMID:24651858
Genten: Software for Generalized Tensor Decompositions v. 1.0.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Phipps, Eric T.; Kolda, Tamara G.; Dunlavy, Daniel
Tensors, or multidimensional arrays, are a powerful mathematical means of describing multiway data. This software provides computational means for decomposing or approximating a given tensor in terms of smaller tensors of lower dimension, focusing on decomposition of large, sparse tensors. These techniques have applications in many scientific areas, including signal processing, linear algebra, computer vision, numerical analysis, data mining, graph analysis, neuroscience and more. The software is designed to take advantage of parallelism present emerging computer architectures such has multi-core CPUs, many-core accelerators such as the Intel Xeon Phi, and computation-oriented GPUs to enable efficient processing of large tensors.
Low-Rank Tensor Subspace Learning for RGB-D Action Recognition.
Jia, Chengcheng; Fu, Yun
2016-07-09
Since RGB-D action data inherently equip with extra depth information compared with RGB data, recently many works employ RGB-D data in a third-order tensor representation containing spatio-temporal structure to find a subspace for action recognition. However, there are two main challenges of these methods. First, the dimension of subspace is usually fixed manually. Second, preserving local information by finding intraclass and inter-class neighbors from a manifold is highly timeconsuming. In this paper, we learn a tensor subspace, whose dimension is learned automatically by low-rank learning, for RGB-D action recognition. Particularly, the tensor samples are factorized to obtain three Projection Matrices (PMs) by Tucker Decomposition, where all the PMs are performed by nuclear norm in a close-form to obtain the tensor ranks which are used as tensor subspace dimension. Additionally, we extract the discriminant and local information from a manifold using a graph constraint. This graph preserves the local knowledge inherently, which is faster than the previous way by calculating both the intra-class and inter-class neighbors of each sample. We evaluate the proposed method on four widely used RGB-D action datasets including MSRDailyActivity3D, MSRActionPairs, MSRActionPairs skeleton and UTKinect-Action3D datasets, and the experimental results show higher accuracy and efficiency of the proposed method.
Semantic graphs and associative memories
NASA Astrophysics Data System (ADS)
Pomi, Andrés; Mizraji, Eduardo
2004-12-01
Graphs have been increasingly utilized in the characterization of complex networks from diverse origins, including different kinds of semantic networks. Human memories are associative and are known to support complex semantic nets; these nets are represented by graphs. However, it is not known how the brain can sustain these semantic graphs. The vision of cognitive brain activities, shown by modern functional imaging techniques, assigns renewed value to classical distributed associative memory models. Here we show that these neural network models, also known as correlation matrix memories, naturally support a graph representation of the stored semantic structure. We demonstrate that the adjacency matrix of this graph of associations is just the memory coded with the standard basis of the concept vector space, and that the spectrum of the graph is a code invariant of the memory. As long as the assumptions of the model remain valid this result provides a practical method to predict and modify the evolution of the cognitive dynamics. Also, it could provide us with a way to comprehend how individual brains that map the external reality, almost surely with different particular vector representations, are nevertheless able to communicate and share a common knowledge of the world. We finish presenting adaptive association graphs, an extension of the model that makes use of the tensor product, which provides a solution to the known problem of branching in semantic nets.
The Full Ward-Takahashi Identity for Colored Tensor Models
NASA Astrophysics Data System (ADS)
Pérez-Sánchez, Carlos I.
2018-03-01
Colored tensor models (CTM) is a random geometrical approach to quantum gravity. We scrutinize the structure of the connected correlation functions of general CTM-interactions and organize them by boundaries of Feynman graphs. For rank- D interactions including, but not restricted to, all melonic φ^4 -vertices—to wit, solely those quartic vertices that can lead to dominant spherical contributions in the large- N expansion—the aforementioned boundary graphs are shown to be precisely all (possibly disconnected) vertex-bipartite regularly edge- D-colored graphs. The concept of CTM-compatible boundary-graph automorphism is introduced and an auxiliary graph calculus is developed. With the aid of these constructs, certain U (∞)-invariance of the path integral measure is fully exploited in order to derive a strong Ward-Takahashi Identity for CTMs with a symmetry-breaking kinetic term. For the rank-3 φ^4 -theory, we get the exact integral-like equation for the 2-point function. Similarly, exact equations for higher multipoint functions can be readily obtained departing from this full Ward-Takahashi identity. Our results hold for some Group Field Theories as well. Altogether, our non-perturbative approach trades some graph theoretical methods for analytical ones. We believe that these tools can be extended to tensorial SYK-models.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-05-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Information Graph Flow: A Geometric Approximation of Quantum and Statistical Systems
NASA Astrophysics Data System (ADS)
Vanchurin, Vitaly
2018-06-01
Given a quantum (or statistical) system with a very large number of degrees of freedom and a preferred tensor product factorization of the Hilbert space (or of a space of distributions) we describe how it can be approximated with a very low-dimensional field theory with geometric degrees of freedom. The geometric approximation procedure consists of three steps. The first step is to construct weighted graphs (we call information graphs) with vertices representing subsystems (e.g., qubits or random variables) and edges representing mutual information (or the flow of information) between subsystems. The second step is to deform the adjacency matrices of the information graphs to that of a (locally) low-dimensional lattice using the graph flow equations introduced in the paper. (Note that the graph flow produces very sparse adjacency matrices and thus might also be used, for example, in machine learning or network science where the task of graph sparsification is of a central importance.) The third step is to define an emergent metric and to derive an effective description of the metric and possibly other degrees of freedom. To illustrate the procedure we analyze (numerically and analytically) two information graph flows with geometric attractors (towards locally one- and two-dimensional lattices) and metric perturbations obeying a geometric flow equation. Our analysis also suggests a possible approach to (a non-perturbative) quantum gravity in which the geometry (a secondary object) emerges directly from a quantum state (a primary object) due to the flow of the information graphs.
Brain white matter fiber estimation and tractography using Q-ball imaging and Bayesian MODEL.
Lu, Meng
2015-01-01
Diffusion tensor imaging allows for the non-invasive in vivo mapping of the brain tractography. However, fiber bundles have complex structures such as fiber crossings, fiber branchings and fibers with large curvatures that tensor imaging (DTI) cannot accurately handle. This study presents a novel brain white matter tractography method using Q-ball imaging as the data source instead of DTI, because QBI can provide accurate information about multiple fiber crossings and branchings in a single voxel using an orientation distribution function (ODF). The presented method also uses graph theory to construct the Bayesian model-based graph, so that the fiber tracking between two voxels can be represented as the shortest path in a graph. Our experiment showed that our new method can accurately handle brain white matter fiber crossings and branchings, and reconstruct brain tractograhpy both in phantom data and real brain data.
Unifying neural-network quantum states and correlator product states via tensor networks
NASA Astrophysics Data System (ADS)
Clark, Stephen R.
2018-04-01
Correlator product states (CPS) are a powerful and very broad class of states for quantum lattice systems whose (unnormalised) amplitudes in a fixed basis can be sampled exactly and efficiently. They work by gluing together states of overlapping clusters of sites on the lattice, called correlators. Recently Carleo and Troyer (2017 Science 355 602) introduced a new type sampleable ansatz called neural-network quantum states (NQS) that are inspired by the restricted Boltzmann model used in machine learning. By employing the formalism of tensor networks we show that NQS are a special form of CPS with novel properties. Diagramatically a number of simple observations become transparent. Namely, that NQS are CPS built from extensively sized GHZ-form correlators making them uniquely unbiased geometrically. The appearance of GHZ correlators also relates NQS to canonical polyadic decompositions of tensors. Another immediate implication of the NQS equivalence to CPS is that we are able to formulate exact NQS representations for a wide range of paradigmatic states, including superpositions of weighed-graph states, the Laughlin state, toric code states, and the resonating valence bond state. These examples reveal the potential of using higher dimensional hidden units and a second hidden layer in NQS. The major outlook of this study is the elevation of NQS to correlator operators allowing them to enhance conventional well-established variational Monte Carlo approaches for strongly correlated fermions.
Yun, Ruijuan; Lin, Chung-Chih; Wu, Shuicai; Huang, Chu-Chung; Lin, Ching-Po; Chao, Yi-Ping
2013-01-01
In this study, we employed diffusion tensor imaging (DTI) to construct brain structural network and then derive the connection matrices from 96 healthy elderly subjects. The correlation analysis between these topological properties of network based on graph theory and the Cognitive Abilities Screening Instrument (CASI) index were processed to extract the significant network characteristics. These characteristics were then integrated to estimate the models by various machine-learning algorithms to predict user's cognitive performance. From the results, linear regression model and Gaussian processes model showed presented better abilities with lower mean absolute errors of 5.8120 and 6.25 to predict the cognitive performance respectively. Moreover, these extracted topological properties of brain structural network derived from DTI also could be regarded as the bio-signatures for further evaluation of brain degeneration in healthy aged and early diagnosis of mild cognitive impairment (MCI).
On the degree conjecture for separability of multipartite quantum states
NASA Astrophysics Data System (ADS)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-01
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matrices match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.
Edge length dynamics on graphs with applications to p-adic AdS/CFT
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian; ...
2017-06-30
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Edge length dynamics on graphs with applications to p-adic AdS/CFT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven S.; Heydeman, Matthew; Jepsen, Christian
We formulate a Euclidean theory of edge length dynamics based on a notion of Ricci curvature on graphs with variable edge lengths. In order to write an explicit form for the discrete analog of the Einstein-Hilbert action, we require that the graph should either be a tree or that all its cycles should be sufficiently long. The infinite regular tree with all edge lengths equal is an example of a graph with constant negative curvature, providing a connection with p-adic AdS/CFT, where such a tree takes the place of anti-de Sitter space. Here, we compute simple correlators of the operatormore » holographically dual to edge length fluctuations. This operator has dimension equal to the dimension of the boundary, and it has some features in common with the stress tensor.« less
Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory
2012-06-20
Kirchhoff stress tensor, denoted by r and reduced strain tensor E e is given by rxx rzz rxz 8><>: 9>=>;¼ Q11ð0Þ Q13ð0Þ 0 Q13ð0Þ Q33ð0Þ 0 0 0 Q55ð0Þ...0.5 1 −0.5 0 0.5 1 (a) (b) Fig. 1. Graphs of (a) equi-spaced and (b) spectral lagrange interpolation functions for polynomial order of p = 11. 3762 V
Multilinear Graph Embedding: Representation and Regularization for Images.
Chen, Yi-Lei; Hsu, Chiou-Ting
2014-02-01
Given a set of images, finding a compact and discriminative representation is still a big challenge especially when multiple latent factors are hidden in the way of data generation. To represent multifactor images, although multilinear models are widely used to parameterize the data, most methods are based on high-order singular value decomposition (HOSVD), which preserves global statistics but interprets local variations inadequately. To this end, we propose a novel method, called multilinear graph embedding (MGE), as well as its kernelization MKGE to leverage the manifold learning techniques into multilinear models. Our method theoretically links the linear, nonlinear, and multilinear dimensionality reduction. We also show that the supervised MGE encodes informative image priors for image regularization, provided that an image is represented as a high-order tensor. From our experiments on face and gait recognition, the superior performance demonstrates that MGE better represents multifactor images than classic methods, including HOSVD and its variants. In addition, the significant improvement in image (or tensor) completion validates the potential of MGE for image regularization.
Graph-based geometric-iconic guide-wire tracking.
Honnorat, Nicolas; Vaillant, Régis; Paragios, Nikos
2011-01-01
In this paper we introduce a novel hybrid graph-based approach for Guide-wire tracking. The image support is captured by steerable filters and improved through tensor voting. Then, a graphical model is considered that represents guide-wire extraction/tracking through a B-spline control-point model. Points with strong geometric interest (landmarks) are automatically determined and anchored to such a representation. Tracking is then performed through discrete MRFs that optimize the spatio-temporal positions of the control points while establishing landmark temporal correspondences. Promising results demonstrate the potentials of our method.
On the degree conjecture for separability of multipartite quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hassan, Ali Saif M.; Joag, Pramod S.
2008-01-15
We settle the so-called degree conjecture for the separability of multipartite quantum states, which are normalized graph Laplacians, first given by Braunstein et al. [Phys. Rev. A 73, 012320 (2006)]. The conjecture states that a multipartite quantum state is separable if and only if the degree matrix of the graph associated with the state is equal to the degree matrix of the partial transpose of this graph. We call this statement to be the strong form of the conjecture. In its weak version, the conjecture requires only the necessity, that is, if the state is separable, the corresponding degree matricesmore » match. We prove the strong form of the conjecture for pure multipartite quantum states using the modified tensor product of graphs defined by Hassan and Joag [J. Phys. A 40, 10251 (2007)], as both necessary and sufficient condition for separability. Based on this proof, we give a polynomial-time algorithm for completely factorizing any pure multipartite quantum state. By polynomial-time algorithm, we mean that the execution time of this algorithm increases as a polynomial in m, where m is the number of parts of the quantum system. We give a counterexample to show that the conjecture fails, in general, even in its weak form, for multipartite mixed states. Finally, we prove this conjecture, in its weak form, for a class of multipartite mixed states, giving only a necessary condition for separability.« less
Li, Xiaojin; Hu, Xintao; Jin, Changfeng; Han, Junwei; Liu, Tianming; Guo, Lei; Hao, Wei; Li, Lingjiang
2013-01-01
Previous studies have investigated both structural and functional brain networks via graph-theoretical methods. However, there is an important issue that has not been adequately discussed before: what is the optimal theoretical graph model for describing the structural networks of human brain? In this paper, we perform a comparative study to address this problem. Firstly, large-scale cortical regions of interest (ROIs) are localized by recently developed and validated brain reference system named Dense Individualized Common Connectivity-based Cortical Landmarks (DICCCOL) to address the limitations in the identification of the brain network ROIs in previous studies. Then, we construct structural brain networks based on diffusion tensor imaging (DTI) data. Afterwards, the global and local graph properties of the constructed structural brain networks are measured using the state-of-the-art graph analysis algorithms and tools and are further compared with seven popular theoretical graph models. In addition, we compare the topological properties between two graph models, namely, stickiness-index-based model (STICKY) and scale-free gene duplication model (SF-GD), that have higher similarity with the real structural brain networks in terms of global and local graph properties. Our experimental results suggest that among the seven theoretical graph models compared in this study, STICKY and SF-GD models have better performances in characterizing the structural human brain network.
Structural network efficiency is associated with cognitive impairment in small-vessel disease.
Lawrence, Andrew J; Chung, Ai Wern; Morris, Robin G; Markus, Hugh S; Barrick, Thomas R
2014-07-22
To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. © 2014 American Academy of Neurology.
Structural network efficiency is associated with cognitive impairment in small-vessel disease
Chung, Ai Wern; Morris, Robin G.; Markus, Hugh S.; Barrick, Thomas R.
2014-01-01
Objective: To characterize brain network connectivity impairment in cerebral small-vessel disease (SVD) and its relationship with MRI disease markers and cognitive impairment. Methods: A cross-sectional design applied graph-based efficiency analysis to deterministic diffusion tensor tractography data from 115 patients with lacunar infarction and leukoaraiosis and 50 healthy individuals. Structural connectivity was estimated between 90 cortical and subcortical brain regions and efficiency measures of resulting graphs were analyzed. Networks were compared between SVD and control groups, and associations between efficiency measures, conventional MRI disease markers, and cognitive function were tested. Results: Brain diffusion tensor tractography network connectivity was significantly reduced in SVD: networks were less dense, connection weights were lower, and measures of network efficiency were significantly disrupted. The degree of brain network disruption was associated with MRI measures of disease severity and cognitive function. In multiple regression models controlling for confounding variables, associations with cognition were stronger for network measures than other MRI measures including conventional diffusion tensor imaging measures. A total mediation effect was observed for the association between fractional anisotropy and mean diffusivity measures and executive function and processing speed. Conclusions: Brain network connectivity in SVD is disturbed, this disturbance is related to disease severity, and within a mediation framework fully or partly explains previously observed associations between MRI measures and SVD-related cognitive dysfunction. These cross-sectional results highlight the importance of network disruption in SVD and provide support for network measures as a disease marker in treatment studies. PMID:24951477
Intermediate Templates Guided Groupwise Registration of Diffusion Tensor Images
Jia, Hongjun; Yap, Pew-Thian; Wu, Guorong; Wang, Qian; Shen, Dinggang
2010-01-01
Registration of a population of diffusion tensor images (DTIs) is one of the key steps in medical image analysis, and it plays an important role in the statistical analysis of white matter related neurological diseases. However, pairwise registration with respect to a pre-selected template may not give precise results if the selected template deviates significantly from the distribution of images. To cater for more accurate and consistent registration, a novel framework is proposed for groupwise registration with the guidance from one or more intermediate templates determined from the population of images. Specifically, we first use a Euclidean distance, defined as a combinative measure based on the FA map and ADC map, for gauging the similarity of each pair of DTIs. A fully connected graph is then built with each node denoting an image and each edge denoting the distance between a pair of images. The root template image is determined automatically as the image with the overall shortest path length to all other images on the minimum spanning tree (MST) of the graph. Finally, a sequence of registration steps is applied to progressively warping each image towards the root template image with the help of intermediate templates distributed along its path to the root node on the MST. Extensive experimental results using diffusion tensor images of real subjects indicate that registration accuracy and fiber tract alignment are significantly improved, compared with the direct registration from each image to the root template image. PMID:20851197
Graph theory findings in the pathophysiology of temporal lobe epilepsy
Chiang, Sharon; Haneef, Zulfi
2014-01-01
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. PMID:24831083
Human connectome module pattern detection using a new multi-graph MinMax cut model.
De, Wang; Wang, Yang; Nie, Feiping; Yan, Jingwen; Cai, Weidong; Saykin, Andrew J; Shen, Li; Huang, Heng
2014-01-01
Many recent scientific efforts have been devoted to constructing the human connectome using Diffusion Tensor Imaging (DTI) data for understanding the large-scale brain networks that underlie higher-level cognition in human. However, suitable computational network analysis tools are still lacking in human connectome research. To address this problem, we propose a novel multi-graph min-max cut model to detect the consistent network modules from the brain connectivity networks of all studied subjects. A new multi-graph MinMax cut model is introduced to solve this challenging computational neuroscience problem and the efficient optimization algorithm is derived. In the identified connectome module patterns, each network module shows similar connectivity patterns in all subjects, which potentially associate to specific brain functions shared by all subjects. We validate our method by analyzing the weighted fiber connectivity networks. The promising empirical results demonstrate the effectiveness of our method.
Fiber tracking of brain white matter based on graph theory.
Lu, Meng
2015-01-01
Brain white matter tractography is reconstructed via diffusion-weighted magnetic resonance images. Due to the complex structure of brain white matter fiber bundles, fiber crossing and fiber branching are abundant in human brain. And regular methods with diffusion tensor imaging (DTI) can't accurately handle this problem. the biggest problems of the brain tractography. Therefore, this paper presented a novel brain white matter tractography method based on graph theory, so the fiber tracking between two voxels is transformed into locating the shortest path in a graph. Besides, the presented method uses Q-ball imaging (QBI) as the source data instead of DTI, because QBI can provide accurate information about multiple fiber crossing and branching in one voxel using orientation distribution function (ODF). Experiments showed that the presented method can accurately handle the problem of brain white matter fiber crossing and branching, and reconstruct brain tractograhpy both in phantom data and real brain data.
Dimitriadis, Stavros I.; Zouridakis, George; Rezaie, Roozbeh; Babajani-Feremi, Abbas; Papanicolaou, Andrew C.
2015-01-01
Mild traumatic brain injury (mTBI) may affect normal cognition and behavior by disrupting the functional connectivity networks that mediate efficient communication among brain regions. In this study, we analyzed brain connectivity profiles from resting state Magnetoencephalographic (MEG) recordings obtained from 31 mTBI patients and 55 normal controls. We used phase-locking value estimates to compute functional connectivity graphs to quantify frequency-specific couplings between sensors at various frequency bands. Overall, normal controls showed a dense network of strong local connections and a limited number of long-range connections that accounted for approximately 20% of all connections, whereas mTBI patients showed networks characterized by weak local connections and strong long-range connections that accounted for more than 60% of all connections. Comparison of the two distinct general patterns at different frequencies using a tensor representation for the connectivity graphs and tensor subspace analysis for optimal feature extraction showed that mTBI patients could be separated from normal controls with 100% classification accuracy in the alpha band. These encouraging findings support the hypothesis that MEG-based functional connectivity patterns may be used as biomarkers that can provide more accurate diagnoses, help guide treatment, and monitor effectiveness of intervention in mTBI. PMID:26640764
Tensor models, Kronecker coefficients and permutation centralizer algebras
NASA Astrophysics Data System (ADS)
Geloun, Joseph Ben; Ramgoolam, Sanjaye
2017-11-01
We show that the counting of observables and correlators for a 3-index tensor model are organized by the structure of a family of permutation centralizer algebras. These algebras are shown to be semi-simple and their Wedderburn-Artin decompositions into matrix blocks are given in terms of Clebsch-Gordan coefficients of symmetric groups. The matrix basis for the algebras also gives an orthogonal basis for the tensor observables which diagonalizes the Gaussian two-point functions. The centres of the algebras are associated with correlators which are expressible in terms of Kronecker coefficients (Clebsch-Gordan multiplicities of symmetric groups). The color-exchange symmetry present in the Gaussian model, as well as a large class of interacting models, is used to refine the description of the permutation centralizer algebras. This discussion is extended to a general number of colors d: it is used to prove the integrality of an infinite family of number sequences related to color-symmetrizations of colored graphs, and expressible in terms of symmetric group representation theory data. Generalizing a connection between matrix models and Belyi maps, correlators in Gaussian tensor models are interpreted in terms of covers of singular 2-complexes. There is an intriguing difference, between matrix and higher rank tensor models, in the computational complexity of superficially comparable correlators of observables parametrized by Young diagrams.
Decomposition of a symmetric second-order tensor
NASA Astrophysics Data System (ADS)
Heras, José A.
2018-05-01
In the three-dimensional space there are different definitions for the dot and cross products of a vector with a second-order tensor. In this paper we show how these products can uniquely be defined for the case of symmetric tensors. We then decompose a symmetric second-order tensor into its ‘dot’ part, which involves the dot product, and the ‘cross’ part, which involves the cross product. For some physical applications, this decomposition can be interpreted as one in which the dot part identifies with the ‘parallel’ part of the tensor and the cross part identifies with the ‘perpendicular’ part. This decomposition of a symmetric second-order tensor may be suitable for undergraduate courses of vector calculus, mechanics and electrodynamics.
Tensor integrand reduction via Laurent expansion
Hirschi, Valentin; Peraro, Tiziano
2016-06-09
We introduce a new method for the application of one-loop integrand reduction via the Laurent expansion algorithm, as implemented in the public C++ library Ninja. We show how the coefficients of the Laurent expansion can be computed by suitable contractions of the loop numerator tensor with cut-dependent projectors, making it possible to interface Ninja to any one-loop matrix element generator that can provide the components of this tensor. We implemented this technique in the Ninja library and interfaced it to MadLoop, which is part of the public MadGraph5_aMC@NLO framework. We performed a detailed performance study, comparing against other public reductionmore » tools, namely CutTools, Samurai, IREGI, PJFry++ and Golem95. We find that Ninja out-performs traditional integrand reduction in both speed and numerical stability, the latter being on par with that of the tensor integral reduction tool Golem95 which is however more limited and slower than Ninja. Lastly, we considered many benchmark multi-scale processes of increasing complexity, involving QCD and electro-weak corrections as well as effective non-renormalizable couplings, showing that Ninja’s performance scales well with both the rank and multiplicity of the considered process.« less
Fisher metric, geometric entanglement, and spin networks
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia
2018-02-01
Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of nonlocal correlations between two nonadjacent regions of a generic spin network graph characterized by the bipartite unfolding of an intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and nonlocal level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.
Graph theory findings in the pathophysiology of temporal lobe epilepsy.
Chiang, Sharon; Haneef, Zulfi
2014-07-01
Temporal lobe epilepsy (TLE) is the most common form of adult epilepsy. Accumulating evidence has shown that TLE is a disorder of abnormal epileptogenic networks, rather than focal sources. Graph theory allows for a network-based representation of TLE brain networks, and has potential to illuminate characteristics of brain topology conducive to TLE pathophysiology, including seizure initiation and spread. We review basic concepts which we believe will prove helpful in interpreting results rapidly emerging from graph theory research in TLE. In addition, we summarize the current state of graph theory findings in TLE as they pertain its pathophysiology. Several common findings have emerged from the many modalities which have been used to study TLE using graph theory, including structural MRI, diffusion tensor imaging, surface EEG, intracranial EEG, magnetoencephalography, functional MRI, cell cultures, simulated models, and mouse models, involving increased regularity of the interictal network configuration, altered local segregation and global integration of the TLE network, and network reorganization of temporal lobe and limbic structures. As different modalities provide different views of the same phenomenon, future studies integrating data from multiple modalities are needed to clarify findings and contribute to the formation of a coherent theory on the pathophysiology of TLE. Copyright © 2014 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Li, Jiahui; Xu, Tianlv; Ping, Yang; van Mourik, Tanja; Früchtl, Herbert; Kirk, Steven R.; Jenkins, Samantha
2018-03-01
QTAIM and the stress tensor were used to provide a detailed analysis of the topology of the molecular graph, BCP and bond-path properties, including the new introduced helicity length H, of a Tyr-Gly dipeptide conformer subjected to a torsion with four levels of theory; MP2, M06-2X, B3LYP-D3 and B3LYP and a modest-sized basis set, 6-31+G(d). Structural effects and bonding properties are quantified and reflect differences in the BSSE and lack of inclusion of dispersion effects in the B3LYP calculations. The helicity length H demonstrated that MP2 produced a unique response to the torsion suggesting future use as a diagnostic tool.
NASA Astrophysics Data System (ADS)
Nakatani, Naoki; Chan, Garnet Kin-Lic
2013-04-01
We investigate tree tensor network states for quantum chemistry. Tree tensor network states represent one of the simplest generalizations of matrix product states and the density matrix renormalization group. While matrix product states encode a one-dimensional entanglement structure, tree tensor network states encode a tree entanglement structure, allowing for a more flexible description of general molecules. We describe an optimal tree tensor network state algorithm for quantum chemistry. We introduce the concept of half-renormalization which greatly improves the efficiency of the calculations. Using our efficient formulation we demonstrate the strengths and weaknesses of tree tensor network states versus matrix product states. We carry out benchmark calculations both on tree systems (hydrogen trees and π-conjugated dendrimers) as well as non-tree molecules (hydrogen chains, nitrogen dimer, and chromium dimer). In general, tree tensor network states require much fewer renormalized states to achieve the same accuracy as matrix product states. In non-tree molecules, whether this translates into a computational savings is system dependent, due to the higher prefactor and computational scaling associated with tree algorithms. In tree like molecules, tree network states are easily superior to matrix product states. As an illustration, our largest dendrimer calculation with tree tensor network states correlates 110 electrons in 110 active orbitals.
Tensor products of process matrices with indefinite causal structure
NASA Astrophysics Data System (ADS)
Jia, Ding; Sakharwade, Nitica
2018-03-01
Theories with indefinite causal structure have been studied from both the fundamental perspective of quantum gravity and the practical perspective of information processing. In this paper we point out a restriction in forming tensor products of objects with indefinite causal structure in certain models: there exist both classical and quantum objects the tensor products of which violate the normalization condition of probabilities, if all local operations are allowed. We obtain a necessary and sufficient condition for when such unrestricted tensor products of multipartite objects are (in)valid. This poses a challenge to extending communication theory to indefinite causal structures, as the tensor product is the fundamental ingredient in the asymptotic setting of communication theory. We discuss a few options to evade this issue. In particular, we show that the sequential asymptotic setting does not suffer the violation of normalization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Sterck, H
2011-10-18
The following work has been performed by PI Hans De Sterck and graduate student Manda Winlaw for the required tasks 1-5 (as listed in the Statement of Work). Graduate student Manda Winlaw has visited LLNL January 31-March 11, 2011 and May 23-August 19, 2010, working with Van Henson and Mike O'Hara on non-negative matrix factorizations (NMF). She has investigated the dense subgraph clustering algorithm from 'Finding Dense Subgraphs for Sparse Undirected, Directed, and Bipartite Graphs' by Chen and Saad, testing this method on several term-document matrices and adapting it to cluster based on the rank of the subgraphs instead ofmore » the density. Manda Winlaw was awarded a first prize in the annual LLNL summer student poster competition for a poster on her NMF research. PI Hans De Sterck has developed a new adaptive algebraic multigrid algorithm for computing a few dominant or minimal singular triplets of sparse rectangular matrices. This work builds on adaptive algebraic multigrid methods that were further developed by the PI and collaborators (including Sanders and Henson) for Markov chains. The method also combines and extends existing multigrid algorithms for the symmetric eigenproblem. The PI has visited LLNL February 22-25, 2011, and has given a CASC seminar 'Algebraic Multigrid for the Singular Value Problem' on this work on February 23, 2011. During his visit, he has discussed this work and related topics with Van Henson, Geoffrey Sanders, Panayot Vassilevski, and others. He has tested the algorithm on PDE matrices and on a term-document matrix, with promising initial results. Manda Winlaw has also started to work, with O'Hara, on estimating probability distributions over undirected graph edges. The goal is to estimate probabilistic models from sets of undirected graph edges for the purpose of prediction, anomaly detection and support to supervised learning. Graduate student Manda Winlaw is writing a paper on the results obtained with O'Hara which will be submitted some time later in 2011 to a data mining conference. PI Hans De Sterck has developed a new optimization algorithm for canonical tensor approximation, formulating an extension of the nonlinear GMRES method to optimization problems. Numerical results for tensors with up to 8 modes show that this new method is efficient for sparse and dense tensors. He has written a paper on this which has been submitted to the SIAM Journal on Scientific Computing. PI Hans De Sterck has further developed his new optimization algorithm for canonical tensor approximation, formulating an extension in terms of steepest-descent preconditioning, which makes the approach generally applicable for nonlinear optimization. He has written a paper on this extension which has been submitted to Numerical Linear Algebra with Applications.« less
Three-dimensional model-based object recognition and segmentation in cluttered scenes.
Mian, Ajmal S; Bennamoun, Mohammed; Owens, Robyn
2006-10-01
Viewpoint independent recognition of free-form objects and their segmentation in the presence of clutter and occlusions is a challenging task. We present a novel 3D model-based algorithm which performs this task automatically and efficiently. A 3D model of an object is automatically constructed offline from its multiple unordered range images (views). These views are converted into multidimensional table representations (which we refer to as tensors). Correspondences are automatically established between these views by simultaneously matching the tensors of a view with those of the remaining views using a hash table-based voting scheme. This results in a graph of relative transformations used to register the views before they are integrated into a seamless 3D model. These models and their tensor representations constitute the model library. During online recognition, a tensor from the scene is simultaneously matched with those in the library by casting votes. Similarity measures are calculated for the model tensors which receive the most votes. The model with the highest similarity is transformed to the scene and, if it aligns accurately with an object in the scene, that object is declared as recognized and is segmented. This process is repeated until the scene is completely segmented. Experiments were performed on real and synthetic data comprised of 55 models and 610 scenes and an overall recognition rate of 95 percent was achieved. Comparison with the spin images revealed that our algorithm is superior in terms of recognition rate and efficiency.
A rederivation of the conformal anomaly for spin-{\\frac{1}{2}}
NASA Astrophysics Data System (ADS)
Godazgar, Hadi; Nicolai, Hermann
2018-05-01
We rederive the conformal anomaly for spin- fermions by a genuine Feynman graph calculation, which has not been available so far. Although our calculation merely confirms a result that has been known for a long time, the derivation is new, and thus furnishes a method to investigate more complicated cases (in particular concerning the significance of the quantum trace of the stress tensor in non-conformal theories) where there remain several outstanding and unresolved issues.
Obtaining orthotropic elasticity tensor using entries zeroing method.
NASA Astrophysics Data System (ADS)
Gierlach, Bartosz; Danek, Tomasz
2017-04-01
A generally anisotropic elasticity tensor obtained from measurements can be represented by a tensor belonging to one of eight material symmetry classes. Knowledge of symmetry class and orientation is helpful for describing physical properties of a medium. For each non-trivial symmetry class except isotropic this problem is nonlinear. A common method of obtaining effective tensor is a choosing its non-trivial symmetry class and minimizing Frobenius norm between measured and effective tensor in the same coordinate system. Global optimization algorithm has to be used to determine the best rotation of a tensor. In this contribution, we propose a new approach to obtain optimal tensor, with the assumption that it is orthotropic (or at least has a similar shape to the orthotropic one). In orthotropic form tensor 24 out of 36 entries are zeros. The idea is to minimize the sum of squared entries which are supposed to be equal to zero through rotation calculated with optimization algorithm - in this case Particle Swarm Optimization (PSO) algorithm. Quaternions were used to parametrize rotations in 3D space to improve computational efficiency. In order to avoid a choice of local minima we apply PSO several times and only if we obtain similar results for the third time we consider it as a correct value and finish computations. To analyze obtained results Monte-Carlo method was used. After thousands of single runs of PSO optimization, we obtained values of quaternion parts and plot them. Points concentrate in several points of the graph following the regular pattern. It suggests the existence of more complex symmetry in the analyzed tensor. Then thousands of realizations of generally anisotropic tensor were generated - each tensor entry was replaced with a random value drawn from normal distribution having a mean equal to measured tensor entry and standard deviation of the measurement. Each of these tensors was subject of PSO based optimization delivering quaternion for optimal rotation. Computations were parallelized with OpenMP to decrease computational time what enables different tensors to be processed by different threads. As a result the distributions of rotated tensor entries values were obtained. For the entries which were to be zeroed we can observe almost normal distributions having mean equal to zero or sum of two normal distributions having inverse means. Non-zero entries represent different distributions with two or three maxima. Analysis of obtained results shows that described method produces consistent values of quaternions used to rotate tensors. Despite of less complex target function in a process of optimization in comparison to common approach, entries zeroing method provides results which can be applied to obtain an orthotropic tensor with good reliability. Modification of the method can produce also a tool for obtaining effective tensors belonging to another symmetry classes. This research was supported by the Polish National Science Center under contract No. DEC-2013/11/B/ST10/0472.
Poor textural image tie point matching via graph theory
NASA Astrophysics Data System (ADS)
Yuan, Xiuxiao; Chen, Shiyu; Yuan, Wei; Cai, Yang
2017-07-01
Feature matching aims to find corresponding points to serve as tie points between images. Robust matching is still a challenging task when input images are characterized by low contrast or contain repetitive patterns, occlusions, or homogeneous textures. In this paper, a novel feature matching algorithm based on graph theory is proposed. This algorithm integrates both geometric and radiometric constraints into an edge-weighted (EW) affinity tensor. Tie points are then obtained by high-order graph matching. Four pairs of poor textural images covering forests, deserts, bare lands, and urban areas are tested. For comparison, three state-of-the-art matching techniques, namely, scale-invariant feature transform (SIFT), speeded up robust features (SURF), and features from accelerated segment test (FAST), are also used. The experimental results show that the matching recall obtained by SIFT, SURF, and FAST varies from 0 to 35% in different types of poor textures. However, through the integration of both geometry and radiometry and the EW strategy, the recall obtained by the proposed algorithm is better than 50% in all four image pairs. The better matching recall improves the number of correct matches, dispersion, and positional accuracy.
Spectral mapping of brain functional connectivity from diffusion imaging.
Becker, Cassiano O; Pequito, Sérgio; Pappas, George J; Miller, Michael B; Grafton, Scott T; Bassett, Danielle S; Preciado, Victor M
2018-01-23
Understanding the relationship between the dynamics of neural processes and the anatomical substrate of the brain is a central question in neuroscience. On the one hand, modern neuroimaging technologies, such as diffusion tensor imaging, can be used to construct structural graphs representing the architecture of white matter streamlines linking cortical and subcortical structures. On the other hand, temporal patterns of neural activity can be used to construct functional graphs representing temporal correlations between brain regions. Although some studies provide evidence that whole-brain functional connectivity is shaped by the underlying anatomy, the observed relationship between function and structure is weak, and the rules by which anatomy constrains brain dynamics remain elusive. In this article, we introduce a methodology to map the functional connectivity of a subject at rest from his or her structural graph. Using our methodology, we are able to systematically account for the role of structural walks in the formation of functional correlations. Furthermore, in our empirical evaluations, we observe that the eigenmodes of the mapped functional connectivity are associated with activity patterns associated with different cognitive systems.
Individual classification of Alzheimer's disease with diffusion magnetic resonance imaging.
Schouten, Tijn M; Koini, Marisa; Vos, Frank de; Seiler, Stephan; Rooij, Mark de; Lechner, Anita; Schmidt, Reinhold; Heuvel, Martijn van den; Grond, Jeroen van der; Rombouts, Serge A R B
2017-05-15
Diffusion magnetic resonance imaging (MRI) is a powerful non-invasive method to study white matter integrity, and is sensitive to detect differences in Alzheimer's disease (AD) patients. Diffusion MRI may be able to contribute towards reliable diagnosis of AD. We used diffusion MRI to classify AD patients (N=77), and controls (N=173). We use different methods to extract information from the diffusion MRI data. First, we use the voxel-wise diffusion tensor measures that have been skeletonised using tract based spatial statistics. Second, we clustered the voxel-wise diffusion measures with independent component analysis (ICA), and extracted the mixing weights. Third, we determined structural connectivity between Harvard Oxford atlas regions with probabilistic tractography, as well as graph measures based on these structural connectivity graphs. Classification performance for voxel-wise measures ranged between an AUC of 0.888, and 0.902. The ICA-clustered measures ranged between an AUC of 0.893, and 0.920. The AUC for the structural connectivity graph was 0.900, while graph measures based upon this graph ranged between an AUC of 0.531, and 0.840. All measures combined with a sparse group lasso resulted in an AUC of 0.896. Overall, fractional anisotropy clustered into ICA components was the best performing measure. These findings may be useful for future incorporation of diffusion MRI into protocols for AD classification, or as a starting point for early detection of AD using diffusion MRI. Copyright © 2017 Elsevier Inc. All rights reserved.
Continuous-Time Classical and Quantum Random Walk on Direct Product of Cayley Graphs
NASA Astrophysics Data System (ADS)
Salimi, S.; Jafarizadeh, M. A.
2009-06-01
In this paper we define direct product of graphs and give a recipe for obtaining probability of observing particle on vertices in the continuous-time classical and quantum random walk. In the recipe, the probability of observing particle on direct product of graph is obtained by multiplication of probability on the corresponding to sub-graphs, where this method is useful to determining probability of walk on complicated graphs. Using this method, we calculate the probability of continuous-time classical and quantum random walks on many of finite direct product Cayley graphs (complete cycle, complete Kn, charter and n-cube). Also, we inquire that the classical state the stationary uniform distribution is reached as t → ∞ but for quantum state is not always satisfied.
The study of Thai stock market across the 2008 financial crisis
NASA Astrophysics Data System (ADS)
Kanjamapornkul, K.; Pinčák, Richard; Bartoš, Erik
2016-11-01
The cohomology theory for financial market can allow us to deform Kolmogorov space of time series data over time period with the explicit definition of eight market states in grand unified theory. The anti-de Sitter space induced from a coupling behavior field among traders in case of a financial market crash acts like gravitational field in financial market spacetime. Under this hybrid mathematical superstructure, we redefine a behavior matrix by using Pauli matrix and modified Wilson loop for time series data. We use it to detect the 2008 financial market crash by using a degree of cohomology group of sphere over tensor field in correlation matrix over all possible dominated stocks underlying Thai SET50 Index Futures. The empirical analysis of financial tensor network was performed with the help of empirical mode decomposition and intrinsic time scale decomposition of correlation matrix and the calculation of closeness centrality of planar graph.
Diffusion Tensor Tractography Reveals Disrupted Structural Connectivity during Brain Aging
NASA Astrophysics Data System (ADS)
Lin, Lan; Tian, Miao; Wang, Qi; Wu, Shuicai
2017-10-01
Brain aging is one of the most crucial biological processes that entail many physical, biological, chemical, and psychological changes, and also a major risk factor for most common neurodegenerative diseases. To improve the quality of life for the elderly, it is important to understand how the brain is changed during the normal aging process. We compared diffusion tensor imaging (DTI)-based brain networks in a cohort of 75 healthy old subjects by using graph theory metrics to describe the anatomical networks and connectivity patterns, and network-based statistic (NBS) analysis was used to identify pairs of regions with altered structural connectivity. The NBS analysis revealed a significant network comprising nine distinct fiber bundles linking 10 different brain regions showed altered white matter structures in young-old group compare with middle-aged group (p < .05, family-wise error-corrected). Our results might guide future studies and help to gain a better understanding of brain aging.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Van Rosendale, John
1989-01-01
A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. The authors focus on tensor product array computations, a simple but important class of numerical algorithms. They consider first the problem of programming one-dimensional kernel routines, such as parallel tridiagonal solvers, and then look at how such parallel kernels can be combined to form parallel tensor product algorithms.
Ebadi, Ashkan; Dalboni da Rocha, Josué L.; Nagaraju, Dushyanth B.; Tovar-Moll, Fernanda; Bramati, Ivanei; Coutinho, Gabriel; Sitaram, Ranganatha; Rashidi, Parisa
2017-01-01
The human brain is a complex network of interacting regions. The gray matter regions of brain are interconnected by white matter tracts, together forming one integrative complex network. In this article, we report our investigation about the potential of applying brain connectivity patterns as an aid in diagnosing Alzheimer's disease and Mild Cognitive Impairment (MCI). We performed pattern analysis of graph theoretical measures derived from Diffusion Tensor Imaging (DTI) data representing structural brain networks of 45 subjects, consisting of 15 patients of Alzheimer's disease (AD), 15 patients of MCI, and 15 healthy subjects (CT). We considered pair-wise class combinations of subjects, defining three separate classification tasks, i.e., AD-CT, AD-MCI, and CT-MCI, and used an ensemble classification module to perform the classification tasks. Our ensemble framework with feature selection shows a promising performance with classification accuracy of 83.3% for AD vs. MCI, 80% for AD vs. CT, and 70% for MCI vs. CT. Moreover, our findings suggest that AD can be related to graph measures abnormalities at Brodmann areas in the sensorimotor cortex and piriform cortex. In this way, node redundancy coefficient and load centrality in the primary motor cortex were recognized as good indicators of AD in contrast to MCI. In general, load centrality, betweenness centrality, and closeness centrality were found to be the most relevant network measures, as they were the top identified features at different nodes. The present study can be regarded as a “proof of concept” about a procedure for the classification of MRI markers between AD dementia, MCI, and normal old individuals, due to the small and not well-defined groups of AD and MCI patients. Future studies with larger samples of subjects and more sophisticated patient exclusion criteria are necessary toward the development of a more precise technique for clinical diagnosis. PMID:28293162
Bimodule structure of the mixed tensor product over Uq sℓ (2 | 1) and quantum walled Brauer algebra
NASA Astrophysics Data System (ADS)
Bulgakova, D. V.; Kiselev, A. M.; Tipunin, I. Yu.
2018-03-01
We study a mixed tensor product 3⊗m ⊗3 ‾ ⊗ n of the three-dimensional fundamental representations of the Hopf algebra Uq sℓ (2 | 1), whenever q is not a root of unity. Formulas for the decomposition of tensor products of any simple and projective Uq sℓ (2 | 1)-module with the generating modules 3 and 3 ‾ are obtained. The centralizer of Uq sℓ (2 | 1) on the mixed tensor product is calculated. It is shown to be the quotient Xm,n of the quantum walled Brauer algebra qw Bm,n. The structure of projective modules over Xm,n is written down explicitly. It is known that the walled Brauer algebras form an infinite tower. We have calculated the corresponding restriction functors on simple and projective modules over Xm,n. This result forms a crucial step in decomposition of the mixed tensor product as a bimodule over Xm,n ⊠Uq sℓ (2 | 1). We give an explicit bimodule structure for all m , n.
Tensor Algebra Library for NVidia Graphics Processing Units
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liakh, Dmitry
This is a general purpose math library implementing basic tensor algebra operations on NVidia GPU accelerators. This software is a tensor algebra library that can perform basic tensor algebra operations, including tensor contractions, tensor products, tensor additions, etc., on NVidia GPU accelerators, asynchronously with respect to the CPU host. It supports a simultaneous use of multiple NVidia GPUs. Each asynchronous API function returns a handle which can later be used for querying the completion of the corresponding tensor algebra operation on a specific GPU. The tensors participating in a particular tensor operation are assumed to be stored in local RAMmore » of a node or GPU RAM. The main research area where this library can be utilized is the quantum many-body theory (e.g., in electronic structure theory).« less
Effect of microstructural damage on ply stresses in laminated composites
NASA Technical Reports Server (NTRS)
Allen, D. H.; Nottorf, E. W.; Harris, C. E.
1988-01-01
The mechanisms involved in damage and failure of laminated orthotropic composites are investigated theoretically. The continuum model developed accounts for both matrix cracks and interply delamination using second-order tensor-valued internal-state variables based on the locally averaged microcrack dynamics. The derivation of the model is given in detail, and numerical results for sample problems are presented in extensive graphs and tables. The model is shown to be effective in predicting stresses at the ply level, and significant damage-induced decreases in laminate stress states are found.
Graphical tensor product reduction scheme for the Lie algebras so(5) = sp(2) , su(3) , and g(2)
NASA Astrophysics Data System (ADS)
Vlasii, N. D.; von Rütte, F.; Wiese, U.-J.
2016-08-01
We develop in detail a graphical tensor product reduction scheme, first described by Antoine and Speiser, for the simple rank 2 Lie algebras so(5) = sp(2) , su(3) , and g(2) . This leads to an efficient practical method to reduce tensor products of irreducible representations into sums of such representations. For this purpose, the 2-dimensional weight diagram of a given representation is placed in a ;landscape; of irreducible representations. We provide both the landscapes and the weight diagrams for a large number of representations for the three simple rank 2 Lie algebras. We also apply the algebraic ;girdle; method, which is much less efficient for calculations by hand for moderately large representations. Computer code for reducing tensor products, based on the graphical method, has been developed as well and is available from the authors upon request.
On squares of representations of compact Lie algebras
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zeier, Robert, E-mail: robert.zeier@ch.tum.de; Zimborás, Zoltán, E-mail: zimboras@gmail.com
We study how tensor products of representations decompose when restricted from a compact Lie algebra to one of its subalgebras. In particular, we are interested in tensor squares which are tensor products of a representation with itself. We show in a classification-free manner that the sum of multiplicities and the sum of squares of multiplicities in the corresponding decomposition of a tensor square into irreducible representations has to strictly grow when restricted from a compact semisimple Lie algebra to a proper subalgebra. For this purpose, relevant details on tensor products of representations are compiled from the literature. Since the summore » of squares of multiplicities is equal to the dimension of the commutant of the tensor-square representation, it can be determined by linear-algebra computations in a scenario where an a priori unknown Lie algebra is given by a set of generators which might not be a linear basis. Hence, our results offer a test to decide if a subalgebra of a compact semisimple Lie algebra is a proper one without calculating the relevant Lie closures, which can be naturally applied in the field of controlled quantum systems.« less
Production of a tensor glueball in the reaction γγ → G2π0 at large momentum transfer
NASA Astrophysics Data System (ADS)
Kivel, N.; Vanderhaeghen, M.
2018-06-01
We study the production of a tensor glueball in the reaction γγ →G2π0. We compute the cross section at higher momentum transfer using the collinear factorisation approach. We find that for a value of the tensor gluon coupling of fgT ∼ 100 MeV, the cross section can be measured in the near future by the Belle II experiment.
3j Symbols: To Normalize or Not to Normalize?
ERIC Educational Resources Information Center
van Veenendaal, Michel
2011-01-01
The systematic use of alternative normalization constants for 3j symbols can lead to a more natural expression of quantities, such as vector products and spherical tensor operators. The redefined coupling constants directly equate tensor products to the inner and outer products without any additional square roots. The approach is extended to…
Kocevar, Gabriel; Stamile, Claudio; Hannoun, Salem; Cotton, François; Vukusic, Sandra; Durand-Dubief, Françoise; Sappey-Marinier, Dominique
2016-01-01
Purpose: In this work, we introduce a method to classify Multiple Sclerosis (MS) patients into four clinical profiles using structural connectivity information. For the first time, we try to solve this question in a fully automated way using a computer-based method. The main goal is to show how the combination of graph-derived metrics with machine learning techniques constitutes a powerful tool for a better characterization and classification of MS clinical profiles. Materials and Methods: Sixty-four MS patients [12 Clinical Isolated Syndrome (CIS), 24 Relapsing Remitting (RR), 24 Secondary Progressive (SP), and 17 Primary Progressive (PP)] along with 26 healthy controls (HC) underwent MR examination. T1 and diffusion tensor imaging (DTI) were used to obtain structural connectivity matrices for each subject. Global graph metrics, such as density and modularity, were estimated and compared between subjects' groups. These metrics were further used to classify patients using tuned Support Vector Machine (SVM) combined with Radial Basic Function (RBF) kernel. Results: When comparing MS patients to HC subjects, a greater assortativity, transitivity, and characteristic path length as well as a lower global efficiency were found. Using all graph metrics, the best F -Measures (91.8, 91.8, 75.6, and 70.6%) were obtained for binary (HC-CIS, CIS-RR, RR-PP) and multi-class (CIS-RR-SP) classification tasks, respectively. When using only one graph metric, the best F -Measures (83.6, 88.9, and 70.7%) were achieved for modularity with previous binary classification tasks. Conclusion: Based on a simple DTI acquisition associated with structural brain connectivity analysis, this automatic method allowed an accurate classification of different MS patients' clinical profiles.
Alternative Fuels Data Center: Maps and Data
Fuel Standard Volumes by Year Generated_thumb20150904-8240-13hgnxh Last update August 2012 View Graph product or destination Last update August 2015 View Graph Graph Download Data Custom_thumb U.S. Ethanol , from 1866-2014 Last update August 2015 View Graph Graph Download Data Generated_thumb20160920-21993
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
2018-03-20
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Greene, Samuel M; Batista, Victor S
2017-09-12
We introduce the "tensor-train split-operator Fourier transform" (TT-SOFT) method for simulations of multidimensional nonadiabatic quantum dynamics. TT-SOFT is essentially the grid-based SOFT method implemented in dynamically adaptive tensor-train representations. In the same spirit of all matrix product states, the tensor-train format enables the representation, propagation, and computation of observables of multidimensional wave functions in terms of the grid-based wavepacket tensor components, bypassing the need of actually computing the wave function in its full-rank tensor product grid space. We demonstrate the accuracy and efficiency of the TT-SOFT method as applied to propagation of 24-dimensional wave packets, describing the S 1 /S 2 interconversion dynamics of pyrazine after UV photoexcitation to the S 2 state. Our results show that the TT-SOFT method is a powerful computational approach for simulations of quantum dynamics of polyatomic systems since it avoids the exponential scaling problem of full-rank grid-based representations.
Compressed sparse tensor based quadrature for vibrational quantum mechanics integrals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rai, Prashant; Sargsyan, Khachik; Najm, Habib N.
A new method for fast evaluation of high dimensional integrals arising in quantum mechanics is proposed. Here, the method is based on sparse approximation of a high dimensional function followed by a low-rank compression. In the first step, we interpret the high dimensional integrand as a tensor in a suitable tensor product space and determine its entries by a compressed sensing based algorithm using only a few function evaluations. Secondly, we implement a rank reduction strategy to compress this tensor in a suitable low-rank tensor format using standard tensor compression tools. This allows representing a high dimensional integrand function asmore » a small sum of products of low dimensional functions. Finally, a low dimensional Gauss–Hermite quadrature rule is used to integrate this low-rank representation, thus alleviating the curse of dimensionality. Finally, numerical tests on synthetic functions, as well as on energy correction integrals for water and formaldehyde molecules demonstrate the efficiency of this method using very few function evaluations as compared to other integration strategies.« less
Tensor Factorization for Low-Rank Tensor Completion.
Zhou, Pan; Lu, Canyi; Lin, Zhouchen; Zhang, Chao
2018-03-01
Recently, a tensor nuclear norm (TNN) based method was proposed to solve the tensor completion problem, which has achieved state-of-the-art performance on image and video inpainting tasks. However, it requires computing tensor singular value decomposition (t-SVD), which costs much computation and thus cannot efficiently handle tensor data, due to its natural large scale. Motivated by TNN, we propose a novel low-rank tensor factorization method for efficiently solving the 3-way tensor completion problem. Our method preserves the low-rank structure of a tensor by factorizing it into the product of two tensors of smaller sizes. In the optimization process, our method only needs to update two smaller tensors, which can be more efficiently conducted than computing t-SVD. Furthermore, we prove that the proposed alternating minimization algorithm can converge to a Karush-Kuhn-Tucker point. Experimental results on the synthetic data recovery, image and video inpainting tasks clearly demonstrate the superior performance and efficiency of our developed method over state-of-the-arts including the TNN and matricization methods.
Group field theories for all loop quantum gravity
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Ryan, James P.; Thürigen, Johannes
2015-02-01
Group field theories represent a second quantized reformulation of the loop quantum gravity state space and a completion of the spin foam formalism. States of the canonical theory, in the traditional continuum setting, have support on graphs of arbitrary valence. On the other hand, group field theories have usually been defined in a simplicial context, thus dealing with a restricted set of graphs. In this paper, we generalize the combinatorics of group field theories to cover all the loop quantum gravity state space. As an explicit example, we describe the group field theory formulation of the KKL spin foam model, as well as a particular modified version. We show that the use of tensor model tools allows for the most effective construction. In order to clarify the mathematical basis of our construction and of the formalisms with which we deal, we also give an exhaustive description of the combinatorial structures entering spin foam models and group field theories, both at the level of the boundary states and of the quantum amplitudes.
A Tensor Product Formulation of Strassen's Matrix Multiplication Algorithm with Memory Reduction
Kumar, B.; Huang, C. -H.; Sadayappan, P.; ...
1995-01-01
In this article, we present a program generation strategy of Strassen's matrix multiplication algorithm using a programming methodology based on tensor product formulas. In this methodology, block recursive programs such as the fast Fourier Transforms and Strassen's matrix multiplication algorithm are expressed as algebraic formulas involving tensor products and other matrix operations. Such formulas can be systematically translated to high-performance parallel/vector codes for various architectures. In this article, we present a nonrecursive implementation of Strassen's algorithm for shared memory vector processors such as the Cray Y-MP. A previous implementation of Strassen's algorithm synthesized from tensor product formulas required working storagemore » of size O(7 n ) for multiplying 2 n × 2 n matrices. We present a modified formulation in which the working storage requirement is reduced to O(4 n ). The modified formulation exhibits sufficient parallelism for efficient implementation on a shared memory multiprocessor. Performance results on a Cray Y-MP8/64 are presented.« less
Hand-waving and interpretive dance: an introductory course on tensor networks
NASA Astrophysics Data System (ADS)
Bridgeman, Jacob C.; Chubb, Christopher T.
2017-06-01
The curse of dimensionality associated with the Hilbert space of spin systems provides a significant obstruction to the study of condensed matter systems. Tensor networks have proven an important tool in attempting to overcome this difficulty in both the numerical and analytic regimes. These notes form the basis for a seven lecture course, introducing the basics of a range of common tensor networks and algorithms. In particular, we cover: introductory tensor network notation, applications to quantum information, basic properties of matrix product states, a classification of quantum phases using tensor networks, algorithms for finding matrix product states, basic properties of projected entangled pair states, and multiscale entanglement renormalisation ansatz states. The lectures are intended to be generally accessible, although the relevance of many of the examples may be lost on students without a background in many-body physics/quantum information. For each lecture, several problems are given, with worked solutions in an ancillary file.
An introduction to tensor calculus, relativity and cosmology /3rd edition/
NASA Astrophysics Data System (ADS)
Lawden, D. F.
This textbook introduction to the principles of special relativity proceeds within the context of cartesian tensors. Newton's laws of motion are reviewed, as are the Lorentz transformations, Minkowski space-time, and the Fitzgerald contraction. Orthogonal transformations are described, and invariants, gradients, tensor derivatives, contraction, scalar products, divergence, pseudotensors, vector products, and curl are defined. Special relativity mechanics are explored in terms of mass, momentum, the force vector, the Lorentz transformation equations for force, calculations for photons and neutrinos, the development of the Lagrange and Hamilton equations, and the energy-momentum tensor. Electrodynamics is investigated, together with general tensor calculus and Riemmanian space. The General Theory of Relativity is presented, along with applications to astrophysical phenomena such as black holes and gravitational waves. Finally, analytical discussions of cosmological problems are reviewed, particularly Einstein, de Sitter, and Friedmann universes, redshifts, event horizons, and the redshift.
Sketch Matching on Topology Product Graph.
Liang, Shuang; Luo, Jun; Liu, Wenyin; Wei, Yichen
2015-08-01
Sketch matching is the fundamental problem in sketch based interfaces. After years of study, it remains challenging when there exists large irregularity and variations in the hand drawn sketch shapes. While most existing works exploit topology relations and graph representations for this problem, they are usually limited by the coarse topology exploration and heuristic (thus suboptimal) similarity metrics between graphs. We present a new sketch matching method with two novel contributions. We introduce a comprehensive definition of topology relations, which results in a rich and informative graph representation of sketches. For graph matching, we propose topology product graph that retains the full correspondence for matching two graphs. Based on it, we derive an intuitive sketch similarity metric whose exact solution is easy to compute. In addition, the graph representation and new metric naturally support partial matching, an important practical problem that received less attention in the literature. Extensive experimental results on a real challenging dataset and the superior performance of our method show that it outperforms the state-of-the-art.
2015-01-01
We study the tree-tensor-network-state (TTNS) method with variable tensor orders for quantum chemistry. TTNS is a variational method to efficiently approximate complete active space (CAS) configuration interaction (CI) wave functions in a tensor product form. TTNS can be considered as a higher order generalization of the matrix product state (MPS) method. The MPS wave function is formulated as products of matrices in a multiparticle basis spanning a truncated Hilbert space of the original CAS-CI problem. These matrices belong to active orbitals organized in a one-dimensional array, while tensors in TTNS are defined upon a tree-like arrangement of the same orbitals. The tree-structure is advantageous since the distance between two arbitrary orbitals in the tree scales only logarithmically with the number of orbitals N, whereas the scaling is linear in the MPS array. It is found to be beneficial from the computational costs point of view to keep strongly correlated orbitals in close vicinity in both arrangements; therefore, the TTNS ansatz is better suited for multireference problems with numerous highly correlated orbitals. To exploit the advantages of TTNS a novel algorithm is designed to optimize the tree tensor network topology based on quantum information theory and entanglement. The superior performance of the TTNS method is illustrated on the ionic-neutral avoided crossing of LiF. It is also shown that the avoided crossing of LiF can be localized using only ground state properties, namely one-orbital entanglement. PMID:25844072
NASA Astrophysics Data System (ADS)
Poya, Roman; Gil, Antonio J.; Ortigosa, Rogelio
2017-07-01
The paper presents aspects of implementation of a new high performance tensor contraction framework for the numerical analysis of coupled and multi-physics problems on streaming architectures. In addition to explicit SIMD instructions and smart expression templates, the framework introduces domain specific constructs for the tensor cross product and its associated algebra recently rediscovered by Bonet et al. (2015, 2016) in the context of solid mechanics. The two key ingredients of the presented expression template engine are as follows. First, the capability to mathematically transform complex chains of operations to simpler equivalent expressions, while potentially avoiding routes with higher levels of computational complexity and, second, to perform a compile time depth-first or breadth-first search to find the optimal contraction indices of a large tensor network in order to minimise the number of floating point operations. For optimisations of tensor contraction such as loop transformation, loop fusion and data locality optimisations, the framework relies heavily on compile time technologies rather than source-to-source translation or JIT techniques. Every aspect of the framework is examined through relevant performance benchmarks, including the impact of data parallelism on the performance of isomorphic and nonisomorphic tensor products, the FLOP and memory I/O optimality in the evaluation of tensor networks, the compilation cost and memory footprint of the framework and the performance of tensor cross product kernels. The framework is then applied to finite element analysis of coupled electro-mechanical problems to assess the speed-ups achieved in kernel-based numerical integration of complex electroelastic energy functionals. In this context, domain-aware expression templates combined with SIMD instructions are shown to provide a significant speed-up over the classical low-level style programming techniques.
A Simple Method for Calculating Clebsch-Gordan Coefficients
ERIC Educational Resources Information Center
Klink, W. H.; Wickramasekara, S.
2010-01-01
This paper presents a simple method for calculating Clebsch-Gordan coefficients for the tensor product of two unitary irreducible representations (UIRs) of the rotation group. The method also works for multiplicity-free irreducible representations appearing in the tensor product of any number of UIRs of the rotation group. The generalization to…
NASA Astrophysics Data System (ADS)
Tutyshkin, Nikolai D.; Lofink, Paul; Müller, Wolfgang H.; Wille, Ralf; Stahn, Oliver
2017-01-01
On the basis of the physical concepts of void formation, nucleation, and growth, generalized constitutive equations are formulated for a tensorial model of plastic damage in metals based on three invariants. The multiplicative decomposition of the metric transformation tensor and a thermodynamically consistent formulation of constitutive relations leads to a symmetric second-order damage tensor with a clear physical meaning. Its first invariant determines the damage related to plastic dilatation of the material due to growth of the voids. The second invariant of the deviatoric damage tensor is related to the change in void shape. The third invariant of the deviatoric tensor describes the impact of the stress state on damage (Lode angle), including the effect of rotating the principal axes of the stress tensor (Lode angle change). The introduction of three measures with related physical meaning allows for the description of kinetic processes of strain-induced damage with an equivalent parameter in a three-dimensional vector space, including the critical condition of ductile failure. Calculations were performed by using experimentally determined material functions for plastic dilatation and deviatoric strain at the mesoscale, as well as three-dimensional graphs for plastic damage of steel DC01. The constitutive parameter was determined from tests in tension, compression, and shear by using scanning electron microscopy, which allowed to vary the Lode angle over the full range of its values [InlineEquation not available: see fulltext.]. In order to construct the three-dimensional plastic damage curve for a range of triaxiality parameters -1 ≤ ST ≤ 1 and of Lode angles [InlineEquation not available: see fulltext.], we used our own, as well as systematized published experimental data. A comparison of calculations shows a significant effect of the third invariant (Lode angle) on equivalent damage. The measure of plastic damage, based on three invariants, can be useful for assessing the quality of metal mesostructure produced during metal forming processes. In many processes of metal sheet forming the material experiences, a non-proportional loading accompanied by rotating the principal axes of the stress tensor and a corresponding change of Lode angle.
Distance Domination Number of Graphs Resulting from Edge Comb Product
NASA Astrophysics Data System (ADS)
Slamin; Dafik; Angger Waspodo, Gembong
2018-05-01
Let G be a simple, finite and connected graph with a vertex-set V (G) and an edge-set E(G). For an integer 1 ≤ k ≤ diam (G), a distance k-dominating set of a connected graph G is a set S of vertices of G such that every vertex of V (G)\\S is at distance at most k from some vertex of S. The k-domination number of G, denoted by γk (G), is the minimum cardinality of a k-dominating set of G. In this paper, we determine the exact value of k-domination number of graphs resulting from an edge comb product of two graphs G 1 and G 2, where G 1 is a wheel, a friendship graph, or a triangular book and G 2 is a cycle.
Tudela, Raúl; Muñoz-Moreno, Emma; López-Gil, Xavier; Soria, Guadalupe
2017-01-01
Diffusion-weighted imaging (DWI) quantifies water molecule diffusion within tissues and is becoming an increasingly used technique. However, it is very challenging as correct quantification depends on many different factors, ranging from acquisition parameters to a long pipeline of image processing. In this work, we investigated the influence of voxel geometry on diffusion analysis, comparing different acquisition orientations as well as isometric and anisometric voxels. Diffusion-weighted images of one rat brain were acquired with four different voxel geometries (one isometric and three anisometric in different directions) and three different encoding orientations (coronal, axial and sagittal). Diffusion tensor scalar measurements, tractography and the brain structural connectome were analyzed for each of the 12 acquisitions. The acquisition direction with respect to the main magnetic field orientation affected the diffusion results. When the acquisition slice-encoding direction was not aligned with the main magnetic field, there were more artifacts and a lower signal-to-noise ratio that led to less anisotropic tensors (lower fractional anisotropic values), producing poorer quality results. The use of anisometric voxels generated statistically significant differences in the values of diffusion metrics in specific regions. It also elicited differences in tract reconstruction and in different graph metric values describing the brain networks. Our results highlight the importance of taking into account the geometric aspects of acquisitions, especially when comparing diffusion data acquired using different geometries.
Progress on a generalized coordinates tensor product finite element 3DPNS algorithm for subsonic
NASA Technical Reports Server (NTRS)
Baker, A. J.; Orzechowski, J. A.
1983-01-01
A generalized coordinates form of the penalty finite element algorithm for the 3-dimensional parabolic Navier-Stokes equations for turbulent subsonic flows was derived. This algorithm formulation requires only three distinct hypermatrices and is applicable using any boundary fitted coordinate transformation procedure. The tensor matrix product approximation to the Jacobian of the Newton linear algebra matrix statement was also derived. Tne Newton algorithm was restructured to replace large sparse matrix solution procedures with grid sweeping using alpha-block tridiagonal matrices, where alpha equals the number of dependent variables. Numerical experiments were conducted and the resultant data gives guidance on potentially preferred tensor product constructions for the penalty finite element 3DPNS algorithm.
Parallel language constructs for tensor product computations on loosely coupled architectures
NASA Technical Reports Server (NTRS)
Mehrotra, Piyush; Vanrosendale, John
1989-01-01
Distributed memory architectures offer high levels of performance and flexibility, but have proven awkard to program. Current languages for nonshared memory architectures provide a relatively low level programming environment, and are poorly suited to modular programming, and to the construction of libraries. A set of language primitives designed to allow the specification of parallel numerical algorithms at a higher level is described. Tensor product array computations are focused on along with a simple but important class of numerical algorithms. The problem of programming 1-D kernal routines is focused on first, such as parallel tridiagonal solvers, and then how such parallel kernels can be combined to form parallel tensor product algorithms is examined.
Integrative Analysis of Many Weighted Co-Expression Networks Using Tensor Computation
Li, Wenyuan; Liu, Chun-Chi; Zhang, Tong; Li, Haifeng; Waterman, Michael S.; Zhou, Xianghong Jasmine
2011-01-01
The rapid accumulation of biological networks poses new challenges and calls for powerful integrative analysis tools. Most existing methods capable of simultaneously analyzing a large number of networks were primarily designed for unweighted networks, and cannot easily be extended to weighted networks. However, it is known that transforming weighted into unweighted networks by dichotomizing the edges of weighted networks with a threshold generally leads to information loss. We have developed a novel, tensor-based computational framework for mining recurrent heavy subgraphs in a large set of massive weighted networks. Specifically, we formulate the recurrent heavy subgraph identification problem as a heavy 3D subtensor discovery problem with sparse constraints. We describe an effective approach to solving this problem by designing a multi-stage, convex relaxation protocol, and a non-uniform edge sampling technique. We applied our method to 130 co-expression networks, and identified 11,394 recurrent heavy subgraphs, grouped into 2,810 families. We demonstrated that the identified subgraphs represent meaningful biological modules by validating against a large set of compiled biological knowledge bases. We also showed that the likelihood for a heavy subgraph to be meaningful increases significantly with its recurrence in multiple networks, highlighting the importance of the integrative approach to biological network analysis. Moreover, our approach based on weighted graphs detects many patterns that would be overlooked using unweighted graphs. In addition, we identified a large number of modules that occur predominately under specific phenotypes. This analysis resulted in a genome-wide mapping of gene network modules onto the phenome. Finally, by comparing module activities across many datasets, we discovered high-order dynamic cooperativeness in protein complex networks and transcriptional regulatory networks. PMID:21698123
Cohomologie des Groupes Localement Compacts et Produits Tensoriels Continus de Representations
ERIC Educational Resources Information Center
Guichardet, A.
1976-01-01
Contains few and sometimes incomplete proofs on continuous tensor products of Hilbert spaces and of group representations, and on the irreducibility of the latter. Theory of continuous tensor products of Hilbert Spaces is closely related to that of conditionally positive definite functions; it relies on the technique of symmetric Hilbert spaces,…
Hegarty, Peter; Lemieux, Anthony F; McQueen, Grant
2010-03-01
Graphs seem to connote facts more than words or tables do. Consequently, they seem unlikely places to spot implicit sexism at work. Yet, in 6 studies (N = 741), women and men constructed (Study 1) and recalled (Study 2) gender difference graphs with men's data first, and graphed powerful groups (Study 3) and individuals (Study 4) ahead of weaker ones. Participants who interpreted graph order as evidence of author "bias" inferred that the author graphed his or her own gender group first (Study 5). Women's, but not men's, preferences to graph men first were mitigated when participants graphed a difference between themselves and an opposite-sex friend prior to graphing gender differences (Study 6). Graph production and comprehension are affected by beliefs and suppositions about the groups represented in graphs to a greater degree than cognitive models of graph comprehension or realist models of scientific thinking have yet acknowledged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gade, R. M.
2013-01-15
Four tensor products of evaluation modules of the quantum affine algebra U{sub q}{sup Prime }sl-caret(2) obtained from the negative and positive series, the complementary and the strange series representations are investigated. Linear operators R(z) satisfying the intertwining property on finite linear combinations of the canonical basis elements of the tensor products are described in terms of two sets of infinite sums {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} and {l_brace}{tau}{sup (r,t)}{r_brace}{sub r,t Element-Of Z{sub {>=}{sub 0}}} involving big q{sup 2}-Jacobi functions or related nonterminating basic hypergeometric series. Inhomogeneous recurrence relations can be derived for both sets. Evaluations of the simplestmore » sums provide the corresponding initial conditions. For the first set of sums the relations entail a big q{sup 2}-Jacobi function transform pair. An integral decomposition is obtained for the sum {tau}{sup (r,t)}. A partial description of the relation between the decompositions of the tensor products with respect to U{sub q}sl(2) or with respect to its complement in U{sub q}{sup Prime }sl-caret(2) can be formulated in terms of Askey-Wilson function transforms. For a particular combination of two tensor products, the occurrence of proper U{sub q}{sup Prime }sl-caret(2)-submodules is discussed.« less
Subgraph augmented non-negative tensor factorization (SANTF) for modeling clinical narrative text
Xin, Yu; Hochberg, Ephraim; Joshi, Rohit; Uzuner, Ozlem; Szolovits, Peter
2015-01-01
Objective Extracting medical knowledge from electronic medical records requires automated approaches to combat scalability limitations and selection biases. However, existing machine learning approaches are often regarded by clinicians as black boxes. Moreover, training data for these automated approaches at often sparsely annotated at best. The authors target unsupervised learning for modeling clinical narrative text, aiming at improving both accuracy and interpretability. Methods The authors introduce a novel framework named subgraph augmented non-negative tensor factorization (SANTF). In addition to relying on atomic features (e.g., words in clinical narrative text), SANTF automatically mines higher-order features (e.g., relations of lymphoid cells expressing antigens) from clinical narrative text by converting sentences into a graph representation and identifying important subgraphs. The authors compose a tensor using patients, higher-order features, and atomic features as its respective modes. We then apply non-negative tensor factorization to cluster patients, and simultaneously identify latent groups of higher-order features that link to patient clusters, as in clinical guidelines where a panel of immunophenotypic features and laboratory results are used to specify diagnostic criteria. Results and Conclusion SANTF demonstrated over 10% improvement in averaged F-measure on patient clustering compared to widely used non-negative matrix factorization (NMF) and k-means clustering methods. Multiple baselines were established by modeling patient data using patient-by-features matrices with different feature configurations and then performing NMF or k-means to cluster patients. Feature analysis identified latent groups of higher-order features that lead to medical insights. We also found that the latent groups of atomic features help to better correlate the latent groups of higher-order features. PMID:25862765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Orús, Román, E-mail: roman.orus@uni-mainz.de
This is a partly non-technical introduction to selected topics on tensor network methods, based on several lectures and introductory seminars given on the subject. It should be a good place for newcomers to get familiarized with some of the key ideas in the field, specially regarding the numerics. After a very general introduction we motivate the concept of tensor network and provide several examples. We then move on to explain some basics about Matrix Product States (MPS) and Projected Entangled Pair States (PEPS). Selected details on some of the associated numerical methods for 1d and 2d quantum lattice systems aremore » also discussed. - Highlights: • A practical introduction to selected aspects of tensor network methods is presented. • We provide analytical examples of MPS and 2d PEPS. • We provide basic aspects on several numerical methods for MPS and 2d PEPS. • We discuss a number of applications of tensor network methods from a broad perspective.« less
On the tidal-energy tensor for two homogeneous coaxial ellipsoids
NASA Astrophysics Data System (ADS)
Caimmi, R.; Secco, L.
2001-10-01
The tidal-energy tensor for two homogeneous and coaxial ellipsoids, one lying completely within the other, is investigated in connection with the tidal action exerted by the outer ellipsoid on the inner one. Making reference to the explicit expression found in a previous paper of ours, it is shown that the generic component of the tidal-energy tensor, (i) may be expressed as the product of the corresponding component of the self-energy tensor related to the inner ellipsoid, by the density ratio, and the shape factor ratio, and (ii) equals the one due to any homogeneous, outer ellipsoid, for which the product of the density and a specified shape factor remains unchanged; in particular, the outer ellipsoid may be similar and similarly placed with respect to the inner one. In addition, an explicit expression for the Clausius-virial tensor is derived. Analogous results for the corresponding scalar quantities are also given. Further attention is paid to the particular case of spheroids.
Disconnection of network hubs and cognitive impairment after traumatic brain injury.
Fagerholm, Erik D; Hellyer, Peter J; Scott, Gregory; Leech, Robert; Sharp, David J
2015-06-01
Traumatic brain injury affects brain connectivity by producing traumatic axonal injury. This disrupts the function of large-scale networks that support cognition. The best way to describe this relationship is unclear, but one elegant approach is to view networks as graphs. Brain regions become nodes in the graph, and white matter tracts the connections. The overall effect of an injury can then be estimated by calculating graph metrics of network structure and function. Here we test which graph metrics best predict the presence of traumatic axonal injury, as well as which are most highly associated with cognitive impairment. A comprehensive range of graph metrics was calculated from structural connectivity measures for 52 patients with traumatic brain injury, 21 of whom had microbleed evidence of traumatic axonal injury, and 25 age-matched controls. White matter connections between 165 grey matter brain regions were defined using tractography, and structural connectivity matrices calculated from skeletonized diffusion tensor imaging data. This technique estimates injury at the centre of tract, but is insensitive to damage at tract edges. Graph metrics were calculated from the resulting connectivity matrices and machine-learning techniques used to select the metrics that best predicted the presence of traumatic brain injury. In addition, we used regularization and variable selection via the elastic net to predict patient behaviour on tests of information processing speed, executive function and associative memory. Support vector machines trained with graph metrics of white matter connectivity matrices from the microbleed group were able to identify patients with a history of traumatic brain injury with 93.4% accuracy, a result robust to different ways of sampling the data. Graph metrics were significantly associated with cognitive performance: information processing speed (R(2) = 0.64), executive function (R(2) = 0.56) and associative memory (R(2) = 0.25). These results were then replicated in a separate group of patients without microbleeds. The most influential graph metrics were betweenness centrality and eigenvector centrality, which provide measures of the extent to which a given brain region connects other regions in the network. Reductions in betweenness centrality and eigenvector centrality were particularly evident within hub regions including the cingulate cortex and caudate. Our results demonstrate that betweenness centrality and eigenvector centrality are reduced within network hubs, due to the impact of traumatic axonal injury on network connections. The dominance of betweenness centrality and eigenvector centrality suggests that cognitive impairment after traumatic brain injury results from the disconnection of network hubs by traumatic axonal injury. © The Author (2015). Published by Oxford University Press on behalf of the Guarantors of Brain.
Relating zeta functions of discrete and quantum graphs
NASA Astrophysics Data System (ADS)
Harrison, Jonathan; Weyand, Tracy
2018-02-01
We write the spectral zeta function of the Laplace operator on an equilateral metric graph in terms of the spectral zeta function of the normalized Laplace operator on the corresponding discrete graph. To do this, we apply a relation between the spectrum of the Laplacian on a discrete graph and that of the Laplacian on an equilateral metric graph. As a by-product, we determine how the multiplicity of eigenvalues of the quantum graph, that are also in the spectrum of the graph with Dirichlet conditions at the vertices, depends on the graph geometry. Finally we apply the result to calculate the vacuum energy and spectral determinant of a complete bipartite graph and compare our results with those for a star graph, a graph in which all vertices are connected to a central vertex by a single edge.
Delineation and geometric modeling of road networks
NASA Astrophysics Data System (ADS)
Poullis, Charalambos; You, Suya
In this work we present a novel vision-based system for automatic detection and extraction of complex road networks from various sensor resources such as aerial photographs, satellite images, and LiDAR. Uniquely, the proposed system is an integrated solution that merges the power of perceptual grouping theory (Gabor filtering, tensor voting) and optimized segmentation techniques (global optimization using graph-cuts) into a unified framework to address the challenging problems of geospatial feature detection and classification. Firstly, the local precision of the Gabor filters is combined with the global context of the tensor voting to produce accurate classification of the geospatial features. In addition, the tensorial representation used for the encoding of the data eliminates the need for any thresholds, therefore removing any data dependencies. Secondly, a novel orientation-based segmentation is presented which incorporates the classification of the perceptual grouping, and results in segmentations with better defined boundaries and continuous linear segments. Finally, a set of gaussian-based filters are applied to automatically extract centerline information (magnitude, width and orientation). This information is then used for creating road segments and transforming them to their polygonal representations.
Intuitive color-based visualization of multimedia content as large graphs
NASA Astrophysics Data System (ADS)
Delest, Maylis; Don, Anthony; Benois-Pineau, Jenny
2004-06-01
Data visualization techniques are penetrating in various technological areas. In the field of multimedia such as information search and retrieval in multimedia archives, or digital media production and post-production, data visualization methodologies based on large graphs give an exciting alternative to conventional storyboard visualization. In this paper we develop a new approach to visualization of multimedia (video) documents based both on large graph clustering and preliminary video segmenting and indexing.
Product shipping information using graceful labeling on undirected tree graph approach
NASA Astrophysics Data System (ADS)
Kuan, Yoong Kooi; Ghani, Ahmad Termimi Ab
2017-08-01
Product shipping information is the related information of an ordered product that ready to be shipped to the foreign customer's company, where the information represents as an irrefutable proof in black and white to the local manufacturer by E-mails. This messy and unordered list of information is stored in E-mail folders by the people incharge, which do not function in collating the information properly. So, in this paper, an algorithm is proposed on how to rearrange the messy information from the sequence of a path graph structure into a concise version of a caterpillar graph with achieving the concept of graceful labeling. The final graceful caterpillar graph consists of the full listed information together with the numbering, which able to assist people get the information fleetly for shipping arrangement procedure.
Online Graph Completion: Multivariate Signal Recovery in Computer Vision.
Kim, Won Hwa; Jalal, Mona; Hwang, Seongjae; Johnson, Sterling C; Singh, Vikas
2017-07-01
The adoption of "human-in-the-loop" paradigms in computer vision and machine learning is leading to various applications where the actual data acquisition (e.g., human supervision) and the underlying inference algorithms are closely interwined. While classical work in active learning provides effective solutions when the learning module involves classification and regression tasks, many practical issues such as partially observed measurements, financial constraints and even additional distributional or structural aspects of the data typically fall outside the scope of this treatment. For instance, with sequential acquisition of partial measurements of data that manifest as a matrix (or tensor), novel strategies for completion (or collaborative filtering) of the remaining entries have only been studied recently. Motivated by vision problems where we seek to annotate a large dataset of images via a crowdsourced platform or alternatively, complement results from a state-of-the-art object detector using human feedback, we study the "completion" problem defined on graphs, where requests for additional measurements must be made sequentially. We design the optimization model in the Fourier domain of the graph describing how ideas based on adaptive submodularity provide algorithms that work well in practice. On a large set of images collected from Imgur, we see promising results on images that are otherwise difficult to categorize. We also show applications to an experimental design problem in neuroimaging.
Non-isolated Resolving Sets of certain Graphs Cartesian Product with a Path
NASA Astrophysics Data System (ADS)
Hasibuan, I. M.; Salman, A. N. M.; Saputro, S. W.
2018-04-01
Let G be a connected, simple, and finite graph. For an ordered subset W = {w 1 , w 2 , · · ·, wk } of vertices in a graph G and a vertex v of G, the metric representation of v with respect to W is the k-vector r(v|W ) = (d(v, w 1), d(v, w 2), · · ·, d(v, wk )). The set W is called a resolving set for G if every vertex of G has a distinct representation. The minimum cardinality of W is called the metric dimension of G, denoted by dim(G). If the induced subgraph < W> has no isolated vertices, then W is called a non-isolated resolving set. The minimum cardinality of non-isolated resolving set of G is called the non-isolated resolving number of G, denoted by nr(G). In this paper, we consider H\\square {P}n that is a graph obtained from Cartesian product between a connected graph H and a path Pn . We determine nr(H\\square {P}n), for some classes of H, including cycles, complete graphs, complete bipartite graphs, and friendship graphs.
Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis
Baydil, Banu; Daley, William P.; Larsen, Melinda; Yener, Bülent
2012-01-01
Pattern formation in developing tissues involves dynamic spatio-temporal changes in cellular organization and subsequent evolution of functional adult structures. Branching morphogenesis is a developmental mechanism by which patterns are generated in many developing organs, which is controlled by underlying molecular pathways. Understanding the relationship between molecular signaling, cellular behavior and resulting morphological change requires quantification and categorization of the cellular behavior. In this study, tissue-level and cellular changes in developing salivary gland in response to disruption of ROCK-mediated signaling by are modeled by building cell-graphs to compute mathematical features capturing structural properties at multiple scales. These features were used to generate multiscale cell-graph signatures of untreated and ROCK signaling disrupted salivary gland organ explants. From confocal images of mouse submandibular salivary gland organ explants in which epithelial and mesenchymal nuclei were marked, a multiscale feature set capturing global structural properties, local structural properties, spectral, and morphological properties of the tissues was derived. Six feature selection algorithms and multiway modeling of the data was performed to identify distinct subsets of cell graph features that can uniquely classify and differentiate between different cell populations. Multiscale cell-graph analysis was most effective in classification of the tissue state. Cellular and tissue organization, as defined by a multiscale subset of cell-graph features, are both quantitatively distinct in epithelial and mesenchymal cell types both in the presence and absence of ROCK inhibitors. Whereas tensor analysis demonstrate that epithelial tissue was affected the most by inhibition of ROCK signaling, significant multiscale changes in mesenchymal tissue organization were identified with this analysis that were not identified in previous biological studies. We here show how to define and calculate a multiscale feature set as an effective computational approach to identify and quantify changes at multiple biological scales and to distinguish between different states in developing tissues. PMID:22403724
Carter, Ned; Holmström, Anne; Simpanen, Monica; Melin, Lennart
1988-01-01
Shoplifting and employee theft constitute a major problem for retailers. Previous research has described techniques for effectively reducing either type of theft but has not addressed the problem of thefts of unspecified origin. In a grocery store we evaluated the effect of identifying for employees frequently stolen products from three groups of items and graphing, twice weekly in the lunchroom, losses for the separate groups. After the products were identified and losses graphed, thefts from the three groups dropped from eight per day to two per day. PMID:16795718
2012-08-01
model appears in cosmic microwave background analysis [10] which solves min A,Y λ 2 trace ( (ABY − X)>C−1(ABY − X) ) + r(Y), subject to A ∈ D (1.5...and “×n” represent outer product and tensor-matrix multiplication, respectively. (The necessary background of tensor is reviewed in Sec. 3) Most
Traumatic brain injury impairs small-world topology
Pandit, Anand S.; Expert, Paul; Lambiotte, Renaud; Bonnelle, Valerie; Leech, Robert; Turkheimer, Federico E.
2013-01-01
Objective: We test the hypothesis that brain networks associated with cognitive function shift away from a “small-world” organization following traumatic brain injury (TBI). Methods: We investigated 20 TBI patients and 21 age-matched controls. Resting-state functional MRI was used to study functional connectivity. Graph theoretical analysis was then applied to partial correlation matrices derived from these data. The presence of white matter damage was quantified using diffusion tensor imaging. Results: Patients showed characteristic cognitive impairments as well as evidence of damage to white matter tracts. Compared to controls, the graph analysis showed reduced overall connectivity, longer average path lengths, and reduced network efficiency. A particular impact of TBI is seen on a major network hub, the posterior cingulate cortex. Taken together, these results confirm that a network critical to cognitive function shows a shift away from small-world characteristics. Conclusions: We provide evidence that key brain networks involved in supporting cognitive function become less small-world in their organization after TBI. This is likely to be the result of diffuse white matter damage, and may be an important factor in producing cognitive impairment after TBI. PMID:23596068
Cosmological singularities in Bakry-Émery spacetimes
NASA Astrophysics Data System (ADS)
Galloway, Gregory J.; Woolgar, Eric
2014-12-01
We consider spacetimes consisting of a manifold with Lorentzian metric and a weight function or scalar field. These spacetimes admit a Bakry-Émery-Ricci tensor which is a natural generalization of the Ricci tensor. We impose an energy condition on the Bakry-Émery-Ricci tensor and obtain singularity theorems of a cosmological type, both for zero and for positive cosmological constant. That is, we find conditions under which every timelike geodesic is incomplete. These conditions are given by 'open' inequalities, so we examine the borderline (equality) cases and show that certain singularities are avoided in these cases only if the geometry is rigid; i.e., if it splits as a Lorentzian product or, for a positive cosmological constant, a warped product, and the weight function is constant along the time direction. Then the product case is future timelike geodesically complete while, in the warped product case, worldlines of certain conformally static observers are complete. Our results answer a question posed by J Case. We then apply our results to the cosmology of scalar-tensor gravitation theories. We focus on the Brans-Dicke family of theories in 4 spacetime dimensions, where we obtain 'Jordan frame' singularity theorems for big bang singularities.
Mears, David; Pollard, Harvey B
2016-06-01
Over the past 15 years, the emerging field of network science has revealed the key features of brain networks, which include small-world topology, the presence of highly connected hubs, and hierarchical modularity. The value of network studies of the brain is underscored by the range of network alterations that have been identified in neurological and psychiatric disorders, including epilepsy, depression, Alzheimer's disease, schizophrenia, and many others. Here we briefly summarize the concepts of graph theory that are used to quantify network properties and describe common experimental approaches for analysis of brain networks of structural and functional connectivity. These range from tract tracing to functional magnetic resonance imaging, diffusion tensor imaging, electroencephalography, and magnetoencephalography. We then summarize the major findings from the application of graph theory to nervous systems ranging from Caenorhabditis elegans to more complex primate brains, including man. Focusing, then, on studies involving the amygdala, a brain region that has attracted intense interest as a center for emotional processing, fear, and motivation, we discuss the features of the amygdala in brain networks for fear conditioning and emotional perception. Finally, to highlight the utility of graph theory for studying dysfunction of the amygdala in mental illness, we review data with regard to changes in the hub properties of the amygdala in brain networks of patients with depression. We suggest that network studies of the human brain may serve to focus attention on regions and connections that act as principal drivers and controllers of brain function in health and disease. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.
Tensor-product preconditioners for higher-order space-time discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Diosady, Laslo T.; Murman, Scott M.
2017-02-01
A space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equations. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high-order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Tensor-Product Preconditioners for Higher-Order Space-Time Discontinuous Galerkin Methods
NASA Technical Reports Server (NTRS)
Diosady, Laslo T.; Murman, Scott M.
2016-01-01
space-time discontinuous-Galerkin spectral-element discretization is presented for direct numerical simulation of the compressible Navier-Stokes equat ions. An efficient solution technique based on a matrix-free Newton-Krylov method is developed in order to overcome the stiffness associated with high solution order. The use of tensor-product basis functions is key to maintaining efficiency at high order. Efficient preconditioning methods are presented which can take advantage of the tensor-product formulation. A diagonalized Alternating-Direction-Implicit (ADI) scheme is extended to the space-time discontinuous Galerkin discretization. A new preconditioner for the compressible Euler/Navier-Stokes equations based on the fast-diagonalization method is also presented. Numerical results demonstrate the effectiveness of these preconditioners for the direct numerical simulation of subsonic turbulent flows.
Graphing trillions of triangles.
Burkhardt, Paul
2017-07-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed.
Orbit-product representation and correction of Gaussian belief propagation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Jason K; Chertkov, Michael; Chernyak, Vladimir
We present a new interpretation of Gaussian belief propagation (GaBP) based on the 'zeta function' representation of the determinant as a product over orbits of a graph. We show that GaBP captures back-tracking orbits of the graph and consider how to correct this estimate by accounting for non-backtracking orbits. We show that the product over non-backtracking orbits may be interpreted as the determinant of the non-backtracking adjacency matrix of the graph with edge weights based on the solution of GaBP. An efficient method is proposed to compute a truncated correction factor including all non-backtracking orbits up to a specified length.
Graph Kernels for Molecular Similarity.
Rupp, Matthias; Schneider, Gisbert
2010-04-12
Molecular similarity measures are important for many cheminformatics applications like ligand-based virtual screening and quantitative structure-property relationships. Graph kernels are formal similarity measures defined directly on graphs, such as the (annotated) molecular structure graph. Graph kernels are positive semi-definite functions, i.e., they correspond to inner products. This property makes them suitable for use with kernel-based machine learning algorithms such as support vector machines and Gaussian processes. We review the major types of kernels between graphs (based on random walks, subgraphs, and optimal assignments, respectively), and discuss their advantages, limitations, and successful applications in cheminformatics. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Shenvi, Neil; van Aggelen, Helen; Yang, Yang; Yang, Weitao; Schwerdtfeger, Christine; Mazziotti, David
2013-08-07
Tensor hypercontraction is a method that allows the representation of a high-rank tensor as a product of lower-rank tensors. In this paper, we show how tensor hypercontraction can be applied to both the electron repulsion integral tensor and the two-particle excitation amplitudes used in the parametric 2-electron reduced density matrix (p2RDM) algorithm. Because only O(r) auxiliary functions are needed in both of these approximations, our overall algorithm can be shown to scale as O(r(4)), where r is the number of single-particle basis functions. We apply our algorithm to several small molecules, hydrogen chains, and alkanes to demonstrate its low formal scaling and practical utility. Provided we use enough auxiliary functions, we obtain accuracy similar to that of the standard p2RDM algorithm, somewhere between that of CCSD and CCSD(T).
On the energy-momentum tensor in Moyal space
Balasin, Herbert; Blaschke, Daniel N.; Gieres, François; ...
2015-06-26
We study the properties of the energy-momentum tensor of gauge fields coupled to matter in non-commutative (Moyal) space. In general, the non-commutativity affects the usual conservation law of the tensor as well as its transformation properties (gauge covariance instead of gauge invariance). It is known that the conservation of the energy-momentum tensor can be achieved by a redefinition involving another starproduct. Furthermore, for a pure gauge theory it is always possible to define a gauge invariant energy-momentum tensor by means of a Wilson line. We show that the latter two procedures are incompatible with each other if couplings of gaugemore » fields to matter fields (scalars or fermions) are considered: The gauge invariant tensor (constructed via Wilson line) does not allow for a redefinition assuring its conservation, and vice-versa the introduction of another star-product does not allow for gauge invariance by means of a Wilson line.« less
Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups
NASA Astrophysics Data System (ADS)
Brannan, Michael; Collins, Benoît
2018-03-01
In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.
Multi-normed spaces based on non-discrete measures and their tensor products
NASA Astrophysics Data System (ADS)
Helemskii, A. Ya.
2018-04-01
Lambert discovered a new type of structures situated, in a sense, between normed spaces and abstract operator spaces. His definition was based on the notion of amplifying a normed space by means of the spaces \\ell_2^n. Later, several mathematicians studied more general structures (`p-multi- normed spaces') introduced by means of the spaces \\ell_p^n, 1≤ p≤∞. We pass from \\ell_p to L_p(X,μ) with an arbitrary measure. This becomes possible in the framework of the non- coordinate approach to the notion of amplification. In the case of a discrete counting measure, this approach is equivalent to the approach in the papers mentioned. Two categories arise. One consists of amplifications by means of an arbitrary normed space, and the other consists of p-convex amplifications by means of L_p(X,μ). Each of them has its own tensor product of objects (the existence of each product is proved by a separate explicit construction). As a final result, we show that the `p-convex' tensor product has an especially transparent form for the minimal L_p-amplifications of L_q-spaces, where q is conjugate to p. Namely, tensoring L_q(Y,ν) and L_q(Z,λ), we obtain L_q(Y× Z, ν×λ).
A Tensor-Product-Kernel Framework for Multiscale Neural Activity Decoding and Control
Li, Lin; Brockmeier, Austin J.; Choi, John S.; Francis, Joseph T.; Sanchez, Justin C.; Príncipe, José C.
2014-01-01
Brain machine interfaces (BMIs) have attracted intense attention as a promising technology for directly interfacing computers or prostheses with the brain's motor and sensory areas, thereby bypassing the body. The availability of multiscale neural recordings including spike trains and local field potentials (LFPs) brings potential opportunities to enhance computational modeling by enriching the characterization of the neural system state. However, heterogeneity on data type (spike timing versus continuous amplitude signals) and spatiotemporal scale complicates the model integration of multiscale neural activity. In this paper, we propose a tensor-product-kernel-based framework to integrate the multiscale activity and exploit the complementary information available in multiscale neural activity. This provides a common mathematical framework for incorporating signals from different domains. The approach is applied to the problem of neural decoding and control. For neural decoding, the framework is able to identify the nonlinear functional relationship between the multiscale neural responses and the stimuli using general purpose kernel adaptive filtering. In a sensory stimulation experiment, the tensor-product-kernel decoder outperforms decoders that use only a single neural data type. In addition, an adaptive inverse controller for delivering electrical microstimulation patterns that utilizes the tensor-product kernel achieves promising results in emulating the responses to natural stimulation. PMID:24829569
Consistent latent position estimation and vertex classification for random dot product graphs.
Sussman, Daniel L; Tang, Minh; Priebe, Carey E
2014-01-01
In this work, we show that using the eigen-decomposition of the adjacency matrix, we can consistently estimate latent positions for random dot product graphs provided the latent positions are i.i.d. from some distribution. If class labels are observed for a number of vertices tending to infinity, then we show that the remaining vertices can be classified with error converging to Bayes optimal using the $(k)$-nearest-neighbors classification rule. We evaluate the proposed methods on simulated data and a graph derived from Wikipedia.
Graphing trillions of triangles
Burkhardt, Paul
2016-01-01
The increasing size of Big Data is often heralded but how data are transformed and represented is also profoundly important to knowledge discovery, and this is exemplified in Big Graph analytics. Much attention has been placed on the scale of the input graph but the product of a graph algorithm can be many times larger than the input. This is true for many graph problems, such as listing all triangles in a graph. Enabling scalable graph exploration for Big Graphs requires new approaches to algorithms, architectures, and visual analytics. A brief tutorial is given to aid the argument for thoughtful representation of data in the context of graph analysis. Then a new algebraic method to reduce the arithmetic operations in counting and listing triangles in graphs is introduced. Additionally, a scalable triangle listing algorithm in the MapReduce model will be presented followed by a description of the experiments with that algorithm that led to the current largest and fastest triangle listing benchmarks to date. Finally, a method for identifying triangles in new visual graph exploration technologies is proposed. PMID:28690426
Random SU(2) invariant tensors
NASA Astrophysics Data System (ADS)
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Killing vector fields in three dimensions: a method to solve massive gravity field equations
NASA Astrophysics Data System (ADS)
Gürses, Metin
2010-10-01
Killing vector fields in three dimensions play an important role in the construction of the related spacetime geometry. In this work we show that when a three-dimensional geometry admits a Killing vector field then the Ricci tensor of the geometry is determined in terms of the Killing vector field and its scalars. In this way we can generate all products and covariant derivatives at any order of the Ricci tensor. Using this property we give ways to solve the field equations of topologically massive gravity (TMG) and new massive gravity (NMG) introduced recently. In particular when the scalars of the Killing vector field (timelike, spacelike and null cases) are constants then all three-dimensional symmetric tensors of the geometry, the Ricci and Einstein tensors, their covariant derivatives at all orders, and their products of all orders are completely determined by the Killing vector field and the metric. Hence, the corresponding three-dimensional metrics are strong candidates for solving all higher derivative gravitational field equations in three dimensions.
Phasic action of the tensor muscle modulates the calling song in cicadas
Fonseca; Hennig
1996-01-01
The effect of tensor muscle contraction on sound production by the tymbal was investigated in three species of cicadas (Tettigetta josei, Tettigetta argentata and Tympanistalna gastrica). All species showed a strict time correlation between the activity of the tymbal motoneurone and the discharge of motor units in the tensor nerve during the calling song. Lesion of the tensor nerve abolished the amplitude modulation of the calling song, but this modulation was restored by electrical stimulation of the tensor nerve or by mechanically pushing the tensor sclerite. Electrical stimulation of the tensor nerve at frequencies higher than 3040 Hz changed the sound amplitude. In Tett. josei and Tett. argentata there was a gradual increase in sound amplitude with increasing frequency of tensor nerve stimulation, while in Tymp. gastrica there was a sudden reduction in sound amplitude at stimulation frequencies higher than 30 Hz. This contrasting effect in Tymp. gastrica was due to a bistable tymbal frame. Changes in sound pulse amplitude were positively correlated with changes in the time lag measured from tymbal motoneurone stimulation to the sound pulse. The tensor muscle acted phasically because electrical stimulation of the tensor nerve during a time window (010 ms) before electrical stimulation of the tymbal motoneurone was most effective in eliciting amplitude modulations. In all species, the tensor muscle action visibly changed the shape of the tymbal. Despite the opposite effects of the tensor muscle on sound pulse amplitude observed between Tettigetta and Tympanistalna species, the tensor muscle of both acts by modulating the shape of the tymbal, which changes the force required for the tymbal muscle to buckle the tymbal.
Method and apparatus for second-rank tensor generation
NASA Technical Reports Server (NTRS)
Liu, Hua-Kuang (Inventor)
1991-01-01
A method and apparatus are disclosed for generation of second-rank tensors using a photorefractive crystal to perform the outer-product between two vectors via four-wave mixing, thereby taking 2n input data to a control n squared output data points. Two orthogonal amplitude modulated coherent vector beams x and y are expanded and then parallel sides of the photorefractive crystal in exact opposition. A beamsplitter is used to direct a coherent pumping beam onto the crystal at an appropriate angle so as to produce a conjugate beam that is the matrix product of the vector beam that propagates in the exact opposite direction from the pumping beam. The conjugate beam thus separated is the tensor output xy (sup T).
Improvement of Accuracy for Background Noise Estimation Method Based on TPE-AE
NASA Astrophysics Data System (ADS)
Itai, Akitoshi; Yasukawa, Hiroshi
This paper proposes a method of a background noise estimation based on the tensor product expansion with a median and a Monte carlo simulation. We have shown that a tensor product expansion with absolute error method is effective to estimate a background noise, however, a background noise might not be estimated by using conventional method properly. In this paper, it is shown that the estimate accuracy can be improved by using proposed methods.
NASA Astrophysics Data System (ADS)
Hiram Moon, Parry; Eberle Spencer, Domina
2005-09-01
Preface; Nomenclature; Historical introduction; Part I. Holors: 1. Index notation; 2. Holor algebra; 3. Gamma products; Part II. Transformations: 4. Tensors; 5. Akinetors; 6. Geometric spaces; Part III. Holor Calculus: 7. The linear connection; 8. The Riemann-Christoffel tensors; Part IV. Space Structure: 9. Non-Riemannian spaces; 10. Riemannian space; 11. Euclidean space; References; Index.
On P2 ⋄ Pn -supermagic labeling of edge corona product of cycle and path graph
NASA Astrophysics Data System (ADS)
Yulianto, R.; Martini, Titin S.
2018-04-01
A simple graph G = (V, E) admits a H-covering, where H is subgraph of G, if every edge in E belongs to a subgraph of G isomorphic to H. Graph G is H-magic if there is a total labeling f:V(G)\\cup E(G)\\to 1,2,\\ldots,|V(G)|+|E(G)|, such that each subgraph {H}{\\prime }=({V}{\\prime },{E}{\\prime }) of G isomorphic to H and satisfying f{({H}{\\prime })}=def{\\sum }\\upsilon \\in {V{\\prime }}f(\\upsilon )+{\\sum }e\\in {E{\\prime }}f(e)=m(f) where m(f) is a constant magic sum. Additionaly, G admits H-supermagic if f(V)=1,2,\\ldots,|V|. The edge corona {C}n \\diamond {P}n of Cn and Pn is defined as the graph obtained by taking one copy of Cn and n copies of Pn , and then joining two end-vertices of the i-th edge of Cn to every vertex in the i-th copy of Pn . This research aim is to find H-supermagic covering on an edge corona product of cycle and path graph {C}n \\diamond {P}n where H is {P}2 \\diamond {P}n. We use k-balanced multiset to solve our reserarch. Here, we find that an edge corona product of cycle and path graph {C}n \\diamond {P}n is {P}2 \\diamond {P}n supermagic for n > 3.
Li, Junning; Jin, Yan; Shi, Yonggang; Dinov, Ivo D.; Wang, Danny J.; Toga, Arthur W.; Thompson, Paul M.
2014-01-01
Human brain connectivity can be studied using graph theory. Many connectivity studies parcellate the brain into regions and count fibres extracted between them. The resulting network analyses require validation of the tractography, as well as region and parameter selection. Here we investigate whole brain connectivity from a different perspective. We propose a mathematical formulation based on studying the eigenvalues of the Laplacian matrix of the diffusion tensor field at the voxel level. This voxelwise matrix has over a million parameters, but we derive the Kirchhoff complexity and eigen-spectrum through elegant mathematical theorems, without heavy computation. We use these novel measures to accurately estimate the voxelwise connectivity in multiple biomedical applications such as Alzheimer’s disease and intelligence prediction. PMID:24505723
NASA Astrophysics Data System (ADS)
Jaušovec, Norbert
2017-07-01
Recently the number of theories trying to explain the brain - cognition - behavior relation has been increased. Promoted on the one hand by the development of sophisticated brain imaging techniques, such as functional magnetic resonance imaging (fMRI) and diffusion tensor imaging (DTI), and on the other, by complex computational models based on chaos and graph theory. But has this really advanced our understanding of the brain-behavior relation beyond Descartes's dualistic mind body division? One could critically argue that replacing the pineal body with extracellular electric fields represented in the electroencephalogram (EEG) as rapid transitional processes (RTS), combined with algebraic topology and dubbed brain topodynamics [1] is just putting lipstick on an outmoded evergreen.
Using Self-Monitoring of Performance with Self-Graphing to Increase Academic Productivity in Math
ERIC Educational Resources Information Center
Wells, Jenny C.; Sheehey, Patricia H.; Sheehey, Michael
2017-01-01
Self-regulation skills have been found to be an important predictor of achievement in mathematics. Teaching a student to regulate his or her behavior during independent math work sessions using self-monitoring of performance with self-graphing focuses him or her on academic performance and results in increases in productivity and math proficiency.…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirdt, J.A.; Brown, D.A., E-mail: dbrown@bnl.gov
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of socialmore » networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.« less
NASA Astrophysics Data System (ADS)
Hirdt, J. A.; Brown, D. A.
2016-01-01
The EXFOR library contains the largest collection of experimental nuclear reaction data available as well as the data's bibliographic information and experimental details. We text-mined the REACTION and MONITOR fields of the ENTRYs in the EXFOR library in order to identify understudied reactions and quantities. Using the results of the text-mining, we created an undirected graph from the EXFOR datasets with each graph node representing a single reaction and quantity and graph links representing the various types of connections between these reactions and quantities. This graph is an abstract representation of the connections in EXFOR, similar to graphs of social networks, authorship networks, etc. We use various graph theoretical tools to identify important yet understudied reactions and quantities in EXFOR. Although we identified a few cross sections relevant for shielding applications and isotope production, mostly we identified charged particle fluence monitor cross sections. As a side effect of this work, we learn that our abstract graph is typical of other real-world graphs.
Graph Drawing Aesthetics-Created by Users, Not Algorithms.
Purchase, H C; Pilcher, C; Plimmer, B
2012-01-01
Prior empirical work on layout aesthetics for graph drawing algorithms has concentrated on the interpretation of existing graph drawings. We report on experiments which focus on the creation and layout of graph drawings: participants were asked to draw graphs based on adjacency lists, and to lay them out "nicely." Two interaction methods were used for creating the drawings: a sketch interface which allows for easy, natural hand movements, and a formal point-and-click interface similar to a typical graph editing system. We find, in common with many other studies, that removing edge crossings is the most significant aesthetic, but also discover that aligning nodes and edges to an underlying grid is important. We observe that the aesthetics favored by participants during creation of a graph drawing are often not evident in the final product and that the participants did not make a clear distinction between the processes of creation and layout. Our results suggest that graph drawing systems should integrate automatic layout with the user's manual editing process, and provide facilities to support grid-based graph creation.
A shortest-path graph kernel for estimating gene product semantic similarity.
Alvarez, Marco A; Qi, Xiaojun; Yan, Changhui
2011-07-29
Existing methods for calculating semantic similarity between gene products using the Gene Ontology (GO) often rely on external resources, which are not part of the ontology. Consequently, changes in these external resources like biased term distribution caused by shifting of hot research topics, will affect the calculation of semantic similarity. One way to avoid this problem is to use semantic methods that are "intrinsic" to the ontology, i.e. independent of external knowledge. We present a shortest-path graph kernel (spgk) method that relies exclusively on the GO and its structure. In spgk, a gene product is represented by an induced subgraph of the GO, which consists of all the GO terms annotating it. Then a shortest-path graph kernel is used to compute the similarity between two graphs. In a comprehensive evaluation using a benchmark dataset, spgk compares favorably with other methods that depend on external resources. Compared with simUI, a method that is also intrinsic to GO, spgk achieves slightly better results on the benchmark dataset. Statistical tests show that the improvement is significant when the resolution and EC similarity correlation coefficient are used to measure the performance, but is insignificant when the Pfam similarity correlation coefficient is used. Spgk uses a graph kernel method in polynomial time to exploit the structure of the GO to calculate semantic similarity between gene products. It provides an alternative to both methods that use external resources and "intrinsic" methods with comparable performance.
Wada, Akihiko; Shizukuishi, Takashi; Kikuta, Junko; Yamada, Haruyasu; Watanabe, Yusuke; Imamura, Yoshiki; Shinozaki, Takahiro; Dezawa, Ko; Haradome, Hiroki; Abe, Osamu
2017-05-01
Burning mouth syndrome (BMS) is a chronic intraoral pain syndrome featuring idiopathic oral pain and burning discomfort despite clinically normal oral mucosa. The etiology of chronic pain syndrome is unclear, but preliminary neuroimaging research has suggested the alteration of volume, metabolism, blood flow, and diffusion at multiple brain regions. According to the neuromatrix theory of Melzack, pain sense is generated in the brain by the network of multiple pain-related brain regions. Therefore, the alteration of pain-related network is also assumed as an etiology of chronic pain. In this study, we investigated the brain network of BMS brain by using probabilistic tractography and graph analysis. Fourteen BMS patients and 14 age-matched healthy controls underwent 1.5T MRI. Structural connectivity was calculated in 83 anatomically defined regions with probabilistic tractography of 60-axis diffusion tensor imaging and 3D T1-weighted imaging. Graph theory network analysis was used to evaluate the brain network at local and global connectivity. In BMS brain, a significant difference of local brain connectivity was recognized at the bilateral rostral anterior cingulate cortex, right medial orbitofrontal cortex, and left pars orbitalis which belong to the medial pain system; however, no significant difference was recognized at the lateral system including the somatic sensory cortex. A strengthened connection of the anterior cingulate cortex and medial prefrontal cortex with the basal ganglia, thalamus, and brain stem was revealed. Structural brain network analysis revealed the alteration of the medial system of the pain-related brain network in chronic pain syndrome.
Influence of tensor interactions on masses and decay widths of dibaryons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pang Hourong; Ping Jialun; Chen Lingzhi
The influence of gluon and Goldstone boson induced tensor interactions on the dibaryon masses and D-wave decay widths has been studied in the quark delocalization, color screening model. The effective S-D wave transition interactions induced by gluon and Goldstone boson exchanges decrease rapidly with increasing strangeness of the channel. The tensor contribution of K and {eta} mesons is negligible in this model. There is no six-quark state in the light flavor world studied so far that can become bound by means of these tensor interactions besides the deuteron. The partial D-wave decay widths of the IJ{sup p}=(1/2)2{sup +}N{omega} state tomore » spin 0 and 1 {lambda}{xi} final states are 12.0 and 21.9 keV, respectively. This is a very narrow dibaryon resonance that might be detectable in those production reactions with rich high strangeness particles through the reconstruction of the vertex mass of the decay product {lambda}{xi} by existing detectors at RHIC and COMPASS at CERN or at JHF in Japan and FAIR in Germany in the future.« less
Iterated reaction graphs: simulating complex Maillard reaction pathways.
Patel, S; Rabone, J; Russell, S; Tissen, J; Klaffke, W
2001-01-01
This study investigates a new method of simulating a complex chemical system including feedback loops and parallel reactions. The practical purpose of this approach is to model the actual reactions that take place in the Maillard process, a set of food browning reactions, in sufficient detail to be able to predict the volatile composition of the Maillard products. The developed framework, called iterated reaction graphs, consists of two main elements: a soup of molecules and a reaction base of Maillard reactions. An iterative process loops through the reaction base, taking reactants from and feeding products back to the soup. This produces a reaction graph, with molecules as nodes and reactions as arcs. The iterated reaction graph is updated and validated by comparing output with the main products found by classical gas-chromatographic/mass spectrometric analysis. To ensure a realistic output and convergence to desired volatiles only, the approach contains a number of novel elements: rate kinetics are treated as reaction probabilities; only a subset of the true chemistry is modeled; and the reactions are blocked into groups.
Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography
Liu, Yaou; Duan, Yunyun; Li, Kuncheng
2015-01-01
The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain. PMID:26539535
Vector- and tensor-meson production and the Pomeron-f identity hypothesis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, S.T.
Within the context of a model introduced some time ago, the differential and total production cross sections for vector and tensor mesons are shown to be compatible with the hypothesis that the Pomeron and f are a single Regge trajectory. The model incorporates both cylinder and flavoring renormalizations of the Pomeron-f trajectory. The processes K/sup +- /p..-->..K/sup */(892)/sup +- /p, K/sup +- /p ..-->..K/sub 2//sup */(1430)/sup +- /p, and ..pi../sup +- /p..-->..A/sub 2/(1320)/sup +- /p are analyzed in some detail.
Atomic-batched tensor decomposed two-electron repulsion integrals
NASA Astrophysics Data System (ADS)
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-01
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
Atomic-batched tensor decomposed two-electron repulsion integrals.
Schmitz, Gunnar; Madsen, Niels Kristian; Christiansen, Ove
2017-04-07
We present a new integral format for 4-index electron repulsion integrals, in which several strategies like the Resolution-of-the-Identity (RI) approximation and other more general tensor-decomposition techniques are combined with an atomic batching scheme. The 3-index RI integral tensor is divided into sub-tensors defined by atom pairs on which we perform an accelerated decomposition to the canonical product (CP) format. In a first step, the RI integrals are decomposed to a high-rank CP-like format by repeated singular value decompositions followed by a rank reduction, which uses a Tucker decomposition as an intermediate step to lower the prefactor of the algorithm. After decomposing the RI sub-tensors (within the Coulomb metric), they can be reassembled to the full decomposed tensor (RC approach) or the atomic batched format can be maintained (ABC approach). In the first case, the integrals are very similar to the well-known tensor hypercontraction integral format, which gained some attraction in recent years since it allows for quartic scaling implementations of MP2 and some coupled cluster methods. On the MP2 level, the RC and ABC approaches are compared concerning efficiency and storage requirements. Furthermore, the overall accuracy of this approach is assessed. Initial test calculations show a good accuracy and that it is not limited to small systems.
Parameterization of subgrid-scale stress by the velocity gradient tensor
NASA Technical Reports Server (NTRS)
Lund, Thomas S.; Novikov, E. A.
1993-01-01
The objective of this work is to construct and evaluate subgrid-scale models that depend on both the strain rate and the vorticity. This will be accomplished by first assuming that the subgrid-scale stress is a function of the strain and rotation rate tensors. Extensions of the Caley-Hamilton theorem can then be used to write the assumed functional dependence explicitly in the form of a tensor polynomial involving products of the strain and rotation rates. Finally, use of this explicit expression as a subgrid-scale model will be evaluated using direct numerical simulation data for homogeneous, isotropic turbulence.
Killing-Yano forms and Killing tensors on a warped space
NASA Astrophysics Data System (ADS)
Krtouš, Pavel; KubizÅák, David; Kolář, Ivan
2016-01-01
We formulate several criteria under which the symmetries associated with the Killing and Killing-Yano tensors on the base space can be lifted to the symmetries of the full warped geometry. The procedure is explicitly illustrated on several examples, providing new prototypes of spacetimes admitting such tensors. In particular, we study a warped product of two Kerr-NUT-(A)dS spacetimes and show that it gives rise to a new class of highly symmetric vacuum (with a cosmological constant) black hole solutions that inherit many of the properties of the Kerr-NUT-(A)dS geometry.
Tensor numerical methods in quantum chemistry: from Hartree-Fock to excitation energies.
Khoromskaia, Venera; Khoromskij, Boris N
2015-12-21
We resume the recent successes of the grid-based tensor numerical methods and discuss their prospects in real-space electronic structure calculations. These methods, based on the low-rank representation of the multidimensional functions and integral operators, first appeared as an accurate tensor calculus for the 3D Hartree potential using 1D complexity operations, and have evolved to entirely grid-based tensor-structured 3D Hartree-Fock eigenvalue solver. It benefits from tensor calculation of the core Hamiltonian and two-electron integrals (TEI) in O(n log n) complexity using the rank-structured approximation of basis functions, electron densities and convolution integral operators all represented on 3D n × n × n Cartesian grids. The algorithm for calculating TEI tensor in a form of the Cholesky decomposition is based on multiple factorizations using algebraic 1D "density fitting" scheme, which yield an almost irreducible number of product basis functions involved in the 3D convolution integrals, depending on a threshold ε > 0. The basis functions are not restricted to separable Gaussians, since the analytical integration is substituted by high-precision tensor-structured numerical quadratures. The tensor approaches to post-Hartree-Fock calculations for the MP2 energy correction and for the Bethe-Salpeter excitation energies, based on using low-rank factorizations and the reduced basis method, were recently introduced. Another direction is towards the tensor-based Hartree-Fock numerical scheme for finite lattices, where one of the numerical challenges is the summation of electrostatic potentials of a large number of nuclei. The 3D grid-based tensor method for calculation of a potential sum on a L × L × L lattice manifests the linear in L computational work, O(L), instead of the usual O(L(3) log L) scaling by the Ewald-type approaches.
Label-based routing for a family of small-world Farey graphs.
Zhai, Yinhu; Wang, Yinhe
2016-05-11
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
AND/OR graph representation of assembly plans
NASA Astrophysics Data System (ADS)
Homem de Mello, Luiz S.; Sanderson, Arthur C.
1990-04-01
A compact representation of all possible assembly plans of a product using AND/OR graphs is presented as a basis for efficient planning algorithms that allow an intelligent robot to pick a course of action according to instantaneous conditions. The AND/OR graph is equivalent to a state transition graph but requires fewer nodes and simplifies the search for feasible plans. Three applications are discussed: (1) the preselection of the best assembly plan, (2) the recovery from execution errors, and (3) the opportunistic scheduling of tasks. An example of an assembly with four parts illustrates the use of the AND/OR graph representation in assembly-plan preselection, based on the weighting of operations according to complexity of manipulation and stability of subassemblies. A hypothetical error situation is discussed to show how a bottom-up search of the AND/OR graph leads to an efficient recovery.
AND/OR graph representation of assembly plans
NASA Technical Reports Server (NTRS)
Homem De Mello, Luiz S.; Sanderson, Arthur C.
1990-01-01
A compact representation of all possible assembly plans of a product using AND/OR graphs is presented as a basis for efficient planning algorithms that allow an intelligent robot to pick a course of action according to instantaneous conditions. The AND/OR graph is equivalent to a state transition graph but requires fewer nodes and simplifies the search for feasible plans. Three applications are discussed: (1) the preselection of the best assembly plan, (2) the recovery from execution errors, and (3) the opportunistic scheduling of tasks. An example of an assembly with four parts illustrates the use of the AND/OR graph representation in assembly-plan preselection, based on the weighting of operations according to complexity of manipulation and stability of subassemblies. A hypothetical error situation is discussed to show how a bottom-up search of the AND/OR graph leads to an efficient recovery.
Label-based routing for a family of small-world Farey graphs
NASA Astrophysics Data System (ADS)
Zhai, Yinhu; Wang, Yinhe
2016-05-01
We introduce an informative labelling method for vertices in a family of Farey graphs, and deduce a routing algorithm on all the shortest paths between any two vertices in Farey graphs. The label of a vertex is composed of the precise locating position in graphs and the exact time linking to graphs. All the shortest paths routing between any pair of vertices, which number is exactly the product of two Fibonacci numbers, are determined only by their labels, and the time complexity of the algorithm is O(n). It is the first algorithm to figure out all the shortest paths between any pair of vertices in a kind of deterministic graphs. For Farey networks, the existence of an efficient routing protocol is of interest to design practical communication algorithms in relation to dynamical processes (including synchronization and structural controllability) and also to understand the underlying mechanisms that have shaped their particular structure.
Fermionic topological quantum states as tensor networks
NASA Astrophysics Data System (ADS)
Wille, C.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states, and in particular projected entangled pair states, play an important role in the description of strongly correlated quantum lattice systems. They do not only serve as variational states in numerical simulation methods, but also provide a framework for classifying phases of quantum matter and capture notions of topological order in a stringent and rigorous language. The rapid development in this field for spin models and bosonic systems has not yet been mirrored by an analogous development for fermionic models. In this work, we introduce a tensor network formalism capable of capturing notions of topological order for quantum systems with fermionic components. At the heart of the formalism are axioms of fermionic matrix-product operator injectivity, stable under concatenation. Building upon that, we formulate a Grassmann number tensor network ansatz for the ground state of fermionic twisted quantum double models. A specific focus is put on the paradigmatic example of the fermionic toric code. This work shows that the program of describing topologically ordered systems using tensor networks carries over to fermionic models.
Matrix product density operators: Renormalization fixed points and boundary theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cirac, J.I.; Pérez-García, D., E-mail: dperezga@ucm.es; ICMAT, Nicolas Cabrera, Campus de Cantoblanco, 28049 Madrid
We consider the tensors generating matrix product states and density operators in a spin chain. For pure states, we revise the renormalization procedure introduced in (Verstraete et al., 2005) and characterize the tensors corresponding to the fixed points. We relate them to the states possessing zero correlation length, saturation of the area law, as well as to those which generate ground states of local and commuting Hamiltonians. For mixed states, we introduce the concept of renormalization fixed points and characterize the corresponding tensors. We also relate them to concepts like finite correlation length, saturation of the area law, as well asmore » to those which generate Gibbs states of local and commuting Hamiltonians. One of the main result of this work is that the resulting fixed points can be associated to the boundary theories of two-dimensional topological states, through the bulk-boundary correspondence introduced in (Cirac et al., 2011).« less
Black holes as quantum gravity condensates
NASA Astrophysics Data System (ADS)
Oriti, Daniele; Pranzetti, Daniele; Sindoni, Lorenzo
2018-03-01
We model spherically symmetric black holes within the group field theory formalism for quantum gravity via generalized condensate states, involving sums over arbitrarily refined graphs (dual to three-dimensional triangulations). The construction relies heavily on both the combinatorial tools of random tensor models and the quantum geometric data of loop quantum gravity, both part of the group field theory formalism. Armed with the detailed microscopic structure, we compute the entropy associated with the black hole horizon, which turns out to be equivalently the Boltzmann entropy of its microscopic degrees of freedom and the entanglement entropy between the inside and outside regions. We recover the area law under very general conditions, as well as the Bekenstein-Hawking formula. The result is also shown to be generically independent of any specific value of the Immirzi parameter.
Ghanbari, Yasser; Smith, Alex R.; Schultz, Robert T.; Verma, Ragini
2014-01-01
Diffusion tensor imaging (DTI) offers rich insights into the physical characteristics of white matter (WM) fiber tracts and their development in the brain, facilitating a network representation of brain’s traffic pathways. Such a network representation of brain connectivity has provided a novel means of investigating brain changes arising from pathology, development or aging. The high dimensionality of these connectivity networks necessitates the development of methods that identify the connectivity building blocks or sub-network components that characterize the underlying variation in the population. In addition, the projection of the subject networks into the basis set provides a low dimensional representation of it, that teases apart different sources of variation in the sample, facilitating variation-specific statistical analysis. We propose a unified framework of non-negative matrix factorization and graph embedding for learning sub-network patterns of connectivity by their projective non-negative decomposition into a reconstructive basis set, as well as, additional basis sets representing variational sources in the population like age and pathology. The proposed framework is applied to a study of diffusion-based connectivity in subjects with autism that shows localized sparse sub-networks which mostly capture the changes related to pathology and developmental variations. PMID:25037933
Systematic dimensionality reduction for continuous-time quantum walks of interacting fermions
NASA Astrophysics Data System (ADS)
Izaac, J. A.; Wang, J. B.
2017-09-01
To extend the continuous-time quantum walk (CTQW) to simulate P distinguishable particles on a graph G composed of N vertices, the Hamiltonian of the system is expanded to act on an NP-dimensional Hilbert space, in effect, simulating the multiparticle CTQW on graph G via a single-particle CTQW propagating on the Cartesian graph product G□P. The properties of the Cartesian graph product have been well studied, and classical simulation of multiparticle CTQWs are common in the literature. However, the above approach is generally applied as is when simulating indistinguishable particles, with the particle statistics then applied to the propagated NP state vector to determine walker probabilities. We address the following question: How can we modify the underlying graph structure G□P in order to simulate multiple interacting fermionic CTQWs with a reduction in the size of the state space? In this paper, we present an algorithm for systematically removing "redundant" and forbidden quantum states from consideration, which provides a significant reduction in the effective dimension of the Hilbert space of the fermionic CTQW. As a result, as the number of interacting fermions in the system increases, the classical computational resources required no longer increases exponentially for fixed N .
On Gammelgaard's Formula for a Star Product with Separation of Variables
NASA Astrophysics Data System (ADS)
Karabegov, Alexander
2013-08-01
We show that Gammelgaard's formula expressing a star product with separation of variables on a pseudo-Kähler manifold in terms of directed graphs without cycles is equivalent to an inversion formula for an operator on a formal Fock space. We prove this inversion formula directly and thus offer an alternative approach to Gammelgaard's formula which gives more insight into the question why the directed graphs in his formula have no cycles.
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh
This paper presents a low complexity algorithmic framework for finding a broadcasting schedule in a low-altitude satellite system, i. e., the satellite broadcast scheduling (SBS) problem, based on the recent modeling and computational methodology of factor graphs. Inspired by the huge success of the low density parity check (LDPC) codes in the field of error control coding, in this paper, we transform the SBS problem into an LDPC-like problem through a factor graph instead of using the conventional neural network approaches to solve the SBS problem. Based on a factor graph framework, the soft-information, describing the probability that each satellite will broadcast information to a terminal at a specific time slot, is exchanged among the local processing in the proposed framework via the sum-product algorithm to iteratively optimize the satellite broadcasting schedule. Numerical results show that the proposed approach not only can obtain optimal solution but also enjoys the low complexity suitable for integral-circuit implementation.
NASA Astrophysics Data System (ADS)
Keylock, Christopher J.
2017-08-01
A method is presented for deriving random velocity gradient tensors given a source tensor. These synthetic tensors are constrained to lie within mathematical bounds of the non-normality of the source tensor, but we do not impose direct constraints upon scalar quantities typically derived from the velocity gradient tensor and studied in fluid mechanics. Hence, it becomes possible to ask hypotheses of data at a point regarding the statistical significance of these scalar quantities. Having presented our method and the associated mathematical concepts, we apply it to homogeneous, isotropic turbulence to test the utility of the approach for a case where the behavior of the tensor is understood well. We show that, as well as the concentration of data along the Vieillefosse tail, actual turbulence is also preferentially located in the quadrant where there is both excess enstrophy (Q>0 ) and excess enstrophy production (R<0 ). We also examine the topology implied by the strain eigenvalues and find that for the statistically significant results there is a particularly strong relative preference for the formation of disklike structures in the (Q<0 ,R<0 ) quadrant. With the method shown to be useful for a turbulence that is already understood well, it should be of even greater utility for studying complex flows seen in industry and the environment.
Remarks on turbulent constitutive relations
NASA Technical Reports Server (NTRS)
Shih, Tsan-Hsing; Lumley, John L.
1993-01-01
The paper demonstrates that the concept of turbulent constitutive relations can be used to construct general models for various turbulent correlations. Some of the Generalized Cayley-Hamilton formulas for relating tensor products of higher extension to tensor products of lower extension are introduced. The combination of dimensional analysis and invariant theory can lead to 'turbulent constitutive relations' (or general turbulence models) for, in principle, any turbulent correlations. As examples, the constitutive relations for Reynolds stresses and scalar fluxes are derived. The results are consistent with ones from Renormalization Group (RNG) theory and two-scale Direct-Interaction Approximation (DIA) method, but with a more general form.
Does Your Graphing Software Real-ly Work?
ERIC Educational Resources Information Center
Marchand, R. J.; McDevitt, T. J.; Bosse, Michael J.; Nandakumar, N. R.
2007-01-01
Many popular mathematical software products including Maple, Mathematica, Derive, Mathcad, Matlab, and some of the TI calculators produce incorrect graphs because they use complex arithmetic instead of "real" arithmetic. This article expounds on this issue, provides possible remedies for instructors to share with their students, and demonstrates…
NASA Astrophysics Data System (ADS)
Prihandini, Rafiantika M.; Agustin, I. H.; Dafik
2018-04-01
In this paper we use simple and non trivial graph. If there exist a bijective function g:V(G) \\cup E(G)\\to \\{1,2,\\ldots,|V(G)|+|E(G)|\\}, such that for all subgraphs {P}2\\vartriangleright H of G isomorphic to H, then graph G is called an (a, b)-{P}2\\vartriangleright H-antimagic total graph. Furthermore, we can consider the total {P}2\\vartriangleright H-weights W({P}2\\vartriangleright H)={\\sum }v\\in V({P2\\vartriangleright H)}f(v)+{\\sum }e\\in E({P2\\vartriangleright H)}f(e) which should form an arithmetic sequence {a, a + d, a + 2d, …, a + (n ‑ 1)d}, where a and d are positive integers and n is the number of all subgraphs isomorphic to H. Our paper describes the existence of super (a, b)-{P}2\\vartriangleright H antimagic total labeling for graph operation of comb product namely of G=L\\vartriangleright H, where L is a (b, d*)-edge antimagic vertex labeling graph and H is a connected graph.
Number of minimum-weight code words in a product code
NASA Technical Reports Server (NTRS)
Miller, R. L.
1978-01-01
Consideration is given to the number of minimum-weight code words in a product code. The code is considered as a tensor product of linear codes over a finite field. Complete theorems and proofs are presented.
A Constraint-Based Planner for Data Production
NASA Technical Reports Server (NTRS)
Pang, Wanlin; Golden, Keith
2005-01-01
This paper presents a graph-based backtracking algorithm designed to support constrain-tbased planning in data production domains. This algorithm performs backtracking at two nested levels: the outer- backtracking following the structure of the planning graph to select planner subgoals and actions to achieve them and the inner-backtracking inside a subproblem associated with a selected action to find action parameter values. We show this algorithm works well in a planner applied to automating data production in an ecological forecasting system. We also discuss how the idea of multi-level backtracking may improve efficiency of solving semi-structured constraint problems.
Tensor non-Gaussianity from axion-gauge-fields dynamics: parameter search
NASA Astrophysics Data System (ADS)
Agrawal, Aniket; Fujita, Tomohiro; Komatsu, Eiichiro
2018-06-01
We calculate the bispectrum of scale-invariant tensor modes sourced by spectator SU(2) gauge fields during inflation in a model containing a scalar inflaton, a pseudoscalar axion and SU(2) gauge fields. A large bispectrum is generated in this model at tree-level as the gauge fields contain a tensor degree of freedom, and its production is dominated by self-coupling of the gauge fields. This is a unique feature of non-Abelian gauge theory. The shape of the tensor bispectrum is approximately an equilateral shape for 3lesssim mQlesssim 4, where mQ is an effective dimensionless mass of the SU(2) field normalised by the Hubble expansion rate during inflation. The amplitude of non-Gaussianity of the tensor modes, characterised by the ratio Bh/P2h, is inversely proportional to the energy density fraction of the gauge field. This ratio can be much greater than unity, whereas the ratio from the vacuum fluctuation of the metric is of order unity. The bispectrum is effective at constraining large mQ regions of the parameter space, whereas the power spectrum constrains small mQ regions.
Approximate tensor-product preconditioners for very high order discontinuous Galerkin methods
NASA Astrophysics Data System (ADS)
Pazner, Will; Persson, Per-Olof
2018-02-01
In this paper, we develop a new tensor-product based preconditioner for discontinuous Galerkin methods with polynomial degrees higher than those typically employed. This preconditioner uses an automatic, purely algebraic method to approximate the exact block Jacobi preconditioner by Kronecker products of several small, one-dimensional matrices. Traditional matrix-based preconditioners require O (p2d) storage and O (p3d) computational work, where p is the degree of basis polynomials used, and d is the spatial dimension. Our SVD-based tensor-product preconditioner requires O (p d + 1) storage, O (p d + 1) work in two spatial dimensions, and O (p d + 2) work in three spatial dimensions. Combined with a matrix-free Newton-Krylov solver, these preconditioners allow for the solution of DG systems in linear time in p per degree of freedom in 2D, and reduce the computational complexity from O (p9) to O (p5) in 3D. Numerical results are shown in 2D and 3D for the advection, Euler, and Navier-Stokes equations, using polynomials of degree up to p = 30. For many test cases, the preconditioner results in similar iteration counts when compared with the exact block Jacobi preconditioner, and performance is significantly improved for high polynomial degrees p.
Reversible and dissipative macroscopic contributions to the stress tensor: active or passive?
Brand, H R; Pleiner, H; Svenšek, D
2014-09-01
The issue of dynamic contributions to the macroscopic stress tensor has been of high interest in the field of bio-inspired active systems over the last few years. Of particular interest is a direct coupling ("active term") of the stress tensor with the order parameter, the latter describing orientational order induced by active processes. Here we analyze more generally possible reversible and irreversible dynamic contributions to the stress tensor for various passive and active macroscopic systems. This includes systems with tetrahedral/octupolar order, polar and non-polar (chiral) nematic and smectic liquid crystals, as well as active fluids with a dynamic preferred (polar or non-polar) direction. We show that it cannot a priori be seen, neither from the symmetry properties of the macroscopic variables involved, nor from the structure of the cross-coupling contributions to the stress tensor, whether the system studied is active or passive. Rather, that depends on whether the variables that give rise to those cross-couplings in the stress tensor are driven or not. We demonstrate that several simplified descriptions of active systems in the literature that neglect the necessary counter term to the active term violate linear irreversible thermodynamics and lead to an unphysical contribution to the entropy production.
Horror Image Recognition Based on Context-Aware Multi-Instance Learning.
Li, Bing; Xiong, Weihua; Wu, Ou; Hu, Weiming; Maybank, Stephen; Yan, Shuicheng
2015-12-01
Horror content sharing on the Web is a growing phenomenon that can interfere with our daily life and affect the mental health of those involved. As an important form of expression, horror images have their own characteristics that can evoke extreme emotions. In this paper, we present a novel context-aware multi-instance learning (CMIL) algorithm for horror image recognition. The CMIL algorithm identifies horror images and picks out the regions that cause the sensation of horror in these horror images. It obtains contextual cues among adjacent regions in an image using a random walk on a contextual graph. Borrowing the strength of the fuzzy support vector machine (FSVM), we define a heuristic optimization procedure based on the FSVM to search for the optimal classifier for the CMIL. To improve the initialization of the CMIL, we propose a novel visual saliency model based on the tensor analysis. The average saliency value of each segmented region is set as its initial fuzzy membership in the CMIL. The advantage of the tensor-based visual saliency model is that it not only adaptively selects features, but also dynamically determines fusion weights for saliency value combination from different feature subspaces. The effectiveness of the proposed CMIL model is demonstrated by its use in horror image recognition on two large-scale image sets collected from the Internet.
Acar, Evrim; Plopper, George E.; Yener, Bülent
2012-01-01
The structure/function relationship is fundamental to our understanding of biological systems at all levels, and drives most, if not all, techniques for detecting, diagnosing, and treating disease. However, at the tissue level of biological complexity we encounter a gap in the structure/function relationship: having accumulated an extraordinary amount of detailed information about biological tissues at the cellular and subcellular level, we cannot assemble it in a way that explains the correspondingly complex biological functions these structures perform. To help close this information gap we define here several quantitative temperospatial features that link tissue structure to its corresponding biological function. Both histological images of human tissue samples and fluorescence images of three-dimensional cultures of human cells are used to compare the accuracy of in vitro culture models with their corresponding human tissues. To the best of our knowledge, there is no prior work on a quantitative comparison of histology and in vitro samples. Features are calculated from graph theoretical representations of tissue structures and the data are analyzed in the form of matrices and higher-order tensors using matrix and tensor factorization methods, with a goal of differentiating between cancerous and healthy states of brain, breast, and bone tissues. We also show that our techniques can differentiate between the structural organization of native tissues and their corresponding in vitro engineered cell culture models. PMID:22479315
Kopský, Vojtech
2006-03-01
This article is a roadmap to a systematic calculation and tabulation of tensorial covariants for the point groups of material physics. The following are the essential steps in the described approach to tensor calculus. (i) An exact specification of the considered point groups by their embellished Hermann-Mauguin and Schoenflies symbols. (ii) Introduction of oriented Laue classes of magnetic point groups. (iii) An exact specification of matrix ireps (irreducible representations). (iv) Introduction of so-called typical (standard) bases and variables -- typical invariants, relative invariants or components of the typical covariants. (v) Introduction of Clebsch-Gordan products of the typical variables. (vi) Calculation of tensorial covariants of ascending ranks with consecutive use of tables of Clebsch-Gordan products. (vii) Opechowski's magic relations between tensorial decompositions. These steps are illustrated for groups of the tetragonal oriented Laue class D(4z) -- 4(z)2(x)2(xy) of magnetic point groups and for tensors up to fourth rank.
Partitioning sparse matrices with eigenvectors of graphs
NASA Technical Reports Server (NTRS)
Pothen, Alex; Simon, Horst D.; Liou, Kang-Pu
1990-01-01
The problem of computing a small vertex separator in a graph arises in the context of computing a good ordering for the parallel factorization of sparse, symmetric matrices. An algebraic approach for computing vertex separators is considered in this paper. It is shown that lower bounds on separator sizes can be obtained in terms of the eigenvalues of the Laplacian matrix associated with a graph. The Laplacian eigenvectors of grid graphs can be computed from Kronecker products involving the eigenvectors of path graphs, and these eigenvectors can be used to compute good separators in grid graphs. A heuristic algorithm is designed to compute a vertex separator in a general graph by first computing an edge separator in the graph from an eigenvector of the Laplacian matrix, and then using a maximum matching in a subgraph to compute the vertex separator. Results on the quality of the separators computed by the spectral algorithm are presented, and these are compared with separators obtained from other algorithms for computing separators. Finally, the time required to compute the Laplacian eigenvector is reported, and the accuracy with which the eigenvector must be computed to obtain good separators is considered. The spectral algorithm has the advantage that it can be implemented on a medium-size multiprocessor in a straightforward manner.
An Introduction to Tensors for Students of Physics and Engineering
NASA Technical Reports Server (NTRS)
Kolecki, Joseph C.
2002-01-01
Tensor analysis is the type of subject that can make even the best of students shudder. My own post-graduate instructor in the subject took away much of the fear by speaking of an implicit rhythm in the peculiar notation traditionally used, and helped us to see how this rhythm plays its way throughout the various formalisms. Prior to taking that class, I had spent many years "playing" on my own with tensors. I found the going to be tremendously difficult but was able, over time, to back out some physical and geometrical considerations that helped to make the subject a little more transparent. Today, it is sometimes hard not to think in terms of tensors and their associated concepts. This article, prompted and greatly enhanced by Marlos Jacob, whom I've met only by e-mail, is an attempt to record those early notions concerning tensors. It is intended to serve as a bridge from the point where most undergraduate students "leave off" in their studies of mathematics to the place where most texts on tensor analysis begin. A basic knowledge of vectors, matrices, and physics is assumed. A semi-intuitive approach to those notions underlying tensor analysis is given via scalars, vectors, dyads, triads, and higher vector products. The reader must be prepared to do some mathematics and to think. For those students who wish to go beyond this humble start, I can only recommend my professor's wisdom: find the rhythm in the mathematics and you will fare pretty well.
Matrix exponential-based closures for the turbulent subgrid-scale stress tensor.
Li, Yi; Chevillard, Laurent; Eyink, Gregory; Meneveau, Charles
2009-01-01
Two approaches for closing the turbulence subgrid-scale stress tensor in terms of matrix exponentials are introduced and compared. The first approach is based on a formal solution of the stress transport equation in which the production terms can be integrated exactly in terms of matrix exponentials. This formal solution of the subgrid-scale stress transport equation is shown to be useful to explore special cases, such as the response to constant velocity gradient, but neglecting pressure-strain correlations and diffusion effects. The second approach is based on an Eulerian-Lagrangian change of variables, combined with the assumption of isotropy for the conditionally averaged Lagrangian velocity gradient tensor and with the recent fluid deformation approximation. It is shown that both approaches lead to the same basic closure in which the stress tensor is expressed as the matrix exponential of the resolved velocity gradient tensor multiplied by its transpose. Short-time expansions of the matrix exponentials are shown to provide an eddy-viscosity term and particular quadratic terms, and thus allow a reinterpretation of traditional eddy-viscosity and nonlinear stress closures. The basic feasibility of the matrix-exponential closure is illustrated by implementing it successfully in large eddy simulation of forced isotropic turbulence. The matrix-exponential closure employs the drastic approximation of entirely omitting the pressure-strain correlation and other nonlinear scrambling terms. But unlike eddy-viscosity closures, the matrix exponential approach provides a simple and local closure that can be derived directly from the stress transport equation with the production term, and using physically motivated assumptions about Lagrangian decorrelation and upstream isotropy.
Monogamy, polygamy, and other properties of entanglement of purification
NASA Astrophysics Data System (ADS)
Bagchi, Shrobona; Pati, Arun Kumar
2015-04-01
For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.
NASA Astrophysics Data System (ADS)
Dechevsky, Lubomir T.; Bang, Børre; Laksa˚, Arne; Zanaty, Peter
2011-12-01
At the Seventh International Conference on Mathematical Methods for Curves and Surfaces, To/nsberg, Norway, in 2008, several new constructions for Hermite interpolation on scattered point sets in domains in Rn,n∈N, combined with smooth convex partition of unity for several general types of partitions of these domains were proposed in [1]. All of these constructions were based on a new type of B-splines, proposed by some of the authors several years earlier: expo-rational B-splines (ERBS) [3]. In the present communication we shall provide more details about one of these constructions: the one for the most general class of domain partitions considered. This construction is based on the use of two separate families of basis functions: one which has all the necessary Hermite interpolation properties, and another which has the necessary properties of a smooth convex partition of unity. The constructions of both of these two bases are well-known; the new part of the construction is the combined use of these bases for the derivation of a new basis which enjoys having all above-said interpolation and unity partition properties simultaneously. In [1] the emphasis was put on the use of radial basis functions in the definitions of the two initial bases in the construction; now we shall put the main emphasis on the case when these bases consist of tensor-product B-splines. This selection provides two useful advantages: (A) it is easier to compute higher-order derivatives while working in Cartesian coordinates; (B) it becomes clear that this construction becomes a far-going extension of tensor-product constructions. We shall provide 3-dimensional visualization of the resulting bivariate bases, using tensor-product ERBS. In the main tensor-product variant, we shall consider also replacement of ERBS with simpler generalized ERBS (GERBS) [2], namely, their simplified polynomial modifications: the Euler Beta-function B-splines (BFBS). One advantage of using BFBS instead of ERBS is the simplified computation, since BFBS are piecewise polynomial, which ERBS are not. One disadvantage of using BFBS in the place of ERBS in this construction is that the necessary selection of the degree of BFBS imposes constraints on the maximal possible multiplicity of the Hermite interpolation.
The Invar tensor package: Differential invariants of Riemann
NASA Astrophysics Data System (ADS)
Martín-García, J. M.; Yllanes, D.; Portugal, R.
2008-10-01
The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in the distribution. To obtain the Mathematica and Maple database files click on this link. Classification:1.5, 5 Does the new version supersede the previous version?:Yes. The previous version (1.0) only handled algebraic invariants. The current version (2.0) has been extended to cover differential invariants as well. Nature of problem:Manipulation and simplification of scalar polynomial expressions formed from the Riemann tensor and its covariant derivatives. Solution method:Algorithms of computational group theory to simplify expressions with tensors that obey permutation symmetries. Tables of syzygies of the scalar invariants of the Riemann tensor. Reasons for new version:With this new version, the user can manipulate differential invariants of the Riemann tensor. Differential invariants are required in many physical problems in classical and quantum gravity. Summary of revisions:The database of syzygies has been expanded by a factor of 30. New commands were added in order to deal with the enlarged database and to manipulate the covariant derivative. Restrictions:The present version only handles scalars, and not expressions with free indices. Additional comments:The distribution file for this program is over 53 Mbytes and therefore is not delivered directly when download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. Running time:One second to fully reduce any monomial of the Riemann tensor up to degree 7 or order 10 in terms of independent invariants. The Mathematica notebook included in the distribution takes approximately 5 minutes to run.
Novel Spectral Representations and Sparsity-Driven Algorithms for Shape Modeling and Analysis
NASA Astrophysics Data System (ADS)
Zhong, Ming
In this dissertation, we focus on extending classical spectral shape analysis by incorporating spectral graph wavelets and sparsity-seeking algorithms. Defined with the graph Laplacian eigenbasis, the spectral graph wavelets are localized both in the vertex domain and graph spectral domain, and thus are very effective in describing local geometry. With a rich dictionary of elementary vectors and forcing certain sparsity constraints, a real life signal can often be well approximated by a very sparse coefficient representation. The many successful applications of sparse signal representation in computer vision and image processing inspire us to explore the idea of employing sparse modeling techniques with dictionary of spectral basis to solve various shape modeling problems. Conventional spectral mesh compression uses the eigenfunctions of mesh Laplacian as shape bases, which are highly inefficient in representing local geometry. To ameliorate, we advocate an innovative approach to 3D mesh compression using spectral graph wavelets as dictionary to encode mesh geometry. The spectral graph wavelets are locally defined at individual vertices and can better capture local shape information than Laplacian eigenbasis. The multi-scale SGWs form a redundant dictionary as shape basis, so we formulate the compression of 3D shape as a sparse approximation problem that can be readily handled by greedy pursuit algorithms. Surface inpainting refers to the completion or recovery of missing shape geometry based on the shape information that is currently available. We devise a new surface inpainting algorithm founded upon the theory and techniques of sparse signal recovery. Instead of estimating the missing geometry directly, our novel method is to find this low-dimensional representation which describes the entire original shape. More specifically, we find that, for many shapes, the vertex coordinate function can be well approximated by a very sparse coefficient representation with respect to the dictionary comprising its Laplacian eigenbasis, and it is then possible to recover this sparse representation from partial measurements of the original shape. Taking advantage of the sparsity cue, we advocate a novel variational approach for surface inpainting, integrating data fidelity constraints on the shape domain with coefficient sparsity constraints on the transformed domain. Because of the powerful properties of Laplacian eigenbasis, the inpainting results of our method tend to be globally coherent with the remaining shape. Informative and discriminative feature descriptors are vital in qualitative and quantitative shape analysis for a large variety of graphics applications. We advocate novel strategies to define generalized, user-specified features on shapes. Our new region descriptors are primarily built upon the coefficients of spectral graph wavelets that are both multi-scale and multi-level in nature, consisting of both local and global information. Based on our novel spectral feature descriptor, we developed a user-specified feature detection framework and a tensor-based shape matching algorithm. Through various experiments, we demonstrate the competitive performance of our proposed methods and the great potential of spectral basis and sparsity-driven methods for shape modeling.
An asynchronous traversal engine for graph-based rich metadata management
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dai, Dong; Carns, Philip; Ross, Robert B.
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
An asynchronous traversal engine for graph-based rich metadata management
Dai, Dong; Carns, Philip; Ross, Robert B.; ...
2016-06-23
Rich metadata in high-performance computing (HPC) systems contains extended information about users, jobs, data files, and their relationships. Property graphs are a promising data model to represent heterogeneous rich metadata flexibly. Specifically, a property graph can use vertices to represent different entities and edges to record the relationships between vertices with unique annotations. The high-volume HPC use case, with millions of entities and relationships, naturally requires an out-of-core distributed property graph database, which must support live updates (to ingest production information in real time), low-latency point queries (for frequent metadata operations such as permission checking), and large-scale traversals (for provenancemore » data mining). Among these needs, large-scale property graph traversals are particularly challenging for distributed graph storage systems. Most existing graph systems implement a "level synchronous" breadth-first search algorithm that relies on global synchronization in each traversal step. This performs well in many problem domains; but a rich metadata management system is characterized by imbalanced graphs, long traversal lengths, and concurrent workloads, each of which has the potential to introduce or exacerbate stragglers (i.e., abnormally slow steps or servers in a graph traversal) that lead to low overall throughput for synchronous traversal algorithms. Previous research indicated that the straggler problem can be mitigated by using asynchronous traversal algorithms, and many graph-processing frameworks have successfully demonstrated this approach. Such systems require the graph to be loaded into a separate batch-processing framework instead of being iteratively accessed, however. In this work, we investigate a general asynchronous graph traversal engine that can operate atop a rich metadata graph in its native format. We outline a traversal-aware query language and key optimizations (traversal-affiliate caching and execution merging) necessary for efficient performance. We further explore the effect of different graph partitioning strategies on the traversal performance for both synchronous and asynchronous traversal engines. Our experiments show that the asynchronous graph traversal engine is more efficient than its synchronous counterpart in the case of HPC rich metadata processing, where more servers are involved and larger traversals are needed. Furthermore, the asynchronous traversal engine is more adaptive to different graph partitioning strategies.« less
High Resolution Global Topography of Eros from NEAR Imaging and LIDAR Data
NASA Technical Reports Server (NTRS)
Gaskell, Robert W.; Konopliv, A.; Barnouin-Jha, O.; Scheeres, D.
2006-01-01
Principal Data Products: Ensemble of L-maps from SPC, Spacecraft state, Asteroid pole and rotation. Secondary Products: Global topography model, inertia tensor, gravity. Composite high resolution topography. Three dimensional image maps.
Using Sorting by Reversal: Breakpoint Graph for Gene Assembly in Ciliates
NASA Astrophysics Data System (ADS)
Brijder, Robert; Jan Hoogeboom, Hendrik
2007-09-01
The theory of gene assembly in ciliates has much in common with the theory of sorting by reversal. Both model processes that are based on splicing, and have a fixed begin and end product. The main difference is the type of splicing operations used to obtain the end product from the begin product. In this overview paper we show that the concept of breakpoint graph, known from the theory of sorting by reversal, has many uses in the theory of gene assembly. Our aim is to present the material in an intuitive and informal manner to allow for an efficient introduction into the subject.
Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi
2018-05-04
End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.
NASA Astrophysics Data System (ADS)
Khoromskaia, Venera; Khoromskij, Boris N.
2014-12-01
Our recent method for low-rank tensor representation of sums of the arbitrarily positioned electrostatic potentials discretized on a 3D Cartesian grid reduces the 3D tensor summation to operations involving only 1D vectors however retaining the linear complexity scaling in the number of potentials. Here, we introduce and study a novel tensor approach for fast and accurate assembled summation of a large number of lattice-allocated potentials represented on 3D N × N × N grid with the computational requirements only weakly dependent on the number of summed potentials. It is based on the assembled low-rank canonical tensor representations of the collected potentials using pointwise sums of shifted canonical vectors representing the single generating function, say the Newton kernel. For a sum of electrostatic potentials over L × L × L lattice embedded in a box the required storage scales linearly in the 1D grid-size, O(N) , while the numerical cost is estimated by O(NL) . For periodic boundary conditions, the storage demand remains proportional to the 1D grid-size of a unit cell, n = N / L, while the numerical cost reduces to O(N) , that outperforms the FFT-based Ewald-type summation algorithms of complexity O(N3 log N) . The complexity in the grid parameter N can be reduced even to the logarithmic scale O(log N) by using data-sparse representation of canonical N-vectors via the quantics tensor approximation. For justification, we prove an upper bound on the quantics ranks for the canonical vectors in the overall lattice sum. The presented approach is beneficial in applications which require further functional calculus with the lattice potential, say, scalar product with a function, integration or differentiation, which can be performed easily in tensor arithmetics on large 3D grids with 1D cost. Numerical tests illustrate the performance of the tensor summation method and confirm the estimated bounds on the tensor ranks.
On Vieta's Formulas and the Determination of a Set of Positive Integers by Their Sum and Product
ERIC Educational Resources Information Center
Valahas, Theodoros; Boukas, Andreas
2011-01-01
In Years 9 and 10 of secondary schooling students are typically introduced to quadratic expressions and functions and related modelling, algebra, and graphing. This includes work on the expansion and factorisation of quadratic expressions (typically with integer values of coefficients), graphing quadratic functions, finding the roots of quadratic…
ERIC Educational Resources Information Center
Kyer, Ben L.; Maggs, Gary E.
1995-01-01
Utilizes two-dimensional price and output graphs to demonstrate the way that the price-level elasticity of aggregate demand affects alternative monetary policy rules designed to cope with random aggregate supply shocks. Includes graphs illustrating price-level, real Gross Domestic Product (GDP), nominal GDP, and nominal money supply targeting.…
NASA Astrophysics Data System (ADS)
Cui, Shawn X.; Freedman, Michael H.; Sattath, Or; Stong, Richard; Minton, Greg
2016-06-01
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts of the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.
NASA Astrophysics Data System (ADS)
Gu, Chen; Marzouk, Youssef M.; Toksöz, M. Nafi
2018-03-01
Small earthquakes occur due to natural tectonic motions and are induced by oil and gas production processes. In many oil/gas fields and hydrofracking processes, induced earthquakes result from fluid extraction or injection. The locations and source mechanisms of these earthquakes provide valuable information about the reservoirs. Analysis of induced seismic events has mostly assumed a double-couple source mechanism. However, recent studies have shown a non-negligible percentage of non-double-couple components of source moment tensors in hydraulic fracturing events, assuming a full moment tensor source mechanism. Without uncertainty quantification of the moment tensor solution, it is difficult to determine the reliability of these source models. This study develops a Bayesian method to perform waveform-based full moment tensor inversion and uncertainty quantification for induced seismic events, accounting for both location and velocity model uncertainties. We conduct tests with synthetic events to validate the method, and then apply our newly developed Bayesian inversion approach to real induced seismicity in an oil/gas field in the sultanate of Oman—determining the uncertainties in the source mechanism and in the location of that event.
Full Moment Tensor Analysis Using First Motion Data at The Geysers Geothermal Field
NASA Astrophysics Data System (ADS)
Boyd, O.; Dreger, D. S.; Lai, V. H.; Gritto, R.
2012-12-01
Seismicity associated with geothermal energy production at The Geysers Geothermal Field in northern California has been increasing during the last forty years. We investigate source models of over fifty earthquakes with magnitudes ranging from Mw 3.5 up to Mw 4.5. We invert three-component, complete waveform data from broadband stations of the Berkeley Digital Seismic Network, the Northern California Seismic Network and the USA Array deployment (2005-2007) for the complete, six-element moment tensor. Some solutions are double-couple while others have substantial non-double-couple components. To assess the stability and significance of non-double-couple components, we use a suite of diagnostic tools including the F-test, Jackknife test, bootstrap and network sensitivity solution (NSS). The full moment tensor solutions of the studied events tend to plot in the upper half of the Hudson source type diagram where the fundamental source types include +CLVD, +LVD, tensile-crack, DC and explosion. Using the F-test to compare the goodness-of-fit values between the full and deviatoric moment tensor solutions, most of the full moment tensor solutions do not show a statistically significant improvement in fit over the deviatoric solutions. Because a small isotropic component may not significantly improve the fit, we include first motion polarity data to better constrain the full moment tensor solutions.
On the Grothendieck rings of equivariant fusion categories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burciu, Sebastian, E-mail: sebastian.burciu@imar.ro
2015-07-15
In this paper, we describe a Mackey type decomposition for group actions on abelian categories. This allows us to define new Mackey functors which associates to any subgroup the K-theory of the corresponding equivariantized abelian category. In the case of an action by tensor autoequivalences, the Mackey functor at the level of Grothendieck rings has a Green functor structure. As an application we give a description of the Grothendieck rings of equivariantized fusion categories under group actions by tensor autoequivalences on graded fusion categories. In this settings, a new formula for the tensor product of any two simple objects ofmore » an equivariantized fusion category is given, simplifying the fusion formula from Burciu and Natale [J. Math. Phys. 54, 013511 (2013)].« less
Energy Flux Positivity and Unitarity in Conformal Field Theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kulaxizi, Manuela; Parnachev, Andrei
2011-01-07
We show that in most conformal field theories the condition of the energy flux positivity, proposed by Hofman and Maldacena, is equivalent to the absence of ghosts. At finite temperature and large energy and momenta, the two-point functions of the stress energy tensor develop light like poles. The residues of the poles can be computed, as long as the only spin-two conserved current, which appears in the stress energy tensor operator-product expansion and acquires a nonvanishing expectation value at finite temperature, is the stress energy tensor. The condition for the residues to stay positive and the theory to remain ghost-freemore » is equivalent to the condition of positivity of energy flux.« less
Tal, Aner; Wansink, Brian
2016-01-01
The appearance of being scientific can increase persuasiveness. Even trivial cues can create such an appearance of a scientific basis. In our studies, including simple elements, such as graphs (Studies 1-2) or a chemical formula (Study 3), increased belief in a medication's efficacy. This appears to be due to the association of such elements with science, rather than increased comprehensibility, use of visuals, or recall. Belief in science moderates the persuasive effect of graphs, such that people who have a greater belief in science are more affected by the presence of graphs (Study 2). Overall, the studies contribute to past research by demonstrating that even trivial elements can increase public persuasion despite their not truly indicating scientific expertise or objective support. © The Author(s) 2014.
On the locating domination number of corona product
NASA Astrophysics Data System (ADS)
Nur Santi, Risan; Hesti Agustin, Ika; Dafik; Alfarisi, Ridho
2018-04-01
Let G = (V(G), E(G) be a connected graph and vɛV(G). A dominating set for a graph G = (V, E) is a subset D of V such that every vertex not in D is adjacent to at least one member of D. The domination number γ(G) is the number of vertices in a smallest dominating set for G. Vertex set S in graph G = (V, E) is a locating dominating set if for each pair of distinct vertices u and v in V(G) ‑ S we have N(u)\\cap S\
Controllable Edge Feature Sharpening for Dental Applications
2014-01-01
This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry. PMID:24741376
Controllable edge feature sharpening for dental applications.
Fan, Ran; Jin, Xiaogang
2014-01-01
This paper presents a new approach to sharpen blurred edge features in scanned tooth preparation surfaces generated by structured-light scanners. It aims to efficiently enhance the edge features so that the embedded feature lines can be easily identified in dental CAD systems, and to avoid unnatural oversharpening geometry. We first separate the feature regions using graph-cut segmentation, which does not require a user-defined threshold. Then, we filter the face normal vectors to propagate the geometry from the smooth region to the feature region. In order to control the degree of the sharpness, we propose a feature distance measure which is based on normal tensor voting. Finally, the vertex positions are updated according to the modified face normal vectors. We have applied the approach to scanned tooth preparation models. The results show that the blurred edge features are enhanced without unnatural oversharpening geometry.
Calculators, Graphs, Gestures and the Production of Meaning
ERIC Educational Resources Information Center
Radford, Luis; Demers, Serge; Guzman, Jose; Cerulli, Michele
2003-01-01
In this paper we report an analysis of a teaching sequence in which Grade 11 students were asked to produce some graphs corresponding to the relationship between time and distance of a cylinder moving up and down an inclined plane. The students were also asked to carry out the experience using a TI 83+ graphic calculator equipped with a sensor,…
Function Plotters for Secondary Math Teachers. A MicroSIFT Quarterly Report.
ERIC Educational Resources Information Center
Weaver, Dave; And Others
This report examines mathematical graphing utilities or function plotters for use in introductory algebra classes of more advanced courses. Each product selected for inclusion in this report is able to construct the graph of a given equation on the screen and serves as a utility which may be used by the student for an open-ended exploration of a…
Analysis of the enzyme network involved in cattle milk production using graph theory.
Ghorbani, Sholeh; Tahmoorespur, Mojtaba; Masoudi Nejad, Ali; Nasiri, Mohammad; Asgari, Yazdan
2015-06-01
Understanding cattle metabolism and its relationship with milk products is important in bovine breeding. A systemic view could lead to consequences that will result in a better understanding of existing concepts. Topological indices and quantitative characterizations mostly result from the application of graph theory on biological data. In the present work, the enzyme network involved in cattle milk production was reconstructed and analyzed based on available bovine genome information using several public datasets (NCBI, Uniprot, KEGG, and Brenda). The reconstructed network consisted of 3605 reactions named by KEGG compound numbers and 646 enzymes that catalyzed the corresponding reactions. The characteristics of the directed and undirected network were analyzed using Graph Theory. The mean path length was calculated to be4.39 and 5.41 for directed and undirected networks, respectively. The top 11 hub enzymes whose abnormality could harm bovine health and reduce milk production were determined. Therefore, the aim of constructing the enzyme centric network was twofold; first to find out whether such network followed the same properties of other biological networks, and second, to find the key enzymes. The results of the present study can improve our understanding of milk production in cattle. Also, analysis of the enzyme network can help improve the modeling and simulation of biological systems and help design desired phenotypes to increase milk production quality or quantity.
Operational Monitoring of Data Production at KNMI
NASA Astrophysics Data System (ADS)
van de Vegte, John; Kwidama, Anecita; van Moosel, Wim; Oosterhof, Rijk; de Wit de Wit, Ronny; Klein Ikkink, Henk Jan; Som de Cerff, Wim; Verhoef, Hans; Koutek, Michal; Duin, Frank; van der Neut, Ian; verhagen, Robert; Wollerich, Rene
2016-04-01
Within KNMI a new fully automated system for monitoring the KNMI operational data production systems is being developed: PRISMA (PRocessflow Infrastructure Surveillance and Monitoring Application). Currently the KNMI operational (24/7) production systems consist of over 60 applications, running on different hardware systems and platforms. They are interlinked for the production of numerous data products, which are delivered to internal and external customers. Traditionally these applications are individually monitored by different applications or not at all; complicating root cause and impact analysis. Also, the underlying hardware and network is monitored via an isolated application. Goal of the PRISMA system is to enable production chain monitoring, which enables root cause analysis (what is the root cause of the disruption) and impact analysis (what downstream products/customers will be effected). The PRISMA system will make it possible to reduce existing monitoring applications and provides one interface for monitoring the data production. For modeling and storing the state of the production chains a graph database is used. The model is automatically updated by the applications and systems which are to be monitored. The graph models enables root cause and impact analysis. In the PRISMA web interface interaction with the graph model is accomplished via a graphical representation. The presentation will focus on aspects of: • Modeling real world computers, applications, products to a conceptual model; • Architecture of the system; • Configuration information and (real world) event handling of the to be monitored objects; • Implementation rules for root cause and impact analysis. • How PRISMA was developed (methodology, facts, results) • Presentation of the PRISMA system as it now looks and works
On synthetic gravitational waves from multi-field inflation
NASA Astrophysics Data System (ADS)
Ozsoy, Ogan
2018-04-01
We revisit the possibility of producing observable tensor modes through a continuous particle production process during inflation. Particularly, we focus on the multi-field realization of inflation where a spectator pseudoscalar σ induces a significant amplification of the U(1) gauge fields through the coupling propto σFμνtilde Fμν. In this model, both the scalar σ and the Abelian gauge fields are gravitationally coupled to the inflaton sector, therefore they can only affect the primordial scalar and tensor fluctuations through their mixing with gravitational fluctuations. Recent studies on this scenario show that the sourced contributions to the scalar correlators can be dangerously large to invalidate a large tensor power spectrum through the particle production mechanism. In this paper, we re-examine these recent claims by explicitly calculating the dominant contribution to the scalar power and bispectrum. Particularly, we show that once the current limits from CMB data are taken into account, it is still possible to generate a signal as large as r ≈ 10‑3 and the limitations on the model building are more relaxed than what was considered before.
Eckart frame vibration-rotation Hamiltonians: Contravariant metric tensor
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pesonen, Janne, E-mail: janne.pesonen@helsinki.fi
2014-02-21
Eckart frame is a unique embedding in the theory of molecular vibrations and rotations. It is defined by the condition that the Coriolis coupling of the reference structure of the molecule is zero for every choice of the shape coordinates. It is far from trivial to set up Eckart kinetic energy operators (KEOs), when the shape of the molecule is described by curvilinear coordinates. In order to obtain the KEO, one needs to set up the corresponding contravariant metric tensor. Here, I derive explicitly the Eckart frame rotational measuring vectors. Their inner products with themselves give the rotational elements, andmore » their inner products with the vibrational measuring vectors (which, in the absence of constraints, are the mass-weighted gradients of the shape coordinates) give the Coriolis elements of the contravariant metric tensor. The vibrational elements are given as the inner products of the vibrational measuring vectors with themselves, and these elements do not depend on the choice of the body-frame. The present approach has the advantage that it does not depend on any particular choice of the shape coordinates, but it can be used in conjunction with all shape coordinates. Furthermore, it does not involve evaluation of covariant metric tensors, chain rules of derivation, or numerical differentiation, and it can be easily modified if there are constraints on the shape of the molecule. Both the planar and non-planar reference structures are accounted for. The present method is particular suitable for numerical work. Its computational implementation is outlined in an example, where I discuss how to evaluate vibration-rotation energies and eigenfunctions of a general N-atomic molecule, the shape of which is described by a set of local polyspherical coordinates.« less
A Geometric Framework for the Kinematics of Crystals With Defects
2006-02-01
which parallel transport preserves dot products of vectors, i.e. r G G ¼ 0. It is called the Levi - Civita connection [57] or the Riemannian connection...yielding a null covariant derivative of the metric tensor is called a metric connection. The Levi – Civita connection of (8) is metric. Note that in...tensor formed by inserting the Levi – Civita con- nection (8) into (10). A geometric space B0 with metric G having R G ¼ 0 is called flat. One may show
On Anholonomic Deformation, Geometry, and Differentiation
2013-02-01
αβχ are not necessarily Levi - Civita connection coefficients). The vector cross product × obeys, for two vectors V and W and two covectors α and β , V...three-dimensional space. 2.2.5. Euclidean space. Let GAB(X ) = GA · GB be the metric tensor of the space. The Levi - Civita connection coefficients of GAB...curvature tensor of the Levi - Civita connection vanishes identically: G R A BCD = 2 ( ∂[B G A C]D + G A[B|E|G EC]D ) = 0. (43) In n
NASA Astrophysics Data System (ADS)
Bukchin, B. G.
1995-08-01
A special case of the seismic source, where the stress glut tensor can be expressed as a product of a uniform moment tensor and a scalar function of spatial coordinates and time, is considered. For such a source, a technique of determining stress glut moments of total degree 2 from surface wave amplitude spectra is described. The results of application of this technique for the estimation of spatio-temporal characteristics of the Georgian earthquake, 29.04.91 are presented.
Tree tensor network approach to simulating Shor's algorithm
NASA Astrophysics Data System (ADS)
Dumitrescu, Eugene
2017-12-01
Constructively simulating quantum systems furthers our understanding of qualitative and quantitative features which may be analytically intractable. In this paper, we directly simulate and explore the entanglement structure present in the paradigmatic example for exponential quantum speedups: Shor's algorithm. To perform our simulation, we construct a dynamic tree tensor network which manifestly captures two salient circuit features for modular exponentiation. These are the natural two-register bipartition and the invariance of entanglement with respect to permutations of the top-register qubits. Our construction help identify the entanglement entropy properties, which we summarize by a scaling relation. Further, the tree network is efficiently projected onto a matrix product state from which we efficiently execute the quantum Fourier transform. Future simulation of quantum information states with tensor networks exploiting circuit symmetries is discussed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kolda, Tamara Gibson
We propose two new multilinear operators for expressing the matrix compositions that are needed in the Tucker and PARAFAC (CANDECOMP) decompositions. The first operator, which we call the Tucker operator, is shorthand for performing an n-mode matrix multiplication for every mode of a given tensor and can be employed to concisely express the Tucker decomposition. The second operator, which we call the Kruskal operator, is shorthand for the sum of the outer-products of the columns of N matrices and allows a divorce from a matricized representation and a very concise expression of the PARAFAC decomposition. We explore the properties ofmore » the Tucker and Kruskal operators independently of the related decompositions. Additionally, we provide a review of the matrix and tensor operations that are frequently used in the context of tensor decompositions.« less
Long, Zhiliang; Duan, Xujun; Xie, Bing; Du, Handan; Li, Rong; Xu, Qiang; Wei, Luqing; Zhang, Shao-xiang; Wu, Yi; Gao, Qing; Chen, Huafu
2013-09-25
Post-traumatic stress disorder (PTSD) is characterized by dysfunction of several discrete brain regions such as medial prefrontal gyrus with hypoactivation and amygdala with hyperactivation. However, alterations of large-scale whole brain topological organization of structural networks remain unclear. Seventeen patients with PTSD in motor vehicle accident survivors and 15 normal controls were enrolled in our study. Large-scale structural connectivity network (SCN) was constructed using diffusion tensor tractography, followed by thresholding the mean factional anisotropy matrix of 90 brain regions. Graph theory analysis was then employed to investigate their aberrant topological properties. Both patient and control group showed small-world topology in their SCNs. However, patients with PTSD exhibited abnormal global properties characterized by significantly decreased characteristic shortest path length and normalized characteristic shortest path length. Furthermore, the patient group showed enhanced nodal centralities predominately in salience network including bilateral anterior cingulate and pallidum, and hippocampus/parahippocamus gyrus, and decreased nodal centralities mainly in medial orbital part of superior frontal gyrus. The main limitation of this study is the small sample of PTSD patients, which may lead to decrease the statistic power. Consequently, this study should be considered an exploratory analysis. These results are consistent with the notion that PTSD can be understood by investigating the dysfunction of large-scale, spatially distributed neural networks, and also provide structural evidences for further exploration of neurocircuitry models in PTSD. © 2013 Elsevier B.V. All rights reserved.
Connectomic correlates of response to treatment in first-episode psychosis
Crossley, Nicolas A; Marques, Tiago Reis; Taylor, Heather; Chaddock, Chris; Dell’Acqua, Flavio; Reinders, Antje A T S; Mondelli, Valeria; DiForti, Marta; Simmons, Andrew; David, Anthony S; Kapur, Shitij; Pariante, Carmine M; Murray, Robin M; Dazzan, Paola
2017-01-01
Abstract Connectomic approaches using diffusion tensor imaging have contributed to our understanding of brain changes in psychosis, and could provide further insights into the neural mechanisms underlying response to antipsychotic treatment. We here studied the brain network organization in patients at their first episode of psychosis, evaluating whether connectome-based descriptions of brain networks predict response to treatment, and whether they change after treatment. Seventy-six patients with a first episode of psychosis and 74 healthy controls were included. Thirty-three patients were classified as responders after 12 weeks of antipsychotic treatment. Baseline brain structural networks were built using whole-brain diffusion tensor imaging tractography, and analysed using graph analysis and network-based statistics to explore baseline characteristics of patients who subsequently responded to treatment. A subgroup of 43 patients was rescanned at the 12-week follow-up, to study connectomic changes over time in relation to treatment response. At baseline, those subjects who subsequently responded to treatment, compared to those that did not, showed higher global efficiency in their structural connectomes, a network configuration that theoretically facilitates the flow of information. We did not find specific connectomic changes related to treatment response after 12 weeks of treatment. Our data suggest that patients who have an efficiently-wired connectome at first onset of psychosis show a better subsequent response to antipsychotics. However, response is not accompanied by specific structural changes over time detectable with this method. PMID:28007987
Gene function prediction with gene interaction networks: a context graph kernel approach.
Li, Xin; Chen, Hsinchun; Li, Jiexun; Zhang, Zhu
2010-01-01
Predicting gene functions is a challenge for biologists in the postgenomic era. Interactions among genes and their products compose networks that can be used to infer gene functions. Most previous studies adopt a linkage assumption, i.e., they assume that gene interactions indicate functional similarities between connected genes. In this study, we propose to use a gene's context graph, i.e., the gene interaction network associated with the focal gene, to infer its functions. In a kernel-based machine-learning framework, we design a context graph kernel to capture the information in context graphs. Our experimental study on a testbed of p53-related genes demonstrates the advantage of using indirect gene interactions and shows the empirical superiority of the proposed approach over linkage-assumption-based methods, such as the algorithm to minimize inconsistent connected genes and diffusion kernels.
Distributed MPC based consensus for single-integrator multi-agent systems.
Cheng, Zhaomeng; Fan, Ming-Can; Zhang, Hai-Tao
2015-09-01
This paper addresses model predictive control schemes for consensus in multi-agent systems (MASs) with discrete-time single-integrator dynamics under switching directed interaction graphs. The control horizon is extended to be greater than one which endows the closed-loop system with extra degree of freedom. We derive sufficient conditions on the sampling period and the interaction graph to achieve consensus by using the property of infinite products of stochastic matrices. Consensus can be achieved asymptotically if the sampling period is selected such that the interaction graph among agents has a directed spanning tree jointly. Significantly, if the interaction graph always has a spanning tree, one can select an arbitrary large sampling period to guarantee consensus. Finally, several simulations are conducted to illustrate the effectiveness of the theoretical results. Copyright © 2015 ISA. Published by Elsevier Ltd. All rights reserved.
Krieger, M; Schwabenbauer, E-M; Hoischen-Taubner, S; Emanuelson, U; Sundrum, A
2018-03-01
Production diseases in dairy cows are multifactorial, which means they emerge from complex interactions between many different farm variables. Variables with a large impact on production diseases can be identified for groups of farms using statistical models, but these methods cannot be used to identify highly influential variables in individual farms. This, however, is necessary for herd health planning, because farm conditions and associated health problems vary largely between farms. The aim of this study was to rank variables according to their anticipated effect on production diseases on the farm level by applying a graph-based impact analysis on 192 European organic dairy farms. Direct impacts between 13 pre-defined variables were estimated for each farm during a round-table discussion attended by practitioners, that is farmer, veterinarian and herd advisor. Indirect impacts were elaborated through graph analysis taking into account impact strengths. Across farms, factors supposedly exerting the most influence on production diseases were 'feeding', 'hygiene' and 'treatment' (direct impacts), as well as 'knowledge and skills' and 'herd health monitoring' (indirect impacts). Factors strongly influenced by production diseases were 'milk performance', 'financial resources' and 'labour capacity' (directly and indirectly). Ranking of variables on the farm level revealed considerable differences between farms in terms of their most influential and most influenced farm factors. Consequently, very different strategies may be required to reduce production diseases in these farms. The method is based on perceptions and estimations and thus prone to errors. From our point of view, however, this weakness is clearly outweighed by the ability to assess and to analyse farm-specific relationships and thus to complement general knowledge with contextual knowledge. Therefore, we conclude that graph-based impact analysis represents a promising decision support tool for herd health planning. The next steps include testing the method using more specific and problem-oriented variables as well as evaluating its effectiveness.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sajib, Saurav Z. K.; Jeong, Woo Chul; Oh, Tong In
Anisotropy of biological tissues is a low-frequency phenomenon that is associated with the function and structure of cell membranes. Imaging of anisotropic conductivity has potential for the analysis of interactions between electromagnetic fields and biological systems, such as the prediction of current pathways in electrical stimulation therapy. To improve application to the clinical environment, precise approaches are required to understand the exact responses inside the human body subjected to the stimulated currents. In this study, we experimentally evaluate the anisotropic conductivity tensor distribution of canine brain tissues, using a recently developed diffusion tensor-magnetic resonance electrical impedance tomography method. At lowmore » frequency, electrical conductivity of the biological tissues can be expressed as a product of the mobility and concentration of ions in the extracellular space. From diffusion tensor images of the brain, we can obtain directional information on diffusive movements of water molecules, which correspond to the mobility of ions. The position dependent scale factor, which provides information on ion concentration, was successfully calculated from the magnetic flux density, to obtain the equivalent conductivity tensor. By combining the information from both techniques, we can finally reconstruct the anisotropic conductivity tensor images of brain tissues. The reconstructed conductivity images better demonstrate the enhanced signal intensity in strongly anisotropic brain regions, compared with those resulting from previous methods using a global scale factor.« less
NASA Astrophysics Data System (ADS)
di Lauro, C.
2018-03-01
Transformations of vector or tensor properties from a space-fixed to a molecule-fixed axis system are often required in the study of rotating molecules. Spherical components λμ,ν of a first rank irreducible tensor can be obtained from the direction cosines between the two axis systems, and a second rank tensor with spherical components λμ,ν(2) can be built from the direct product λ × λ. It is shown that the treatment of the interaction between molecular rotation and the electric quadrupole of a nucleus is greatly simplified, if the coefficients in the axis-system transformation of the gradient of the electric field of the outer charges at the coupled nucleus are arranged as spherical components λμ,ν(2). Then the reduced matrix elements of the field gradient operators in a symmetric top eigenfunction basis, including their dependence on the molecule-fixed z-angular momentum component k, can be determined from the knowledge of those of λ(2) . The hyperfine structure Hamiltonian Hq is expressed as the sum of terms characterized each by a value of the molecule-fixed index ν, whose matrix elements obey the rule Δk = ν. Some of these terms may vanish because of molecular symmetry, and the specific cases of linear and symmetric top molecules, orthorhombic molecules, and molecules with symmetry lower than orthorhombic are considered. Each ν-term consists of a contraction of the rotational tensor λ(2) and the nuclear quadrupole tensor in the space-fixed frame, and its matrix elements in the rotation-nuclear spin coupled representation can be determined by the standard spherical tensor methods.
Tensor hypercontraction. II. Least-squares renormalization
NASA Astrophysics Data System (ADS)
Parrish, Robert M.; Hohenstein, Edward G.; Martínez, Todd J.; Sherrill, C. David
2012-12-01
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)], 10.1063/1.4732310. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1/r12 operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N^5) effort if exact integrals are decomposed, or O(N^4) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N^4) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Tensor hypercontraction. II. Least-squares renormalization.
Parrish, Robert M; Hohenstein, Edward G; Martínez, Todd J; Sherrill, C David
2012-12-14
The least-squares tensor hypercontraction (LS-THC) representation for the electron repulsion integral (ERI) tensor is presented. Recently, we developed the generic tensor hypercontraction (THC) ansatz, which represents the fourth-order ERI tensor as a product of five second-order tensors [E. G. Hohenstein, R. M. Parrish, and T. J. Martínez, J. Chem. Phys. 137, 044103 (2012)]. Our initial algorithm for the generation of the THC factors involved a two-sided invocation of overlap-metric density fitting, followed by a PARAFAC decomposition, and is denoted PARAFAC tensor hypercontraction (PF-THC). LS-THC supersedes PF-THC by producing the THC factors through a least-squares renormalization of a spatial quadrature over the otherwise singular 1∕r(12) operator. Remarkably, an analytical and simple formula for the LS-THC factors exists. Using this formula, the factors may be generated with O(N(5)) effort if exact integrals are decomposed, or O(N(4)) effort if the decomposition is applied to density-fitted integrals, using any choice of density fitting metric. The accuracy of LS-THC is explored for a range of systems using both conventional and density-fitted integrals in the context of MP2. The grid fitting error is found to be negligible even for extremely sparse spatial quadrature grids. For the case of density-fitted integrals, the additional error incurred by the grid fitting step is generally markedly smaller than the underlying Coulomb-metric density fitting error. The present results, coupled with our previously published factorizations of MP2 and MP3, provide an efficient, robust O(N(4)) approach to both methods. Moreover, LS-THC is generally applicable to many other methods in quantum chemistry.
Zero, Victoria H.; Barocas, Adi; Jochimsen, Denim M.; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R.; Castillo, Jessica A.; Evans Mack, Diane; Linnell, Mark A.; Pigg, Rachel M.; Hoisington-Lopez, Jessica; Spear, Stephen F.; Murphy, Melanie A.; Waits, Lisette P.
2017-01-01
The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel (Urocitellus brunneus) and the southern Idaho ground squirrel (U. endemicus), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions. PMID:28659969
A Hybrid Task Graph Scheduler for High Performance Image Processing Workflows.
Blattner, Timothy; Keyrouz, Walid; Bhattacharyya, Shuvra S; Halem, Milton; Brady, Mary
2017-12-01
Designing applications for scalability is key to improving their performance in hybrid and cluster computing. Scheduling code to utilize parallelism is difficult, particularly when dealing with data dependencies, memory management, data motion, and processor occupancy. The Hybrid Task Graph Scheduler (HTGS) improves programmer productivity when implementing hybrid workflows for multi-core and multi-GPU systems. The Hybrid Task Graph Scheduler (HTGS) is an abstract execution model, framework, and API that increases programmer productivity when implementing hybrid workflows for such systems. HTGS manages dependencies between tasks, represents CPU and GPU memories independently, overlaps computations with disk I/O and memory transfers, keeps multiple GPUs occupied, and uses all available compute resources. Through these abstractions, data motion and memory are explicit; this makes data locality decisions more accessible. To demonstrate the HTGS application program interface (API), we present implementations of two example algorithms: (1) a matrix multiplication that shows how easily task graphs can be used; and (2) a hybrid implementation of microscopy image stitching that reduces code size by ≈ 43% compared to a manually coded hybrid workflow implementation and showcases the minimal overhead of task graphs in HTGS. Both of the HTGS-based implementations show good performance. In image stitching the HTGS implementation achieves similar performance to the hybrid workflow implementation. Matrix multiplication with HTGS achieves 1.3× and 1.8× speedup over the multi-threaded OpenBLAS library for 16k × 16k and 32k × 32k size matrices, respectively.
Zero, Victoria H; Barocas, Adi; Jochimsen, Denim M; Pelletier, Agnès; Giroux-Bougard, Xavier; Trumbo, Daryl R; Castillo, Jessica A; Evans Mack, Diane; Linnell, Mark A; Pigg, Rachel M; Hoisington-Lopez, Jessica; Spear, Stephen F; Murphy, Melanie A; Waits, Lisette P
2017-01-01
The persistence of small populations is influenced by genetic structure and functional connectivity. We used two network-based approaches to understand the persistence of the northern Idaho ground squirrel ( Urocitellus brunneus) and the southern Idaho ground squirrel ( U. endemicus ), two congeners of conservation concern. These graph theoretic approaches are conventionally applied to social or transportation networks, but here are used to study population persistence and connectivity. Population graph analyses revealed that local extinction rapidly reduced connectivity for the southern species, while connectivity for the northern species could be maintained following local extinction. Results from gravity models complemented those of population graph analyses, and indicated that potential vegetation productivity and topography drove connectivity in the northern species. For the southern species, development (roads) and small-scale topography reduced connectivity, while greater potential vegetation productivity increased connectivity. Taken together, the results of the two network-based methods (population graph analyses and gravity models) suggest the need for increased conservation action for the southern species, and that management efforts have been effective at maintaining habitat quality throughout the current range of the northern species. To prevent further declines, we encourage the continuation of management efforts for the northern species, whereas conservation of the southern species requires active management and additional measures to curtail habitat fragmentation. Our combination of population graph analyses and gravity models can inform conservation strategies of other species exhibiting patchy distributions.
Industrial wood productivity in the United States, 1900-1998
Peter J. Ince
2000-01-01
The productivity of U.S. wood and paper product output in terms of wood input is computed and displayed in graphs. Background tables provide supporting data. The productivity trend parallels trends in the recovered paper utilization rate. Recycling and wood residue use are key factors in productivity gains.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cui, Shawn X., E-mail: xingshan@math.ucsb.edu; Quantum Architectures and Computation Group, Microsoft Research, Redmond, Washington 98052; Freedman, Michael H., E-mail: michaelf@microsoft.com
2016-06-15
The classical max-flow min-cut theorem describes transport through certain idealized classical networks. We consider the quantum analog for tensor networks. By associating an integral capacity to each edge and a tensor to each vertex in a flow network, we can also interpret it as a tensor network and, more specifically, as a linear map from the input space to the output space. The quantum max-flow is defined to be the maximal rank of this linear map over all choices of tensors. The quantum min-cut is defined to be the minimum product of the capacities of edges over all cuts ofmore » the tensor network. We show that unlike the classical case, the quantum max-flow=min-cut conjecture is not true in general. Under certain conditions, e.g., when the capacity on each edge is some power of a fixed integer, the quantum max-flow is proved to equal the quantum min-cut. However, concrete examples are also provided where the equality does not hold. We also found connections of quantum max-flow/min-cut with entropy of entanglement and the quantum satisfiability problem. We speculate that the phenomena revealed may be of interest both in spin systems in condensed matter and in quantum gravity.« less
Jooya, Hossein Z.; Reihani, Kamran; Chu, Shih-I
2016-11-21
We propose a graph-theoretical formalism to study generic circuit quantum electrodynamics systems consisting of a two level qubit coupled with a single-mode resonator in arbitrary coupling strength regimes beyond rotating-wave approximation. We define colored-weighted graphs, and introduce different products between them to investigate the dynamics of superconducting qubits in transverse, longitudinal, and bidirectional coupling schemes. In conclusion, the intuitive and predictive picture provided by this method, and the simplicity of the mathematical construction, are demonstrated with some numerical studies of the multiphoton resonance processes and quantum interference phenomena for the superconducting qubit systems driven by intense ac fields.
Coupling coefficients for tensor product representations of quantum SU(2)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Groenevelt, Wolter, E-mail: w.g.m.groenevelt@tudelft.nl
2014-10-15
We study tensor products of infinite dimensional irreducible {sup *}-representations (not corepresentations) of the SU(2) quantum group. We obtain (generalized) eigenvectors of certain self-adjoint elements using spectral analysis of Jacobi operators associated to well-known q-hypergeometric orthogonal polynomials. We also compute coupling coefficients between different eigenvectors corresponding to the same eigenvalue. Since the continuous spectrum has multiplicity two, the corresponding coupling coefficients can be considered as 2 × 2-matrix-valued orthogonal functions. We compute explicitly the matrix elements of these functions. The coupling coefficients can be considered as q-analogs of Bessel functions. As a results we obtain several q-integral identities involving q-hypergeometricmore » orthogonal polynomials and q-Bessel-type functions.« less
Tensor network states and algorithms in the presence of a global SU(2) symmetry
NASA Astrophysics Data System (ADS)
Singh, Sukhwinder; Vidal, Guifre
2012-11-01
The benefits of exploiting the presence of symmetries in tensor network algorithms have been extensively demonstrated in the context of matrix product states (MPSs). These include the ability to select a specific symmetry sector (e.g., with a given particle number or spin), to ensure the exact preservation of total charge, and to significantly reduce computational costs. Compared to the case of a generic tensor network, the practical implementation of symmetries in the MPS is simplified by the fact that tensors only have three indices (they are trivalent, just as the Clebsch-Gordan coefficients of the symmetry group) and are organized as a one-dimensional array of tensors, without closed loops. Instead, a more complex tensor network, one where tensors have a larger number of indices and/or a more elaborate network structure, requires a more general treatment. In two recent papers, namely, (i) [Singh, Pfeifer, and Vidal, Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.82.050301 82, 050301 (2010)] and (ii) [Singh, Pfeifer, and Vidal, Phys. Rev. BPRBMDO1098-012110.1103/PhysRevB.83.115125 83, 115125 (2011)], we described how to incorporate a global internal symmetry into a generic tensor network algorithm based on decomposing and manipulating tensors that are invariant under the symmetry. In (i) we considered a generic symmetry group G that is compact, completely reducible, and multiplicity free, acting as a global internal symmetry. Then, in (ii) we described the implementation of Abelian group symmetries in much more detail, considering a U(1) symmetry (e.g., conservation of global particle number) as a concrete example. In this paper, we describe the implementation of non-Abelian group symmetries in great detail. For concreteness, we consider an SU(2) symmetry (e.g., conservation of global quantum spin). Our formalism can be readily extended to more exotic symmetries associated with conservation of total fermionic or anyonic charge. As a practical demonstration, we describe the SU(2)-invariant version of the multiscale entanglement renormalization ansatz and apply it to study the low-energy spectrum of a quantum spin chain with a global SU(2) symmetry.
Segmentation of DTI based on tensorial morphological gradient
NASA Astrophysics Data System (ADS)
Rittner, Leticia; de Alencar Lotufo, Roberto
2009-02-01
This paper presents a segmentation technique for diffusion tensor imaging (DTI). This technique is based on a tensorial morphological gradient (TMG), defined as the maximum dissimilarity over the neighborhood. Once this gradient is computed, the tensorial segmentation problem becomes an scalar one, which can be solved by conventional techniques, such as watershed transform and thresholding. Similarity functions, namely the dot product, the tensorial dot product, the J-divergence and the Frobenius norm, were compared, in order to understand their differences regarding the measurement of tensor dissimilarities. The study showed that the dot product and the tensorial dot product turned out to be inappropriate for computation of the TMG, while the Frobenius norm and the J-divergence were both capable of measuring tensor dissimilarities, despite the distortion of Frobenius norm, since it is not an affine invariant measure. In order to validate the TMG as a solution for DTI segmentation, its computation was performed using distinct similarity measures and structuring elements. TMG results were also compared to fractional anisotropy. Finally, synthetic and real DTI were used in the method validation. Experiments showed that the TMG enables the segmentation of DTI by watershed transform or by a simple choice of a threshold. The strength of the proposed segmentation method is its simplicity and robustness, consequences of TMG computation. It enables the use, not only of well-known algorithms and tools from the mathematical morphology, but also of any other segmentation method to segment DTI, since TMG computation transforms tensorial images in scalar ones.
Student reasoning about graphs in different contexts
NASA Astrophysics Data System (ADS)
Ivanjek, Lana; Susac, Ana; Planinic, Maja; Andrasevic, Aneta; Milin-Sipus, Zeljka
2016-06-01
This study investigates university students' graph interpretation strategies and difficulties in mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel (isomorphic) mathematics, physics, and other context questions about graphs, which were developed by us, were administered to 385 first-year students at the Faculty of Science, University of Zagreb. Students were asked to provide explanations and/or mathematical procedures with their answers. Students' main strategies and difficulties identified through the analysis of those explanations and procedures are described. Student strategies of graph interpretation were found to be largely context dependent and domain specific. A small fraction of students have used the same strategy in all three domains (mathematics, physics, and other contexts) on most sets of parallel questions. Some students have shown indications of transfer of knowledge in the sense that they used techniques and strategies developed in physics for solving (or attempting to solve) other context problems. In physics, the preferred strategy was the use of formulas, which sometimes seemed to block the use of other, more productive strategies which students displayed in other domains. Students' answers indicated the presence of slope-height confusion and interval-point confusion in all three domains. Students generally better interpreted graph slope than the area under a graph, although the concept of slope still seemed to be quite vague for many. The interpretation of the concept of area under a graph needs more attention in both physics and mathematics teaching.
Discrete geometric analysis of message passing algorithm on graphs
NASA Astrophysics Data System (ADS)
Watanabe, Yusuke
2010-04-01
We often encounter probability distributions given as unnormalized products of non-negative functions. The factorization structures are represented by hypergraphs called factor graphs. Such distributions appear in various fields, including statistics, artificial intelligence, statistical physics, error correcting codes, etc. Given such a distribution, computations of marginal distributions and the normalization constant are often required. However, they are computationally intractable because of their computational costs. One successful approximation method is Loopy Belief Propagation (LBP) algorithm. The focus of this thesis is an analysis of the LBP algorithm. If the factor graph is a tree, i.e. having no cycle, the algorithm gives the exact quantities. If the factor graph has cycles, however, the LBP algorithm does not give exact results and possibly exhibits oscillatory and non-convergent behaviors. The thematic question of this thesis is "How the behaviors of the LBP algorithm are affected by the discrete geometry of the factor graph?" The primary contribution of this thesis is the discovery of a formula that establishes the relation between the LBP, the Bethe free energy and the graph zeta function. This formula provides new techniques for analysis of the LBP algorithm, connecting properties of the graph and of the LBP and the Bethe free energy. We demonstrate applications of the techniques to several problems including (non) convexity of the Bethe free energy, the uniqueness and stability of the LBP fixed point. We also discuss the loop series initiated by Chertkov and Chernyak. The loop series is a subgraph expansion of the normalization constant, or partition function, and reflects the graph geometry. We investigate theoretical natures of the series. Moreover, we show a partial connection between the loop series and the graph zeta function.
NASA Astrophysics Data System (ADS)
Feng, Q. L.; Li, C.; Liao, Y. F.
2017-12-01
Short fiber reinforced EPDM is a new kind of composite material used in solid rocket motor winding and coating. It has relatively large deformation under the small stress condition, and the physical non-linear characteristic is obvious. Due to the addition of fiber in the specific direction of the rubber, the macroscopic mechanical properties are expressed as transversely isotropic properties. In order to describe the mechanical behavior under the impact and vibration, the transversely isotropic hyperelastic constitutive model based on tensor function is proposed. The symmetry of the transversely isotropic incompressible material limits the stress tensor ‘ K ’ to be characterized as a function of 5 tensor invariants and 4 scalar invariants. The third power constitutive equations of the model give 12 independent elastic constants of the transversely isotropic nonlinear elastic material. The experimental results show that the non-zero elastic constants are different in the fiber direction and at the different strain rate. Number and value of adiabatic layer and related products R & D has a reference value.
Jiang, Wenyu; Li, Jianping; Chen, Xuemei; Ye, Wei; Zheng, Jinou
2017-01-01
Previous studies have shown that temporal lobe epilepsy (TLE) involves abnormal structural or functional connectivity in specific brain areas. However, limited comprehensive studies have been conducted on TLE associated changes in the topological organization of structural and functional networks. Additionally, epilepsy is associated with impairment in alertness, a fundamental component of attention. In this study, structural networks were constructed using diffusion tensor imaging tractography, and functional networks were obtained from resting-state functional MRI temporal series correlations in 20 right temporal lobe epilepsy (rTLE) patients and 19 healthy controls. Global network properties were computed by graph theoretical analysis, and correlations were assessed between global network properties and alertness. The results from these analyses showed that rTLE patients exhibit abnormal small-world attributes in structural and functional networks. Structural networks shifted toward more regular attributes, but functional networks trended toward more random attributes. After controlling for the influence of the disease duration, negative correlations were found between alertness, small-worldness, and the cluster coefficient. However, alertness did not correlate with either the characteristic path length or global efficiency in rTLE patients. Our findings show that disruptions of the topological construction of brain structural and functional networks as well as small-world property bias are associated with deficits in alertness in rTLE patients. These data suggest that reorganization of brain networks develops as a mechanism to compensate for altered structural and functional brain function during disease progression.
Abnormal brain white matter network in young smokers: a graph theory analysis study.
Zhang, Yajuan; Li, Min; Wang, Ruonan; Bi, Yanzhi; Li, Yangding; Yi, Zhang; Liu, Jixin; Yu, Dahua; Yuan, Kai
2018-04-01
Previous diffusion tensor imaging (DTI) studies had investigated the white matter (WM) integrity abnormalities in some specific fiber bundles in smokers. However, little is known about the changes in topological organization of WM structural network in young smokers. In current study, we acquired DTI datasets from 58 male young smokers and 51 matched nonsmokers and constructed the WM networks by the deterministic fiber tracking approach. Graph theoretical analysis was used to compare the topological parameters of WM network (global and nodal) and the inter-regional fractional anisotropy (FA) weighted WM connections between groups. The results demonstrated that both young smokers and nonsmokers had small-world topology in WM network. Further analysis revealed that the young smokers exhibited the abnormal topological organization, i.e., increased network strength, global efficiency, and decreased shortest path length. In addition, the increased nodal efficiency predominately was located in frontal cortex, striatum and anterior cingulate gyrus (ACG) in smokers. Moreover, based on network-based statistic (NBS) approach, the significant increased FA-weighted WM connections were mainly found in the PFC, ACG and supplementary motor area (SMA) regions. Meanwhile, the network parameters were correlated with the nicotine dependence severity (FTND) scores, and the nodal efficiency of orbitofrontal cortex was positive correlation with the cigarette per day (CPD) in young smokers. We revealed the abnormal topological organization of WM network in young smokers, which may improve our understanding of the neural mechanism of young smokers form WM topological organization level.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder.
Dean, Douglas C; Travers, Brittany G; Adluru, Nagesh; Tromp, Do P M; Destiche, Daniel J; Samsin, Danica; Prigge, Molly B; Zielinski, Brandon A; Fletcher, P Thomas; Anderson, Jeffrey S; Froehlich, Alyson L; Bigler, Erin D; Lange, Nicholas; Lainhart, Janet E; Alexander, Andrew L
2016-06-01
White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD.
Investigating the Microstructural Correlation of White Matter in Autism Spectrum Disorder
Travers, Brittany G.; Adluru, Nagesh; Tromp, Do P.M.; Destiche, Daniel J.; Samsin, Danica; Prigge, Molly B.; Zielinski, Brandon A.; Fletcher, P. Thomas; Anderson, Jeffrey S.; Froehlich, Alyson L.; Bigler, Erin D.; Lange, Nicholas; Lainhart, Janet E.; Alexander, Andrew L.
2016-01-01
Abstract White matter microstructure forms a complex and dynamical system that is critical for efficient and synchronized brain function. Neuroimaging findings in children with autism spectrum disorder (ASD) suggest this condition is associated with altered white matter microstructure, which may lead to atypical macroscale brain connectivity. In this study, we used diffusion tensor imaging measures to examine the extent that white matter tracts are interrelated within ASD and typical development. We assessed the strength of inter-regional white matter correlations between typically developing and ASD diagnosed individuals. Using hierarchical clustering analysis, clustering patterns of the pairwise white matter correlations were constructed and revealed to be different between the two groups. Additionally, we explored the use of graph theory analysis to examine the characteristics of the patterns formed by inter-regional white matter correlations and compared these properties between ASD and typical development. We demonstrate that the ASD sample has significantly less coherence in white matter microstructure across the brain compared to that in the typical development sample. The ASD group also presented altered topological characteristics, which may implicate less efficient brain networking in ASD. These findings highlight the potential of graph theory based network characteristics to describe the underlying networks as measured by diffusion magnetic resonance imaging and furthermore indicates that ASD may be associated with altered brain network characteristics. Our findings are consistent with those of a growing number of studies and hypotheses that have suggested disrupted brain connectivity in ASD. PMID:27021440
Interactive graphics for the Macintosh: software review of FlexiGraphs.
Antonak, R F
1990-01-01
While this product is clearly unique, its usefulness to individuals outside small business environments is somewhat limited. FlexiGraphs is, however, a reasonable first attempt to design a microcomputer software package that controls data through interactive editing within a graph. Although the graphics capabilities of mainframe programs such as MINITAB (Ryan, Joiner, & Ryan, 1981) and the graphic manipulations available through exploratory data analysis (e.g., Velleman & Hoaglin, 1981) will not be surpassed anytime soon by this program, a researcher may want to add this program to a software library containing other Macintosh statistics, drawing, and graphics programs if only to obtain the easy-to-obtain curve fitting and line smoothing options. I welcome the opportunity to review the enhanced "scientific" version of FlexiGraphs that the author of the program indicates is currently under development. An MS-DOS version of the program should be available within the year.
Topology and static response of interaction networks in molecular biology
Radulescu, Ovidiu; Lagarrigue, Sandrine; Siegel, Anne; Veber, Philippe; Le Borgne, Michel
2005-01-01
We introduce a mathematical framework describing static response of networks occurring in molecular biology. This formalism has many similarities with the Laplace–Kirchhoff equations for electrical networks. We introduce the concept of graph boundary and we show how the response of the biological networks to external perturbations can be related to the Dirichlet or Neumann problems for the corresponding equations on the interaction graph. Solutions to these two problems are given in terms of path moduli (measuring path rigidity with respect to the propagation of interaction along the graph). Path moduli are related to loop products in the interaction graph via generalized Mason–Coates formulae. We apply our results to two specific biological examples: the lactose operon and the genetic regulation of lipogenesis. Our applications show consistency with experimental results and in the case of lipogenesis check some hypothesis on the behaviour of hepatic fatty acids on fasting. PMID:16849230
Locating sources within a dense sensor array using graph clustering
NASA Astrophysics Data System (ADS)
Gerstoft, P.; Riahi, N.
2017-12-01
We develop a model-free technique to identify weak sources within dense sensor arrays using graph clustering. No knowledge about the propagation medium is needed except that signal strengths decay to insignificant levels within a scale that is shorter than the aperture. We then reinterpret the spatial coherence matrix of a wave field as a matrix whose support is a connectivity matrix of a graph with sensors as vertices. In a dense network, well-separated sources induce clusters in this graph. The geographic spread of these clusters can serve to localize the sources. The support of the covariance matrix is estimated from limited-time data using a hypothesis test with a robust phase-only coherence test statistic combined with a physical distance criterion. The latter criterion ensures graph sparsity and thus prevents clusters from forming by chance. We verify the approach and quantify its reliability on a simulated dataset. The method is then applied to data from a dense 5200 element geophone array that blanketed of the city of Long Beach (CA). The analysis exposes a helicopter traversing the array and oil production facilities.
Model validation of simple-graph representations of metabolism
Holme, Petter
2009-01-01
The large-scale properties of chemical reaction systems, such as metabolism, can be studied with graph-based methods. To do this, one needs to reduce the information, lists of chemical reactions, available in databases. Even for the simplest type of graph representation, this reduction can be done in several ways. We investigate different simple network representations by testing how well they encode information about one biologically important network structure—network modularity (the propensity for edges to be clustered into dense groups that are sparsely connected between each other). To achieve this goal, we design a model of reaction systems where network modularity can be controlled and measure how well the reduction to simple graphs captures the modular structure of the model reaction system. We find that the network types that best capture the modular structure of the reaction system are substrate–product networks (where substrates are linked to products of a reaction) and substance networks (with edges between all substances participating in a reaction). Furthermore, we argue that the proposed model for reaction systems with tunable clustering is a general framework for studies of how reaction systems are affected by modularity. To this end, we investigate statistical properties of the model and find, among other things, that it recreates correlations between degree and mass of the molecules. PMID:19158012
Monitoring operational data production applying Big Data tooling
NASA Astrophysics Data System (ADS)
Som de Cerff, Wim; de Jong, Hotze; van den Berg, Roy; Bos, Jeroen; Oosterhoff, Rijk; Klein Ikkink, Henk Jan; Haga, Femke; Elsten, Tom; Verhoef, Hans; Koutek, Michal; van de Vegte, John
2015-04-01
Within the KNMI Deltaplan programme for improving the KNMI operational infrastructure an new fully automated system for monitoring the KNMI operational data production systems is being developed: PRISMA (PRocessflow Infrastructure Surveillance and Monitoring Application). Currently the KNMI operational (24/7) production systems consist of over 60 applications, running on different hardware systems and platforms. They are interlinked for the production of numerous data products, which are delivered to internal and external customers. All applications are individually monitored by different applications, complicating root cause and impact analysis. Also, the underlying hardware and network is monitored separately using Zabbix. Goal of the new system is to enable production chain monitoring, which enables root cause analysis (what is the root cause of the disruption) and impact analysis (what other products will be effected). The PRISMA system will make it possible to dispose all the existing monitoring applications, providing one interface for monitoring the data production. For modeling the production chain, the Neo4j Graph database is used to store and query the model. The model can be edited through the PRISMA web interface, but is mainly automatically provided by the applications and systems which are to be monitored. The graph enables us to do root case and impact analysis. The graph can be visualized in the PRISMA web interface on different levels. Each 'monitored object' in the model will have a status (OK, error, warning, unknown). This status is derived by combing all log information available. For collecting and querying the log information Splunk is used. The system is developed using Scrum, by a multi-disciplinary team consisting of analysts, developers, a tester and interaction designer. In the presentation we will focus on the lessons learned working with the 'Big data' tooling Splunk and Neo4J.
A tensor approach to modeling of nonhomogeneous nonlinear systems
NASA Technical Reports Server (NTRS)
Yurkovich, S.; Sain, M.
1980-01-01
Model following control methodology plays a key role in numerous application areas. Cases in point include flight control systems and gas turbine engine control systems. Typical uses of such a design strategy involve the determination of nonlinear models which generate requested control and response trajectories for various commands. Linear multivariable techniques provide trim about these motions; and protection logic is added to secure the hardware from excursions beyond the specification range. This paper reports upon experience in developing a general class of such nonlinear models based upon the idea of the algebraic tensor product.
High-performance analysis of filtered semantic graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Buluc, Aydin; Fox, Armando; Gilbert, John R.
2012-01-01
High performance is a crucial consideration when executing a complex analytic query on a massive semantic graph. In a semantic graph, vertices and edges carry "attributes" of various types. Analytic queries on semantic graphs typically depend on the values of these attributes; thus, the computation must either view the graph through a filter that passes only those individual vertices and edges of interest, or else must first materialize a subgraph or subgraphs consisting of only the vertices and edges of interest. The filtered approach is superior due to its generality, ease of use, and memory efficiency, but may carry amore » performance cost. In the Knowledge Discovery Toolbox (KDT), a Python library for parallel graph computations, the user writes filters in a high-level language, but those filters result in relatively low performance due to the bottleneck of having to call into the Python interpreter for each edge. In this work, we use the Selective Embedded JIT Specialization (SEJITS) approach to automatically translate filters defined by programmers into a lower-level efficiency language, bypassing the upcall into Python. We evaluate our approach by comparing it with the high-performance C++ /MPI Combinatorial BLAS engine, and show that the productivity gained by using a high-level filtering language comes without sacrificing performance.« less
High-Performance Data Analytics Beyond the Relational and Graph Data Models with GEMS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Castellana, Vito G.; Minutoli, Marco; Bhatt, Shreyansh
Graphs represent an increasingly popular data model for data-analytics, since they can naturally represent relationships and interactions between entities. Relational databases and their pure table-based data model are not well suitable to store and process sparse data. Consequently, graph databases have gained interest in the last few years and the Resource Description Framework (RDF) became the standard data model for graph data. Nevertheless, while RDF is well suited to analyze the relationships between the entities, it is not efficient in representing their attributes and properties. In this work we propose the adoption of a new hybrid data model, based onmore » attributed graphs, that aims at overcoming the limitations of the pure relational and graph data models. We present how we have re-designed the GEMS data-analytics framework to fully take advantage of the proposed hybrid data model. To improve analysts productivity, in addition to a C++ API for applications development, we adopt GraQL as input query language. We validate our approach implementing a set of queries on net-flow data and we compare our framework performance against Neo4j. Experimental results show significant performance improvement over Neo4j, up to several orders of magnitude when increasing the size of the input data.« less
Droplet states in quantum XXZ spin systems on general graphs
NASA Astrophysics Data System (ADS)
Fischbacher, C.; Stolz, G.
2018-05-01
We study XXZ spin systems on general graphs. In particular, we describe the formation of droplet states near the bottom of the spectrum in the Ising phase of the model, where the Z-term dominates the XX-term. As key tools, we use particle number conservation of XXZ systems and symmetric products of graphs with their associated adjacency matrices and Laplacians. Of particular interest to us are strips and multi-dimensional Euclidean lattices, for which we discuss the existence of spectral gaps above the droplet regime. We also prove a Combes-Thomas bound which shows that the eigenstates in the droplet regime are exponentially small perturbations of strict (classical) droplets.
Ground state of high-density matter
NASA Technical Reports Server (NTRS)
Copeland, ED; Kolb, Edward W.; Lee, Kimyeong
1988-01-01
It is shown that if an upper bound to the false vacuum energy of the electroweak Higgs potential is satisfied, the true ground state of high-density matter is not nuclear matter, or even strange-quark matter, but rather a non-topological soliton where the electroweak symmetry is exact and the fermions are massless. This possibility is examined in the standard SU(3) sub C tensor product SU(2) sub L tensor product U(1) sub Y model. The bound to the false vacuum energy is satisfied only for a narrow range of the Higgs boson masses in the minimal electroweak model (within about 10 eV of its minimum allowed value of 6.6 GeV) and a somewhat wider range for electroweak models with a non-minimal Higgs sector.
NASA Astrophysics Data System (ADS)
Hohenstein, Edward G.; Parrish, Robert M.; Martínez, Todd J.
2012-07-01
Many approximations have been developed to help deal with the O(N4) growth of the electron repulsion integral (ERI) tensor, where N is the number of one-electron basis functions used to represent the electronic wavefunction. Of these, the density fitting (DF) approximation is currently the most widely used despite the fact that it is often incapable of altering the underlying scaling of computational effort with respect to molecular size. We present a method for exploiting sparsity in three-center overlap integrals through tensor decomposition to obtain a low-rank approximation to density fitting (tensor hypercontraction density fitting or THC-DF). This new approximation reduces the 4th-order ERI tensor to a product of five matrices, simultaneously reducing the storage requirement as well as increasing the flexibility to regroup terms and reduce scaling behavior. As an example, we demonstrate such a scaling reduction for second- and third-order perturbation theory (MP2 and MP3), showing that both can be carried out in O(N4) operations. This should be compared to the usual scaling behavior of O(N5) and O(N6) for MP2 and MP3, respectively. The THC-DF technique can also be applied to other methods in electronic structure theory, such as coupled-cluster and configuration interaction, promising significant gains in computational efficiency and storage reduction.
Primordial perturbations from dilaton-induced gauge fields
DOE Office of Scientific and Technical Information (OSTI.GOV)
Choi, Kiwoon; Choi, Ki-Young; Kim, Hyungjin
2015-10-01
We study the primordial scalar and tensor perturbations in inflation scenario involving a spectator dilaton field. In our setup, the rolling spectator dilaton causes a tachyonic instability of gauge fields, leading to a copious production of gauge fields in the superhorizon regime, which generates additional scalar and tensor perturbations through gravitational interactions. Our prime concern is the possibility to enhance the tensor-to-scalar ratio r relative to the standard result, while satisfying the observational constraints. To this end, we allow the dilaton field to be stabilized before the end of inflation, but after the CMB scales exit the horizon. We showmore » that for the inflaton slow roll parameter ε ∼> 10{sup −3}, the tensor-to-scalar ratio in our setup can be enhanced only by a factor of O(1) compared to the standard result. On the other hand, for smaller ε corresponding to a lower inflation energy scale, a much bigger enhancement can be achieved, so that our setup can give rise to an observably large r∼> 10{sup −2} even when ε|| 10{sup −3}. The tensor perturbation sourced by the spectator dilaton can have a strong scale dependence, and is generically red-tilted. We also discuss a specific model to realize our scenario, and identify the parameter region giving an observably large r for relatively low inflation energy scales.« less
ERIC Educational Resources Information Center
Moore-Russo, Deborah A.; Cortes-Figueroa, Jose E.; Schuman, Michael J.
2006-01-01
The use of Calculator-Based Laboratory (CBL) technology, the graphing calculator, and the cooling and heating of water to model the behavior of consecutive first-order reactions is presented, where B is the reactant, I is the intermediate, and P is the product for an in-class demonstration. The activity demonstrates the spontaneous and consecutive…
Turbulent Kinetic Energy (TKE) Budgets Using 5-beam Doppler Profilers
NASA Astrophysics Data System (ADS)
Guerra, M. A.; Thomson, J. M.
2016-12-01
Field observations of turbulence parameters are important for the development of hydrodynamic models, understanding contaminant mixing, and predicting sediment transport. The turbulent kinetic energy (TKE) budget quantifies where turbulence is being produced, dissipated or transported at a specific site. The Nortek Signature 5-beam AD2CP was used to measure velocities at high sampling rates (up to 8 Hz) at Admiralty Inlet and Rich Passage in Puget Sound, WA, USA. Raw along-beam velocity data is quality controlled and is used to estimate TKE spectra, spatial structure functions, and Reynolds stress tensors. Exceptionally low Doppler noise in the data enables clear observations of the inertial sub-range of isotropic turbulence in both the frequency TKE spectra and the spatial structure functions. From these, TKE dissipation rates are estimated following Kolmogorov's theory of turbulence. The TKE production rates are estimated using Reynolds stress tensors together with the vertical shear in the mean flow. The Reynolds stress tensors are estimated following the methodology of Dewey and Stinger (2007), which is significantly improved by inclusion of the 5th beam (as opposed to the conventional 4). These turbulence parameters are used to study the TKE budget along the water column at the two sites. Ebb and flood production and dissipation rates are compared through the water column at both sites. At Admiralty Inlet, dissipation exceeds production during ebb while the opposite occurs during flood because the proximity to a lateral headland. At Rich Passage, production exceeds dissipation through the water column for all tidal conditions due to a vertical sill in the vicinity of the measurement site.
Employment in the U.S. Chemical Industry. Chemical Work Force Tops 1.1 Million.
ERIC Educational Resources Information Center
Chemical and Engineering News, 1990
1990-01-01
The annual census of industrial employment, production workers, women, the workweek, scientists and engineers, chemical employment, wages, and productivity in the chemical industry is presented. Trends in the numbers of workers, productivity, and unit labor costs are illustrated in graphs. (CW)
Agricultural Products | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag News Contact Us Search ï Log inRegister Home Home Agricultural Products NEWT: National Extension Web , tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed Composition
Layout design in order to improve efficiency in manufacturing
NASA Astrophysics Data System (ADS)
Siregar, I.; Tarigan, U.; Nasution, T. H.
2018-02-01
This research was conducted at the company that produces bobbins and ream type cigarette paper. Problems that found on the production process is the back and forth (back tracking) movement. Back and forth (back tracking) movement extending the total distance moved by the material and increase the total moment of transfer materials thus reducing the efficiency of the transfer of materials in the production process. The purpose of this study is to give design for the layout of production facilities in the company, so that the expected production produced by the company can reach the targets set by the management company. The method used in this research is the Graph-Based Construction and Travel Chart Method. The results of the analysis of the proposed layout with Graph-Based Construction was selected with a total value that is equal to the moment of transfer of 780 758 m / year. This result is better than the actual layout in the amount of 1,021,038.12 meters / year and the results of the method Travel Alternative Chart I of 826.236,60 meters/year, Alternative II of 1.004.433,56 meters / year, and Alternative III for 828,467.12 meters/year. The design layout of Graph-Based Construction material increases the transfer efficiency for 23.53%. With this layout proposal, expected production capacity will be increased along with the shortening of the distance of the displacement that must be passed by the material to be processed.
STATISTICS OF THE VELOCITY GRADIENT TENSOR IN SPACE PLASMA TURBULENT FLOWS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Consolini, Giuseppe; Marcucci, Maria Federica; Pallocchia, Giuseppe
2015-10-10
In the last decade, significant advances have been presented for the theoretical characterization and experimental techniques used to measure and model all of the components of the velocity gradient tensor in the framework of fluid turbulence. Here, we attempt the evaluation of the small-scale velocity gradient tensor for a case study of space plasma turbulence, observed in the Earth's magnetosheath region by the CLUSTER mission. In detail, we investigate the joint statistics P(R, Q) of the velocity gradient geometric invariants R and Q, and find that this P(R, Q) is similar to that of the low end of the inertialmore » range for fluid turbulence, with a pronounced increase in the statistics along the so-called Vieillefosse tail. In the context of hydrodynamics, this result is referred to as the dissipation/dissipation-production due to vortex stretching.« less
Labeled Graph Kernel for Behavior Analysis.
Zhao, Ruiqi; Martinez, Aleix M
2016-08-01
Automatic behavior analysis from video is a major topic in many areas of research, including computer vision, multimedia, robotics, biology, cognitive science, social psychology, psychiatry, and linguistics. Two major problems are of interest when analyzing behavior. First, we wish to automatically categorize observed behaviors into a discrete set of classes (i.e., classification). For example, to determine word production from video sequences in sign language. Second, we wish to understand the relevance of each behavioral feature in achieving this classification (i.e., decoding). For instance, to know which behavior variables are used to discriminate between the words apple and onion in American Sign Language (ASL). The present paper proposes to model behavior using a labeled graph, where the nodes define behavioral features and the edges are labels specifying their order (e.g., before, overlaps, start). In this approach, classification reduces to a simple labeled graph matching. Unfortunately, the complexity of labeled graph matching grows exponentially with the number of categories we wish to represent. Here, we derive a graph kernel to quickly and accurately compute this graph similarity. This approach is very general and can be plugged into any kernel-based classifier. Specifically, we derive a Labeled Graph Support Vector Machine (LGSVM) and a Labeled Graph Logistic Regressor (LGLR) that can be readily employed to discriminate between many actions (e.g., sign language concepts). The derived approach can be readily used for decoding too, yielding invaluable information for the understanding of a problem (e.g., to know how to teach a sign language). The derived algorithms allow us to achieve higher accuracy results than those of state-of-the-art algorithms in a fraction of the time. We show experimental results on a variety of problems and datasets, including multimodal data.
Virji-Babul, Naznin
2018-01-01
Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions (n = 6) and a group of healthy adolescent athletes (n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort. PMID:29357675
Muller, Angela M; Virji-Babul, Naznin
2018-01-01
Sports-related concussion in youth is a major public health issue. Evaluating the diffuse and often subtle changes in structure and function that occur in the brain, particularly in this population, remains a significant challenge. The goal of this pilot study was to evaluate the relationship between the intrinsic dynamics of the brain using resting-state functional magnetic resonance imaging (rs-fMRI) and relate these findings to structural brain correlates from diffusion tensor imaging in a group of adolescents with sports-related concussions ( n = 6) and a group of healthy adolescent athletes ( n = 6). We analyzed rs-fMRI data using a sliding windows approach and related the functional findings to structural brain correlates by applying graph theory analysis to the diffusion tensor imaging data. Within the resting-state condition, we extracted three separate brain states in both groups. Our analysis revealed that the brain dynamics in healthy adolescents was characterized by a dynamic pattern, shifting equally between three brain states; however, in adolescents with concussion, the pattern was more static with a longer time spent in one brain state. Importantly, this lack of dynamic flexibility in the concussed group was associated with increased nodal strength in the left middle frontal gyrus, suggesting reorganization in a region related to attention. This preliminary report shows that both the intrinsic brain dynamics and structural organization are altered in networks related to attention in adolescents with concussion. This first report in adolescents will be used to inform future studies in a larger cohort.
Xu, Y; Qiu, S; Wang, J; Liu, Z; Zhang, R; Li, S; Cheng, L; Liu, Z; Wang, W; Huang, R
2014-10-24
Mesial temporal lobe epilepsy (mTLE) is the most common drug-refractory focal epilepsy in adults. Although previous functional and morphological studies have revealed abnormalities in the brain networks of mTLE, the topological organization of the brain white matter (WM) networks in mTLE patients is still ambiguous. In this study, we constructed brain WM networks for 14 left mTLE patients and 22 age- and gender-matched normal controls using diffusion tensor tractography and estimated the alterations of network properties in the mTLE brain networks using graph theoretical analysis. We found that networks for both the mTLE patients and the controls exhibited prominent small-world properties, suggesting a balanced topology of integration and segregation. However, the brain WM networks of mTLE patients showed a significant increased characteristic path length but significant decreased global efficiency, which indicate a disruption in the organization of the brain WM networks in mTLE patients. Moreover, we found significant between-group differences in the nodal properties in several brain regions, such as the left superior temporal gyrus, left hippocampus, the right occipital and right temporal cortices. The robustness analysis showed that the results were likely to be consistent for the networks constructed with different definitions of node and edge weight. Taken together, our findings may suggest an adverse effect of epileptic seizures on the organization of large-scale brain WM networks in mTLE patients. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
Sun, Yu; Lee, Renick; Chen, Yu; Collinson, Simon; Thakor, Nitish; Bezerianos, Anastasios; Sim, Kang
2015-01-01
Sexual dimorphism in the brain maturation during childhood and adolescence has been repeatedly documented, which may underlie the differences in behaviors and cognitive performance. However, our understanding of how gender modulates the development of structural connectome in healthy adults is still not entirely clear. Here we utilized graph theoretical analysis of longitudinal diffusion tensor imaging data over a five-year period to investigate the progressive gender differences of brain network topology. The brain networks of both genders showed prominent economical "small-world" architecture (high local clustering and short paths between nodes). Additional analysis revealed a more economical "small-world" architecture in females as well as a greater global efficiency in males regardless of scan time point. At the regional level, both increased and decreased efficiency were found across the cerebral cortex for both males and females, indicating a compensation mechanism of cortical network reorganization over time. Furthermore, we found that weighted clustering coefficient exhibited significant gender-time interactions, implying different development trends between males and females. Moreover, several specific brain regions (e.g., insula, superior temporal gyrus, cuneus, putamen, and parahippocampal gyrus) exhibited different development trajectories between males and females. Our findings further prove the presence of sexual dimorphism in brain structures that may underlie gender differences in behavioral and cognitive functioning. The sex-specific progress trajectories in brain connectome revealed in this work provide an important foundation to delineate the gender related pathophysiological mechanisms in various neuropsychiatric disorders, which may potentially guide the development of sex-specific treatments for these devastating brain disorders.
Sun, Yu; Chen, Yu; Lee, Renick; Bezerianos, Anastasios; Collinson, Simon L; Sim, Kang
2016-03-01
Despite convergent neuroimaging evidence indicating a wide range of brain abnormalities in schizophrenia, our understanding of alterations in the topological architecture of brain anatomical networks and how they are modulated over time, is still rudimentary. Here, we employed graph theoretical analysis of longitudinal diffusion tensor imaging data (DTI) over a 5-year period to investigate brain network topology in schizophrenia and its relationship with clinical manifestations of the illness. Using deterministic tractography, weighted brain anatomical networks were constructed from 31 patients experiencing schizophrenia and 28 age- and gender-matched healthy control subjects. Although the overall small-world characteristics were observed at both baseline and follow-up, a scan-point independent significant deficit of global integration was found in patients compared to controls, suggesting dysfunctional integration of the brain and supporting the notion of schizophrenia as a disconnection syndrome. Specifically, several brain regions (e.g., the inferior frontal gyrus and the bilateral insula) that are crucial for cognitive and emotional integration were aberrant. Furthermore, a significant group-by-longitudinal scan interaction was revealed in the characteristic path length and global efficiency, attributing to a progressive aberration of global integration in patients compared to healthy controls. Moreover, the progressive disruptions of the brain anatomical network topology were associated with the clinical symptoms of the patients. Together, our findings provide insights into the substrates of anatomical dysconnectivity patterns for schizophrenia and highlight the potential for connectome-based metrics as neural markers of illness progression and clinical change with treatment. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Anderson, Dylan; Bapst, Aleksander; Coon, Joshua; Pung, Aaron; Kudenov, Michael
2017-05-01
Hyperspectral imaging provides a highly discriminative and powerful signature for target detection and discrimination. Recent literature has shown that considering additional target characteristics, such as spatial or temporal profiles, simultaneously with spectral content can greatly increase classifier performance. Considering these additional characteristics in a traditional discriminative algorithm requires a feature extraction step be performed first. An example of such a pipeline is computing a filter bank response to extract spatial features followed by a support vector machine (SVM) to discriminate between targets. This decoupling between feature extraction and target discrimination yields features that are suboptimal for discrimination, reducing performance. This performance reduction is especially pronounced when the number of features or available data is limited. In this paper, we propose the use of Supervised Nonnegative Tensor Factorization (SNTF) to jointly perform feature extraction and target discrimination over hyperspectral data products. SNTF learns a tensor factorization and a classification boundary from labeled training data simultaneously. This ensures that the features learned via tensor factorization are optimal for both summarizing the input data and separating the targets of interest. Practical considerations for applying SNTF to hyperspectral data are presented, and results from this framework are compared to decoupled feature extraction/target discrimination pipelines.
Mutual Contextualization in Tripartite Graphs of Folksonomies
NASA Astrophysics Data System (ADS)
Yeung, Ching-Man Au; Gibbins, Nicholas; Shadbolt, Nigel
The use of tags to describe Web resources in a collaborative manner has experienced rising popularity among Web users in recent years. The product of such activity is given the name folksonomy, which can be considered as a scheme of organizing information in the users' own way. This research work attempts to analyze tripartite graphs - graphs involving users, tags and resources - of folksonomies and discuss how these elements acquire their semantics through their associations with other elements, a process we call mutual contextualization. By studying such process, we try to identify solutions to problems such as tag disambiguation, retrieving documents of similar topics and discovering communities of users. This paper describes the basis of the research work, mentions work done so far and outlines future plans.
2007-03-01
results (Ingols 2005). 2.4.3 Skybox - Skybox view Skybox View is a commercially available tool developed by Skybox Security that can automatically...generate attack graphs through the use of host-based agents, management interfaces, and an analysis server located on the target network ( Skybox 2006... Skybox , an examination of recent patents submitted by Skybox identified the algorithmic complexity of the product as n4, where n represents the number
1978-09-01
Division AREA & WORK UNIT NUMBERS School of Systems and Logistics’ Air Force Institute of Technology,WPAFB,OH II. CONTROLLING OFFICE NAME AND ADDRESS 12 ...STRUCTURE) ............. ................ 9) 12 . SUMMARY OF ALL ANALYSIS RESUILT,"S ........ ........ 94 vii i LIST OF FIGURES Figure Page 1. Deputy...ness Rate (Variable 4) .... ............ ... 81 12 . Graph of Data Values for Abort Rate (Variable 5 e) . ..................... 82 13. Graph of Data
Safeguarding End-User Military Software
2014-12-04
product lines using composi- tional symbolic execution [17] Software product lines are families of products defined by feature commonality and vari...ability, with a well-managed asset base. Recent work in testing of software product lines has exploited similarities across development phases to reuse...feature dependence graph to extract the set of possible interaction trees in a product family. It composes these to incrementally and symbolically
2014-12-01
independently has a 10% chance of being flipped. Then the decoder should use the majority vote rule: if y is (0, 0, 0), (0, 0, 1), (0, 1, 0), or (1, 0, 0... tensor power, and BN is a square matrix called the bit-reversal operator. Therefore G−1N = (F ⊗n) −1 B−1N . Section VII.B of [1] shows that B −1 N...BN . 18 Also we see by direct computation that FF = I2. Using the tensor product identity (AC) ⊗ (BD) = (A⊗B)(C⊗D), we get that (F ⊗F )(F ⊗F ) = I2
Tensorial Minkowski functionals of triply periodic minimal surfaces
Mickel, Walter; Schröder-Turk, Gerd E.; Mecke, Klaus
2012-01-01
A fundamental understanding of the formation and properties of a complex spatial structure relies on robust quantitative tools to characterize morphology. A systematic approach to the characterization of average properties of anisotropic complex interfacial geometries is provided by integral geometry which furnishes a family of morphological descriptors known as tensorial Minkowski functionals. These functionals are curvature-weighted integrals of tensor products of position vectors and surface normal vectors over the interfacial surface. We here demonstrate their use by application to non-cubic triply periodic minimal surface model geometries, whose Weierstrass parametrizations allow for accurate numerical computation of the Minkowski tensors. PMID:24098847
Geometry of matrix product states: Metric, parallel transport, and curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Haegeman, Jutho, E-mail: jutho.haegeman@gmail.com; Verstraete, Frank; Faculty of Physics and Astronomy, University of Ghent, Krijgslaan 281 S9, 9000 Gent
2014-02-15
We study the geometric properties of the manifold of states described as (uniform) matrix product states. Due to the parameter redundancy in the matrix product state representation, matrix product states have the mathematical structure of a (principal) fiber bundle. The total space or bundle space corresponds to the parameter space, i.e., the space of tensors associated to every physical site. The base manifold is embedded in Hilbert space and can be given the structure of a Kähler manifold by inducing the Hilbert space metric. Our main interest is in the states living in the tangent space to the base manifold,more » which have recently been shown to be interesting in relation to time dependence and elementary excitations. By lifting these tangent vectors to the (tangent space) of the bundle space using a well-chosen prescription (a principal bundle connection), we can define and efficiently compute an inverse metric, and introduce differential geometric concepts such as parallel transport (related to the Levi-Civita connection) and the Riemann curvature tensor.« less
Adjoint affine fusion and tadpoles
DOE Office of Scientific and Technical Information (OSTI.GOV)
Urichuk, Andrew, E-mail: andrew.urichuk@uleth.ca; Walton, Mark A., E-mail: walton@uleth.ca; International School for Advanced Studies
2016-06-15
We study affine fusion with the adjoint representation. For simple Lie algebras, elementary and universal formulas determine the decomposition of a tensor product of an integrable highest-weight representation with the adjoint representation. Using the (refined) affine depth rule, we prove that equally striking results apply to adjoint affine fusion. For diagonal fusion, a coefficient equals the number of nonzero Dynkin labels of the relevant affine highest weight, minus 1. A nice lattice-polytope interpretation follows and allows the straightforward calculation of the genus-1 1-point adjoint Verlinde dimension, the adjoint affine fusion tadpole. Explicit formulas, (piecewise) polynomial in the level, are writtenmore » for the adjoint tadpoles of all classical Lie algebras. We show that off-diagonal adjoint affine fusion is obtained from the corresponding tensor product by simply dropping non-dominant representations.« less
A split finite element algorithm for the compressible Navier-Stokes equations
NASA Technical Reports Server (NTRS)
Baker, A. J.
1979-01-01
An accurate and efficient numerical solution algorithm is established for solution of the high Reynolds number limit of the Navier-Stokes equations governing the multidimensional flow of a compressible essentially inviscid fluid. Finite element interpolation theory is used within a dissipative formulation established using Galerkin criteria within the Method of Weighted Residuals. An implicit iterative solution algorithm is developed, employing tensor product bases within a fractional steps integration procedure, that significantly enhances solution economy concurrent with sharply reduced computer hardware demands. The algorithm is evaluated for resolution of steep field gradients and coarse grid accuracy using both linear and quadratic tensor product interpolation bases. Numerical solutions for linear and nonlinear, one, two and three dimensional examples confirm and extend the linearized theoretical analyses, and results are compared to competitive finite difference derived algorithms.
A case study in connectomics: the history, mapping, and connectivity of the claustrum
Torgerson, Carinna M.; Van Horn, John D.
2014-01-01
The claustrum seems to have been waiting for the science of connectomics. Due to its tiny size, the structure has remained remarkably difficult to study until modern technological and mathematical advancements like graph theory, connectomics, diffusion tensor imaging, HARDI, and excitotoxic lesioning. That does not mean, however, that early methods allowed researchers to assess micro-connectomics. In fact, the claustrum is such an enigma that the only things known for certain about it are its histology, and that it is extraordinarily well connected. In this literature review, we provide background details on the claustrum and the history of its study in the human and in other animal species. By providing an explanation of the neuroimaging and histology methods have been undertaken to study the claustrum thus far—and the conclusions these studies have drawn—we illustrate this example of how the shift from micro-connectomics to macro-connectomics advances the field of neuroscience and improves our capacity to understand the brain. PMID:25426062
Changle Zhang; Tao Chai; Na Gao; Ma, Heather T
2017-07-01
Effective measurement of cognitive impairment caused by Alzheimer's disease (AD) will provide a chance for early medical intervention and delay the disease onset. Diffusion tensor imaging (DTI) provides a non-intrusive examination of cranial nerve diseases which can help us observe the microstructure of neuron fibers. Cognitive control network (CCN) consists of the brain regions that highly related to human self-control. In this study, hub-and-spoke model which was widely used in transportation and sociology area had been employed to analyze the relationship of CCN and other regions under its control, cognitive control related network (CCRN) was built by applying this model. Local and global graph theoretical parameters were calculated and went through statistical analysis. Significant difference had been found in the scale of local as well as global which may represent the impairment of cognitive control ability. This result may provide a potential bio-marker for the loss of connection caused by Alzheimer's disease.
Functional brain connectivity is predictable from anatomic network's Laplacian eigen-structure.
Abdelnour, Farras; Dayan, Michael; Devinsky, Orrin; Thesen, Thomas; Raj, Ashish
2018-05-15
How structural connectivity (SC) gives rise to functional connectivity (FC) is not fully understood. Here we mathematically derive a simple relationship between SC measured from diffusion tensor imaging, and FC from resting state fMRI. We establish that SC and FC are related via (structural) Laplacian spectra, whereby FC and SC share eigenvectors and their eigenvalues are exponentially related. This gives, for the first time, a simple and analytical relationship between the graph spectra of structural and functional networks. Laplacian eigenvectors are shown to be good predictors of functional eigenvectors and networks based on independent component analysis of functional time series. A small number of Laplacian eigenmodes are shown to be sufficient to reconstruct FC matrices, serving as basis functions. This approach is fast, and requires no time-consuming simulations. It was tested on two empirical SC/FC datasets, and was found to significantly outperform generative model simulations of coupled neural masses. Copyright © 2018. Published by Elsevier Inc.
Brain network alterations and vulnerability to simulated neurodegeneration in breast cancer.
Kesler, Shelli R; Watson, Christa L; Blayney, Douglas W
2015-08-01
Breast cancer and its treatments are associated with mild cognitive impairment and brain changes that could indicate an altered or accelerated brain aging process. We applied diffusion tensor imaging and graph theory to measure white matter organization and connectivity in 34 breast cancer survivors compared with 36 matched healthy female controls. We also investigated how brain networks (connectomes) in each group responded to simulated neurodegeneration based on network attack analysis. Compared with controls, the breast cancer group demonstrated significantly lower fractional anisotropy, altered small-world connectome properties, lower brain network tolerance to systematic region (node), and connection (edge) attacks and significant cognitive impairment. Lower tolerance to network attack was associated with cognitive impairment in the breast cancer group. These findings provide further evidence of diffuse white matter pathology after breast cancer and extend the literature in this area with unique data demonstrating increased vulnerability of the post-breast cancer brain network to future neurodegenerative processes. Copyright © 2015 Elsevier Inc. All rights reserved.
Neuroimaging correlates of language network impairment and reorganization in temporal lobe epilepsy
Balter, S.; Lin, G.; Leyden, K.M.; Paul, B.M.; McDonald, C.R.
2016-01-01
Advanced, noninvasive imaging has revolutionized our understanding of language networks in the brain and is reshaping our approach to the presurgical evaluation of patients with epilepsy. Functional magnetic resonance imaging (fMRI) has had the greatest impact, unveiling the complexity of language organization and reorganization in patients with epilepsy both pre- and postoperatively, while volumetric MRI and diffusion tensor imaging have led to a greater appreciation of structural and microstructural correlates of language dysfunction in different epilepsy syndromes. In this article, we review recent literature describing how unimodal and multimodal imaging has advanced our knowledge of language networks and their plasticity in epilepsy, with a focus on the most frequently studied epilepsy syndrome in adults, temporal lobe epilepsy (TLE). We also describe how new analytic techniques (i.e., graph theory) are leading to a refined characterization of abnormal brain connectivity, and how subject-specific imaging profiles combined with clinical data may enhance the prediction of both seizure and language outcomes following surgical interventions. PMID:27393391
NASA Astrophysics Data System (ADS)
Kahn, Jason
This dissertation concerns kindergarteners' and second graders' invented representations of motion, their interactions with conventional representations of motion built from the child's movement in front of a motion detector and using real-time graphing tools, and any changes in the invented representations that this interaction brings about. We have known for several decades that advanced learners (high school aged and beyond) struggle with physics concepts of motion and sometimes Cartesian graph-based representations of motion. Little has been known about how younger students approach the same concepts. In this study, eighteen children (10 kindergarteners and eight second graders) completed a three-hour clinical interview spread out evenly over three weeks. In the first and last interviews, the child was asked to produce external representations of movement and interpret conventional distance and time graphs of motion. In the second interview the children interacted with a motion detector and real-time graphing tools in a semi-self-directed format. Qualitative and quantitative results are presented and discussed. Qualitative data shows that children are adroit at representing motion and their productions are systematic and purposeful. Children produce drawings that both give context to the physical environment around them and also redescribe the drawn environment, meaning that they provide a potential audience with information otherwise imperceptible, by making certain implicit aspects more explicit. Second graders quickly appropriate the Cartesian graph during the intervention, though at times misinterpret the meaning associated with slope. Children correctly associate slope with direction, but at times misattribute sign of slope (positive or negative) and its corresponding direction (i.e. some children do not ascribe positive slope with motion away from a point of reference, but toward it). Kindergarteners showed a range of experiences during the intervention, one of the students showed a near mastery in interpretation of a Cartesian graph as a representation of motion, while another vehemently resisted graph as a representation of motion. Quantitative data gives a mechanism for comparing pre- and post-assessment productions. Both kindergarten and second grade students provide richer post-assessment representations, with kindergarteners more likely to include a figurative point of reference in the post-assessment and second graders including more explicit information about speed. The implications of this study are that invented representations of motion are a powerful tool for providing insights into children's thinking. The motion detector and real-time graphing tool can be used as early as kindergarten to help children build resources in their representations of motion; second grade students could find the same benefit and potentially begin to build conventional ideas about graphing and movement.
Analysis of Return and Forward Links from STARS' Flight Demonstration 1
NASA Technical Reports Server (NTRS)
Gering, James A.
2003-01-01
Space-based Telemetry And Range Safety (STARS) is a Kennedy Space Center (KSC) led proof-of-concept demonstration, which utilizes NASA's space network of Tracking and Data Relay Satellites (TDRS) as a pathway for launch and mission related information streams. Flight Demonstration 1 concluded on July 15,2003 with the seventh flight of a Low Power Transmitter (LPT) a Command and Data Handler (C&DH), a twelve channel GPS receiver and associated power supplies and amplifiers. The equipment flew on NASA's F-I5 aircraft at the Dryden Flight Research Center located at Edwards Air Force Base in California. During this NASA-ASEE Faculty Fellowship, the author participated in the collection and analysis of data from the seven flights comprising Flight Demonstration 1. Specifically, the author examined the forward and return links bit energy E(sub B) (in Watt-seconds) divided by the ambient radio frequency noise N(sub 0) (in Watts / Hertz). E(sub b)/N(sub 0) is commonly thought of as a signal-to-noise parameter, which characterizes a particular received radio frequency (RF) link. Outputs from the data analysis include the construction of time lines for all flights, production of graphs of range safety values for all seven flights, histograms of range safety E(sub b)/N(sub 0) values in five dB increments, calculation of associated averages and standard deviations, production of graphs of range user E(sub b)/N(sub 0) values for the all flights, production of graphs of AGC's and E(sub b)/N(sub 0) estimates for flight 1, recorded onboard, transmitted directly to the launch head and transmitted through TDRS. The data and graphs are being used to draw conclusions related to a lower than expected signal strength seen in the range safety return link.
Sun, Yu; Li, Junhua; Suckling, John; Feng, Lei
2017-01-01
Human brain is structurally and functionally asymmetrical and the asymmetries of brain phenotypes have been shown to change in normal aging. Recent advances in graph theoretical analysis have showed topological lateralization between hemispheric networks in the human brain throughout the lifespan. Nevertheless, apparent discrepancies of hemispheric asymmetry were reported between the structural and functional brain networks, indicating the potentially complex asymmetry patterns between structural and functional networks in aging population. In this study, using multimodal neuroimaging (resting-state fMRI and structural diffusion tensor imaging), we investigated the characteristics of hemispheric network topology in 76 (male/female = 15/61, age = 70.08 ± 5.30 years) community-dwelling older adults. Hemispheric functional and structural brain networks were obtained for each participant. Graph theoretical approaches were then employed to estimate the hemispheric topological properties. We found that the optimal small-world properties were preserved in both structural and functional hemispheric networks in older adults. Moreover, a leftward asymmetry in both global and local levels were observed in structural brain networks in comparison with a symmetric pattern in functional brain network, suggesting a dissociable process of hemispheric asymmetry between structural and functional connectome in healthy older adults. Finally, the scores of hemispheric asymmetry in both structural and functional networks were associated with behavioral performance in various cognitive domains. Taken together, these findings provide new insights into the lateralized nature of multimodal brain connectivity, highlight the potentially complex relationship between structural and functional brain network alterations, and augment our understanding of asymmetric structural and functional specializations in normal aging. PMID:29209197
Yuan, Weihong; Treble-Barna, Amery; Sohlberg, McKay M; Harn, Beth; Wade, Shari L
2017-02-01
Structural connectivity analysis based on graph theory and diffusion tensor imaging tractography is a novel method that quantifies the topological characteristics in the brain network. This study aimed to examine structural connectivity changes following the Attention Intervention and Management (AIM) program designed to improve attention and executive function (EF) in children with traumatic brain injury (TBI). Seventeen children with complicated mild to severe TBI (13.66 ± 2.68 years; >12 months postinjury) completed magnetic resonance imaging (MRI) and neurobehavioral measures at time 1, 10 of whom completed AIM and assessment at time 2. Eleven matched healthy comparison (HC) children (13.37 ± 2.08 years) completed MRI and neurobehavioral assessment at both time points, but did not complete AIM. Network characteristics were analyzed to quantify the structural connectivity before and after the intervention. Mixed model analyses showed that small-worldness was significantly higher in the TBI group than the HC group at time 1, and both small-worldness and normalized clustering coefficient decreased significantly at time 2 in the TBI group whereas the HC group remained relatively unchanged. Reductions in mean local efficiency were significantly correlated with improvements in verbal inhibition and both parent- and child-reported EF. Increased normalized characteristic path length was significantly correlated with improved sustained attention. The results provide preliminary evidence suggesting that graph theoretical analysis may be a sensitive tool in pediatric TBI for detecting ( a) abnormalities of structural connectivity in brain network and ( b) structural neuroplasticity associated with neurobehavioral improvement following a short-term intervention for attention and EF.
Kraft, Reuben H.; Mckee, Phillip Justin; Dagro, Amy M.; Grafton, Scott T.
2012-01-01
This article presents the integration of brain injury biomechanics and graph theoretical analysis of neuronal connections, or connectomics, to form a neurocomputational model that captures spatiotemporal characteristics of trauma. We relate localized mechanical brain damage predicted from biofidelic finite element simulations of the human head subjected to impact with degradation in the structural connectome for a single individual. The finite element model incorporates various length scales into the full head simulations by including anisotropic constitutive laws informed by diffusion tensor imaging. Coupling between the finite element analysis and network-based tools is established through experimentally-based cellular injury thresholds for white matter regions. Once edges are degraded, graph theoretical measures are computed on the “damaged” network. For a frontal impact, the simulations predict that the temporal and occipital regions undergo the most axonal strain and strain rate at short times (less than 24 hrs), which leads to cellular death initiation, which results in damage that shows dependence on angle of impact and underlying microstructure of brain tissue. The monotonic cellular death relationships predict a spatiotemporal change of structural damage. Interestingly, at 96 hrs post-impact, computations predict no network nodes were completely disconnected from the network, despite significant damage to network edges. At early times () network measures of global and local efficiency were degraded little; however, as time increased to 96 hrs the network properties were significantly reduced. In the future, this computational framework could help inform functional networks from physics-based structural brain biomechanics to obtain not only a biomechanics-based understanding of injury, but also neurophysiological insight. PMID:22915997
Park, Bong Soo; Lee, Yoo Jin; Park, Jin-Han; Kim, Il Hwan; Park, Si Hyung; Lee, Ho-Joon; Park, Kang Min
2018-06-01
We evaluated global topology and organization of regional hubs in the brain networks and microstructural abnormalities in the white matter of patients with reflex syncope. Twenty patients with reflex syncope and thirty healthy subjects were recruited, and they underwent diffusion tensor imaging (DTI) scans. Graph theory was applied to obtain network measures based on extracted DTI data, using DSI Studio. We then investigated differences in the network measures between the patients with reflex syncope and the healthy subjects. We also analyzed microstructural abnormalities of white matter using tract-based spatial statistics analysis (TBSS). Measures of global topology were not different between patients with reflex syncope and healthy subjects. However, in reflex syncope patients, the strength measures of the right angular, left inferior frontal, left middle orbitofrontal, left superior medial frontal, and left middle temporal gyrus were lower than in healthy subjects. The betweenness centrality measures of the left middle orbitofrontal, left fusiform, and left lingual gyrus in patients were lower than those in healthy subjects. The PageRank centrality measures of the right angular, left middle orbitofrontal, and left superior medial frontal gyrus in patients were lower than those in healthy subjects. Regarding the analysis of the white matter microstructure, there were no differences in the fractional anisotropy and mean diffusivity values between the two groups. We have identified a reorganization of network hubs in the brain network of patients with reflex syncope. These alterations in brain network may play a role in the pathophysiologic mechanism underlying reflex syncope. © 2018 The Authors. Brain and Behavior published by Wiley Periodicals, Inc.
Vecchio, Fabrizio; Miraglia, Francesca; Curcio, Giuseppe; Altavilla, Riccardo; Scrascia, Federica; Giambattistelli, Federica; Quattrocchi, Carlo Cosimo; Bramanti, Placido; Vernieri, Fabrizio; Rossini, Paolo Maria
2015-01-01
A relatively new approach to brain function in neuroscience is the "functional connectivity", namely the synchrony in time of activity in anatomically-distinct but functionally-collaborating brain regions. On the other hand, diffusion tensor imaging (DTI) is a recently developed magnetic resonance imaging (MRI)-based technique with the capability to detect brain structural connection with fractional anisotropy (FA) identification. FA decrease has been observed in the corpus callosum of subjects with Alzheimer's disease (AD) and mild cognitive impairment (MCI, an AD prodromal stage). Corpus callosum splenium DTI abnormalities are thought to be associated with functional disconnections among cortical areas. This study aimed to investigate possible correlations between structural damage, measured by MRI-DTI, and functional abnormalities of brain integration, measured by characteristic path length detected in resting state EEG source activity (40 participants: 9 healthy controls, 10 MCI, 10 mild AD, 11 moderate AD). For each subject, undirected and weighted brain network was built to evaluate graph core measures. eLORETA lagged linear connectivity values were used as weight of the edges of the network. Results showed that callosal FA reduction is associated to a loss of brain interhemispheric functional connectivity characterized by increased delta and decreased alpha path length. These findings suggest that "global" (average network shortest path length representing an index of how efficient is the information transfer between two parts of the network) functional measure can reflect the reduction of fiber connecting the two hemispheres as revealed by DTI analysis and also anticipate in time this structural loss.
The method of similar operators in the study of the spectra of the adjacency matrices of graphs
NASA Astrophysics Data System (ADS)
Kozlukov, Serge
2018-03-01
The method of similar operators [1, 2, 3] is used to investigate spectral properties of a certain class of matrices in the context of graphs [4, 5]. Specifically, we consider the adjacency matrix of an “almost-complete graph”. Then we generalize the result to allow the matrices obtained as combinations of the Kronecker products [6, 7] and the small-norm perturbations. We derive the estimates of the spectra and the eigenvectors of such matrices.
Voss, Frank D.; Mastin, Mark C.
2012-01-01
A database was developed to automate model execution and to provide users with Internet access to voluminous data products ranging from summary figures to model output timeseries. Database-enabled Internet tools were developed to allow users to create interactive graphs of output results based on their analysis needs. For example, users were able to create graphs by selecting time intervals, greenhouse gas emission scenarios, general circulation models, and specific hydrologic variables.
Comparison of kinetic model for biogas production from corn cob
NASA Astrophysics Data System (ADS)
Shitophyta, L. M.; Maryudi
2018-04-01
Energy demand increases every day, while the energy source especially fossil energy depletes increasingly. One of the solutions to overcome the energy depletion is to provide renewable energies such as biogas. Biogas can be generated by corn cob and food waste. In this study, biogas production was carried out by solid-state anaerobic digestion. The steps of biogas production were the preparation of feedstock, the solid-state anaerobic digestion, and the measurement of biogas volume. This study was conducted on TS content of 20%, 22%, and 24%. The aim of this research was to compare kinetic models of biogas production from corn cob and food waste as a co-digestion using the linear, exponential equation, and first-kinetic models. The result showed that the exponential equation had a better correlation than the linear equation on the ascending graph of biogas production. On the contrary, the linear equation had a better correlation than the exponential equation on the descending graph of biogas production. The correlation values on the first-kinetic model had the smallest value compared to the linear and exponential models.
Integrability conditions for Killing-Yano tensors and conformal Killing-Yano tensors
NASA Astrophysics Data System (ADS)
Batista, Carlos
2015-01-01
The integrability conditions for the existence of a conformal Killing-Yano tensor of arbitrary order are worked out in all dimensions and expressed in terms of the Weyl tensor. As a consequence, the integrability conditions for the existence of a Killing-Yano tensor are also obtained. By means of such conditions, it is shown that in certain Einstein spaces one can use a conformal Killing-Yano tensor of order p to generate a Killing-Yano tensor of order (p -1 ) . Finally, it is proved that in maximally symmetric spaces the covariant derivative of a Killing-Yano tensor is a closed conformal Killing-Yano tensor and that every conformal Killing-Yano tensor is uniquely decomposed as the sum of a Killing-Yano tensor and a closed conformal Killing-Yano tensor.
Identification of the condition of crops based on geospatial data embedded in graph databases
NASA Astrophysics Data System (ADS)
Idziaszek, P.; Mueller, W.; Górna, K.; Okoń, P.; Boniecki, P.; Koszela, K.; Fojud, A.
2017-07-01
The Web application presented here supports plant production and works with the graph database Neo4j shell to support the assessment of the condition of crops on the basis of geospatial data, including raster and vector data. The adoption of a graph database as a tool to store and manage the data, including geospatial data, is completely justified in the case of those agricultural holdings that have a wide range of types and sizes of crops. In addition, the authors tested the option of using the technology of Microsoft Cognitive Services at the level of produced application that enables an image analysis using the services provided. The presented application was designed using ASP.NET MVC technology and a wide range of leading IT tools.
NASA Astrophysics Data System (ADS)
Primo, Amedeo; Tancredi, Lorenzo
2017-08-01
We consider the calculation of the master integrals of the three-loop massive banana graph. In the case of equal internal masses, the graph is reduced to three master integrals which satisfy an irreducible system of three coupled linear differential equations. The solution of the system requires finding a 3 × 3 matrix of homogeneous solutions. We show how the maximal cut can be used to determine all entries of this matrix in terms of products of elliptic integrals of first and second kind of suitable arguments. All independent solutions are found by performing the integration which defines the maximal cut on different contours. Once the homogeneous solution is known, the inhomogeneous solution can be obtained by use of Euler's variation of constants.
Object recognition in images via a factor graph model
NASA Astrophysics Data System (ADS)
He, Yong; Wang, Long; Wu, Zhaolin; Zhang, Haisu
2018-04-01
Object recognition in images suffered from huge search space and uncertain object profile. Recently, the Bag-of- Words methods are utilized to solve these problems, especially the 2-dimension CRF(Conditional Random Field) model. In this paper we suggest the method based on a general and flexible fact graph model, which can catch the long-range correlation in Bag-of-Words by constructing a network learning framework contrasted from lattice in CRF. Furthermore, we explore a parameter learning algorithm based on the gradient descent and Loopy Sum-Product algorithms for the factor graph model. Experimental results on Graz 02 dataset show that, the recognition performance of our method in precision and recall is better than a state-of-art method and the original CRF model, demonstrating the effectiveness of the proposed method.
Multitriangulations, pseudotriangulations and some problems of realization of polytopes
NASA Astrophysics Data System (ADS)
Pilaud, Vincent
2010-09-01
This thesis explores two specific topics of discrete geometry, the multitriangulations and the polytopal realizations of products, whose connection is the problem of finding polytopal realizations of a given combinatorial structure. A k-triangulation is a maximal set of chords of the convex n-gon such that no k+1 of them mutually cross. We propose a combinatorial and geometric study of multitriangulations based on their stars, which play the same role as triangles of triangulations. This study leads to interpret multitriangulations by duality as pseudoline arrangements with contact points covering a given support. We exploit finally these results to discuss some open problems on multitriangulations, in particular the question of the polytopal realization of their flip graphs. We study secondly the polytopality of Cartesian products. We investigate the existence of polytopal realizations of cartesian products of graphs, and we study the minimal dimension that can have a polytope whose k-skeleton is that of a product of simplices.
Pseudoscalar Meson Electroproduction and Transversity
NASA Astrophysics Data System (ADS)
Goldstein, Gary R.; Liuti, Simonetta
2011-02-01
Exclusive meson leptoproduction from nucleons in the deeply virtual exchanged boson limit can be described by generalized parton distributions (GPDs). Including spin dependence in the description requires 8 independent quark-parton and gluon-parton functions. The chiral even subset of 4 quark-nucleon GPDs are related to nucleon form factors and to parton distribution functions. The chiral odd set of 4 quark-nucleon GPDs are related to transversity, the tensor charge, and other quantities related to transversity. Different meson or photon production processes access different combinations of GPDs. This is analyzed in terms of t-channel exchange quantum numbers, JPC and it is shown that pseudoscalar production can isolate chiral odd GPDs. There is a sensitive dependence in various cross sections and asymmetries on the tensor charge of the nucleon and other transversity parameters. In a second section, analyticity and completeness are shown to limit the partonic interpret ation of the GPDs in the ERBL region.
A braided monoidal category for free super-bosons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Runkel, Ingo, E-mail: ingo.runkel@uni-hamburg.de
The chiral conformal field theory of free super-bosons is generated by weight one currents whose mode algebra is the affinisation of an abelian Lie super-algebra h with non-degenerate super-symmetric pairing. The mode algebras of a single free boson and of a single pair of symplectic fermions arise for even|odd dimension 1|0 and 0|2 of h, respectively. In this paper, the representations of the untwisted mode algebra of free super-bosons are equipped with a tensor product, a braiding, and an associator. In the symplectic fermion case, i.e., if h is purely odd, the braided monoidal structure is extended to representations ofmore » the Z/2Z-twisted mode algebra. The tensor product is obtained by computing spaces of vertex operators. The braiding and associator are determined by explicit calculations from three- and four-point conformal blocks.« less
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.
Freistühler, Heinrich; Temple, Blake
2014-06-08
CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.
Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation
Freistühler, Heinrich; Temple, Blake
2014-01-01
Current theories of dissipation in the relativistic regime suffer from one of two deficits: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier–Stokes–Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ,η,ζ, corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress–energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor. PMID:24910526
Higher-order stochastic differential equations and the positive Wigner function
NASA Astrophysics Data System (ADS)
Drummond, P. D.
2017-12-01
General higher-order stochastic processes that correspond to any diffusion-type tensor of higher than second order are obtained. The relationship of multivariate higher-order stochastic differential equations with tensor decomposition theory and tensor rank is explained. Techniques for generating the requisite complex higher-order noise are proved to exist either using polar coordinates and γ distributions, or from products of Gaussian variates. This method is shown to allow the calculation of the dynamics of the Wigner function, after it is extended to a complex phase space. The results are illustrated physically through dynamical calculations of the positive Wigner distribution for three-mode parametric downconversion, widely used in quantum optics. The approach eliminates paradoxes arising from truncation of the higher derivative terms in Wigner function time evolution. Anomalous results of negative populations and vacuum scattering found in truncated Wigner quantum simulations in quantum optics and Bose-Einstein condensate dynamics are shown not to occur with this type of stochastic theory.
Towards overcoming the Monte Carlo sign problem with tensor networks
NASA Astrophysics Data System (ADS)
Bañuls, Mari Carmen; Cichy, Krzysztof; Ignacio Cirac, J.; Jansen, Karl; Kühn, Stefan; Saito, Hana
2017-03-01
The study of lattice gauge theories with Monte Carlo simulations is hindered by the infamous sign problem that appears under certain circumstances, in particular at non-zero chemical potential. So far, there is no universal method to overcome this problem. However, recent years brought a new class of non-perturbative Hamiltonian techniques named tensor networks, where the sign problem is absent. In previous work, we have demonstrated that this approach, in particular matrix product states in 1+1 dimensions, can be used to perform precise calculations in a lattice gauge theory, the massless and massive Schwinger model. We have computed the mass spectrum of this theory, its thermal properties and real-time dynamics. In this work, we review these results and we extend our calculations to the case of two flavours and non-zero chemical potential. We are able to reliably reproduce known analytical results for this model, thus demonstrating that tensor networks can tackle the sign problem of a lattice gauge theory at finite density.
A new Weyl-like tensor of geometric origin
NASA Astrophysics Data System (ADS)
Vishwakarma, Ram Gopal
2018-04-01
A set of new tensors of purely geometric origin have been investigated, which form a hierarchy. A tensor of a lower rank plays the role of the potential for the tensor of one rank higher. The tensors have interesting mathematical and physical properties. The highest rank tensor of the hierarchy possesses all the geometrical properties of the Weyl tensor.
Development of the Tensoral Computer Language
NASA Technical Reports Server (NTRS)
Ferziger, Joel; Dresselhaus, Eliot
1996-01-01
The research scientist or engineer wishing to perform large scale simulations or to extract useful information from existing databases is required to have expertise in the details of the particular database, the numerical methods and the computer architecture to be used. This poses a significant practical barrier to the use of simulation data. The goal of this research was to develop a high-level computer language called Tensoral, designed to remove this barrier. The Tensoral language provides a framework in which efficient generic data manipulations can be easily coded and implemented. First of all, Tensoral is general. The fundamental objects in Tensoral represent tensor fields and the operators that act on them. The numerical implementation of these tensors and operators is completely and flexibly programmable. New mathematical constructs and operators can be easily added to the Tensoral system. Tensoral is compatible with existing languages. Tensoral tensor operations co-exist in a natural way with a host language, which may be any sufficiently powerful computer language such as Fortran, C, or Vectoral. Tensoral is very-high-level. Tensor operations in Tensoral typically act on entire databases (i.e., arrays) at one time and may, therefore, correspond to many lines of code in a conventional language. Tensoral is efficient. Tensoral is a compiled language. Database manipulations are simplified optimized and scheduled by the compiler eventually resulting in efficient machine code to implement them.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Connell, D.R.
1986-12-01
The method of progressive hypocenter-velocity inversion has been extended to incorporate S-wave arrival time data and to estimate S-wave velocities in addition to P-wave velocities. S-wave data to progressive inversion does not completely eliminate hypocenter-velocity tradeoffs, but they are substantially reduced. Results of a P and S-wave progressive hypocenter-velocity inversion at The Geysers show that the top of the steam reservoir is clearly defined by a large decrease of V/sub p//V/sub s/ at the condensation zone-production zone contact. The depth interval of maximum steam production coincides with minimum observed V/sub p//V/sub s/, and V/sub p//V/sub s/ increses below the shallowmore » primary production zone suggesting that reservoir rock becomes more fluid saturated. The moment tensor inversion method was applied to three microearthquakes at The Geysers. Estimated principal stress orientations were comparable to those estimated using P-wave firstmotions as constraints. Well constrained principal stress orientations were obtained for one event for which the 17 P-first motions could not distinguish between normal-slip and strike-slip mechanisms. The moment tensor estimates of principal stress orientations were obtained using far fewer stations than required for first-motion focal mechanism solutions. The three focal mechanisms obtained here support the hypothesis that focal mechanisms are a function of depth at The Geysers. Progressive inversion as developed here and the moment tensor inversion method provide a complete approach for determining earthquake locations, P and S-wave velocity structure, and earthquake source mechanisms.« less
Li, Zhendong; Liu, Wenjian
2010-08-14
The spin-adaptation of single-reference quantum chemical methods for excited states of open-shell systems has been nontrivial. The primary reason is that the configuration space, generated by a truncated rank of excitations from only one component of a reference multiplet, is spin-incomplete. Those "missing" configurations are of higher ranks and can, in principle, be recaptured by a particular class of excitation operators. However, the resulting formalisms are then quite involved and there are situations [e.g., time-dependent density functional theory (TD-DFT) under the adiabatic approximation] that prevent one from doing so. To solve this issue, we propose here a tensor-coupling scheme that invokes all the components of a reference multiplet (i.e., a tensor reference) rather than increases the excitation ranks. A minimal spin-adapted n-tuply excited configuration space can readily be constructed by tensor products between the n-tuple tensor excitation operators and the chosen tensor reference. Further combined with the tensor equation-of-motion formalism, very compact expressions for excitation energies can be obtained. As a first application of this general idea, a spin-adapted open-shell random phase approximation is first developed. The so-called "translation rule" is then adopted to formulate a spin-adapted, restricted open-shell Kohn-Sham (ROKS)-based TD-DFT (ROKS-TD-DFT). Here, a particular symmetry structure has to be imposed on the exchange-correlation kernel. While the standard ROKS-TD-DFT can access only excited states due to singlet-coupled single excitations, i.e., only some of the singly excited states of the same spin (S(i)) as the reference, the new scheme can capture all the excited states of spin S(i)-1, S(i), or S(i)+1 due to both singlet- and triplet-coupled single excitations. The actual implementation and computation are very much like the (spin-contaminated) unrestricted Kohn-Sham-based TD-DFT. It is also shown that spin-contaminated spin-flip configuration interaction approaches can easily be spin-adapted via the tensor-coupling scheme.
16 CFR 1025.33 - Production of documents and things.
Code of Federal Regulations, 2010 CFR
2010-01-01
... Section 1025.33 Commercial Practices CONSUMER PRODUCT SAFETY COMMISSION GENERAL RULES OF PRACTICE FOR... (including writings, drawings, graphs, charts, photographs, phono-records, and any other data compilation..., custody, or control of the party upon whom the request is served, or (2) To permit entry upon designated...
Frelat, Romain; Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs.
On the partition dimension of comb product of path and complete graph
NASA Astrophysics Data System (ADS)
Darmaji, Alfarisi, Ridho
2017-08-01
For a vertex v of a connected graph G(V, E) with vertex set V(G), edge set E(G) and S ⊆ V(G). Given an ordered partition Π = {S1, S2, S3, …, Sk} of the vertex set V of G, the representation of a vertex v ∈ V with respect to Π is the vector r(v|Π) = (d(v, S1), d(v, S2), …, d(v, Sk)), where d(v, Sk) represents the distance between the vertex v and the set Sk and d(v, Sk) = min{d(v, x)|x ∈ Sk}. A partition Π of V(G) is a resolving partition if different vertices of G have distinct representations, i.e., for every pair of vertices u, v ∈ V(G), r(u|Π) ≠ r(v|Π). The minimum k of Π resolving partition is a partition dimension of G, denoted by pd(G). Finding the partition dimension of G is classified to be a NP-Hard problem. In this paper, we will show that the partition dimension of comb product of path and complete graph. The results show that comb product of complete grapph Km and path Pn namely p d (Km⊳Pn)=m where m ≥ 3 and n ≥ 2 and p d (Pn⊳Km)=m where m ≥ 3, n ≥ 2 and m ≥ n.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kou, Qiang; Wu, Si; Tolić, Nikola
Motivation: Although proteomics has rapidly developed in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteoforms to their biological functions as well as discovering novel proteoforms and new protein functions. Top-down mass spectrometry is the method of choice for identifying complex proteoforms because it provides a “bird’s eye view” of intact proteoforms. The combinatorial explosion of various alterations on a protein may result inmore » billions of possible proteoforms, making proteoform identification a challenging computational problem. Results: We propose a new data structure, called the mass graph, for efficient representation of proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-based software tool for proteoform identification by top-down mass spectrometry. Experiments on top-down mass spectrometry data sets showed that TopMG outperformed existing methods in identifying complex proteoforms.« less
Databases post-processing in Tensoral
NASA Technical Reports Server (NTRS)
Dresselhaus, Eliot
1994-01-01
The Center for Turbulent Research (CTR) post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, introduced in this document and currently existing in prototype form, is the foundation of this effort. Tensoral provides a convenient and powerful protocol to connect users who wish to analyze fluids databases with the authors who generate them. In this document we introduce Tensoral and its prototype implementation in the form of a user's guide. This guide focuses on use of Tensoral for post-processing turbulence databases. The corresponding document - the Tensoral 'author's guide' - which focuses on how authors can make databases available to users via the Tensoral system - is currently unwritten. Section 1 of this user's guide defines Tensoral's basic notions: we explain the class of problems at hand and how Tensoral abstracts them. Section 2 defines Tensoral syntax for mathematical expressions. Section 3 shows how these expressions make up Tensoral statements. Section 4 shows how Tensoral statements and expressions are embedded into other computer languages (such as C or Vectoral) to make Tensoral programs. We conclude with a complete example program.
NiftyNet: a deep-learning platform for medical imaging.
Gibson, Eli; Li, Wenqi; Sudre, Carole; Fidon, Lucas; Shakir, Dzhoshkun I; Wang, Guotai; Eaton-Rosen, Zach; Gray, Robert; Doel, Tom; Hu, Yipeng; Whyntie, Tom; Nachev, Parashkev; Modat, Marc; Barratt, Dean C; Ourselin, Sébastien; Cardoso, M Jorge; Vercauteren, Tom
2018-05-01
Medical image analysis and computer-assisted intervention problems are increasingly being addressed with deep-learning-based solutions. Established deep-learning platforms are flexible but do not provide specific functionality for medical image analysis and adapting them for this domain of application requires substantial implementation effort. Consequently, there has been substantial duplication of effort and incompatible infrastructure developed across many research groups. This work presents the open-source NiftyNet platform for deep learning in medical imaging. The ambition of NiftyNet is to accelerate and simplify the development of these solutions, and to provide a common mechanism for disseminating research outputs for the community to use, adapt and build upon. The NiftyNet infrastructure provides a modular deep-learning pipeline for a range of medical imaging applications including segmentation, regression, image generation and representation learning applications. Components of the NiftyNet pipeline including data loading, data augmentation, network architectures, loss functions and evaluation metrics are tailored to, and take advantage of, the idiosyncracies of medical image analysis and computer-assisted intervention. NiftyNet is built on the TensorFlow framework and supports features such as TensorBoard visualization of 2D and 3D images and computational graphs by default. We present three illustrative medical image analysis applications built using NiftyNet infrastructure: (1) segmentation of multiple abdominal organs from computed tomography; (2) image regression to predict computed tomography attenuation maps from brain magnetic resonance images; and (3) generation of simulated ultrasound images for specified anatomical poses. The NiftyNet infrastructure enables researchers to rapidly develop and distribute deep learning solutions for segmentation, regression, image generation and representation learning applications, or extend the platform to new applications. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.
Edwin Thanarajah, Sharmili; Han, Cheol E.; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J.
2016-01-01
The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal–frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder. PMID:27445870
Edwin Thanarajah, Sharmili; Han, Cheol E; Rotarska-Jagiela, Anna; Singer, Wolf; Deichmann, Ralf; Maurer, Konrad; Kaiser, Marcus; Uhlhaas, Peter J
2016-01-01
The graph theoretical analysis of structural magnetic resonance imaging (MRI) data has received a great deal of interest in recent years to characterize the organizational principles of brain networks and their alterations in psychiatric disorders, such as schizophrenia. However, the characterization of networks in clinical populations can be challenging, since the comparison of connectivity between groups is influenced by several factors, such as the overall number of connections and the structural abnormalities of the seed regions. To overcome these limitations, the current study employed the whole-brain analysis of connectional fingerprints in diffusion tensor imaging data obtained at 3 T of chronic schizophrenia patients (n = 16) and healthy, age-matched control participants (n = 17). Probabilistic tractography was performed to quantify the connectivity of 110 brain areas. The connectional fingerprint of a brain area represents the set of relative connection probabilities to all its target areas and is, hence, less affected by overall white and gray matter changes than absolute connectivity measures. After detecting brain regions with abnormal connectional fingerprints through similarity measures, we tested each of its relative connection probability between groups. We found altered connectional fingerprints in schizophrenia patients consistent with a dysconnectivity syndrome. While the medial frontal gyrus showed only reduced connectivity, the connectional fingerprints of the inferior frontal gyrus and the putamen mainly contained relatively increased connection probabilities to areas in the frontal, limbic, and subcortical areas. These findings are in line with previous studies that reported abnormalities in striatal-frontal circuits in the pathophysiology of schizophrenia, highlighting the potential utility of connectional fingerprints for the analysis of anatomical networks in the disorder.
Goch, Caspar J; Stieltjes, Bram; Henze, Romy; Hering, Jan; Poustka, Luise; Meinzer, Hans-Peter; Maier-Hein, Klaus H
2014-05-01
Diagnosis of autism spectrum disorders (ASD) is difficult, as symptoms vary greatly and are difficult to quantify objectively. Recent work has focused on the assessment of non-invasive diffusion tensor imaging-based biomarkers that reflect the microstructural characteristics of neuronal pathways in the brain. While tractography-based approaches typically analyze specific structures of interest, a graph-based large-scale network analysis of the connectome can yield comprehensive measures of larger-scale architectural patterns in the brain. Commonly applied global network indices, however, do not provide any specificity with respect to functional areas or anatomical structures. Aim of this work was to assess the concept of network centrality as a tool to perform locally specific analysis without disregarding the global network architecture and compare it to other popular network indices. We create connectome networks from fiber tractographies and parcellations of the human brain and compute global network indices as well as local indices for Wernicke's Area, Broca's Area and the Motor Cortex. Our approach was evaluated on 18 children suffering from ASD and 18 typically developed controls using magnetic resonance imaging-based cortical parcellations in combination with diffusion tensor imaging tractography. We show that the network centrality of Wernicke's area is significantly (p<0.001) reduced in ASD, while the motor cortex, which was used as a control region, did not show significant alterations. This could reflect the reduced capacity for comprehension of language in ASD. The betweenness centrality could potentially be an important metric in the development of future diagnostic tools in the clinical context of ASD diagnosis. Our results further demonstrate the applicability of large-scale network analysis tools in the domain of region-specific analysis with a potential application in many different psychological disorders.
The Weyl curvature tensor, Cotton-York tensor and gravitational waves: A covariant consideration
NASA Astrophysics Data System (ADS)
Osano, Bob
1 + 3 covariant approach to cosmological perturbation theory often employs the electric part (Eab), the magnetic part (Hab) of the Weyl tensor or the shear tensor (σab) in a phenomenological description of gravitational waves. The Cotton-York tensor is rarely mentioned in connection with gravitational waves in this approach. This tensor acts as a source for the magnetic part of the Weyl tensor which should not be neglected in studies of gravitational waves in the 1 + 3 formalism. The tensor is only mentioned in connection with studies of “silent model” but even there the connection with gravitational waves is not exhaustively explored. In this study, we demonstrate that the Cotton-York tensor encodes contributions from both electric and magnetic parts of the Weyl tensor and in directly from the shear tensor. In our opinion, this makes the Cotton-York tensor arguably the natural choice for linear gravitational waves in the 1 + 3 covariant formalism. The tensor is cumbersome to work with but that should negate its usefulness. It is conceivable that the tensor would equally be useful in the metric approach, although we have not demonstrated this in this study. We contend that the use of only one of the Weyl tensor or the shear tensor, although phenomenologically correct, leads to loss of information. Such information is vital particularly when examining the contribution of gravitational waves to the anisotropy of an almost-Friedmann-Lamitre-Robertson-Walker (FLRW) universe. The recourse to this loss is the use Cotton-York tensor.
Efficient Tensor Completion for Color Image and Video Recovery: Low-Rank Tensor Train.
Bengua, Johann A; Phien, Ho N; Tuan, Hoang Duong; Do, Minh N
2017-05-01
This paper proposes a novel approach to tensor completion, which recovers missing entries of data represented by tensors. The approach is based on the tensor train (TT) rank, which is able to capture hidden information from tensors thanks to its definition from a well-balanced matricization scheme. Accordingly, new optimization formulations for tensor completion are proposed as well as two new algorithms for their solution. The first one called simple low-rank tensor completion via TT (SiLRTC-TT) is intimately related to minimizing a nuclear norm based on TT rank. The second one is from a multilinear matrix factorization model to approximate the TT rank of a tensor, and is called tensor completion by parallel matrix factorization via TT (TMac-TT). A tensor augmentation scheme of transforming a low-order tensor to higher orders is also proposed to enhance the effectiveness of SiLRTC-TT and TMac-TT. Simulation results for color image and video recovery show the clear advantage of our method over all other methods.
Cui, Meng; Yang, Shuo; Yu, Tong; Yang, Ce; Gao, Yonghong; Zhu, Haiyan
2013-10-01
To design a model to capture information on the state and trends of knowledge creation, at both an individual and an organizational level, in order to enhance knowledge management. We designed a graph-theoretic knowledge model, the expert knowledge map (EKM), based on literature-based annotation. A case study in the domain of Traditional Chinese Medicine research was used to illustrate the usefulness of the model. The EKM successfully captured various aspects of knowledge and enhanced knowledge management within the case-study organization through the provision of knowledge graphs, expert graphs, and expert-knowledge biography. Our model could help to reveal the hot topics, trends, and products of the research done by an organization. It can potentially be used to facilitate knowledge learning, sharing and decision-making among researchers, academicians, students, and administrators of organizations.
New graph polynomials in parametric QED Feynman integrals
NASA Astrophysics Data System (ADS)
Golz, Marcel
2017-10-01
In recent years enormous progress has been made in perturbative quantum field theory by applying methods of algebraic geometry to parametric Feynman integrals for scalar theories. The transition to gauge theories is complicated not only by the fact that their parametric integrand is much larger and more involved. It is, moreover, only implicitly given as the result of certain differential operators applied to the scalar integrand exp(-ΦΓ /ΨΓ) , where ΨΓ and ΦΓ are the Kirchhoff and Symanzik polynomials of the Feynman graph Γ. In the case of quantum electrodynamics we find that the full parametric integrand inherits a rich combinatorial structure from ΨΓ and ΦΓ. In the end, it can be expressed explicitly as a sum over products of new types of graph polynomials which have a combinatoric interpretation via simple cycle subgraphs of Γ.
A Review of Tensors and Tensor Signal Processing
NASA Astrophysics Data System (ADS)
Cammoun, L.; Castaño-Moraga, C. A.; Muñoz-Moreno, E.; Sosa-Cabrera, D.; Acar, B.; Rodriguez-Florido, M. A.; Brun, A.; Knutsson, H.; Thiran, J. P.
Tensors have been broadly used in mathematics and physics, since they are a generalization of scalars or vectors and allow to represent more complex properties. In this chapter we present an overview of some tensor applications, especially those focused on the image processing field. From a mathematical point of view, a lot of work has been developed about tensor calculus, which obviously is more complex than scalar or vectorial calculus. Moreover, tensors can represent the metric of a vector space, which is very useful in the field of differential geometry. In physics, tensors have been used to describe several magnitudes, such as the strain or stress of materials. In solid mechanics, tensors are used to define the generalized Hooke’s law, where a fourth order tensor relates the strain and stress tensors. In fluid dynamics, the velocity gradient tensor provides information about the vorticity and the strain of the fluids. Also an electromagnetic tensor is defined, that simplifies the notation of the Maxwell equations. But tensors are not constrained to physics and mathematics. They have been used, for instance, in medical imaging, where we can highlight two applications: the diffusion tensor image, which represents how molecules diffuse inside the tissues and is broadly used for brain imaging; and the tensorial elastography, which computes the strain and vorticity tensor to analyze the tissues properties. Tensors have also been used in computer vision to provide information about the local structure or to define anisotropic image filters.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin; ...
2016-04-22
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
Spin polarisation of tt¯γγ production at NLO+PS with GoSam interfaced to MadGraph5_aMC@NLO
DOE Office of Scientific and Technical Information (OSTI.GOV)
van Deurzen, Hans; Frederix, Rikkert; Hirschi, Valentin
Here, we present an interface between the multipurpose Monte Carlo tool MadGraph5_aMC@NLO and the automated amplitude generator GoSam. As a first application of this novel framework, we compute the NLO corrections to pp→ tt¯H and pp→ tt¯γγ matched to a parton shower. In the phenomenological analyses of these processes, we focus our attention on observables which are sensitive to the polarisation of the top quarks.
Geometric decomposition of the conformation tensor in viscoelastic turbulence
NASA Astrophysics Data System (ADS)
Hameduddin, Ismail; Meneveau, Charles; Zaki, Tamer A.; Gayme, Dennice F.
2018-05-01
This work introduces a mathematical approach to analysing the polymer dynamics in turbulent viscoelastic flows that uses a new geometric decomposition of the conformation tensor, along with associated scalar measures of the polymer fluctuations. The approach circumvents an inherent difficulty in traditional Reynolds decompositions of the conformation tensor: the fluctuating tensor fields are not positive-definite and so do not retain the physical meaning of the tensor. The geometric decomposition of the conformation tensor yields both mean and fluctuating tensor fields that are positive-definite. The fluctuating tensor in the present decomposition has a clear physical interpretation as a polymer deformation relative to the mean configuration. Scalar measures of this fluctuating conformation tensor are developed based on the non-Euclidean geometry of the set of positive-definite tensors. Drag-reduced viscoelastic turbulent channel flow is then used an example case study. The conformation tensor field, obtained using direct numerical simulations, is analysed using the proposed framework.
US Geological Survey customers speak out
Gillespie, S.; Snyder, G.
1995-01-01
Provides results of a customer survey carried out in 1994 by the US Geological Survey. Uses of cartographic products are classified, as are application areas, accuracy satisfaction, media, Digital Line Graph requirements in update, and frequency of product use. USGS responses and plans for the future are noted. -M.Blakemore
Quantum incompatibility of channels with general outcome operator algebras
NASA Astrophysics Data System (ADS)
Kuramochi, Yui
2018-04-01
A pair of quantum channels is said to be incompatible if they cannot be realized as marginals of a single channel. This paper addresses the general structure of the incompatibility of completely positive channels with a fixed quantum input space and with general outcome operator algebras. We define a compatibility relation for such channels by identifying the composite outcome space as the maximal (projective) C*-tensor product of outcome algebras. We show theorems that characterize this compatibility relation in terms of the concatenation and conjugation of channels, generalizing the recent result for channels with quantum outcome spaces. These results are applied to the positive operator valued measures (POVMs) by identifying each of them with the corresponding quantum-classical (QC) channel. We also give a characterization of the maximality of a POVM with respect to the post-processing preorder in terms of the conjugate channel of the QC channel. We consider another definition of compatibility of normal channels by identifying the composite outcome space with the normal tensor product of the outcome von Neumann algebras. We prove that for a given normal channel, the class of normally compatible channels is upper bounded by a special class of channels called tensor conjugate channels. We show the inequivalence of the C*- and normal compatibility relations for QC channels, which originates from the possibility and impossibility of copying operations for commutative von Neumann algebras in C*- and normal compatibility relations, respectively.
Functional Generalized Additive Models.
McLean, Mathew W; Hooker, Giles; Staicu, Ana-Maria; Scheipl, Fabian; Ruppert, David
2014-01-01
We introduce the functional generalized additive model (FGAM), a novel regression model for association studies between a scalar response and a functional predictor. We model the link-transformed mean response as the integral with respect to t of F { X ( t ), t } where F (·,·) is an unknown regression function and X ( t ) is a functional covariate. Rather than having an additive model in a finite number of principal components as in Müller and Yao (2008), our model incorporates the functional predictor directly and thus our model can be viewed as the natural functional extension of generalized additive models. We estimate F (·,·) using tensor-product B-splines with roughness penalties. A pointwise quantile transformation of the functional predictor is also considered to ensure each tensor-product B-spline has observed data on its support. The methods are evaluated using simulated data and their predictive performance is compared with other competing scalar-on-function regression alternatives. We illustrate the usefulness of our approach through an application to brain tractography, where X ( t ) is a signal from diffusion tensor imaging at position, t , along a tract in the brain. In one example, the response is disease-status (case or control) and in a second example, it is the score on a cognitive test. R code for performing the simulations and fitting the FGAM can be found in supplemental materials available online.
Mohammadi, Siawoosh; Hutton, Chloe; Nagy, Zoltan; Josephs, Oliver; Weiskopf, Nikolaus
2013-01-01
Diffusion tensor imaging is widely used in research and clinical applications, but this modality is highly sensitive to artefacts. We developed an easy-to-implement extension of the original diffusion tensor model to account for physiological noise in diffusion tensor imaging using measures of peripheral physiology (pulse and respiration), the so-called extended tensor model. Within the framework of the extended tensor model two types of regressors, which respectively modeled small (linear) and strong (nonlinear) variations in the diffusion signal, were derived from peripheral measures. We tested the performance of four extended tensor models with different physiological noise regressors on nongated and gated diffusion tensor imaging data, and compared it to an established data-driven robust fitting method. In the brainstem and cerebellum the extended tensor models reduced the noise in the tensor-fit by up to 23% in accordance with previous studies on physiological noise. The extended tensor model addresses both large-amplitude outliers and small-amplitude signal-changes. The framework of the extended tensor model also facilitates further investigation into physiological noise in diffusion tensor imaging. The proposed extended tensor model can be readily combined with other artefact correction methods such as robust fitting and eddy current correction. PMID:22936599
Some Correlation Functions in Matrix Product Ground States of One-Dimensional Two-State Chains
NASA Astrophysics Data System (ADS)
Shariati, Ahmad; Aghamohammadi, Amir; Fatollahi, Amir H.; Khorrami, Mohammad
2014-04-01
Consider one-dimensional chains with nearest neighbour interactions, for which to each site correspond two independent states (say up and down), and the ground state is a matrix product state. It has been shown [23] that for such systems, the ground states are linear combinations of specific vectors which are essentially direct products of specific numbers of ups and downs, symmetrized in a generalized manner. By a generalized manner, it is meant that the coefficient corresponding to the interchange of states of two sites, in not necessarily plus one or minus one, but a phase which depends on the Hamiltonian and the position of the two sites. Such vectors are characterized by a phase χ, the N-th power of which is one (where N is the number of sites), and an integer. Corresponding to χ, there is another integer M which is the smallest positive integer that χM is one. Two classes of correlation functions for such systems (basically correlation functions for such vectors) are calculated. The first class consists of correlation functions of tensor products of one-site diagonal observables; the second class consists of correlation functions of tensor products of less than M one-site observables (but not necessarily diagonal).
[An Improved Spectral Quaternion Interpolation Method of Diffusion Tensor Imaging].
Xu, Yonghong; Gao, Shangce; Hao, Xiaofei
2016-04-01
Diffusion tensor imaging(DTI)is a rapid development technology in recent years of magnetic resonance imaging.The diffusion tensor interpolation is a very important procedure in DTI image processing.The traditional spectral quaternion interpolation method revises the direction of the interpolation tensor and can preserve tensors anisotropy,but the method does not revise the size of tensors.The present study puts forward an improved spectral quaternion interpolation method on the basis of traditional spectral quaternion interpolation.Firstly,we decomposed diffusion tensors with the direction of tensors being represented by quaternion.Then we revised the size and direction of the tensor respectively according to different situations.Finally,we acquired the tensor of interpolation point by calculating the weighted average.We compared the improved method with the spectral quaternion method and the Log-Euclidean method by the simulation data and the real data.The results showed that the improved method could not only keep the monotonicity of the fractional anisotropy(FA)and the determinant of tensors,but also preserve the tensor anisotropy at the same time.In conclusion,the improved method provides a kind of important interpolation method for diffusion tensor image processing.
The impact of estimation errors on evaluations of timber production opportunities.
Dennis L. Schweitzer
1970-01-01
Errors in estimating costs and return, the timing of harvests, and the cost of using funds can greatly affect the apparent desirability of investments in timber production. Partial derivatives are used to measure the impact of these errors on the predicted present net worth of potential investments in timber production. Graphs that illustrate the impact of each type...
C%2B%2B tensor toolbox user manual.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Plantenga, Todd D.; Kolda, Tamara Gibson
2012-04-01
The C++ Tensor Toolbox is a software package for computing tensor decompositions. It is based on the Matlab Tensor Toolbox, and is particularly optimized for sparse data sets. This user manual briefly overviews tensor decomposition mathematics, software capabilities, and installation of the package. Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors in C++. The Toolbox compiles into libraries and is intended for use with custom applications written by users.
Similar Tensor Arrays - A Framework for Storage of Tensor Array Data
NASA Astrophysics Data System (ADS)
Brun, Anders; Martin-Fernandez, Marcos; Acar, Burak; Munoz-Moreno, Emma; Cammoun, Leila; Sigfridsson, Andreas; Sosa-Cabrera, Dario; Svensson, Björn; Herberthson, Magnus; Knutsson, Hans
This chapter describes a framework for storage of tensor array data, useful to describe regularly sampled tensor fields. The main component of the framework, called Similar Tensor Array Core (STAC), is the result of a collaboration between research groups within the SIMILAR network of excellence. It aims to capture the essence of regularly sampled tensor fields using a minimal set of attributes and can therefore be used as a “greatest common divisor” and interface between tensor array processing algorithms. This is potentially useful in applied fields like medical image analysis, in particular in Diffusion Tensor MRI, where misinterpretation of tensor array data is a common source of errors. By promoting a strictly geometric perspective on tensor arrays, with a close resemblance to the terminology used in differential geometry, (STAC) removes ambiguities and guides the user to define all necessary information. In contrast to existing tensor array file formats, it is minimalistic and based on an intrinsic and geometric interpretation of the array itself, without references to other coordinate systems.
Electromagnetic stress tensor for an amorphous metamaterial medium
NASA Astrophysics Data System (ADS)
Wang, Neng; Wang, Shubo; Ng, Jack
2018-03-01
We analytically and numerically investigated the internal optical forces exerted by an electromagnetic wave inside an amorphous metamaterial medium. We derived, by using the principle of virtual work, the Helmholtz stress tensor, which takes into account the electrostriction effect. Several examples of amorphous media are considered, and different electromagnetic stress tensors, such as the Einstein-Laub tensor and Minkowski tensor, are also compared. It is concluded that the Helmholtz stress tensor is the appropriate tensor for such systems.
Tensor Toolbox for MATLAB v. 3.0
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kola, Tamara; Bader, Brett W.; Acar Ataman, Evrim NMN
Tensors (also known as multidimensional arrays or N-way arrays) are used in a variety of applications ranging from chemometrics to network analysis. The Tensor Toolbox provides classes for manipulating dense, sparse, and structured tensors using MATLAB's object-oriented features. It also provides algorithms for tensor decomposition and factorization, algorithms for computing tensor eigenvalues, and methods for visualization of results.
Myung, W; Han, C E; Fava, M; Mischoulon, D; Papakostas, G I; Heo, J-Y; Kim, K W; Kim, S T; Kim, D J H; Kim, D K; Seo, S W; Seong, J-K; Jeon, H J
2016-01-01
Major depressive disorder (MDD) and suicidal behavior have been associated with structural and functional changes in the brain. However, little is known regarding alterations of brain networks in MDD patients with suicidal ideation. We investigated whether or not MDD patients with suicidal ideation have different topological organizations of white matter networks compared with MDD patients without suicidal ideation. Participants consisted of 24 patients with MDD and suicidal ideation, 25 age- and gender-matched MDD patients without suicidal ideation and 31 healthy subjects. A network-based statistics (NBS) and a graph theoretical analysis were performed to assess differences in the inter-regional connectivity. Diffusion tensor imaging (DTI) was performed to assess topological changes according to suicidal ideation in MDD patients. The Scale for Suicide Ideation (SSI) and the Korean version of the Barrett Impulsiveness Scale (BIS) were used to assess the severity of suicidal ideation and impulsivity, respectively. Reduced structural connectivity in a characterized subnetwork was found in patients with MDD and suicidal ideation by utilizing NBS analysis. The subnetwork included the regions of the frontosubcortical circuits and the regions involved in executive function in the left hemisphere (rostral middle frontal, pallidum, superior parietal, frontal pole, caudate, putamen and thalamus). The graph theoretical analysis demonstrated that network measures of the left rostral middle frontal had a significant positive correlation with severity of SSI (r=0.59, P=0.02) and BIS (r=0.59, P=0.01). The total edge strength that was significantly associated with suicidal ideation did not differ between MDD patients without suicidal ideation and healthy subjects. Our findings suggest that the reduced frontosubcortical circuit of structural connectivity, which includes regions associated with executive function and impulsivity, appears to have a role in the emergence of suicidal ideation in MDD patients. PMID:27271861
Disrupted topology of the resting state structural connectome in middle-aged APOE ε4 carriers.
Korthauer, L E; Zhan, L; Ajilore, O; Leow, A; Driscoll, I
2018-05-24
The apolipoprotein E (APOE) ε4 allele is the best characterized genetic risk factor for Alzheimer's disease to date. Older APOE ε4 carriers (aged 60 + years) are known to have disrupted structural and functional connectivity, but less is known about APOE-associated network integrity in middle age. The goal of this study was to characterize APOE-related differences in network topology in middle age, as disentangling the early effects of healthy versus pathological aging may aid early detection of Alzheimer's disease and inform treatments. We performed resting state functional magnetic resonance imaging (rs-fMRI) and diffusion tensor imaging (DTI) in healthy, cognitively normal, middle-aged adults (age 40-60; N = 76, 38 APOE ε4 carriers). Graph theoretical analysis was used to calculate local and global efficiency of 1) a whole brain rs-fMRI network; 2) a whole brain DTI network; and 3) the resting state structural connectome (rsSC), an integrated functional-structural network derived using functional-by-structural hierarchical (FSH) mapping. Our results indicated no APOE ε4-associated differences in network topology of the rs-fMRI or DTI networks alone. However, ε4 carriers had significantly lower global and local efficiency of the integrated rsSC compared to non-carriers. Furthermore, ε4 carriers were less resilient to targeted node failure of the rsSC, which mimics the neuropathological process of Alzheimer's disease. Collectively, these findings suggest that integrating multiple neuroimaging modalities and employing graph theoretical analysis may reveal network-level vulnerabilities that may serve as biomarkers of age-related cognitive decline in middle age, decades before the onset of overt cognitive impairment. Copyright © 2018. Published by Elsevier Inc.
Sex differences in the influence of body mass index on anatomical architecture of brain networks.
Gupta, A; Mayer, E A; Hamadani, K; Bhatt, R; Fling, C; Alaverdyan, M; Torgerson, C; Ashe-McNalley, C; Van Horn, J D; Naliboff, B; Tillisch, K; Sanmiguel, C P; Labus, J S
2017-08-01
The brain has a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow and global communication (centrality) in reward, salience and sensorimotor regions and to identify sex-related differences in these parameters. Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus and nucleus accumbens) and salience (anterior mid-cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. In individuals with increased BMI, reward, salience and sensorimotor network regions are susceptible to topological restructuring in a sex-related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology.
Sex Differences in the Influence of Body Mass Index on Anatomical Architecture of Brain Networks
Gupta, Arpana; Mayer, Emeran A.; Hamadani, Kareem; Bhatt, Ravi; Fling, Connor; Alaverdyan, Mher; Torgenson, Carinna; Ashe-McNalley, Cody; Van Horn, John D; Naliboff, Bruce; Tillisch, Kirsten; Sanmiguel, Claudia P.; Labus, Jennifer S.
2017-01-01
Background/Objective The brain plays a central role in regulating ingestive behavior in obesity. Analogous to addiction behaviors, an imbalance in the processing of rewarding and salient stimuli results in maladaptive eating behaviors that override homeostatic needs. We performed network analysis based on graph theory to examine the association between body mass index (BMI) and network measures of integrity, information flow, and global communication (centrality) in reward, salience and sensorimotor regions, and to identify sex-related differences in these parameters. Subjects/Methods Structural and diffusion tensor imaging were obtained in a sample of 124 individuals (61 males and 63 females). Graph theory was applied to calculate anatomical network properties (centrality) for regions of the reward, salience, and sensorimotor networks. General linear models with linear contrasts were performed to test for BMI and sex-related differences in measures of centrality, while controlling for age. Results In both males and females, individuals with high BMI (obese and overweight) had greater anatomical centrality (greater connectivity) of reward (putamen) and salience (anterior insula) network regions. Sex differences were observed both in individuals with normal and elevated BMI. In individuals with high BMI, females compared to males showed greater centrality in reward (amygdala, hippocampus, nucleus accumbens) and salience (anterior mid cingulate cortex) regions, while males compared to females had greater centrality in reward (putamen) and sensorimotor (posterior insula) regions. Conclusions In individuals with increased BMI, reward, salience, and sensorimotor network regions are susceptible to topological restructuring in a sex related manner. These findings highlight the influence of these regions on integrative processing of food-related stimuli and increased ingestive behavior in obesity, or in the influence of hedonic ingestion on brain topological restructuring. The observed sex differences emphasize the importance of considering sex differences in obesity pathophysiology. PMID:28360430
16 CFR 2.7 - Compulsory process in investigations.
Code of Federal Regulations, 2013 CFR
2013-01-01
..., graphs, charts, photographs, sound recordings, images and other data or data compilations stored in any... other tangible things, for inspection, copying, testing, or sampling. (j) Manner and form of production...
16 CFR 2.7 - Compulsory process in investigations.
Code of Federal Regulations, 2014 CFR
2014-01-01
..., graphs, charts, photographs, sound recordings, images and other data or data compilations stored in any... other tangible things, for inspection, copying, testing, or sampling. (j) Manner and form of production...
Cataldo, Rosella; Alfinito, Eleonora; Reggiani, Lino
2017-12-01
Aptamers are single stranded DNA, RNA, or peptide sequences having the ability to bind several specific targets (proteins, molecules as well as ions). Therefore, aptamer production and selection for therapeutic and diagnostic applications is very challenging. Usually, they are generated in vitro, although computational approaches have been recently developed for the in silico production. Despite these efforts, the mechanism of aptamer-ligand formation is not completely clear, and producing high-affinity aptamers is still quite difficult. This paper aims to develop a computational model able to describe aptamer-ligand affinity. Topological tools, such as the conventional degree distribution, the rank-degree distribution (hierarchy), and the node assortativity are employed. In doing so, the macromolecules tertiary-structures are mapped into appropriate graphs. These graphs reproduce the main topological features of the macromolecules, by preserving the distances between amino acids (nucleotides). Calculations are applied to the thrombin binding aptamer (TBA), and the TBA-thrombin complex produced in the presence of Na + or K + . The topological analysis is able to detect several differences between complexes obtained in the presence of the two cations, as expected by previous investigations. These results support graph analysis as a novel computational tool for testing affinity. Otherwise, starting from the graphs, an electrical network can be obtained by using the specific electrical properties of amino acids and nucleobases. Therefore, a further analysis concerns with the electrical response, revealing that the resistance is sensitively affected by the presence of sodium or potassium, thus suggesting resistance as a useful physical parameter for testing binding affinity.
On the star partition dimension of comb product of cycle and complete graph
NASA Astrophysics Data System (ADS)
Alfarisi, Ridho; Darmaji; Dafik
2017-06-01
Let G = (V, E) be a connected graphs with vertex set V (G), edge set E(G) and S ⊆ V (G). For an ordered partition Π = {S 1, S 2, S 3, …, Sk } of V (G), the representation of a vertex v ∈ V (G) with respect to Π is the k-vectors r(v|Π) = (d(v, S 1), d(v, S 2), …, d(v, Sk )), where d(v, Sk ) represents the distance between the vertex v and the set Sk , defined by d(v, Sk ) = min{d(v, x)|x ∈ Sk}. The partition Π of V (G) is a resolving partition if the k-vektors r(v|Π), v ∈ V (G) are distinct. The minimum resolving partition Π is a partition dimension of G, denoted by pd(G). The resolving partition Π = {S 1, S 2, S 3, …, Sk} is called a star resolving partition for G if it is a resolving partition and each subgraph induced by Si , 1 ≤ i ≤ k, is a star. The minimum k for which there exists a star resolving partition of V (G) is the star partition dimension of G, denoted by spd(G). Finding a star partition dimension of G is classified to be a NP-Hard problem. Furthermore, the comb product between G and H, denoted by G ⊲ H, is a graph obtained by taking one copy of G and |V (G)| copies of H and grafting the i-th copy of H at the vertex o to the i-th vertex of G. By definition of comb product, we can say that V (G ⊲ H) = {(a, u)|a ∈ V (G), u ∈ V (H)} and (a, u)(b, v) ∈ E(G ⊲ H) whenever a = b and uv ∈ E(H), or ab ∈ E(G) and u = v = o. In this paper, we will study the star partition dimension of comb product of cycle and complete graph, namely Cn ⊲ Km and Km ⊲ Cn for n ≥ 3 and m ≥ 3.
Diffusion Tensor Image Registration Using Hybrid Connectivity and Tensor Features
Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang
2014-01-01
Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. PMID:24293159
Spherical Tensor Calculus for Local Adaptive Filtering
NASA Astrophysics Data System (ADS)
Reisert, Marco; Burkhardt, Hans
In 3D image processing tensors play an important role. While rank-1 and rank-2 tensors are well understood and commonly used, higher rank tensors are rare. This is probably due to their cumbersome rotation behavior which prevents a computationally efficient use. In this chapter we want to introduce the notion of a spherical tensor which is based on the irreducible representations of the 3D rotation group. In fact, any ordinary cartesian tensor can be decomposed into a sum of spherical tensors, while each spherical tensor has a quite simple rotation behavior. We introduce so called tensorial harmonics that provide an orthogonal basis for spherical tensor fields of any rank. It is just a generalization of the well known spherical harmonics. Additionally we propose a spherical derivative which connects spherical tensor fields of different degree by differentiation. Based on the proposed theory we present two applications. We propose an efficient algorithm for dense tensor voting in 3D, which makes use of tensorial harmonics decomposition of the tensor-valued voting field. In this way it is possible to perform tensor voting by linear-combinations of convolutions in an efficient way. Secondly, we propose an anisotropic smoothing filter that uses a local shape and orientation adaptive filter kernel which can be computed efficiently by the use spherical derivatives.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
Ibrahim, Khaled Z.; Epifanovsky, Evgeny; Williams, Samuel; ...
2017-03-08
Coupled-cluster methods provide highly accurate models of molecular structure through explicit numerical calculation of tensors representing the correlation between electrons. These calculations are dominated by a sequence of tensor contractions, motivating the development of numerical libraries for such operations. While based on matrix–matrix multiplication, these libraries are specialized to exploit symmetries in the molecular structure and in electronic interactions, and thus reduce the size of the tensor representation and the complexity of contractions. The resulting algorithms are irregular and their parallelization has been previously achieved via the use of dynamic scheduling or specialized data decompositions. We introduce our efforts tomore » extend the Libtensor framework to work in the distributed memory environment in a scalable and energy-efficient manner. We achieve up to 240× speedup compared with the optimized shared memory implementation of Libtensor. We attain scalability to hundreds of thousands of compute cores on three distributed-memory architectures (Cray XC30 and XC40, and IBM Blue Gene/Q), and on a heterogeneous GPU-CPU system (Cray XK7). As the bottlenecks shift from being compute-bound DGEMM's to communication-bound collectives as the size of the molecular system scales, we adopt two radically different parallelization approaches for handling load-imbalance, tasking and bulk synchronous models. Nevertheless, we preserve a unified interface to both programming models to maintain the productivity of computational quantum chemists.« less
NASA Astrophysics Data System (ADS)
Gu, C.; Li, J.; Toksoz, M. N.
2013-12-01
Induced seismicity occurs both in conventional oil/gas fields due to production and water injection and in unconventional oil/gas fields due to hydraulic fracturing. Source mechanisms of these induced earthquakes are of great importance for understanding their causes and the physics of the seismic processes in reservoirs. Previous research on the analysis of induced seismic events in conventional oil/gas fields assumed a double couple (DC) source mechanism. However, recent studies have shown a non-negligible percentage of a non-double-couple (non-DC) component of source moment tensor in hydraulic fracturing events (Šílený et al., 2009; Warpinski and Du, 2010; Song and Toksöz, 2011). In this study, we determine the full moment tensor of the induced seismicity data in a conventional oil/gas field and for hydrofrac events in an unconventional oil/gas field. Song and Toksöz (2011) developed a full waveform based complete moment tensor inversion method to investigate a non-DC source mechanism. We apply this approach to the induced seismicity data from a conventional gas field in Oman. In addition, this approach is also applied to hydrofrac microseismicity data monitored by downhole geophones in four wells in US. We compare the source mechanisms of induced seismicity in the two different types of gas fields and explain the differences in terms of physical processes.
L(2,1)-Labeling of the Strong Product of Paths and Cycles
2014-01-01
An L(2,1)-labeling of a graph G = (V, E) is a function f from the vertex set V(G) to the set of nonnegative integers such that the labels on adjacent vertices differ by at least two and the labels on vertices at distance two differ by at least one. The span of f is the difference between the largest and the smallest numbers in f(V). The λ-number of G, denoted by λ(G), is the minimum span over all L(2,1)-labelings of G. We consider the λ-number of P n⊠C m and for n ≤ 11 the λ-number of C n⊠C m. We determine λ-numbers of graphs of interest with the exception of a finite number of graphs and we improve the bounds on the λ-number of C n⊠C m, m ≥ 24 and n ≥ 26. PMID:24711734
Dragicevic, Arnaud; Boulanger, Vincent; Bruciamacchie, Max; Chauchard, Sandrine; Dupouey, Jean-Luc; Stenger, Anne
2017-04-21
In order to unveil the value of network connectivity, we formalize the construction of ecological networks in forest environments as an optimal control dynamic graph-theoretic problem. The network is based on a set of bioreserves and patches linked by ecological corridors. The node dynamics, built upon the consensus protocol, form a time evolutive Mahalanobis distance weighted by the opportunity costs of timber production. We consider a case of complete graph, where the ecological network is fully connected, and a case of incomplete graph, where the ecological network is partially connected. The results show that the network equilibrium depends on the size of the reception zone, while the network connectivity depends on the environmental compatibility between the ecological areas. Through shadow prices, we find that securing connectivity in partially connected networks is more expensive than in fully connected networks, but should be undertaken when the opportunity costs are significant. Copyright © 2017 Elsevier Ltd. All rights reserved.
U.S. Geological Survey DLG-3 and Bureau of the Census TIGER data. Development and GIS applications
Batten, Lawrence G.
1990-01-01
The U.S. Geological Survey has been actively developing digital cartographic and geographic data and standards since the early 1970's. One product is Digital Line Graph data, which offer a consistently accurate source of base category geographic information. The Bureau of the Census has combined their Dual Independent Map Encoding data with the Geological Survey's 1:100,000-scale Digital Line Graph data to prepare for the 1990 decennial census. The resulting Topologically Integrated Geographic Encoding and Referencing data offer a wealth of information. A major area of research using these data is in transportation analysis. The attributes associated with Digital Line Graphs can be used to determine the average travel times along each segment. Geographic information system functions can then be used to optimize routes through the network and to generate street name lists. Additional aspects of the subject are discussed.
Lindegren, Martin; Denker, Tim Spaanheden; Floeter, Jens; Fock, Heino O.; Sguotti, Camilla; Stäbler, Moritz; Otto, Saskia A.; Möllmann, Christian
2017-01-01
Understanding spatio-temporal dynamics of biotic communities containing large numbers of species is crucial to guide ecosystem management and conservation efforts. However, traditional approaches usually focus on studying community dynamics either in space or in time, often failing to fully account for interlinked spatio-temporal changes. In this study, we demonstrate and promote the use of tensor decomposition for disentangling spatio-temporal community dynamics in long-term monitoring data. Tensor decomposition builds on traditional multivariate statistics (e.g. Principal Component Analysis) but extends it to multiple dimensions. This extension allows for the synchronized study of multiple ecological variables measured repeatedly in time and space. We applied this comprehensive approach to explore the spatio-temporal dynamics of 65 demersal fish species in the North Sea, a marine ecosystem strongly altered by human activities and climate change. Our case study demonstrates how tensor decomposition can successfully (i) characterize the main spatio-temporal patterns and trends in species abundances, (ii) identify sub-communities of species that share similar spatial distribution and temporal dynamics, and (iii) reveal external drivers of change. Our results revealed a strong spatial structure in fish assemblages persistent over time and linked to differences in depth, primary production and seasonality. Furthermore, we simultaneously characterized important temporal distribution changes related to the low frequency temperature variability inherent in the Atlantic Multidecadal Oscillation. Finally, we identified six major sub-communities composed of species sharing similar spatial distribution patterns and temporal dynamics. Our case study demonstrates the application and benefits of using tensor decomposition for studying complex community data sets usually derived from large-scale monitoring programs. PMID:29136658
Deformation quantization with separation of variables of an endomorphism bundle
NASA Astrophysics Data System (ADS)
Karabegov, Alexander
2014-01-01
Given a holomorphic Hermitian vector bundle E and a star-product with separation of variables on a pseudo-Kähler manifold, we construct a star product on the sections of the endomorphism bundle of the dual bundle E∗ which also has the appropriately generalized property of separation of variables. For this star product we prove a generalization of Gammelgaard's graph-theoretic formula.
Invariant graphs of a family of non-uniformly expanding skew products over Markov maps
NASA Astrophysics Data System (ADS)
Walkden, C. P.; Withers, T.
2018-06-01
We consider a family of skew-products of the form where T is a continuous, expanding, locally eventually onto Markov map and is a family of homeomorphisms of . A function is said to be an invariant graph if is an invariant set for the skew-product; equivalently, u(T(x)) = g x (u(x)). A well-studied problem is to consider the existence, regularity and dimension-theoretic properties of such functions, usually under strong contraction or expansion conditions (in terms of Lyapunov exponents or partial hyperbolicity) in the fibre direction. Here we consider such problems in a setting where the Lyapunov exponent in the fibre direction is zero on a set of periodic orbits but expands except on a neighbourhood of these periodic orbits. We prove that u either has the structure of a ‘quasi-graph’ (or ‘bony graph’) or is as smooth as the dynamics, and we give a criteria for this to happen.
Alternatives for jet engine control
NASA Technical Reports Server (NTRS)
Sain, M. K.
1983-01-01
Tensor model order reduction, recursive tensor model identification, input design for tensor model identification, software development for nonlinear feedback control laws based upon tensors, and development of the CATNAP software package for tensor modeling, identification and simulation were studied. The last of these are discussed.
Geodesic-loxodromes for diffusion tensor interpolation and difference measurement.
Kindlmann, Gordon; Estépar, Raúl San José; Niethammer, Marc; Haker, Steven; Westin, Carl-Fredrik
2007-01-01
In algorithms for processing diffusion tensor images, two common ingredients are interpolating tensors, and measuring the distance between them. We propose a new class of interpolation paths for tensors, termed geodesic-loxodromes, which explicitly preserve clinically important tensor attributes, such as mean diffusivity or fractional anisotropy, while using basic differential geometry to interpolate tensor orientation. This contrasts with previous Riemannian and Log-Euclidean methods that preserve the determinant. Path integrals of tangents of geodesic-loxodromes generate novel measures of over-all difference between two tensors, and of difference in shape and in orientation.
Energy Perspectives: Trends and Milestones
2012-01-01
Energy Perspectives is a graphical overview of energy history in the United States. The 43 graphs shown here reveal sweeping trends related to the nation's production, consumption, and trade of energy from 1949 through 2011.
Li, Wenyuan; Dai, Chao; Liu, Chun-Chi
2012-01-01
Abstract Current network analysis methods all focus on one or multiple networks of the same type. However, cells are organized by multi-layer networks (e.g., transcriptional regulatory networks, splicing regulatory networks, protein-protein interaction networks), which interact and influence each other. Elucidating the coupling mechanisms among those different types of networks is essential in understanding the functions and mechanisms of cellular activities. In this article, we developed the first computational method for pattern mining across many two-layered graphs, with the two layers representing different types yet coupled biological networks. We formulated the problem of identifying frequent coupled clusters between the two layers of networks into a tensor-based computation problem, and proposed an efficient solution to solve the problem. We applied the method to 38 two-layered co-transcription and co-splicing networks, derived from 38 RNA-seq datasets. With the identified atlas of coupled transcription-splicing modules, we explored to what extent, for which cellular functions, and by what mechanisms transcription-splicing coupling takes place. PMID:22697243
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kampf, Karol; Institute of Particle and Nuclear Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holesovickach 2, 18000 Prague; Novotny, Jiri
2010-06-01
We study in detail various aspects of the renormalization of the spin-1 resonance propagator in the effective field theory framework. First, we briefly review the formalisms for the description of spin-1 resonances in the path integral formulation with the stress on the issue of propagating degrees of freedom. Then we calculate the one-loop 1{sup --} meson self-energy within the resonance chiral theory in the chiral limit using different methods for the description of spin-1 particles, namely, the Proca field, antisymmetric tensor field, and the first-order formalisms. We discuss in detail technical aspects of the renormalization procedure which are inherent tomore » the power-counting nonrenormalizable theory and give a formal prescription for the organization of both the counterterms and one-particle irreducible graphs. We also construct the corresponding propagators and investigate their properties. We show that the additional poles corresponding to the additional one-particle states are generated by loop corrections, some of which are negative norm ghosts or tachyons. We count the number of such additional poles and briefly discuss their physical meaning.« less
Connectome imaging for mapping human brain pathways
Shi, Y; Toga, A W
2017-01-01
With the fast advance of connectome imaging techniques, we have the opportunity of mapping the human brain pathways in vivo at unprecedented resolution. In this article we review the current developments of diffusion magnetic resonance imaging (MRI) for the reconstruction of anatomical pathways in connectome studies. We first introduce the background of diffusion MRI with an emphasis on the technical advances and challenges in state-of-the-art multi-shell acquisition schemes used in the Human Connectome Project. Characterization of the microstructural environment in the human brain is discussed from the tensor model to the general fiber orientation distribution (FOD) models that can resolve crossing fibers in each voxel of the image. Using FOD-based tractography, we describe novel methods for fiber bundle reconstruction and graph-based connectivity analysis. Building upon these novel developments, there have already been successful applications of connectome imaging techniques in reconstructing challenging brain pathways. Examples including retinofugal and brainstem pathways will be reviewed. Finally, we discuss future directions in connectome imaging and its interaction with other aspects of brain imaging research. PMID:28461700
Neural Signatures of Autism Spectrum Disorders: Insights into Brain Network Dynamics
Hernandez, Leanna M; Rudie, Jeffrey D; Green, Shulamite A; Bookheimer, Susan; Dapretto, Mirella
2015-01-01
Neuroimaging investigations of autism spectrum disorders (ASDs) have advanced our understanding of atypical brain function and structure, and have recently converged on a model of altered network-level connectivity. Traditional task-based functional magnetic resonance imaging (MRI) and volume-based structural MRI studies have identified widespread atypicalities in brain regions involved in social behavior and other core ASD-related behavioral deficits. More recent advances in MR-neuroimaging methods allow for quantification of brain connectivity using diffusion tensor imaging, functional connectivity, and graph theoretic methods. These newer techniques have moved the field toward a systems-level understanding of ASD etiology, integrating functional and structural measures across distal brain regions. Neuroimaging findings in ASD as a whole have been mixed and at times contradictory, likely due to the vast genetic and phenotypic heterogeneity characteristic of the disorder. Future longitudinal studies of brain development will be crucial to yield insights into mechanisms of disease etiology in ASD sub-populations. Advances in neuroimaging methods and large-scale collaborations will also allow for an integrated approach linking neuroimaging, genetics, and phenotypic data. PMID:25011468
Visibility graph analysis on quarterly macroeconomic series of China based on complex network theory
NASA Astrophysics Data System (ADS)
Wang, Na; Li, Dong; Wang, Qiwen
2012-12-01
The visibility graph approach and complex network theory provide a new insight into time series analysis. The inheritance of the visibility graph from the original time series was further explored in the paper. We found that degree distributions of visibility graphs extracted from Pseudo Brownian Motion series obtained by the Frequency Domain algorithm exhibit exponential behaviors, in which the exponential exponent is a binomial function of the Hurst index inherited in the time series. Our simulations presented that the quantitative relations between the Hurst indexes and the exponents of degree distribution function are different for different series and the visibility graph inherits some important features of the original time series. Further, we convert some quarterly macroeconomic series including the growth rates of value-added of three industry series and the growth rates of Gross Domestic Product series of China to graphs by the visibility algorithm and explore the topological properties of graphs associated from the four macroeconomic series, namely, the degree distribution and correlations, the clustering coefficient, the average path length, and community structure. Based on complex network analysis we find degree distributions of associated networks from the growth rates of value-added of three industry series are almost exponential and the degree distributions of associated networks from the growth rates of GDP series are scale free. We also discussed the assortativity and disassortativity of the four associated networks as they are related to the evolutionary process of the original macroeconomic series. All the constructed networks have “small-world” features. The community structures of associated networks suggest dynamic changes of the original macroeconomic series. We also detected the relationship among government policy changes, community structures of associated networks and macroeconomic dynamics. We find great influences of government policies in China on the changes of dynamics of GDP and the three industries adjustment. The work in our paper provides a new way to understand the dynamics of economic development.
Surface-Water Conditions in Georgia, Water Year 2005
Painter, Jaime A.; Landers, Mark N.
2007-01-01
INTRODUCTION The U.S. Geological Survey (USGS) Georgia Water Science Center-in cooperation with Federal, State, and local agencies-collected surface-water streamflow, water-quality, and ecological data during the 2005 Water Year (October 1, 2004-September 30, 2005). These data were compiled into layers of an interactive ArcReaderTM published map document (pmf). ArcReaderTM is a product of Environmental Systems Research Institute, Inc (ESRI?). Datasets represented on the interactive map are * continuous daily mean streamflow * continuous daily mean water levels * continuous daily total precipitation * continuous daily water quality (water temperature, specific conductance dissolved oxygen, pH, and turbidity) * noncontinuous peak streamflow * miscellaneous streamflow measurements * lake or reservoir elevation * periodic surface-water quality * periodic ecological data * historical continuous daily mean streamflow discontinued prior to the 2005 water year The map interface provides the ability to identify a station in spatial reference to the political boundaries of the State of Georgia and other features-such as major streams, major roads, and other collection stations. Each station is hyperlinked to a station summary showing seasonal and annual stream characteristics for the current year and for the period of record. For continuous discharge stations, the station summary includes a one page graphical summary page containing five graphs, a station map, and a photograph of the station. The graphs provide a quick overview of the current and period-of-record hydrologic conditions of the station by providing a daily mean discharge graph for the water year, monthly statistics graph for the water year and period of record, an annual mean streamflow graph for the period of record, an annual minimum 7-day average streamflow graph for the period of record, and an annual peak streamflow graph for the period of record. Additionally, data can be accessed through the layer's link to the National Water Inventory System Web (NWISWeb) Interface.
Hologram production and representation for corrected image
NASA Astrophysics Data System (ADS)
Jiao, Gui Chao; Zhang, Rui; Su, Xue Mei
2015-12-01
In this paper, a CCD sensor device is used to record the distorted homemade grid images which are taken by a wide angle camera. The distorted images are corrected by using methods of position calibration and correction of gray with vc++ 6.0 and opencv software. Holography graphes for the corrected pictures are produced. The clearly reproduced images are obtained where Fresnel algorithm is used in graph processing by reducing the object and reference light from Fresnel diffraction to delete zero-order part of the reproduced images. The investigation is useful in optical information processing and image encryption transmission.
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Asymptotic safety of quantum gravity beyond Ricci scalars
NASA Astrophysics Data System (ADS)
Falls, Kevin; King, Callum R.; Litim, Daniel F.; Nikolakopoulos, Kostas; Rahmede, Christoph
2018-04-01
We investigate the asymptotic safety conjecture for quantum gravity including curvature invariants beyond Ricci scalars. Our strategy is put to work for families of gravitational actions which depend on functions of the Ricci scalar, the Ricci tensor, and products thereof. Combining functional renormalization with high order polynomial approximations and full numerical integration we derive the renormalization group flow for all couplings and analyse their fixed points, scaling exponents, and the fixed point effective action as a function of the background Ricci curvature. The theory is characterized by three relevant couplings. Higher-dimensional couplings show near-Gaussian scaling with increasing canonical mass dimension. We find that Ricci tensor invariants stabilize the UV fixed point and lead to a rapid convergence of polynomial approximations. We apply our results to models for cosmology and establish that the gravitational fixed point admits inflationary solutions. We also compare findings with those from f (R ) -type theories in the same approximation and pin-point the key new effects due to Ricci tensor interactions. Implications for the asymptotic safety conjecture of gravity are indicated.
Evaluating gyro-viscosity in the Kelvin-Helmholtz instability by kinetic simulations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Umeda, Takayuki, E-mail: taka.umeda@nagoya-u.jp; Yamauchi, Natsuki; Wada, Yasutaka
2016-05-15
In the present paper, the finite-Larmor-radius (gyro-viscous) term [K. V. Roberts and J. B. Taylor, Phys. Rev. Lett. 8, 197–198 (1962)] is evaluated by using a full kinetic Vlasov simulation result of the Kelvin-Helmholtz instability (KHI). The velocity field and the pressure tensor are calculated from the high-resolution data of the velocity distribution functions obtained by the Vlasov simulation, which are used to approximate the Finite-Larmor-Radius (FLR) term according to Roberts and Taylor [Phys. Rev. Lett. 8, 197–198 (1962)]. The direct comparison between the pressure tensor and the FLR term shows an agreement. It is also shown that the anisotropicmore » pressure gradient enhanced the linear growth of the KHI when the inner product between the vorticity of the primary velocity shear layer and the magnetic field is negative, which is consistent with the previous FLR-magnetohydrodynamic simulation result. This result suggests that it is not sufficient for reproducing the kinetic simulation result by fluid simulations to include the FLR term (or the pressure tensor) only in the equation of motion for fluid.« less
Visualizing second order tensor fields with hyperstreamlines
NASA Technical Reports Server (NTRS)
Delmarcelle, Thierry; Hesselink, Lambertus
1993-01-01
Hyperstreamlines are a generalization to second order tensor fields of the conventional streamlines used in vector field visualization. As opposed to point icons commonly used in visualizing tensor fields, hyperstreamlines form a continuous representation of the complete tensor information along a three-dimensional path. This technique is useful in visulaizing both symmetric and unsymmetric three-dimensional tensor data. Several examples of tensor field visualization in solid materials and fluid flows are provided.
Non-monotonicity of Trace Distance Under Tensor Products
NASA Astrophysics Data System (ADS)
Maziero, Jonas
2015-10-01
The trace distance (TD) possesses several of the good properties required for a faithful distance measure in the quantum state space. Despite its importance and ubiquitous use in quantum information science, one of its questionable features, its possible non-monotonicity under taking tensor products of its arguments (NMuTP), has been hitherto unexplored. In this article, we advance analytical and numerical investigations of this issue considering different classes of states living in a discrete and finite dimensional Hilbert space. Our results reveal that although this property of TD does not show up for pure states and for some particular classes of mixed states, it is present in a non-negligible fraction of the regarded density operators. Hence, even though the percentage of quartets of states leading to the NMuTP drawback of TD and its strength decrease as the system's dimension grows, this property of TD must be taken into account before using it as a figure of merit for distinguishing mixed quantum states.
Tensor-product kernel-based representation encoding joint MRI view similarity.
Alvarez-Meza, A; Cardenas-Pena, D; Castro-Ospina, A E; Alvarez, M; Castellanos-Dominguez, G
2014-01-01
To support 3D magnetic resonance image (MRI) analysis, a marginal image similarity (MIS) matrix holding MR inter-slice relationship along every axis view (Axial, Coronal, and Sagittal) can be estimated. However, mutual inference from MIS view information poses a difficult task since relationships between axes are nonlinear. To overcome this issue, we introduce a Tensor-Product Kernel-based Representation (TKR) that allows encoding brain structure patterns due to patient differences, gathering all MIS matrices into a single joint image similarity framework. The TKR training strategy is carried out into a low dimensional projected space to get less influence of voxel-derived noise. Obtained results for classifying the considered patient categories (gender and age) on real MRI database shows that the proposed TKR training approach outperforms the conventional voxel-wise sum of squared differences. The proposed approach may be useful to support MRI clustering and similarity inference tasks, which are required on template-based image segmentation and atlas construction.
Hecht, Erin E.; Gutman, David A.; Preuss, Todd M.; Sanchez, Mar M.; Parr, Lisa A.; Rilling, James K.
2013-01-01
Social learning varies among primate species. Macaques only copy the product of observed actions, or emulate, while humans and chimpanzees also copy the process, or imitate. In humans, imitation is linked to the mirror system. Here we compare mirror system connectivity across these species using diffusion tensor imaging. In macaques and chimpanzees, the preponderance of this circuitry consists of frontal–temporal connections via the extreme/external capsules. In contrast, humans have more substantial temporal–parietal and frontal–parietal connections via the middle/inferior longitudinal fasciculi and the third branch of the superior longitudinal fasciculus. In chimpanzees and humans, but not in macaques, this circuitry includes connections with inferior temporal cortex. In humans alone, connections with superior parietal cortex were also detected. We suggest a model linking species differences in mirror system connectivity and responsivity with species differences in behavior, including adaptations for imitation and social learning of tool use. PMID:22539611
Xue, Zhong; Li, Hai; Guo, Lei; Wong, Stephen T.C.
2010-01-01
It is a key step to spatially align diffusion tensor images (DTI) to quantitatively compare neural images obtained from different subjects or the same subject at different timepoints. Different from traditional scalar or multi-channel image registration methods, tensor orientation should be considered in DTI registration. Recently, several DTI registration methods have been proposed in the literature, but deformation fields are purely dependent on the tensor features not the whole tensor information. Other methods, such as the piece-wise affine transformation and the diffeomorphic non-linear registration algorithms, use analytical gradients of the registration objective functions by simultaneously considering the reorientation and deformation of tensors during the registration. However, only relatively local tensor information such as voxel-wise tensor-similarity, is utilized. This paper proposes a new DTI image registration algorithm, called local fast marching (FM)-based simultaneous registration. The algorithm not only considers the orientation of tensors during registration but also utilizes the neighborhood tensor information of each voxel to drive the deformation, and such neighborhood tensor information is extracted from a local fast marching algorithm around the voxels of interest. These local fast marching-based tensor features efficiently reflect the diffusion patterns around each voxel within a spherical neighborhood and can capture relatively distinctive features of the anatomical structures. Using simulated and real DTI human brain data the experimental results show that the proposed algorithm is more accurate compared with the FA-based registration and is more efficient than its counterpart, the neighborhood tensor similarity-based registration. PMID:20382233
Antisymmetric tensor generalizations of affine vector fields.
Houri, Tsuyoshi; Morisawa, Yoshiyuki; Tomoda, Kentaro
2016-02-01
Tensor generalizations of affine vector fields called symmetric and antisymmetric affine tensor fields are discussed as symmetry of spacetimes. We review the properties of the symmetric ones, which have been studied in earlier works, and investigate the properties of the antisymmetric ones, which are the main theme in this paper. It is shown that antisymmetric affine tensor fields are closely related to one-lower-rank antisymmetric tensor fields which are parallelly transported along geodesics. It is also shown that the number of linear independent rank- p antisymmetric affine tensor fields in n -dimensions is bounded by ( n + 1)!/ p !( n - p )!. We also derive the integrability conditions for antisymmetric affine tensor fields. Using the integrability conditions, we discuss the existence of antisymmetric affine tensor fields on various spacetimes.
Diffusion tensor analysis with invariant gradients and rotation tangents.
Kindlmann, Gordon; Ennis, Daniel B; Whitaker, Ross T; Westin, Carl-Fredrik
2007-11-01
Guided by empirically established connections between clinically important tissue properties and diffusion tensor parameters, we introduce a framework for decomposing variations in diffusion tensors into changes in shape and orientation. Tensor shape and orientation both have three degrees-of-freedom, spanned by invariant gradients and rotation tangents, respectively. As an initial demonstration of the framework, we create a tunable measure of tensor difference that can selectively respond to shape and orientation. Second, to analyze the spatial gradient in a tensor volume (a third-order tensor), our framework generates edge strength measures that can discriminate between different neuroanatomical boundaries, as well as creating a novel detector of white matter tracts that are adjacent yet distinctly oriented. Finally, we apply the framework to decompose the fourth-order diffusion covariance tensor into individual and aggregate measures of shape and orientation covariance, including a direct approximation for the variance of tensor invariants such as fractional anisotropy.
NASA Astrophysics Data System (ADS)
Cyganek, Boguslaw; Smolka, Bogdan
2015-02-01
In this paper a system for real-time recognition of objects in multidimensional video signals is proposed. Object recognition is done by pattern projection into the tensor subspaces obtained from the factorization of the signal tensors representing the input signal. However, instead of taking only the intensity signal the novelty of this paper is first to build the Extended Structural Tensor representation from the intensity signal that conveys information on signal intensities, as well as on higher-order statistics of the input signals. This way the higher-order input pattern tensors are built from the training samples. Then, the tensor subspaces are built based on the Higher-Order Singular Value Decomposition of the prototype pattern tensors. Finally, recognition relies on measurements of the distance of a test pattern projected into the tensor subspaces obtained from the training tensors. Due to high-dimensionality of the input data, tensor based methods require high memory and computational resources. However, recent achievements in the technology of the multi-core microprocessors and graphic cards allows real-time operation of the multidimensional methods as is shown and analyzed in this paper based on real examples of object detection in digital images.
Seismic data interpolation and denoising by learning a tensor tight frame
NASA Astrophysics Data System (ADS)
Liu, Lina; Plonka, Gerlind; Ma, Jianwei
2017-10-01
Seismic data interpolation and denoising plays a key role in seismic data processing. These problems can be understood as sparse inverse problems, where the desired data are assumed to be sparsely representable within a suitable dictionary. In this paper, we present a new method based on a data-driven tight frame (DDTF) of Kronecker type (KronTF) that avoids the vectorization step and considers the multidimensional structure of data in a tensor-product way. It takes advantage of the structure contained in all different modes (dimensions) simultaneously. In order to overcome the limitations of a usual tensor-product approach we also incorporate data-driven directionality. The complete method is formulated as a sparsity-promoting minimization problem. It includes two main steps. In the first step, a hard thresholding algorithm is used to update the frame coefficients of the data in the dictionary; in the second step, an iterative alternating method is used to update the tight frame (dictionary) in each different mode. The dictionary that is learned in this way contains the principal components in each mode. Furthermore, we apply the proposed KronTF to seismic interpolation and denoising. Examples with synthetic and real seismic data show that the proposed method achieves better results than the traditional projection onto convex sets method based on the Fourier transform and the previous vectorized DDTF methods. In particular, the simple structure of the new frame construction makes it essentially more efficient.
Genomic connectivity networks based on the BrainSpan atlas of the developing human brain
NASA Astrophysics Data System (ADS)
Mahfouz, Ahmed; Ziats, Mark N.; Rennert, Owen M.; Lelieveldt, Boudewijn P. F.; Reinders, Marcel J. T.
2014-03-01
The human brain comprises systems of networks that span the molecular, cellular, anatomic and functional levels. Molecular studies of the developing brain have focused on elucidating networks among gene products that may drive cellular brain development by functioning together in biological pathways. On the other hand, studies of the brain connectome attempt to determine how anatomically distinct brain regions are connected to each other, either anatomically (diffusion tensor imaging) or functionally (functional MRI and EEG), and how they change over development. A global examination of the relationship between gene expression and connectivity in the developing human brain is necessary to understand how the genetic signature of different brain regions instructs connections to other regions. Furthermore, analyzing the development of connectivity networks based on the spatio-temporal dynamics of gene expression provides a new insight into the effect of neurodevelopmental disease genes on brain networks. In this work, we construct connectivity networks between brain regions based on the similarity of their gene expression signature, termed "Genomic Connectivity Networks" (GCNs). Genomic connectivity networks were constructed using data from the BrainSpan Transcriptional Atlas of the Developing Human Brain. Our goal was to understand how the genetic signatures of anatomically distinct brain regions relate to each other across development. We assessed the neurodevelopmental changes in connectivity patterns of brain regions when networks were constructed with genes implicated in the neurodevelopmental disorder autism (autism spectrum disorder; ASD). Using graph theory metrics to characterize the GCNs, we show that ASD-GCNs are relatively less connected later in development with the cerebellum showing a very distinct expression of ASD-associated genes compared to other brain regions.
Tensoral for post-processing users and simulation authors
NASA Technical Reports Server (NTRS)
Dresselhaus, Eliot
1993-01-01
The CTR post-processing effort aims to make turbulence simulations and data more readily and usefully available to the research and industrial communities. The Tensoral language, which provides the foundation for this effort, is introduced here in the form of a user's guide. The Tensoral user's guide is presented in two main sections. Section one acts as a general introduction and guides database users who wish to post-process simulation databases. Section two gives a brief description of how database authors and other advanced users can make simulation codes and/or the databases they generate available to the user community via Tensoral database back ends. The two-part structure of this document conforms to the two-level design structure of the Tensoral language. Tensoral has been designed to be a general computer language for performing tensor calculus and statistics on numerical data. Tensoral's generality allows it to be used for stand-alone native coding of high-level post-processing tasks (as described in section one of this guide). At the same time, Tensoral's specialization to a minute task (namely, to numerical tensor calculus and statistics) allows it to be easily embedded into applications written partly in Tensoral and partly in other computer languages (here, C and Vectoral). Embedded Tensoral, aimed at advanced users for more general coding (e.g. of efficient simulations, for interfacing with pre-existing software, for visualization, etc.), is described in section two of this guide.
The Hydroxyl Radical Reaction Rate Constant and Products of Cyclohexanol
2007-10-01
Analysis Samples from kinetic studies were quantitativelymon- itored using a Hewlett-Packard (HP) gas chromato- graph (GC) 5890 with a flame ionization...excluded from the reaction mixture and the COL concentration was approximately doubled (4.9–9 ppm). Product Study Analysis Reactant mixtures and standards...from product identi- fication experiments were sampled by exposing a 100% polydimethylsiloxane solid phase microextrac- tion fiber (SPME) in the
Dynamic Domains in Data Production Planning
NASA Technical Reports Server (NTRS)
Golden, Keith; Pang, Wanlin
2005-01-01
This paper discusses a planner-based approach to automating data production tasks, such as producing fire forecasts from satellite imagery and weather station data. Since the set of available data products is large, dynamic and mostly unknown, planning techniques developed for closed worlds are unsuitable. We discuss a number of techniques we have developed to cope with data production domains, including a novel constraint propagation algorithm based on planning graphs and a constraint-based approach to interleaved planning, sensing and execution.
NASA Astrophysics Data System (ADS)
Dolgov, S. V.; Smirnov, A. P.; Tyrtyshnikov, E. E.
2014-04-01
We consider numerical modeling of the Farley-Buneman instability in the Earth's ionosphere plasma. The ion behavior is governed by the kinetic Vlasov equation with the BGK collisional term in the four-dimensional phase space, and since the finite difference discretization on a tensor product grid is used, this equation becomes the most computationally challenging part of the scheme. To relax the complexity and memory consumption, an adaptive model reduction using the low-rank separation of variables, namely the Tensor Train format, is employed. The approach was verified via a prototype MATLAB implementation. Numerical experiments demonstrate the possibility of efficient separation of space and velocity variables, resulting in the solution storage reduction by a factor of order tens.
Quantum Bianchi identities via DG categories
NASA Astrophysics Data System (ADS)
Beggs, Edwin J.; Majid, Shahn
2018-01-01
We use DG categories to derive analogues of the Bianchi identities for the curvature of a connection in noncommutative differential geometry. We also revisit the Chern-Connes pairing but following the line of Chern's original derivation. We show that a related DG category of extendable bimodule connections is a monoidal tensor category and in the metric compatible case obtain an analogue of a classical antisymmetry of the Riemann tensor. The monoidal structure implies the existence of a cup product on noncommutative sheaf cohomology. Another application shows that the curvature of a line module reduces to a 2-form on the base algebra. We illustrate the theory on the q-sphere, the permutation group S3 and the bicrossproduct quantum spacetime [ r , t ] = λr.
A new forecast presentation tool for offshore contractors
NASA Astrophysics Data System (ADS)
Jørgensen, M.
2009-09-01
Contractors working off shore are often very sensitive to both sea and weather conditions, and it's essential that they have easy access to reliable information on coming conditions to enable planning of when to start or shut down offshore operations to avoid loss of life and materials. Danish Meteorological Institute, DMI, recently, in cooperation with business partners in the field, developed a new application to accommodate that need. The "Marine Forecast Service” is a browser based forecast presentation tool. It provides an interface for the user to enable easy and quick access to all relevant meteorological and oceanographic forecasts and observations for a given area of interest. Each customer gains access to the application via a standard login/password procedure. Once logged in, the user can inspect animated forecast maps of parameters like wind, gust, wave height, swell and current among others. Supplementing the general maps, the user can choose to look at forecast graphs for each of the locations where the user is running operations. These forecast graphs can also be overlaid with the user's own in situ observations, if such exist. Furthermore, the data from the graphs can be exported as data files that the customer can use in his own applications as he desires. As part of the application, a forecaster's view on the current and near future weather situation is presented to the user as well, adding further value to the information presented through maps and graphs. Among other features of the product, animated radar and satellite images could be mentioned. And finally the application provides the possibility of a "second opinion” through traditional weather charts from another recognized provider of weather forecasts. The presentation will provide more detailed insights into the contents of the applications as well as some of the experiences with the product.
Automatic deformable diffusion tensor registration for fiber population analysis.
Irfanoglu, M O; Machiraju, R; Sammet, S; Pierpaoli, C; Knopp, M V
2008-01-01
In this work, we propose a novel method for deformable tensor-to-tensor registration of Diffusion Tensor Images. Our registration method models the distances in between the tensors with Geode-sic-Loxodromes and employs a version of Multi-Dimensional Scaling (MDS) algorithm to unfold the manifold described with this metric. Defining the same shape properties as tensors, the vector images obtained through MDS are fed into a multi-step vector-image registration scheme and the resulting deformation fields are used to reorient the tensor fields. Results on brain DTI indicate that the proposed method is very suitable for deformable fiber-to-fiber correspondence and DTI-atlas construction.
NASA Astrophysics Data System (ADS)
Senovilla, José M. M.
2010-11-01
The algebraic classification of the Weyl tensor in the arbitrary dimension n is recovered by means of the principal directions of its 'superenergy' tensor. This point of view can be helpful in order to compute the Weyl aligned null directions explicitly, and permits one to obtain the algebraic type of the Weyl tensor by computing the principal eigenvalue of rank-2 symmetric future tensors. The algebraic types compatible with states of intrinsic gravitational radiation can then be explored. The underlying ideas are general, so that a classification of arbitrary tensors in the general dimension can be achieved.
Sparse alignment for robust tensor learning.
Lai, Zhihui; Wong, Wai Keung; Xu, Yong; Zhao, Cairong; Sun, Mingming
2014-10-01
Multilinear/tensor extensions of manifold learning based algorithms have been widely used in computer vision and pattern recognition. This paper first provides a systematic analysis of the multilinear extensions for the most popular methods by using alignment techniques, thereby obtaining a general tensor alignment framework. From this framework, it is easy to show that the manifold learning based tensor learning methods are intrinsically different from the alignment techniques. Based on the alignment framework, a robust tensor learning method called sparse tensor alignment (STA) is then proposed for unsupervised tensor feature extraction. Different from the existing tensor learning methods, L1- and L2-norms are introduced to enhance the robustness in the alignment step of the STA. The advantage of the proposed technique is that the difficulty in selecting the size of the local neighborhood can be avoided in the manifold learning based tensor feature extraction algorithms. Although STA is an unsupervised learning method, the sparsity encodes the discriminative information in the alignment step and provides the robustness of STA. Extensive experiments on the well-known image databases as well as action and hand gesture databases by encoding object images as tensors demonstrate that the proposed STA algorithm gives the most competitive performance when compared with the tensor-based unsupervised learning methods.
Tensor-GMRES method for large sparse systems of nonlinear equations
NASA Technical Reports Server (NTRS)
Feng, Dan; Pulliam, Thomas H.
1994-01-01
This paper introduces a tensor-Krylov method, the tensor-GMRES method, for large sparse systems of nonlinear equations. This method is a coupling of tensor model formation and solution techniques for nonlinear equations with Krylov subspace projection techniques for unsymmetric systems of linear equations. Traditional tensor methods for nonlinear equations are based on a quadratic model of the nonlinear function, a standard linear model augmented by a simple second order term. These methods are shown to be significantly more efficient than standard methods both on nonsingular problems and on problems where the Jacobian matrix at the solution is singular. A major disadvantage of the traditional tensor methods is that the solution of the tensor model requires the factorization of the Jacobian matrix, which may not be suitable for problems where the Jacobian matrix is large and has a 'bad' sparsity structure for an efficient factorization. We overcome this difficulty by forming and solving the tensor model using an extension of a Newton-GMRES scheme. Like traditional tensor methods, we show that the new tensor method has significant computational advantages over the analogous Newton counterpart. Consistent with Krylov subspace based methods, the new tensor method does not depend on the factorization of the Jacobian matrix. As a matter of fact, the Jacobian matrix is never needed explicitly.
Surface‐wave Green’s tensors in the near field
Haney, Matt; Nakahara, Hisashi
2014-01-01
We demonstrate the connection between theoretical expressions for the correlation of ambient noise Rayleigh and Love waves and the exact surface‐wave Green’s tensors for a point force. The surface‐wave Green’s tensors are well known in the far‐field limit. On the other hand, the imaginary part of the exact Green’s tensors, including near‐field effects, arises in correlation techniques such as the spatial autocorrelation (SPAC) method. Using the imaginary part of the exact Green’s tensors from the SPAC method, we find the associated real part using the Kramers–Kronig relations. The application of the Kramers–Kronig relations is not straightforward, however, because the causality properties of the different tensor components vary. In addition to the Green’s tensors for a point force, we also derive expressions for a general point moment tensor source.
Holomorphic projections and Ramanujan’s mock theta functions
Imamoğlu, Özlem; Raum, Martin; Richter, Olav K.
2014-01-01
We use spectral methods of automorphic forms to establish a holomorphic projection operator for tensor products of vector-valued harmonic weak Maass forms and vector-valued modular forms. We apply this operator to discover simple recursions for Fourier series coefficients of Ramanujan’s mock theta functions. PMID:24591582
Turbulent fluid motion 2: Scalars, vectors, and tensors
NASA Technical Reports Server (NTRS)
Deissler, Robert G.
1991-01-01
The author shows that the sum or difference of two vectors is a vector. Similarly the sum of any two tensors of the same order is a tensor of that order. No meaning is attached to the sum of tensors of different orders, say u(sub i) + u(sub ij); that is not a tensor. In general, an equation containing tensors has meaning only if all the terms in the equation are tensors of the same order, and if the same unrepeated subscripts appear in all the terms. These facts will be used in obtaining appropriate equations for fluid turbulence. With the foregoing background, the derivation of appropriate continuum equations for turbulence should be straightforward.
Generalized Higher Order Orthogonal Iteration for Tensor Learning and Decomposition.
Liu, Yuanyuan; Shang, Fanhua; Fan, Wei; Cheng, James; Cheng, Hong
2016-12-01
Low-rank tensor completion (LRTC) has successfully been applied to a wide range of real-world problems. Despite the broad, successful applications, existing LRTC methods may become very slow or even not applicable for large-scale problems. To address this issue, a novel core tensor trace-norm minimization (CTNM) method is proposed for simultaneous tensor learning and decomposition, and has a much lower computational complexity. In our solution, first, the equivalence relation of trace norm of a low-rank tensor and its core tensor is induced. Second, the trace norm of the core tensor is used to replace that of the whole tensor, which leads to two much smaller scale matrix TNM problems. Finally, an efficient alternating direction augmented Lagrangian method is developed to solve our problems. Our CTNM formulation needs only O((R N +NRI)log(√{I N })) observations to reliably recover an N th-order I×I×…×I tensor of n -rank (r,r,…,r) , compared with O(rI N-1 ) observations required by those tensor TNM methods ( I > R ≥ r ). Extensive experimental results show that CTNM is usually more accurate than them, and is orders of magnitude faster.
Tensor gauge condition and tensor field decomposition
NASA Astrophysics Data System (ADS)
Zhu, Ben-Chao; Chen, Xiang-Song
2015-10-01
We discuss various proposals of separating a tensor field into pure-gauge and gauge-invariant components. Such tensor field decomposition is intimately related to the effort of identifying the real gravitational degrees of freedom out of the metric tensor in Einstein’s general relativity. We show that as for a vector field, the tensor field decomposition has exact correspondence to and can be derived from the gauge-fixing approach. The complication for the tensor field, however, is that there are infinitely many complete gauge conditions in contrast to the uniqueness of Coulomb gauge for a vector field. The cause of such complication, as we reveal, is the emergence of a peculiar gauge-invariant pure-gauge construction for any gauge field of spin ≥ 2. We make an extensive exploration of the complete tensor gauge conditions and their corresponding tensor field decompositions, regarding mathematical structures, equations of motion for the fields and nonlinear properties. Apparently, no single choice is superior in all aspects, due to an awkward fact that no gauge-fixing can reduce a tensor field to be purely dynamical (i.e. transverse and traceless), as can the Coulomb gauge in a vector case.
The Topology of Symmetric Tensor Fields
NASA Technical Reports Server (NTRS)
Levin, Yingmei; Batra, Rajesh; Hesselink, Lambertus; Levy, Yuval
1997-01-01
Combinatorial topology, also known as "rubber sheet geometry", has extensive applications in geometry and analysis, many of which result from connections with the theory of differential equations. A link between topology and differential equations is vector fields. Recent developments in scientific visualization have shown that vector fields also play an important role in the analysis of second-order tensor fields. A second-order tensor field can be transformed into its eigensystem, namely, eigenvalues and their associated eigenvectors without loss of information content. Eigenvectors behave in a similar fashion to ordinary vectors with even simpler topological structures due to their sign indeterminacy. Incorporating information about eigenvectors and eigenvalues in a display technique known as hyperstreamlines reveals the structure of a tensor field. The simplify and often complex tensor field and to capture its important features, the tensor is decomposed into an isotopic tensor and a deviator. A tensor field and its deviator share the same set of eigenvectors, and therefore they have a similar topological structure. A a deviator determines the properties of a tensor field, while the isotopic part provides a uniform bias. Degenerate points are basic constituents of tensor fields. In 2-D tensor fields, there are only two types of degenerate points; while in 3-D, the degenerate points can be characterized in a Q'-R' plane. Compressible and incompressible flows share similar topological feature due to the similarity of their deviators. In the case of the deformation tensor, the singularities of its deviator represent the area of vortex core in the field. In turbulent flows, the similarities and differences of the topology of the deformation and the Reynolds stress tensors reveal that the basic addie-viscosity assuptions have their validity in turbulence modeling under certain conditions.
Gauge and Non-Gauge Tensor Multiplets in 5D Conformal Supergravity
NASA Astrophysics Data System (ADS)
Kugo, T.; Ohashi, K.
2002-12-01
An off-shell formulation of two distinct tensor multiplets, a massive tensor multiplet and a tensor gauge multiplet, is presented in superconformal tensor calculus in five-dimensional space-time. Both contain a rank 2 antisymmetric tensor field, but there is no gauge symmetry in the former, while it is a gauge field in the latter. Both multiplets have 4 bosonic and 4 fermionic on-shell modes, but the former consists of 16 (boson)+16 (fermion) component fields, while the latter consists of 8 (boson)+8 (fermion) component fields.
The energy-momentum tensor(s) in classical gauge theories
Blaschke, Daniel N.; Gieres, François; Reboud, Méril; ...
2016-07-12
We give an introduction to, and review of, the energy-momentum tensors in classical gauge field theories in Minkowski space, and to some extent also in curved space-time. For the canonical energy-momentum tensor of non-Abelian gauge fields and of matter fields coupled to such fields, we present a new and simple improvement procedure based on gauge invariance for constructing a gauge invariant, symmetric energy-momentum tensor. In conclusion, the relationship with the Einstein-Hilbert tensor following from the coupling to a gravitational field is also discussed.
Using Perturbation Theory to Reduce Noise in Diffusion Tensor Fields
Bansal, Ravi; Staib, Lawrence H.; Xu, Dongrong; Laine, Andrew F.; Liu, Jun; Peterson, Bradley S.
2009-01-01
We propose the use of Perturbation theory to reduce noise in Diffusion Tensor (DT) fields. Diffusion Tensor Imaging (DTI) encodes the diffusion of water molecules along different spatial directions in a positive-definite, 3 × 3 symmetric tensor. Eigenvectors and eigenvalues of DTs allow the in vivo visualization and quantitative analysis of white matter fiber bundles across the brain. The validity and reliability of these analyses are limited, however, by the low spatial resolution and low Signal-to-Noise Ratio (SNR) in DTI datasets. Our procedures can be applied to improve the validity and reliability of these quantitative analyses by reducing noise in the tensor fields. We model a tensor field as a three-dimensional Markov Random Field and then compute the likelihood and the prior terms of this model using Perturbation theory. The prior term constrains the tensor field to be smooth, whereas the likelihood term constrains the smoothed tensor field to be similar to the original field. Thus, the proposed method generates a smoothed field that is close in structure to the original tensor field. We evaluate the performance of our method both visually and quantitatively using synthetic and real-world datasets. We quantitatively assess the performance of our method by computing the SNR for eigenvalues and the coherence measures for eigenvectors of DTs across tensor fields. In addition, we quantitatively compare the performance of our procedures with the performance of one method that uses a Riemannian distance to compute the similarity between two tensors, and with another method that reduces noise in tensor fields by anisotropically filtering the diffusion weighted images that are used to estimate diffusion tensors. These experiments demonstrate that our method significantly increases the coherence of the eigenvectors and the SNR of the eigenvalues, while simultaneously preserving the fine structure and boundaries between homogeneous regions, in the smoothed tensor field. PMID:19540791
Couple Graph Based Label Propagation Method for Hyperspectral Remote Sensing Data Classification
NASA Astrophysics Data System (ADS)
Wang, X. P.; Hu, Y.; Chen, J.
2018-04-01
Graph based semi-supervised classification method are widely used for hyperspectral image classification. We present a couple graph based label propagation method, which contains both the adjacency graph and the similar graph. We propose to construct the similar graph by using the similar probability, which utilize the label similarity among examples probably. The adjacency graph was utilized by a common manifold learning method, which has effective improve the classification accuracy of hyperspectral data. The experiments indicate that the couple graph Laplacian which unite both the adjacency graph and the similar graph, produce superior classification results than other manifold Learning based graph Laplacian and Sparse representation based graph Laplacian in label propagation framework.
Killing(-Yano) tensors in string theory
NASA Astrophysics Data System (ADS)
Chervonyi, Yuri; Lunin, Oleg
2015-09-01
We construct the Killing(-Yano) tensors for a large class of charged black holes in higher dimensions and study general properties of such tensors, in particular, their behavior under string dualities. Killing(-Yano) tensors encode the symmetries beyond isometries, which lead to insights into dynamics of particles and fields on a given geometry by providing a set of conserved quantities. By analyzing the eigenvalues of the Killing tensor, we provide a prescription for constructing several conserved quantities starting from a single object, and we demonstrate that Killing tensors in higher dimensions are always associated with ellipsoidal coordinates. We also determine the transformations of the Killing(-Yano) tensors under string dualities, and find the unique modification of the Killing-Yano equation consistent with these symmetries. These results are used to construct the explicit form of the Killing(-Yano) tensors for the Myers-Perry black hole in arbitrary number of dimensions and for its charged version.
Multi-Centrality Graph Spectral Decompositions and Their Application to Cyber Intrusion Detection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pin-Yu; Choudhury, Sutanay; Hero, Alfred
Many modern datasets can be represented as graphs and hence spectral decompositions such as graph principal component analysis (PCA) can be useful. Distinct from previous graph decomposition approaches based on subspace projection of a single topological feature, e.g., the centered graph adjacency matrix (graph Laplacian), we propose spectral decomposition approaches to graph PCA and graph dictionary learning that integrate multiple features, including graph walk statistics, centrality measures and graph distances to reference nodes. In this paper we propose a new PCA method for single graph analysis, called multi-centrality graph PCA (MC-GPCA), and a new dictionary learning method for ensembles ofmore » graphs, called multi-centrality graph dictionary learning (MC-GDL), both based on spectral decomposition of multi-centrality matrices. As an application to cyber intrusion detection, MC-GPCA can be an effective indicator of anomalous connectivity pattern and MC-GDL can provide discriminative basis for attack classification.« less
Graphs, matrices, and the GraphBLAS: Seven good reasons
Kepner, Jeremy; Bader, David; Buluç, Aydın; ...
2015-01-01
The analysis of graphs has become increasingly important to a wide range of applications. Graph analysis presents a number of unique challenges in the areas of (1) software complexity, (2) data complexity, (3) security, (4) mathematical complexity, (5) theoretical analysis, (6) serial performance, and (7) parallel performance. Implementing graph algorithms using matrix-based approaches provides a number of promising solutions to these challenges. The GraphBLAS standard (istcbigdata.org/GraphBlas) is being developed to bring the potential of matrix based graph algorithms to the broadest possible audience. The GraphBLAS mathematically defines a core set of matrix-based graph operations that can be used to implementmore » a wide class of graph algorithms in a wide range of programming environments. This paper provides an introduction to the GraphBLAS and describes how the GraphBLAS can be used to address many of the challenges associated with analysis of graphs.« less
Adjusting protein graphs based on graph entropy.
Peng, Sheng-Lung; Tsay, Yu-Wei
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid.
Adjusting protein graphs based on graph entropy
2014-01-01
Measuring protein structural similarity attempts to establish a relationship of equivalence between polymer structures based on their conformations. In several recent studies, researchers have explored protein-graph remodeling, instead of looking a minimum superimposition for pairwise proteins. When graphs are used to represent structured objects, the problem of measuring object similarity become one of computing the similarity between graphs. Graph theory provides an alternative perspective as well as efficiency. Once a protein graph has been created, its structural stability must be verified. Therefore, a criterion is needed to determine if a protein graph can be used for structural comparison. In this paper, we propose a measurement for protein graph remodeling based on graph entropy. We extend the concept of graph entropy to determine whether a graph is suitable for representing a protein. The experimental results suggest that when applied, graph entropy helps a conformational on protein graph modeling. Furthermore, it indirectly contributes to protein structural comparison if a protein graph is solid. PMID:25474347
Tensor calculus: unlearning vector calculus
NASA Astrophysics Data System (ADS)
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-02-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can serve as a bridge for vector calculus into tensor calculus.
Selected basic economic and energy indicators for Arab countries and world
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1985-01-01
This book presents the following topics: Tables and graphs on the Arab countries' trade; GDP and current account balances; oil and gas reserves; and energy, oil, and gas production and consumption, within a global setting.
Analysis of scanner data for crop inventories
NASA Technical Reports Server (NTRS)
Horvath, R. (Principal Investigator); Cicone, R.; Crist, E.; Kauth, R. J.; Pont, W.
1980-01-01
Classification and technology development for area estimation of corn, soybeans, wheat, barley, and sunflowers are outlined. Supporting research for corn and soybean foreign commodity production forecasting is highlighted. Graphs profiling the greenness and brightness of the crops are presented.
A Communication-Optimal Framework for Contracting Distributed Tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajbhandari, Samyam; NIkam, Akshay; Lai, Pai-Wei
Tensor contractions are extremely compute intensive generalized matrix multiplication operations encountered in many computational science fields, such as quantum chemistry and nuclear physics. Unlike distributed matrix multiplication, which has been extensively studied, limited work has been done in understanding distributed tensor contractions. In this paper, we characterize distributed tensor contraction algorithms on torus networks. We develop a framework with three fundamental communication operators to generate communication-efficient contraction algorithms for arbitrary tensor contractions. We show that for a given amount of memory per processor, our framework is communication optimal for all tensor contractions. We demonstrate performance and scalability of our frameworkmore » on up to 262,144 cores of BG/Q supercomputer using five tensor contraction examples.« less
Time reversibility from visibility graphs of nonstationary processes
NASA Astrophysics Data System (ADS)
Lacasa, Lucas; Flanagan, Ryan
2015-08-01
Visibility algorithms are a family of methods to map time series into networks, with the aim of describing the structure of time series and their underlying dynamical properties in graph-theoretical terms. Here we explore some properties of both natural and horizontal visibility graphs associated to several nonstationary processes, and we pay particular attention to their capacity to assess time irreversibility. Nonstationary signals are (infinitely) irreversible by definition (independently of whether the process is Markovian or producing entropy at a positive rate), and thus the link between entropy production and time series irreversibility has only been explored in nonequilibrium stationary states. Here we show that the visibility formalism naturally induces a new working definition of time irreversibility, which allows us to quantify several degrees of irreversibility for stationary and nonstationary series, yielding finite values that can be used to efficiently assess the presence of memory and off-equilibrium dynamics in nonstationary processes without the need to differentiate or detrend them. We provide rigorous results complemented by extensive numerical simulations on several classes of stochastic processes.
On the Tensorial Nature of Fluxes in Continuous Media.
ERIC Educational Resources Information Center
Stokes, Vijay Kumar; Ramkrishna, Doraiswami
1982-01-01
Argues that mass and energy fluxes in a fluid are vectors. Topics include the stress tensor, theorem for tensor fields, mass flux as a vector, stress as a second order tensor, and energy flux as a tensor. (SK)
Kou, Qiang; Wu, Si; Tolic, Nikola; Paša-Tolic, Ljiljana; Liu, Yunlong; Liu, Xiaowen
2017-05-01
Although proteomics has rapidly developed in the past decade, researchers are still in the early stage of exploring the world of complex proteoforms, which are protein products with various primary structure alterations resulting from gene mutations, alternative splicing, post-translational modifications, and other biological processes. Proteoform identification is essential to mapping proteoforms to their biological functions as well as discovering novel proteoforms and new protein functions. Top-down mass spectrometry is the method of choice for identifying complex proteoforms because it provides a 'bird's eye view' of intact proteoforms. The combinatorial explosion of various alterations on a protein may result in billions of possible proteoforms, making proteoform identification a challenging computational problem. We propose a new data structure, called the mass graph, for efficient representation of proteoforms and design mass graph alignment algorithms. We developed TopMG, a mass graph-based software tool for proteoform identification by top-down mass spectrometry. Experiments on top-down mass spectrometry datasets showed that TopMG outperformed existing methods in identifying complex proteoforms. http://proteomics.informatics.iupui.edu/software/topmg/. xwliu@iupui.edu. Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com
Particle localization, spinor two-valuedness, and Fermi quantization of tensor systems
NASA Technical Reports Server (NTRS)
Reifler, Frank; Morris, Randall
1994-01-01
Recent studies of particle localization shows that square-integrable positive energy bispinor fields in a Minkowski space-time cannot be physically distinguished from constrained tensor fields. In this paper we generalize this result by characterizing all classical tensor systems, which admit Fermi quantization, as those having unitary Lie-Poisson brackets. Examples include Euler's tensor equation for a rigid body and Dirac's equation in tensor form.
Erratum to Surface‐wave green’s tensors in the near field
Haney, Matthew M.; Hisashi Nakahara,
2016-01-01
Haney and Nakahara (2014) derived expressions for surface‐wave Green’s tensors that included near‐field behavior. Building on the result for a force source, Haney and Nakahara (2014) further derived expressions for a general point moment tensor source using the exact Green’s tensors. However, it has come to our attention that, although the Green’s tensors were correct, the resulting expressions for a general point moment tensor source were missing some terms. In this erratum, we provide updated expressions with these missing terms. The inclusion of the missing terms changes the example given in Haney and Nakahara (2014).
NASA Astrophysics Data System (ADS)
Chen, Y.; Huang, L.
2017-12-01
Moment tensors are key parameters for characterizing CO2-injection-induced microseismic events. Elastic-waveform inversion has the potential to providing accurate results of moment tensors. Microseismic waveforms contains information of source moment tensors and the wave propagation velocity along the wavepaths. We develop an elastic-waveform inversion method to jointly invert the seismic velocity model and moment tensor. We first use our adaptive moment-tensor joint inversion method to estimate moment tensors of microseismic events. Our adaptive moment-tensor inversion method jointly inverts multiple microseismic events with similar waveforms within a cluster to reduce inversion uncertainty for microseismic data recorded using a single borehole geophone array. We use this inversion result as the initial model for our elastic-waveform inversion to minimize the cross-correlated-based data misfit between observed data and synthetic data. We verify our method using synthetic microseismic data and obtain improved results of both moment tensors and seismic velocity model. We apply our new inversion method to microseismic data acquired at a CO2-enhanced oil recovery field in Aneth, Utah, using a single borehole geophone array. The results demonstrate that our new inversion method significantly reduces the data misfit compared to the conventional ray-theory-based moment-tensor inversion.
Characterizing Containment and Related Classes of Graphs,
1985-01-01
Math . to appear. [G2] Golumbic,. Martin C., D. Rotem and J. Urrutia. "Comparability graphs and intersection graphs" Discrete Math . 43 (1983) 37-40. [G3...intersection classes of graphs" Discrete Math . to appear. [S2] Scheinerman, Edward R. Intersection Classes and Multiple Intersection Parameters of Graphs...graphs and of interval graphs" Canad. Jour. of blath. 16 (1964) 539-548. [G1] Golumbic, Martin C. "Containment graphs: and. intersection graphs" Discrete
A Collection of Features for Semantic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eliassi-Rad, T; Fodor, I K; Gallagher, B
2007-05-02
Semantic graphs are commonly used to represent data from one or more data sources. Such graphs extend traditional graphs by imposing types on both nodes and links. This type information defines permissible links among specified nodes and can be represented as a graph commonly referred to as an ontology or schema graph. Figure 1 depicts an ontology graph for data from National Association of Securities Dealers. Each node type and link type may also have a list of attributes. To capture the increased complexity of semantic graphs, concepts derived for standard graphs have to be extended. This document explains brieflymore » features commonly used to characterize graphs, and their extensions to semantic graphs. This document is divided into two sections. Section 2 contains the feature descriptions for static graphs. Section 3 extends the features for semantic graphs that vary over time.« less
On the curvature effect of thin membranes
NASA Astrophysics Data System (ADS)
Wang, Duo; Jiao, Xiangmin; Conley, Rebecca; Glimm, James
2013-01-01
We investigate the curvature effect of a thin, curved elastic interface that separates two subdomains and exerts a pressure due to a curvature effect. This pressure, which we refer to as interface pressure, is similar to the surface tension in fluid mechanics. It is important in some applications, such as the canopy of parachutes, biological membranes of cells, balloons, airbags, etc., as it partially balances a pressure jump between the two sides of an interface. In this paper, we show that the interface pressure is equal to the trace of the matrix product of the curvature tensor and the Cauchy stress tensor in the tangent plane. We derive the theory for interfaces in both 2-D and 3-D, and present numerical discretizations for computing the quality over triangulated surfaces.
Classification of Hamilton-Jacobi separation in orthogonal coordinates with diagonal curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rajaratnam, Krishan, E-mail: k2rajara@uwaterloo.ca; McLenaghan, Raymond G., E-mail: rgmclenaghan@uwaterloo.ca
2014-08-15
We find all orthogonal metrics where the geodesic Hamilton-Jacobi equation separates and the Riemann curvature tensor satisfies a certain equation (called the diagonal curvature condition). All orthogonal metrics of constant curvature satisfy the diagonal curvature condition. The metrics we find either correspond to a Benenti system or are warped product metrics where the induced metric on the base manifold corresponds to a Benenti system. Furthermore, we show that most metrics we find are characterized by concircular tensors; these metrics, called Kalnins-Eisenhart-Miller metrics, have an intrinsic characterization which can be used to obtain them on a given space. In conjunction withmore » other results, we show that the metrics we found constitute all separable metrics for Riemannian spaces of constant curvature and de Sitter space.« less
Energy-momentum tensor of bouncing gravitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iofa, Mikhail Z.
2015-07-14
In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼10{sup −5} cm)« less
Energy-momentum tensor of bouncing gravitons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iofa, Mikhail Z., E-mail: iofa@theory.sinp.msu.ru
2015-07-01
In models of the Universe with extra dimensions gravity propagates in the whole space-time. Graviton production by matter on the brane is significant in the early hot Universe. In a model of 3-brane with matter embedded in 5D space-time conditions for gravitons emitted from the brane to the bulk to return back to the brane are found. For a given 5-momentum of graviton falling back to the brane the interval between the times of emission and return to the brane is calculated. A method to calculate contribution to the energy-momentum tensor from multiple graviton bouncings is developed. Explicit expressions formore » contributions to the energy-momentum tensor of gravitons which have made one, two and three bounces are obtained and their magnitudes are numerically calculated. These expressions are used to solve the evolution equation for dark radiation. A relation connecting reheating temperature and the scale of extra dimension is obtained. For the reheating temperature T{sub R}∼ 10{sup 6} GeV we estimate the scale of extra dimension μ to be of order 10{sup −9} GeV (μ{sup −1}∼ 10{sup −5} cm)« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyuboshitz, V. L.; Lyuboshitz, V. V., E-mail: Valery.Lyuboshitz@jinr.r
2010-05-15
Spin correlations for the {Lambda}{Lambda} and {Lambda}{Lambda}-bar pairs, generated in relativistic heavy-ion collisions, and related angular correlations at the joint registration of hadronic decays of two hyperons, in which space parity is not conserved, are analyzed. The correlation tensor components can be derived from the double angular distribution of products of two decays by the method of 'moments'. The properties of the 'trace' of the correlation tensor (a sum of three diagonal components), determining the relative fractions of the triplet states and singlet state of respective pairs, are discussed. Spin correlations for two identical particles ({Lambda}{Lambda}) and two nonidentical particlesmore » ({Lambda}{Lambda}-bar) are considered from the viewpoint of the conventional model of one-particle sources. In the framework of this model, correlations vanish at sufficiently large relative momenta. However, under these conditions, in the case of two nonidentical particles ({Lambda}{Lambda}-bar) a noticeable role is played by two-particle annihilation (two-quark, two-gluon) sources, which lead to the difference of the correlation tensor from zero. In particular, such a situation may arise when the system passes through the 'mixed phase.'« less
NASA Astrophysics Data System (ADS)
Connes, Alain; Kreimer, Dirk
This paper gives a complete selfcontained proof of our result announced in [6] showing that renormalization in quantum field theory is a special instance of a general mathematical procedure of extraction of finite values based on the Riemann-Hilbert problem. We shall first show that for any quantum field theory, the combinatorics of Feynman graphs gives rise to a Hopf algebra which is commutative as an algebra. It is the dual Hopf algebra of the enveloping algebra of a Lie algebra whose basis is labelled by the one particle irreducible Feynman graphs. The Lie bracket of two such graphs is computed from insertions of one graph in the other and vice versa. The corresponding Lie group G is the group of characters of . We shall then show that, using dimensional regularization, the bare (unrenormalized) theory gives rise to a loop
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lipnikov, Konstantin; Shashkov, Mikhail
2011-01-11
We construct a new mimetic tensor artificial viscosity on general polygonal and polyhedral meshes. The tensor artificial viscosity is based on a mimetic discretization of coordinate invariant operators, divergence of a tensor and gradient of a vector. The focus of this paper is on the symmetric form, div ({mu},{var_epsilon}(u)), of the tensor artificial viscosity where {var_epsilon}(u) is the symmetrized gradient of u and {mu}, is a tensor. The mimetic discretizations of this operator is derived for the case of a full tensor coefficient {mu}, that may reflect a shock direction. We demonstrate performance of the new viscosity for the Nohmore » implosion, Sedov explosion and Saltzman piston problems in both Cartesian and axisymmetric coordinate systems.« less
Tensor-based spatiotemporal saliency detection
NASA Astrophysics Data System (ADS)
Dou, Hao; Li, Bin; Deng, Qianqian; Zhang, LiRui; Pan, Zhihong; Tian, Jinwen
2018-03-01
This paper proposes an effective tensor-based spatiotemporal saliency computation model for saliency detection in videos. First, we construct the tensor representation of video frames. Then, the spatiotemporal saliency can be directly computed by the tensor distance between different tensors, which can preserve the complete temporal and spatial structure information of object in the spatiotemporal domain. Experimental results demonstrate that our method can achieve encouraging performance in comparison with the state-of-the-art methods.
ERIC Educational Resources Information Center
Yoder, Sharon K.
This book discusses four kinds of graphs that are taught in mathematics at the middle school level: pictographs, bar graphs, line graphs, and circle graphs. The chapters on each of these types of graphs contain information such as starting, scaling, drawing, labeling, and finishing the graphs using "LogoWriter." The final chapter of the…
Climate Prediction Center - Forecasts & Outlook Maps, Graphs and Tables
moisture, and a forecast for daily ultraviolet (UV) radiation index. Many of the outlook maps have an acute short-term threats due to severe weather events. Another of the many products available is the GFS
Animals & Livestock | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag (maps, tables, graphs), Agricultural Products html National Animal Nutrition Program (NANP) Feed | Agricultural Research Service | Plain Language | FOIA | Accessibility Statement | Information Quality | Privacy
Agroecosystems & Environment | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag useful formats (maps, tables, graphs), Agricultural Products html Useful to Usable: Developing usable integrated expertise in applied climatology, crop modeling, agronomy, cyber-technology, agricultural
Plants & Crops | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , tables, graphs), Agricultural Products html Useful to Usable: Developing usable climate science for climatology, crop modeling, agronomy, cyber-technology, agricultural economics, sociology, Extension and
Stochastic Gravity: Theory and Applications.
Hu, Bei Lok; Verdaguer, Enric
2004-01-01
Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. The noise kernel is the vacuum expectation value of the (operatorvalued) stress-energy bi-tensor which describes the fluctuations of quantum matter fields in curved spacetimes. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. The axiomatic approach is useful to see the structure of the theory from the framework of semiclassical gravity, showing the link from the mean value of the stress-energy tensor to their correlation functions. The functional approach uses the Feynman-Vernon influence functional and the Schwinger-Keldysh closed-time-path effective action methods which are convenient for computations. It also brings out the open systems concepts and the statistical and stochastic contents of the theory such as dissipation, fluctuations, noise, and decoherence. We then focus on the properties of the stress-energy bi-tensor. We obtain a general expression for the noise kernel of a quantum field defined at two distinct points in an arbitrary curved spacetime as products of covariant derivatives of the quantum field's Green function. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime. We offer an analytical solution of the Einstein-Langevin equation and compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint, which can go beyond the standard treatment by incorporating the full quantum effect of the inflaton fluctuations. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole (enclosed in a box). We derive a fluctuation-dissipation relation between the fluctuations in the radiation and the dissipative dynamics of metric fluctuations.
Tensor network method for reversible classical computation
NASA Astrophysics Data System (ADS)
Yang, Zhi-Cheng; Kourtis, Stefanos; Chamon, Claudio; Mucciolo, Eduardo R.; Ruckenstein, Andrei E.
2018-03-01
We develop a tensor network technique that can solve universal reversible classical computational problems, formulated as vertex models on a square lattice [Nat. Commun. 8, 15303 (2017), 10.1038/ncomms15303]. By encoding the truth table of each vertex constraint in a tensor, the total number of solutions compatible with partial inputs and outputs at the boundary can be represented as the full contraction of a tensor network. We introduce an iterative compression-decimation (ICD) scheme that performs this contraction efficiently. The ICD algorithm first propagates local constraints to longer ranges via repeated contraction-decomposition sweeps over all lattice bonds, thus achieving compression on a given length scale. It then decimates the lattice via coarse-graining tensor contractions. Repeated iterations of these two steps gradually collapse the tensor network and ultimately yield the exact tensor trace for large systems, without the need for manual control of tensor dimensions. Our protocol allows us to obtain the exact number of solutions for computations where a naive enumeration would take astronomically long times.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fangyan; Zhang, Song; Chung Wong, Pak
Effectively visualizing large graphs and capturing the statistical properties are two challenging tasks. To aid in these two tasks, many sampling approaches for graph simplification have been proposed, falling into three categories: node sampling, edge sampling, and traversal-based sampling. It is still unknown which approach is the best. We evaluate commonly used graph sampling methods through a combined visual and statistical comparison of graphs sampled at various rates. We conduct our evaluation on three graph models: random graphs, small-world graphs, and scale-free graphs. Initial results indicate that the effectiveness of a sampling method is dependent on the graph model, themore » size of the graph, and the desired statistical property. This benchmark study can be used as a guideline in choosing the appropriate method for a particular graph sampling task, and the results presented can be incorporated into graph visualization and analysis tools.« less
Complex quantum enveloping algebras as twisted tensor products
NASA Astrophysics Data System (ADS)
Chryssomalakos, Chryssomalis; Engeldinger, Ralf A.; Jurčo, Branislav; Schlieker, Michael; Zumino, Bruno
1994-12-01
We introduce a *-structure on the quantum double and its dual in order to make contact with various approaches to the enveloping algebras of complex quantum groups. Furthermore, we introduce a canonical basis in the quantum double, its universal R-matrices and give its relation to subgroups in the dual Hopf algebra.
Basis adaptation in homogeneous chaos spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tipireddy, Ramakrishna; Ghanem, Roger
2014-02-01
We present a new meth for the characterization of subspaces associated with low-dimensional quantities of interet (QoI). The probability density function of these QoI is found to be concentrated around one-dimensional subspaces for which we develop projection operators. Our approach builds on the properties of Gaussian Hilbert spaces and associated tensor product spaces.
,
2000-01-01
The U.S. Geological Survey's (USGS) Earth Explorer Web site provides access to millions of land-related products, including the following: Satellite images from Landsat, advanced very high resolution radiometer (AVHRR), and Corona data sets. Aerial photographs from the National Aerial Photography Program, NASA, and USGS data sets. Digital cartographic data from digital elevation models, digital line graphs, digital raster graphics, and digital orthophoto quadrangles. USGS paper maps Digital, film, and paper products are available, and many products can be previewed before ordering.
An Assessment and Annotated Bibliography of Marine Bioluminescence Research: 1979-1987.
1993-01-01
to Leona Cole, Division Secretary for NOARL Code 330, who prepared the typed draft of this manuscript. The mention of commercial products or company...look at the end points of the curves suggest a The graph shows the number of publications each small drop in research productivity in three areas; 0 year...Table 2 shows the most productive agencies dominated the funding for U.S. research institutions. In the next decade, we may expect on bioluminescence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Banik, Manik, E-mail: manik11ju@gmail.com
Steering is one of the most counter intuitive non-classical features of bipartite quantum system, first noticed by Schrödinger at the early days of quantum theory. On the other hand, measurement incompatibility is another non-classical feature of quantum theory, initially pointed out by Bohr. Recently, Quintino et al. [Phys. Rev. Lett. 113, 160402 (2014)] and Uola et al. [Phys. Rev. Lett. 113, 160403 (2014)] have investigated the relation between these two distinct non-classical features. They have shown that a set of measurements is not jointly measurable (i.e., incompatible) if and only if they can be used for demonstrating Schrödinger-Einstein-Podolsky-Rosen steering. Themore » concept of steering has been generalized for more general abstract tensor product theories rather than just Hilbert space quantum mechanics. In this article, we discuss that the notion of measurement incompatibility can be extended for general probability theories. Further, we show that the connection between steering and measurement incompatibility holds in a border class of tensor product theories rather than just quantum theory.« less
Pure state consciousness and its local reduction to neuronal space
NASA Astrophysics Data System (ADS)
Duggins, A. J.
2013-01-01
The single neuronal state can be represented as a vector in a complex space, spanned by an orthonormal basis of integer spike counts. In this model a scalar element of experience is associated with the instantaneous firing rate of a single sensory neuron over repeated stimulus presentations. Here the model is extended to composite neural systems that are tensor products of single neuronal vector spaces. Depiction of the mental state as a vector on this tensor product space is intended to capture the unity of consciousness. The density operator is introduced as its local reduction to the single neuron level, from which the firing rate can again be derived as the objective correlate of a subjective element. However, the relational structure of perceptual experience only emerges when the non-local mental state is considered. A metric of phenomenal proximity between neuronal elements of experience is proposed, based on the cross-correlation function of neurophysiology, but constrained by the association of theoretical extremes of correlation/anticorrelation in inseparable 2-neuron states with identical and opponent elements respectively.
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2015-01-01
Staggered grid, entropy stable discontinuous spectral collocation operators of any order are developed for Burgers' and the compressible Navier-Stokes equations on unstructured hexahedral elements. This generalization of previous entropy stable spectral collocation work [1, 2], extends the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to a combination of tensor product Legendre-Gauss (LG) and LGL points. The new semi-discrete operators discretely conserve mass, momentum, energy and satisfy a mathematical entropy inequality for both Burgers' and the compressible Navier-Stokes equations in three spatial dimensions. They are valid for smooth as well as discontinuous flows. The staggered LG and conventional LGL point formulations are compared on several challenging test problems. The staggered LG operators are significantly more accurate, although more costly to implement. The LG and LGL operators exhibit similar robustness, as is demonstrated using test problems known to be problematic for operators that lack a nonlinearly stability proof for the compressible Navier-Stokes equations (e.g., discontinuous Galerkin, spectral difference, or flux reconstruction operators).
Towards an Entropy Stable Spectral Element Framework for Computational Fluid Dynamics
NASA Technical Reports Server (NTRS)
Carpenter, Mark H.; Parsani, Matteo; Fisher, Travis C.; Nielsen, Eric J.
2016-01-01
Entropy stable (SS) discontinuous spectral collocation formulations of any order are developed for the compressible Navier-Stokes equations on hexahedral elements. Recent progress on two complementary efforts is presented. The first effort is a generalization of previous SS spectral collocation work to extend the applicable set of points from tensor product, Legendre-Gauss-Lobatto (LGL) to tensor product Legendre-Gauss (LG) points. The LG and LGL point formulations are compared on a series of test problems. Although being more costly to implement, it is shown that the LG operators are significantly more accurate on comparable grids. Both the LGL and LG operators are of comparable efficiency and robustness, as is demonstrated using test problems for which conventional FEM techniques suffer instability. The second effort generalizes previous SS work to include the possibility of p-refinement at non-conforming interfaces. A generalization of existing entropy stability machinery is developed to accommodate the nuances of fully multi-dimensional summation-by-parts (SBP) operators. The entropy stability of the compressible Euler equations on non-conforming interfaces is demonstrated using the newly developed LG operators and multi-dimensional interface interpolation operators.
C1 finite elements on non-tensor-product 2d and 3d manifolds
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2015-01-01
Geometrically continuous (Gk) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are Ck also for non-tensor-product layout. This paper describes and analyzes one such concrete C1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson’s equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O(h3) convergence in the L∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis. PMID:26594070
C1 finite elements on non-tensor-product 2d and 3d manifolds.
Nguyen, Thien; Karčiauskas, Kęstutis; Peters, Jörg
2016-01-01
Geometrically continuous ( G k ) constructions naturally yield families of finite elements for isogeometric analysis (IGA) that are C k also for non-tensor-product layout. This paper describes and analyzes one such concrete C 1 geometrically generalized IGA element (short: gIGA element) that generalizes bi-quadratic splines to quad meshes with irregularities. The new gIGA element is based on a recently-developed G 1 surface construction that recommends itself by its a B-spline-like control net, low (least) polynomial degree, good shape properties and reproduction of quadratics at irregular (extraordinary) points. Remarkably, for Poisson's equation on the disk using interior vertices of valence 3 and symmetric layout, we observe O ( h 3 ) convergence in the L ∞ norm for this family of elements. Numerical experiments confirm the elements to be effective for solving the trivariate Poisson equation on the solid cylinder, deformations thereof (a turbine blade), modeling and computing geodesics on smooth free-form surfaces via the heat equation, for solving the biharmonic equation on the disk and for Koiter-type thin-shell analysis.
An algorithm for finding a similar subgraph of all Hamiltonian cycles
NASA Astrophysics Data System (ADS)
Wafdan, R.; Ihsan, M.; Suhaimi, D.
2018-01-01
This paper discusses an algorithm to find a similar subgraph called findSimSubG algorithm. A similar subgraph is a subgraph with a maximum number of edges, contains no isolated vertex and is contained in every Hamiltonian cycle of a Hamiltonian Graph. The algorithm runs only on Hamiltonian graphs with at least two Hamiltonian cycles. The algorithm works by examining whether the initial subgraph of the first Hamiltonian cycle is a subgraph of comparison graphs. If the initial subgraph is not in comparison graphs, the algorithm will remove edges and vertices of the initial subgraph that are not in comparison graphs. There are two main processes in the algorithm, changing Hamiltonian cycle into a cycle graph and removing edges and vertices of the initial subgraph that are not in comparison graphs. The findSimSubG algorithm can find the similar subgraph without using backtracking method. The similar subgraph cannot be found on certain graphs, such as an n-antiprism graph, complete bipartite graph, complete graph, 2n-crossed prism graph, n-crown graph, n-möbius ladder, prism graph, and wheel graph. The complexity of this algorithm is O(m|V|), where m is the number of Hamiltonian cycles and |V| is the number of vertices of a Hamiltonian graph.
The Kummer tensor density in electrodynamics and in gravity
NASA Astrophysics Data System (ADS)
Baekler, Peter; Favaro, Alberto; Itin, Yakov; Hehl, Friedrich W.
2014-10-01
Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, K. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four T, which is antisymmetric in its first two and its last two indices: T=-T=-T. Thus, K∼T3, see Eq. (46). (i) If T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized Fresnel wave surfaces for propagating light. In the reversible case, the wave surfaces turn out to be Kummer surfaces as defined in algebraic geometry (Bateman 1910). (ii) If T is identified with the curvature tensor R of a Riemann-Cartan spacetime, then K∼R3 and, in the special case of general relativity, K reduces to the Kummer tensor of Zund (1969). This K is related to the principal null directions of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K irreducibly under the 4-dimensional linear group GL(4,R) and, subsequently, under the Lorentz group SO(1,3).
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S.
2017-01-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order-k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k}. We derive general inequalities between the lp-norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm (p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations. PMID:28286347
The Twist Tensor Nuclear Norm for Video Completion.
Hu, Wenrui; Tao, Dacheng; Zhang, Wensheng; Xie, Yuan; Yang, Yehui
2017-12-01
In this paper, we propose a new low-rank tensor model based on the circulant algebra, namely, twist tensor nuclear norm (t-TNN). The twist tensor denotes a three-way tensor representation to laterally store 2-D data slices in order. On one hand, t-TNN convexly relaxes the tensor multirank of the twist tensor in the Fourier domain, which allows an efficient computation using fast Fourier transform. On the other, t-TNN is equal to the nuclear norm of block circulant matricization of the twist tensor in the original domain, which extends the traditional matrix nuclear norm in a block circulant way. We test the t-TNN model on a video completion application that aims to fill missing values and the experiment results validate its effectiveness, especially when dealing with video recorded by a nonstationary panning camera. The block circulant matricization of the twist tensor can be transformed into a circulant block representation with nuclear norm invariance. This representation, after transformation, exploits the horizontal translation relationship between the frames in a video, and endows the t-TNN model with a more powerful ability to reconstruct panning videos than the existing state-of-the-art low-rank models.
Relativistic interpretation of the nature of the nuclear tensor force
NASA Astrophysics Data System (ADS)
Zong, Yao-Yao; Sun, Bao-Yuan
2018-02-01
The spin-dependent nature of the nuclear tensor force is studied in detail within the relativistic Hartree-Fock approach. The relativistic formalism for the tensor force is supplemented with an additional Lorentz-invariant tensor formalism in the σ-scalar channel, so as to take into account almost fully the nature of the tensor force brought about by the Fock diagrams in realistic nuclei. Specifically, the tensor sum rules are tested for the spin and pseudo-spin partners with and without nodes, to further understand the nature of the tensor force within the relativistic model. It is shown that the interference between the two components of nucleon spinors causes distinct violations of the tensor sum rules in realistic nuclei, mainly due to the opposite signs on the κ quantities of the upper and lower components, as well as the nodal difference. However, the sum rules can be precisely reproduced if the same radial wave functions are taken for the spin/pseudo-spin partners in addition to neglecting the lower/upper components, revealing clearly the nature of the tensor force. Supported by National Natural Science Foundation of China (11375076, 11675065) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-30)
OPERATOR NORM INEQUALITIES BETWEEN TENSOR UNFOLDINGS ON THE PARTITION LATTICE.
Wang, Miaoyan; Duc, Khanh Dao; Fischer, Jonathan; Song, Yun S
2017-05-01
Interest in higher-order tensors has recently surged in data-intensive fields, with a wide range of applications including image processing, blind source separation, community detection, and feature extraction. A common paradigm in tensor-related algorithms advocates unfolding (or flattening) the tensor into a matrix and applying classical methods developed for matrices. Despite the popularity of such techniques, how the functional properties of a tensor changes upon unfolding is currently not well understood. In contrast to the body of existing work which has focused almost exclusively on matricizations, we here consider all possible unfoldings of an order- k tensor, which are in one-to-one correspondence with the set of partitions of {1, …, k }. We derive general inequalities between the l p -norms of arbitrary unfoldings defined on the partition lattice. In particular, we demonstrate how the spectral norm ( p = 2) of a tensor is bounded by that of its unfoldings, and obtain an improved upper bound on the ratio of the Frobenius norm to the spectral norm of an arbitrary tensor. For specially-structured tensors satisfying a generalized definition of orthogonal decomposability, we prove that the spectral norm remains invariant under specific subsets of unfolding operations.
Mathematical foundations of the GraphBLAS
Kepner, Jeremy; Aaltonen, Peter; Bader, David; ...
2016-12-01
The GraphBLAS standard (GraphBlas.org) is being developed to bring the potential of matrix-based graph algorithms to the broadest possible audience. Mathematically, the GraphBLAS defines a core set of matrix-based graph operations that can be used to implement a wide class of graph algorithms in a wide range of programming environments. This study provides an introduction to the mathematics of the GraphBLAS. Graphs represent connections between vertices with edges. Matrices can represent a wide range of graphs using adjacency matrices or incidence matrices. Adjacency matrices are often easier to analyze while incidence matrices are often better for representing data. Fortunately, themore » two are easily connected by matrix multiplication. A key feature of matrix mathematics is that a very small number of matrix operations can be used to manipulate a very wide range of graphs. This composability of a small number of operations is the foundation of the GraphBLAS. A standard such as the GraphBLAS can only be effective if it has low performance overhead. Finally, performance measurements of prototype GraphBLAS implementations indicate that the overhead is low.« less
East Europe Report, Economic and Industrial Affairs, No. 2434.
1983-08-11
lowering of debts made possible by the establishment of rational proportions between production and domestic consumption, may provide the roundation...The language makes it possible for the planners to formulate control tasks in the form of oriented graphs whose centers are control states and whose...were incapable of replacing with domestic production with rational expenditure. Naturally, import could be reduced below this level by administrative
Search and Pursuit with Unmanned Aerial Vehicles in Road Networks
2013-11-01
production volume in each area for use in consumer electronics. Simultaneously, a shift in defense strategy towards unmanned vehicles, particularly...Vöcking. Randomized pursuit-evasion in graphs. Combinatorics, Probability and Computing, 12:225–244, May 2003. [3] AeroVironment Inc. Raven Product Data...Ali and Mubarak Shah. COCOA - tracking in aerial imagery. In SPIE Airborne Intelligence, Surveillance, Reconnaissance Systems and Applications, 2006
ERIC Educational Resources Information Center
Library of Congress, Washington, DC. Congressional Research Service.
This handbook contains a comprehensive selection of United States and foreign energy statistics in the form of graphs and tables. The data are classified according to resources, production, consumption and demand, energy and gross national product, and research and development. Statistics on energy sources such as coal, oil, gas, nuclear energy,…
1990-01-09
data structures can easily be presented to the user interface. An emphasis of the Graph Browser was the realization of graph views and graph animation ... animation of the graph. Anima- tion of the graph includes changing node shapes, changing node and arc colors, changing node and arc text, and making...many graphs tend to be tree-like. Animtion of a graph is a useful feature. One of the primary goals of GMB was to support animated graphs. For animation
Inflationary tensor perturbations after BICEP2.
Caligiuri, Jerod; Kosowsky, Arthur
2014-05-16
The measurement of B-mode polarization of the cosmic microwave background at large angular scales by the BICEP experiment suggests a stochastic gravitational wave background from early-Universe inflation with a surprisingly large amplitude. The power spectrum of these tensor perturbations can be probed both with further measurements of the microwave background polarization at smaller scales and also directly via interferometry in space. We show that sufficiently sensitive high-resolution B-mode measurements will ultimately have the ability to test the inflationary consistency relation between the amplitude and spectrum of the tensor perturbations, confirming their inflationary origin. Additionally, a precise B-mode measurement of the tensor spectrum will predict the tensor amplitude on solar system scales to 20% accuracy for an exact power-law tensor spectrum, so a direct detection will then measure the running of the tensor spectral index to high precision.
Decorated tensor network renormalization for lattice gauge theories and spin foam models
NASA Astrophysics Data System (ADS)
Dittrich, Bianca; Mizera, Sebastian; Steinhaus, Sebastian
2016-05-01
Tensor network techniques have proved to be powerful tools that can be employed to explore the large scale dynamics of lattice systems. Nonetheless, the redundancy of degrees of freedom in lattice gauge theories (and related models) poses a challenge for standard tensor network algorithms. We accommodate for such systems by introducing an additional structure decorating the tensor network. This allows to explicitly preserve the gauge symmetry of the system under coarse graining and straightforwardly interpret the fixed point tensors. We propose and test (for models with finite Abelian groups) a coarse graining algorithm for lattice gauge theories based on decorated tensor networks. We also point out that decorated tensor networks are applicable to other models as well, where they provide the advantage to give immediate access to certain expectation values and correlation functions.
Gravitoelectromagnetic analogy based on tidal tensors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Costa, L. Filipe O.; Herdeiro, Carlos A. R.
2008-07-15
We propose a new approach to a physical analogy between general relativity and electromagnetism, based on tidal tensors of both theories. Using this approach we write a covariant form for the gravitational analogues of the Maxwell equations, which makes transparent both the similarities and key differences between the two interactions. The following realizations of the analogy are given. The first one matches linearized gravitational tidal tensors to exact electromagnetic tidal tensors in Minkowski spacetime. The second one matches exact magnetic gravitational tidal tensors for ultrastationary metrics to exact magnetic tidal tensors of electromagnetism in curved spaces. In the third wemore » show that our approach leads to a two-step exact derivation of Papapetrou's equation describing the force exerted on a spinning test particle. Analogous scalar invariants built from tidal tensors of both theories are also discussed.« less
Tensor scale: An analytic approach with efficient computation and applications☆
Xu, Ziyue; Saha, Punam K.; Dasgupta, Soura
2015-01-01
Scale is a widely used notion in computer vision and image understanding that evolved in the form of scale-space theory where the key idea is to represent and analyze an image at various resolutions. Recently, we introduced a notion of local morphometric scale referred to as “tensor scale” using an ellipsoidal model that yields a unified representation of structure size, orientation and anisotropy. In the previous work, tensor scale was described using a 2-D algorithmic approach and a precise analytic definition was missing. Also, the application of tensor scale in 3-D using the previous framework is not practical due to high computational complexity. In this paper, an analytic definition of tensor scale is formulated for n-dimensional (n-D) images that captures local structure size, orientation and anisotropy. Also, an efficient computational solution in 2- and 3-D using several novel differential geometric approaches is presented and the accuracy of results is experimentally examined. Also, a matrix representation of tensor scale is derived facilitating several operations including tensor field smoothing to capture larger contextual knowledge. Finally, the applications of tensor scale in image filtering and n-linear interpolation are presented and the performance of their results is examined in comparison with respective state-of-art methods. Specifically, the performance of tensor scale based image filtering is compared with gradient and Weickert’s structure tensor based diffusive filtering algorithms. Also, the performance of tensor scale based n-linear interpolation is evaluated in comparison with standard n-linear and windowed-sinc interpolation methods. PMID:26236148
Chen, Zhenrui; Tie, Yanmei; Olubiyi, Olutayo; Rigolo, Laura; Mehrtash, Alireza; Norton, Isaiah; Pasternak, Ofer; Rathi, Yogesh; Golby, Alexandra J; O'Donnell, Lauren J
2015-01-01
Diffusion imaging tractography is increasingly used to trace critical fiber tracts in brain tumor patients to reduce the risk of post-operative neurological deficit. However, the effects of peritumoral edema pose a challenge to conventional tractography using the standard diffusion tensor model. The aim of this study was to present a novel technique using a two-tensor unscented Kalman filter (UKF) algorithm to track the arcuate fasciculus (AF) in brain tumor patients with peritumoral edema. Ten right-handed patients with left-sided brain tumors in the vicinity of language-related cortex and evidence of significant peritumoral edema were retrospectively selected for the study. All patients underwent 3-Tesla magnetic resonance imaging (MRI) including a diffusion-weighted dataset with 31 directions. Fiber tractography was performed using both single-tensor streamline and two-tensor UKF tractography. A two-regions-of-interest approach was applied to perform the delineation of the AF. Results from the two different tractography algorithms were compared visually and quantitatively. Using single-tensor streamline tractography, the AF appeared disrupted in four patients and contained few fibers in the remaining six patients. Two-tensor UKF tractography delineated an AF that traversed edematous brain areas in all patients. The volume of the AF was significantly larger on two-tensor UKF than on single-tensor streamline tractography (p < 0.01). Two-tensor UKF tractography provides the ability to trace a larger volume AF than single-tensor streamline tractography in the setting of peritumoral edema in brain tumor patients.
ERIC Educational Resources Information Center
Phage, Itumeleng B.; Lemmer, Miriam; Hitge, Mariette
2017-01-01
Students' graph comprehension may be affected by the background of the students who are the readers or interpreters of the graph, their knowledge of the context in which the graph is set, and the inferential processes required by the graph operation. This research study investigated these aspects of graph comprehension for 152 first year…
Analytical structure, dynamics, and coarse graining of a kinetic model of an active fluid
NASA Astrophysics Data System (ADS)
Gao, Tong; Betterton, Meredith D.; Jhang, An-Sheng; Shelley, Michael J.
2017-09-01
We analyze one of the simplest active suspensions with complex dynamics: a suspension of immotile "extensor" particles that exert active extensile dipolar stresses on the fluid in which they are immersed. This is relevant to several experimental systems, such as recently studied tripartite rods that create extensile flows by consuming a chemical fuel. We first describe the system through a Doi-Onsager kinetic theory based on microscopic modeling. This theory captures the active stresses produced by the particles that can drive hydrodynamic instabilities, as well as the steric interactions of rodlike particles that lead to nematic alignment. This active nematic system yields complex flows and disclination defect dynamics very similar to phenomenological Landau-deGennes Q -tensor theories for active nematic fluids, as well as by more complex Doi-Onsager theories for polar microtubule-motor-protein systems. We apply the quasiequilibrium Bingham closure, used to study suspensions of passive microscopic rods, to develop a nonstandard Q -tensor theory. We demonstrate through simulation that this B Q -tensor theory gives an excellent analytical and statistical accounting of the suspension's complex dynamics, at a far reduced computational cost. Finally, we apply the B Q -tensor model to study the dynamics of extensor suspensions in circular and biconcave domains. In circular domains, we reproduce previous results for systems with weak nematic alignment, but for strong alignment we find unusual dynamics with activity-controlled defect production and absorption at the boundaries of the domain. In biconcave domains, a Fredericks-like transition occurs as the width of the neck connecting the two disks is varied.
Implicit constitutive models with a thermodynamic basis: a study of stress concentration
NASA Astrophysics Data System (ADS)
Bridges, C.; Rajagopal, K. R.
2015-02-01
Motivated by the recent generalization of the class of elastic bodies by Rajagopal (Appl Math 48:279-319, 2003), there have been several recent studies that have been carried out within the context of this new class. Rajagopal and Srinivasa (Proc R Soc Ser A 463:357-367, 2007, Proc R Soc Ser A: Math Phys Eng Sci 465:493-500, 2009) provided a thermodynamic basis for such models and appealing to the idea that rate of entropy production ought to be maximized they developed nonlinear rate equations of the form where T is the Cauchy stress and D is the stretching tensor as well as , where S is the Piola-Kirchhoff stress tensor and E is the Green-St. Venant strain tensor. We follow a similar procedure by utilizing the Gibb's potential and the left stretch tensor V from the Polar Decomposition of the deformation gradient, and we show that when the displacement gradient is small one arrives at constitutive relations of the form . This is, of course, in stark contrast to traditional elasticity wherein one obtains a single model, Hooke's law, when the displacement gradient is small. By solving a classical boundary value problem, with a particular form for f( T), we show that when the stresses are small, the strains are also small which is in agreement with traditional elasticity. However, within the context of our model, when the stress blows up the strains remain small, unlike the implications of Hooke's law. We use this model to study boundary value problems in annular domains to illustrate its efficacy.
NASA Astrophysics Data System (ADS)
Xiong, B.; Oude Elberink, S.; Vosselman, G.
2014-07-01
In the task of 3D building model reconstruction from point clouds we face the problem of recovering a roof topology graph in the presence of noise, small roof faces and low point densities. Errors in roof topology graphs will seriously affect the final modelling results. The aim of this research is to automatically correct these errors. We define the graph correction as a graph-to-graph problem, similar to the spelling correction problem (also called the string-to-string problem). The graph correction is more complex than string correction, as the graphs are 2D while strings are only 1D. We design a strategy based on a dictionary of graph edit operations to automatically identify and correct the errors in the input graph. For each type of error the graph edit dictionary stores a representative erroneous subgraph as well as the corrected version. As an erroneous roof topology graph may contain several errors, a heuristic search is applied to find the optimum sequence of graph edits to correct the errors one by one. The graph edit dictionary can be expanded to include entries needed to cope with errors that were previously not encountered. Experiments show that the dictionary with only fifteen entries already properly corrects one quarter of erroneous graphs in about 4500 buildings, and even half of the erroneous graphs in one test area, achieving as high as a 95% acceptance rate of the reconstructed models.
Notes on super Killing tensors
NASA Astrophysics Data System (ADS)
Howe, P. S.; Lindström, U.
2016-03-01
The notion of a Killing tensor is generalised to a superspace setting. Conserved quantities associated with these are defined for superparticles and Poisson brackets are used to define a supersymmetric version of the even Schouten-Nijenhuis bracket. Superconformal Killing tensors in flat superspaces are studied for spacetime dimensions 3,4,5,6 and 10. These tensors are also presented in analytic superspaces and super-twistor spaces for 3,4 and 6 dimensions. Algebraic structures associated with superconformal Killing tensors are also briefly discussed.
Tensor Train Neighborhood Preserving Embedding
NASA Astrophysics Data System (ADS)
Wang, Wenqi; Aggarwal, Vaneet; Aeron, Shuchin
2018-05-01
In this paper, we propose a Tensor Train Neighborhood Preserving Embedding (TTNPE) to embed multi-dimensional tensor data into low dimensional tensor subspace. Novel approaches to solve the optimization problem in TTNPE are proposed. For this embedding, we evaluate novel trade-off gain among classification, computation, and dimensionality reduction (storage) for supervised learning. It is shown that compared to the state-of-the-arts tensor embedding methods, TTNPE achieves superior trade-off in classification, computation, and dimensionality reduction in MNIST handwritten digits and Weizmann face datasets.
Rubinstein, Robert; Kurien, Susan; Cambon, Claude
2015-06-22
The representation theory of the rotation group is applied to construct a series expansion of the correlation tensor in homogeneous anisotropic turbulence. The resolution of angular dependence is the main analytical difficulty posed by anisotropic turbulence; representation theory parametrises this dependence by a tensor analogue of the standard spherical harmonics expansion of a scalar. As a result, the series expansion is formulated in terms of explicitly constructed tensor bases with scalar coefficients determined by angular moments of the correlation tensor.
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Hassan, Hassanabadi; Tamunoimi, M. Abbey
2015-12-01
The Dirac equation with Hellmann potential is presented in the presence of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT), and Hulthen-type tensor (HLT) interactions by using Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions are obtained approximately within the framework of spin and pseudospin symmetries limit. We have also reported some numerical results and figures to show the effects of the tensor interactions. Special cases of the potential are also discussed.
Comparison and Enumeration of Chemical Graphs
Akutsu, Tatsuya; Nagamochi, Hiroshi
2013-01-01
Chemical compounds are usually represented as graph structured data in computers. In this review article, we overview several graph classes relevant to chemical compounds and the computational complexities of several fundamental problems for these graph classes. In particular, we consider the following problems: determining whether two chemical graphs are identical, determining whether one input chemical graph is a part of the other input chemical graph, finding a maximum common part of two input graphs, finding a reaction atom mapping, enumerating possible chemical graphs, and enumerating stereoisomers. We also discuss the relationship between the fifth problem and kernel functions for chemical compounds. PMID:24688697
Seeing is believing: good graphic design principles for medical research.
Duke, Susan P; Bancken, Fabrice; Crowe, Brenda; Soukup, Mat; Botsis, Taxiarchis; Forshee, Richard
2015-09-30
Have you noticed when you browse a book, journal, study report, or product label how your eye is drawn to figures more than to words and tables? Statistical graphs are powerful ways to transparently and succinctly communicate the key points of medical research. Furthermore, the graphic design itself adds to the clarity of the messages in the data. The goal of this paper is to provide a mechanism for selecting the appropriate graph to thoughtfully construct quality deliverables using good graphic design principles. Examples are motivated by the efforts of a Safety Graphics Working Group that consisted of scientists from the pharmaceutical industry, Food and Drug Administration, and academic institutions. Copyright © 2015 John Wiley & Sons, Ltd.
Mean square cordial labelling related to some acyclic graphs and its rough approximations
NASA Astrophysics Data System (ADS)
Dhanalakshmi, S.; Parvathi, N.
2018-04-01
In this paper we investigate that the path Pn, comb graph Pn⊙K1, n-centipede graph,centipede graph (n,2) and star Sn admits mean square cordial labeling. Also we proved that the induced sub graph obtained by the upper approximation of any sub graph H of the above acyclic graphs admits mean square cordial labeling.
Geometry of Lax pairs: Particle motion and Killing-Yano tensors
NASA Astrophysics Data System (ADS)
Cariglia, Marco; Frolov, Valeri P.; Krtouš, Pavel; Kubizňák, David
2013-01-01
A geometric formulation of the Lax pair equation on a curved manifold is studied using the phase-space formalism. The corresponding (covariantly conserved) Lax tensor is defined and the method of generation of constants of motion from it is discussed. It is shown that when the Hamilton equations of motion are used, the conservation of the Lax tensor translates directly to the well-known Lax pair equation, with one matrix identified with components of the Lax tensor and the other matrix constructed from the (metric) connection. A generalization to Clifford objects is also discussed. Nontrivial examples of Lax tensors for geodesic and charged particle motion are found in spacetimes admitting a hidden symmetry of Killing-Yano tensors.
On Lovelock analogs of the Riemann tensor
NASA Astrophysics Data System (ADS)
Camanho, Xián O.; Dadhich, Naresh
2016-03-01
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d=2N+1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes.
Xuan, Junyu; Lu, Jie; Zhang, Guangquan; Luo, Xiangfeng
2015-12-01
Graph mining has been a popular research area because of its numerous application scenarios. Many unstructured and structured data can be represented as graphs, such as, documents, chemical molecular structures, and images. However, an issue in relation to current research on graphs is that they cannot adequately discover the topics hidden in graph-structured data which can be beneficial for both the unsupervised learning and supervised learning of the graphs. Although topic models have proved to be very successful in discovering latent topics, the standard topic models cannot be directly applied to graph-structured data due to the "bag-of-word" assumption. In this paper, an innovative graph topic model (GTM) is proposed to address this issue, which uses Bernoulli distributions to model the edges between nodes in a graph. It can, therefore, make the edges in a graph contribute to latent topic discovery and further improve the accuracy of the supervised and unsupervised learning of graphs. The experimental results on two different types of graph datasets show that the proposed GTM outperforms the latent Dirichlet allocation on classification by using the unveiled topics of these two models to represent graphs.
MRI diffusion tensor reconstruction with PROPELLER data acquisition.
Cheryauka, Arvidas B; Lee, James N; Samsonov, Alexei A; Defrise, Michel; Gullberg, Grant T
2004-02-01
MRI diffusion imaging is effective in measuring the diffusion tensor in brain, cardiac, liver, and spinal tissue. Diffusion tensor tomography MRI (DTT MRI) method is based on reconstructing the diffusion tensor field from measurements of projections of the tensor field. Projections are obtained by appropriate application of rotated diffusion gradients. In the present paper, the potential of a novel data acquisition scheme, PROPELLER (Periodically Rotated Overlapping ParallEL Lines with Enhanced Reconstruction), is examined in combination with DTT MRI for its capability and sufficiency for diffusion imaging. An iterative reconstruction algorithm is used to reconstruct the diffusion tensor field from rotated diffusion weighted blades by appropriate rotated diffusion gradients. DTT MRI with PROPELLER data acquisition shows significant potential to reduce the number of weighted measurements, avoid ambiguity in reconstructing diffusion tensor parameters, increase signal-to-noise ratio, and decrease the influence of signal distortion.
NASA Astrophysics Data System (ADS)
Ricciardone, Angelo; Tasinato, Gianmassimo
2018-02-01
We develop a scenario of inflation with spontaneously broken time and space diffeomorphisms, with distinctive features for the primordial tensor modes. Inflationary tensor fluctuations are not conserved outside the horizon, and can acquire a mass during the inflationary epoch. They can evade the Higuchi bound around de Sitter space, thanks to interactions with the fields driving expansion. Correspondingly, the primordial stochastic gravitational wave background (SGWB) is characterised by a tuneable scale dependence, and can be detectable at interferometer scales. In this set-up, tensor non-Gaussianity can be parametrically enhanced in the squeezed limit. This induces a coupling between long and short tensor modes, leading to a specific quadrupolar anisotropy in the primordial SGWB spectrum, which can be used to build estimators for tensor non-Gaussianity. We analyse how our inflationary system can be tested with interferometers, also discussing how an interferometer can be sensitive to a primordial anisotropic SGWB.
NASA Astrophysics Data System (ADS)
Lazzeretti, Paolo
2018-04-01
It is shown that nonsymmetric second-rank current density tensors, related to the current densities induced by magnetic fields and nuclear magnetic dipole moments, are fundamental properties of a molecule. Together with magnetizability, nuclear magnetic shielding, and nuclear spin-spin coupling, they completely characterize its response to magnetic perturbations. Gauge invariance, resolution into isotropic, deviatoric, and antisymmetric parts, and contributions of current density tensors to magnetic properties are discussed. The components of the second-rank tensor properties are rationalized via relationships explicitly connecting them to the direction of the induced current density vectors and to the components of the current density tensors. The contribution of the deviatoric part to the average value of magnetizability, nuclear shielding, and nuclear spin-spin coupling, uniquely determined by the antisymmetric part of current density tensors, vanishes identically. The physical meaning of isotropic and anisotropic invariants of current density tensors has been investigated, and the connection between anisotropy magnitude and electron delocalization has been discussed.
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brink, Jeandrew
The problem of obtaining an explicit representation for the fourth invariant of geodesic motion (generalized Carter constant) of an arbitrary stationary axisymmetric vacuum spacetime generated from an Ernst potential is considered. The coupling between the nonlocal curvature content of the spacetime as encoded in the Weyl tensor, and the existence of a Killing tensor is explored and a constructive, algebraic test for a fourth-order Killing tensor suggested. The approach used exploits the variables defined for the Baecklund transformations to clarify the relationship between Weyl curvature, constants of geodesic motion, expressed as Killing tensors, and the solution-generation techniques. A new symmetricmore » noncovariant formulation of the Killing equations is given. This formulation transforms the problem of looking for fourth-order Killing tensors in 4D into one of looking for four interlocking two-manifolds admitting fourth-order Killing tensors in 2D.« less
The Specific Features of design and process engineering in branch of industrial enterprise
NASA Astrophysics Data System (ADS)
Sosedko, V. V.; Yanishevskaya, A. G.
2017-06-01
Production output of industrial enterprise is organized in debugged working mechanisms at each stage of product’s life cycle from initial design documentation to product and finishing it with utilization. The topic of article is mathematical model of the system design and process engineering in branch of the industrial enterprise, statistical processing of estimated implementation results of developed mathematical model in branch, and demonstration of advantages at application at this enterprise. During the creation of model a data flow about driving of information, orders, details and modules in branch of enterprise groups of divisions were classified. Proceeding from the analysis of divisions activity, a data flow, details and documents the state graph of design and process engineering was constructed, transitions were described and coefficients are appropriated. To each condition of system of the constructed state graph the corresponding limiting state probabilities were defined, and also Kolmogorov’s equations are worked out. When integration of sets of equations of Kolmogorov the state probability of system activity the specified divisions and production as function of time in each instant is defined. On the basis of developed mathematical model of uniform system of designing and process engineering and manufacture, and a state graph by authors statistical processing the application of mathematical model results was carried out, and also advantage at application at this enterprise is shown. Researches on studying of loading services probability of branch and third-party contractors (the orders received from branch within a month) were conducted. The developed mathematical model of system design and process engineering and manufacture can be applied to definition of activity state probability of divisions and manufacture as function of time in each instant that will allow to keep account of loading of performance of work in branches of the enterprise.
Tensor Based Representation and Analysis of Diffusion-Weighted Magnetic Resonance Images
ERIC Educational Resources Information Center
Barmpoutis, Angelos
2009-01-01
Cartesian tensor bases have been widely used to model spherical functions. In medical imaging, tensors of various orders can approximate the diffusivity function at each voxel of a diffusion-weighted MRI data set. This approximation produces tensor-valued datasets that contain information about the underlying local structure of the scanned tissue.…
NASA Technical Reports Server (NTRS)
Sirlin, Samuel W.
1993-01-01
Eight-page report describes systems of notation used most commonly to represent tensors of various ranks, with emphasis on tensors in Cartesian coordinate systems. Serves as introductory or refresher text for scientists, engineers, and others familiar with basic concepts of coordinate systems, vectors, and partial derivatives. Indicial tensor, vector, dyadic, and matrix notations, and relationships among them described.
Einstein Revisited - Gravity in Curved Spacetime Without Event Horizons
NASA Astrophysics Data System (ADS)
Leiter, Darryl
2000-04-01
In terms of covariant derivatives with respect to flat background spacetimes upon which the physical curved spacetime is imposed (1), covariant conservation of energy momentum requires, via the Bianchi Identity, that the Einstein tensor be equated to the matter energy momentum tensor. However the Einstein tensor covariantly splits (2) into two tensor parts: (a) a term proportional to the gravitational stress energy momentum tensor, and (b) an anti-symmetric tensor which obeys a covariant 4-divergence identity called the Freud Identity. Hence covariant conservation of energy momentum requires, via the Freud Identity, that the Freud tensor be equal to a constant times the matter energy momentum tensor. The resultant field equations (3) agree with the Einstein equations to first order, but differ in higher orders (4) such that black holes are replaced by "red holes" i.e., dense objects collapsed inside of their photon orbits with no event horizons. (1) Rosen, N., (1963), Ann. Phys. v22, 1; (2) Rund, H., (1991), Alg. Grps. & Geom. v8, 267; (3) Yilmaz, Hl, (1992), Nuo. Cim. v107B, 946; (4) Roberstson, S., (1999),Ap.J. v515, 365.
A Tensor-Based Subspace Approach for Bistatic MIMO Radar in Spatial Colored Noise
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-01-01
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method. PMID:24573313
A tensor-based subspace approach for bistatic MIMO radar in spatial colored noise.
Wang, Xianpeng; Wang, Wei; Li, Xin; Wang, Junxiang
2014-02-25
In this paper, a new tensor-based subspace approach is proposed to estimate the direction of departure (DOD) and the direction of arrival (DOA) for bistatic multiple-input multiple-output (MIMO) radar in the presence of spatial colored noise. Firstly, the received signals can be packed into a third-order measurement tensor by exploiting the inherent structure of the matched filter. Then, the measurement tensor can be divided into two sub-tensors, and a cross-covariance tensor is formulated to eliminate the spatial colored noise. Finally, the signal subspace is constructed by utilizing the higher-order singular value decomposition (HOSVD) of the cross-covariance tensor, and the DOD and DOA can be obtained through the estimation of signal parameters via rotational invariance technique (ESPRIT) algorithm, which are paired automatically. Since the multidimensional inherent structure and the cross-covariance tensor technique are used, the proposed method provides better angle estimation performance than Chen's method, the ESPRIT algorithm and the multi-SVD method. Simulation results confirm the effectiveness and the advantage of the proposed method.
Tensor-based Dictionary Learning for Spectral CT Reconstruction
Zhang, Yanbo; Wang, Ge
2016-01-01
Spectral computed tomography (CT) produces an energy-discriminative attenuation map of an object, extending a conventional image volume with a spectral dimension. In spectral CT, an image can be sparsely represented in each of multiple energy channels, and are highly correlated among energy channels. According to this characteristics, we propose a tensor-based dictionary learning method for spectral CT reconstruction. In our method, tensor patches are extracted from an image tensor, which is reconstructed using the filtered backprojection (FBP), to form a training dataset. With the Candecomp/Parafac decomposition, a tensor-based dictionary is trained, in which each atom is a rank-one tensor. Then, the trained dictionary is used to sparsely represent image tensor patches during an iterative reconstruction process, and the alternating minimization scheme is adapted for optimization. The effectiveness of our proposed method is validated with both numerically simulated and real preclinical mouse datasets. The results demonstrate that the proposed tensor-based method generally produces superior image quality, and leads to more accurate material decomposition than the currently popular popular methods. PMID:27541628
An efficient tensor transpose algorithm for multicore CPU, Intel Xeon Phi, and NVidia Tesla GPU
NASA Astrophysics Data System (ADS)
Lyakh, Dmitry I.
2015-04-01
An efficient parallel tensor transpose algorithm is suggested for shared-memory computing units, namely, multicore CPU, Intel Xeon Phi, and NVidia GPU. The algorithm operates on dense tensors (multidimensional arrays) and is based on the optimization of cache utilization on x86 CPU and the use of shared memory on NVidia GPU. From the applied side, the ultimate goal is to minimize the overhead encountered in the transformation of tensor contractions into matrix multiplications in computer implementations of advanced methods of quantum many-body theory (e.g., in electronic structure theory and nuclear physics). A particular accent is made on higher-dimensional tensors that typically appear in the so-called multireference correlated methods of electronic structure theory. Depending on tensor dimensionality, the presented optimized algorithms can achieve an order of magnitude speedup on x86 CPUs and 2-3 times speedup on NVidia Tesla K20X GPU with respect to the naïve scattering algorithm (no memory access optimization). The tensor transpose routines developed in this work have been incorporated into a general-purpose tensor algebra library (TAL-SH).
Kronecker-Basis-Representation Based Tensor Sparsity and Its Applications to Tensor Recovery.
Xie, Qi; Zhao, Qian; Meng, Deyu; Xu, Zongben
2017-08-02
It is well known that the sparsity/low-rank of a vector/matrix can be rationally measured by nonzero-entries-number ($l_0$ norm)/nonzero- singular-values-number (rank), respectively. However, data from real applications are often generated by the interaction of multiple factors, which obviously cannot be sufficiently represented by a vector/matrix, while a high order tensor is expected to provide more faithful representation to deliver the intrinsic structure underlying such data ensembles. Unlike the vector/matrix case, constructing a rational high order sparsity measure for tensor is a relatively harder task. To this aim, in this paper we propose a measure for tensor sparsity, called Kronecker-basis-representation based tensor sparsity measure (KBR briefly), which encodes both sparsity insights delivered by Tucker and CANDECOMP/PARAFAC (CP) low-rank decompositions for a general tensor. Then we study the KBR regularization minimization (KBRM) problem, and design an effective ADMM algorithm for solving it, where each involved parameter can be updated with closed-form equations. Such an efficient solver makes it possible to extend KBR to various tasks like tensor completion and tensor robust principal component analysis. A series of experiments, including multispectral image (MSI) denoising, MSI completion and background subtraction, substantiate the superiority of the proposed methods beyond state-of-the-arts.
Local recovery of lithospheric stress tensor from GOCE gravitational tensor
NASA Astrophysics Data System (ADS)
Eshagh, Mehdi
2017-04-01
The sublithospheric stress due to mantle convection can be computed from gravity data and propagated through the lithosphere by solving the boundary-value problem of elasticity for the Earth's lithosphere. In this case, a full tensor of stress can be computed at any point inside this elastic layer. Here, we present mathematical foundations for recovering such a tensor from gravitational tensor measured at satellite altitudes. The mathematical relations will be much simpler in this way than the case of using gravity data as no derivative of spherical harmonics (SHs) or Legendre polynomials is involved in the expressions. Here, new relations between the SH coefficients of the stress and gravitational tensor elements are presented. Thereafter, integral equations are established from them to recover the elements of stress tensor from those of the gravitational tensor. The integrals have no closed-form kernels, but they are easy to invert and their spatial truncation errors are reducible. The integral equations are used to invert the real data of the gravity field and steady-state ocean circulation explorer mission (GOCE), in 2009 November, over the South American plate and its surroundings to recover the stress tensor at a depth of 35 km. The recovered stress fields are in good agreement with the tectonic and geological features of the area.
Comparative study of methods for recognition of an unknown person's action from a video sequence
NASA Astrophysics Data System (ADS)
Hori, Takayuki; Ohya, Jun; Kurumisawa, Jun
2009-02-01
This paper proposes a Tensor Decomposition Based method that can recognize an unknown person's action from a video sequence, where the unknown person is not included in the database (tensor) used for the recognition. The tensor consists of persons, actions and time-series image features. For the observed unknown person's action, one of the actions stored in the tensor is assumed. Using the motion signature obtained from the assumption, the unknown person's actions are synthesized. The actions of one of the persons in the tensor are replaced by the synthesized actions. Then, the core tensor for the replaced tensor is computed. This process is repeated for the actions and persons. For each iteration, the difference between the replaced and original core tensors is computed. The assumption that gives the minimal difference is the action recognition result. For the time-series image features to be stored in the tensor and to be extracted from the observed video sequence, the human body silhouette's contour shape based feature is used. To show the validity of our proposed method, our proposed method is experimentally compared with Nearest Neighbor rule and Principal Component analysis based method. Experiments using 33 persons' seven kinds of action show that our proposed method achieves better recognition accuracies for the seven actions than the other methods.
Products of multiple Fourier series with application to the multiblade transformation
NASA Technical Reports Server (NTRS)
Kunz, D. L.
1981-01-01
A relatively simple and systematic method for forming the products of multiple Fourier series using tensor like operations is demonstrated. This symbolic multiplication can be performed for any arbitrary number of series, and the coefficients of a set of linear differential equations with periodic coefficients from a rotating coordinate system to a nonrotating system is also demonstrated. It is shown that using Fourier operations to perform this transformation make it easily understood, simple to apply, and generally applicable.
Search for single top quark production via contact interactions at LEP2
NASA Astrophysics Data System (ADS)
Abdallah, J.; Abreu, P.; Adam, W.; Adzic, P.; Albrecht, T.; Alemany-Fernandez, R.; Allmendinger, T.; Allport, P. P.; Amaldi, U.; Amapane, N.; Amato, S.; Anashkin, E.; Andreazza, A.; Andringa, S.; Anjos, N.; Antilogus, P.; Apel, W.-D.; Arnoud, Y.; Ask, S.; Asman, B.; Augustin, J. E.; Augustinus, A.; Baillon, P.; Ballestrero, A.; Bambade, P.; Barbier, R.; Bardin, D.; Barker, G. J.; Baroncelli, A.; Battaglia, M.; Baubillier, M.; Becks, K.-H.; Begalli, M.; Behrmann, A.; Ben-Haim, E.; Benekos, N.; Benvenuti, A.; Berat, C.; Berggren, M.; Bertrand, D.; Besancon, M.; Besson, N.; Bloch, D.; Blom, M.; Bluj, M.; Bonesini, M.; Boonekamp, M.; Booth, P. S. L.; Borisov, G.; Botner, O.; Bouquet, B.; Bowcock, T. J. V.; Boyko, I.; Bracko, M.; Brenner, R.; Brodet, E.; Bruckman, P.; Brunet, J. M.; Buschbeck, B.; Buschmann, P.; Calvi, M.; Camporesi, T.; Canale, V.; Carena, F.; Castro, N.; Cavallo, F.; Chapkin, M.; Charpentier, Ph.; Checchia, P.; Chierici, R.; Chliapnikov, P.; Chudoba, J.; Chung, S. U.; Cieslik, K.; Collins, P.; Contri, R.; Cosme, G.; Cossutti, F.; Costa, M. J.; Crennell, D.; Cuevas, J.; D'Hondt, J.; da Silva, T.; da Silva, W.; Della Ricca, G.; de Angelis, A.; de Boer, W.; de Clercq, C.; de Lotto, B.; de Maria, N.; de Min, A.; de Paula, L.; di Ciaccio, L.; di Simone, A.; Doroba, K.; Drees, J.; Eigen, G.; Ekelof, T.; Ellert, M.; Elsing, M.; Espirito Santo, M. C.; Fanourakis, G.; Fassouliotis, D.; Feindt, M.; Fernandez, J.; Ferrer, A.; Ferro, F.; Flagmeyer, U.; Foeth, H.; Fokitis, E.; Fulda-Quenzer, F.; Fuster, J.; Gandelman, M.; Garcia, C.; Gavillet, Ph.; Gazis, E.; Gokieli, R.; Golob, B.; Gomez-Ceballos, G.; Goncalves, P.; Graziani, E.; Grosdidier, G.; Grzelak, K.; Guy, J.; Haag, C.; Hallgren, A.; Hamacher, K.; Hamilton, K.; Haug, S.; Hauler, F.; Hedberg, V.; Hennecke, M.; Hoffman, J.; Holmgren, S.-O.; Holt, P. J.; Houlden, M. A.; Jackson, J. N.; Jarlskog, G.; Jarry, P.; Jeans, D.; Johansson, E. K.; Jonsson, P.; Joram, C.; Jungermann, L.; Kapusta, F.; Katsanevas, S.; Katsoufis, E.; Kernel, G.; Kersevan, B. P.; Kerzel, U.; King, B. T.; Kjaer, N. J.; Kluit, P.; Kokkinias, P.; Kourkoumelis, C.; Kouznetsov, O.; Krumstein, Z.; Kucharczyk, M.; Lamsa, J.; Leder, G.; Ledroit, F.; Leinonen, L.; Leitner, R.; Lemonne, J.; Lepeltier, V.; Lesiak, T.; Liebig, W.; Liko, D.; Lipniacka, A.; Lopes, J. H.; Lopez, J. M.; Loukas, D.; Lutz, P.; Lyons, L.; MacNaughton, J.; Malek, A.; Maltezos, S.; Mandl, F.; Marco, J.; Marco, R.; Marechal, B.; Margoni, M.; Marin, J.-C.; Mariotti, C.; Markou, A.; Martinez-Rivero, C.; Masik, J.; Mastroyiannopoulos, N.; Matorras, F.; Matteuzzi, C.; Mazzucato, F.; Mazzucato, M.; Mc Nulty, R.; Meroni, C.; Migliore, E.; Mitaroff, W.; Mjoernmark, U.; Moa, T.; Moch, M.; Moenig, K.; Monge, R.; Montenegro, J.; Moraes, D.; Moreno, S.; Morettini, P.; Mueller, U.; Muenich, K.; Mulders, M.; Mundim, L.; Murray, W.; Muryn, B.; Myatt, G.; Myklebust, T.; Nassiakou, M.; Navarria, F.; Nawrocki, K.; Nemecek, S.; Nicolaidou, R.; Nikolenko, M.; Oblakowska-Mucha, A.; Obraztsov, V.; Oliveira, O.; Olshevski, A.; Onofre, A.; Orava, R.; Osterberg, K.; Ouraou, A.; Oyanguren, A.; Paganoni, M.; Paiano, S.; Palacios, J. P.; Palka, H.; Papadopoulou, Th. D.; Pape, L.; Parkes, C.; Parodi, F.; Parzefall, U.; Passeri, A.; Passon, O.; Peralta, L.; Perepelitsa, V.; Perrotta, A.; Petrolini, A.; Piedra, J.; Pieri, L.; Pierre, F.; Pimenta, M.; Piotto, E.; Podobnik, T.; Poireau, V.; Pol, M. E.; Polok, G.; Pozdniakov, V.; Pukhaeva, N.; Pullia, A.; Radojicic, D.; Rebecchi, P.; Rehn, J.; Reid, D.; Reinhardt, R.; Renton, P.; Richard, F.; Ridky, J.; Rivero, M.; Rodriguez, D.; Romero, A.; Ronchese, P.; Roudeau, P.; Rovelli, T.; Ruhlmann-Kleider, V.; Ryabtchikov, D.; Sadovsky, A.; Salmi, L.; Salt, J.; Sander, C.; Savoy-Navarro, A.; Schwickerath, U.; Sekulin, R.; Siebel, M.; Sisakian, A.; Smadja, G.; Smirnova, O.; Sokolov, A.; Sopczak, A.; Sosnowski, R.; Spassov, T.; Stanitzki, M.; Stocchi, A.; Strauss, J.; Stugu, B.; Szczekowski, M.; Szeptycka, M.; Szumlak, T.; Tabarelli, T.; Tegenfeldt, F.; Timmermans, J.; Tkatchev, L.; Tobin, M.; Todorovova, S.; Tome, B.; Tonazzo, A.; Tortosa, P.; Travnicek, P.; Treille, D.; Tristram, G.; Trochimczuk, M.; Troncon, C.; Turluer, M.-L.; Tyapkin, I. A.; Tyapkin, P.; Tzamarias, S.; Uvarov, V.; Valenti, G.; van Dam, P.; van Eldik, J.; van Remortel, N.; van Vulpen, I.; Vegni, G.; Veloso, F.; Venus, W.; Verdier, P.; Verzi, V.; Vilanova, D.; Vitale, L.; Vrba, V.; Wahlen, H.; Washbrook, A. J.; Weiser, C.; Wicke, D.; Wickens, J.; Wilkinson, G.; Winter, M.; Witek, M.; Yushchenko, O.; Zalewska, A.; Zalewski, P.; Zavrtanik, D.; Zhuravlov, V.; Zimin, N. I.; Zintchenko, A.; Zupan, M.
2011-02-01
Single top quark production via four-fermion contact interactions associated to flavour-changing neutral currents was searched for in data taken by the DELPHI detector at LEP2. The data were accumulated at centre-of-mass energies ranging from 189 to 209 GeV, with an integrated luminosity of 598.1 pb-1. No evidence for a signal was found. Limits on the energy scale Λ, were set for scalar-, vector- and tensor-like coupling scenarios.
Pajevic, Sinisa; Aldroubi, Akram; Basser, Peter J
2002-01-01
The effective diffusion tensor of water, D, measured by diffusion tensor MRI (DT-MRI), is inherently a discrete, noisy, voxel-averaged sample of an underlying macroscopic effective diffusion tensor field, D(x). Within fibrous tissues this field is presumed to be continuous and smooth at a gross anatomical length scale. Here a new, general mathematical framework is proposed that uses measured DT-MRI data to produce a continuous approximation to D(x). One essential finding is that the continuous tensor field representation can be constructed by repeatedly performing one-dimensional B-spline transforms of the DT-MRI data. The fidelity and noise-immunity of this approximation are tested using a set of synthetically generated tensor fields to which background noise is added via Monte Carlo methods. Generally, these tensor field templates are reproduced faithfully except at boundaries where diffusion properties change discontinuously or where the tensor field is not microscopically homogeneous. Away from such regions, the tensor field approximation does not introduce bias in useful DT-MRI parameters, such as Trace(D(x)). It also facilitates the calculation of several new parameters, particularly differential quantities obtained from the tensor of spatial gradients of D(x). As an example, we show that they can identify tissue boundaries across which diffusion properties change rapidly using in vivo human brain data. One important application of this methodology is to improve the reliability and robustness of DT-MRI fiber tractography.
Referee Networks and Their Spectral Properties
NASA Astrophysics Data System (ADS)
Slanina, F.; Zhang, Y.-Ch.
2005-09-01
The bipartite graph connecting products and reviewers of that product is studied empirically in the case of amazon.com. We find that the network has power-law degree distribution on the side of reviewers, while on the side of products the distribution is better fitted by stretched exponential. The spectrum of normalised adjacency matrix shows power-law tail in the density of states. Establishing the community structures by finding localised eigenstates is not straightforward as the localised and delocalised states are mixed throughout the whole support of the spectrum.
Preserving Differential Privacy in Degree-Correlation based Graph Generation
Wang, Yue; Wu, Xintao
2014-01-01
Enabling accurate analysis of social network data while preserving differential privacy has been challenging since graph features such as cluster coefficient often have high sensitivity, which is different from traditional aggregate functions (e.g., count and sum) on tabular data. In this paper, we study the problem of enforcing edge differential privacy in graph generation. The idea is to enforce differential privacy on graph model parameters learned from the original network and then generate the graphs for releasing using the graph model with the private parameters. In particular, we develop a differential privacy preserving graph generator based on the dK-graph generation model. We first derive from the original graph various parameters (i.e., degree correlations) used in the dK-graph model, then enforce edge differential privacy on the learned parameters, and finally use the dK-graph model with the perturbed parameters to generate graphs. For the 2K-graph model, we enforce the edge differential privacy by calibrating noise based on the smooth sensitivity, rather than the global sensitivity. By doing this, we achieve the strict differential privacy guarantee with smaller magnitude noise. We conduct experiments on four real networks and compare the performance of our private dK-graph models with the stochastic Kronecker graph generation model in terms of utility and privacy tradeoff. Empirical evaluations show the developed private dK-graph generation models significantly outperform the approach based on the stochastic Kronecker generation model. PMID:24723987
Xiao, Min; Ge, Haitao; Khundrakpam, Budhachandra S.; Xu, Junhai; Bezgin, Gleb; Leng, Yuan; Zhao, Lu; Tang, Yuchun; Ge, Xinting; Jeon, Seun; Xu, Wenjian; Evans, Alan C.; Liu, Shuwei
2016-01-01
Functional neuroimaging studies have indicated the involvement of separate brain areas in three distinct attention systems: alerting, orienting, and executive control (EC). However, the structural correlates underlying attention remains unexplored. Here, we utilized graph theory to examine the neuroanatomical substrates of the three attention systems measured by attention network test (ANT) in 65 healthy subjects. White matter connectivity, assessed with diffusion tensor imaging deterministic tractography was modeled as a structural network comprising 90 nodes defined by the automated anatomical labeling (AAL) template. Linear regression analyses were conducted to explore the relationship between topological parameters and the three attentional effects. We found a significant positive correlation between EC function and global efficiency of the whole brain network. At the regional level, node-specific correlations were discovered between regional efficiency and all three ANT components, including dorsolateral superior frontal gyrus, thalamus and parahippocampal gyrus for EC, thalamus and inferior parietal gyrus for alerting, and paracentral lobule and inferior occipital gyrus for orienting. Our findings highlight the fundamental architecture of interregional structural connectivity involved in attention and could provide new insights into the anatomical basis underlying human behavior. PMID:27777556
Fine-Granularity Functional Interaction Signatures for Characterization of Brain Conditions
Hu, Xintao; Zhu, Dajiang; Lv, Peili; Li, Kaiming; Han, Junwei; Wang, Lihong; Shen, Dinggang; Guo, Lei; Liu, Tianming
2014-01-01
In the human brain, functional activity occurs at multiple spatial scales. Current studies on functional brain networks and their alterations in brain diseases via resting-state functional magnetic resonance imaging (rs-fMRI) are generally either at local scale (regionally confined analysis and inter-regional functional connectivity analysis) or at global scale (graph theoretic analysis). In contrast, inferring functional interaction at fine-granularity sub-network scale has not been adequately explored yet. Here our hypothesis is that functional interaction measured at fine-granularity subnetwork scale can provide new insight into the neural mechanisms of neurological and psychological conditions, thus offering complementary information for healthy and diseased population classification. In this paper, we derived fine-granularity functional interaction (FGFI) signatures in subjects with Mild Cognitive Impairment (MCI) and Schizophrenia by diffusion tensor imaging (DTI) and rsfMRI, and used patient-control classification experiments to evaluate the distinctiveness of the derived FGFI features. Our experimental results have shown that the FGFI features alone can achieve comparable classification performance compared with the commonly used inter-regional connectivity features. However, the classification performance can be substantially improved when FGFI features and inter-regional connectivity features are integrated, suggesting the complementary information achieved from the FGFI signatures. PMID:23319242
A general method for computing Tutte polynomials of self-similar graphs
NASA Astrophysics Data System (ADS)
Gong, Helin; Jin, Xian'an
2017-10-01
Self-similar graphs were widely studied in both combinatorics and statistical physics. Motivated by the construction of the well-known 3-dimensional Sierpiński gasket graphs, in this paper we introduce a family of recursively constructed self-similar graphs whose inner duals are of the self-similar property. By combining the dual property of the Tutte polynomial and the subgraph-decomposition trick, we show that the Tutte polynomial of this family of graphs can be computed in an iterative way and in particular the exact expression of the formula of the number of their spanning trees is derived. Furthermore, we show our method is a general one that is easily extended to compute Tutte polynomials for other families of self-similar graphs such as Farey graphs, 2-dimensional Sierpiński gasket graphs, Hanoi graphs, modified Koch graphs, Apollonian graphs, pseudofractal scale-free web, fractal scale-free network, etc.
Bipartite separability and nonlocal quantum operations on graphs
NASA Astrophysics Data System (ADS)
Dutta, Supriyo; Adhikari, Bibhas; Banerjee, Subhashish; Srikanth, R.
2016-07-01
In this paper we consider the separability problem for bipartite quantum states arising from graphs. Earlier it was proved that the degree criterion is the graph-theoretic counterpart of the familiar positive partial transpose criterion for separability, although there are entangled states with positive partial transpose for which the degree criterion fails. Here we introduce the concept of partially symmetric graphs and degree symmetric graphs by using the well-known concept of partial transposition of a graph and degree criteria, respectively. Thus, we provide classes of bipartite separable states of dimension m ×n arising from partially symmetric graphs. We identify partially asymmetric graphs that lack the property of partial symmetry. We develop a combinatorial procedure to create a partially asymmetric graph from a given partially symmetric graph. We show that this combinatorial operation can act as an entanglement generator for mixed states arising from partially symmetric graphs.
Graph-based Data Modeling and Analysis for Data Fusion in Remote Sensing
NASA Astrophysics Data System (ADS)
Fan, Lei
Hyperspectral imaging provides the capability of increased sensitivity and discrimination over traditional imaging methods by combining standard digital imaging with spectroscopic methods. For each individual pixel in a hyperspectral image (HSI), a continuous spectrum is sampled as the spectral reflectance/radiance signature to facilitate identification of ground cover and surface material. The abundant spectrum knowledge allows all available information from the data to be mined. The superior qualities within hyperspectral imaging allow wide applications such as mineral exploration, agriculture monitoring, and ecological surveillance, etc. The processing of massive high-dimensional HSI datasets is a challenge since many data processing techniques have a computational complexity that grows exponentially with the dimension. Besides, a HSI dataset may contain a limited number of degrees of freedom due to the high correlations between data points and among the spectra. On the other hand, merely taking advantage of the sampled spectrum of individual HSI data point may produce inaccurate results due to the mixed nature of raw HSI data, such as mixed pixels, optical interferences and etc. Fusion strategies are widely adopted in data processing to achieve better performance, especially in the field of classification and clustering. There are mainly three types of fusion strategies, namely low-level data fusion, intermediate-level feature fusion, and high-level decision fusion. Low-level data fusion combines multi-source data that is expected to be complementary or cooperative. Intermediate-level feature fusion aims at selection and combination of features to remove redundant information. Decision level fusion exploits a set of classifiers to provide more accurate results. The fusion strategies have wide applications including HSI data processing. With the fast development of multiple remote sensing modalities, e.g. Very High Resolution (VHR) optical sensors, LiDAR, etc., fusion of multi-source data can in principal produce more detailed information than each single source. On the other hand, besides the abundant spectral information contained in HSI data, features such as texture and shape may be employed to represent data points from a spatial perspective. Furthermore, feature fusion also includes the strategy of removing redundant and noisy features in the dataset. One of the major problems in machine learning and pattern recognition is to develop appropriate representations for complex nonlinear data. In HSI processing, a particular data point is usually described as a vector with coordinates corresponding to the intensities measured in the spectral bands. This vector representation permits the application of linear and nonlinear transformations with linear algebra to find an alternative representation of the data. More generally, HSI is multi-dimensional in nature and the vector representation may lose the contextual correlations. Tensor representation provides a more sophisticated modeling technique and a higher-order generalization to linear subspace analysis. In graph theory, data points can be generalized as nodes with connectivities measured from the proximity of a local neighborhood. The graph-based framework efficiently characterizes the relationships among the data and allows for convenient mathematical manipulation in many applications, such as data clustering, feature extraction, feature selection and data alignment. In this thesis, graph-based approaches applied in the field of multi-source feature and data fusion in remote sensing area are explored. We will mainly investigate the fusion of spatial, spectral and LiDAR information with linear and multilinear algebra under graph-based framework for data clustering and classification problems.
Law of large numbers for the SIR model with random vertex weights on Erdős-Rényi graph
NASA Astrophysics Data System (ADS)
Xue, Xiaofeng
2017-11-01
In this paper we are concerned with the SIR model with random vertex weights on Erdős-Rényi graph G(n , p) . The Erdős-Rényi graph G(n , p) is generated from the complete graph Cn with n vertices through independently deleting each edge with probability (1 - p) . We assign i. i. d. copies of a positive r. v. ρ on each vertex as the vertex weights. For the SIR model, each vertex is in one of the three states 'susceptible', 'infective' and 'removed'. An infective vertex infects a given susceptible neighbor at rate proportional to the production of the weights of these two vertices. An infective vertex becomes removed at a constant rate. A removed vertex will never be infected again. We assume that at t = 0 there is no removed vertex and the number of infective vertices follows a Bernoulli distribution B(n , θ) . Our main result is a law of large numbers of the model. We give two deterministic functions HS(ψt) ,HV(ψt) for t ≥ 0 and show that for any t ≥ 0, HS(ψt) is the limit proportion of susceptible vertices and HV(ψt) is the limit of the mean capability of an infective vertex to infect a given susceptible neighbor at moment t as n grows to infinity.
A Statistical Analysis of IrisCode and Its Security Implications.
Kong, Adams Wai-Kin
2015-03-01
IrisCode has been used to gather iris data for 430 million people. Because of the huge impact of IrisCode, it is vital that it is completely understood. This paper first studies the relationship between bit probabilities and a mean of iris images (The mean of iris images is defined as the average of independent iris images.) and then uses the Chi-square statistic, the correlation coefficient and a resampling algorithm to detect statistical dependence between bits. The results show that the statistical dependence forms a graph with a sparse and structural adjacency matrix. A comparison of this graph with a graph whose edges are defined by the inner product of the Gabor filters that produce IrisCodes shows that partial statistical dependence is induced by the filters and propagates through the graph. Using this statistical information, the security risk associated with two patented template protection schemes that have been deployed in commercial systems for producing application-specific IrisCodes is analyzed. To retain high identification speed, they use the same key to lock all IrisCodes in a database. The belief has been that if the key is not compromised, the IrisCodes are secure. This study shows that even without the key, application-specific IrisCodes can be unlocked and that the key can be obtained through the statistical dependence detected.
Integrated developmental model of life-support capabilities in wheat
NASA Technical Reports Server (NTRS)
Darnell, R. L.; Obrien, C. O.
1994-01-01
The objective of this project was to develop a model for CO2, O2, H2O, and nitrogen use during the life cycle of wheat. Spreadsheets and accompanying graphs were developed to illustrate plant population reactions to environmental parameters established in the Controlled Ecological Life Support System (CELSS) program at Kennedy Space Center, Fl. The spreadsheets and graphs were produced using validated biomass production chamber (BPC) data from BWT931. Conditions of the BPC during the 83 day plant growth period were as follows: The BPC area is 27.8 m(exp 2), volume is 113 m(exp 3). Temperatures during the 83 day plant growth period ranged from 16.3 to 24.8 C during the light cycle (except for day 69, when the minimum and maximum temperatures were 7.7 C and 7.9 C, respectively) and 14.5 C and 23.6 C during the dark cycle (except for day 49, when the minimum and maximum temperatures were 11.1 C and 11.3 C, respectively). Relative humidity was 85 percent for the first seven days of plant growth, and 70 percent thereafter. The plant leaf canopy area was 10 m(exp 2). Presented is a list and explanation of each spreadsheet and accompanying graph(s), conditions under which the data were collected, and formulas used to obtain each result.
Bioenergy | National Agricultural Library
Skip to main content Home National Agricultural Library United States Department of Agriculture Ag , graphs), Agricultural Products html Data from: Comparative farm-gate life cycle assessment of oilseed registered trademark of Dries Buytaert. NAL Home | USDA.gov | Agricultural Research Service | Plain Language
On the local edge antimagicness of m-splitting graphs
NASA Astrophysics Data System (ADS)
Albirri, E. R.; Dafik; Slamin; Agustin, I. H.; Alfarisi, R.
2018-04-01
Let G be a connected and simple graph. A split graph is a graph derived by adding new vertex v‧ in every vertex v‧ such that v‧ adjacent to v in graph G. An m-splitting graph is a graph which has m v‧-vertices, denoted by mSpl(G). A local edge antimagic coloring in G = (V, E) graph is a bijection f:V (G)\\to \\{1,2,3,\\ldots,|V(G)|\\} in which for any two adjacent edges e 1 and e 2 satisfies w({e}1)\
Survey of Approaches to Generate Realistic Synthetic Graphs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lim, Seung-Hwan; Lee, Sangkeun; Powers, Sarah S
A graph is a flexible data structure that can represent relationships between entities. As with other data analysis tasks, the use of realistic graphs is critical to obtaining valid research results. Unfortunately, using the actual ("real-world") graphs for research and new algorithm development is difficult due to the presence of sensitive information in the data or due to the scale of data. This results in practitioners developing algorithms and systems that employ synthetic graphs instead of real-world graphs. Generating realistic synthetic graphs that provide reliable statistical confidence to algorithmic analysis and system evaluation involves addressing technical hurdles in a broadmore » set of areas. This report surveys the state of the art in approaches to generate realistic graphs that are derived from fitted graph models on real-world graphs.« less
Self-organizing maps for learning the edit costs in graph matching.
Neuhaus, Michel; Bunke, Horst
2005-06-01
Although graph matching and graph edit distance computation have become areas of intensive research recently, the automatic inference of the cost of edit operations has remained an open problem. In the present paper, we address the issue of learning graph edit distance cost functions for numerically labeled graphs from a corpus of sample graphs. We propose a system of self-organizing maps (SOMs) that represent the distance measuring spaces of node and edge labels. Our learning process is based on the concept of self-organization. It adapts the edit costs in such a way that the similarity of graphs from the same class is increased, whereas the similarity of graphs from different classes decreases. The learning procedure is demonstrated on two different applications involving line drawing graphs and graphs representing diatoms, respectively.
Apparatuses and Methods for Producing Runtime Architectures of Computer Program Modules
NASA Technical Reports Server (NTRS)
Abi-Antoun, Marwan Elia (Inventor); Aldrich, Jonathan Erik (Inventor)
2013-01-01
Apparatuses and methods for producing run-time architectures of computer program modules. One embodiment includes creating an abstract graph from the computer program module and from containment information corresponding to the computer program module, wherein the abstract graph has nodes including types and objects, and wherein the abstract graph relates an object to a type, and wherein for a specific object the abstract graph relates the specific object to a type containing the specific object; and creating a runtime graph from the abstract graph, wherein the runtime graph is a representation of the true runtime object graph, wherein the runtime graph represents containment information such that, for a specific object, the runtime graph relates the specific object to another object that contains the specific object.
2011-01-01
present performance statistics to explain the scalability behavior. Keywords-atmospheric models, time intergrators , MPI, scal- ability, performance; I...across inter-element bound- aries. Basis functions are constructed as tensor products of Lagrange polynomials ψi (x) = hα(ξ) ⊗ hβ(η) ⊗ hγ(ζ)., where hα
Entanglement classes of symmetric Werner states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyons, David W.; Walck, Scott N.
2011-10-15
The symmetric Werner states for n qubits, important in the study of quantum nonlocality and useful for applications in quantum information, have a surprisingly simple and elegant structure in terms of tensor products of Pauli matrices. Further, each of these states forms a unique local unitary equivalence class, that is, no two of these states are interconvertible by local unitary operations.
A Real-Time Convolution Algorithm and Architecture with Applications in SAR Processing
1993-10-01
multidimensional lOnnulation of the DFT and convolution. IEEE-ASSP, ASSP-25(3):239-242, June 1977. [6] P. Hoogenboom et al. Definition study PHARUS: final...algorithms and Ihe role of lhe tensor product. IEEE-ASSP, ASSP-40( 1 2):292 J-2930, December 1992. 181 P. Hoogenboom , P. Snoeij. P.J. Koomen. and H
Zanardi, P
2001-08-13
The physical resources available to access and manipulate the degrees of freedom of a quantum system define the set A of operationally relevant observables. The algebraic structure of A selects a preferred tensor product structure, i.e., a partition into subsystems. The notion of compoundness for quantum systems is accordingly relativized. Universal control over virtual subsystems can be achieved by using quantum noncommutative holonomies
Tensor Calculus: Unlearning Vector Calculus
ERIC Educational Resources Information Center
Lee, Wha-Suck; Engelbrecht, Johann; Moller, Rita
2018-01-01
Tensor calculus is critical in the study of the vector calculus of the surface of a body. Indeed, tensor calculus is a natural step-up for vector calculus. This paper presents some pitfalls of a traditional course in vector calculus in transitioning to tensor calculus. We show how a deeper emphasis on traditional topics such as the Jacobian can…
Killing-Yano tensors in spaces admitting a hypersurface orthogonal Killing vector
NASA Astrophysics Data System (ADS)
Garfinkle, David; Glass, E. N.
2013-03-01
Methods are presented for finding Killing-Yano tensors, conformal Killing-Yano tensors, and conformal Killing vectors in spacetimes with a hypersurface orthogonal Killing vector. These methods are similar to a method developed by the authors for finding Killing tensors. In all cases one decomposes both the tensor and the equation it satisfies into pieces along the Killing vector and pieces orthogonal to the Killing vector. Solving the separate equations that result from this decomposition requires less computing than integrating the original equation. In each case, examples are given to illustrate the method.
Killing-Yano tensors of order n - 1
NASA Astrophysics Data System (ADS)
Batista, Carlos
2014-08-01
The properties of a Killing-Yano tensor of order n-1 in an n-dimensional manifold are investigated. The integrability conditions are worked out and all metrics admitting a Killing-Yano tensor of order n-1 are found. A connection between such tensors and a generalization of the concept of angular momentum is pointed out. A theorem on how to generate closed conformal Killing vectors using the symmetries of a manifold is proved and used to find all Killing-Yano tensors of order n-1 of a maximally symmetric space.
Dictionary-Based Tensor Canonical Polyadic Decomposition
NASA Astrophysics Data System (ADS)
Cohen, Jeremy Emile; Gillis, Nicolas
2018-04-01
To ensure interpretability of extracted sources in tensor decomposition, we introduce in this paper a dictionary-based tensor canonical polyadic decomposition which enforces one factor to belong exactly to a known dictionary. A new formulation of sparse coding is proposed which enables high dimensional tensors dictionary-based canonical polyadic decomposition. The benefits of using a dictionary in tensor decomposition models are explored both in terms of parameter identifiability and estimation accuracy. Performances of the proposed algorithms are evaluated on the decomposition of simulated data and the unmixing of hyperspectral images.
On physical property tensors invariant under line groups.
Litvin, Daniel B
2014-03-01
The form of physical property tensors of a quasi-one-dimensional material such as a nanotube or a polymer can be determined from the point group of its symmetry group, one of an infinite number of line groups. Such forms are calculated using a method based on the use of trigonometric summations. With this method, it is shown that materials invariant under infinite subsets of line groups have physical property tensors of the same form. For line group types of a family of line groups characterized by an index n and a physical property tensor of rank m, the form of the tensor for all line group types indexed with n > m is the same, leaving only a finite number of tensor forms to be determined.
Local White Matter Geometry from Diffusion Tensor Gradients
Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik
2009-01-01
We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:19896542
Local White Matter Geometry from Diffusion Tensor Gradients
Savadjiev, Peter; Kindlmann, Gordon L.; Bouix, Sylvain; Shenton, Martha E.; Westin, Carl-Fredrik
2010-01-01
We introduce a mathematical framework for computing geometrical properties of white matter fibres directly from diffusion tensor fields. The key idea is to isolate the portion of the gradient of the tensor field corresponding to local variation in tensor orientation, and to project it onto a coordinate frame of tensor eigenvectors. The resulting eigenframe-centered representation then makes it possible to define scalar indices (or measures) that describe the local white matter geometry directly from the diffusion tensor field and its gradient, without requiring prior tractography. We derive new scalar indices of (1) fibre dispersion and (2) fibre curving, and we demonstrate them on synthetic and in vivo data. Finally, we illustrate their applicability to a group study on schizophrenia. PMID:20426006
NASA Astrophysics Data System (ADS)
von Larcher, Thomas; Blome, Therese; Klein, Rupert; Schneider, Reinhold; Wolf, Sebastian; Huber, Benjamin
2016-04-01
Handling high-dimensional data sets like they occur e.g. in turbulent flows or in multiscale behaviour of certain types in Geosciences are one of the big challenges in numerical analysis and scientific computing. A suitable solution is to represent those large data sets in an appropriate compact form. In this context, tensor product decomposition methods currently emerge as an important tool. One reason is that these methods often enable one to attack high-dimensional problems successfully, another that they allow for very compact representations of large data sets. We follow the novel Tensor-Train (TT) decomposition method to support the development of improved understanding of the multiscale behavior and the development of compact storage schemes for solutions of such problems. One long-term goal of the project is the construction of a self-consistent closure for Large Eddy Simulations (LES) of turbulent flows that explicitly exploits the tensor product approach's capability of capturing self-similar structures. Secondly, we focus on a mixed deterministic-stochastic subgrid scale modelling strategy currently under development for application in Finite Volume Large Eddy Simulation (LES) codes. Advanced methods of time series analysis for the databased construction of stochastic models with inherently non-stationary statistical properties and concepts of information theory based on a modified Akaike information criterion and on the Bayesian information criterion for the model discrimination are used to construct surrogate models for the non-resolved flux fluctuations. Vector-valued auto-regressive models with external influences form the basis for the modelling approach [1], [2], [4]. Here, we present the reconstruction capabilities of the two modeling approaches tested against 3D turbulent channel flow data computed by direct numerical simulation (DNS) for an incompressible, isothermal fluid at Reynolds number Reτ = 590 (computed by [3]). References [1] I. Horenko. On identification of nonstationary factor models and its application to atmospherical data analysis. J. Atm. Sci., 67:1559-1574, 2010. [2] P. Metzner, L. Putzig and I. Horenko. Analysis of persistent non-stationary time series and applications. CAMCoS, 7:175-229, 2012. [3] M. Uhlmann. Generation of a temporally well-resolved sequence of snapshots of the flow-field in turbulent plane channel flow. URL: http://www-turbul.ifh.unikarlsruhe.de/uhlmann/reports/produce.pdf, 2000. [4] Th. von Larcher, A. Beck, R. Klein, I. Horenko, P. Metzner, M. Waidmann, D. Igdalov, G. Gassner and C.-D. Munz. Towards a Framework for the Stochastic Modelling of Subgrid Scale Fluxes for Large Eddy Simulation. Meteorol. Z., 24:313-342, 2015.
G-Hash: Towards Fast Kernel-based Similarity Search in Large Graph Databases.
Wang, Xiaohong; Smalter, Aaron; Huan, Jun; Lushington, Gerald H
2009-01-01
Structured data including sets, sequences, trees and graphs, pose significant challenges to fundamental aspects of data management such as efficient storage, indexing, and similarity search. With the fast accumulation of graph databases, similarity search in graph databases has emerged as an important research topic. Graph similarity search has applications in a wide range of domains including cheminformatics, bioinformatics, sensor network management, social network management, and XML documents, among others.Most of the current graph indexing methods focus on subgraph query processing, i.e. determining the set of database graphs that contains the query graph and hence do not directly support similarity search. In data mining and machine learning, various graph kernel functions have been designed to capture the intrinsic similarity of graphs. Though successful in constructing accurate predictive and classification models for supervised learning, graph kernel functions have (i) high computational complexity and (ii) non-trivial difficulty to be indexed in a graph database.Our objective is to bridge graph kernel function and similarity search in graph databases by proposing (i) a novel kernel-based similarity measurement and (ii) an efficient indexing structure for graph data management. Our method of similarity measurement builds upon local features extracted from each node and their neighboring nodes in graphs. A hash table is utilized to support efficient storage and fast search of the extracted local features. Using the hash table, a graph kernel function is defined to capture the intrinsic similarity of graphs and for fast similarity query processing. We have implemented our method, which we have named G-hash, and have demonstrated its utility on large chemical graph databases. Our results show that the G-hash method achieves state-of-the-art performance for k-nearest neighbor (k-NN) classification. Most importantly, the new similarity measurement and the index structure is scalable to large database with smaller indexing size, faster indexing construction time, and faster query processing time as compared to state-of-the-art indexing methods such as C-tree, gIndex, and GraphGrep.
GraphReduce: Processing Large-Scale Graphs on Accelerator-Based Systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, Dipanjan; Song, Shuaiwen; Agarwal, Kapil
2015-11-15
Recent work on real-world graph analytics has sought to leverage the massive amount of parallelism offered by GPU devices, but challenges remain due to the inherent irregularity of graph algorithms and limitations in GPU-resident memory for storing large graphs. We present GraphReduce, a highly efficient and scalable GPU-based framework that operates on graphs that exceed the device’s internal memory capacity. GraphReduce adopts a combination of edge- and vertex-centric implementations of the Gather-Apply-Scatter programming model and operates on multiple asynchronous GPU streams to fully exploit the high degrees of parallelism in GPUs with efficient graph data movement between the host andmore » device.« less
Comparing Internet Probing Methodologies Through an Analysis of Large Dynamic Graphs
2014-06-01
comparable Internet topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical...topologies in less time. We compare these by modeling union of traceroute outputs as graphs, and using standard graph theoretical measurements as well...We compare these by modeling union of traceroute outputs as graphs, and study the graphs by using vertex and edge count, average vertex degree
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sukumar, Sreenivas R.; Hong, Seokyong; Lee, Sangkeun
2016-06-01
GraphBench is a benchmark suite for graph pattern mining and graph analysis systems. The benchmark suite is a significant addition to conducting apples-apples comparison of graph analysis software (databases, in-memory tools, triple stores, etc.)
Asymptote Misconception on Graphing Functions: Does Graphing Software Resolve It?
ERIC Educational Resources Information Center
Öçal, Mehmet Fatih
2017-01-01
Graphing function is an important issue in mathematics education due to its use in various areas of mathematics and its potential roles for students to enhance learning mathematics. The use of some graphing software assists students' learning during graphing functions. However, the display of graphs of functions that students sketched by hand may…