Sample records for tera-node network technology

  1. Tera-node Network Technology (Task 3) Scalable Personal Telecommunications

    DTIC Science & Technology

    2000-03-14

    Simulation results of this work may be found in http://north.east.isi.edu/spt/ audio.html. 6. Internet Research Task Force Reliable Multicast...Adaptation, 4. Multimedia Proxy Caching, 5. Experiments with the Rate Adaptation Protocol (RAP) 6. Providing leadership and innovation to the Internet ... Research Task Force (IRTF) Reliable Multicast Research Group (RMRG) 1. End-to-end Architecture for Quality-adaptive Streaming Applications over the

  2. The Portals 4.0 network programming interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin

    2012-11-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities.« less

  3. The portals 4.0.1 network programming interface.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian W.; Brightwell, Ronald Brian; Pedretti, Kevin

    2013-04-01

    This report presents a specification for the Portals 4.0 network programming interface. Portals 4.0 is intended to allow scalable, high-performance network communication between nodes of a parallel computing system. Portals 4.0 is well suited to massively parallel processing and embedded systems. Portals 4.0 represents an adaption of the data movement layer developed for massively parallel processing platforms, such as the 4500-node Intel TeraFLOPS machine. Sandias Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4.0 is targeted to the next generationmore » of machines employing advanced network interface architectures that support enhanced offload capabilities. 3« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrett, Brian; Brightwell, Ronald B.; Grant, Ryan

    This report presents a specification for the Portals 4 networ k programming interface. Portals 4 is intended to allow scalable, high-performance network communication betwee n nodes of a parallel computing system. Portals 4 is well suited to massively parallel processing and embedded syste ms. Portals 4 represents an adaption of the data movement layer developed for massively parallel processing platfor ms, such as the 4500-node Intel TeraFLOPS machine. Sandia's Cplant cluster project motivated the development of Version 3.0, which was later extended to Version 3.3 as part of the Cray Red Storm machine and XT line. Version 4 is tarmore » geted to the next generation of machines employing advanced network interface architectures that support enh anced offload capabilities.« less

  5. The BlueGene/L supercomputer

    NASA Astrophysics Data System (ADS)

    Bhanota, Gyan; Chen, Dong; Gara, Alan; Vranas, Pavlos

    2003-05-01

    The architecture of the BlueGene/L massively parallel supercomputer is described. Each computing node consists of a single compute ASIC plus 256 MB of external memory. The compute ASIC integrates two 700 MHz PowerPC 440 integer CPU cores, two 2.8 Gflops floating point units, 4 MB of embedded DRAM as cache, a memory controller for external memory, six 1.4 Gbit/s bi-directional ports for a 3-dimensional torus network connection, three 2.8 Gbit/s bi-directional ports for connecting to a global tree network and a Gigabit Ethernet for I/O. 65,536 of such nodes are connected into a 3-d torus with a geometry of 32×32×64. The total peak performance of the system is 360 Teraflops and the total amount of memory is 16 TeraBytes.

  6. Field results from a new die-to-database reticle inspection platform

    NASA Astrophysics Data System (ADS)

    Broadbent, William; Yokoyama, Ichiro; Yu, Paul; Seki, Kazunori; Nomura, Ryohei; Schmalfuss, Heiko; Heumann, Jan; Sier, Jean-Paul

    2007-05-01

    A new die-to-database high-resolution reticle defect inspection platform, TeraScanHR, has been developed for advanced production use with the 45nm logic node, and extendable for development use with the 32nm node (also the comparable memory nodes). These nodes will use predominantly ArF immersion lithography although EUV may also be used. According to recent surveys, the predominant reticle types for the 45nm node are 6% simple tri-tone and COG. Other advanced reticle types may also be used for these nodes including: dark field alternating, Mask Enhancer, complex tri-tone, high transmission, CPL, etc. Finally, aggressive model based OPC will typically be used which will include many small structures such as jogs, serifs, and SRAF (sub-resolution assist features) with accompanying very small gaps between adjacent structures. The current generation of inspection systems is inadequate to meet these requirements. The architecture and performance of the new TeraScanHR reticle inspection platform is described. This new platform is designed to inspect the aforementioned reticle types in die-to-database and die-to-die modes using both transmitted and reflected illumination. Recent results from field testing at two of the three beta sites are shown (Toppan Printing in Japan and the Advanced Mask Technology Center in Germany). The results include applicable programmed defect test reticles and advanced 45nm product reticles (also comparable memory reticles). The results show high sensitivity and low false detections being achieved. The platform can also be configured for the current 65nm, 90nm, and 130nm nodes.

  7. Designing an IMAC system using TeraNet

    NASA Astrophysics Data System (ADS)

    Mun, In K.; Hilal, S. K.; Andrews, M. C.; Gidron, Rafael

    1992-07-01

    Even though considerable progresses have been made with communication technology, one of the more difficult problems facing in installing a comprehensive clinically effective Image Management and Communication (IMAC) system for a hospital is the communication problem. Most existing systems are based on Ethernet or Token-ring net. Some of the newer systems are being installed using FDDL. All these systems have inherent problems like communication speed, control of bandwidth usage, or/and poor performance under heavy traffic. In order to overcome these difficulties, we are designing a complete IMAC system based on a novel network known as TeraNet, being developed at Center for Telecommunication Research, Columbia University.

  8. Design of nodes for embedded and ultra low-power wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Xu, Jun; You, Bo; Cui, Juan; Ma, Jing; Li, Xin

    2008-10-01

    Sensor network integrates sensor technology, MEMS (Micro-Electro-Mechanical system) technology, embedded computing, wireless communication technology and distributed information management technology. It is of great value to use it where human is quite difficult to reach. Power consumption and size are the most important consideration when nodes are designed for distributed WSN (wireless sensor networks). Consequently, it is of great importance to decrease the size of a node, reduce its power consumption and extend its life in network. WSN nodes have been designed using JN5121-Z01-M01 module produced by jennic company and IEEE 802.15.4/ZigBee technology. Its new features include support for CPU sleep modes and a long-term ultra low power sleep mode for the entire node. In low power configuration the node resembles existing small low power nodes. An embedded temperature sensor node has been developed to verify and explore our architecture. The experiment results indicate that the WSN has the characteristic of high reliability, good stability and ultra low power consumption.

  9. Routing and wavelength assignment based on normalized resource and constraints for all-optical network

    NASA Astrophysics Data System (ADS)

    Joo, Seong-Soon; Nam, Hyun-Soon; Lim, Chang-Kyu

    2003-08-01

    With the rapid growth of the Optical Internet, high capacity pipes is finally destined to support end-to-end IP on the WDM optical network. Newly launched 2D MEMS optical switching module in the market supports that expectations of upcoming a transparent optical cross-connect in the network have encouraged the field applicable research on establishing real all-optical transparent network. To open up a customer-driven bandwidth services, design of the optical transport network becomes more challenging task in terms of optimal network resource usage. This paper presents a practical approach to finding a route and wavelength assignment for wavelength routed all-optical network, which has λ-plane OXC switches and wavelength converters, and supports that optical paths are randomly set up and released by dynamic wavelength provisioning to create bandwidth between end users with timescales on the order of seconds or milliseconds. We suggest three constraints to make the RWA problem become more practical one on deployment for wavelength routed all-optical network in network view: limitation on maximum hop of a route within bearable optical network impairments, limitation on minimum hops to travel before converting a wavelength, and limitation on calculation time to find all routes for connections requested at once. We design the NRCD (Normalized Resource and Constraints for All-Optical Network RWA Design) algorithm for the Tera OXC: network resource for a route is calculated by the number of internal switching paths established in each OXC nodes on the route, and is normalized by ratio of number of paths established and number of paths equipped in a node. We show that it fits for the RWA algorithm of the wavelength routed all-optical network through real experiments on the distributed objects platform.

  10. PREFACE: 2nd Russia-Japan-USA Symposium on the Fundamental and Applied Problems of Terahertz Devices and Technologies (RJUS TeraTech - 2013)

    NASA Astrophysics Data System (ADS)

    Karasik, Valeriy; Ryzhii, Viktor; Yurchenko, Stanislav

    2014-03-01

    The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) Bauman Moscow State Technical University Moscow, Russia, 3-6 June, 2013 The 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies' (RJUS TeraTech - 2013) was held in Bauman Moscow State Technical University on 3-6 June 2013 and was devoted to modern problems of terahertz optical technologies. RJUS TeraTech 2013 was organized by Bauman Moscow State Technical University in cooperation with Tohoku University (Sendai, Japan) and University of Buffalo (The State University of New York, USA). The Symposium was supported by Bauman Moscow State Technical University (Moscow, Russia) and Russian Foundation for Basic Research (grant number 13-08-06100-g). RJUS TeraTech - 2013 became a foundation for sharing and discussing modern and promising achievements in fundamental and applied problems of terahertz optical technologies, devices based on grapheme and grapheme strictures, condensed matter of different nature. Among participants of RJUS TeraTech - 2013, there were more than 100 researchers and students from different countries. This volume contains proceedings of the 2nd Russia-Japan-USA Symposium 'The Fundamental & Applied Problems of Terahertz Devices & Technologies'. Valeriy Karasik, Viktor Ryzhii and Stanislav Yurchenko Bauman Moscow State Technical University Symposium chair Anatoliy A Aleksandrov, Rector of BMSTU Symposium co-chair Valeriy E Karasik, Head of the Research and Educational Center 'PHOTONICS AND INFRARED TECHNOLOGY' (Russia) Invited Speakers Taiichi Otsuji, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Akira Satou, Research Institute of Electrical Communication, Tohoku University, Sendai, Japan Michael Shur, Electrical, Computer and System Engineering and Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, NY, USA Natasha Kirova, University Paris-Sud, France Andrei Sergeev, Department of Electrical Engineering, The University of Buffalo, The State University of New Your, Buffalo, NY, USA Magnus Willander, Linkoping University (LIU), Department of Science and Technology, Linkopings, Sweden Dmitry R Khohlov, Physical Faculty, Lomonosov Moscow State University, Russia Vladimir L Vaks, Institute for Physics of Microstructures of Russian Academy of Sciences, Russia

  11. Distributed intelligent control and status networking

    NASA Technical Reports Server (NTRS)

    Fortin, Andre; Patel, Manoj

    1993-01-01

    Over the past two years, the Network Control Systems Branch (Code 532) has been investigating control and status networking technologies. These emerging technologies use distributed processing over a network to accomplish a particular custom task. These networks consist of small intelligent 'nodes' that perform simple tasks. Containing simple, inexpensive hardware and software, these nodes can be easily developed and maintained. Once networked, the nodes can perform a complex operation without a central host. This type of system provides an alternative to more complex control and status systems which require a central computer. This paper will provide some background and discuss some applications of this technology. It will also demonstrate the suitability of one particular technology for the Space Network (SN) and discuss the prototyping activities of Code 532 utilizing this technology.

  12. TSCA Environmental Release Application (TERA) for Modified Pseudomonas Fluorescens

    EPA Pesticide Factsheets

    TERA submitted by Micro Systems Technologies, LLC and given the tracking designations of R-02-0001. The microorganism has been genetically modified to contain a bioluminescent gene that is activated upon metabolism of naphthalene and/or methyl salicylate.

  13. Lightning Initiation and Propagation

    DTIC Science & Technology

    2009-08-22

    ray (gamma ray ) and multiple-station (>24) cosmic - ray - muon detection network (TERA) pl:esently in place. Upgrade TERA with LaBr3 detectors to...DATES COVERED 4. TITLE AND SUBTITLE Lightning Initistion and Propagation Including the Role of X- Rays , Gamma Rays , and Cosmic Rays 5a... rays , gamma rays , and cosmic rays in the initiation and propagation of lightning and in the phenomenology of thunderclouds. The experimental

  14. Final report for the Tera Computer TTI CRADA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davidson, G.S.; Pavlakos, C.; Silva, C.

    1997-01-01

    Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTAmore » parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.« less

  15. TSCA Environmental Release Application (TERA) for Pseudomonas fluorescens strains HK44 and 5RL

    EPA Pesticide Factsheets

    TERAs submitted by the University of Tennessee and Micro Systems Technologies, LLC and given the tracking designation of R-04-01 and R-04-02. The strain will be tested to examine its ability to detect and monitor naphthalene and methyl salicylate.

  16. TERA-MIR radiation: materials, generation, detection and applications III (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Pereira, Mauro F.

    2016-10-01

    This talk summarizes the achievements of COST ACTION MP1204 during the last four years. [M.F. Pereira, Opt Quant Electron 47, 815-820 (2015).]. TERA-MIR main objectives are to advance novel materials, concepts and device designs for generating and detecting THz and Mid Infrared radiation using semiconductor, superconductor, metamaterials and lasers and to beneficially exploit their common aspects within a synergetic approach. We used the unique networking and capacity-building capabilities provided by the COST framework to unify these two spectral domains from their common aspects of sources, detectors, materials and applications. We created a platform to investigate interdisciplinary topics in Physics, Electrical Engineering and Technology, Applied Chemistry, Materials Sciences and Biology and Radio Astronomy. The main emphasis has been on new fundamental material properties, concepts and device designs that are likely to open the way to new products or to the exploitation of new technologies in the fields of sensing, healthcare, biology, and industrial applications. End users are: research centres, academic, well-established and start-up Companies and hospitals. Results are presented along our main lines of research: Intersubband materials and devices with applications to fingerprint spectroscopy; Metamaterials, photonic crystals and new functionalities; Nonlinearities and interaction of radiation with matter including biomaterials; Generation and Detection based on Nitrides and Bismides. The talk is closed by indicating the future direction of the network that will remain active beyond the funding period and our expectations for future joint research.

  17. [Advances in sensor node and wireless communication technology of body sensor network].

    PubMed

    Lin, Weibing; Lei, Sheng; Wei, Caihong; Li, Chunxiang; Wang, Cang

    2012-06-01

    With the development of the wireless communication technology, implantable biosensor technology, and embedded system technology, Body Sensor Network (BSN) as one branch of wireless sensor networks and important part of the Internet of things has caught more attention of researchers and enterprises. This paper offers the basic concept of the BSN and analyses the related research. We focus on sensor node and wireless communication technology from perspectives of technology challenges, research advance and development trend in the paper. Besides, we also present a relative overview of domestic and overseas projects for the BSN.

  18. Effects of network node consolidation in optical access and aggregation networks on costs and power consumption

    NASA Astrophysics Data System (ADS)

    Lange, Christoph; Hülsermann, Ralf; Kosiankowski, Dirk; Geilhardt, Frank; Gladisch, Andreas

    2010-01-01

    The increasing demand for higher bit rates in access networks requires fiber deployment closer to the subscriber resulting in fiber-to-the-home (FTTH) access networks. Besides higher access bit rates optical access network infrastructure and related technologies enable the network operator to establish larger service areas resulting in a simplified network structure with a lower number of network nodes. By changing the network structure network operators want to benefit from a changed network cost structure by decreasing in short and mid term the upfront investments for network equipment due to concentration effects as well as by reducing the energy costs due to a higher energy efficiency of large network sites housing a high amount of network equipment. In long term also savings in operational expenditures (OpEx) due to the closing of central office (CO) sites are expected. In this paper different architectures for optical access networks basing on state-of-the-art technology are analyzed with respect to network installation costs and power consumption in the context of access node consolidation. Network planning and dimensioning results are calculated for a realistic network scenario of Germany. All node consolidation scenarios are compared against a gigabit capable passive optical network (GPON) based FTTH access network operated from the conventional CO sites. The results show that a moderate reduction of the number of access nodes may be beneficial since in that case the capital expenditures (CapEx) do not rise extraordinarily and savings in OpEx related to the access nodes are expected. The total power consumption does not change significantly with decreasing number of access nodes but clustering effects enable a more energyefficient network operation and optimized power purchase order quantities leading to benefits in energy costs.

  19. Ultrascalable petaflop parallel supercomputer

    DOEpatents

    Blumrich, Matthias A [Ridgefield, CT; Chen, Dong [Croton On Hudson, NY; Chiu, George [Cross River, NY; Cipolla, Thomas M [Katonah, NY; Coteus, Paul W [Yorktown Heights, NY; Gara, Alan G [Mount Kisco, NY; Giampapa, Mark E [Irvington, NY; Hall, Shawn [Pleasantville, NY; Haring, Rudolf A [Cortlandt Manor, NY; Heidelberger, Philip [Cortlandt Manor, NY; Kopcsay, Gerard V [Yorktown Heights, NY; Ohmacht, Martin [Yorktown Heights, NY; Salapura, Valentina [Chappaqua, NY; Sugavanam, Krishnan [Mahopac, NY; Takken, Todd [Brewster, NY

    2010-07-20

    A massively parallel supercomputer of petaOPS-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC) having up to four processing elements. The ASIC nodes are interconnected by multiple independent networks that optimally maximize the throughput of packet communications between nodes with minimal latency. The multiple networks may include three high-speed networks for parallel algorithm message passing including a Torus, collective network, and a Global Asynchronous network that provides global barrier and notification functions. These multiple independent networks may be collaboratively or independently utilized according to the needs or phases of an algorithm for optimizing algorithm processing performance. The use of a DMA engine is provided to facilitate message passing among the nodes without the expenditure of processing resources at the node.

  20. Underwater Threat Source Localization: Processing Sensor Network TDOAs with a Terascale Optical Core Device

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barhen, Jacob; Imam, Neena

    2007-01-01

    Revolutionary computing technologies are defined in terms of technological breakthroughs, which leapfrog over near-term projected advances in conventional hardware and software to produce paradigm shifts in computational science. For underwater threat source localization using information provided by a dynamical sensor network, one of the most promising computational advances builds upon the emergence of digital optical-core devices. In this article, we present initial results of sensor network calculations that focus on the concept of signal wavefront time-difference-of-arrival (TDOA). The corresponding algorithms are implemented on the EnLight processing platform recently introduced by Lenslet Laboratories. This tera-scale digital optical core processor is optimizedmore » for array operations, which it performs in a fixed-point-arithmetic architecture. Our results (i) illustrate the ability to reach the required accuracy in the TDOA computation, and (ii) demonstrate that a considerable speed-up can be achieved when using the EnLight 64a prototype processor as compared to a dual Intel XeonTM processor.« less

  1. Design of MOEMS adjustable optical delay line to reduce link set-up time in a tera-bit/s optical interconnection network.

    PubMed

    Jing, Wencai; Zhang, Yimo; Zhou, Ge

    2002-07-15

    A new structure for bit synchronization in a tera-bit/s optical interconnection network has been designed using micro-electro-mechanical system (MEMS) technique. Link multiplexing has been adopted to reduce data packet communication latency. To eliminate link set-up time, adjustable optical delay lines (AODLs) have been adopted to shift the phases of the distributed optical clock signals for bit synchronization. By changing the optical path distance of the optical clock signal, the phase of the clock signal can be shifted at a very high resolution. A phase-shift resolution of 0.1 ps can be easily achieved with 30-microm alternation of the optical path length in vacuum.

  2. Smart-Home Architecture Based on Bluetooth mesh Technology

    NASA Astrophysics Data System (ADS)

    Wan, Qing; Liu, Jianghua

    2018-03-01

    This paper describes the smart home network system based on Nordic nrf52832 device. Nrf52832 is new generation RF SOC device focus on sensor monitor and low power Bluetooth connection applications. In this smart home system, we set up a self-organizing network system which consists of one control node and a lot of monitor nodes. The control node manages the whole network works; the monitor nodes collect the sensor information such as light intensity, temperature, humidity, PM2.5, etc. Then update to the control node by Bluetooth mesh network. The design results show that the Bluetooth mesh wireless network system is flexible and construction cost is low, which is suitable for the communication characteristics of a smart home network. We believe it will be wildly used in the future.

  3. SSL: Signal Similarity-Based Localization for Ocean Sensor Networks.

    PubMed

    Chen, Pengpeng; Ma, Honglu; Gao, Shouwan; Huang, Yan

    2015-11-24

    Nowadays, wireless sensor networks are often deployed on the sea surface for ocean scientific monitoring. One of the important challenges is to localize the nodes' positions. Existing localization schemes can be roughly divided into two types: range-based and range-free. The range-based localization approaches heavily depend on extra hardware capabilities, while range-free ones often suffer from poor accuracy and low scalability, far from the practical ocean monitoring applications. In response to the above limitations, this paper proposes a novel signal similarity-based localization (SSL) technology, which localizes the nodes' positions by fully utilizing the similarity of received signal strength and the open-air characteristics of the sea surface. In the localization process, we first estimate the relative distance between neighboring nodes through comparing the similarity of received signal strength and then calculate the relative distance for non-neighboring nodes with the shortest path algorithm. After that, the nodes' relative relation map of the whole network can be obtained. Given at least three anchors, the physical locations of nodes can be finally determined based on the multi-dimensional scaling (MDS) technology. The design is evaluated by two types of ocean experiments: a zonal network and a non-regular network using 28 nodes. Results show that the proposed design improves the localization accuracy compared to typical connectivity-based approaches and also confirm its effectiveness for large-scale ocean sensor networks.

  4. IJA: an efficient algorithm for query processing in sensor networks.

    PubMed

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm.

  5. IJA: An Efficient Algorithm for Query Processing in Sensor Networks

    PubMed Central

    Lee, Hyun Chang; Lee, Young Jae; Lim, Ji Hyang; Kim, Dong Hwa

    2011-01-01

    One of main features in sensor networks is the function that processes real time state information after gathering needed data from many domains. The component technologies consisting of each node called a sensor node that are including physical sensors, processors, actuators and power have advanced significantly over the last decade. Thanks to the advanced technology, over time sensor networks have been adopted in an all-round industry sensing physical phenomenon. However, sensor nodes in sensor networks are considerably constrained because with their energy and memory resources they have a very limited ability to process any information compared to conventional computer systems. Thus query processing over the nodes should be constrained because of their limitations. Due to the problems, the join operations in sensor networks are typically processed in a distributed manner over a set of nodes and have been studied. By way of example while simple queries, such as select and aggregate queries, in sensor networks have been addressed in the literature, the processing of join queries in sensor networks remains to be investigated. Therefore, in this paper, we propose and describe an Incremental Join Algorithm (IJA) in Sensor Networks to reduce the overhead caused by moving a join pair to the final join node or to minimize the communication cost that is the main consumer of the battery when processing the distributed queries in sensor networks environments. At the same time, the simulation result shows that the proposed IJA algorithm significantly reduces the number of bytes to be moved to join nodes compared to the popular synopsis join algorithm. PMID:22319375

  6. Link prediction based on local community properties

    NASA Astrophysics Data System (ADS)

    Yang, Xu-Hua; Zhang, Hai-Feng; Ling, Fei; Cheng, Zhi; Weng, Guo-Qing; Huang, Yu-Jiao

    2016-09-01

    The link prediction algorithm is one of the key technologies to reveal the inherent rule of network evolution. This paper proposes a novel link prediction algorithm based on the properties of the local community, which is composed of the common neighbor nodes of any two nodes in the network and the links between these nodes. By referring to the node degree and the condition of assortativity or disassortativity in a network, we comprehensively consider the effect of the shortest path and edge clustering coefficient within the local community on node similarity. We numerically show the proposed method provide good link prediction results.

  7. A collaborative network middleware project by Lambda Station, TeraPaths, and Phoebus

    NASA Astrophysics Data System (ADS)

    Bobyshev, A.; Bradley, S.; Crawford, M.; DeMar, P.; Katramatos, D.; Shroff, K.; Swany, M.; Yu, D.

    2010-04-01

    The TeraPaths, Lambda Station, and Phoebus projects, funded by the US Department of Energy, have successfully developed network middleware services that establish on-demand and manage true end-to-end, Quality-of-Service (QoS) aware, virtual network paths across multiple administrative network domains, select network paths and gracefully reroute traffic over these dynamic paths, and streamline traffic between packet and circuit networks using transparent gateways. These services improve network QoS and performance for applications, playing a critical role in the effective use of emerging dynamic circuit network services. They provide interfaces to applications, such as dCache SRM, translate network service requests into network device configurations, and coordinate with each other to setup up end-to-end network paths. The End Site Control Plane Subsystem (ESCPS) builds upon the success of the three projects by combining their individual capabilities into the next generation of network middleware. ESCPS addresses challenges such as cross-domain control plane signalling and interoperability, authentication and authorization in a Grid environment, topology discovery, and dynamic status tracking. The new network middleware will take full advantage of the perfSONAR monitoring infrastructure and the Inter-Domain Control plane efforts and will be deployed and fully vetted in the Large Hadron Collider data movement environment.

  8. Multi-petascale highly efficient parallel supercomputer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.

    A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less

  9. The Deep Impact Network Experiment Operations Center Monitor and Control System

    NASA Technical Reports Server (NTRS)

    Wang, Shin-Ywan (Cindy); Torgerson, J. Leigh; Schoolcraft, Joshua; Brenman, Yan

    2009-01-01

    The Interplanetary Overlay Network (ION) software at JPL is an implementation of Delay/Disruption Tolerant Networking (DTN) which has been proposed as an interplanetary protocol to support space communication. The JPL Deep Impact Network (DINET) is a technology development experiment intended to increase the technical readiness of the JPL implemented ION suite. The DINET Experiment Operations Center (EOC) developed by JPL's Protocol Technology Lab (PTL) was critical in accomplishing the experiment. EOC, containing all end nodes of simulated spaces and one administrative node, exercised publish and subscribe functions for payload data among all end nodes to verify the effectiveness of data exchange over ION protocol stacks. A Monitor and Control System was created and installed on the administrative node as a multi-tiered internet-based Web application to support the Deep Impact Network Experiment by allowing monitoring and analysis of the data delivery and statistics from ION. This Monitor and Control System includes the capability of receiving protocol status messages, classifying and storing status messages into a database from the ION simulation network, and providing web interfaces for viewing the live results in addition to interactive database queries.

  10. Hiding Critical Targets in Smart Grid Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bao, Wei; Li, Qinghua

    With the integration of advanced communication technologies, the power grid is expected to greatly enhance efficiency and reliability of future power systems. However, since most electrical devices in power grid substations are connected via communication networks, cyber security of these communication networks becomes a critical issue. Real-World incidents such as Stuxnet have shown the feasibility of compromising a device in the power grid network to further launch more sophisticated attacks. To deal with security attacks of this spirit, this paper aims to hide critical targets from compromised internal nodes and hence protect them from further attacks launched by those compromisedmore » nodes. In particular, we consider substation networks and propose to add carefully-controlled dummy traffic to a substation network to make critical target nodes indistinguishable from other nodes in network traffic patterns. This paper describes the design and evaluation of such a scheme. Evaluations show that the scheme can effectively protect critical nodes with acceptable communication cost.« less

  11. A Node Localization Algorithm Based on Multi-Granularity Regional Division and the Lagrange Multiplier Method in Wireless Sensor Networks.

    PubMed

    Shang, Fengjun; Jiang, Yi; Xiong, Anping; Su, Wen; He, Li

    2016-11-18

    With the integrated development of the Internet, wireless sensor technology, cloud computing, and mobile Internet, there has been a lot of attention given to research about and applications of the Internet of Things. A Wireless Sensor Network (WSN) is one of the important information technologies in the Internet of Things; it integrates multi-technology to detect and gather information in a network environment by mutual cooperation, using a variety of methods to process and analyze data, implement awareness, and perform tests. This paper mainly researches the localization algorithm of sensor nodes in a wireless sensor network. Firstly, a multi-granularity region partition is proposed to divide the location region. In the range-based method, the RSSI (Received Signal Strength indicator, RSSI) is used to estimate distance. The optimal RSSI value is computed by the Gaussian fitting method. Furthermore, a Voronoi diagram is characterized by the use of dividing region. Rach anchor node is regarded as the center of each region; the whole position region is divided into several regions and the sub-region of neighboring nodes is combined into triangles while the unknown node is locked in the ultimate area. Secondly, the multi-granularity regional division and Lagrange multiplier method are used to calculate the final coordinates. Because nodes are influenced by many factors in the practical application, two kinds of positioning methods are designed. When the unknown node is inside positioning unit, we use the method of vector similarity. Moreover, we use the centroid algorithm to calculate the ultimate coordinates of unknown node. When the unknown node is outside positioning unit, we establish a Lagrange equation containing the constraint condition to calculate the first coordinates. Furthermore, we use the Taylor expansion formula to correct the coordinates of the unknown node. In addition, this localization method has been validated by establishing the real environment.

  12. Exact sampling of graphs with prescribed degree correlations

    NASA Astrophysics Data System (ADS)

    Bassler, Kevin E.; Del Genio, Charo I.; Erdős, Péter L.; Miklós, István; Toroczkai, Zoltán

    2015-08-01

    Many real-world networks exhibit correlations between the node degrees. For instance, in social networks nodes tend to connect to nodes of similar degree and conversely, in biological and technological networks, high-degree nodes tend to be linked with low-degree nodes. Degree correlations also affect the dynamics of processes supported by a network structure, such as the spread of opinions or epidemics. The proper modelling of these systems, i.e., without uncontrolled biases, requires the sampling of networks with a specified set of constraints. We present a solution to the sampling problem when the constraints imposed are the degree correlations. In particular, we develop an exact method to construct and sample graphs with a specified joint-degree matrix, which is a matrix providing the number of edges between all the sets of nodes of a given degree, for all degrees, thus completely specifying all pairwise degree correlations, and additionally, the degree sequence itself. Our algorithm always produces independent samples without backtracking. The complexity of the graph construction algorithm is {O}({NM}) where N is the number of nodes and M is the number of edges.

  13. An energy efficient distance-aware routing algorithm with multiple mobile sinks for wireless sensor networks.

    PubMed

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-08-18

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption.

  14. An Energy Efficient Distance-Aware Routing Algorithm with Multiple Mobile Sinks for Wireless Sensor Networks

    PubMed Central

    Wang, Jin; Li, Bin; Xia, Feng; Kim, Chang-Seob; Kim, Jeong-Uk

    2014-01-01

    Traffic patterns in wireless sensor networks (WSNs) usually follow a many-to-one model. Sensor nodes close to static sinks will deplete their limited energy more rapidly than other sensors, since they will have more data to forward during multihop transmission. This will cause network partition, isolated nodes and much shortened network lifetime. Thus, how to balance energy consumption for sensor nodes is an important research issue. In recent years, exploiting sink mobility technology in WSNs has attracted much research attention because it can not only improve energy efficiency, but prolong network lifetime. In this paper, we propose an energy efficient distance-aware routing algorithm with multiple mobile sink for WSNs, where sink nodes will move with a certain speed along the network boundary to collect monitored data. We study the influence of multiple mobile sink nodes on energy consumption and network lifetime, and we mainly focus on the selection of mobile sink node number and the selection of parking positions, as well as their impact on performance metrics above. We can see that both mobile sink node number and the selection of parking position have important influence on network performance. Simulation results show that our proposed routing algorithm has better performance than traditional routing ones in terms of energy consumption. PMID:25196015

  15. The ARPANET after twenty years

    NASA Technical Reports Server (NTRS)

    Denning, Peter J.

    1989-01-01

    The ARPANET began operations in 1969 with four nodes as an experiment in resource sharing among computers. It has evolved into a worldwide research network of over 60,000 nodes, influencing the design of other networks in business, education, and government. It demonstrated the speed and reliability of packet-switching networks. Its protocols have served as the models for international standards. And yet the significance of the ARPANET lies not in its technology, but in the profound alterations networking has produced in human practices. Network designers must now turn their attention to the discourses of scientific technology, business, education, and government that are being mixed together in the milieux of networking, and in particular the conflicts and misunderstandings that arise from the different world views of these discourses.

  16. Physical parameters collection based on wireless senor network

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wu, Hong; Ji, Lei

    2013-12-01

    With the development of sensor technology, wireless senor network has been applied in the medical, military, entertainment field and our daily life. But the existing available wireless senor networks applied in human monitoring system still have some problems, such as big power consumption, low security and so on. To improve senor network applied in health monitoring system, the paper introduces a star wireless senor networks based on msp430 and DSP. We design a low-cost heart-rate monitor senor node. The communication between senor node and sink node is realized according to the newest protocol proposed by the IEEE 802.15.6 Task Group. This wireless senor network will be more energy-efficient and faster compared to traditional senor networks.

  17. Planning Multitechnology Access Networks with Performance Constraints

    NASA Astrophysics Data System (ADS)

    Chamberland, Steven

    Considering the number of access network technologies and the investment needed for the “last mile” of a solution, in today’s highly competitive markets, planning tools are crucial for the service providers to optimize the network costs and accelerate the planning process. In this paper, we propose to tackle the problem of planning access networks composed of four technologies/architectures: the digital subscriber line (xDSL) technologies deployed directly from the central office (CO), the fiber-to-the-node (FTTN), the fiber-to-the-micro-node (FTTn) and the fiber-to-the-premises (FTTP). A mathematical programming model is proposed for this planning problem that is solved using a commercial implementation of the branch-and-bound algorithm. Next, a detailed access network planning example is presented followed by a systematic set of experiments designed to assess the performance of the proposed approach.

  18. Nodes

    NASA Technical Reports Server (NTRS)

    Hanson, John; Martinez, Andres; Petro, Andrew

    2015-01-01

    Nodes is a technology demonstration mission that is scheduled for launch to the International SpaceStation no earlier than Nov.19, 2015. The two Nodes satellites will be deployed from the Station in early 2016 todemonstrate new network capabilities critical to the operation of swarms of spacecraft. They will demonstrate the ability ofmulti spacecraft swarms to receive and distribute ground commands, exchange information periodically, andautonomously configure the network by determining which spacecraft should communicate with the ground each day ofthe mission.

  19. Building Columbia from the SysAdmin View

    NASA Technical Reports Server (NTRS)

    Chan, David

    2005-01-01

    Project Columbia was built at NASA Ames Research Center in partnership with SGI and Intel. Columbia consists of 20 512 processor Altix machines with 440TB of storage and achieved 51.87 TeraPlops to be ranked the second fastest on the top 500 at SuperComputing 2004. Columbia was delivered, installed and put into production in 3 months. On average, a new Columbia node was brought into production in less than a week. Columbia's configuration, installation, and future plans will be discussed.

  20. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context.

    PubMed

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo; Pozzebon, Alessandro

    2018-04-21

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented.

  1. A Low Power IoT Sensor Node Architecture for Waste Management Within Smart Cities Context

    PubMed Central

    Cerchecci, Matteo; Luti, Francesco; Mecocci, Alessandro; Parrino, Stefano; Peruzzi, Giacomo

    2018-01-01

    This paper focuses on the realization of an Internet of Things (IoT) architecture to optimize waste management in the context of Smart Cities. In particular, a novel typology of sensor node based on the use of low cost and low power components is described. This node is provided with a single-chip microcontroller, a sensor able to measure the filling level of trash bins using ultrasounds and a data transmission module based on the LoRa LPWAN (Low Power Wide Area Network) technology. Together with the node, a minimal network architecture was designed, based on a LoRa gateway, with the purpose of testing the IoT node performances. Especially, the paper analyzes in detail the node architecture, focusing on the energy saving technologies and policies, with the purpose of extending the batteries lifetime by reducing power consumption, through hardware and software optimization. Tests on sensor and radio module effectiveness are also presented. PMID:29690552

  2. Some scale-free networks could be robust under selective node attacks

    NASA Astrophysics Data System (ADS)

    Zheng, Bojin; Huang, Dan; Li, Deyi; Chen, Guisheng; Lan, Wenfei

    2011-04-01

    It is a mainstream idea that scale-free network would be fragile under the selective attacks. Internet is a typical scale-free network in the real world, but it never collapses under the selective attacks of computer viruses and hackers. This phenomenon is different from the deduction of the idea above because this idea assumes the same cost to delete an arbitrary node. Hence this paper discusses the behaviors of the scale-free network under the selective node attack with different cost. Through the experiments on five complex networks, we show that the scale-free network is possibly robust under the selective node attacks; furthermore, the more compact the network is, and the larger the average degree is, then the more robust the network is; with the same average degrees, the more compact the network is, the more robust the network is. This result would enrich the theory of the invulnerability of the network, and can be used to build robust social, technological and biological networks, and also has the potential to find the target of drugs.

  3. Mobile Router Developed and Tested

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    2002-01-01

    The NASA Glenn Research Center, under a NASA Space Act Agreement with Cisco Systems, has been performing joint networking research to apply Internet-based technologies and protocols to space-based communications. As a result of this research, NASA performed stringent performance testing of the mobile router, including the interaction of routing and the transport-level protocol. In addition, Cisco Systems developed the mobile router for both commercial and Government markets. The code has become part of the Cisco Systems Internetworking Operating System (IOS) as of release 12.2 (4) T--which will make this capability available to the community at large. The mobile router is software code that resides in a network router and enables entire networks to roam while maintaining connectivity to the Internet. This router code is pertinent to a myriad of applications for both Government and commercial sectors, including the "wireless battlefield." NASA and the Department of Defense will utilize this technology for near-planetary observation and sensing spacecraft. It is also a key enabling technology for aviation-based information applications. Mobile routing will make it possible for information such as weather, air traffic control, voice, and video to be transmitted to aircraft using Internet-based protocols. This technology shows great promise in reducing congested airways and mitigating aviation disasters due to bad weather. The mobile router can also be incorporated into emergency vehicles (such as ambulances and life-flight aircraft) to provide real-time connectivity back to the hospital and health-care experts, enabling the timely application of emergency care. Commercial applications include entertainment services, Internet protocol (IP) telephone, and Internet connectivity for cruise ships, commercial shipping, tour buses, aircraft, and eventually cars. A mobile router, which is based on mobile IP, allows hosts (mobile nodes) to seamlessly "roam" among various IP subnetworks. This is essential in many wireless networks. A mobile router, unlike a mobile IP node, allows entire networks to roam. Hence, a device connected to the mobile router does not need to be a mobile node because the mobile router provides the roaming capabilities. There are three basic elements in the mobile IP: the home agent, the foreign agent, and the mobile node. The home agent is a router on a mobile node's home network that tunnels datagrams for delivery to the mobile node when it is away from home. The foreign agent is a router on a remote network that provides routing services to a registered mobile node. The mobile node is a host or router that changes its point of attachment from one network or subnetwork to another. In mobile routing, virtual communications are maintained by the home agent, which forwards all packets for the mobile networks to the foreign agent. The foreign agent passes the packets to the mobile router, which then forwards the packets to the devices on its networks. As the mobile router moves, it will register with its home agent on its whereabouts via the foreign agent to assure continuous connectivity.

  4. Ad Hoc Access Gateway Selection Algorithm

    NASA Astrophysics Data System (ADS)

    Jie, Liu

    With the continuous development of mobile communication technology, Ad Hoc access network has become a hot research, Ad Hoc access network nodes can be used to expand capacity of multi-hop communication range of mobile communication system, even business adjacent to the community, improve edge data rates. For mobile nodes in Ad Hoc network to internet, internet communications in the peer nodes must be achieved through the gateway. Therefore, the key Ad Hoc Access Networks will focus on the discovery gateway, as well as gateway selection in the case of multi-gateway and handover problems between different gateways. This paper considers the mobile node and the gateway, based on the average number of hops from an average access time and the stability of routes, improved gateway selection algorithm were proposed. An improved gateway selection algorithm, which mainly considers the algorithm can improve the access time of Ad Hoc nodes and the continuity of communication between the gateways, were proposed. This can improve the quality of communication across the network.

  5. New Markov-Shannon Entropy models to assess connectivity quality in complex networks: from molecular to cellular pathway, Parasite-Host, Neural, Industry, and Legal-Social networks.

    PubMed

    Riera-Fernández, Pablo; Munteanu, Cristian R; Escobar, Manuel; Prado-Prado, Francisco; Martín-Romalde, Raquel; Pereira, David; Villalba, Karen; Duardo-Sánchez, Aliuska; González-Díaz, Humberto

    2012-01-21

    Graph and Complex Network theory is expanding its application to different levels of matter organization such as molecular, biological, technological, and social networks. A network is a set of items, usually called nodes, with connections between them, which are called links or edges. There are many different experimental and/or theoretical methods to assign node-node links depending on the type of network we want to construct. Unfortunately, the use of a method for experimental reevaluation of the entire network is very expensive in terms of time and resources; thus the development of cheaper theoretical methods is of major importance. In addition, different methods to link nodes in the same type of network are not totally accurate in such a way that they do not always coincide. In this sense, the development of computational methods useful to evaluate connectivity quality in complex networks (a posteriori of network assemble) is a goal of major interest. In this work, we report for the first time a new method to calculate numerical quality scores S(L(ij)) for network links L(ij) (connectivity) based on the Markov-Shannon Entropy indices of order k-th (θ(k)) for network nodes. The algorithm may be summarized as follows: (i) first, the θ(k)(j) values are calculated for all j-th nodes in a complex network already constructed; (ii) A Linear Discriminant Analysis (LDA) is used to seek a linear equation that discriminates connected or linked (L(ij)=1) pairs of nodes experimentally confirmed from non-linked ones (L(ij)=0); (iii) the new model is validated with external series of pairs of nodes; (iv) the equation obtained is used to re-evaluate the connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated with the new connectivity function. This method was used to study different types of large networks. The linear models obtained produced the following results in terms of overall accuracy for network reconstruction: Metabolic networks (72.3%), Parasite-Host networks (93.3%), CoCoMac brain cortex co-activation network (89.6%), NW Spain fasciolosis spreading network (97.2%), Spanish financial law network (89.9%) and World trade network for Intelligent & Active Food Packaging (92.8%). In order to seek these models, we studied an average of 55,388 pairs of nodes in each model and a total of 332,326 pairs of nodes in all models. Finally, this method was used to solve a more complicated problem. A model was developed to score the connectivity quality in the Drug-Target network of US FDA approved drugs. In this last model the θ(k) values were calculated for three types of molecular networks representing different levels of organization: drug molecular graphs (atom-atom bonds), protein residue networks (amino acid interactions), and drug-target network (compound-protein binding). The overall accuracy of this model was 76.3%. This work opens a new door to the computational reevaluation of network connectivity quality (collation) for complex systems in molecular, biomedical, technological, and legal-social sciences as well as in world trade and industry. Copyright © 2011 Elsevier Ltd. All rights reserved.

  6. Distributed processing method for arbitrary view generation in camera sensor network

    NASA Astrophysics Data System (ADS)

    Tehrani, Mehrdad P.; Fujii, Toshiaki; Tanimoto, Masayuki

    2003-05-01

    Camera sensor network as a new advent of technology is a network that each sensor node can capture video signals, process and communicate them with other nodes. The processing task in this network is to generate arbitrary view, which can be requested from central node or user. To avoid unnecessary communication between nodes in camera sensor network and speed up the processing time, we have distributed the processing tasks between nodes. In this method, each sensor node processes part of interpolation algorithm to generate the interpolated image with local communication between nodes. The processing task in camera sensor network is ray-space interpolation, which is an object independent method and based on MSE minimization by using adaptive filtering. Two methods were proposed for distributing processing tasks, which are Fully Image Shared Decentralized Processing (FIS-DP), and Partially Image Shared Decentralized Processing (PIS-DP), to share image data locally. Comparison of the proposed methods with Centralized Processing (CP) method shows that PIS-DP has the highest processing speed after FIS-DP, and CP has the lowest processing speed. Communication rate of CP and PIS-DP is almost same and better than FIS-DP. So, PIS-DP is recommended because of its better performance than CP and FIS-DP.

  7. SL2+: H5 use case

    NASA Astrophysics Data System (ADS)

    Ito, Kosuke; Liu, Steven; Lee, Isaac; Dover, Russell; Yu, Paul

    2008-10-01

    Photomask contamination inspections, whether performed at maskshops as an outgoing inspection or at wafer fabs for incoming shipping and handling or progressive defect monitoring, have been performed by KLA-Tencor STARlight systems for a number of design nodes. STARlight has evolved since it first appeared on the 3xx generation of KLA-Tencor mask inspection tools. It was improved with the TeraStar (also known as SLF) based tools with the SL1 algorithm. SL2 first appeared on the TeraScan systems (also known as 5xx) and has been widely adopted in both mask shops and wafer fabs. Design rules continue to advance as do inspection challenges. Advances in computer processing power have enabled more complex and powerful algorithms to be developed and applied to the STARlight technology. The current generation of STARlight, which is known as SL2+, implements improved modeling fidelity as well as a completely new paradigm to the existing STARlight technology known as HiRes5, or simply "H5". H5 is integrated seamlessly within SL2+ and provides die-to-die-like performance in both transmitted and reflected light, in addition to the STARlight detection, in unit time. It achieves this by automatically identifying repeating structures in both X and Y directions and applying image alignment and difference threshold. A leading mask shop partnered with KLA-Tencor in order to evaluate SL2+ at its facility. SL2+ demonstrated a high level of sensitivity on all test reticles, with good inspectability on advanced production reticles. High sensitivity settings were used for 45 nm HP and smaller design rule masks and low false detections were achieved. H5 provided additional sensitivity on production plates, demonstrating the ability to extend the use of SL2+ to cover 32 nm DR plate inspections. This paper reports the findings and results of this evaluation.

  8. Design and Implementation of Secure Area Expansion Scheme for Public Wireless LAN Services

    NASA Astrophysics Data System (ADS)

    Watanabe, Ryu; Tanaka, Toshiaki

    Recently, wireless LAN (WLAN) technology has become a major wireless communication method. The communication bandwidth is increasing and speeds have attained rates exceeding 100 Mbps. Therefore, WLAN technology is regarded as one of the promising communication methods for future networks. In addition, public WLAN connection services can be used in many locations. However, the number of the access points (AP) is insufficient for seamless communication and it cannot be said that users can use the service ubiquitously. An ad-hoc network style connection can be used to expand the coverage area of a public WLAN service. By relaying the user messages among the user nodes, a node can obtain an Internet connection via an AP, even though the node is located outside the AP's direct wireless connection area. Such a coverage area extending technology has many advantages thanks to the feature that no additional infrastructure is required. Therefore, there is a strong demand for this technology as it allows the cost-effective construction of future networks. When a secure ad-hoc routing protocol is used for message exchange in the WLAN service, the message routes are protected from malicious behavior such as route forging and can be maintained appropriately. To do this, however, a new node that wants to join the WLAN service has to obtain information such as the public key certificate and IP address in order to start secure ad-hoc routing. In other words, an initial setup is required for every network node to join the WLAN service properly. Ordinarily, such information should be assigned from the AP. However, new nodes cannot always contact an AP directly. Therefore, there are problems about information delivery in the initial setup of a network node. These problems originate in the multi hop connection based on the ad-hoc routing protocols. In order to realize an expanded area WLAN service, in this paper, the authors propose a secure public key certificate and address provision scheme during the initial setup phase on mobile nodes for the service. The proposed scheme also considers the protection of user privacy. Accordingly, none of the user nodes has to reveal their unique and persistent information to other nodes. Instead of using such information, temporary values are sent by an AP to mobile nodes and used for secure ad-hoc routing operations. Therefore, our proposed scheme prevents tracking by malicious parties by avoiding the use of unique information. Moreover, a test bed was also implemented based on the proposal and an evaluation was carried out in order to confirm performance. In addition, the authors describe a countermeasure against denial of service (DoS) attacks based on the approach to privacy protection described in our proposal.

  9. Multiscale modeling of the human arterial tree on the TeraGrid.

    NASA Astrophysics Data System (ADS)

    Karniadakis, Gerorge

    2009-03-01

    A multiscale model of the human arterial tree will be presented consisting of the macrovascular network (MaN, arteries above 1-2 mm), the mesovascular network (MeN, arterioles above 10 micro-m) and the microvascular network (MiN, capillaries). Coupling conditions between the MaN-MeN-MiN will be discussed and three different methods in modeling each network will be presented. Specific examples will be shown for the intracranial arterial tree for healthy subjects but also for patients with hydrocephalus.

  10. Multi-channel multi-radio using 802.11 based media access for sink nodes in wireless sensor networks.

    PubMed

    Campbell, Carlene E-A; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives.

  11. Multi-Channel Multi-Radio Using 802.11 Based Media Access for Sink Nodes in Wireless Sensor Networks

    PubMed Central

    Campbell, Carlene E.-A.; Khan, Shafiullah; Singh, Dhananjay; Loo, Kok-Keong

    2011-01-01

    The next generation surveillance and multimedia systems will become increasingly deployed as wireless sensor networks in order to monitor parks, public places and for business usage. The convergence of data and telecommunication over IP-based networks has paved the way for wireless networks. Functions are becoming more intertwined by the compelling force of innovation and technology. For example, many closed-circuit TV premises surveillance systems now rely on transmitting their images and data over IP networks instead of standalone video circuits. These systems will increase their reliability in the future on wireless networks and on IEEE 802.11 networks. However, due to limited non-overlapping channels, delay, and congestion there will be problems at sink nodes. In this paper we provide necessary conditions to verify the feasibility of round robin technique in these networks at the sink nodes by using a technique to regulate multi-radio multichannel assignment. We demonstrate through simulations that dynamic channel assignment scheme using multi-radio, and multichannel configuration at a single sink node can perform close to optimal on the average while multiple sink node assignment also performs well. The methods proposed in this paper can be a valuable tool for network designers in planning network deployment and for optimizing different performance objectives. PMID:22163883

  12. Using Network Dynamical Influence to Drive Consensus

    NASA Astrophysics Data System (ADS)

    Punzo, Giuliano; Young, George F.; MacDonald, Malcolm; Leonard, Naomi E.

    2016-05-01

    Consensus and decision-making are often analysed in the context of networks, with many studies focusing attention on ranking the nodes of a network depending on their relative importance to information routing. Dynamical influence ranks the nodes with respect to their ability to influence the evolution of the associated network dynamical system. In this study it is shown that dynamical influence not only ranks the nodes, but also provides a naturally optimised distribution of effort to steer a network from one state to another. An example is provided where the “steering” refers to the physical change in velocity of self-propelled agents interacting through a network. Distinct from other works on this subject, this study looks at directed and hence more general graphs. The findings are presented with a theoretical angle, without targeting particular applications or networked systems; however, the framework and results offer parallels with biological flocks and swarms and opportunities for design of technological networks.

  13. Residual energy level based clustering routing protocol for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Yuan, Xu; Zhong, Fangming; Chen, Zhikui; Yang, Deli

    2015-12-01

    The wireless sensor networks, which nodes prone to premature death, with unbalanced energy consumption and a short life time, influenced the promotion and application of this technology in internet of things in agriculture. This paper proposes a clustering routing protocol based on the residual energy level (RELCP). RELCP includes three stages: the selection of cluster head, establishment of cluster and data transmission. RELCP considers the remaining energy level and distance to base station, while election of cluster head nodes and data transmitting. Simulation results demonstrate that the protocol can efficiently balance the energy dissipation of all nodes, and prolong the network lifetime.

  14. LoRa Scalability: A Simulation Model Based on Interference Measurements

    PubMed Central

    Haxhibeqiri, Jetmir; Van den Abeele, Floris; Moerman, Ingrid; Hoebeke, Jeroen

    2017-01-01

    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data. PMID:28545239

  15. LoRa Scalability: A Simulation Model Based on Interference Measurements.

    PubMed

    Haxhibeqiri, Jetmir; Van den Abeele, Floris; Moerman, Ingrid; Hoebeke, Jeroen

    2017-05-23

    LoRa is a long-range, low power, low bit rate and single-hop wireless communication technology. It is intended to be used in Internet of Things (IoT) applications involving battery-powered devices with low throughput requirements. A LoRaWAN network consists of multiple end nodes that communicate with one or more gateways. These gateways act like a transparent bridge towards a common network server. The amount of end devices and their throughput requirements will have an impact on the performance of the LoRaWAN network. This study investigates the scalability in terms of the number of end devices per gateway of single-gateway LoRaWAN deployments. First, we determine the intra-technology interference behavior with two physical end nodes, by checking the impact of an interfering node on a transmitting node. Measurements show that even under concurrent transmission, one of the packets can be received under certain conditions. Based on these measurements, we create a simulation model for assessing the scalability of a single gateway LoRaWAN network. We show that when the number of nodes increases up to 1000 per gateway, the losses will be up to 32%. In such a case, pure Aloha will have around 90% losses. However, when the duty cycle of the application layer becomes lower than the allowed radio duty cycle of 1%, losses will be even lower. We also show network scalability simulation results for some IoT use cases based on real data.

  16. Space information technologies: future agenda

    NASA Astrophysics Data System (ADS)

    Flournoy, Don M.

    2005-11-01

    Satellites will operate more like wide area broadband computer networks in the 21st Century. Space-based information and communication technologies will therefore be a lot more accessible and functional for the individual user. These developments are the result of earth-based telecommunication and computing innovations being extended to space. The author predicts that the broadband Internet will eventually be available on demand to users of terrestrial networks wherever they are. Earth and space communication assets will be managed as a single network. Space networks will assure that online access is ubiquitous. No matter whether users are located in cities or in remote locations, they will always be within reach of a node on the Internet. Even today, scalable bandwidth can be delivered to active users when moving around in vehicles on the ground, or aboard ships at sea or in the air. Discussion of the innovative technologies produced by NASA's Advanced Communications Technology Satellite (1993-2004) demonstrates future capabilities of satellites that make them uniquely suited to serve as nodes on the broadband Internet.

  17. Virtual network embedding in cross-domain network based on topology and resource attributes

    NASA Astrophysics Data System (ADS)

    Zhu, Lei; Zhang, Zhizhong; Feng, Linlin; Liu, Lilan

    2018-03-01

    Aiming at the network architecture ossification and the diversity of access technologies issues, this paper researches the cross-domain virtual network embedding algorithm. By analysing the topological attribute from the local and global perspective of nodes in the virtual network and the physical network, combined with the local network resource property, we rank the embedding priority of the nodes with PCA and TOPSIS methods. Besides, the link load distribution is considered. Above all, We proposed an cross-domain virtual network embedding algorithm based on topology and resource attributes. The simulation results depicts that our algorithm increases the acceptance rate of multi-domain virtual network requests, compared with the existing virtual network embedding algorithm.

  18. Synchronization transmission of laser pattern signal within uncertain switched network

    NASA Astrophysics Data System (ADS)

    Lü, Ling; Li, Chengren; Li, Gang; Sun, Ao; Yan, Zhe; Rong, Tingting; Gao, Yan

    2017-06-01

    We propose a new technology for synchronization transmission of laser pattern signal within uncertain network with controllable topology. In synchronization process, the connection of dynamic network can vary at all time according to different demands. Especially, we construct the Lyapunov function of network through designing a special semi-positive definite function, and the synchronization transmission of laser pattern signal within uncertain network with controllable topology can be realized perfectly, which effectively avoids the complicated calculation for solving the second largest eignvalue of the coupling matrix of the dynamic network in order to obtain the network synchronization condition. At the same time, the uncertain parameters in dynamic equations belonging to network nodes can also be identified accurately via designing the identification laws of uncertain parameters. In addition, there are not any limitations for the synchronization target of network in the new technology, in other words, the target can either be a state variable signal of an arbitrary node within the network or an exterior signal.

  19. Improving local clustering based top-L link prediction methods via asymmetric link clustering information

    NASA Astrophysics Data System (ADS)

    Wu, Zhihao; Lin, Youfang; Zhao, Yiji; Yan, Hongyan

    2018-02-01

    Networks can represent a wide range of complex systems, such as social, biological and technological systems. Link prediction is one of the most important problems in network analysis, and has attracted much research interest recently. Many link prediction methods have been proposed to solve this problem with various techniques. We can note that clustering information plays an important role in solving the link prediction problem. In previous literatures, we find node clustering coefficient appears frequently in many link prediction methods. However, node clustering coefficient is limited to describe the role of a common-neighbor in different local networks, because it cannot distinguish different clustering abilities of a node to different node pairs. In this paper, we shift our focus from nodes to links, and propose the concept of asymmetric link clustering (ALC) coefficient. Further, we improve three node clustering based link prediction methods via the concept of ALC. The experimental results demonstrate that ALC-based methods outperform node clustering based methods, especially achieving remarkable improvements on food web, hamster friendship and Internet networks. Besides, comparing with other methods, the performance of ALC-based methods are very stable in both globalized and personalized top-L link prediction tasks.

  20. Traffic placement policies for a multi-band network

    NASA Technical Reports Server (NTRS)

    Maly, Kurt J.; Foudriat, E. C.; Game, David; Mukkamala, R.; Overstreet, C. Michael

    1990-01-01

    Recently protocols were introduced that enable the integration of synchronous traffic (voice or video) and asynchronous traffic (data) and extend the size of local area networks without loss in speed or capacity. One of these is DRAMA, a multiband protocol based on broadband technology. It provides dynamic allocation of bandwidth among clusters of nodes in the total network. A number of traffic placement policies for such networks are proposed and evaluated. Metrics used for performance evaluation include average network access delay, degree of fairness of access among the nodes, and network throughput. The feasibility of the DRAMA protocol is established through simulation studies. DRAMA provides effective integration of synchronous and asychronous traffic due to its ability to separate traffic types. Under the suggested traffic placement policies, the DRAMA protocol is shown to handle diverse loads, mixes of traffic types, and numbers of nodes, as well as modifications to the network structure and momentary traffic overloads.

  1. Call for Papers: Photonics in Switching

    NASA Astrophysics Data System (ADS)

    Wosinska, Lena; Glick, Madeleine

    2006-04-01

    Call for Papers: Photonics in Switching

    Guest Editors:

    Lena Wosinska, Royal Institute of Technology (KTH) / ICT Sweden Madeleine Glick, Intel Research, Cambridge, UK

    Technologies based on DWDM systems allow data transmission with bit rates of Tbit/s on a single fiber. To facilitate this enormous transmission volume, high-capacity and high-speed network nodes become inevitable in the optical network. Wideband switching, WDM switching, optical burst switching (OBS), and optical packet switching (OPS) are promising technologies for harnessing the bandwidth of WDM optical fiber networks in a highly flexible and efficient manner. As a number of key optical component technologies approach maturity, photonics in switching is becoming an increasingly attractive and practical solution for the next-generation of optical networks. The scope of this special issue is focused on the technology and architecture of optical switching nodes, including the architectural and algorithmic aspects of high-speed optical networks.

    Scope of Submission

    The scope of the papers includes, but is not limited to, the following topics:
    • WDM node architectures
    • Novel device technologies enabling photonics in switching, such as optical switch fabrics, optical memory, and wavelength conversion
    • Routing protocols
    • WDM switching and routing
    • Quality of service
    • Performance measurement and evaluation
    • Next-generation optical networks: architecture, signaling, and control
    • Traffic measurement and field trials
    • Optical burst and packet switching
    • OBS/OPS node architectures
    • Burst/Packet scheduling and routing algorithms
    • Contention resolution/avoidance strategies
    • Services and applications for OBS/OPS (e.g., grid networks, storage-area networks, etc.)
    • Burst assembly and ingress traffic shaping
    • Hybrid OBS/TDM or OBS/wavelength routing

    Manuscript Submission

    To submit to this special issue, follow the normal procedure for submission to JON and select ``Photonics in Switching' in the features indicator of the online submission form. For all other questions relating to this feature issue, please send an e-mail to jon@osa.org, subject line ``Photonics in Switching.' Additional information can be found on the JON website: http://www.osa-jon.org/journal/jon/author.cfm. Submission Deadline: 15 September 2006

  2. A new routing enhancement scheme based on node blocking state advertisement in wavelength-routed WDM networks

    NASA Astrophysics Data System (ADS)

    Hu, Peigang; Jin, Yaohui; Zhang, Chunlei; He, Hao; Hu, WeiSheng

    2005-02-01

    The increasing switching capacity brings the optical node with considerable complexity. Due to the limitation in cost and technology, an optical node is often designed with partial switching capability and partial resource sharing. It means that the node is of blocking to some extent, for example multi-granularity switching node, which in fact is a structure using pass wavelength to reduce the dimension of OXC, and partial sharing wavelength converter (WC) OXC. It is conceivable that these blocking nodes will have great effects on the problem of routing and wavelength assignment. Some previous works studied the blocking case, partial WC OXC, using complicated wavelength assignment algorithm. But the complexities of these schemes decide them to be not in practice in real networks. In this paper, we propose a new scheme based on the node blocking state advertisement to reduce the retry or rerouting probability and improve the efficiency of routing in the networks with blocking nodes. In the scheme, node blocking state are advertised to the other nodes in networks, which will be used for subsequent route calculation to find a path with lowest blocking probability. The performance of the scheme is evaluated using discrete event model in 14-node NSFNET, all the nodes of which employ a kind of partial sharing WC OXC structure. In the simulation, a simple First-Fit wavelength assignment algorithm is used. The simulation results demonstrate that the new scheme considerably reduces the retry or rerouting probability in routing process.

  3. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Estimating Topology of Discrete Dynamical Networks

    NASA Astrophysics Data System (ADS)

    Guo, Shu-Juan; Fu, Xin-Chu

    2010-07-01

    In this paper, by applying Lasalle's invariance principle and some results about the trace of a matrix, we propose a method for estimating the topological structure of a discrete dynamical network based on the dynamical evolution of the network. The network concerned can be directed or undirected, weighted or unweighted, and the local dynamics of each node can be nonidentical. The connections among the nodes can be all unknown or partially known. Finally, two examples, including a Hénon map and a central network, are illustrated to verify the theoretical results.

  4. Fault Tolerance in ZigBee Wireless Sensor Networks

    NASA Technical Reports Server (NTRS)

    Alena, Richard; Gilstrap, Ray; Baldwin, Jarren; Stone, Thom; Wilson, Pete

    2011-01-01

    Wireless sensor networks (WSN) based on the IEEE 802.15.4 Personal Area Network standard are finding increasing use in the home automation and emerging smart energy markets. The network and application layers, based on the ZigBee 2007 PRO Standard, provide a convenient framework for component-based software that supports customer solutions from multiple vendors. This technology is supported by System-on-a-Chip solutions, resulting in extremely small and low-power nodes. The Wireless Connections in Space Project addresses the aerospace flight domain for both flight-critical and non-critical avionics. WSNs provide the inherent fault tolerance required for aerospace applications utilizing such technology. The team from Ames Research Center has developed techniques for assessing the fault tolerance of ZigBee WSNs challenged by radio frequency (RF) interference or WSN node failure.

  5. Underwater Sensor Nodes and Networks

    PubMed Central

    Lloret, Jaime

    2013-01-01

    Sensor technology has matured enough to be used in any type of environment. The appearance of new physical sensors has increased the range of environmental parameters for gathering data. Because of the huge amount of unexploited resources in the ocean environment, there is a need of new research in the field of sensors and sensor networks. This special issue is focused on collecting recent advances on underwater sensors and underwater sensor networks in order to measure, monitor, surveillance of and control of underwater environments. On the one hand, from the sensor node perspective, we will see works related with the deployment of physical sensors, development of sensor nodes and transceivers for sensor nodes, sensor measurement analysis and several issues such as layer 1 and 2 protocols for underwater communication and sensor localization and positioning systems. On the other hand, from the sensor network perspective, we will see several architectures and protocols for underwater environments and analysis concerning sensor network measurements. Both sides will provide us a complete view of last scientific advances in this research field. PMID:24013489

  6. Protocol Architecture Model Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASA's Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASA's four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. This report applies the methodology to three space Internet-based communications scenarios for future missions. CNS has conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. The scenarios are: Scenario 1: Unicast communications between a Low-Earth-Orbit (LEO) spacecraft inspace Internet node and a ground terminal Internet node via a Tracking and Data Rela Satellite (TDRS) transfer; Scenario 2: Unicast communications between a Low-Earth-Orbit (LEO) International Space Station and a ground terminal Internet node via a TDRS transfer; Scenario 3: Multicast Communications (or "Multicasting"), 1 Spacecraft to N Ground Receivers, N Ground Transmitters to 1 Ground Receiver via a Spacecraft.

  7. Community detection for networks with unipartite and bipartite structure

    NASA Astrophysics Data System (ADS)

    Chang, Chang; Tang, Chao

    2014-09-01

    Finding community structures in networks is important in network science, technology, and applications. To date, most algorithms that aim to find community structures only focus either on unipartite or bipartite networks. A unipartite network consists of one set of nodes and a bipartite network consists of two nonoverlapping sets of nodes with only links joining the nodes in different sets. However, a third type of network exists, defined here as the mixture network. Just like a bipartite network, a mixture network also consists of two sets of nodes, but some nodes may simultaneously belong to two sets, which breaks the nonoverlapping restriction of a bipartite network. The mixture network can be considered as a general case, with unipartite and bipartite networks viewed as its limiting cases. A mixture network can represent not only all the unipartite and bipartite networks, but also a wide range of real-world networks that cannot be properly represented as either unipartite or bipartite networks in fields such as biology and social science. Based on this observation, we first propose a probabilistic model that can find modules in unipartite, bipartite, and mixture networks in a unified framework based on the link community model for a unipartite undirected network [B Ball et al (2011 Phys. Rev. E 84 036103)]. We test our algorithm on synthetic networks (both overlapping and nonoverlapping communities) and apply it to two real-world networks: a southern women bipartite network and a human transcriptional regulatory mixture network. The results suggest that our model performs well for all three types of networks, is competitive with other algorithms for unipartite or bipartite networks, and is applicable to real-world networks.

  8. Self-configuration and self-optimization process in heterogeneous wireless networks.

    PubMed

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network's scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed.

  9. Structure-based control of complex networks with nonlinear dynamics.

    PubMed

    Zañudo, Jorge Gomez Tejeda; Yang, Gang; Albert, Réka

    2017-07-11

    What can we learn about controlling a system solely from its underlying network structure? Here we adapt a recently developed framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system toward any of its natural long-term dynamic behaviors, regardless of the specific functional forms and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of structural controllability in control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case but not in specific model instances.

  10. Next Generation Security for the 10,240 Processor Columbia System

    NASA Technical Reports Server (NTRS)

    Hinke, Thomas; Kolano, Paul; Shaw, Derek; Keller, Chris; Tweton, Dave; Welch, Todd; Liu, Wen (Betty)

    2005-01-01

    This presentation includes a discussion of the Columbia 10,240-processor system located at the NASA Advanced Supercomputing (NAS) division at the NASA Ames Research Center which supports each of NASA's four missions: science, exploration systems, aeronautics, and space operations. It is comprised of 20 Silicon Graphics nodes, each consisting of 512 Itanium II processors. A 64 processor Columbia front-end system supports users as they prepare their jobs and then submits them to the PBS system. Columbia nodes and front-end systems use the Linux OS. Prior to SC04, the Columbia system was used to attain a processing speed of 51.87 TeraFlops, which made it number two on the Top 500 list of the world's supercomputers and the world's fastest "operational" supercomputer since it was fully engaged in supporting NASA users.

  11. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network.

    PubMed

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead.

  12. Increasing the coverage area through relay node deployment in long term evolution advanced cellular networks

    NASA Astrophysics Data System (ADS)

    Aldhaibani, Jaafar A.; Ahmad, R. B.; Yahya, A.; Azeez, Suzan A.

    2015-05-01

    Wireless multi-hop relay networks have become very important technologies in mobile communications. These networks ensure high throughput and coverage extension with a low cost. The poor capacity at cell edges is not enough to meet with growing demand of high capacity and throughput irrespective of user's placement in the cellular network. In this paper we propose optimal placement of relay node that provides maximum achievable rate at users and enhances the throughput and coverage at cell edge region. The proposed scheme is based on the outage probability at users and taken on account the interference between nodes. Numerical analyses along with simulation results indicated there are an improvement in capacity for users at the cell edge is 40% increment from all cell capacity.

  13. Network Payload Integration for the Scan-Eagle UAV

    DTIC Science & Technology

    2007-12-01

    With the increasing maturity of MESH network technology, it is inevitable that we exploit the synergistic capabilities in networking of autonomous ... vehicles . The interconnectivity enables the sharing or dissemination of information between various nodes and has the capability to enhance

  14. 25 CFR 224.62 - May a final proposed TERA differ from the original proposed TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false May a final proposed TERA differ from the original proposed TERA? 224.62 Section 224.62 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF...

  15. Performance and analysis of MAC protocols based on application

    NASA Astrophysics Data System (ADS)

    Yadav, Ravi; Daniel, A. K.

    2018-04-01

    Wireless Sensor Network is one of the rapid emerging technology in recent decades. It covers large application area as civilian and military. Wireless Sensor Network primary consists of sensor nodes having low-power, low cost and multifunctional activities to collaborates and communicates via wireless medium. The deployment of sensor nodes are adhoc in nature, so sensor nodes are auto organize themselves in such a way to communicate with each other. The characteristics make more challenging areas on WSNs. This paper gives overview about characteristics of WSNs, Architecture and Contention Based MAC protocol. The paper present analysis of various protocol based on performance.

  16. An adaptive neural swarm approach for intrusion defense in ad hoc networks

    NASA Astrophysics Data System (ADS)

    Cannady, James

    2011-06-01

    Wireless sensor networks (WSN) and mobile ad hoc networks (MANET) are being increasingly deployed in critical applications due to the flexibility and extensibility of the technology. While these networks possess numerous advantages over traditional wireless systems in dynamic environments they are still vulnerable to many of the same types of host-based and distributed attacks common to those systems. Unfortunately, the limited power and bandwidth available in WSNs and MANETs, combined with the dynamic connectivity that is a defining characteristic of the technology, makes it extremely difficult to utilize traditional intrusion detection techniques. This paper describes an approach to accurately and efficiently detect potentially damaging activity in WSNs and MANETs. It enables the network as a whole to recognize attacks, anomalies, and potential vulnerabilities in a distributive manner that reflects the autonomic processes of biological systems. Each component of the network recognizes activity in its local environment and then contributes to the overall situational awareness of the entire system. The approach utilizes agent-based swarm intelligence to adaptively identify potential data sources on each node and on adjacent nodes throughout the network. The swarm agents then self-organize into modular neural networks that utilize a reinforcement learning algorithm to identify relevant behavior patterns in the data without supervision. Once the modular neural networks have established interconnectivity both locally and with neighboring nodes the analysis of events within the network can be conducted collectively in real-time. The approach has been shown to be extremely effective in identifying distributed network attacks.

  17. High-efficiency space-based software radio architectures & algorithms (a minimum size, weight, and power TeraOps processor)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunham, Mark Edward; Baker, Zachary K; Stettler, Matthew W

    2009-01-01

    Los Alamos has recently completed the latest in a series of Reconfigurable Software Radios, which incorporates several key innovations in both hardware design and algorithms. Due to our focus on satellite applications, each design must extract the best size, weight, and power performance possible from the ensemble of Commodity Off-the-Shelf (COTS) parts available at the time of design. In this case we have achieved 1 TeraOps/second signal processing on a 1920 Megabit/second datastream, while using only 53 Watts mains power, 5.5 kg, and 3 liters. This processing capability enables very advanced algorithms such as our wideband RF compression scheme tomore » operate remotely, allowing network bandwidth constrained applications to deliver previously unattainable performance.« less

  18. Sinkhole Avoidance Routing in Wireless Sensor Networks

    DTIC Science & Technology

    2011-05-09

    sensor network consists of individual sensor nodes that work cooperatively to collect and communicate environmental data. In a surveillance role, a WSN...Wireless sensor networks, or WSNs, are an emerging commercial technology that may have practical applications on the modern battlefield. A wireless

  19. Transforming Ordinary Buildings into Smart Buildings via Low-Cost, Self-Powering Wireless Sensors & Sensor Networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, Philip

    The research objective of this project is to design and demonstrate a low-cost, compact, easy-to-deploy, maintenance-free sensor node technology, and a network of such sensors, which enable the monitoring of multiphysical parameters and can transform today’s ordinary buildings into smart buildings with environmental awareness. We develop the sensor node and network via engineering and integration of existing technologies, including high-efficiency mechanical energy harvesting, and ultralow-power integrated circuits (ICs) for sensing and wireless communication. Through integration and innovative power management via specifically designed low-power control circuits for wireless sensing applications, and tailoring energy-harvesting components to indoor applications, the target products willmore » have smaller volume, higher efficiency, and much lower cost (in both manufacturing and maintenance) than the baseline technology. Our development and commercialization objective is to create prototypes for our target products under the CWRU-Intwine collaboration.« less

  20. Self-Configuration and Self-Optimization Process in Heterogeneous Wireless Networks

    PubMed Central

    Guardalben, Lucas; Villalba, Luis Javier García; Buiati, Fábio; Sobral, João Bosco Mangueira; Camponogara, Eduardo

    2011-01-01

    Self-organization in Wireless Mesh Networks (WMN) is an emergent research area, which is becoming important due to the increasing number of nodes in a network. Consequently, the manual configuration of nodes is either impossible or highly costly. So it is desirable for the nodes to be able to configure themselves. In this paper, we propose an alternative architecture for self-organization of WMN based on Optimized Link State Routing Protocol (OLSR) and the ad hoc on demand distance vector (AODV) routing protocols as well as using the technology of software agents. We argue that the proposed self-optimization and self-configuration modules increase the throughput of network, reduces delay transmission and network load, decreases the traffic of HELLO messages according to network’s scalability. By simulation analysis, we conclude that the self-optimization and self-configuration mechanisms can significantly improve the performance of OLSR and AODV protocols in comparison to the baseline protocols analyzed. PMID:22346584

  1. 25 CFR 224.173 - How does a tribe rescind a TERA?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 25 Indians 1 2012-04-01 2011-04-01 true How does a tribe rescind a TERA? 224.173 Section 224.173... does a tribe rescind a TERA? To rescind a TERA, a tribe must submit to the Secretary a written tribal resolution or other official action of the tribe's governing body approving the voluntary rescission of the...

  2. 25 CFR 224.173 - How does a tribe rescind a TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How does a tribe rescind a TERA? 224.173 Section 224.173... does a tribe rescind a TERA? To rescind a TERA, a tribe must submit to the Secretary a written tribal resolution or other official action of the tribe's governing body approving the voluntary rescission of the...

  3. 25 CFR 224.173 - How does a tribe rescind a TERA?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 25 Indians 1 2013-04-01 2013-04-01 false How does a tribe rescind a TERA? 224.173 Section 224.173... does a tribe rescind a TERA? To rescind a TERA, a tribe must submit to the Secretary a written tribal resolution or other official action of the tribe's governing body approving the voluntary rescission of the...

  4. 25 CFR 224.173 - How does a tribe rescind a TERA?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 25 Indians 1 2014-04-01 2014-04-01 false How does a tribe rescind a TERA? 224.173 Section 224.173... does a tribe rescind a TERA? To rescind a TERA, a tribe must submit to the Secretary a written tribal resolution or other official action of the tribe's governing body approving the voluntary rescission of the...

  5. Intelligent Software Agents: Sensor Integration and Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulesz, James J; Lee, Ronald W

    2013-01-01

    Abstract In a post Macondo world the buzzwords are Integrity Management and Incident Response Management. The twin processes are not new but the opportunity to link the two is novel. Intelligent software agents can be used with sensor networks in distributed and centralized computing systems to enhance real-time monitoring of system integrity as well as manage the follow-on incident response to changing, and potentially hazardous, environmental conditions. The software components are embedded at the sensor network nodes in surveillance systems used for monitoring unusual events. When an event occurs, the software agents establish a new concept of operation at themore » sensing node, post the event status to a blackboard for software agents at other nodes to see , and then react quickly and efficiently to monitor the scale of the event. The technology addresses a current challenge in sensor networks that prevents a rapid and efficient response when a sensor measurement indicates that an event has occurred. By using intelligent software agents - which can be stationary or mobile, interact socially, and adapt to changing situations - the technology offers features that are particularly important when systems need to adapt to active circumstances. For example, when a release is detected, the local software agent collaborates with other agents at the node to exercise the appropriate operation, such as: targeted detection, increased detection frequency, decreased detection frequency for other non-alarming sensors, and determination of environmental conditions so that adjacent nodes can be informed that an event is occurring and when it will arrive. The software agents at the nodes can also post the data in a targeted manner, so that agents at other nodes and the command center can exercise appropriate operations to recalibrate the overall sensor network and associated intelligence systems. The paper describes the concepts and provides examples of real-world implementations including the Threat Detection and Analysis System (TDAS) at the International Port of Memphis and the Biological Warning and Incident Characterization System (BWIC) Environmental Monitoring (EM) Component. Technologies developed for these 24/7 operational systems have applications for improved real-time system integrity awareness as well as provide incident response (as needed) for production and field applications.« less

  6. A Game Theoretic Optimization Method for Energy Efficient Global Connectivity in Hybrid Wireless Sensor Networks

    PubMed Central

    Lee, JongHyup; Pak, Dohyun

    2016-01-01

    For practical deployment of wireless sensor networks (WSN), WSNs construct clusters, where a sensor node communicates with other nodes in its cluster, and a cluster head support connectivity between the sensor nodes and a sink node. In hybrid WSNs, cluster heads have cellular network interfaces for global connectivity. However, when WSNs are active and the load of cellular networks is high, the optimal assignment of cluster heads to base stations becomes critical. Therefore, in this paper, we propose a game theoretic model to find the optimal assignment of base stations for hybrid WSNs. Since the communication and energy cost is different according to cellular systems, we devise two game models for TDMA/FDMA and CDMA systems employing power prices to adapt to the varying efficiency of recent wireless technologies. The proposed model is defined on the assumptions of the ideal sensing field, but our evaluation shows that the proposed model is more adaptive and energy efficient than local selections. PMID:27589743

  7. Diamond photonics for distributed quantum networks

    NASA Astrophysics Data System (ADS)

    Johnson, Sam; Dolan, Philip R.; Smith, Jason M.

    2017-09-01

    The distributed quantum network, in which nodes comprising small but well-controlled quantum states are entangled via photonic channels, has in recent years emerged as a strategy for delivering a range of quantum technologies including secure communications, enhanced sensing and scalable quantum computing. Colour centres in diamond are amongst the most promising candidates for nodes fabricated in the solid-state, offering potential for large scale production and for chip-scale integrated devices. In this review we consider the progress made and the remaining challenges in developing diamond-based nodes for quantum networks. We focus on the nitrogen-vacancy and silicon-vacancy colour centres, which have demonstrated many of the necessary attributes for these applications. We focus in particular on the use of waveguides and other photonic microstructures for increasing the efficiency with which photons emitted from these colour centres can be coupled into a network, and the use of microcavities for increasing the fraction of photons emitted that are suitable for generating entanglement between nodes.

  8. SBIR Technology Applications to Space Communications and Navigation (SCaN)

    NASA Technical Reports Server (NTRS)

    Liebrecht, Phil; Eblen, Pat; Rush, John; Tzinis, Irene

    2010-01-01

    This slide presentation reviews the mission of the Space Communications and Navigation (SCaN) Office with particular emphasis on opportunities for technology development with SBIR companies. The SCaN office manages NASA's space communications and navigation networks: the Near Earth Network (NEN), the Space Network (SN), and the Deep Space Network (DSN). The SCaN networks nodes are shown on a world wide map and the networks are described. Two types of technologies are described: Pull technology, and Push technologies. A listing of technology themes is presented, with a discussion on Software defined Radios, Optical Communications Technology, and Lunar Lasercom Space Terminal (LLST). Other technologies that are being investigated are some Game Changing Technologies (GCT) i.e., technologies that offer the potential for improving comm. or nav. performance to the point that radical new mission objectives are possible, such as Superconducting Quantum Interference Filters, Silicon Nanowire Optical Detectors, and Auto-Configuring Cognitive Communications

  9. A Network Access Control Framework for 6LoWPAN Networks

    PubMed Central

    Oliveira, Luís M. L.; Rodrigues, Joel J. P. C.; de Sousa, Amaro F.; Lloret, Jaime

    2013-01-01

    Low power over wireless personal area networks (LoWPAN), in particular wireless sensor networks, represent an emerging technology with high potential to be employed in critical situations like security surveillance, battlefields, smart-grids, and in e-health applications. The support of security services in LoWPAN is considered a challenge. First, this type of networks is usually deployed in unattended environments, making them vulnerable to security attacks. Second, the constraints inherent to LoWPAN, such as scarce resources and limited battery capacity, impose a careful planning on how and where the security services should be deployed. Besides protecting the network from some well-known threats, it is important that security mechanisms be able to withstand attacks that have not been identified before. One way of reaching this goal is to control, at the network access level, which nodes can be attached to the network and to enforce their security compliance. This paper presents a network access security framework that can be used to control the nodes that have access to the network, based on administrative approval, and to enforce security compliance to the authorized nodes. PMID:23334610

  10. Photonic Quantum Networks formed from NV− centers

    PubMed Central

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J.; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J.

    2016-01-01

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV−, with one nuclear spin from 15N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology. PMID:27215433

  11. Photonic Quantum Networks formed from NV(-) centers.

    PubMed

    Nemoto, Kae; Trupke, Michael; Devitt, Simon J; Scharfenberger, Burkhard; Buczak, Kathrin; Schmiedmayer, Jörg; Munro, William J

    2016-05-24

    In this article we present a simple repeater scheme based on the negatively-charged nitrogen vacancy centre in diamond. Each repeater node is built from modules comprising an optical cavity containing a single NV(-), with one nuclear spin from (15)N as quantum memory. The module uses only deterministic processes and interactions to achieve high fidelity operations (>99%), and modules are connected by optical fiber. In the repeater node architecture, the processes between modules by photons can be in principle deterministic, however current limitations on optical components lead the processes to be probabilistic but heralded. Our resource-modest repeater architecture contains two modules at each node, and the repeater nodes are then connected by entangled photon pairs. We discuss the performance of such a quantum repeater network with modest resources and then incorporate more resource-intense strategies step by step. Our architecture should allow large-scale quantum information networks with existing or near future technology.

  12. A Tree Based Self-routing Scheme for Mobility Support in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Young-Duk; Yang, Yeon-Mo; Kang, Won-Seok; Kim, Jin-Wook; An, Jinung

    Recently, WSNs (Wireless Sensor Networks) with mobile robot is a growing technology that offer efficient communication services for anytime and anywhere applications. However, the tiny sensor node has very limited network resources due to its low battery power, low data rate, node mobility, and channel interference constraint between neighbors. Thus, in this paper, we proposed a tree based self-routing protocol for autonomous mobile robots based on beacon mode and implemented in real test-bed environments. The proposed scheme offers beacon based real-time scheduling for reliable association process between parent and child nodes. In addition, it supports smooth handover procedure by reducing flooding overhead of control packets. Throughout the performance evaluation by using a real test-bed system and simulation, we illustrate that our proposed scheme demonstrates promising performance for wireless sensor networks with mobile robots.

  13. Network Monitor and Control of Disruption-Tolerant Networks

    NASA Technical Reports Server (NTRS)

    Torgerson, J. Leigh

    2014-01-01

    For nearly a decade, NASA and many researchers in the international community have been developing Internet-like protocols that allow for automated network operations in networks where the individual links between nodes are only sporadically connected. A family of Disruption-Tolerant Networking (DTN) protocols has been developed, and many are reaching CCSDS Blue Book status. A NASA version of DTN known as the Interplanetary Overlay Network (ION) has been flight-tested on the EPOXI spacecraft and ION is currently being tested on the International Space Station. Experience has shown that in order for a DTN service-provider to set up a large scale multi-node network, a number of network monitor and control technologies need to be fielded as well as the basic DTN protocols. The NASA DTN program is developing a standardized means of querying a DTN node to ascertain its operational status, known as the DTN Management Protocol (DTNMP), and the program has developed some prototypes of DTNMP software. While DTNMP is a necessary component, it is not sufficient to accomplish Network Monitor and Control of a DTN network. JPL is developing a suite of tools that provide for network visualization, performance monitoring and ION node control software. This suite of network monitor and control tools complements the GSFC and APL-developed DTN MP software, and the combined package can form the basis for flight operations using DTN.

  14. Energy Options for Wireless Sensor Nodes.

    PubMed

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-12-08

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting.

  15. Energy efficient sensor network implementations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frigo, Janette R; Raby, Eric Y; Brennan, Sean M

    In this paper, we discuss a low power embedded sensor node architecture we are developing for distributed sensor network systems deployed in a natural environment. In particular, we examine the sensor node for energy efficient processing-at-the-sensor. We analyze the following modes of operation; event detection, sleep(wake-up), data acquisition, data processing modes using low power, high performance embedded technology such as specialized embedded DSP processors and a low power FPGAs at the sensing node. We use compute intensive sensor node applications: an acoustic vehicle classifier (frequency domain analysis) and a video license plate identification application (learning algorithm) as a case study.more » We report performance and total energy usage for our system implementations and discuss the system architecture design trade offs.« less

  16. Energy Options for Wireless Sensor Nodes

    PubMed Central

    Knight, Chris; Davidson, Joshua; Behrens, Sam

    2008-01-01

    Reduction in size and power consumption of consumer electronics has opened up many opportunities for low power wireless sensor networks. One of the major challenges is in supporting battery operated devices as the number of nodes in a network grows. The two main alternatives are to utilize higher energy density sources of stored energy, or to generate power at the node from local forms of energy. This paper reviews the state-of-the art technology in the field of both energy storage and energy harvesting for sensor nodes. The options discussed for energy storage include batteries, capacitors, fuel cells, heat engines and betavoltaic systems. The field of energy harvesting is discussed with reference to photovoltaics, temperature gradients, fluid flow, pressure variations and vibration harvesting. PMID:27873975

  17. Distrubtion Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  18. Distribution Tolerant Network Technology Flight Validation Report: DINET

    NASA Technical Reports Server (NTRS)

    Jones, Ross M.

    2009-01-01

    In October and November of 2008, the Jet Propulsion Laboratory installed and tested essential elements of Delay/Disruption Tolerant Networking (DTN) technology on the Deep Impact spacecraft. This experiment, called Deep Impact Network Experiment (DINET), was performed in close cooperation with the EPOXI project which has responsibility for the spacecraft. During DINET some 300 images were transmitted from the JPL nodes to the spacecraft. Then, they were automatically forwarded from the spacecraft back to the JPL nodes, exercising DTN's bundle origination, transmission, acquisition, dynamic route computation, congestion control, prioritization, custody transfer, and automatic retransmission procedures, both on the spacecraft and on the ground, over a period of 27 days. All transmitted bundles were successfully received, without corruption. The DINET experiment demonstrated DTN readiness for operational use in space missions.

  19. Efficient and Stable Routing Algorithm Based on User Mobility and Node Density in Urban Vehicular Network

    PubMed Central

    Al-Mayouf, Yusor Rafid Bahar; Ismail, Mahamod; Abdullah, Nor Fadzilah; Wahab, Ainuddin Wahid Abdul; Mahdi, Omar Adil; Khan, Suleman; Choo, Kim-Kwang Raymond

    2016-01-01

    Vehicular ad hoc networks (VANETs) are considered an emerging technology in the industrial and educational fields. This technology is essential in the deployment of the intelligent transportation system, which is targeted to improve safety and efficiency of traffic. The implementation of VANETs can be effectively executed by transmitting data among vehicles with the use of multiple hops. However, the intrinsic characteristics of VANETs, such as its dynamic network topology and intermittent connectivity, limit data delivery. One particular challenge of this network is the possibility that the contributing node may only remain in the network for a limited time. Hence, to prevent data loss from that node, the information must reach the destination node via multi-hop routing techniques. An appropriate, efficient, and stable routing algorithm must be developed for various VANET applications to address the issues of dynamic topology and intermittent connectivity. Therefore, this paper proposes a novel routing algorithm called efficient and stable routing algorithm based on user mobility and node density (ESRA-MD). The proposed algorithm can adapt to significant changes that may occur in the urban vehicular environment. This algorithm works by selecting an optimal route on the basis of hop count and link duration for delivering data from source to destination, thereby satisfying various quality of service considerations. The validity of the proposed algorithm is investigated by its comparison with ARP-QD protocol, which works on the mechanism of optimal route finding in VANETs in urban environments. Simulation results reveal that the proposed ESRA-MD algorithm shows remarkable improvement in terms of delivery ratio, delivery delay, and communication overhead. PMID:27855165

  20. Potential and challenges of body area networks for personal health.

    PubMed

    Penders, Julien; van de Molengraft, Jef; Brown, Lindsay; Grundlehner, Bernard; Gyselinckx, Bert; Van Hoof, Chris

    2009-01-01

    This paper illustrates how body area network technology may enable new personal health concepts. A BAN technology platform is presented, which integrates technology building blocks from the Human++ research program on autonomous wireless sensors. Technology evaluation for the case of wireless sleep staging and real-time arousal monitoring is reported. Key technology challenges are discussed. The ultimate target is the development of miniaturized body sensor nodes powered by body-energy, anticipating the needs of emerging personal health applications.

  1. Unstructured P2P Network Load Balance Strategy Based on Multilevel Partitioning of Hypergraph

    NASA Astrophysics Data System (ADS)

    Feng, Lv; Chunlin, Gao; Kaiyang, Ma

    2017-05-01

    With rapid development of computer performance and distributed technology, P2P-based resource sharing mode plays important role in Internet. P2P network users continued to increase so the high dynamic characteristics of the system determine that it is difficult to obtain the load of other nodes. Therefore, a dynamic load balance strategy based on hypergraph is proposed in this article. The scheme develops from the idea of hypergraph theory in multilevel partitioning. It adopts optimized multilevel partitioning algorithms to partition P2P network into several small areas, and assigns each area a supernode for the management and load transferring of the nodes in this area. In the case of global scheduling is difficult to be achieved, the priority of a number of small range of load balancing can be ensured first. By the node load balance in each small area the whole network can achieve relative load balance. The experiments indicate that the load distribution of network nodes in our scheme is obviously compacter. It effectively solves the unbalanced problems in P2P network, which also improve the scalability and bandwidth utilization of system.

  2. Popularity versus similarity in growing networks.

    PubMed

    Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, M Ángeles; Boguñá, Marián; Krioukov, Dmitri

    2012-09-27

    The principle that 'popularity is attractive' underlies preferential attachment, which is a common explanation for the emergence of scaling in growing networks. If new connections are made preferentially to more popular nodes, then the resulting distribution of the number of connections possessed by nodes follows power laws, as observed in many real networks. Preferential attachment has been directly validated for some real networks (including the Internet), and can be a consequence of different underlying processes based on node fitness, ranking, optimization, random walks or duplication. Here we show that popularity is just one dimension of attractiveness; another dimension is similarity. We develop a framework in which new connections optimize certain trade-offs between popularity and similarity, instead of simply preferring popular nodes. The framework has a geometric interpretation in which popularity preference emerges from local optimization. As opposed to preferential attachment, our optimization framework accurately describes the large-scale evolution of technological (the Internet), social (trust relationships between people) and biological (Escherichia coli metabolic) networks, predicting the probability of new links with high precision. The framework that we have developed can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  3. Net Warrior D10 Technology Report: Airborne Early Warning and Control (AEW&C) and Data Link Nodes

    DTIC Science & Technology

    2012-04-01

    ADO ) approach to implementing Network Centric Warfare (NCW) through ‘learning by doing’. Net Warrior was conceived to address, through... frameworks are able to satisfy design needs of applications to produce stable mission and net centric systems. NW-D10 employed a SOA approach to...UNCLASSIFIED Net Warrior D10 Technology Report: Airborne Early Warning and Control (AEW&C) and Data Link Nodes Derek Dominish

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    Welcome, Luigi di Lella and Rolf Heuer-Design and Construction of the ISR, Kurt Hubner-Physics at small angles, Ugo Amaldi (TERA Foundation)-The Impact of the ISR on Accelerator Physics and Technology, Philip J. Bryant-Physics at high transverse momentum, Pierre Darriulat (VATLY-Hanoi). Concluding remarks, Rolf Heuer

  5. TSCA Experimental Release Application Approved for Pseudomonas putida Strains (fact sheet)

    EPA Pesticide Factsheets

    In 1998, EPA approved the TERAs R98-0004/5 submitted by the National Explosives Waste Technology & Evaluation Center (NEWTEC) and the Oak Ridge National Laboratory for field trials of two modified strains of Pseudomonas putida (P.putida).

  6. Mapping PetaSHA Applications to TeraGrid Architectures

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Moore, R.; Olsen, K.; Zhu, J.; Dalguer, L. A.; Day, S.; Cruz-Atienza, V.; Maechling, P.; Jordan, T.

    2007-12-01

    The Southern California Earthquake Center (SCEC) has a science program in developing an integrated cyberfacility - PetaSHA - for executing physics-based seismic hazard analysis (SHA) computations. The NSF has awarded PetaSHA 15 million allocation service units this year on the fastest supercomputers available within the NSF TeraGrid. However, one size does not fit all, a range of systems are needed to support this effort at different stages of the simulations. Enabling PetaSHA simulations on those TeraGrid architectures to solve both dynamic rupture and seismic wave propagation have been a challenge from both hardware and software levels. This is an adaptation procedure to meet specific requirements of each architecture. It is important to determine how fundamental system attributes affect application performance. We present an adaptive approach in our PetaSHA application that enables the simultaneous optimization of both computation and communication at run-time using flexible settings. These techniques optimize initialization, source/media partition and MPI-IO output in different ways to achieve optimal performance on the target machines. The resulting code is a factor of four faster than the orignial version. New MPI-I/O capabilities have been added for the accurate Staggered-Grid Split-Node (SGSN) method for dynamic rupture propagation in the velocity-stress staggered-grid finite difference scheme (Dalguer and Day, JGR, 2007), We use execution workflow across TeraGrid sites for managing the resulting data volumes. Our lessons learned indicate that minimizing time to solution is most critical, in particular when scheduling large scale simulations across supercomputer sites. The TeraShake platform has been ported to multiple architectures including TACC Dell lonestar and Abe, Cray XT3 Bigben and Blue Gene/L. Parallel efficiency of 96% with the PetaSHA application Olsen-AWM has been demonstrated on 40,960 Blue Gene/L processors at IBM TJ Watson Center. Notable accomplishments using the optimized code include the M7.8 ShakeOut rupture scenario, as part of the southern San Andreas Fault evaluation SoSAFE. The ShakeOut simulation domain is the same as used for the SCEC TeraShake simulations (600 km by 300 km by 80 km). However, the higher resolution of 100 m with frequency content up to 1 Hz required 14.4 billion grid points, eight times more than the TeraShake scenarios. The simulation used 2000 TACC Dell linux Lonestar processors and took 56 hours to compute 240 seconds of wave propagation. The pre-processing input partition, as well as post-processing analysis has been performed on the SDSC IBM Datastar p655 and p690. In addition, as part of the SCEC DynaShake computational platform, the SGSN capability was used to model dynamic rupture propagation for the ShakeOut scenario that match the proposed surface slip and size of the event. Mapping applications to different architectures require coordination of many areas of expertise in hardware and application level, an outstanding challenge faced on the current petascale computing effort. We believe our techniques as well as distributed data management through data grids have provided a practical example of how to effectively use multiple compute resources, and our results will benefit other geoscience disciplines as well.

  7. Water Catchment and Storage Monitoring

    NASA Astrophysics Data System (ADS)

    Bruenig, Michael; Dunbabin, Matt; Moore, Darren

    2010-05-01

    Sensors and Sensor Networks technologies provide the means for comprehensive understanding of natural processes in the environment by radically increasing the availability of empirical data about the natural world. This step change is achieved through a dramatic reduction in the cost of data acquisition and many orders of magnitude increase in the spatial and temporal granularity of measurements. Australia's Commonwealth Scientific and Industrial Research Organisation (CSIRO) is undertaking a strategic research program developing wireless sensor network technology for environmental monitoring. As part of this research initiative, we are engaging with government agencies to densely monitor water catchments and storages, thereby enhancing understanding of the environmental processes that affect water quality. In the Gold Coast hinterland in Queensland, Australia, we are building sensor networks to monitor restoration of rainforest within the catchment, and to monitor methane flux release and water quality in the water storages. This poster will present our ongoing work in this region of eastern Australia. The Springbrook plateau in the Gold Coast hinterland lies within a World Heritage listed area, has uniquely high rainfall, hosts a wide range of environmental gradients, and forms part of the catchment for Gold Coast's water storages. Parts of the plateau are being restored from agricultural grassland to native rainforest vegetation. Since April 2008, we have had a 10-node, multi-hop sensor network deployed there to monitor microclimate variables. This network will be expanded to 50-nodes in February 2010, and to around 200-nodes and 1000 sensors by mid-2011, spread over an area of approximately 0.8 square kilometers. The extremely dense microclimate sensing will enhance knowledge of the environmental factors that enhance or inhibit the regeneration of native rainforest. The final network will also include nodes with acoustic and image sensing capability for monitoring higher level parameters such as fauna diversity. The regenerating rainforest environment presents a number of interesting challenges for wireless sensor networks related to energy harvesting and to reliable low-power wireless communications through dense and wet vegetation. Located downstream from the Springbrook plateau, the Little Nerang and Hinze dams are the two major water supply storages for the Gold Coast region. In September 2009 we fitted methane, light, wind, and sonar sensors to our autonomous electric boat platform and successfully demonstrated autonomous collection of methane flux release data on Little Nerang Dam. Sensor and boat status data were relayed back to a human operator on the shore of the dam via a small network of our Fleck™ nodes. The network also included 4 floating nodes each fitted with a string of 6 temperature sensors for profiling temperature at different water depths. We plan to expand the network further during 2010 to incorporate floating methane nodes, additional temperature sensing nodes, as well as land-based microclimate nodes. The overall monitoring system will provide significant data to understand the connected catchment-to-storage system and will provide continuous data to monitor and understand change trends within this world heritage area.

  8. An improved label propagation algorithm based on node importance and random walk for community detection

    NASA Astrophysics Data System (ADS)

    Ma, Tianren; Xia, Zhengyou

    2017-05-01

    Currently, with the rapid development of information technology, the electronic media for social communication is becoming more and more popular. Discovery of communities is a very effective way to understand the properties of complex networks. However, traditional community detection algorithms consider the structural characteristics of a social organization only, with more information about nodes and edges wasted. In the meanwhile, these algorithms do not consider each node on its merits. Label propagation algorithm (LPA) is a near linear time algorithm which aims to find the community in the network. It attracts many scholars owing to its high efficiency. In recent years, there are more improved algorithms that were put forward based on LPA. In this paper, an improved LPA based on random walk and node importance (NILPA) is proposed. Firstly, a list of node importance is obtained through calculation. The nodes in the network are sorted in descending order of importance. On the basis of random walk, a matrix is constructed to measure the similarity of nodes and it avoids the random choice in the LPA. Secondly, a new metric IAS (importance and similarity) is calculated by node importance and similarity matrix, which we can use to avoid the random selection in the original LPA and improve the algorithm stability. Finally, a test in real-world and synthetic networks is given. The result shows that this algorithm has better performance than existing methods in finding community structure.

  9. Evaluation of the Effects of Hidden Node Problems in IEEE 802.15.7 Uplink Performance

    PubMed Central

    Ley-Bosch, Carlos; Alonso-González, Itziar; Sánchez-Rodríguez, David; Ramírez-Casañas, Carlos

    2016-01-01

    In the last few years, the increasing use of LEDs in illumination systems has been conducted due to the emergence of Visible Light Communication (VLC) technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. In 2011, the Institute of Electrical and Electronics Engineers (IEEE) published the IEEE 802.15.7 standard for Wireless Personal Area Networks based on VLC. Due to limitations in the coverage of the transmitted signal, wireless networks can suffer from the hidden node problems, when there are nodes in the network whose transmissions are not detected by other nodes. This problem can cause an important degradation in communications when they are made by means of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access control method, which is used in IEEE 802.15.7 This research work evaluates the effects of the hidden node problem in the performance of the IEEE 802.15.7 standard We implement a simulator and analyze VLC performance in terms of parameters like end-to-end goodput and message loss rate. As part of this research work, a solution to the hidden node problem is proposed, based on the use of idle patterns defined in the standard. Idle patterns are sent by the network coordinator node to communicate to the other nodes that there is an ongoing transmission. The validity of the proposed solution is demonstrated with simulation results. PMID:26861352

  10. Evaluation of the Effects of Hidden Node Problems in IEEE 802.15.7 Uplink Performance.

    PubMed

    Ley-Bosch, Carlos; Alonso-González, Itziar; Sánchez-Rodríguez, David; Ramírez-Casañas, Carlos

    2016-02-06

    In the last few years, the increasing use of LEDs in illumination systems has been conducted due to the emergence of Visible Light Communication (VLC) technologies, in which data communication is performed by transmitting through the visible band of the electromagnetic spectrum. In 2011, the Institute of Electrical and Electronics Engineers (IEEE) published the IEEE 802.15.7 standard for Wireless Personal Area Networks based on VLC. Due to limitations in the coverage of the transmitted signal, wireless networks can suffer from the hidden node problems, when there are nodes in the network whose transmissions are not detected by other nodes. This problem can cause an important degradation in communications when they are made by means of the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) access control method, which is used in IEEE 802.15.7 This research work evaluates the effects of the hidden node problem in the performance of the IEEE 802.15.7 standard We implement a simulator and analyze VLC performance in terms of parameters like end-to-end goodput and message loss rate. As part of this research work, a solution to the hidden node problem is proposed, based on the use of idle patterns defined in the standard. Idle patterns are sent by the network coordinator node to communicate to the other nodes that there is an ongoing transmission. The validity of the proposed solution is demonstrated with simulation results.

  11. Improved routing strategy based on gravitational field theory

    NASA Astrophysics Data System (ADS)

    Song, Hai-Quan; Guo, Jin

    2015-10-01

    Routing and path selection are crucial for many communication and logistic applications. We study the interaction between nodes and packets and establish a simple model for describing the attraction of the node to the packet in transmission process by using the gravitational field theory, considering the real and potential congestion of the nodes. On the basis of this model, we propose a gravitational field routing strategy that considers the attractions of all of the nodes on the travel path to the packet. In order to illustrate the efficiency of proposed routing algorithm, we introduce the order parameter to measure the throughput of the network by the critical value of phase transition from a free flow phase to a congested phase, and study the distribution of betweenness centrality and traffic jam. Simulations show that, compared with the shortest path routing strategy, the gravitational field routing strategy considerably enhances the throughput of the network and balances the traffic load, and nearly all of the nodes are used efficiently. Project supported by the Technology and Development Research Project of China Railway Corporation (Grant No. 2012X007-D) and the Key Program of Technology and Development Research Foundation of China Railway Corporation (Grant No. 2012X003-A).

  12. An intelligent anti-jamming network system of data link

    NASA Astrophysics Data System (ADS)

    Fan, Xiangrui; Lin, Jingyong; Liu, Jiarun; Zhou, Chunmei

    2017-10-01

    Data link is the key information system for the cooperation of weapons, single physical layer anti-jamming technology has been unable to meet its requirements. High dynamic precision-guided weapon nodes like missiles, anti-jamming design of data link system need to have stronger pertinence and effectiveness: the best anti-jamming communication mode can be selected intelligently in combat environment, in real time, guarantee the continuity of communication. We discuss an anti-jamming intelligent networking technology of data link based on interference awareness, put forward a model of intelligent anti-jamming system, and introduces the cognitive node protocol stack model and intelligent anti-jamming method, in order to improve the data chain of intelligent anti-jamming ability.

  13. Complex networks with scale-free nature and hierarchical modularity

    NASA Astrophysics Data System (ADS)

    Shekatkar, Snehal M.; Ambika, G.

    2015-09-01

    Generative mechanisms which lead to empirically observed structure of networked systems from diverse fields like biology, technology and social sciences form a very important part of study of complex networks. The structure of many networked systems like biological cell, human society and World Wide Web markedly deviate from that of completely random networks indicating the presence of underlying processes. Often the main process involved in their evolution is the addition of links between existing nodes having a common neighbor. In this context we introduce an important property of the nodes, which we call mediating capacity, that is generic to many networks. This capacity decreases rapidly with increase in degree, making hubs weak mediators of the process. We show that this property of nodes provides an explanation for the simultaneous occurrence of the observed scale-free structure and hierarchical modularity in many networked systems. This also explains the high clustering and small-path length seen in real networks as well as non-zero degree-correlations. Our study also provides insight into the local process which ultimately leads to emergence of preferential attachment and hence is also important in understanding robustness and control of real networks as well as processes happening on real networks.

  14. A Mobile Anchor Assisted Localization Algorithm Based on Regular Hexagon in Wireless Sensor Networks

    PubMed Central

    Rodrigues, Joel J. P. C.

    2014-01-01

    Localization is one of the key technologies in wireless sensor networks (WSNs), since it provides fundamental support for many location-aware protocols and applications. Constraints of cost and power consumption make it infeasible to equip each sensor node in the network with a global position system (GPS) unit, especially for large-scale WSNs. A promising method to localize unknown nodes is to use several mobile anchors which are equipped with GPS units moving among unknown nodes and periodically broadcasting their current locations to help nearby unknown nodes with localization. This paper proposes a mobile anchor assisted localization algorithm based on regular hexagon (MAALRH) in two-dimensional WSNs, which can cover the whole monitoring area with a boundary compensation method. Unknown nodes calculate their positions by using trilateration. We compare the MAALRH with HILBERT, CIRCLES, and S-CURVES algorithms in terms of localization ratio, localization accuracy, and path length. Simulations show that the MAALRH can achieve high localization ratio and localization accuracy when the communication range is not smaller than the trajectory resolution. PMID:25133212

  15. Structure-based control of complex networks with nonlinear dynamics

    NASA Astrophysics Data System (ADS)

    Zanudo, Jorge G. T.; Yang, Gang; Albert, Reka

    What can we learn about controlling a system solely from its underlying network structure? Here we use a framework for control of networks governed by a broad class of nonlinear dynamics that includes the major dynamic models of biological, technological, and social processes. This feedback-based framework provides realizable node overrides that steer a system towards any of its natural long term dynamic behaviors, regardless of the dynamic details and system parameters. We use this framework on several real networks, identify the topological characteristics that underlie the predicted node overrides, and compare its predictions to those of classical structural control theory. Finally, we demonstrate this framework's applicability in dynamic models of gene regulatory networks and identify nodes whose override is necessary for control in the general case, but not in specific model instances. This work was supported by NSF Grants PHY 1205840 and IIS 1160995. JGTZ is a recipient of a Stand Up To Cancer - The V Foundation Convergence Scholar Award.

  16. Wireless Sensor Network for Radiometric Detection and Assessment of Partial Discharge in High-Voltage Equipment

    NASA Astrophysics Data System (ADS)

    Upton, D. W.; Saeed, B. I.; Mather, P. J.; Lazaridis, P. I.; Vieira, M. F. Q.; Atkinson, R. C.; Tachtatzis, C.; Garcia, M. S.; Judd, M. D.; Glover, I. A.

    2018-03-01

    Monitoring of partial discharge (PD) activity within high-voltage electrical environments is increasingly used for the assessment of insulation condition. Traditional measurement techniques employ technologies that either require off-line installation or have high power consumption and are hence costly. A wireless sensor network is proposed that utilizes only received signal strength to locate areas of PD activity within a high-voltage electricity substation. The network comprises low-power and low-cost radiometric sensor nodes which receive the radiation propagated from a source of PD. Results are reported from several empirical tests performed within a large indoor environment and a substation environment using a network of nine sensor nodes. A portable PD source emulator was placed at multiple locations within the network. Signal strength measured by the nodes is reported via WirelessHART to a data collection hub where it is processed using a location algorithm. The results obtained place the measured location within 2 m of the actual source location.

  17. Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks.

    PubMed

    Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin

    2015-07-03

    With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people's lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme.

  18. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization.

    PubMed

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y; Alouini, Mohamed-Slim

    2017-12-26

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique.

  19. Energy Harvesting Hybrid Acoustic-Optical Underwater Wireless Sensor Networks Localization

    PubMed Central

    Saeed, Nasir; Celik, Abdulkadir; Al-Naffouri, Tareq Y.; Alouini, Mohamed-Slim

    2017-01-01

    Underwater wireless technologies demand to transmit at higher data rate for ocean exploration. Currently, large coverage is achieved by acoustic sensor networks with low data rate, high cost, high latency, high power consumption, and negative impact on marine mammals. Meanwhile, optical communication for underwater networks has the advantage of the higher data rate albeit for limited communication distances. Moreover, energy consumption is another major problem for underwater sensor networks, due to limited battery power and difficulty in replacing or recharging the battery of a sensor node. The ultimate solution to this problem is to add energy harvesting capability to the acoustic-optical sensor nodes. Localization of underwater sensor networks is of utmost importance because the data collected from underwater sensor nodes is useful only if the location of the nodes is known. Therefore, a novel localization technique for energy harvesting hybrid acoustic-optical underwater wireless sensor networks (AO-UWSNs) is proposed. AO-UWSN employs optical communication for higher data rate at a short transmission distance and employs acoustic communication for low data rate and long transmission distance. A hybrid received signal strength (RSS) based localization technique is proposed to localize the nodes in AO-UWSNs. The proposed technique combines the noisy RSS based measurements from acoustic communication and optical communication and estimates the final locations of acoustic-optical sensor nodes. A weighted multiple observations paradigm is proposed for hybrid estimated distances to suppress the noisy observations and give more importance to the accurate observations. Furthermore, the closed form solution for Cramer-Rao lower bound (CRLB) is derived for localization accuracy of the proposed technique. PMID:29278405

  20. Implementing neural nets with programmable logic

    NASA Technical Reports Server (NTRS)

    Vidal, Jacques J.

    1988-01-01

    Networks of Boolean programmable logic modules are presented as one purely digital class of artificial neural nets. The approach contrasts with the continuous analog framework usually suggested. Programmable logic networks are capable of handling many neural-net applications. They avoid some of the limitations of threshold logic networks and present distinct opportunities. The network nodes are called dynamically programmable logic modules. They can be implemented with digitally controlled demultiplexers. Each node performs a Boolean function of its inputs which can be dynamically assigned. The overall network is therefore a combinational circuit and its outputs are Boolean global functions of the network's input variables. The approach offers definite advantages for VLSI implementation, namely, a regular architecture with limited connectivity, simplicity of the control machinery, natural modularity, and the support of a mature technology.

  1. Implementation of Distributed Services for a Deep Sea Moored Instrument Network

    NASA Astrophysics Data System (ADS)

    Oreilly, T. C.; Headley, K. L.; Risi, M.; Davis, D.; Edgington, D. R.; Salamy, K. A.; Chaffey, M.

    2004-12-01

    The Monterey Ocean Observing System (MOOS) is a moored observatory network consisting of interconnected instrument nodes on the sea surface, midwater, and deep sea floor. We describe Software Infrastructure and Applications for MOOS ("SIAM"), which implement the management, control, and data acquisition infrastructure for the moored observatory. Links in the MOOS network include fiber-optic and 10-BaseT copper connections between the at-sea nodes. A Globalstar satellite transceiver or 900 MHz Freewave terrestrial line-of-sight RF modem provides the link to shore. All of these links support Internet protocols, providing TCP/IP connectivity throughout a system that extends from shore to sensor nodes at the air-sea interface, through the oceanic water column to a benthic network of sensor nodes extending across the deep sea floor. Exploiting this TCP/IP infrastructure as well as capabilities provided by MBARI's MOOS mooring controller, we use powerful Internet software technologies to implement a distributed management, control and data acquisition system for the moored observatory. The system design meets the demanding functional requirements specified for MOOS. Nodes and their instruments are represented by Java RMI "services" having well defined software interfaces. Clients anywhere on the network can interact with any node or instrument through its corresponding service. A client may be on the same node as the service, may be on another node, or may reside on shore. Clients may be human, e.g. when a scientist on shore accesses a deployed instrument in real-time through a user interface. Clients may also be software components that interact autonomously with instruments and nodes, e.g. for purposes such as system resource management or autonomous detection and response to scientifically interesting events. All electrical power to the moored network is provided by solar and wind energy, and the RF shore-to-mooring links are intermittent and relatively low-bandwidth connections. Thus power and wireless bandwidth are limited resources that constrain our choice of service technologies and wireless access strategy. We describe and evaluate system performance in light of actual deployment of observatory elements in Monterey Bay, and discuss how the system can be developed further. We also consider management and control strategies for the cable-to-shore observatory known as MARS ("Monterey Accelerated Research System"). The MARS cable will provide high power and continuous high-bandwidth connectivity between seafloor instrument nodes and shore, thus removing key limitations of the moored observatory. Moreover MARS functional requirements may differ significantly from MOOS requirements. In light of these differences, we discuss how elements of our MOOS moored observatory architecture might be adapted to MARS.

  2. Interconnecting astronomical networks: evolving from single networks to meta-networks

    NASA Astrophysics Data System (ADS)

    White, R. R.; Allan, A.; Evans, S.; Vestrand, W. T.; Wren, J.; Wozniak, P.

    2006-06-01

    Over the past four years we have seen continued advancement in network technology and how those technologies are beginning to enable astronomical science. Even though some sociological aspects are hindering full cooperation between most observatories and telescopes outside of their academic or institutional connections, an unprecedented step during the summer of 2005 was taken towards creating a world-wide interconnection of astronomical assets. The Telescope Alert Operations Network System (TALONS), a centralized server/client bi-directional network developed and operated by Los Alamos National Laboratory, integrated one of its network nodes with a node from the eScience Telescopes for Astronomical Research (eSTAR), a peer-to-peer agent based network developed and operated by The University of Exeter. Each network can act independently, providing support for their direct clients, and by interconnection provide local clients with access to; outside telescope systems, software tools unavailable locally, and the ability to utilize assets far more efficiently, thereby enabling science on a world-wide scale. In this paper we will look at the evolution of these independent networks into the worlds first heterogeneous telescope network and where this may take astronomy in the future. We will also examine those key elements necessary to providing universal communication between diverse astronomical networks.

  3. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY: Synchronization in Complex Networks with Multiple Connections

    NASA Astrophysics Data System (ADS)

    Wu, Qing-Chu; Fu, Xin-Chu; Sun, Wei-Gang

    2010-01-01

    In this paper a class of networks with multiple connections are discussed. The multiple connections include two different types of links between nodes in complex networks. For this new model, we give a simple generating procedure. Furthermore, we investigate dynamical synchronization behavior in a delayed two-layer network, giving corresponding theoretical analysis and numerical examples.

  4. [Study on network architecture of a tele-medical information sharing platform].

    PubMed

    Pan, Lin; Yu, Lun; Chen, Jin-xiong

    2006-07-01

    In the article,a plan of network construction which satisfies the demand of applications for a telemedical information sharing platform is proposed. We choice network access plans in view of user actual situation, through the analysis of the service demand and many kinds of network access technologies. Hospital servers that locate in LAN link sharing platform with node servers, should separate from the broadband network of sharing platform in order to ensure the security of the internal hospital network and the administration management. We use the VPN technology to realize the safe transmission of information in the platform network. Preliminary experiments have proved the plan is practicable.

  5. Assessment of Cognitive Communications Interest Areas for NASA Needs and Benefits

    NASA Technical Reports Server (NTRS)

    Knoblock, Eric J.; Madanayake, Arjuna

    2017-01-01

    This effort provides a survey and assessment of various cognitive communications interest areas, including node-to-node link optimization, intelligent routing/networking, and learning algorithms, and is conducted primarily from the perspective of NASA space communications needs and benefits. Areas of consideration include optimization methods, learning algorithms, and candidate implementations/technologies. Assessments of current research efforts are provided with mention of areas for further investment. Other considerations, such as antenna technologies and cognitive radio platforms, are briefly provided as well.

  6. Voice over internet protocol with prepaid calling card solutions

    NASA Astrophysics Data System (ADS)

    Gunadi, Tri

    2001-07-01

    The VoIP technology is growing up rapidly, it has big network impact on PT Telkom Indonesia, the bigger telecommunication operator in Indonesia. Telkom has adopted VoIP and one other technology, Intelligent Network (IN). We develop those technologies together in one service product, called Internet Prepaid Calling Card (IPCC). IPCC is becoming new breakthrough for the Indonesia telecommunication services especially on VoIP and Prepaid Calling Card solutions. Network architecture of Indonesia telecommunication consists of three layer, Local, Tandem and Trunck Exchange layer. Network development researches for IPCC architecture are focus on network overlay hierarchy, Internet and PSTN. With this design hierarchy the goal of Interworking PSTN, VoIP and IN calling card, become reality. Overlay design for IPCC is not on Trunck Exchange, this is the new architecture, these overlay on Tandem and Local Exchange, to make the faster call processing. The nodes added: Gateway (GW) and Card Management Center (CMC) The GW do interfacing between PSTN and Internet Network used ISDN-PRA and Ethernet. The other functions are making bridge on circuit (PSTN) with packet (VoIP) based and real time billing process. The CMC used for data storage, pin validation, report activation, tariff system, directory number and all the administration transaction. With two nodes added the IPCC service offered to the market.

  7. Discovering Network Structure Beyond Communities

    NASA Astrophysics Data System (ADS)

    Nishikawa, Takashi; Motter, Adilson E.

    2011-11-01

    To understand the formation, evolution, and function of complex systems, it is crucial to understand the internal organization of their interaction networks. Partly due to the impossibility of visualizing large complex networks, resolving network structure remains a challenging problem. Here we overcome this difficulty by combining the visual pattern recognition ability of humans with the high processing speed of computers to develop an exploratory method for discovering groups of nodes characterized by common network properties, including but not limited to communities of densely connected nodes. Without any prior information about the nature of the groups, the method simultaneously identifies the number of groups, the group assignment, and the properties that define these groups. The results of applying our method to real networks suggest the possibility that most group structures lurk undiscovered in the fast-growing inventory of social, biological, and technological networks of scientific interest.

  8. Impact of network structure on the capacity of wireless multihop ad hoc communication

    NASA Astrophysics Data System (ADS)

    Krause, Wolfram; Glauche, Ingmar; Sollacher, Rudolf; Greiner, Martin

    2004-07-01

    As a representative of a complex technological system, the so-called wireless multihop ad hoc communication networks are discussed. They represent an infrastructure-less generalization of todays wireless cellular phone networks. Lacking a central control authority, the ad hoc nodes have to coordinate themselves such that the overall network performs in an optimal way. A performance indicator is the end-to-end throughput capacity. Various models, generating differing ad hoc network structure via differing transmission power assignments, are constructed and characterized. They serve as input for a generic data traffic simulation as well as some semi-analytic estimations. The latter reveal that due to the most-critical-node effect the end-to-end throughput capacity sensitively depends on the underlying network structure, resulting in differing scaling laws with respect to network size.

  9. The SECOQC quantum key distribution network in Vienna

    NASA Astrophysics Data System (ADS)

    Peev, M.; Pacher, C.; Alléaume, R.; Barreiro, C.; Bouda, J.; Boxleitner, W.; Debuisschert, T.; Diamanti, E.; Dianati, M.; Dynes, J. F.; Fasel, S.; Fossier, S.; Fürst, M.; Gautier, J.-D.; Gay, O.; Gisin, N.; Grangier, P.; Happe, A.; Hasani, Y.; Hentschel, M.; Hübel, H.; Humer, G.; Länger, T.; Legré, M.; Lieger, R.; Lodewyck, J.; Lorünser, T.; Lütkenhaus, N.; Marhold, A.; Matyus, T.; Maurhart, O.; Monat, L.; Nauerth, S.; Page, J.-B.; Poppe, A.; Querasser, E.; Ribordy, G.; Robyr, S.; Salvail, L.; Sharpe, A. W.; Shields, A. J.; Stucki, D.; Suda, M.; Tamas, C.; Themel, T.; Thew, R. T.; Thoma, Y.; Treiber, A.; Trinkler, P.; Tualle-Brouri, R.; Vannel, F.; Walenta, N.; Weier, H.; Weinfurter, H.; Wimberger, I.; Yuan, Z. L.; Zbinden, H.; Zeilinger, A.

    2009-07-01

    In this paper, we present the quantum key distribution (QKD) network designed and implemented by the European project SEcure COmmunication based on Quantum Cryptography (SECOQC) (2004-2008), unifying the efforts of 41 research and industrial organizations. The paper summarizes the SECOQC approach to QKD networks with a focus on the trusted repeater paradigm. It discusses the architecture and functionality of the SECOQC trusted repeater prototype, which has been put into operation in Vienna in 2008 and publicly demonstrated in the framework of a SECOQC QKD conference held from October 8 to 10, 2008. The demonstration involved one-time pad encrypted telephone communication, a secure (AES encryption protected) video-conference with all deployed nodes and a number of rerouting experiments, highlighting basic mechanisms of the SECOQC network functionality. The paper gives an overview of the eight point-to-point network links in the prototype and their underlying technology: three plug and play systems by id Quantique, a one way weak pulse system from Toshiba Research in the UK, a coherent one-way system by GAP Optique with the participation of id Quantique and the AIT Austrian Institute of Technology (formerly ARCAustrian Research Centers GmbH—ARC is now operating under the new name AIT Austrian Institute of Technology GmbH following a restructuring initiative.), an entangled photons system by the University of Vienna and the AIT, a continuous-variables system by Centre National de la Recherche Scientifique (CNRS) and THALES Research and Technology with the participation of Université Libre de Bruxelles, and a free space link by the Ludwig Maximillians University in Munich connecting two nodes situated in adjacent buildings (line of sight 80 m). The average link length is between 20 and 30 km, the longest link being 83 km. The paper presents the architecture and functionality of the principal networking agent—the SECOQC node module, which enables the authentic classical communication required for key distillation, manages the generated key material, determines a communication path between any destinations in the network, and realizes end-to-end secure transport of key material between these destinations. The paper also illustrates the operation of the network in a number of typical exploitation regimes and gives an initial estimate of the network transmission capacity, defined as the maximum amount of key that can be exchanged, or alternatively the amount of information that can be transmitted with information theoretic security, between two arbitrary nodes.

  10. Building research infrastructure in community health centers: a Community Health Applied Research Network (CHARN) report.

    PubMed

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E

    2013-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and "matchmaking" between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings.

  11. Building Research Infrastructure in Community Health Centers: A Community Health Applied Research Network (CHARN) Report

    PubMed Central

    Likumahuwa, Sonja; Song, Hui; Singal, Robbie; Weir, Rosy Chang; Crane, Heidi; Muench, John; Sim, Shao-Chee; DeVoe, Jennifer E.

    2015-01-01

    This article introduces the Community Health Applied Research Network (CHARN), a practice-based research network of community health centers (CHCs). Established by the Health Resources and Services Administration in 2010, CHARN is a network of 4 community research nodes, each with multiple affiliated CHCs and an academic center. The four nodes (18 individual CHCs and 4 academic partners in 9 states) are supported by a data coordinating center. Here we provide case studies detailing how CHARN is building research infrastructure and capacity in CHCs, with a particular focus on how community practice-academic partnerships were facilitated by the CHARN structure. The examples provided by the CHARN nodes include many of the building blocks of research capacity: communication capacity and “matchmaking” between providers and researchers; technology transfer; research methods tailored to community practice settings; and community institutional review board infrastructure to enable community oversight. We draw lessons learned from these case studies that we hope will serve as examples for other networks, with special relevance for community-based networks seeking to build research infrastructure in primary care settings. PMID:24004710

  12. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Astrophysics Data System (ADS)

    1986-10-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  13. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 2: Fiber optic technology and long distance networks

    NASA Technical Reports Server (NTRS)

    1986-01-01

    The study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the Executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  14. Energy-efficient and fast data gathering protocols for indoor wireless sensor networks.

    PubMed

    Tümer, Abdullah Erdal; Gündüz, Mesut

    2010-01-01

    Wireless Sensor Networks have become an important technology with numerous potential applications for the interaction of computers and the physical environment in civilian and military areas. In the routing protocols that are specifically designed for the applications used by sensor networks, the limited available power of the sensor nodes has been taken into consideration in order to extend the lifetime of the networks. In this paper, two protocols based on LEACH and called R-EERP and S-EERP with base and threshold values are presented. R-EERP and S-EERP are two efficient energy aware routing protocols that can be used for some critical applications such as detecting dangerous gases (methane, ammonium, carbon monoxide, etc.) in an indoor environment. In R-EERP, sensor nodes are deployed randomly in a field similar to LEACH. In S-EERP, nodes are deployed sequentially in the rooms of the flats of a multi-story building. In both protocols, nodes forming clusters do not change during a cluster change time, only the cluster heads change. Furthermore, an XOR operation is performed on the collected data in order to prevent the sending of the same data sensed by the nodes close to each other. Simulation results show that our proposed protocols are more energy-efficient than the conventional LEACH protocol.

  15. INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Trajectory Control of Scale-Free Dynamical Networks with Exogenous Disturbances

    NASA Astrophysics Data System (ADS)

    Yang, Hong-Yong; Zhang, Shun; Zong, Guang-Deng

    2011-01-01

    In this paper, the trajectory control of multi-agent dynamical systems with exogenous disturbances is studied. Suppose multiple agents composing of a scale-free network topology, the performance of rejecting disturbances for the low degree node and high degree node is analyzed. Firstly, the consensus of multi-agent systems without disturbances is studied by designing a pinning control strategy on a part of agents, where this pinning control can bring multiple agents' states to an expected consensus track. Then, the influence of the disturbances is considered by developing disturbance observers, and disturbance observers based control (DOBC) are developed for disturbances generated by an exogenous system to estimate the disturbances. Asymptotical consensus of the multi-agent systems with disturbances under the composite controller can be achieved for scale-free network topology. Finally, by analyzing examples of multi-agent systems with scale-free network topology and exogenous disturbances, the verities of the results are proved. Under the DOBC with the designed parameters, the trajectory convergence of multi-agent systems is researched by pinning two class of the nodes. We have found that it has more stronger robustness to exogenous disturbances for the high degree node pinned than that of the low degree node pinned.

  16. A probabilistic dynamic energy model for ad-hoc wireless sensors network with varying topology

    NASA Astrophysics Data System (ADS)

    Al-Husseini, Amal

    In this dissertation we investigate the behavior of Wireless Sensor Networks (WSNs) from the degree distribution and evolution perspective. In specific, we focus on implementation of a scale-free degree distribution topology for energy efficient WSNs. WSNs is an emerging technology that finds its applications in different areas such as environment monitoring, agricultural crop monitoring, forest fire monitoring, and hazardous chemical monitoring in war zones. This technology allows us to collect data without human presence or intervention. Energy conservation/efficiency is one of the major issues in prolonging the active life WSNs. Recently, many energy aware and fault tolerant topology control algorithms have been presented, but there is dearth of research focused on energy conservation/efficiency of WSNs. Therefore, we study energy efficiency and fault-tolerance in WSNs from the degree distribution and evolution perspective. Self-organization observed in natural and biological systems has been directly linked to their degree distribution. It is widely known that scale-free distribution bestows robustness, fault-tolerance, and access efficiency to system. Fascinated by these properties, we propose two complex network theoretic self-organizing models for adaptive WSNs. In particular, we focus on adopting the Barabasi and Albert scale-free model to fit into the constraints and limitations of WSNs. We developed simulation models to conduct numerical experiments and network analysis. The main objective of studying these models is to find ways to reducing energy usage of each node and balancing the overall network energy disrupted by faulty communication among nodes. The first model constructs the wireless sensor network relative to the degree (connectivity) and remaining energy of every individual node. We observed that it results in a scale-free network structure which has good fault tolerance properties in face of random node failures. The second model considers additional constraints on the maximum degree of each node as well as the energy consumption relative to degree changes. This gives more realistic results from a dynamical network perspective. It results in balanced network-wide energy consumption. The results show that networks constructed using the proposed approach have good properties for different centrality measures. The outcomes of the presented research are beneficial to building WSN control models with greater self-organization properties which leads to optimal energy consumption.

  17. 25 CFR 224.62 - May a final proposed TERA differ from the original proposed TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... proposed TERA? 224.62 Section 224.62 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Application Consultation Meeting...

  18. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  19. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  20. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  1. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., geographical, physical, chemical, and biological features, proximity to human habitation or activity, and... of the activity. (ii) Mitigation and emergency procedures. (iii) Measures to detect and control... and Development Activities § 725.255 Information to be included in the TERA. (a) To review a TERA, EPA...

  2. The method of parallel-hierarchical transformation for rapid recognition of dynamic images using GPGPU technology

    NASA Astrophysics Data System (ADS)

    Timchenko, Leonid; Yarovyi, Andrii; Kokriatskaya, Nataliya; Nakonechna, Svitlana; Abramenko, Ludmila; Ławicki, Tomasz; Popiel, Piotr; Yesmakhanova, Laura

    2016-09-01

    The paper presents a method of parallel-hierarchical transformations for rapid recognition of dynamic images using GPU technology. Direct parallel-hierarchical transformations based on cluster CPU-and GPU-oriented hardware platform. Mathematic models of training of the parallel hierarchical (PH) network for the transformation are developed, as well as a training method of the PH network for recognition of dynamic images. This research is most topical for problems on organizing high-performance computations of super large arrays of information designed to implement multi-stage sensing and processing as well as compaction and recognition of data in the informational structures and computer devices. This method has such advantages as high performance through the use of recent advances in parallelization, possibility to work with images of ultra dimension, ease of scaling in case of changing the number of nodes in the cluster, auto scan of local network to detect compute nodes.

  3. Virtual optical network mapping and core allocation in elastic optical networks using multi-core fibers

    NASA Astrophysics Data System (ADS)

    Xuan, Hejun; Wang, Yuping; Xu, Zhanqi; Hao, Shanshan; Wang, Xiaoli

    2017-11-01

    Virtualization technology can greatly improve the efficiency of the networks by allowing the virtual optical networks to share the resources of the physical networks. However, it will face some challenges, such as finding the efficient strategies for virtual nodes mapping, virtual links mapping and spectrum assignment. It is even more complex and challenging when the physical elastic optical networks using multi-core fibers. To tackle these challenges, we establish a constrained optimization model to determine the optimal schemes of optical network mapping, core allocation and spectrum assignment. To solve the model efficiently, tailor-made encoding scheme, crossover and mutation operators are designed. Based on these, an efficient genetic algorithm is proposed to obtain the optimal schemes of the virtual nodes mapping, virtual links mapping, core allocation. The simulation experiments are conducted on three widely used networks, and the experimental results show the effectiveness of the proposed model and algorithm.

  4. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    Unattended ground sensor (UGS) networks have been widely used in remote battlefield and other tactical applications over the last few decades due to the advances of the digital signal processing. The UGS network can be applied in a variety of areas including border surveillance, special force operations, perimeter and building protection, target acquisition, situational awareness, and force protection. In this paper, a highly-distributed, fault-tolerant, and energyefficient Smart Sensing Surveillance System (S4) is presented to efficiently provide 24/7 and all weather security operation in a situation management environment. The S4 is composed of a number of distributed nodes to collect, process, and disseminate heterogeneous sensor data. Nearly all S4 nodes have passive sensors to provide rapid omnidirectional detection. In addition, Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR cameras are integrated to selected nodes to track the objects and capture associated imagery. These S4 camera-connected nodes will provide applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. In the S4, all the nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology, which can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The S4 utilizes a Service Oriented Architecture such that remote applications can interact with the S4 network and use the specific presentation methods. The S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments and near perimeters and borders. The S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE®) standards. It would be directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  5. Internet Protocol-Hybrid Opto-Electronic Ring Network (IP-HORNET): A Novel Internet Protocol-Over-Wavelength Division Multiplexing (IP-Over-WDM) Multiple-Access Metropolitan Area Network (MAN)

    DTIC Science & Technology

    2003-04-01

    usage times. End users may range from today’s typical users, such as home and business users, to futuristic users such as automobiles , appliances, hand...has the ability to drop a reprogrammable quantity of wavelengths into the node. The second technological requirement is a protocol that automatically...goal of the R-OADM is to have the ability to drop a reprogrammable number of wavelengths. If it is determined that at peak usage the node must receive M

  6. Social Network Analysis and Its Applications in Wireless Sensor and Vehicular Networks

    NASA Astrophysics Data System (ADS)

    Papadimitriou, Alexis; Katsaros, Dimitrios; Manolopoulos, Yannis

    Ever since the introduction of wireless sensor networks in the research and development agenda, the corresponding community has been eager to harness the endless possibilities that this new technology has to offer. These micro sensor nodes, whose capabilities have skyrocketed over the last couple of years, have allowed for a wide range of applications to be created; applications that not so long ago would seem impossible, impractical and time-consuming. It would only be logical to expect that researchers from other fields would take an interest in sensor networks, hence expanding the already wide variety of algorithms, theoretical proofs and applications that existed beforehand. Social Network Analysis is one such field, which has instigated a paradigm shift in the way we view sensor nodes.

  7. Quality of service policy control in virtual private networks

    NASA Astrophysics Data System (ADS)

    Yu, Yiqing; Wang, Hongbin; Zhou, Zhi; Zhou, Dongru

    2004-04-01

    This paper studies the QoS of VPN in an environment where the public network prices connection-oriented services based on source, destination and grade of service, and advertises these prices to its VPN customers (users). As different QoS technologies can produce different QoS, there are according different traffic classification rules and priority rules. The internet service provider (ISP) may need to build complex mechanisms separately for each node. In order to reduce the burden of network configuration, we need to design policy control technologies. We considers mainly directory server, policy server, policy manager and policy enforcers. Policy decision point (PDP) decide its control according to policy rules. In network, policy enforce point (PEP) decide its network controlled unit. For InterServ and DiffServ, we will adopt different policy control methods as following: (1) In InterServ, traffic uses resource reservation protocol (RSVP) to guarantee the network resource. (2) In DiffServ, policy server controls the DiffServ code points and per hop behavior (PHB), its PDP distributes information to each network node. Policy server will function as following: information searching; decision mechanism; decision delivering; auto-configuration. In order to prove the effectiveness of QoS policy control, we make the corrective simulation.

  8. The Strategic Direction for Army Science and Technology

    DTIC Science & Technology

    2013-02-01

    methods to characterize the nature of trust (e.g., trust in information, trust in a network node or link), and to take measures to manage the trust...Science and Technology Executive, Dr. Thomas Killion, requested a study of peer review methods in use at Army laboratories. The paper discusses... sensors  Characterization of network dynamics and quality of information important to tactical decision-making Work that should be supported

  9. Advancing Underwater Acoustic Communication for Autonomous Distributed Networks via Sparse Channel Sensing, Coding, and Navigation Support

    DTIC Science & Technology

    2013-09-30

    underwater acoustic communication technologies for autonomous distributed underwater networks, through innovative signal processing, coding, and navigation...in real enviroments , an offshore testbed has been developed to conduct field experimetns. The testbed consists of four nodes and has been deployed...Leadership by the Connecticut Technology Council. Dr. Zhaohui Wang joined the faculty of the Department of Electrical and Computer Engineering at

  10. Self-organized topology of recurrence-based complex networks

    NASA Astrophysics Data System (ADS)

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  11. Self-organized topology of recurrence-based complex networks.

    PubMed

    Yang, Hui; Liu, Gang

    2013-12-01

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article is to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., "what is the self-organizing geometry of a recurrence network?" and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.

  12. Self-organized topology of recurrence-based complex networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Hui, E-mail: huiyang@usf.edu; Liu, Gang

    With the rapid technological advancement, network is almost everywhere in our daily life. Network theory leads to a new way to investigate the dynamics of complex systems. As a result, many methods are proposed to construct a network from nonlinear time series, including the partition of state space, visibility graph, nearest neighbors, and recurrence approaches. However, most previous works focus on deriving the adjacency matrix to represent the complex network and extract new network-theoretic measures. Although the adjacency matrix provides connectivity information of nodes and edges, the network geometry can take variable forms. The research objective of this article ismore » to develop a self-organizing approach to derive the steady geometric structure of a network from the adjacency matrix. We simulate the recurrence network as a physical system by treating the edges as springs and the nodes as electrically charged particles. Then, force-directed algorithms are developed to automatically organize the network geometry by minimizing the system energy. Further, a set of experiments were designed to investigate important factors (i.e., dynamical systems, network construction methods, force-model parameter, nonhomogeneous distribution) affecting this self-organizing process. Interestingly, experimental results show that the self-organized geometry recovers the attractor of a dynamical system that produced the adjacency matrix. This research addresses a question, i.e., “what is the self-organizing geometry of a recurrence network?” and provides a new way to reproduce the attractor or time series from the recurrence plot. As a result, novel network-theoretic measures (e.g., average path length and proximity ratio) can be achieved based on actual node-to-node distances in the self-organized network topology. The paper brings the physical models into the recurrence analysis and discloses the spatial geometry of recurrence networks.« less

  13. 40 CFR 725.270 - EPA review of the TERA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false EPA review of the TERA. 725.270... Development Activities § 725.270 EPA review of the TERA. General procedures for review of all submissions... to EPA review of applications submitted under this subpart: (a) Length of the review period. (1) The...

  14. Energy-Efficient ZigBee-Based Wireless Sensor Network for Track Bicycle Performance Monitoring

    PubMed Central

    Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod

    2014-01-01

    In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node. PMID:25153141

  15. Energy-efficient ZigBee-based wireless sensor network for track bicycle performance monitoring.

    PubMed

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2014-08-22

    In a wireless sensor network (WSN), saving power is a vital requirement. In this paper, a simple point-to-point bike WSN was considered. The data of bike parameters, speed and cadence, were monitored and transmitted via a wireless communication based on the ZigBee protocol. Since the bike parameters are monitored and transmitted on every bike wheel rotation, this means the sensor node does not sleep for a long time, causing power consumption to rise. Therefore, a newly proposed algorithm, known as the Redundancy and Converged Data (RCD) algorithm, was implemented for this application to put the sensor node into sleep mode while maintaining the performance measurements. This is achieved by minimizing the data packets transmitted as much as possible and fusing the data of speed and cadence by utilizing the correlation measurements between them to minimize the number of sensor nodes in the network to one node, which results in reduced power consumption, cost, and size, in addition to simpler hardware implementation. Execution of the proposed RCD algorithm shows that this approach can reduce the current consumption to 1.69 mA, and save 95% of the sensor node energy. Also, the comparison results with different wireless standard technologies demonstrate minimal current consumption in the sensor node.

  16. Generation of distributed W-states over long distances

    NASA Astrophysics Data System (ADS)

    Li, Yi

    2017-08-01

    Ultra-secure quantum communication between distant locations requires distributed entangled states between nodes. Various methodologies have been proposed to tackle this technological challenge, of which the so-called DLCZ protocol is the most promising and widely adopted scheme. This paper aims to extend this well-known protocol to a multi-node setting where the entangled W-state is generated between nodes over long distances. The generation of multipartite W-states is the foundation of quantum networks, paving the way for quantum communication and distributed quantum computation.

  17. Popularity versus similarity in growing networks

    NASA Astrophysics Data System (ADS)

    Krioukov, Dmitri; Papadopoulos, Fragkiskos; Kitsak, Maksim; Serrano, Mariangeles; Boguna, Marian

    2012-02-01

    Preferential attachment is a powerful mechanism explaining the emergence of scaling in growing networks. If new connections are established preferentially to more popular nodes in a network, then the network is scale-free. Here we show that not only popularity but also similarity is a strong force shaping the network structure and dynamics. We develop a framework where new connections, instead of preferring popular nodes, optimize certain trade-offs between popularity and similarity. The framework admits a geometric interpretation, in which preferential attachment emerges from local optimization processes. As opposed to preferential attachment, the optimization framework accurately describes large-scale evolution of technological (Internet), social (web of trust), and biological (E.coli metabolic) networks, predicting the probability of new links in them with a remarkable precision. The developed framework can thus be used for predicting new links in evolving networks, and provides a different perspective on preferential attachment as an emergent phenomenon.

  18. Energy-Efficient BOP-Based Beacon Transmission Scheduling in Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kim, Eui-Jik; Youm, Sungkwan; Choi, Hyo-Hyun

    Many applications in wireless sensor networks (WSNs) require the energy efficiency and scalability. Although IEEE 802.15.4/Zigbee which is being considered as general technology for WSNs enables the low duty-cycling with time synchronization of all the nodes in network, it still suffer from its low scalability due to the beacon frame collision. Recently, various algorithms to resolve this problem are proposed. However, their manners to implement are somewhat ambiguous and the degradation of energy/communication efficiency is serious by the additional overhead. This paper describes an Energy-efficient BOP-based Beacon transmission Scheduling (EBBS) algorithm. EBBS is the centralized approach, in which a resource-sufficient node called as Topology Management Center (TMC) allocates the time slots to transmit a beacon frame to the nodes and manages the active/sleep schedules of them. We also propose EBBS with Adaptive BOPL (EBBS-AB), to adjust the duration to transmit beacon frames in every beacon interval, adaptively. Simulation results show that by using the proposed algorithm, the energy efficiency and the throughput of whole network can be significantly improved. EBBS-AB is also more effective for the network performance when the nodes are uniformly deployed on the sensor field rather than the case of random topologies.

  19. Prioritized Degree Distribution in Wireless Sensor Networks with a Network Coded Data Collection Method

    PubMed Central

    Wan, Jan; Xiong, Naixue; Zhang, Wei; Zhang, Qinchao; Wan, Zheng

    2012-01-01

    The reliability of wireless sensor networks (WSNs) can be greatly affected by failures of sensor nodes due to energy exhaustion or the influence of brutal external environment conditions. Such failures seriously affect the data persistence and collection efficiency. Strategies based on network coding technology for WSNs such as LTCDS can improve the data persistence without mass redundancy. However, due to the bad intermediate performance of LTCDS, a serious ‘cliff effect’ may appear during the decoding period, and source data are hard to recover from sink nodes before sufficient encoded packets are collected. In this paper, the influence of coding degree distribution strategy on the ‘cliff effect’ is observed and the prioritized data storage and dissemination algorithm PLTD-ALPHA is presented to achieve better data persistence and recovering performance. With PLTD-ALPHA, the data in sensor network nodes present a trend that their degree distribution increases along with the degree level predefined, and the persistent data packets can be submitted to the sink node according to its degree in order. Finally, the performance of PLTD-ALPHA is evaluated and experiment results show that PLTD-ALPHA can greatly improve the data collection performance and decoding efficiency, while data persistence is not notably affected. PMID:23235451

  20. A Proposed Scalable Design and Simulation of Wireless Sensor Network-Based Long-Distance Water Pipeline Leakage Monitoring System

    PubMed Central

    Almazyad, Abdulaziz S.; Seddiq, Yasser M.; Alotaibi, Ahmed M.; Al-Nasheri, Ahmed Y.; BenSaleh, Mohammed S.; Obeid, Abdulfattah M.; Qasim, Syed Manzoor

    2014-01-01

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation. PMID:24561404

  1. A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system.

    PubMed

    Almazyad, Abdulaziz S; Seddiq, Yasser M; Alotaibi, Ahmed M; Al-Nasheri, Ahmed Y; BenSaleh, Mohammed S; Obeid, Abdulfattah M; Qasim, Syed Manzoor

    2014-02-20

    Anomalies such as leakage and bursts in water pipelines have severe consequences for the environment and the economy. To ensure the reliability of water pipelines, they must be monitored effectively. Wireless Sensor Networks (WSNs) have emerged as an effective technology for monitoring critical infrastructure such as water, oil and gas pipelines. In this paper, we present a scalable design and simulation of a water pipeline leakage monitoring system using Radio Frequency IDentification (RFID) and WSN technology. The proposed design targets long-distance aboveground water pipelines that have special considerations for maintenance, energy consumption and cost. The design is based on deploying a group of mobile wireless sensor nodes inside the pipeline and allowing them to work cooperatively according to a prescheduled order. Under this mechanism, only one node is active at a time, while the other nodes are sleeping. The node whose turn is next wakes up according to one of three wakeup techniques: location-based, time-based and interrupt-driven. In this paper, mathematical models are derived for each technique to estimate the corresponding energy consumption and memory size requirements. The proposed equations are analyzed and the results are validated using simulation.

  2. Fault tolerant hypercube computer system architecture

    NASA Technical Reports Server (NTRS)

    Madan, Herb S. (Inventor); Chow, Edward (Inventor)

    1989-01-01

    A fault-tolerant multiprocessor computer system of the hypercube type comprising a hierarchy of computers of like kind which can be functionally substituted for one another as necessary is disclosed. Communication between the working nodes is via one communications network while communications between the working nodes and watch dog nodes and load balancing nodes higher in the structure is via another communications network separate from the first. A typical branch of the hierarchy reporting to a master node or host computer comprises, a plurality of first computing nodes; a first network of message conducting paths for interconnecting the first computing nodes as a hypercube. The first network provides a path for message transfer between the first computing nodes; a first watch dog node; and a second network of message connecting paths for connecting the first computing nodes to the first watch dog node independent from the first network, the second network provides an independent path for test message and reconfiguration affecting transfers between the first computing nodes and the first switch watch dog node. There is additionally, a plurality of second computing nodes; a third network of message conducting paths for interconnecting the second computing nodes as a hypercube. The third network provides a path for message transfer between the second computing nodes; a fourth network of message conducting paths for connecting the second computing nodes to the first watch dog node independent from the third network. The fourth network provides an independent path for test message and reconfiguration affecting transfers between the second computing nodes and the first watch dog node; and a first multiplexer disposed between the first watch dog node and the second and fourth networks for allowing the first watch dog node to selectively communicate with individual ones of the computing nodes through the second and fourth networks; as well as, a second watch dog node operably connected to the first multiplexer whereby the second watch dog node can selectively communicate with individual ones of the computing nodes through the second and fourth networks. The branch is completed by a first load balancing node; and a second multiplexer connected between the first load balancing node and the first and second watch dog nodes, allowing the first load balancing node to selectively communicate with the first and second watch dog nodes.

  3. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks.

    PubMed

    Al-Medhwahi, Mohammed; Hashim, Fazirulhisyam; Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications.

  4. Secure Data Aggregation with Fully Homomorphic Encryption in Large-Scale Wireless Sensor Networks

    PubMed Central

    Li, Xing; Chen, Dexin; Li, Chunyan; Wang, Liangmin

    2015-01-01

    With the rapid development of wireless communication technology, sensor technology, information acquisition and processing technology, sensor networks will finally have a deep influence on all aspects of people’s lives. The battery resources of sensor nodes should be managed efficiently in order to prolong network lifetime in large-scale wireless sensor networks (LWSNs). Data aggregation represents an important method to remove redundancy as well as unnecessary data transmission and hence cut down the energy used in communication. As sensor nodes are deployed in hostile environments, the security of the sensitive information such as confidentiality and integrity should be considered. This paper proposes Fully homomorphic Encryption based Secure data Aggregation (FESA) in LWSNs which can protect end-to-end data confidentiality and support arbitrary aggregation operations over encrypted data. In addition, by utilizing message authentication codes (MACs), this scheme can also verify data integrity during data aggregation and forwarding processes so that false data can be detected as early as possible. Although the FHE increase the computation overhead due to its large public key size, simulation results show that it is implementable in LWSNs and performs well. Compared with other protocols, the transmitted data and network overhead are reduced in our scheme. PMID:26151208

  5. Pliable Cognitive MAC for Heterogeneous Adaptive Cognitive Radio Sensor Networks

    PubMed Central

    Ali, Borhanuddin Mohd; Sali, Aduwati

    2016-01-01

    The rapid expansion of wireless monitoring and surveillance applications in several domains reinforces the trend of exploiting emerging technologies such as the cognitive radio. However, these technologies have to adjust their working concepts to consider the common characteristics of conventional wireless sensor networks (WSNs). The cognitive radio sensor network (CRSN), still an immature technology, has to deal with new networks that might have different types of data, traffic patterns, or quality of service (QoS) requirements. In this paper, we design and model a new cognitive radio-based medium access control (MAC) algorithm dealing with the heterogeneous nature of the developed networks in terms of either the traffic pattern or the required QoS for the node applications. The proposed algorithm decreases the consumed power on several fronts, provides satisfactory levels of latency and spectrum utilization with efficient scheduling, and manages the radio resources for various traffic conditions. An intensive performance evaluation is conducted to study the impact of key parameters such as the channel idle time length, node density, and the number of available channels. The performance evaluation of the proposed algorithm shows a better performance than the comparable protocols. Moreover, the results manifest that the proposed algorithm is suitable for real time monitoring applications. PMID:27257964

  6. Experience with PACS in an ATM/Ethernet switched network environment.

    PubMed

    Pelikan, E; Ganser, A; Kotter, E; Schrader, U; Timmermann, U

    1998-03-01

    Legacy local area network (LAN) technologies based on shared media concepts are not adequate for the growth of a large-scale picture archiving and communication system (PACS) in a client-server architecture. First, an asymmetric network load, due to the requests of a large number of PACS clients for only a few main servers, should be compensated by communication links to the servers with a higher bandwidth compared to the clients. Secondly, as the number of PACS nodes increases, the network throughout should not measurably cut production. These requirements can easily be fulfilled using switching technologies. Here asynchronous transfer mode (ATM) is clearly one of the hottest topics in networking because the ATM architecture provides integrated support for a variety of communication services, and it supports virtual networking. On the other hand, most of the imaging modalities are not yet ready for integration into a native ATM network. For a lot of nodes already joining an Ethernet, a cost-effective and pragmatic way to benefit from the switching concept would be a combined ATM/Ethernet switching environment. This incorporates an incremental migration strategy with the immediate benefits of high-speed, high-capacity ATM (for servers and high-sophisticated display workstations), while preserving elements of the existing network technologies. In addition, Ethernet switching instead of shared media Ethernet improves the performance considerably. The LAN emulation (LANE) specification by the ATM forum defines mechanisms that allow ATM networks to coexist with legacy systems using any data networking protocol. This paper points out the suitability of this network architecture in accordance with an appropriate system design.

  7. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks.

    PubMed

    Yu, Shidi; Liu, Xiao; Liu, Anfeng; Xiong, Naixue; Cai, Zhiping; Wang, Tian

    2018-05-10

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%.

  8. An Adaption Broadcast Radius-Based Code Dissemination Scheme for Low Energy Wireless Sensor Networks

    PubMed Central

    Yu, Shidi; Liu, Xiao; Cai, Zhiping; Wang, Tian

    2018-01-01

    Due to the Software Defined Network (SDN) technology, Wireless Sensor Networks (WSNs) are getting wider application prospects for sensor nodes that can get new functions after updating program codes. The issue of disseminating program codes to every node in the network with minimum delay and energy consumption have been formulated and investigated in the literature. The minimum-transmission broadcast (MTB) problem, which aims to reduce broadcast redundancy, has been well studied in WSNs where the broadcast radius is assumed to be fixed in the whole network. In this paper, an Adaption Broadcast Radius-based Code Dissemination (ABRCD) scheme is proposed to reduce delay and improve energy efficiency in duty cycle-based WSNs. In the ABCRD scheme, a larger broadcast radius is set in areas with more energy left, generating more optimized performance than previous schemes. Thus: (1) with a larger broadcast radius, program codes can reach the edge of network from the source in fewer hops, decreasing the number of broadcasts and at the same time, delay. (2) As the ABRCD scheme adopts a larger broadcast radius for some nodes, program codes can be transmitted to more nodes in one broadcast transmission, diminishing the number of broadcasts. (3) The larger radius in the ABRCD scheme causes more energy consumption of some transmitting nodes, but radius enlarging is only conducted in areas with an energy surplus, and energy consumption in the hot-spots can be reduced instead due to some nodes transmitting data directly to sink without forwarding by nodes in the original hot-spot, thus energy consumption can almost reach a balance and network lifetime can be prolonged. The proposed ABRCD scheme first assigns a broadcast radius, which doesn’t affect the network lifetime, to nodes having different distance to the code source, then provides an algorithm to construct a broadcast backbone. In the end, a comprehensive performance analysis and simulation result shows that the proposed ABRCD scheme shows better performance in different broadcast situations. Compared to previous schemes, the transmission delay is reduced by 41.11~78.42%, the number of broadcasts is reduced by 36.18~94.27% and the energy utilization ratio is improved up to 583.42%, while the network lifetime can be prolonged up to 274.99%. PMID:29748525

  9. Anchor-free localization method for mobile targets in coal mine wireless sensor networks.

    PubMed

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes' location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines.

  10. Precoding based channel prediction for underwater acoustic OFDM

    NASA Astrophysics Data System (ADS)

    Cheng, En; Lin, Na; Sun, Hai-xin; Yan, Jia-quan; Qi, Jie

    2017-04-01

    The life duration of underwater cooperative network has been the hot topic in recent years. And the problem of node energy consuming is the key technology to maintain the energy balance among all nodes. To ensure energy efficiency of some special nodes and obtain a longer lifetime of the underwater cooperative network, this paper focuses on adopting precoding strategy to preprocess the signal at the transmitter and simplify the receiver structure. Meanwhile, it takes into account the presence of Doppler shifts and long feedback transmission delay in an underwater acoustic communication system. Precoding technique is applied based on channel prediction to realize energy saving and improve system performance. Different precoding methods are compared. Simulated results and experimental results show that the proposed scheme has a better performance, and it can provide a simple receiver and realize energy saving for some special nodes in a cooperative communication.

  11. Color Filtering Localization for Three-Dimensional Underwater Acoustic Sensor Networks

    PubMed Central

    Liu, Zhihua; Gao, Han; Wang, Wuling; Chang, Shuai; Chen, Jiaxing

    2015-01-01

    Accurate localization of mobile nodes has been an important and fundamental problem in underwater acoustic sensor networks (UASNs). The detection information returned from a mobile node is meaningful only if its location is known. In this paper, we propose two localization algorithms based on color filtering technology called PCFL and ACFL. PCFL and ACFL aim at collaboratively accomplishing accurate localization of underwater mobile nodes with minimum energy expenditure. They both adopt the overlapping signal region of task anchors which can communicate with the mobile node directly as the current sampling area. PCFL employs the projected distances between each of the task projections and the mobile node, while ACFL adopts the direct distance between each of the task anchors and the mobile node. The proportion factor of distance is also proposed to weight the RGB values. By comparing the nearness degrees of the RGB sequences between the samples and the mobile node, samples can be filtered out. The normalized nearness degrees are considered as the weighted standards to calculate the coordinates of the mobile nodes. The simulation results show that the proposed methods have excellent localization performance and can localize the mobile node in a timely way. The average localization error of PCFL is decreased by about 30.4% compared to the AFLA method. PMID:25774706

  12. Node Redeployment Algorithm Based on Stratified Connected Tree for Underwater Sensor Networks

    PubMed Central

    Liu, Jun; Jiang, Peng; Wu, Feng; Yu, Shanen; Song, Chunyue

    2016-01-01

    During the underwater sensor networks (UWSNs) operation, node drift with water environment causes network topology changes. Periodic node location examination and adjustment are needed to maintain good network monitoring quality as long as possible. In this paper, a node redeployment algorithm based on stratified connected tree for UWSNs is proposed. At every network adjustment moment, self-examination and adjustment on node locations are performed firstly. If a node is outside the monitored space, it returns to the last location recorded in its memory along straight line. Later, the network topology is stratified into a connected tree that takes the sink node as the root node by broadcasting ready information level by level, which can improve the network connectivity rate. Finally, with synthetically considering network coverage and connectivity rates, and node movement distance, the sink node performs centralized optimization on locations of leaf nodes in the stratified connected tree. Simulation results show that the proposed redeployment algorithm can not only keep the number of nodes in the monitored space as much as possible and maintain good network coverage and connectivity rates during network operation, but also reduce node movement distance during node redeployment and prolong the network lifetime. PMID:28029124

  13. Flexible embedding of networks

    NASA Astrophysics Data System (ADS)

    Fernandez-Gracia, Juan; Buckee, Caroline; Onnela, Jukka-Pekka

    We introduce a model for embedding one network into another, focusing on the case where network A is much bigger than network B. Nodes from network A are assigned to the nodes in network B using an algorithm where we control the extent of localization of node placement in network B using a single parameter. Starting from an unassigned node in network A, called the source node, we first map this node to a randomly chosen node in network B, called the target node. We then assign the neighbors of the source node to the neighborhood of the target node using a random walk based approach. To assign each neighbor of the source node to one of the nodes in network B, we perform a random walk starting from the target node with stopping probability α. We repeat this process until all nodes in network A have been mapped to the nodes of network B. The simplicity of the model allows us to calculate key quantities of interest in closed form. By varying the parameter α, we are able to produce embeddings from very local (α = 1) to very global (α --> 0). We show how our calculations fit the simulated results, and we apply the model to study how social networks are embedded in geography and how the neurons of C. Elegans are embedded in the surrounding volume.

  14. Node Self-Deployment Algorithm Based on Pigeon Swarm Optimization for Underwater Wireless Sensor Networks

    PubMed Central

    Yu, Shanen; Xu, Yiming; Jiang, Peng; Wu, Feng; Xu, Huan

    2017-01-01

    At present, free-to-move node self-deployment algorithms aim at event coverage and cannot improve network coverage under the premise of considering network connectivity, network reliability and network deployment energy consumption. Thus, this study proposes pigeon-based self-deployment algorithm (PSA) for underwater wireless sensor networks to overcome the limitations of these existing algorithms. In PSA, the sink node first finds its one-hop nodes and maximizes the network coverage in its one-hop region. The one-hop nodes subsequently divide the network into layers and cluster in each layer. Each cluster head node constructs a connected path to the sink node to guarantee network connectivity. Finally, the cluster head node regards the ratio of the movement distance of the node to the change in the coverage redundancy ratio as the target function and employs pigeon swarm optimization to determine the positions of the nodes. Simulation results show that PSA improves both network connectivity and network reliability, decreases network deployment energy consumption, and increases network coverage. PMID:28338615

  15. User Needs and Advances in Space Wireless Sensing and Communications

    NASA Technical Reports Server (NTRS)

    Kegege, Obadiah

    2017-01-01

    Decades of space exploration and technology trends for future missions show the need for new approaches in space/planetary sensor networks, observatories, internetworking, and communications/data delivery to Earth. The User Needs to be discussed in this talk includes interviews with several scientists and reviews of mission concepts for the next generation of sensors, observatories, and planetary surface missions. These observatories, sensors are envisioned to operate in extreme environments, with advanced autonomy, whereby sometimes communication to Earth is intermittent and delayed. These sensor nodes require software defined networking capabilities in order to learn and adapt to the environment, collect science data, internetwork, and communicate. Also, some user cases require the level of intelligence to manage network functions (either as a host), mobility, security, and interface data to the physical radio/optical layer. For instance, on a planetary surface, autonomous sensor nodes would create their own ad-hoc network, with some nodes handling communication capabilities between the wireless sensor networks and orbiting relay satellites. A section of this talk will cover the advances in space communication and internetworking to support future space missions. NASA's Space Communications and Navigation (SCaN) program continues to evolve with the development of optical communication, a new vision of the integrated network architecture with more capabilities, and the adoption of CCSDS space internetworking protocols. Advances in wireless communications hardware and electronics have enabled software defined networking (DVB-S2, VCM, ACM, DTN, Ad hoc, etc.) protocols for improved wireless communication and network management. Developing technologies to fulfil these user needs for wireless communications and adoption of standardized communication/internetworking protocols will be a huge benefit to future planetary missions, space observatories, and manned missions to other planets.

  16. Meeting the future metro network challenges and requirements by adopting programmable S-BVT with direct-detection and PDM functionality

    NASA Astrophysics Data System (ADS)

    Nadal, Laia; Svaluto Moreolo, Michela; Fàbrega, Josep M.; Vílchez, F. Javier

    2017-07-01

    In this paper, we propose an advanced programmable sliceable-bandwidth variable transceiver (S-BVT) with polarization division multiplexing (PDM) capability as a key enabler to fulfill the requirements for future 5G networks. Thanks to its cost-effective optoelectronic front-end based on orthogonal frequency division multiplexing (OFDM) technology and direct-detection (DD), the proposed S-BVT becomes suitable for next generation highly flexible and scalable metro networks. Polarization beam splitters (PBSs) and controllers (PCs), available on-demand, are included at the transceivers and at the network nodes, further enhancing the system flexibility and promoting an efficient use of the spectrum. 40G-100G PDM transmission has been experimentally demonstrated, within a 4-node photonic mesh network (ADRENALINE testbed), implementing a simplified equalization process.

  17. Dynamic model of time-dependent complex networks.

    PubMed

    Hill, Scott A; Braha, Dan

    2010-10-01

    The characterization of the "most connected" nodes in static or slowly evolving complex networks has helped in understanding and predicting the behavior of social, biological, and technological networked systems, including their robustness against failures, vulnerability to deliberate attacks, and diffusion properties. However, recent empirical research of large dynamic networks (characterized by irregular connections that evolve rapidly) has demonstrated that there is little continuity in degree centrality of nodes over time, even when their degree distributions follow a power law. This unexpected dynamic centrality suggests that the connections in these systems are not driven by preferential attachment or other known mechanisms. We present an approach to explain real-world dynamic networks and qualitatively reproduce these dynamic centrality phenomena. This approach is based on a dynamic preferential attachment mechanism, which exhibits a sharp transition from a base pure random walk scheme.

  18. Reconfigureable network node

    DOEpatents

    Vanderveen, Keith B [Tracy, CA; Talbot, Edward B [Livermore, CA; Mayer, Laurence E [Davis, CA

    2008-04-08

    Nodes in a network having a plurality of nodes establish communication links with other nodes using available transmission media, as the ability to establish such links becomes available and desirable. The nodes predict when existing communications links will fail, become overloaded or otherwise degrade network effectiveness and act to establish substitute or additional links before the node's ability to communicate with the other nodes on the network is adversely affected. A node stores network topology information and programmed link establishment rules and criteria. The node evaluates characteristics that predict existing links with other nodes becoming unavailable or degraded. The node then determines whether it can form a communication link with a substitute node, in order to maintain connectivity with the network. When changing its communication links, a node broadcasts that information to the network. Other nodes update their stored topology information and consider the updated topology when establishing new communications links for themselves.

  19. AEGIS: A Lightweight Firewall for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Hossain, Mohammad Sajjad; Raghunathan, Vijay

    Firewalls are an essential component in today's networked computing systems (desktops, laptops, and servers) and provide effective protection against a variety of over-the-network security attacks. With the development of technologies such as IPv6 and 6LoWPAN that pave the way for Internet-connected embedded systems and sensor networks, these devices will soon be subject to (and need to be defended against) similar security threats. As a first step, this paper presents Aegis, a lightweight, rule-based firewall for networked embedded systems such as wireless sensor networks. Aegis is based on a semantically rich, yet simple, rule definition language. In addition, Aegis is highly efficient during operation, runs in a transparent manner from running applications, and is easy to maintain. Experimental results obtained using real sensor nodes and cycle-accurate simulations demonstrate that Aegis successfully performs gatekeeping of a sensor node's communication traffic in a flexible manner with minimal overheads.

  20. Low-rank network decomposition reveals structural characteristics of small-world networks

    NASA Astrophysics Data System (ADS)

    Barranca, Victor J.; Zhou, Douglas; Cai, David

    2015-12-01

    Small-world networks occur naturally throughout biological, technological, and social systems. With their prevalence, it is particularly important to prudently identify small-world networks and further characterize their unique connection structure with respect to network function. In this work we develop a formalism for classifying networks and identifying small-world structure using a decomposition of network connectivity matrices into low-rank and sparse components, corresponding to connections within clusters of highly connected nodes and sparse interconnections between clusters, respectively. We show that the network decomposition is independent of node indexing and define associated bounded measures of connectivity structure, which provide insight into the clustering and regularity of network connections. While many existing network characterizations rely on constructing benchmark networks for comparison or fail to describe the structural properties of relatively densely connected networks, our classification relies only on the intrinsic network structure and is quite robust with respect to changes in connection density, producing stable results across network realizations. Using this framework, we analyze several real-world networks and reveal new structural properties, which are often indiscernible by previously established characterizations of network connectivity.

  1. Discovering the hidden sub-network component in a ranked list of genes or proteins derived from genomic experiments

    PubMed Central

    García-Alonso, Luz; Alonso, Roberto; Vidal, Enrique; Amadoz, Alicia; de María, Alejandro; Minguez, Pablo; Medina, Ignacio; Dopazo, Joaquín

    2012-01-01

    Genomic experiments (e.g. differential gene expression, single-nucleotide polymorphism association) typically produce ranked list of genes. We present a simple but powerful approach which uses protein–protein interaction data to detect sub-networks within such ranked lists of genes or proteins. We performed an exhaustive study of network parameters that allowed us concluding that the average number of components and the average number of nodes per component are the parameters that best discriminate between real and random networks. A novel aspect that increases the efficiency of this strategy in finding sub-networks is that, in addition to direct connections, also connections mediated by intermediate nodes are considered to build up the sub-networks. The possibility of using of such intermediate nodes makes this approach more robust to noise. It also overcomes some limitations intrinsic to experimental designs based on differential expression, in which some nodes are invariant across conditions. The proposed approach can also be used for candidate disease-gene prioritization. Here, we demonstrate the usefulness of the approach by means of several case examples that include a differential expression analysis in Fanconi Anemia, a genome-wide association study of bipolar disorder and a genome-scale study of essentiality in cancer genes. An efficient and easy-to-use web interface (available at http://www.babelomics.org) based on HTML5 technologies is also provided to run the algorithm and represent the network. PMID:22844098

  2. An Energy-Aware Hybrid ARQ Scheme with Multi-ACKs for Data Sensing Wireless Sensor Networks.

    PubMed

    Zhang, Jinhuan; Long, Jun

    2017-06-12

    Wireless sensor networks (WSNs) are one of the important supporting technologies of edge computing. In WSNs, reliable communications are essential for most applications due to the unreliability of wireless links. In addition, network lifetime is also an important performance metric and needs to be considered in many WSN studies. In the paper, an energy-aware hybrid Automatic Repeat-reQuest protocol (ARQ) scheme is proposed to ensure energy efficiency under the guarantee of network transmission reliability. In the scheme, the source node sends data packets continuously with the correct window size and it does not need to wait for the acknowledgement (ACK) confirmation for each data packet. When the destination receives K data packets, it will return multiple copies of one ACK for confirmation to avoid ACK packet loss. The energy consumption of each node in flat circle network applying the proposed scheme is statistical analyzed and the cases under which it is more energy efficiency than the original scheme is discussed. Moreover, how to select parameters of the scheme is addressed to extend the network lifetime under the constraint of the network reliability. In addition, the energy efficiency of the proposed schemes is evaluated. Simulation results are presented to demonstrate that a node energy consumption reduction could be gained and the network lifetime is prolonged.

  3. Three-tier multi-granularity switching system based on PCE

    NASA Astrophysics Data System (ADS)

    Wang, Yubao; Sun, Hao; Liu, Yanfei

    2017-10-01

    With the growing demand for business communications, electrical signal processing optical path switching can't meet the demand. The multi-granularity switch system that can improve node routing and switching capabilities came into being. In the traditional network, each node is responsible for calculating the path; synchronize the whole network state, which will increase the burden on the network, so the concept of path calculation element (PCE) is proposed. The PCE is responsible for routing and allocating resources in the network1. In the traditional band-switched optical network, the wavelength is used as the basic routing unit, resulting in relatively low wavelength utilization. Due to the limitation of wavelength continuity, the routing design of the band technology becomes complicated, which directly affects the utilization of the system. In this paper, optical code granularity is adopted. There is no continuity of the optical code, and the number of optical codes is more flexible than the wavelength. For the introduction of optical code switching, we propose a Code Group Routing Entity (CGRE) algorithm. In short, the combination of three-tier multi-granularity optical switching system and PCE can simplify the network structure, reduce the node load, and enhance the network scalability and survivability. Realize the intelligentization of optical network.

  4. Exploring the topological sources of robustness against invasion in biological and technological networks.

    PubMed

    Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro

    2016-02-10

    For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent's rule are applied to show a subtle trade-off between topological and wiring complexity.

  5. Exploring the topological sources of robustness against invasion in biological and technological networks

    PubMed Central

    Alcalde Cuesta, Fernando; González Sequeiros, Pablo; Lozano Rojo, Álvaro

    2016-01-01

    For a network, the accomplishment of its functions despite perturbations is called robustness. Although this property has been extensively studied, in most cases, the network is modified by removing nodes. In our approach, it is no longer perturbed by site percolation, but evolves after site invasion. The process transforming resident/healthy nodes into invader/mutant/diseased nodes is described by the Moran model. We explore the sources of robustness (or its counterpart, the propensity to spread favourable innovations) of the US high-voltage power grid network, the Internet2 academic network, and the C. elegans connectome. We compare them to three modular and non-modular benchmark networks, and samples of one thousand random networks with the same degree distribution. It is found that, contrary to what happens with networks of small order, fixation probability and robustness are poorly correlated with most of standard statistics, but they depend strongly on the degree distribution. While community detection techniques are able to detect the existence of a central core in Internet2, they are not effective in detecting hierarchical structures whose topological complexity arises from the repetition of a few rules. Box counting dimension and Rent’s rule are applied to show a subtle trade-off between topological and wiring complexity. PMID:26861189

  6. Providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    DOEpatents

    Archer, Charles J; Faraj, Ahmad A; Inglett, Todd A; Ratterman, Joseph D

    2013-04-16

    Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selected link to the adjacent compute node connected to the compute node through the selected link.

  7. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  8. US long distance fiber optic networks: Technology, evolution and advanced concepts. Volume 3: Advanced networks and economics

    NASA Astrophysics Data System (ADS)

    1986-10-01

    This study projects until 2000 the evolution of long distance fiber optic networks in the U.S. Volume 1 is the executive Summary. Volume 2 focuses on fiber optic components and systems that are directly related to the operation of long-haul networks. Optimistic, pessimistic and most likely scenarios of technology development are presented. The activities of national and regional companies implementing fiber long haul networks are also highlighted, along with an analysis of the market and regulatory forces affecting network evolution. Volume 3 presents advanced fiber optic network concept definitions. Inter-LATA traffic is quantified and forms the basis for the construction of 11-, 15-, 17-, and 23-node networks. Using the technology projections from Volume 2, a financial model identifies cost drivers and determines circuit mile costs between any two LATAs. A comparison of fiber optics with alternative transmission concludes the report.

  9. A security architecture for health information networks.

    PubMed

    Kailar, Rajashekar; Muralidhar, Vinod

    2007-10-11

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today's healthcare enterprise. Recent work on 'nationwide health information network' architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately.

  10. Determining a bisection bandwidth for a multi-node data communications network

    DOEpatents

    Faraj, Ahmad A.

    2010-01-26

    Methods, systems, and products are disclosed for determining a bisection bandwidth for a multi-node data communications network that include: partitioning nodes in the network into a first sub-network and a second sub-network in dependence upon a topology of the network; sending, by each node in the first sub-network to a destination node in the second sub-network, a first message having a predetermined message size; receiving, by each node in the first sub-network from a source node in the second sub-network, a second message; measuring, by each node in the first sub-network, the elapsed communications time between the sending of the first message and the receiving of the second message; selecting the longest elapsed communications time; and calculating the bisection bandwidth for the network in dependence upon the number of the nodes in the first sub-network, the predetermined message size of the first test message, and the longest elapsed communications time.

  11. Wireless Avionics Packet to Support Fault Tolerance for Flight Applications

    NASA Technical Reports Server (NTRS)

    Block, Gary L.; Whitaker, William D.; Dillon, James W.; Lux, James P.; Ahmad, Mohammad

    2009-01-01

    In this protocol and packet format, data traffic is monitored by all network interfaces to determine the health of transmitter and subsystems. When failures are detected, the network inter face applies its recover y policies to provide continued service despite the presence of faults. The protocol, packet format, and inter face are independent of the data link technology used. The current demonstration system supports both commercial off-the-shelf wireless connections and wired Ethernet connections. Other technologies such as 1553 or serial data links can be used for the network backbone. The Wireless Avionics packet is divided into three parts: a header, a data payload, and a checksum. The header has the following components: magic number, version, quality of service, time to live, sending transceiver, function code, payload length, source Application Data Interface (ADI) address, destination ADI address, sending node address, target node address, and a sequence number. The magic number is used to identify WAV packets, and allows the packet format to be updated in the future. The quality of service field allows routing decisions to be made based on this value and can be used to route critical management data over a dedicated channel. The time to live value is used to discard misrouted packets while the source transceiver is updated at each hop. This information is used to monitor the health of each transceiver in the network. To identify the packet type, the function code is used. Besides having a regular data packet, the system supports diagnostic packets for fault detection and isolation. The payload length specifies the number of data bytes in the payload, and this supports variable-length packets in the network. The source ADI is the address of the originating interface. This can be used by the destination application to identify the originating source of the packet where the address consists of a subnet, subsystem class within the subnet, a subsystem unit, and the local ADI number. The destination ADI is used to route the packet to its ultimate destination. At each hop, the sending interface uses the destination address to determine the next node for the data. The sending node is the node address of the interface that is broadcasting the packet. This field is used to determine the health of the subsystem that is sending the packet. In the case of a packet that traverses several intermediate nodes, it may be the node address of the intermediate node. The target node is the node address of the next hop for the packet. It may be an intermediate node, or the final destination for the packet. The sequence number is used to identify duplicate packets. Because each interface has multiple transceivers, the same packet will appear at both receivers. The sequence number allows the interface to correlate the reception and forward a single, unique packet for additional processing. The subnet field allows data traffic to be partitioned into segregated local networks to support large networks while keeping each subnet at a manageable size. This also keeps the routing table small enough so routing can be done by a simple table lookup in an FPGA device. The subsystem class identifies members of a set of redundant subsystems, and, in a hot standby configuration, all members of the subsystem class will receive the data packets. Only the active subsystem will generate data traffic. Specific units in a class of redundant units can be identified and, if the hot standby configuration is not used, packets will be directed to a specific subsystem unit.

  12. Using Internet of Things technologies for wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Martinez, K.; Hart, J. K.; Basford, P. J.; Bragg, G. M.; Ward, T.

    2013-12-01

    Numerous authors have envisioned the future internet where anything will be connected: the Internet of Things (IoT). The idea is an extrapolation of the spread of networked devices such as phones, tablets etc. Each device is expected to have its own Internet address and thus be easy to access. The key building blocks of any IoT system are networking, hardware platforms and node software - so they are similar to wireless sensor network requirements. Most existing IoT demonstrators and applications have been gadget-style objects where power and connectivity problems are not too restricting. Environmental sensor networks can benefit from using some of the technologies involved in IoT development. However it is expected that tuning the networking and power management will be necessary to make them as efficient as state of the art wireless sensor networks. Some IoT assumptions such as always-connected nodes and full IP capability need to be considered. This paper will illustrate the advantages and disadvantages of IoT techniques for environment sensing drawing on a range of employment scenarios. We also describe a glacial 'Internet of things' project, which aims to monitor glacial processes. In particular we describe the IoT developments in a deployment in Iceland to examine glacier seismicity, velocity and provide camera images.

  13. Providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer, Charles J.; Faraj, Daniel A.; Inglett, Todd A.

    Methods, apparatus, and products are disclosed for providing full point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: receiving a network packet in a compute node, the network packet specifying a destination compute node; selecting, in dependence upon the destination compute node, at least one of the links for the compute node along which to forward the network packet toward the destination compute node; and forwarding the network packet along the selectedmore » link to the adjacent compute node connected to the compute node through the selected link.« less

  14. Research on virtual network load balancing based on OpenFlow

    NASA Astrophysics Data System (ADS)

    Peng, Rong; Ding, Lei

    2017-08-01

    The Network based on OpenFlow technology separate the control module and data forwarding module. Global deployment of load balancing strategy through network view of control plane is fast and of high efficiency. This paper proposes a Weighted Round-Robin Scheduling algorithm for virtual network and a load balancing plan for server load based on OpenFlow. Load of service nodes and load balancing tasks distribution algorithm will be taken into account.

  15. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  16. A Security Architecture for Health Information Networks

    PubMed Central

    Kailar, Rajashekar

    2007-01-01

    Health information network security needs to balance exacting security controls with practicality, and ease of implementation in today’s healthcare enterprise. Recent work on ‘nationwide health information network’ architectures has sought to share highly confidential data over insecure networks such as the Internet. Using basic patterns of health network data flow and trust models to support secure communication between network nodes, we abstract network security requirements to a core set to enable secure inter-network data sharing. We propose a minimum set of security controls that can be implemented without needing major new technologies, but yet realize network security and privacy goals of confidentiality, integrity and availability. This framework combines a set of technology mechanisms with environmental controls, and is shown to be sufficient to counter commonly encountered network security threats adequately. PMID:18693862

  17. Node Self-Deployment Algorithm Based on an Uneven Cluster with Radius Adjusting for Underwater Sensor Networks

    PubMed Central

    Jiang, Peng; Xu, Yiming; Wu, Feng

    2016-01-01

    Existing move-restricted node self-deployment algorithms are based on a fixed node communication radius, evaluate the performance based on network coverage or the connectivity rate and do not consider the number of nodes near the sink node and the energy consumption distribution of the network topology, thereby degrading network reliability and the energy consumption balance. Therefore, we propose a distributed underwater node self-deployment algorithm. First, each node begins the uneven clustering based on the distance on the water surface. Each cluster head node selects its next-hop node to synchronously construct a connected path to the sink node. Second, the cluster head node adjusts its depth while maintaining the layout formed by the uneven clustering and then adjusts the positions of in-cluster nodes. The algorithm originally considers the network reliability and energy consumption balance during node deployment and considers the coverage redundancy rate of all positions that a node may reach during the node position adjustment. Simulation results show, compared to the connected dominating set (CDS) based depth computation algorithm, that the proposed algorithm can increase the number of the nodes near the sink node and improve network reliability while guaranteeing the network connectivity rate. Moreover, it can balance energy consumption during network operation, further improve network coverage rate and reduce energy consumption. PMID:26784193

  18. Superframe Duration Allocation Schemes to Improve the Throughput of Cluster-Tree Wireless Sensor Networks

    PubMed Central

    Leão, Erico; Montez, Carlos; Moraes, Ricardo; Portugal, Paulo; Vasques, Francisco

    2017-01-01

    The use of Wireless Sensor Network (WSN) technologies is an attractive option to support wide-scale monitoring applications, such as the ones that can be found in precision agriculture, environmental monitoring and industrial automation. The IEEE 802.15.4/ZigBee cluster-tree topology is a suitable topology to build wide-scale WSNs. Despite some of its known advantages, including timing synchronisation and duty-cycle operation, cluster-tree networks may suffer from severe network congestion problems due to the convergecast pattern of its communication traffic. Therefore, the careful adjustment of transmission opportunities (superframe durations) allocated to the cluster-heads is an important research issue. This paper proposes a set of proportional Superframe Duration Allocation (SDA) schemes, based on well-defined protocol and timing models, and on the message load imposed by child nodes (Load-SDA scheme), or by number of descendant nodes (Nodes-SDA scheme) of each cluster-head. The underlying reasoning is to adequately allocate transmission opportunities (superframe durations) and parametrize buffer sizes, in order to improve the network throughput and avoid typical problems, such as: network congestion, high end-to-end communication delays and discarded messages due to buffer overflows. Simulation assessments show how proposed allocation schemes may clearly improve the operation of wide-scale cluster-tree networks. PMID:28134822

  19. Hidden Connectivity in Networks with Vulnerable Classes of Nodes

    NASA Astrophysics Data System (ADS)

    Krause, Sebastian M.; Danziger, Michael M.; Zlatić, Vinko

    2016-10-01

    In many complex systems representable as networks, nodes can be separated into different classes. Often these classes can be linked to a mutually shared vulnerability. Shared vulnerabilities may be due to a shared eavesdropper or correlated failures. In this paper, we show the impact of shared vulnerabilities on robust connectivity and how the heterogeneity of node classes can be exploited to maintain functionality by utilizing multiple paths. Percolation is the field of statistical physics that is generally used to analyze connectivity in complex networks, but in its existing forms, it cannot treat the heterogeneity of multiple vulnerable classes. To analyze the connectivity under these constraints, we describe each class as a color and develop a "color-avoiding" percolation. We present an analytic theory for random networks and a numerical algorithm for all networks, with which we can determine which nodes are color-avoiding connected and whether the maximal set percolates in the system. We find that the interaction of topology and color distribution implies a rich critical behavior, with critical values and critical exponents depending both on the topology and on the color distribution. Applying our physics-based theory to the Internet, we show how color-avoiding percolation can be used as the basis for new topologically aware secure communication protocols. Beyond applications to cybersecurity, our framework reveals a new layer of hidden structure in a wide range of natural and technological systems.

  20. Topology of the European Network of Earth Observation Networks and the need for an European Network of Networks

    NASA Astrophysics Data System (ADS)

    Masó, Joan; Serral, Ivette; McCallum, Ian; Blonda, Palma; Plag, Hans-Peter

    2016-04-01

    ConnectinGEO (Coordinating an Observation Network of Networks EnCompassing saTellite and IN-situ to fill the Gaps in European Observations" is an H2020 Coordination and Support Action with the primary goal of linking existing Earth Observation networks with science and technology (S&T) communities, the industry sector, the Group on Earth Observations (GEO), and Copernicus. The project will end in February 2017. ConnectinGEO will initiate a European Network of Earth Observation Networks (ENEON) that will encompass space-based, airborne and in-situ observations networks. ENEON will be composed of project partners representing thematic observation networks along with the GEOSS Science and Technology Stakeholder Network, GEO Communities of Practices, Copernicus services, Sentinel missions and in-situ support data representatives, representatives of the European space-based, airborne and in-situ observations networks. This communication presents the complex panorama of Earth Observations Networks in Europe. The list of networks is classified by discipline, variables, geospatial scope, etc. We also capture the membership and relations with other networks and umbrella organizations like GEO. The result is a complex interrelation between networks that can not be clearly expressed in a flat list. Technically the networks can be represented as nodes with relations between them as lines connecting the nodes in a graph. We have chosen RDF as a language and an AllegroGraph 3.3 triple store that is visualized in several ways using for example Gruff 5.7. Our final aim is to identify gaps in the EO Networks and justify the need for a more structured coordination between them.

  1. Design and performance of an integrated ground and space sensor web for monitoring active volcanoes.

    NASA Astrophysics Data System (ADS)

    Lahusen, Richard; Song, Wenzhan; Kedar, Sharon; Shirazi, Behrooz; Chien, Steve; Doubleday, Joshua; Davies, Ashley; Webb, Frank; Dzurisin, Dan; Pallister, John

    2010-05-01

    An interdisciplinary team of computer, earth and space scientists collaborated to develop a sensor web system for rapid deployment at active volcanoes. The primary goals of this Optimized Autonomous Space In situ Sensorweb (OASIS) are to: 1) integrate complementary space and in situ (ground-based) elements into an interactive, autonomous sensor web; 2) advance sensor web power and communication resource management technology; and 3) enable scalability for seamless addition sensors and other satellites into the sensor web. This three-year project began with a rigorous multidisciplinary interchange that resulted in definition of system requirements to guide the design of the OASIS network and to achieve the stated project goals. Based on those guidelines, we have developed fully self-contained in situ nodes that integrate GPS, seismic, infrasonic and lightning (ash) detection sensors. The nodes in the wireless sensor network are linked to the ground control center through a mesh network that is highly optimized for remote geophysical monitoring. OASIS also features an autonomous bidirectional interaction between ground nodes and instruments on the EO-1 space platform through continuous analysis and messaging capabilities at the command and control center. Data from both the in situ sensors and satellite-borne hyperspectral imaging sensors stream into a common database for real-time visualization and analysis by earth scientists. We have successfully completed a field deployment of 15 nodes within the crater and on the flanks of Mount St. Helens, Washington. The demonstration that sensor web technology facilitates rapid network deployments and that we can achieve real-time continuous data acquisition. We are now optimizing component performance and improving user interaction for additional deployments at erupting volcanoes in 2010.

  2. Research of Hubs Location Method for Weighted Brain Network Based on NoS-FA.

    PubMed

    Weng, Zhengkui; Wang, Bin; Xue, Jie; Yang, Baojie; Liu, Hui; Xiong, Xin

    2017-01-01

    As a complex network of many interlinked brain regions, there are some central hub regions which play key roles in the structural human brain network based on T1 and diffusion tensor imaging (DTI) technology. Since most studies about hubs location method in the whole human brain network are mainly concerned with the local properties of each single node but not the global properties of all the directly connected nodes, a novel hubs location method based on global importance contribution evaluation index is proposed in this study. The number of streamlines (NoS) is fused with normalized fractional anisotropy (FA) for more comprehensive brain bioinformation. The brain region importance contribution matrix and information transfer efficiency value are constructed, respectively, and then by combining these two factors together we can calculate the importance value of each node and locate the hubs. Profiting from both local and global features of the nodes and the multi-information fusion of human brain biosignals, the experiment results show that this method can detect the brain hubs more accurately and reasonably compared with other methods. Furthermore, the proposed location method is used in impaired brain hubs connectivity analysis of schizophrenia patients and the results are in agreement with previous studies.

  3. Scale-free models for the structure of business firm networks.

    PubMed

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a "nucleus," which is a small well-connected subgraph, "tendrils," which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a "bulk body," which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution lambda increases, and disappear for lambda>or=3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  4. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN

    PubMed Central

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio. PMID:22346730

  5. LoWMob: Intra-PAN Mobility Support Schemes for 6LoWPAN.

    PubMed

    Bag, Gargi; Raza, Muhammad Taqi; Kim, Ki-Hyung; Yoo, Seung-Wha

    2009-01-01

    Mobility in 6LoWPAN (IPv6 over Low Power Personal Area Networks) is being utilized in realizing many applications where sensor nodes, while moving, sense and transmit the gathered data to a monitoring server. By employing IEEE802.15.4 as a baseline for the link layer technology, 6LoWPAN implies low data rate and low power consumption with periodic sleep and wakeups for sensor nodes, without requiring them to incorporate complex hardware. Also enabling sensor nodes with IPv6 ensures that the sensor data can be accessed anytime and anywhere from the world. Several existing mobility-related schemes like HMIPv6, MIPv6, HAWAII, and Cellular IP require active participation of mobile nodes in the mobility signaling, thus leading to the mobility-related changes in the protocol stack of mobile nodes. In this paper, we present LoWMob, which is a network-based mobility scheme for mobile 6LoWPAN nodes in which the mobility of 6LoWPAN nodes is handled at the network-side. LoWMob ensures multi-hop communication between gateways and mobile nodes with the help of the static nodes within a 6LoWPAN. In order to reduce the signaling overhead of static nodes for supporting mobile nodes, LoWMob proposes a mobility support packet format at the adaptation layer of 6LoWPAN. Also we present a distributed version of LoWMob, named as DLoWMob (or Distributed LoWMob), which employs Mobility Support Points (MSPs) to distribute the traffic concentration at the gateways and to optimize the multi-hop routing path between source and destination nodes in a 6LoWPAN. Moreover, we have also discussed the security considerations for our proposed mobility schemes. The performance of our proposed schemes is evaluated in terms of mobility signaling costs, end-to-end delay, and packet success ratio.

  6. Bio-Inspired Stretchable Absolute Pressure Sensor Network

    PubMed Central

    Guo, Yue; Li, Yu-Hung; Guo, Zhiqiang; Kim, Kyunglok; Chang, Fu-Kuo; Wang, Shan X.

    2016-01-01

    A bio-inspired absolute pressure sensor network has been developed. Absolute pressure sensors, distributed on multiple silicon islands, are connected as a network by stretchable polyimide wires. This sensor network, made on a 4’’ wafer, has 77 nodes and can be mounted on various curved surfaces to cover an area up to 0.64 m × 0.64 m, which is 100 times larger than its original size. Due to Micro Electro-Mechanical system (MEMS) surface micromachining technology, ultrathin sensing nodes can be realized with thicknesses of less than 100 µm. Additionally, good linearity and high sensitivity (~14 mV/V/bar) have been achieved. Since the MEMS sensor process has also been well integrated with a flexible polymer substrate process, the entire sensor network can be fabricated in a time-efficient and cost-effective manner. Moreover, an accurate pressure contour can be obtained from the sensor network. Therefore, this absolute pressure sensor network holds significant promise for smart vehicle applications, especially for unmanned aerial vehicles. PMID:26729134

  7. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks

    PubMed Central

    Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-01-01

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes. PMID:29642483

  8. Drawing Inspiration from Human Brain Networks: Construction of Interconnected Virtual Networks.

    PubMed

    Murakami, Masaya; Kominami, Daichi; Leibnitz, Kenji; Murata, Masayuki

    2018-04-08

    Virtualization of wireless sensor networks (WSN) is widely considered as a foundational block of edge/fog computing, which is a key technology that can help realize next-generation Internet of things (IoT) networks. In such scenarios, multiple IoT devices and service modules will be virtually deployed and interconnected over the Internet. Moreover, application services are expected to be more sophisticated and complex, thereby increasing the number of modifications required for the construction of network topologies. Therefore, it is imperative to establish a method for constructing a virtualized WSN (VWSN) topology that achieves low latency on information transmission and high resilience against network failures, while keeping the topological construction cost low. In this study, we draw inspiration from inter-modular connectivity in human brain networks, which achieves high performance when dealing with large-scale networks composed of a large number of modules (i.e., regions) and nodes (i.e., neurons). We propose a method for assigning inter-modular links based on a connectivity model observed in the cerebral cortex of the brain, known as the exponential distance rule (EDR) model. We then choose endpoint nodes of these links by controlling inter-modular assortativity, which characterizes the topological connectivity of brain networks. We test our proposed methods using simulation experiments. The results show that the proposed method based on the EDR model can construct a VWSN topology with an optimal combination of communication efficiency, robustness, and construction cost. Regarding the selection of endpoint nodes for the inter-modular links, the results also show that high assortativity enhances the robustness and communication efficiency because of the existence of inter-modular links of two high-degree nodes.

  9. 40th Anniversary of the First Proton-Proton Collisions in the CERN Intersecting Storage Rings (ISR)

    ScienceCinema

    None

    2018-06-20

    Welcome, Luigi di Lella and Rolf Heuer-Design and Construction of the ISR, Kurt Hubner-Physics at small angles, Ugo Amaldi (TERA Foundation)-The Impact of the ISR on Accelerator Physics and Technology, Philip J. Bryant-Physics at high transverse momentum, Pierre Darriulat (VATLY-Hanoi). Concluding remarks, Rolf Heuer

  10. Lack of Precision of Burn Surface Area Calculation by UK Armed Forces Medical Personnel

    DTIC Science & Technology

    2014-03-01

    computer screen or tablet , and therefore the variability in perception and representation inherent in having a human assess and draw the burn remains...Potential solutions to this source of error include 3D MRI and TeraHertz scanning technologies [40], but at the time of writing, these are not yet

  11. Diagnostic layer integration in FPGA-based pipeline measurement systems for HEP experiments

    NASA Astrophysics Data System (ADS)

    Pozniak, Krzysztof T.

    2007-08-01

    Integrated triggering and data acquisition systems for high energy physics experiments may be considered as fast, multichannel, synchronous, distributed, pipeline measurement systems. A considerable extension of functional, technological and monitoring demands, which has recently been imposed on them, forced a common usage of large field-programmable gate array (FPGA), digital signal processing-enhanced matrices and fast optical transmission for their realization. This paper discusses modelling, design, realization and testing of pipeline measurement systems. A distribution of synchronous data stream flows is considered in the network. A general functional structure of a single network node is presented. A suggested, novel block structure of the node model facilitates full implementation in the FPGA chip, circuit standardization and parametrization, as well as integration of functional and diagnostic layers. A general method for pipeline system design was derived. This method is based on a unified model of the synchronous data network node. A few examples of practically realized, FPGA-based, pipeline measurement systems were presented. The described systems were applied in ZEUS and CMS.

  12. Space division multiplexing chip-to-chip quantum key distribution.

    PubMed

    Bacco, Davide; Ding, Yunhong; Dalgaard, Kjeld; Rottwitt, Karsten; Oxenløwe, Leif Katsuo

    2017-09-29

    Quantum cryptography is set to become a key technology for future secure communications. However, to get maximum benefit in communication networks, transmission links will need to be shared among several quantum keys for several independent users. Such links will enable switching in quantum network nodes of the quantum keys to their respective destinations. In this paper we present an experimental demonstration of a photonic integrated silicon chip quantum key distribution protocols based on space division multiplexing (SDM), through multicore fiber technology. Parallel and independent quantum keys are obtained, which are useful in crypto-systems and future quantum network.

  13. New Methods and Models in Wireless Networks: Multigraphs--Games--Mechanism Design

    ERIC Educational Resources Information Center

    Tran, Dung Trung

    2010-01-01

    The recent evolution of wireless technology makes wireless devices ever more powerful and intelligent. One trend is that wireless devices are becoming more inexpensive and more diverse. As a result, new technologies make it possible to equip wireless nodes with several radio transmitters/receivers. Each radio may support multiple channels which…

  14. Analysis of complex network performance and heuristic node removal strategies

    NASA Astrophysics Data System (ADS)

    Jahanpour, Ehsan; Chen, Xin

    2013-12-01

    Removing important nodes from complex networks is a great challenge in fighting against criminal organizations and preventing disease outbreaks. Six network performance metrics, including four new metrics, are applied to quantify networks' diffusion speed, diffusion scale, homogeneity, and diameter. In order to efficiently identify nodes whose removal maximally destroys a network, i.e., minimizes network performance, ten structured heuristic node removal strategies are designed using different node centrality metrics including degree, betweenness, reciprocal closeness, complement-derived closeness, and eigenvector centrality. These strategies are applied to remove nodes from the September 11, 2001 hijackers' network, and their performance are compared to that of a random strategy, which removes randomly selected nodes, and the locally optimal solution (LOS), which removes nodes to minimize network performance at each step. The computational complexity of the 11 strategies and LOS is also analyzed. Results show that the node removal strategies using degree and betweenness centralities are more efficient than other strategies.

  15. Development of Light Powered Sensor Networks for Thermal Comfort Measurement

    PubMed Central

    Lee, Dasheng

    2008-01-01

    Recent technological advances in wireless communications have enabled easy installation of sensor networks with air conditioning equipment control applications. However, the sensor node power supply, through either power lines or battery power, still presents obstacles to the distribution of the sensing systems. In this study, a novel sensor network, powered by the artificial light, was constructed to achieve wireless power transfer and wireless data communications for thermal comfort measurements. The sensing node integrates an IC-based temperature sensor, a radiation thermometer, a relative humidity sensor, a micro machined flow sensor and a microprocessor for predicting mean vote (PMV) calculation. The 935 MHz band RF module was employed for the wireless data communication with a specific protocol based on a special energy beacon enabled mode capable of achieving zero power consumption during the inactive periods of the nodes. A 5W spotlight, with a dual axis tilt platform, can power the distributed nodes over a distance of up to 5 meters. A special algorithm, the maximum entropy method, was developed to estimate the sensing quantity of climate parameters if the communication module did not receive any response from the distributed nodes within a certain time limit. The light-powered sensor networks were able to gather indoor comfort-sensing index levels in good agreement with the comfort-sensing vote (CSV) preferred by a human being and the experimental results within the environment suggested that the sensing system could be used in air conditioning systems to implement a comfort-optimal control strategy. PMID:27873877

  16. Smart sensing surveillance system

    NASA Astrophysics Data System (ADS)

    Hsu, Charles; Chu, Kai-Dee; O'Looney, James; Blake, Michael; Rutar, Colleen

    2010-04-01

    An effective public safety sensor system for heavily-populated applications requires sophisticated and geographically-distributed infrastructures, centralized supervision, and deployment of large-scale security and surveillance networks. Artificial intelligence in sensor systems is a critical design to raise awareness levels, improve the performance of the system and adapt to a changing scenario and environment. In this paper, a highly-distributed, fault-tolerant, and energy-efficient Smart Sensing Surveillance System (S4) is presented to efficiently provide a 24/7 and all weather security operation in crowded environments or restricted areas. Technically, the S4 consists of a number of distributed sensor nodes integrated with specific passive sensors to rapidly collect, process, and disseminate heterogeneous sensor data from near omni-directions. These distributed sensor nodes can cooperatively work to send immediate security information when new objects appear. When the new objects are detected, the S4 will smartly select the available node with a Pan- Tilt- Zoom- (PTZ) Electro-Optics EO/IR camera to track the objects and capture associated imagery. The S4 provides applicable advanced on-board digital image processing capabilities to detect and track the specific objects. The imaging detection operations include unattended object detection, human feature and behavior detection, and configurable alert triggers, etc. Other imaging processes can be updated to meet specific requirements and operations. In the S4, all the sensor nodes are connected with a robust, reconfigurable, LPI/LPD (Low Probability of Intercept/ Low Probability of Detect) wireless mesh network using Ultra-wide band (UWB) RF technology. This UWB RF technology can provide an ad-hoc, secure mesh network and capability to relay network information, communicate and pass situational awareness and messages. The Service Oriented Architecture of S4 enables remote applications to interact with the S4 network and use the specific presentation methods. In addition, the S4 is compliant with Open Geospatial Consortium - Sensor Web Enablement (OGC-SWE) standards to efficiently discover, access, use, and control heterogeneous sensors and their metadata. These S4 capabilities and technologies have great potential for both military and civilian applications, enabling highly effective security support tools for improving surveillance activities in densely crowded environments. The S4 system is directly applicable to solutions for emergency response personnel, law enforcement, and other homeland security missions, as well as in applications requiring the interoperation of sensor networks with handheld or body-worn interface devices.

  17. Innovative research of AD HOC network mobility model

    NASA Astrophysics Data System (ADS)

    Chen, Xin

    2017-08-01

    It is difficult for researchers of AD HOC network to conduct actual deployment during experimental stage as the network topology is changeable and location of nodes is unfixed. Thus simulation still remains the main research method of the network. Mobility model is an important component of AD HOC network simulation. It is used to describe the movement pattern of nodes in AD HOC network (including location and velocity, etc.) and decides the movement trail of nodes, playing as the abstraction of the movement modes of nodes. Therefore, mobility model which simulates node movement is an important foundation for simulation research. In AD HOC network research, mobility model shall reflect the movement law of nodes as truly as possible. In this paper, node generally refers to the wireless equipment people carry. The main research contents include how nodes avoid obstacles during movement process and the impacts of obstacles on the mutual relation among nodes, based on which a Node Self Avoiding Obstacle, i.e. NASO model is established in AD HOC network.

  18. A Novel Topology Link-Controlling Approach for Active Defense of a Node in a Network.

    PubMed

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-03-09

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes.

  19. Two-Phase Thermal Switching System for a Small, Extended Duration Lunar Science Platform

    NASA Technical Reports Server (NTRS)

    Bugby, D.; Farmer, J.; OConnor, B.; Wirzburger, M.; Abel, E.; Stouffer, C.

    2010-01-01

    Issue: extended duration lunar science platforms, using solar/battery or radioisotope power, require thermal switching systems that: a) Provide efficient cooling during the 15-earth-day 390 K lunar day; b) Consume minimal power during the 15-earth-day 100 K lunar night. Objective: carry out an analytical study of thermal switching systems that can meet the thermal requirements of: a) International Lunar Network (ILN) anchor node mission - primary focus; b) Other missions such as polar crater landers. ILN Anchor Nodes: network of geophysical science platforms to better understand the interior structure/composition of the moon: a) Rationale: no data since Apollo seismic stations ceased operation in 1977; b) Anchor Nodes: small, low-power, long-life (6-yr) landers with seismographic and a few other science instruments (see next chart); c) WEB: warm electronics box houses ILN anchor node electronics/batteries. Technology Need: thermal switching system that will keep the WEB cool during the lunar day and warm during the lunar night.

  20. A Novel Topology Link-Controlling Approach for Active Defense of Nodes in Networks

    PubMed Central

    Li, Jun; Hu, HanPing; Ke, Qiao; Xiong, Naixue

    2017-01-01

    With the rapid development of virtual machine technology and cloud computing, distributed denial of service (DDoS) attacks, or some peak traffic, poses a great threat to the security of the network. In this paper, a novel topology link control technique and mitigation attacks in real-time environments is proposed. Firstly, a non-invasive method of deploying virtual sensors in the nodes is built, which uses the resource manager of each monitored node as a sensor. Secondly, a general topology-controlling approach of resisting the tolerant invasion is proposed. In the proposed approach, a prediction model is constructed by using copula functions for predicting the peak of a resource through another resource. The result of prediction determines whether or not to initiate the active defense. Finally, a minority game with incomplete strategy is employed to suppress attack flows and improve the permeability of the normal flows. The simulation results show that the proposed approach is very effective in protecting nodes. PMID:28282962

  1. Spacecraft On-Board Information Extraction Computer (SOBIEC)

    NASA Technical Reports Server (NTRS)

    Eisenman, David; Decaro, Robert E.; Jurasek, David W.

    1994-01-01

    The Jet Propulsion Laboratory is the Technical Monitor on an SBIR Program issued for Irvine Sensors Corporation to develop a highly compact, dual use massively parallel processing node known as SOBIEC. SOBIEC couples 3D memory stacking technology provided by nCUBE. The node contains sufficient network Input/Output to implement up to an order-13 binary hypercube. The benefit of this network, is that it scales linearly as more processors are added, and it is a superset of other commonly used interconnect topologies such as: meshes, rings, toroids, and trees. In this manner, a distributed processing network can be easily devised and supported. The SOBIEC node has sufficient memory for most multi-computer applications, and also supports external memory expansion and DMA interfaces. The SOBIEC node is supported by a mature set of software development tools from nCUBE. The nCUBE operating system (OS) provides configuration and operational support for up to 8000 SOBIEC processors in an order-13 binary hypercube or any subset or partition(s) thereof. The OS is UNIX (USL SVR4) compatible, with C, C++, and FORTRAN compilers readily available. A stand-alone development system is also available to support SOBIEC test and integration.

  2. Smart unattended sensor networks with scene understanding capabilities

    NASA Astrophysics Data System (ADS)

    Kuvich, Gary

    2006-05-01

    Unattended sensor systems are new technologies that are supposed to provide enhanced situation awareness to military and law enforcement agencies. A network of such sensors cannot be very effective in field conditions only if it can transmit visual information to human operators or alert them on motion. In the real field conditions, events may happen in many nodes of a network simultaneously. But the real number of control personnel is always limited, and attention of human operators can be simply attracted to particular network nodes, while more dangerous threat may be unnoticed at the same time in the other nodes. Sensor networks would be more effective if equipped with a system that is similar to human vision in its abilities to understand visual information. Human vision uses for that a rough but wide peripheral system that tracks motions and regions of interests, narrow but precise foveal vision that analyzes and recognizes objects in the center of selected region of interest, and visual intelligence that provides scene and object contexts and resolves ambiguity and uncertainty in the visual information. Biologically-inspired Network-Symbolic models convert image information into an 'understandable' Network-Symbolic format, which is similar to relational knowledge models. The equivalent of interaction between peripheral and foveal systems in the network-symbolic system is achieved via interaction between Visual and Object Buffers and the top-level knowledge system.

  3. Motif structure and cooperation in real-world complex networks

    NASA Astrophysics Data System (ADS)

    Salehi, Mostafa; Rabiee, Hamid R.; Jalili, Mahdi

    2010-12-01

    Networks of dynamical nodes serve as generic models for real-world systems in many branches of science ranging from mathematics to physics, technology, sociology and biology. Collective behavior of agents interacting over complex networks is important in many applications. The cooperation between selfish individuals is one of the most interesting collective phenomena. In this paper we address the interplay between the motifs’ cooperation properties and their abundance in a number of real-world networks including yeast protein-protein interaction, human brain, protein structure, email communication, dolphins’ social interaction, Zachary karate club and Net-science coauthorship networks. First, the amount of cooperativity for all possible undirected subgraphs with three to six nodes is calculated. To this end, the evolutionary dynamics of the Prisoner’s Dilemma game is considered and the cooperativity of each subgraph is calculated as the percentage of cooperating agents at the end of the simulation time. Then, the three- to six-node motifs are extracted for each network. The significance of the abundance of a motif, represented by a Z-value, is obtained by comparing them with some properly randomized versions of the original network. We found that there is always a group of motifs showing a significant inverse correlation between their cooperativity amount and Z-value, i.e. the more the Z-value the less the amount of cooperativity. This suggests that networks composed of well-structured units do not have good cooperativity properties.

  4. Understanding the influence of all nodes in a network

    PubMed Central

    Lawyer, Glenn

    2015-01-01

    Centrality measures such as the degree, k-shell, or eigenvalue centrality can identify a network's most influential nodes, but are rarely usefully accurate in quantifying the spreading power of the vast majority of nodes which are not highly influential. The spreading power of all network nodes is better explained by considering, from a continuous-time epidemiological perspective, the distribution of the force of infection each node generates. The resulting metric, the expected force, accurately quantifies node spreading power under all primary epidemiological models across a wide range of archetypical human contact networks. When node power is low, influence is a function of neighbor degree. As power increases, a node's own degree becomes more important. The strength of this relationship is modulated by network structure, being more pronounced in narrow, dense networks typical of social networking and weakening in broader, looser association networks such as the Internet. The expected force can be computed independently for individual nodes, making it applicable for networks whose adjacency matrix is dynamic, not well specified, or overwhelmingly large. PMID:25727453

  5. DoS detection in IEEE 802.11 with the presence of hidden nodes

    PubMed Central

    Soryal, Joseph; Liu, Xijie; Saadawi, Tarek

    2013-01-01

    The paper presents a novel technique to detect Denial of Service (DoS) attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF) protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel’s bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and the results are presented to validate the algorithm. PMID:25685510

  6. DoS detection in IEEE 802.11 with the presence of hidden nodes.

    PubMed

    Soryal, Joseph; Liu, Xijie; Saadawi, Tarek

    2014-07-01

    The paper presents a novel technique to detect Denial of Service (DoS) attacks applied by misbehaving nodes in wireless networks with the presence of hidden nodes employing the widely used IEEE 802.11 Distributed Coordination Function (DCF) protocols described in the IEEE standard [1]. Attacker nodes alter the IEEE 802.11 DCF firmware to illicitly capture the channel via elevating the probability of the average number of packets transmitted successfully using up the bandwidth share of the innocent nodes that follow the protocol standards. We obtained the theoretical network throughput by solving two-dimensional Markov Chain model as described by Bianchi [2], and Liu and Saadawi [3] to determine the channel capacity. We validated the results obtained via the theoretical computations with the results obtained by OPNET simulator [4] to define the baseline for the average attainable throughput in the channel under standard conditions where all nodes follow the standards. The main goal of the DoS attacker is to prevent the innocent nodes from accessing the channel and by capturing the channel's bandwidth. In addition, the attacker strives to appear as an innocent node that follows the standards. The protocol resides in every node to enable each node to police other nodes in its immediate wireless coverage area. All innocent nodes are able to detect and identify the DoS attacker in its wireless coverage area. We applied the protocol to two Physical Layer technologies: Direct Sequence Spread Spectrum (DSSS) and Frequency Hopping Spread Spectrum (FHSS) and the results are presented to validate the algorithm.

  7. Identifying messaging completion in a parallel computer by checking for change in message received and transmitted count at each node

    DOEpatents

    Archer, Charles J [Rochester, MN; Hardwick, Camesha R [Fayetteville, NC; McCarthy, Patrick J [Rochester, MN; Wallenfelt, Brian P [Eden Prairie, MN

    2009-06-23

    Methods, parallel computers, and products are provided for identifying messaging completion on a parallel computer. The parallel computer includes a plurality of compute nodes, the compute nodes coupled for data communications by at least two independent data communications networks including a binary tree data communications network optimal for collective operations that organizes the nodes as a tree and a torus data communications network optimal for point to point operations that organizes the nodes as a torus. Embodiments include reading all counters at each node of the torus data communications network; calculating at each node a current node value in dependence upon the values read from the counters at each node; and determining for all nodes whether the current node value for each node is the same as a previously calculated node value for each node. If the current node is the same as the previously calculated node value for all nodes of the torus data communications network, embodiments include determining that messaging is complete and if the current node is not the same as the previously calculated node value for all nodes of the torus data communications network, embodiments include determining that messaging is currently incomplete.

  8. Distributed sensor networks: a cellular nonlinear network perspective.

    PubMed

    Haenggi, Martin

    2003-12-01

    Large-scale networks of integrated wireless sensors become increasingly tractable. Advances in hardware technology and engineering design have led to dramatic reductions in size, power consumption, and cost for digital circuitry, and wireless communications. Networking, self-organization, and distributed operation are crucial ingredients to harness the sensing, computing, and computational capabilities of the nodes into a complete system. This article shows that those networks can be considered as cellular nonlinear networks (CNNs), and that their analysis and design may greatly benefit from the rich theoretical results available for CNNs.

  9. Distributed Multihoming Routing Method by Crossing Control MIPv6 with SCTP

    NASA Astrophysics Data System (ADS)

    Shi, Hongbo; Hamagami, Tomoki

    There are various wireless communication technologies, such as 3G, WiFi, used widely in the world. Recently, not only the laptop but also the smart phones can be equipped with multiple wireless devices. The communication terminals which are implemented with multiple interfaces are usually called multi-homed nodes. Meanwhile, a multi-homed node with multiple interfaces can also be regarded as multiple single-homed nodes. For example, when a person who is using smart phone and laptop to connect to the Internet concurrently, we may regard the person as a multi-homed node in the Internet. This paper proposes a new routing method, Multi-homed Mobile Cross-layer Control to handle multi-homed mobile nodes. Our suggestion can provide a distributed end-to-end routing method for handling the communications among multi-homed nodes at the fundamental network layer.

  10. Suppressing epidemics on networks by exploiting observer nodes.

    PubMed

    Takaguchi, Taro; Hasegawa, Takehisa; Yoshida, Yuichi

    2014-07-01

    To control infection spreading on networks, we investigate the effect of observer nodes that recognize infection in a neighboring node and make the rest of the neighbor nodes immune. We numerically show that random placement of observer nodes works better on networks with clustering than on locally treelike networks, implying that our model is promising for realistic social networks. The efficiency of several heuristic schemes for observer placement is also examined for synthetic and empirical networks. In parallel with numerical simulations of epidemic dynamics, we also show that the effect of observer placement can be assessed by the size of the largest connected component of networks remaining after removing observer nodes and links between their neighboring nodes.

  11. Suppressing epidemics on networks by exploiting observer nodes

    NASA Astrophysics Data System (ADS)

    Takaguchi, Taro; Hasegawa, Takehisa; Yoshida, Yuichi

    2014-07-01

    To control infection spreading on networks, we investigate the effect of observer nodes that recognize infection in a neighboring node and make the rest of the neighbor nodes immune. We numerically show that random placement of observer nodes works better on networks with clustering than on locally treelike networks, implying that our model is promising for realistic social networks. The efficiency of several heuristic schemes for observer placement is also examined for synthetic and empirical networks. In parallel with numerical simulations of epidemic dynamics, we also show that the effect of observer placement can be assessed by the size of the largest connected component of networks remaining after removing observer nodes and links between their neighboring nodes.

  12. The Tera Multithreaded Architecture and Unstructured Meshes

    NASA Technical Reports Server (NTRS)

    Bokhari, Shahid H.; Mavriplis, Dimitri J.

    1998-01-01

    The Tera Multithreaded Architecture (MTA) is a new parallel supercomputer currently being installed at San Diego Supercomputing Center (SDSC). This machine has an architecture quite different from contemporary parallel machines. The computational processor is a custom design and the machine uses hardware to support very fine grained multithreading. The main memory is shared, hardware randomized and flat. These features make the machine highly suited to the execution of unstructured mesh problems, which are difficult to parallelize on other architectures. We report the results of a study carried out during July-August 1998 to evaluate the execution of EUL3D, a code that solves the Euler equations on an unstructured mesh, on the 2 processor Tera MTA at SDSC. Our investigation shows that parallelization of an unstructured code is extremely easy on the Tera. We were able to get an existing parallel code (designed for a shared memory machine), running on the Tera by changing only the compiler directives. Furthermore, a serial version of this code was compiled to run in parallel on the Tera by judicious use of directives to invoke the "full/empty" tag bits of the machine to obtain synchronization. This version achieves 212 and 406 Mflop/s on one and two processors respectively, and requires no attention to partitioning or placement of data issues that would be of paramount importance in other parallel architectures.

  13. Lunar Relay Satellite Network for Space Exploration: Architecture, Technologies and Challenges

    NASA Technical Reports Server (NTRS)

    Bhasin, Kul B.; Hackenberg, Anthony W.; Slywczak, Richard A.; Bose, Prasanta; Bergamo, Marcos; Hayden, Jeffrey L.

    2006-01-01

    NASA is planning a series of short and long duration human and robotic missions to explore the Moon and then Mars. A key objective of these missions is to grow, through a series of launches, a system of systems infrastructure with the capability for safe and sustainable autonomous operations at minimum cost while maximizing the exploration capabilities and science return. An incremental implementation process will enable a buildup of the communication, navigation, networking, computing, and informatics architectures to support human exploration missions in the vicinities and on the surfaces of the Moon and Mars. These architectures will support all space and surface nodes, including other orbiters, lander vehicles, humans in spacesuits, robots, rovers, human habitats, and pressurized vehicles. This paper describes the integration of an innovative MAC and networking technology with an equally innovative position-dependent, data routing, network technology. The MAC technology provides the relay spacecraft with the capability to autonomously discover neighbor spacecraft and surface nodes, establish variable-rate links and communicate simultaneously with multiple in-space and surface clients at varying and rapidly changing distances while making optimum use of the available power. The networking technology uses attitude sensors, a time synchronization protocol and occasional orbit-corrections to maintain awareness of its instantaneous position and attitude in space as well as the orbital or surface location of its communication clients. A position-dependent data routing capability is used in the communication relay satellites to handle the movement of data among any of multiple clients (including Earth) that may be simultaneously in view; and if not in view, the relay will temporarily store the data from a client source and download it when the destination client comes into view. The integration of the MAC and data routing networking technologies would enable a relay satellite system to provide end-to-end communication services for robotic and human missions in the vicinity, or on the surface of the Moon with a minimum of Earth-based operational support.

  14. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications

    PubMed Central

    Mišić, Jelena; (Sherman) Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients. PMID:19107184

  15. ION Configuration Editor

    NASA Technical Reports Server (NTRS)

    Borgen, Richard L.

    2013-01-01

    The configuration of ION (Inter - planetary Overlay Network) network nodes is a manual task that is complex, time-consuming, and error-prone. This program seeks to accelerate this job and produce reliable configurations. The ION Configuration Editor is a model-based smart editor based on Eclipse Modeling Framework technology. An ION network designer uses this Eclipse-based GUI to construct a data model of the complete target network and then generate configurations. The data model is captured in an XML file. Intrinsic editor features aid in achieving model correctness, such as field fill-in, type-checking, lists of valid values, and suitable default values. Additionally, an explicit "validation" feature executes custom rules to catch more subtle model errors. A "survey" feature provides a set of reports providing an overview of the entire network, enabling a quick assessment of the model s completeness and correctness. The "configuration" feature produces the main final result, a complete set of ION configuration files (eight distinct file types) for each ION node in the network.

  16. Delay Analysis of GTS Bridging between IEEE 802.15.4 and IEEE 802.11 Networks for Healthcare Applications.

    PubMed

    Misić, Jelena; Sherman Shen, Xuemin

    2009-01-01

    We consider interconnection of IEEE 802.15.4 beacon-enabled network cluster with IEEE 802.11b network. This scenario is important in healthcare applications where IEEE 802.15.4 nodes comprise patient's body area network (BAN) and are involved in sensing some health-related data. BAN nodes have very short communication range in order to avoid harming patient's health and save energy. Sensed data needs to be transmitted to an access point in the ward room using wireless technology with higher transmission range and rate such as IEEE 802.11b. We model the interconnected network where IEEE 802.15.4-based BAN operates in guaranteed time slot (GTS) mode, and IEEE 802.11b part of the bridge conveys GTS superframe to the 802.11b access point. We then analyze the network delays. Performance analysis is performed using EKG traffic from continuous telemetry, and we discuss the delays of communication due the increasing number of patients.

  17. The Dichotomy in Degree Correlation of Biological Networks

    PubMed Central

    Hao, Dapeng; Li, Chuanxing

    2011-01-01

    Most complex networks from different areas such as biology, sociology or technology, show a correlation on node degree where the possibility of a link between two nodes depends on their connectivity. It is widely believed that complex networks are either disassortative (links between hubs are systematically suppressed) or assortative (links between hubs are enhanced). In this paper, we analyze a variety of biological networks and find that they generally show a dichotomous degree correlation. We find that many properties of biological networks can be explained by this dichotomy in degree correlation, including the neighborhood connectivity, the sickle-shaped clustering coefficient distribution and the modularity structure. This dichotomy distinguishes biological networks from real disassortative networks or assortative networks such as the Internet and social networks. We suggest that the modular structure of networks accounts for the dichotomy in degree correlation and vice versa, shedding light on the source of modularity in biological networks. We further show that a robust and well connected network necessitates the dichotomy of degree correlation, suggestive of an evolutionary motivation for its existence. Finally, we suggest that a dichotomous degree correlation favors a centrally connected modular network, by which the integrity of network and specificity of modules might be reconciled. PMID:22164269

  18. GLOBECOM '89 - IEEE Global Telecommunications Conference and Exhibition, Dallas, TX, Nov. 27-30, 1989, Conference Record. Volumes 1, 2, & 3

    NASA Astrophysics Data System (ADS)

    The present conference discusses topics in multiwavelength network technology and its applications, advanced digital radio systems in their propagation environment, mobile radio communications, switching programmability, advancements in computer communications, integrated-network management and security, HDTV and image processing in communications, basic exchange communications radio advancements in digital switching, intelligent network evolution, speech coding for telecommunications, and multiple access communications. Also discussed are network designs for quality assurance, recent progress in coherent optical systems, digital radio applications, advanced communications technologies for mobile users, communication software for switching systems, AI and expert systems in network management, intelligent multiplexing nodes, video and image coding, network protocols and performance, system methods in quality and reliability, the design and simulation of lightwave systems, local radio networks, mobile satellite communications systems, fiber networks restoration, packet video networks, human interfaces for future networks, and lightwave networking.

  19. A Trustworthy Key Generation Prototype Based on DDR3 PUF for Wireless Sensor Networks

    PubMed Central

    Liu, Wenchao; Zhang, Zhenhua; Li, Miaoxin; Liu, Zhenglin

    2014-01-01

    Secret key leakage in wireless sensor networks (WSNs) is a high security risk especially when sensor nodes are deployed in hostile environment and physically accessible to attackers. With nowadays semi/fully-invasive attack techniques attackers can directly derive the cryptographic key from non-volatile memory (NVM) storage. Physically Unclonable Function (PUF) is a promising technology to resist node capture attacks, and it also provides a low cost and tamper-resistant key provisioning solution. In this paper, we designed a PUF based on double-data-rate SDRAM Type 3 (DDR3) memory by exploring its memory decay characteristics. We also described a prototype of 128-bit key generation based on DDR3 PUF with integrated fuzzy extractor. Due to the wide adoption of DDR3 memory in WSN, our proposed DDR3 PUF technology with high security levels and no required hardware changes is suitable for a wide range of WSN applications. PMID:24984058

  20. Weighted compactness function based label propagation algorithm for community detection

    NASA Astrophysics Data System (ADS)

    Zhang, Weitong; Zhang, Rui; Shang, Ronghua; Jiao, Licheng

    2018-02-01

    Community detection in complex networks, is to detect the community structure with the internal structure relatively compact and the external structure relatively sparse, according to the topological relationship among nodes in the network. In this paper, we propose a compactness function which combines the weight of nodes, and use it as the objective function to carry out the node label propagation. Firstly, according to the node degree, we find the sets of core nodes which have great influence on the network. The more the connections between the core nodes and the other nodes are, the larger the amount of the information these kernel nodes receive and transform. Then, according to the similarity of the nodes between the core nodes sets and the nodes degree, we assign weights to the nodes in the network. So the label of the nodes with great influence will be the priority in the label propagation process, which effectively improves the accuracy of the label propagation. The compactness function between nodes and communities in this paper is based on the nodes influence. It combines the connections between nodes and communities with the degree of the node belongs to its neighbor communities based on calculating the node weight. The function effectively uses the information of nodes and connections in the network. The experimental results show that the proposed algorithm can achieve good results in the artificial network and large-scale real networks compared with the 8 contrast algorithms.

  1. Opinion formation driven by PageRank node influence on directed networks

    NASA Astrophysics Data System (ADS)

    Eom, Young-Ho; Shepelyansky, Dima L.

    2015-10-01

    We study a two states opinion formation model driven by PageRank node influence and report an extensive numerical study on how PageRank affects collective opinion formations in large-scale empirical directed networks. In our model the opinion of a node can be updated by the sum of its neighbor nodes' opinions weighted by the node influence of the neighbor nodes at each step. We consider PageRank probability and its sublinear power as node influence measures and investigate evolution of opinion under various conditions. First, we observe that all networks reach steady state opinion after a certain relaxation time. This time scale is decreasing with the heterogeneity of node influence in the networks. Second, we find that our model shows consensus and non-consensus behavior in steady state depending on types of networks: Web graph, citation network of physics articles, and LiveJournal social network show non-consensus behavior while Wikipedia article network shows consensus behavior. Third, we find that a more heterogeneous influence distribution leads to a more uniform opinion state in the cases of Web graph, Wikipedia, and Livejournal. However, the opposite behavior is observed in the citation network. Finally we identify that a small number of influential nodes can impose their own opinion on significant fraction of other nodes in all considered networks. Our study shows that the effects of heterogeneity of node influence on opinion formation can be significant and suggests further investigations on the interplay between node influence and collective opinion in networks.

  2. The congestion control algorithm based on queue management of each node in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Wei, Yifei; Chang, Lin; Wang, Yali; Wang, Gaoping

    2016-12-01

    This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. As the network load increases, local congestion of mobile ad hoc network may lead to network performance degradation, hot node's energy consumption increase even failure. If small energy nodes congested because of forwarding data packets, then when it is used as the source node will cause a lot of packet loss. This paper proposes an active queue management mechanism, considering the node's own ability and its importance in the network to set the queue threshold. Controlling nodes buffer queue in different levels of congestion area probability by adjusting the upper limits and lower limits, thus nodes can adjust responsibility of forwarding data packets according to their own situation. The proposed algorithm will slow down the send rate hop by hop along the data package transmission direction from congestion node to source node so that to prevent further congestion from the source node. The simulation results show that, the algorithm can better play the data forwarding ability of strong nodes, protect the weak nodes, can effectively alleviate the network congestion situation.

  3. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  4. Protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1994-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs an antibody recognition message termination process performed by all remote nodes and a remote node polling process performed by other nodes which are master units controlling remote nodes in respective zones of the network assigned to respective master nodes. Each remote node repeats only those messages originated in the local zone, to provide isolation among the master nodes.

  5. Research on centrality of urban transport network nodes

    NASA Astrophysics Data System (ADS)

    Wang, Kui; Fu, Xiufen

    2017-05-01

    Based on the actual data of urban transport in Guangzhou, 19,150 bus stations in Guangzhou (as of 2014) are selected as nodes. Based on the theory of complex network, the network model of Guangzhou urban transport is constructed. By analyzing the degree centrality index, betweenness centrality index and closeness centrality index of nodes in the network, the level of centrality of each node in the network is studied. From a different point of view to determine the hub node of Guangzhou urban transport network, corresponding to the city's key sites and major transfer sites. The reliability of the network is determined by the stability of some key nodes (transport hub station). The research of network node centralization can provide a theoretical basis for the rational allocation of urban transport network sites and public transport system planning.

  6. Performance Evaluation of AODV with Blackhole Attack

    NASA Astrophysics Data System (ADS)

    Dara, Karuna

    2010-11-01

    A Mobile Ad Hoc Network (MANET) is a temporary network set up by a wireless mobile computers moving arbitrary in the places that have no network infrastructure. These nodes maintain connectivity in a decentralized manner. Since the nodes communicate with each other, they cooperate by forwarding data packets to other nodes in the network. Thus the nodes find a path to the destination node using routing protocols. However, due to security vulnerabilities of the routing protocols, mobile ad-hoc networks are unprotected to attacks of the malicious nodes. One of these attacks is the Black Hole Attack against network integrity absorbing all data packets in the network. Since the data packets do not reach the destination node on account of this attack, data loss will occur. In this paper, we simulated the black hole attack in various mobile ad-hoc network scenarios using AODV routing protocol of MANET and have tried to find a effect if number of nodes are increased with increase in malicious nodes.

  7. Network testbed creation and validation

    DOEpatents

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.; Watts, Kristopher K.; Sweeney, Andrew John

    2017-03-21

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices, embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.

  8. Network testbed creation and validation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thai, Tan Q.; Urias, Vincent; Van Leeuwen, Brian P.

    Embodiments of network testbed creation and validation processes are described herein. A "network testbed" is a replicated environment used to validate a target network or an aspect of its design. Embodiments describe a network testbed that comprises virtual testbed nodes executed via a plurality of physical infrastructure nodes. The virtual testbed nodes utilize these hardware resources as a network "fabric," thereby enabling rapid configuration and reconfiguration of the virtual testbed nodes without requiring reconfiguration of the physical infrastructure nodes. Thus, in contrast to prior art solutions which require a tester manually build an emulated environment of physically connected network devices,more » embodiments receive or derive a target network description and build out a replica of this description using virtual testbed nodes executed via the physical infrastructure nodes. This process allows for the creation of very large (e.g., tens of thousands of network elements) and/or very topologically complex test networks.« less

  9. Visualizing weighted networks: a performance comparison of adjacency matrices versus node-link diagrams

    NASA Astrophysics Data System (ADS)

    McIntire, John P.; Osesina, O. Isaac; Bartley, Cecilia; Tudoreanu, M. Eduard; Havig, Paul R.; Geiselman, Eric E.

    2012-06-01

    Ensuring the proper and effective ways to visualize network data is important for many areas of academia, applied sciences, the military, and the public. Fields such as social network analysis, genetics, biochemistry, intelligence, cybersecurity, neural network modeling, transit systems, communications, etc. often deal with large, complex network datasets that can be difficult to interact with, study, and use. There have been surprisingly few human factors performance studies on the relative effectiveness of different graph drawings or network diagram techniques to convey information to a viewer. This is particularly true for weighted networks which include the strength of connections between nodes, not just information about which nodes are linked to other nodes. We describe a human factors study in which participants performed four separate network analysis tasks (finding a direct link between given nodes, finding an interconnected node between given nodes, estimating link strengths, and estimating the most densely interconnected nodes) on two different network visualizations: an adjacency matrix with a heat-map versus a node-link diagram. The results should help shed light on effective methods of visualizing network data for some representative analysis tasks, with the ultimate goal of improving usability and performance for viewers of network data displays.

  10. Organization of complex networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim

    Many large complex systems can be successfully analyzed using the language of graphs and networks. Interactions between the objects in a network are treated as links connecting nodes. This approach to understanding the structure of networks is an important step toward understanding the way corresponding complex systems function. Using the tools of statistical physics, we analyze the structure of networks as they are found in complex systems such as the Internet, the World Wide Web, and numerous industrial and social networks. In the first chapter we apply the concept of self-similarity to the study of transport properties in complex networks. Self-similar or fractal networks, unlike non-fractal networks, exhibit similarity on a range of scales. We find that these fractal networks have transport properties that differ from those of non-fractal networks. In non-fractal networks, transport flows primarily through the hubs. In fractal networks, the self-similar structure requires any transport to also flow through nodes that have only a few connections. We also study, in models and in real networks, the crossover from fractal to non-fractal networks that occurs when a small number of random interactions are added by means of scaling techniques. In the second chapter we use k-core techniques to study dynamic processes in networks. The k-core of a network is the network's largest component that, within itself, exhibits all nodes with at least k connections. We use this k-core analysis to estimate the relative leadership positions of firms in the Life Science (LS) and Information and Communication Technology (ICT) sectors of industry. We study the differences in the k-core structure between the LS and the ICT sectors. We find that the lead segment (highest k-core) of the LS sector, unlike that of the ICT sector, is remarkably stable over time: once a particular firm enters the lead segment, it is likely to remain there for many years. In the third chapter we study how epidemics spread though networks. Our results indicate that a virus is more likely to infect a large area of a network if it originates at a node contained within k-core of high index k.

  11. Robustness of weighted networks

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Cassi, Davide

    2018-01-01

    Complex network response to node loss is a central question in different fields of network science because node failure can cause the fragmentation of the network, thus compromising the system functioning. Previous studies considered binary networks where the intensity (weight) of the links is not accounted for, i.e. a link is either present or absent. However, in real-world networks the weights of connections, and thus their importance for network functioning, can be widely different. Here, we analyzed the response of real-world and model networks to node loss accounting for link intensity and the weighted structure of the network. We used both classic binary node properties and network functioning measure, introduced a weighted rank for node importance (node strength), and used a measure for network functioning that accounts for the weight of the links (weighted efficiency). We find that: (i) the efficiency of the attack strategies changed using binary or weighted network functioning measures, both for real-world or model networks; (ii) in some cases, removing nodes according to weighted rank produced the highest damage when functioning was measured by the weighted efficiency; (iii) adopting weighted measure for the network damage changed the efficacy of the attack strategy with respect the binary analyses. Our results show that if the weighted structure of complex networks is not taken into account, this may produce misleading models to forecast the system response to node failure, i.e. consider binary links may not unveil the real damage induced in the system. Last, once weighted measures are introduced, in order to discover the best attack strategy, it is important to analyze the network response to node loss using nodes rank accounting the intensity of the links to the node.

  12. Public Safety Broadband Network Architecture Description

    DTIC Science & Technology

    2013-08-01

    could be used to add an in-app purchase to the user’s mobile phone bill. Major operators , such as AT& T , Deutsche Telekom, Orange, Telefonica and...3GPP technologies such as CDMA2000 and WiMAX networks. MME Mobility Managemen t Entity The MME is the key control-node for the LTE access-network... operator ( operator -managed small cells, etc.) or provides sufficient security (authentication, encryption, etc.). See Figure D3. Figure D3: ITU- T

  13. Community detection using preference networks

    NASA Astrophysics Data System (ADS)

    Tasgin, Mursel; Bingol, Haluk O.

    2018-04-01

    Community detection is the task of identifying clusters or groups of nodes in a network where nodes within the same group are more connected with each other than with nodes in different groups. It has practical uses in identifying similar functions or roles of nodes in many biological, social and computer networks. With the availability of very large networks in recent years, performance and scalability of community detection algorithms become crucial, i.e. if time complexity of an algorithm is high, it cannot run on large networks. In this paper, we propose a new community detection algorithm, which has a local approach and is able to run on large networks. It has a simple and effective method; given a network, algorithm constructs a preference network of nodes where each node has a single outgoing edge showing its preferred node to be in the same community with. In such a preference network, each connected component is a community. Selection of the preferred node is performed using similarity based metrics of nodes. We use two alternatives for this purpose which can be calculated in 1-neighborhood of nodes, i.e. number of common neighbors of selector node and its neighbors and, the spread capability of neighbors around the selector node which is calculated by the gossip algorithm of Lind et.al. Our algorithm is tested on both computer generated LFR networks and real-life networks with ground-truth community structure. It can identify communities accurately in a fast way. It is local, scalable and suitable for distributed execution on large networks.

  14. Global Static Indexing for Real-Time Exploration of Very Large Regular Grids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pascucci, V; Frank, R

    2001-07-23

    In this paper we introduce a new indexing scheme for progressive traversal and visualization of large regular grids. We demonstrate the potential of our approach by providing a tool that displays at interactive rates planar slices of scalar field data with very modest computing resources. We obtain unprecedented results both in terms of absolute performance and, more importantly, in terms of scalability. On a laptop computer we provide real time interaction with a 2048{sup 3} grid (8 Giga-nodes) using only 20MB of memory. On an SGI Onyx we slice interactively an 8192{sup 3} grid (1/2 tera-nodes) using only 60MB ofmore » memory. The scheme relies simply on the determination of an appropriate reordering of the rectilinear grid data and a progressive construction of the output slice. The reordering minimizes the amount of I/O performed during the out-of-core computation. The progressive and asynchronous computation of the output provides flexible quality/speed tradeoffs and a time-critical and interruptible user interface.« less

  15. Parameters affecting the resilience of scale-free networks to random failures.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Link, Hamilton E.; LaViolette, Randall A.; Lane, Terran

    2005-09-01

    It is commonly believed that scale-free networks are robust to massive numbers of random node deletions. For example, Cohen et al. in (1) study scale-free networks including some which approximate the measured degree distribution of the Internet. Their results suggest that if each node in this network failed independently with probability 0.99, most of the remaining nodes would still be connected in a giant component. In this paper, we show that a large and important subclass of scale-free networks are not robust to massive numbers of random node deletions. In particular, we study scale-free networks which have minimum node degreemore » of 1 and a power-law degree distribution beginning with nodes of degree 1 (power-law networks). We show that, in a power-law network approximating the Internet's reported distribution, when the probability of deletion of each node is 0.5 only about 25% of the surviving nodes in the network remain connected in a giant component, and the giant component does not persist beyond a critical failure rate of 0.9. The new result is partially due to improved analytical accommodation of the large number of degree-0 nodes that result after node deletions. Our results apply to power-law networks with a wide range of power-law exponents, including Internet-like networks. We give both analytical and empirical evidence that such networks are not generally robust to massive random node deletions.« less

  16. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network.

    PubMed

    Choi, Sangil; Park, Jong Hyuk

    2016-12-02

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM.

  17. Cavity-based quantum networks with single atoms and optical photons

    NASA Astrophysics Data System (ADS)

    Reiserer, Andreas; Rempe, Gerhard

    2015-10-01

    Distributed quantum networks will allow users to perform tasks and to interact in ways which are not possible with present-day technology. Their implementation is a key challenge for quantum science and requires the development of stationary quantum nodes that can send and receive as well as store and process quantum information locally. The nodes are connected by quantum channels for flying information carriers, i.e., photons. These channels serve both to directly exchange quantum information between nodes and to distribute entanglement over the whole network. In order to scale such networks to many particles and long distances, an efficient interface between the nodes and the channels is required. This article describes the cavity-based approach to this goal, with an emphasis on experimental systems in which single atoms are trapped in and coupled to optical resonators. Besides being conceptually appealing, this approach is promising for quantum networks on larger scales, as it gives access to long qubit coherence times and high light-matter coupling efficiencies. Thus, it allows one to generate entangled photons on the push of a button, to reversibly map the quantum state of a photon onto an atom, to transfer and teleport quantum states between remote atoms, to entangle distant atoms, to detect optical photons nondestructively, to perform entangling quantum gates between an atom and one or several photons, and even provides a route toward efficient heralded quantum memories for future repeaters. The presented general protocols and the identification of key parameters are applicable to other experimental systems.

  18. Minimum Interference Channel Assignment Algorithm for Multicast in a Wireless Mesh Network

    PubMed Central

    Choi, Sangil; Park, Jong Hyuk

    2016-01-01

    Wireless mesh networks (WMNs) have been considered as one of the key technologies for the configuration of wireless machines since they emerged. In a WMN, wireless routers provide multi-hop wireless connectivity between hosts in the network and also allow them to access the Internet via gateway devices. Wireless routers are typically equipped with multiple radios operating on different channels to increase network throughput. Multicast is a form of communication that delivers data from a source to a set of destinations simultaneously. It is used in a number of applications, such as distributed games, distance education, and video conferencing. In this study, we address a channel assignment problem for multicast in multi-radio multi-channel WMNs. In a multi-radio multi-channel WMN, two nearby nodes will interfere with each other and cause a throughput decrease when they transmit on the same channel. Thus, an important goal for multicast channel assignment is to reduce the interference among networked devices. We have developed a minimum interference channel assignment (MICA) algorithm for multicast that accurately models the interference relationship between pairs of multicast tree nodes using the concept of the interference factor and assigns channels to tree nodes to minimize interference within the multicast tree. Simulation results show that MICA achieves higher throughput and lower end-to-end packet delay compared with an existing channel assignment algorithm named multi-channel multicast (MCM). In addition, MICA achieves much lower throughput variation among the destination nodes than MCM. PMID:27918438

  19. Coupling effect of nodes popularity and similarity on social network persistence.

    PubMed

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-21

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes' popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  20. Analysis of linkage effects among industry sectors in China's stock market before and after the financial crisis

    NASA Astrophysics Data System (ADS)

    Yang, Rui; Li, Xiangyang; Zhang, Tong

    2014-10-01

    This paper uses two physics-derived techniques, the minimum spanning tree and the hierarchical tree, to investigate the networks formed by CITIC (China International Trust and Investment Corporation) industry indices in three periods from 2006 to 2013. The study demonstrates that obvious industry clustering effects exist in the networks, and Durable Consumer Goods, Industrial Products, Information Technology, Frequently Consumption and Financial Industry are the core nodes in the networks. We also use the rolling window technique to investigate the dynamic evolution of the networks' stability, by calculating the mean correlations and mean distances, as well as the variance of correlations and the distances of these indices. China's stock market is still immature and subject to administrative interventions. Therefore, through this analysis, regulators can focus on monitoring the core nodes to ensure the overall stability of the entire market, while investors can enhance their portfolio allocations or investment decision-making.

  1. Data driven CAN node reliability assessment for manufacturing system

    NASA Astrophysics Data System (ADS)

    Zhang, Leiming; Yuan, Yong; Lei, Yong

    2017-01-01

    The reliability of the Controller Area Network(CAN) is critical to the performance and safety of the system. However, direct bus-off time assessment tools are lacking in practice due to inaccessibility of the node information and the complexity of the node interactions upon errors. In order to measure the mean time to bus-off(MTTB) of all the nodes, a novel data driven node bus-off time assessment method for CAN network is proposed by directly using network error information. First, the corresponding network error event sequence for each node is constructed using multiple-layer network error information. Then, the generalized zero inflated Poisson process(GZIP) model is established for each node based on the error event sequence. Finally, the stochastic model is constructed to predict the MTTB of the node. The accelerated case studies with different error injection rates are conducted on a laboratory network to demonstrate the proposed method, where the network errors are generated by a computer controlled error injection system. Experiment results show that the MTTB of nodes predicted by the proposed method agree well with observations in the case studies. The proposed data driven node time to bus-off assessment method for CAN networks can successfully predict the MTTB of nodes by directly using network error event data.

  2. Communication analysis for feedback control of civil infrastructure using cochlea-inspired sensing nodes

    NASA Astrophysics Data System (ADS)

    Peckens, Courtney A.; Cook, Ireana; Lynch, Jerome P.

    2016-04-01

    Wireless sensor networks (WSNs) have emerged as a reliable, low-cost alternative to the traditional wired sensing paradigm. While such networks have made significant progress in the field of structural monitoring, significantly less development has occurred for feedback control applications. Previous work in WSNs for feedback control has highlighted many of the challenges of using this technology including latency in the wireless communication channel and computational inundation at the individual sensing nodes. This work seeks to overcome some of those challenges by drawing inspiration from the real-time sensing and control techniques employed by the biological central nervous system and in particular the mammalian cochlea. A novel bio-inspired wireless sensor node was developed that employs analog filtering techniques to perform time-frequency decomposition of a sensor signal, thus encompassing the functionality of the cochlea. The node then utilizes asynchronous sampling of the filtered signal to compress the signal prior to communication. This bio-inspired sensing architecture is extended to a feedback control application in order to overcome the traditional challenges currently faced by wireless control. In doing this, however, the network experiences high bandwidths of low-significance information exchange between nodes, resulting in some lost data. This study considers the impact of this lost data on the control capabilities of the bio-inspired control architecture and finds that it does not significantly impact the effectiveness of control.

  3. Scale-free models for the structure of business firm networks

    NASA Astrophysics Data System (ADS)

    Kitsak, Maksim; Riccaboni, Massimo; Havlin, Shlomo; Pammolli, Fabio; Stanley, H. Eugene

    2010-03-01

    We study firm collaborations in the life sciences and the information and communication technology sectors. We propose an approach to characterize industrial leadership using k -shell decomposition, with top-ranking firms in terms of market value in higher k -shell layers. We find that the life sciences industry network consists of three distinct components: a “nucleus,” which is a small well-connected subgraph, “tendrils,” which are small subgraphs consisting of small degree nodes connected exclusively to the nucleus, and a “bulk body,” which consists of the majority of nodes. Industrial leaders, i.e., the largest companies in terms of market value, are in the highest k -shells of both networks. The nucleus of the life sciences sector is very stable: once a firm enters the nucleus, it is likely to stay there for a long time. At the same time we do not observe the above three components in the information and communication technology sector. We also conduct a systematic study of these three components in random scale-free networks. Our results suggest that the sizes of the nucleus and the tendrils in scale-free networks decrease as the exponent of the power-law degree distribution λ increases, and disappear for λ≥3 . We compare the k -shell structure of random scale-free model networks with two real-world business firm networks in the life sciences and in the information and communication technology sectors. We argue that the observed behavior of the k -shell structure in the two industries is consistent with the coexistence of both preferential and random agreements in the evolution of industrial networks.

  4. Wi-GIM system: a new wireless sensor network (WSN) for accurate ground instability monitoring

    NASA Astrophysics Data System (ADS)

    Mucchi, Lorenzo; Trippi, Federico; Schina, Rosa; Fornaciai, Alessandro; Gigli, Giovanni; Nannipieri, Luca; Favalli, Massimiliano; Marturia Alavedra, Jordi; Intrieri, Emanuele; Agostini, Andrea; Carnevale, Ennio; Bertolini, Giovanni; Pizziolo, Marco; Casagli, Nicola

    2016-04-01

    Landslides are among the most serious and common geologic hazards around the world. Their impact on human life is expected to increase in the next future as a consequence of human-induced climate change as well as the population growth in proximity of unstable slopes. Therefore, developing better performing technologies for monitoring landslides and providing local authorities with new instruments able to help them in the decision making process, is becoming more and more important. The recent progresses in Information and Communication Technologies (ICT) allow us to extend the use of wireless technologies in landslide monitoring. In particular, the developments in electronics components have permitted to lower the price of the sensors and, at the same time, to actuate more efficient wireless communications. In this work we present a new wireless sensor network (WSN) system, designed and developed for landslide monitoring in the framework of EU Wireless Sensor Network for Ground Instability Monitoring - Wi-GIM project (LIFE12 ENV/IT/001033). We show the preliminary performance of the Wi-GIM system after the first period of monitoring on the active Roncovetro Landslide and on a large subsiding area in the neighbourhood of Sallent village. The Roncovetro landslide is located in the province of Reggio Emilia (Italy) and moved an inferred volume of about 3 million cubic meters. Sallent village is located at the centre of the Catalan evaporitic basin in Spain. The Wi-GIM WSN monitoring system consists of three levels: 1) Master/Gateway level coordinates the WSN and performs data aggregation and local storage; 2) Master/Server level takes care of acquiring and storing data on a remote server; 3) Nodes level that is based on a mesh of peripheral nodes, each consisting in a sensor board equipped with sensors and wireless module. The nodes are located in the landslide ground perimeter and are able to create an ad-hoc WSN. The location of each sensor on the ground is determined by integrating an ultra wideband technology with a radar technology; this integration allows to push the accuracy towards the cm. An extended Kalman filter is also used to reduce the noise and enhance the accuracy of the measures. The sensor nodes are organized as a hierarchical cluster, composed by one master and several slave nodes. The landslide movement is detected by comparing day by day the x, y and z coordinates of each nodes. The 3D movements of each sensor during the monitoring period are represented as vector and displayed on a Web-GIS which is accessible at the following link: www.life-wigim.eu.

  5. Process-in-Network: A Comprehensive Network Processing Approach

    PubMed Central

    Urzaiz, Gabriel; Villa, David; Villanueva, Felix; Lopez, Juan Carlos

    2012-01-01

    A solid and versatile communications platform is very important in modern Ambient Intelligence (AmI) applications, which usually require the transmission of large amounts of multimedia information over a highly heterogeneous network. This article focuses on the concept of Process-in-Network (PIN), which is defined as the possibility that the network processes information as it is being transmitted, and introduces a more comprehensive approach than current network processing technologies. PIN can take advantage of waiting times in queues of routers, idle processing capacity in intermediate nodes, and the information that passes through the network. PMID:22969390

  6. A novel communication mechanism based on node potential multi-path routing

    NASA Astrophysics Data System (ADS)

    Bu, Youjun; Zhang, Chuanhao; Jiang, YiMing; Zhang, Zhen

    2016-10-01

    With the network scales rapidly and new network applications emerge frequently, bandwidth supply for today's Internet could not catch up with the rapid increasing requirements. Unfortunately, irrational using of network sources makes things worse. Actual network deploys single-next-hop optimization paths for data transmission, but such "best effort" model leads to the imbalance use of network resources and usually leads to local congestion. On the other hand Multi-path routing can use the aggregation bandwidth of multi paths efficiently and improve the robustness of network, security, load balancing and quality of service. As a result, multi-path has attracted much attention in the routing and switching research fields and many important ideas and solutions have been proposed. This paper focuses on implementing the parallel transmission of multi next-hop data, balancing the network traffic and reducing the congestion. It aimed at exploring the key technologies of the multi-path communication network, which could provide a feasible academic support for subsequent applications of multi-path communication networking. It proposed a novel multi-path algorithm based on node potential in the network. And the algorithm can fully use of the network link resource and effectively balance network link resource utilization.

  7. Overview on In-Space Internet Node Testbed (ISINT)

    NASA Technical Reports Server (NTRS)

    Richard, Alan M.; Kachmar, Brian A.; Fabian, Theodore; Kerczewski, Robert J.

    2000-01-01

    The Satellite Networks and Architecture Branch has developed the In-Space Internet Node Technology testbed (ISINT) for investigating the use of commercial Internet products for NASA missions. The testbed connects two closed subnets over a tabletop Ka-band transponder by using commercial routers and modems. Since many NASA assets are in low Earth orbits (LEO's), the testbed simulates the varying signal strength, changing propagation delay, and varying connection times that are normally experienced when communicating to the Earth via a geosynchronous orbiting (GEO) communications satellite. Research results from using this testbed will be used to determine which Internet technologies are appropriate for NASA's future communication needs.

  8. Constrained target controllability of complex networks

    NASA Astrophysics Data System (ADS)

    Guo, Wei-Feng; Zhang, Shao-Wu; Wei, Ze-Gang; Zeng, Tao; Liu, Fei; Zhang, Jingsong; Wu, Fang-Xiang; Chen, Luonan

    2017-06-01

    It is of great theoretical interest and practical significance to study how to control a system by applying perturbations to only a few driver nodes. Recently, a hot topic of modern network researches is how to determine driver nodes that allow the control of an entire network. However, in practice, to control a complex network, especially a biological network, one may know not only the set of nodes which need to be controlled (i.e. target nodes), but also the set of nodes to which only control signals can be applied (i.e. constrained control nodes). Compared to the general concept of controllability, we introduce the concept of constrained target controllability (CTC) of complex networks, which concerns the ability to drive any state of target nodes to their desirable state by applying control signals to the driver nodes from the set of constrained control nodes. To efficiently investigate the CTC of complex networks, we further design a novel graph-theoretic algorithm called CTCA to estimate the ability of a given network to control targets by choosing driver nodes from the set of constrained control nodes. We extensively evaluate the CTC of numerous real complex networks. The results indicate that biological networks with a higher average degree are easier to control than biological networks with a lower average degree, while electronic networks with a lower average degree are easier to control than web networks with a higher average degree. We also show that our CTCA can more efficiently produce driver nodes for target-controlling the networks than existing state-of-the-art methods. Moreover, we use our CTCA to analyze two expert-curated bio-molecular networks and compare to other state-of-the-art methods. The results illustrate that our CTCA can efficiently identify proven drug targets and new potentials, according to the constrained controllability of those biological networks.

  9. Analysis of energy efficient routing protocols for implementation of a ubiquitous health system

    NASA Astrophysics Data System (ADS)

    Kwon, Jongwon; Park, Yongman; Koo, Sangjun; Ayurzana, Odgeral; Kim, Hiesik

    2007-12-01

    The innovative Ubiquitous-Health was born through convergence of medical service, with development of up to date information technologies and ubiquitous IT. The U-Health can be applied to a variety of special situations for managing functions of each medical center efficiently. This paper focuses on estimation of various routing protocols for implementation of U-health monitoring system. In order to facilitate wireless communication over the network, a routing protocol on the network layer is used to establish precise and efficient route between sensor nodes so that information acquired from sensors may be delivered in a timely manner. A route establishment should be considered to minimize overhead, data loss and power consumption because wireless networks for U-health are organized by a large number of sensor nodes which are small in size and have limited processing power, memory and battery life. In this paper a overview of wireless sensor network technologies commonly known is described as well as evaluation of three multi hop routing protocols which are flooding, gossiping and modified low energy adaptive clustering hierarchy(LEACH) for use with these networks using TOSSIM simulator. As a result of evaluation the integrated wireless sensor board was developed in particular. The board is embedded device based on AVR128 porting TinyOS. Also it employs bio sensor measures blood pressure, pulse frequency and ZigBee module for wireless communication. This paper accelerates the digital convergence age through continual research and development of technologies related the U-Health.

  10. Multiple-Ring Digital Communication Network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1992-01-01

    Optical-fiber digital communication network to support data-acquisition and control functions of electric-power-distribution networks. Optical-fiber links of communication network follow power-distribution routes. Since fiber crosses open power switches, communication network includes multiple interconnected loops with occasional spurs. At each intersection node is needed. Nodes of communication network include power-distribution substations and power-controlling units. In addition to serving data acquisition and control functions, each node acts as repeater, passing on messages to next node(s). Multiple-ring communication network operates on new AbNET protocol and features fiber-optic communication.

  11. Anchor-Free Localization Method for Mobile Targets in Coal Mine Wireless Sensor Networks

    PubMed Central

    Pei, Zhongmin; Deng, Zhidong; Xu, Shuo; Xu, Xiao

    2009-01-01

    Severe natural conditions and complex terrain make it difficult to apply precise localization in underground mines. In this paper, an anchor-free localization method for mobile targets is proposed based on non-metric multi-dimensional scaling (Multi-dimensional Scaling: MDS) and rank sequence. Firstly, a coal mine wireless sensor network is constructed in underground mines based on the ZigBee technology. Then a non-metric MDS algorithm is imported to estimate the reference nodes’ location. Finally, an improved sequence-based localization algorithm is presented to complete precise localization for mobile targets. The proposed method is tested through simulations with 100 nodes, outdoor experiments with 15 ZigBee physical nodes, and the experiments in the mine gas explosion laboratory with 12 ZigBee nodes. Experimental results show that our method has better localization accuracy and is more robust in underground mines. PMID:22574048

  12. Measurement and Control System Based on Wireless Senor Network for Granary

    NASA Astrophysics Data System (ADS)

    Song, Jian

    A wireless measurement and control system for granary is developed for the sake of overcoming the shortcoming of the wired measurement and control system such as complex wiring and low anti-interference capacity. In this system, Zigbee technology is applied with Zigbee protocol stack development platform by TI, and wireless senor network is used to collect and control the temperature and the humidity. It is composed of the upper PC, central control node based on CC2530, sensor nodes, sensor modules and the executive device. The wireless sensor node is programmed by C language in IAR Embedded Workbench for MCS-51 Evaluation environment. The upper PC control system software is developed based on Visual C++ 6.0 platform. It is shown by experiments that data transmission in the system is accurate and reliable and the error of the temperature and humidity is below 2%, meeting the functional requirements for the granary measurement and control system.

  13. Energy modelling in sensor networks

    NASA Astrophysics Data System (ADS)

    Schmidt, D.; Krämer, M.; Kuhn, T.; Wehn, N.

    2007-06-01

    Wireless sensor networks are one of the key enabling technologies for the vision of ambient intelligence. Energy resources for sensor nodes are very scarce. A key challenge is the design of energy efficient communication protocols. Models of the energy consumption are needed to accurately simulate the efficiency of a protocol or application design, and can also be used for automatic energy optimizations in a model driven design process. We propose a novel methodology to create models for sensor nodes based on few simple measurements. In a case study the methodology was used to create models for MICAz nodes. The models were integrated in a simulation environment as well as in a SDL runtime framework of a model driven design process. Measurements on a test application that was created automatically from an SDL specification showed an 80% reduction in energy consumption compared to an implementation without power saving strategies.

  14. The robustness of multiplex networks under layer node-based attack

    PubMed Central

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-01-01

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology. PMID:27075870

  15. The robustness of multiplex networks under layer node-based attack.

    PubMed

    Zhao, Da-wei; Wang, Lian-hai; Zhi, Yong-feng; Zhang, Jun; Wang, Zhen

    2016-04-14

    From transportation networks to complex infrastructures, and to social and economic networks, a large variety of systems can be described in terms of multiplex networks formed by a set of nodes interacting through different network layers. Network robustness, as one of the most successful application areas of complex networks, has attracted great interest in a myriad of research realms. In this regard, how multiplex networks respond to potential attack is still an open issue. Here we study the robustness of multiplex networks under layer node-based random or targeted attack, which means that nodes just suffer attacks in a given layer yet no additional influence to their connections beyond this layer. A theoretical analysis framework is proposed to calculate the critical threshold and the size of giant component of multiplex networks when nodes are removed randomly or intentionally. Via numerous simulations, it is unveiled that the theoretical method can accurately predict the threshold and the size of giant component, irrespective of attack strategies. Moreover, we also compare the robustness of multiplex networks under multiplex node-based attack and layer node-based attack, and find that layer node-based attack makes multiplex networks more vulnerable, regardless of average degree and underlying topology.

  16. Node property of weighted networks considering connectability to nodes within two degrees of separation.

    PubMed

    Amano, Sun-Ichi; Ogawa, Ken-Ichiro; Miyake, Yoshihiro

    2018-05-31

    Weighted networks have been extensively studied because they can represent various phenomena in which the diversity of edges is essential. To investigate the properties of weighted networks, various centrality measures have been proposed, such as strength, weighted clustering coefficients, and weighted betweenness centrality. In such measures, only direct connections or entire network connectivity from arbitrary nodes have been used to calculate the connectivity of each node. However, in weighted networks composed of autonomous elements such as humans, middle ranges from each node are also considered to be meaningful for characterizing each node's connectability. In this study, we define a new node property in weighted networks to consider connectability to nodes within a range of two degrees of separation, then apply this new centrality to face-to-face human communication networks in corporate organizations. Our results show that the proposed centrality distinguishes inherent communities corresponding to the job types in each organization with a high degree of accuracy. This indicates the possibility that connectability to nodes within two degrees of separation reveals potential trends of weighted networks that are not apparent from conventional measures.

  17. Empirical investigation of topological and weighted properties of a bus transport network from China

    NASA Astrophysics Data System (ADS)

    Shu-Min, Feng; Bao-Yu, Hu; Cen, Nie; Xiang-Hao, Shen; Yu-Sheng, Ci

    2016-03-01

    Many bus transport networks (BTNs) have evolved into directed networks. A new representation model for BTNs is proposed, called directed-space P. The bus transport network of Harbin (BTN-H) is described as a directed and weighted complex network by the proposed representation model and by giving each node weights. The topological and weighted properties are revealed in detail. In-degree and out-degree distributions, in-weight and out-weight distributions are presented as an exponential law, respectively. There is a strong relation between in-weight and in-degree (also between out-weight and out-degree), which can be fitted by a power function. Degree-degree and weight-weight correlations are investigated to reveal that BTN-H has a disassortative behavior as the nodes have relatively high degree (or weight). The disparity distributions of out-degree and in-degree follow an approximate power-law. Besides, the node degree shows a near linear increase with the number of routes that connect to the corresponding station. These properties revealed in this paper can help public transport planners to analyze the status quo of the BTN in nature. Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA110304).

  18. Wireless sensor network: an aimless gadget or a necessary tool for natural hazards warning systems

    NASA Astrophysics Data System (ADS)

    Hloupis, George; Stavrakas, Ilias; Triantis, Dimos

    2010-05-01

    The purpose of the current study is to review the current technical and scientific state of wireless sensor networks (WSNs) with application on natural hazards. WSN have received great attention from the research community in the last few years, mainly due to the theoretical and practical efforts from challenges that led to mature solutions and adoption of standards, such as Bluetooth [2] and ZigBee [3]. Wireless technology solutions allows Micro-ElectroMechanical Systems sensors (MEMS) to be integrated (with all the necessary circuitry) to small wireless capable devices, the nodes. Available MEMS today include pressure, temperature, humidity, inertial and strain-gauge sensors as well as transducers for velocity, acceleration, vibration, flow position and inclination [4]. A WSN is composed by a large number of nodes which are deployed densely adjacent to the area under monitoring. Each node collects data which transmitted to a gateway. The main requirements that WSNs must fulfilled are quite different than those of ad-hoc networks. WSNs have to be self-organized (since the positions of individual nodes are not known in advance), they must present cooperative processing of tasks (where groups of nodes cooperate in order to provide the gathered data to the user), they require security mechanisms that are adaptive to monitoring conditions and all algorithms must be energy optimized. In this paper, the state of the art in hardware, software, algorithms and protocols for WSNs, focused on natural hazards, is surveyed. Architectures for WSNs are investigated along with their advantages and drawbacks. Available research prototypes as well as commercially proposed solutions that can be used for natural hazards monitoring and early warning systems are listed and classified. [1] I.F. Akyildiz, W. Su, Y. Sankarasubramaniam, E. Cayirci, Wireless sensor networks: a survey, Comput. Networks (Elsevier) 38 (4) (2002) 393-422. [2] Dursch, A.; Yen, D.C.; Shih, D.H. Bluetooth technology: an exploratory study of the analysis and implementation frameworks. Comput. Stand. Interface. 2004, 26, 263-277. [3] Baronti, P.; Pillai, P.; Chook, V.W.C.; Chessa, S.; Gotta, A.; Hu, Y.F. Wireless sensor networks: A survey on the state of the art and the 802.15.4 and ZigBee standards. Comput. Commun. 2007, 30, 1655-1695. [4] Arampatzis, T.; Lygeros, J.; Manesis, S. A survey of applications of wireless sensors and Wireless Sensor Networks. In 2005 IEEE International Symposium on Intelligent Control & 13th Mediterranean Conference on Control and Automation. Limassol, Cyprus, 2005, 1-2, 719-724.

  19. Message propagation in the network based on node credibility

    NASA Astrophysics Data System (ADS)

    Nian, Fuzhong; Dang, Zhongkai

    2018-04-01

    In the propagation efficiency point of view, the node credibility is introduced in this paper. For the message receiver, the node would partially believe the message according to the credibility of the propagator. For a node, the credibility is variable. The more the true message spread, the higher the credibility, and vice versa, the credibility becomes smaller. Based on the idea, a new network was established with the node credibility. Finally, a comparing experiment between the fully trusted network and the network with the node credibility was implemented. The results indicate that the spread effect of messages is better in the network with the node credibility.

  20. Experimental performance evaluation of software defined networking (SDN) based data communication networks for large scale flexi-grid optical networks.

    PubMed

    Zhao, Yongli; He, Ruiying; Chen, Haoran; Zhang, Jie; Ji, Yuefeng; Zheng, Haomian; Lin, Yi; Wang, Xinbo

    2014-04-21

    Software defined networking (SDN) has become the focus in the current information and communication technology area because of its flexibility and programmability. It has been introduced into various network scenarios, such as datacenter networks, carrier networks, and wireless networks. Optical transport network is also regarded as an important application scenario for SDN, which is adopted as the enabling technology of data communication networks (DCN) instead of general multi-protocol label switching (GMPLS). However, the practical performance of SDN based DCN for large scale optical networks, which is very important for the technology selection in the future optical network deployment, has not been evaluated up to now. In this paper we have built a large scale flexi-grid optical network testbed with 1000 virtual optical transport nodes to evaluate the performance of SDN based DCN, including network scalability, DCN bandwidth limitation, and restoration time. A series of network performance parameters including blocking probability, bandwidth utilization, average lightpath provisioning time, and failure restoration time have been demonstrated under various network environments, such as with different traffic loads and different DCN bandwidths. The demonstration in this work can be taken as a proof for the future network deployment.

  1. Understanding the implementation of evidence-based care: a structural network approach.

    PubMed

    Parchman, Michael L; Scoglio, Caterina M; Schumm, Phillip

    2011-02-24

    Recent study of complex networks has yielded many new insights into phenomenon such as social networks, the internet, and sexually transmitted infections. The purpose of this analysis is to examine the properties of a network created by the 'co-care' of patients within one region of the Veterans Health Affairs. Data were obtained for all outpatient visits from 1 October 2006 to 30 September 2008 within one large Veterans Integrated Service Network. Types of physician within each clinic were nodes connected by shared patients, with a weighted link representing the number of shared patients between each connected pair. Network metrics calculated included edge weights, node degree, node strength, node coreness, and node betweenness. Log-log plots were used to examine the distribution of these metrics. Sizes of k-core networks were also computed under multiple conditions of node removal. There were 4,310,465 encounters by 266,710 shared patients between 722 provider types (nodes) across 41 stations or clinics resulting in 34,390 edges. The number of other nodes to which primary care provider nodes have a connection (172.7) is 42% greater than that of general surgeons and two and one-half times as high as cardiology. The log-log plot of the edge weight distribution appears to be linear in nature, revealing a 'scale-free' characteristic of the network, while the distributions of node degree and node strength are less so. The analysis of the k-core network sizes under increasing removal of primary care nodes shows that about 10 most connected primary care nodes play a critical role in keeping the k-core networks connected, because their removal disintegrates the highest k-core network. Delivery of healthcare in a large healthcare system such as that of the US Department of Veterans Affairs (VA) can be represented as a complex network. This network consists of highly connected provider nodes that serve as 'hubs' within the network, and demonstrates some 'scale-free' properties. By using currently available tools to explore its topology, we can explore how the underlying connectivity of such a system affects the behavior of providers, and perhaps leverage that understanding to improve quality and outcomes of care.

  2. Real-time monitoring of ubiquitous wireless ECG sensor node for medical care using ZigBee

    NASA Astrophysics Data System (ADS)

    Vijayalakshmi, S. R.; Muruganand, S.

    2012-01-01

    Sensor networks have the potential to impact many aspects of medical care greatly. By outfitting patients with wireless, wearable vital sign sensors, collecting detailed real-time data on physiological status can be greatly simplified. In this article, we propose the system architecture for smart sensor platform based on advanced wireless sensor networks. An emerging application for wireless sensor networks involves their use in medical care. In hospitals or clinics, outfitting every patient with tiny, wearable wireless vital sign sensors would allow doctors, nurses and other caregivers to continuously monitor the status of their patients. In an emergency or disaster scenario, the same technology would enable medics to more effectively care for a large number of casualties. First responders could receive immediate notifications on any changes in patient status, such as respiratory failure or cardiac arrest. Wireless sensor network is a set of small, autonomous devices, working together to solve different problems. It is a relatively new technology, experiencing true expansion in the past decade. People have realised that integration of small and cheap microcontrollers with sensors can result in the production of extremely useful devices, which can be used as an integral part of the sensor nets. These devices are called sensor nodes. Today, sensor nets are used in agriculture, ecology and tourism, but medicine is the area where they certainly meet the greatest potential. This article presents a medical smart sensor node platform. This article proposes a wireless two-lead EKG. These devices collect heart rate and EKG data and relay it over a short-range (300 m) wireless network to any number of receiving devices, including PDAs, laptops or ambulance-based terminals.

  3. Identification of hybrid node and link communities in complex networks

    PubMed Central

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-01-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately. PMID:25728010

  4. Identification of hybrid node and link communities in complex networks.

    PubMed

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-02

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  5. Identification of hybrid node and link communities in complex networks

    NASA Astrophysics Data System (ADS)

    He, Dongxiao; Jin, Di; Chen, Zheng; Zhang, Weixiong

    2015-03-01

    Identifying communities in complex networks is an effective means for analyzing complex systems, with applications in diverse areas such as social science, engineering, biology and medicine. Finding communities of nodes and finding communities of links are two popular schemes for network analysis. These schemes, however, have inherent drawbacks and are inadequate to capture complex organizational structures in real networks. We introduce a new scheme and an effective approach for identifying complex mixture structures of node and link communities, called hybrid node-link communities. A central piece of our approach is a probabilistic model that accommodates node, link and hybrid node-link communities. Our extensive experiments on various real-world networks, including a large protein-protein interaction network and a large network of semantically associated words, illustrated that the scheme for hybrid communities is superior in revealing network characteristics. Moreover, the new approach outperformed the existing methods for finding node or link communities separately.

  6. The effects of malicious nodes on performance of mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Li, Fanzhi; Shi, Xiyu; Jassim, Sabah; Adams, Christopher

    2006-05-01

    Wireless ad hoc networking offers convenient infrastructureless communication over the shared wireless channel. However, the nature of ad hoc networks makes them vulnerable to security attacks. Unlike their wired counterpart, infrastructureless ad hoc networks do not have a clear line of defense, their topology is dynamically changing, and every mobile node can receive messages from its neighbors and can be contacted by all other nodes in its neighborhood. This poses a great danger to network security if some nodes behave in a malicious manner. The immediate concern about the security in this type of networks is how to protect the network and the individual mobile nodes against malicious act of rogue nodes from within the network. This paper is concerned with security aspects of wireless ad hoc networks. We shall present results of simulation experiments on ad hoc network's performance in the presence of malicious nodes. We shall investigate two types of attacks and the consequences will be simulated and quantified in terms of loss of packets and other factors. The results show that network performance, in terms of successful packet delivery ratios, significantly deteriorates when malicious nodes act according to the defined misbehaving characteristics.

  7. Information transmission on hybrid networks

    NASA Astrophysics Data System (ADS)

    Chen, Rongbin; Cui, Wei; Pu, Cunlai; Li, Jie; Ji, Bo; Gakis, Konstantinos; Pardalos, Panos M.

    2018-01-01

    Many real-world communication networks often have hybrid nature with both fixed nodes and moving modes, such as the mobile phone networks mainly composed of fixed base stations and mobile phones. In this paper, we discuss the information transmission process on the hybrid networks with both fixed and mobile nodes. The fixed nodes (base stations) are connected as a spatial lattice on the plane forming the information-carrying backbone, while the mobile nodes (users), which are the sources and destinations of information packets, connect to their current nearest fixed nodes respectively to deliver and receive information packets. We observe the phase transition of traffic load in the hybrid network when the packet generation rate goes from below and then above a critical value, which measures the network capacity of packets delivery. We obtain the optimal speed of moving nodes leading to the maximum network capacity. We further improve the network capacity by rewiring the fixed nodes and by considering the current load of fixed nodes during packets transmission. Our purpose is to optimize the network capacity of hybrid networks from the perspective of network science, and provide some insights for the construction of future communication infrastructures.

  8. MUSIC algorithm DoA estimation for cooperative node location in mobile ad hoc networks

    NASA Astrophysics Data System (ADS)

    Warty, Chirag; Yu, Richard Wai; ElMahgoub, Khaled; Spinsante, Susanna

    In recent years the technological development has encouraged several applications based on distributed communications network without any fixed infrastructure. The problem of providing a collaborative early warning system for multiple mobile nodes against a fast moving object. The solution is provided subject to system level constraints: motion of nodes, antenna sensitivity and Doppler effect at 2.4 GHz and 5.8 GHz. This approach consists of three stages. The first phase consists of detecting the incoming object using a highly directive two element antenna at 5.0 GHz band. The second phase consists of broadcasting the warning message using a low directivity broad antenna beam using 2× 2 antenna array which then in third phase will be detected by receiving nodes by using direction of arrival (DOA) estimation technique. The DOA estimation technique is used to estimate the range and bearing of the incoming nodes. The position of fast arriving object can be estimated using the MUSIC algorithm for warning beam DOA estimation. This paper is mainly intended to demonstrate the feasibility of early detection and warning system using a collaborative node to node communication links. The simulation is performed to show the behavior of detecting and broadcasting antennas as well as performance of the detection algorithm. The idea can be further expanded to implement commercial grade detection and warning system

  9. Value of peripheral nodes in controlling multilayer scale-free networks

    NASA Astrophysics Data System (ADS)

    Zhang, Yan; Garas, Antonios; Schweitzer, Frank

    2016-01-01

    We analyze the controllability of a two-layer network, where driver nodes can be chosen randomly only from one layer. Each layer contains a scale-free network with directed links and the node dynamics depends on the incoming links from other nodes. We combine the in-degree and out-degree values to assign an importance value w to each node, and distinguish between peripheral nodes with low w and central nodes with high w . Based on numerical simulations, we find that the controllable part of the network is larger when choosing low w nodes to connect the two layers. The control is as efficient when peripheral nodes are driver nodes as it is for the case of more central nodes. However, if we assume a cost to utilize nodes that is proportional to their overall degree, utilizing peripheral nodes to connect the two layers or to act as driver nodes is not only the most cost-efficient solution, it is also the one that performs best in controlling the two-layer network among the different interconnecting strategies we have tested.

  10. s-core network decomposition: A generalization of k-core analysis to weighted networks

    NASA Astrophysics Data System (ADS)

    Eidsaa, Marius; Almaas, Eivind

    2013-12-01

    A broad range of systems spanning biology, technology, and social phenomena may be represented and analyzed as complex networks. Recent studies of such networks using k-core decomposition have uncovered groups of nodes that play important roles. Here, we present s-core analysis, a generalization of k-core (or k-shell) analysis to complex networks where the links have different strengths or weights. We demonstrate the s-core decomposition approach on two random networks (ER and configuration model with scale-free degree distribution) where the link weights are (i) random, (ii) correlated, and (iii) anticorrelated with the node degrees. Finally, we apply the s-core decomposition approach to the protein-interaction network of the yeast Saccharomyces cerevisiae in the context of two gene-expression experiments: oxidative stress in response to cumene hydroperoxide (CHP), and fermentation stress response (FSR). We find that the innermost s-cores are (i) different from innermost k-cores, (ii) different for the two stress conditions CHP and FSR, and (iii) enriched with proteins whose biological functions give insight into how yeast manages these specific stresses.

  11. Distributive routing and congestion control in wireless multihop ad hoc communication networks

    NASA Astrophysics Data System (ADS)

    Glauche, Ingmar; Krause, Wolfram; Sollacher, Rudolf; Greiner, Martin

    2004-10-01

    Due to their inherent complexity, engineered wireless multihop ad hoc communication networks represent a technological challenge. Having no mastering infrastructure the nodes have to selforganize themselves in such a way that for example network connectivity, good data traffic performance and robustness are guaranteed. In this contribution the focus is on routing and congestion control. First, random data traffic along shortest path routes is studied by simulations as well as theoretical modeling. Measures of congestion like end-to-end time delay and relaxation times are given. A scaling law of the average time delay with respect to network size is revealed and found to depend on the underlying network topology. In the second step, a distributive routing and congestion control is proposed. Each node locally propagates its routing cost estimates and information about its congestion state to its neighbors, which then update their respective cost estimates. This allows for a flexible adaptation of end-to-end routes to the overall congestion state of the network. Compared to shortest-path routing, the critical network load is significantly increased.

  12. Analysis of HbA1c on an automated multicapillary zone electrophoresis system.

    PubMed

    Rollborn, Niclas; Åkerfeldt, Torbjörn; Nordin, Gunnar; Xu, Xiao Yan; Mandic-Havelka, Aleksandra; Hansson, Lars-Olof; Larsson, Anders

    2017-02-01

    Hemoglobin A1c (HbA1c) is a frequently requested laboratory test and there is thus a need for high throughput instruments for this assay. We evaluated a new automated multicapillary zone electrophoresis instrument (Capillarys 3 Tera, Sebia, Lisses, France) for analysis of HbA1c in venous samples. Routine requested HbA1c samples were analyzed immunologically on a Roche c6000 instrument (n = 142) and then with the Capillarys 3 Tera instrument. The Capillarys 3 Tera instrument performed approximately 70 HbA1c tests/hour. There was a strong linear correlation between Capillarys 3 Tera and Roche Tina-Quant HbA1c Gen 3 assay (y = 1.003x - 0.3246 R 2  = .996). The total CV for the 12 capillaries varied between 0.8 and 2.2% and there was a good agreement between duplicate samples (R 2  = .997). In conclusion, the Capillarys 3 Tera instrument has a high assay capacity for HbA1c. It has a good precision and agreement with the Roche Tina-Quant HbA1c method and is well suited for high volume testing of HbA1c.

  13. Multi-attribute integrated measurement of node importance in complex networks.

    PubMed

    Wang, Shibo; Zhao, Jinlou

    2015-11-01

    The measure of node importance in complex networks is very important to the research of networks stability and robustness; it also can ensure the security of the whole network. Most researchers have used a single indicator to measure the networks node importance, so that the obtained measurement results only reflect certain aspects of the networks with a loss of information. Meanwhile, because of the difference of networks topology, the nodes' importance should be described by combining the character of the networks topology. Most of the existing evaluation algorithms cannot completely reflect the circumstances of complex networks, so this paper takes into account the degree of centrality, the relative closeness centrality, clustering coefficient, and topology potential and raises an integrated measuring method to measure the nodes' importance. This method can reflect nodes' internal and outside attributes and eliminate the influence of network structure on the node importance. The experiments of karate network and dolphin network show that networks topology structure integrated measure has smaller range of metrical result than a single indicator and more universal. Experiments show that attacking the North American power grid and the Internet network with the method has a faster convergence speed than other methods.

  14. An Energy-Efficient ASIC for Wireless Body Sensor Networks in Medical Applications.

    PubMed

    Xiaoyu Zhang; Hanjun Jiang; Lingwei Zhang; Chun Zhang; Zhihua Wang; Xinkai Chen

    2010-02-01

    An energy-efficient application-specific integrated circuit (ASIC) featured with a work-on-demand protocol is designed for wireless body sensor networks (WBSNs) in medical applications. Dedicated for ultra-low-power wireless sensor nodes, the ASIC consists of a low-power microcontroller unit (MCU), a power-management unit (PMU), reconfigurable sensor interfaces, communication ports controlling a wireless transceiver, and an integrated passive radio-frequency (RF) receiver with energy harvesting ability. The MCU, together with the PMU, provides quite flexible communication and power-control modes for energy-efficient operations. The always-on passive RF receiver with an RF energy harvesting block offers the sensor nodes the capability of work-on-demand with zero standby power. Fabricated in standard 0.18-¿m complementary metal-oxide semiconductor technology, the ASIC occupies a die area of 2 mm × 2.5 mm. A wireless body sensor network sensor-node prototype using this ASIC only consumes < 10-nA current under the passive standby mode, and < 10 ¿A under the active standby mode, when supplied by a 3-V battery.

  15. Dynamic clustering scheme based on the coordination of management and control in multi-layer and multi-region intelligent optical network

    NASA Astrophysics Data System (ADS)

    Niu, Xiaoliang; Yuan, Fen; Huang, Shanguo; Guo, Bingli; Gu, Wanyi

    2011-12-01

    A Dynamic clustering scheme based on coordination of management and control is proposed to reduce network congestion rate and improve the blocking performance of hierarchical routing in Multi-layer and Multi-region intelligent optical network. Its implement relies on mobile agent (MA) technology, which has the advantages of efficiency, flexibility, functional and scalability. The paper's major contribution is to adjust dynamically domain when the performance of working network isn't in ideal status. And the incorporation of centralized NMS and distributed MA control technology migrate computing process to control plane node which releases the burden of NMS and improves process efficiently. Experiments are conducted on Multi-layer and multi-region Simulation Platform for Optical Network (MSPON) to assess the performance of the scheme.

  16. Coupling effect of nodes popularity and similarity on social network persistence

    PubMed Central

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-01-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology. PMID:28220840

  17. Coupling effect of nodes popularity and similarity on social network persistence

    NASA Astrophysics Data System (ADS)

    Jin, Xiaogang; Jin, Cheng; Huang, Jiaxuan; Min, Yong

    2017-02-01

    Network robustness represents the ability of networks to withstand failures and perturbations. In social networks, maintenance of individual activities, also called persistence, is significant towards understanding robustness. Previous works usually consider persistence on pre-generated network structures; while in social networks, the network structure is growing with the cascading inactivity of existed individuals. Here, we address this challenge through analysis for nodes under a coevolution model, which characterizes individual activity changes under three network growth modes: following the descending order of nodes’ popularity, similarity or uniform random. We show that when nodes possess high spontaneous activities, a popularity-first growth mode obtains highly persistent networks; otherwise, with low spontaneous activities, a similarity-first mode does better. Moreover, a compound growth mode, with the consecutive joining of similar nodes in a short period and mixing a few high popularity nodes, obtains the highest persistence. Therefore, nodes similarity is essential for persistent social networks, while properly coupling popularity with similarity further optimizes the persistence. This demonstrates the evolution of nodes activity not only depends on network topology, but also their connective typology.

  18. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring

    PubMed Central

    Ammad Uddin, Mohammad; Mansour, Ali; Le Jeune, Denis; Ayaz, Mohammad; Aggoune, el-Hadi M.

    2018-01-01

    In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use. PMID:29439496

  19. UAV-Assisted Dynamic Clustering of Wireless Sensor Networks for Crop Health Monitoring.

    PubMed

    Uddin, Mohammad Ammad; Mansour, Ali; Jeune, Denis Le; Ayaz, Mohammad; Aggoune, El-Hadi M

    2018-02-11

    In this study, a crop health monitoring system is developed by using state of the art technologies including wireless sensors and Unmanned Aerial Vehicles (UAVs). Conventionally data is collected from sensor nodes either by fixed base stations or mobile sinks. Mobile sinks are considered a better choice nowadays due to their improved network coverage and energy utilization. Usually, the mobile sink is used in two ways: either it goes for random walk to find the scattered nodes and collect data, or follows a pre-defined path established by the ground network/clusters. Neither of these options is suitable in our scenario due to the factors like dynamic data collection, the strict targeted area required to be scanned, unavailability of a large number of nodes, dynamic path of the UAV, and most importantly, none of these are known in advance. The contribution of this paper is the formation of dynamic runtime clusters of field sensors by considering the above mentioned factors. Furthermore a mechanism (Bayesian classifier) is defined to select best node as cluster head. The proposed system is validated through simulation results, lab and infield experiments using concept devices. The obtained results are encouraging, especially in terms of deployment time, energy, efficiency, throughput and ease of use.

  20. Architecture for WSN Nodes Integration in Context Aware Systems Using Semantic Messages

    NASA Astrophysics Data System (ADS)

    Larizgoitia, Iker; Muguira, Leire; Vazquez, Juan Ignacio

    Wireless sensor networks (WSN) are becoming extremely popular in the development of context aware systems. Traditionally WSN have been focused on capturing data, which was later analyzed and interpreted in a server with more computational power. In this kind of scenario the problem of representing the sensor information needs to be addressed. Every node in the network might have different sensors attached; therefore their correspondent packet structures will be different. The server has to be aware of the meaning of every single structure and data in order to be able to interpret them. Multiple sensors, multiple nodes, multiple packet structures (and not following a standard format) is neither scalable nor interoperable. Context aware systems have solved this problem with the use of semantic technologies. They provide a common framework to achieve a standard definition of any domain. Nevertheless, these representations are computationally expensive, so a WSN cannot afford them. The work presented in this paper tries to bridge the gap between the sensor information and its semantic representation, by defining a simple architecture that enables the definition of this information natively in a semantic way, achieving the integration of the semantic information in the network packets. This will have several benefits, the most important being the possibility of promoting every WSN node to a real semantic information source.

  1. Robust Self-Authenticating Network Coding

    DTIC Science & Technology

    2008-11-30

    efficient as traditional point-to-point coding schemes 3m*b*c*ts»tt a«2b»c*dt4g »4.0»C* 3d *Sh Number of symbols that an intermediate node has to...Institute of Technology This work was partly supported by the Fundacao para a Ciencia e Tecnologia (Portuguese foundation lor Science and Technology

  2. Trade-Off Analysis Report

    NASA Technical Reports Server (NTRS)

    Dhas, Chris

    2000-01-01

    NASAs Glenn Research Center (GRC) defines and develops advanced technology for high priority national needs in communications technologies for application to aeronautics and space. GRC tasked Computer Networks and Software Inc. (CNS) to examine protocols and architectures for an In-Space Internet Node. CNS has developed a methodology for network reference models to support NASAs four mission areas: Earth Science, Space Science, Human Exploration and Development of Space (REDS), Aerospace Technology. CNS previously developed a report which applied the methodology, to three space Internet-based communications scenarios for future missions. CNS conceptualized, designed, and developed space Internet-based communications protocols and architectures for each of the independent scenarios. GRC selected for further analysis the scenario that involved unicast communications between a Low-Earth-Orbit (LEO) International Space Station (ISS) and a ground terminal Internet node via a Tracking and Data Relay Satellite (TDRS) transfer. This report contains a tradeoff analysis on the selected scenario. The analysis examines the performance characteristics of the various protocols and architectures. The tradeoff analysis incorporates the results of a CNS developed analytical model that examined performance parameters.

  3. Error recovery to enable error-free message transfer between nodes of a computer network

    DOEpatents

    Blumrich, Matthias A.; Coteus, Paul W.; Chen, Dong; Gara, Alan; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Takken, Todd; Steinmacher-Burow, Burkhard; Vranas, Pavlos M.

    2016-01-26

    An error-recovery method to enable error-free message transfer between nodes of a computer network. A first node of the network sends a packet to a second node of the network over a link between the nodes, and the first node keeps a copy of the packet on a sending end of the link until the first node receives acknowledgment from the second node that the packet was received without error. The second node tests the packet to determine if the packet is error free. If the packet is not error free, the second node sets a flag to mark the packet as corrupt. The second node returns acknowledgement to the first node specifying whether the packet was received with or without error. When the packet is received with error, the link is returned to a known state and the packet is sent again to the second node.

  4. Method and apparatus for routing data in an inter-nodal communications lattice of a massively parallel computer system by dynamically adjusting local routing strategies

    DOEpatents

    Archer, Charles Jens; Musselman, Roy Glenn; Peters, Amanda; Pinnow, Kurt Walter; Swartz, Brent Allen; Wallenfelt, Brian Paul

    2010-03-16

    A massively parallel computer system contains an inter-nodal communications network of node-to-node links. Each node implements a respective routing strategy for routing data through the network, the routing strategies not necessarily being the same in every node. The routing strategies implemented in the nodes are dynamically adjusted during application execution to shift network workload as required. Preferably, adjustment of routing policies in selective nodes is performed at synchronization points. The network may be dynamically monitored, and routing strategies adjusted according to detected network conditions.

  5. Summarisation of weighted networks

    NASA Astrophysics Data System (ADS)

    Zhou, Fang; Qu, Qiang; Toivonen, Hannu

    2017-09-01

    Networks often contain implicit structure. We introduce novel problems and methods that look for structure in networks, by grouping nodes into supernodes and edges to superedges, and then make this structure visible to the user in a smaller generalised network. This task of finding generalisations of nodes and edges is formulated as 'network Summarisation'. We propose models and algorithms for networks that have weights on edges, on nodes or on both, and study three new variants of the network summarisation problem. In edge-based weighted network summarisation, the summarised network should preserve edge weights as well as possible. A wider class of settings is considered in path-based weighted network summarisation, where the resulting summarised network should preserve longer range connectivities between nodes. Node-based weighted network summarisation in turn allows weights also on nodes and summarisation aims to preserve more information related to high weight nodes. We study theoretical properties of these problems and show them to be NP-hard. We propose a range of heuristic generalisation algorithms with different trade-offs between complexity and quality of the result. Comprehensive experiments on real data show that weighted networks can be summarised efficiently with relatively little error.

  6. Providing nearest neighbor point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer

    DOEpatents

    Archer, Charles J.; Faraj, Ahmad A.; Inglett, Todd A.; Ratterman, Joseph D.

    2012-10-23

    Methods, apparatus, and products are disclosed for providing nearest neighbor point-to-point communications among compute nodes of an operational group in a global combining network of a parallel computer, each compute node connected to each adjacent compute node in the global combining network through a link, that include: identifying each link in the global combining network for each compute node of the operational group; designating one of a plurality of point-to-point class routing identifiers for each link such that no compute node in the operational group is connected to two adjacent compute nodes in the operational group with links designated for the same class routing identifiers; and configuring each compute node of the operational group for point-to-point communications with each adjacent compute node in the global combining network through the link between that compute node and that adjacent compute node using that link's designated class routing identifier.

  7. Network structure exploration in networks with node attributes

    NASA Astrophysics Data System (ADS)

    Chen, Yi; Wang, Xiaolong; Bu, Junzhao; Tang, Buzhou; Xiang, Xin

    2016-05-01

    Complex networks provide a powerful way to represent complex systems and have been widely studied during the past several years. One of the most important tasks of network analysis is to detect structures (also called structural regularities) embedded in networks by determining group number and group partition. Most of network structure exploration models only consider network links. However, in real world networks, nodes may have attributes that are useful for network structure exploration. In this paper, we propose a novel Bayesian nonparametric (BNP) model to explore structural regularities in networks with node attributes, called Bayesian nonparametric attribute (BNPA) model. This model does not only take full advantage of both links between nodes and node attributes for group partition via shared hidden variables, but also determine group number automatically via the Bayesian nonparametric theory. Experiments conducted on a number of real and synthetic networks show that our BNPA model is able to automatically explore structural regularities in networks with node attributes and is competitive with other state-of-the-art models.

  8. Approach to Privacy-Preserve Data in Two-Tiered Wireless Sensor Network Based on Linear System and Histogram

    NASA Astrophysics Data System (ADS)

    Dang, Van H.; Wohlgemuth, Sven; Yoshiura, Hiroshi; Nguyen, Thuc D.; Echizen, Isao

    Wireless sensor network (WSN) has been one of key technologies for the future with broad applications from the military to everyday life [1,2,3,4,5]. There are two kinds of WSN model models with sensors for sensing data and a sink for receiving and processing queries from users; and models with special additional nodes capable of storing large amounts of data from sensors and processing queries from the sink. Among the latter type, a two-tiered model [6,7] has been widely adopted because of its storage and energy saving benefits for weak sensors, as proved by the advent of commercial storage node products such as Stargate [8] and RISE. However, by concentrating storage in certain nodes, this model becomes more vulnerable to attack. Our novel technique, called zip-histogram, contributes to solving the problems of previous studies [6,7] by protecting the stored data's confidentiality and integrity (including data from the sensor and queries from the sink) against attackers who might target storage nodes in two-tiered WSNs.

  9. 25 CFR 224.65 - How may a tribe assume additional activities under a TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT... additional activities under a TERA? A tribe may assume additional activities related to the development of...

  10. 25 CFR 224.66 - How may a tribe reduce the scope of the TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT... development managed under the TERA. Any such reduction in scope must include the return of all relevant...

  11. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network

    PubMed Central

    Schilling, Lisa M.; Kwan, Bethany M.; Drolshagen, Charles T.; Hosokawa, Patrick W.; Brandt, Elias; Pace, Wilson D.; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R.O.; Stephens, William E.; George, Joseph M.; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K.; Kahn, Michael G.

    2013-01-01

    Introduction: Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. Methods: The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. Discussion: SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions. PMID:25848567

  12. Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) Technology Infrastructure for a Distributed Data Network.

    PubMed

    Schilling, Lisa M; Kwan, Bethany M; Drolshagen, Charles T; Hosokawa, Patrick W; Brandt, Elias; Pace, Wilson D; Uhrich, Christopher; Kamerick, Michael; Bunting, Aidan; Payne, Philip R O; Stephens, William E; George, Joseph M; Vance, Mark; Giacomini, Kelli; Braddy, Jason; Green, Mika K; Kahn, Michael G

    2013-01-01

    Distributed Data Networks (DDNs) offer infrastructure solutions for sharing electronic health data from across disparate data sources to support comparative effectiveness research. Data sharing mechanisms must address technical and governance concerns stemming from network security and data disclosure laws and best practices, such as HIPAA. The Scalable Architecture for Federated Translational Inquiries Network (SAFTINet) deploys TRIAD grid technology, a common data model, detailed technical documentation, and custom software for data harmonization to facilitate data sharing in collaboration with stakeholders in the care of safety net populations. Data sharing partners host TRIAD grid nodes containing harmonized clinical data within their internal or hosted network environments. Authorized users can use a central web-based query system to request analytic data sets. SAFTINet DDN infrastructure achieved a number of data sharing objectives, including scalable and sustainable systems for ensuring harmonized data structures and terminologies and secure distributed queries. Initial implementation challenges were resolved through iterative discussions, development and implementation of technical documentation, governance, and technology solutions.

  13. Line-plane broadcasting in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-06-08

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  14. Line-plane broadcasting in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Berg, Jeremy E.; Blocksome, Michael A.; Smith, Brian E.

    2010-11-23

    Methods, apparatus, and products are disclosed for line-plane broadcasting in a data communications network of a parallel computer, the parallel computer comprising a plurality of compute nodes connected together through the network, the network optimized for point to point data communications and characterized by at least a first dimension, a second dimension, and a third dimension, that include: initiating, by a broadcasting compute node, a broadcast operation, including sending a message to all of the compute nodes along an axis of the first dimension for the network; sending, by each compute node along the axis of the first dimension, the message to all of the compute nodes along an axis of the second dimension for the network; and sending, by each compute node along the axis of the second dimension, the message to all of the compute nodes along an axis of the third dimension for the network.

  15. Networks in plant epidemiology: from genes to landscapes, countries, and continents.

    PubMed

    Moslonka-Lefebvre, Mathieu; Finley, Ann; Dorigatti, Ilaria; Dehnen-Schmutz, Katharina; Harwood, Tom; Jeger, Michael J; Xu, Xiangming; Holdenrieder, Ottmar; Pautasso, Marco

    2011-04-01

    There is increasing use of networks in ecology and epidemiology, but still relatively little application in phytopathology. Networks are sets of elements (nodes) connected in various ways by links (edges). Network analysis aims to understand system dynamics and outcomes in relation to network characteristics. Many existing natural, social, and technological networks have been shown to have small-world (local connectivity with short-cuts) and scale-free (presence of super-connected nodes) properties. In this review, we discuss how network concepts can be applied in plant pathology from the molecular to the landscape and global level. Wherever disease spread occurs not just because of passive/natural dispersion but also due to artificial movements, it makes sense to superimpose realistic models of the trade in plants on spatially explicit models of epidemic development. We provide an example of an emerging pathosystem (Phytophthora ramorum) where a theoretical network approach has proven particularly fruitful in analyzing the spread of disease in the UK plant trade. These studies can help in assessing the future threat posed by similar emerging pathogens. Networks have much potential in plant epidemiology and should become part of the standard curriculum.

  16. Compressive sensing of high betweenness centrality nodes in networks

    NASA Astrophysics Data System (ADS)

    Mahyar, Hamidreza; Hasheminezhad, Rouzbeh; Ghalebi K., Elahe; Nazemian, Ali; Grosu, Radu; Movaghar, Ali; Rabiee, Hamid R.

    2018-05-01

    Betweenness centrality is a prominent centrality measure expressing importance of a node within a network, in terms of the fraction of shortest paths passing through that node. Nodes with high betweenness centrality have significant impacts on the spread of influence and idea in social networks, the user activity in mobile phone networks, the contagion process in biological networks, and the bottlenecks in communication networks. Thus, identifying k-highest betweenness centrality nodes in networks will be of great interest in many applications. In this paper, we introduce CS-HiBet, a new method to efficiently detect top- k betweenness centrality nodes in networks, using compressive sensing. CS-HiBet can perform as a distributed algorithm by using only the local information at each node. Hence, it is applicable to large real-world and unknown networks in which the global approaches are usually unrealizable. The performance of the proposed method is evaluated by extensive simulations on several synthetic and real-world networks. The experimental results demonstrate that CS-HiBet outperforms the best existing methods with notable improvements.

  17. Vulnerability of networks of interacting Markov chains.

    PubMed

    Kocarev, L; Zlatanov, N; Trajanov, D

    2010-05-13

    The concept of vulnerability is introduced for a model of random, dynamical interactions on networks. In this model, known as the influence model, the nodes are arranged in an arbitrary network, while the evolution of the status at a node is according to an internal Markov chain, but with transition probabilities that depend not only on the current status of that node but also on the statuses of the neighbouring nodes. Vulnerability is treated analytically and numerically for several networks with different topological structures, as well as for two real networks--the network of infrastructures and the EU power grid--identifying the most vulnerable nodes of these networks.

  18. Controllability of protein-protein interaction phosphorylation-based networks: Participation of the hub 14-3-3 protein family

    PubMed Central

    Uhart, Marina; Flores, Gabriel; Bustos, Diego M.

    2016-01-01

    Posttranslational regulation of protein function is an ubiquitous mechanism in eukaryotic cells. Here, we analyzed biological properties of nodes and edges of a human protein-protein interaction phosphorylation-based network, especially of those nodes critical for the network controllability. We found that the minimal number of critical nodes needed to control the whole network is 29%, which is considerably lower compared to other real networks. These critical nodes are more regulated by posttranslational modifications and contain more binding domains to these modifications than other kinds of nodes in the network, suggesting an intra-group fast regulation. Also, when we analyzed the edges characteristics that connect critical and non-critical nodes, we found that the former are enriched in domain-to-eukaryotic linear motif interactions, whereas the later are enriched in domain-domain interactions. Our findings suggest a possible structure for protein-protein interaction networks with a densely interconnected and self-regulated central core, composed of critical nodes with a high participation in the controllability of the full network, and less regulated peripheral nodes. Our study offers a deeper understanding of complex network control and bridges the controllability theorems for complex networks and biological protein-protein interaction phosphorylation-based networked systems. PMID:27195976

  19. Automated Construction of Node Software Using Attributes in a Ubiquitous Sensor Network Environment

    PubMed Central

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric—the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment. PMID:22163678

  20. Automated construction of node software using attributes in a ubiquitous sensor network environment.

    PubMed

    Lee, Woojin; Kim, Juil; Kang, JangMook

    2010-01-01

    In sensor networks, nodes must often operate in a demanding environment facing restrictions such as restricted computing resources, unreliable wireless communication and power shortages. Such factors make the development of ubiquitous sensor network (USN) applications challenging. To help developers construct a large amount of node software for sensor network applications easily and rapidly, this paper proposes an approach to the automated construction of node software for USN applications using attributes. In the proposed technique, application construction proceeds by first developing a model for the sensor network and then designing node software by setting the values of the predefined attributes. After that, the sensor network model and the design of node software are verified. The final source codes of the node software are automatically generated from the sensor network model. We illustrate the efficiency of the proposed technique by using a gas/light monitoring application through a case study of a Gas and Light Monitoring System based on the Nano-Qplus operating system. We evaluate the technique using a quantitative metric-the memory size of execution code for node software. Using the proposed approach, developers are able to easily construct sensor network applications and rapidly generate a large number of node softwares at a time in a ubiquitous sensor network environment.

  1. Analyses of the response of a complex weighted network to nodes removal strategies considering links weight: The case of the Beijing urban road system

    NASA Astrophysics Data System (ADS)

    Bellingeri, Michele; Lu, Zhe-Ming; Cassi, Davide; Scotognella, Francesco

    2018-02-01

    Complex network response to node loss is a central question in different fields of science ranging from physics, sociology, biology to ecology. Previous studies considered binary networks where the weight of the links is not accounted for. However, in real-world networks the weights of connections can be widely different. Here, we analyzed the response of real-world road traffic complex network of Beijing, the most prosperous city in China. We produced nodes removal attack simulations using classic binary node features and we introduced weighted ranks for node importance. We measured the network functioning during nodes removal with three different parameters: the size of the largest connected cluster (LCC), the binary network efficiency (Bin EFF) and the weighted network efficiency (Weg EFF). We find that removing nodes according to weighted rank, i.e. considering the weight of the links as a number of taxi flows along the roads, produced in general the highest damage in the system. Our results show that: (i) in order to model Beijing road complex networks response to nodes (intersections) failure, it is necessary to consider the weight of the links; (ii) to discover the best attack strategy, it is important to use nodes rank accounting links weight.

  2. Vigilante: Ultrafast Smart Sensor for Target Recognition and Precision Tracking in a Simulated CMD Scenario

    NASA Technical Reports Server (NTRS)

    Uldomkesmalee, Suraphol; Suddarth, Steven C.

    1997-01-01

    VIGILANTE is an ultrafast smart sensor testbed for generic Automatic Target Recognition (ATR) applications with a series of capability demonstration focussed on cruise missile defense (CMD). VIGILANTE's sensor/processor architecture is based on next-generation UV/visible/IR sensors and a tera-operations per second sugar-cube processor, as well as supporting airborne vehicle. Excellent results of efficient ATR methodologies that use an eigenvectors/neural network combination and feature-based precision tracking have been demonstrated in the laboratory environment.

  3. Configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks

    DOEpatents

    Archer, Charles J.; Inglett, Todd A.; Ratterman, Joseph D.; Smith, Brian E.

    2010-03-02

    Methods, apparatus, and products are disclosed for configuring compute nodes of a parallel computer in an operational group into a plurality of independent non-overlapping collective networks, the compute nodes in the operational group connected together for data communications through a global combining network, that include: partitioning the compute nodes in the operational group into a plurality of non-overlapping subgroups; designating one compute node from each of the non-overlapping subgroups as a master node; and assigning, to the compute nodes in each of the non-overlapping subgroups, class routing instructions that organize the compute nodes in that non-overlapping subgroup as a collective network such that the master node is a physical root.

  4. Joint amalgamation of most parsimonious reconciled gene trees

    PubMed Central

    Scornavacca, Celine; Jacox, Edwin; Szöllősi, Gergely J.

    2015-01-01

    Motivation: Traditionally, gene phylogenies have been reconstructed solely on the basis of molecular sequences; this, however, often does not provide enough information to distinguish between statistically equivalent relationships. To address this problem, several recent methods have incorporated information on the species phylogeny in gene tree reconstruction, leading to dramatic improvements in accuracy. Although probabilistic methods are able to estimate all model parameters but are computationally expensive, parsimony methods—generally computationally more efficient—require a prior estimate of parameters and of the statistical support. Results: Here, we present the Tree Estimation using Reconciliation (TERA) algorithm, a parsimony based, species tree aware method for gene tree reconstruction based on a scoring scheme combining duplication, transfer and loss costs with an estimate of the sequence likelihood. TERA explores all reconciled gene trees that can be amalgamated from a sample of gene trees. Using a large scale simulated dataset, we demonstrate that TERA achieves the same accuracy as the corresponding probabilistic method while being faster, and outperforms other parsimony-based methods in both accuracy and speed. Running TERA on a set of 1099 homologous gene families from complete cyanobacterial genomes, we find that incorporating knowledge of the species tree results in a two thirds reduction in the number of apparent transfer events. Availability and implementation: The algorithm is implemented in our program TERA, which is freely available from http://mbb.univ-montp2.fr/MBB/download_sources/16__TERA. Contact: celine.scornavacca@univ-montp2.fr, ssolo@angel.elte.hu Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25380957

  5. The TeraShake Computational Platform for Large-Scale Earthquake Simulations

    NASA Astrophysics Data System (ADS)

    Cui, Yifeng; Olsen, Kim; Chourasia, Amit; Moore, Reagan; Maechling, Philip; Jordan, Thomas

    Geoscientific and computer science researchers with the Southern California Earthquake Center (SCEC) are conducting a large-scale, physics-based, computationally demanding earthquake system science research program with the goal of developing predictive models of earthquake processes. The computational demands of this program continue to increase rapidly as these researchers seek to perform physics-based numerical simulations of earthquake processes for larger meet the needs of this research program, a multiple-institution team coordinated by SCEC has integrated several scientific codes into a numerical modeling-based research tool we call the TeraShake computational platform (TSCP). A central component in the TSCP is a highly scalable earthquake wave propagation simulation program called the TeraShake anelastic wave propagation (TS-AWP) code. In this chapter, we describe how we extended an existing, stand-alone, wellvalidated, finite-difference, anelastic wave propagation modeling code into the highly scalable and widely used TS-AWP and then integrated this code into the TeraShake computational platform that provides end-to-end (initialization to analysis) research capabilities. We also describe the techniques used to enhance the TS-AWP parallel performance on TeraGrid supercomputers, as well as the TeraShake simulations phases including input preparation, run time, data archive management, and visualization. As a result of our efforts to improve its parallel efficiency, the TS-AWP has now shown highly efficient strong scaling on over 40K processors on IBM’s BlueGene/L Watson computer. In addition, the TSCP has developed into a computational system that is useful to many members of the SCEC community for performing large-scale earthquake simulations.

  6. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model

    PubMed Central

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-01-01

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called “anchor” nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network. PMID:26134104

  7. On the Design of Smart Parking Networks in the Smart Cities: An Optimal Sensor Placement Model.

    PubMed

    Bagula, Antoine; Castelli, Lorenzo; Zennaro, Marco

    2015-06-30

    Smart parking is a typical IoT application that can benefit from advances in sensor, actuator and RFID technologies to provide many services to its users and parking owners of a smart city. This paper considers a smart parking infrastructure where sensors are laid down on the parking spots to detect car presence and RFID readers are embedded into parking gates to identify cars and help in the billing of the smart parking. Both types of devices are endowed with wired and wireless communication capabilities for reporting to a gateway where the situation recognition is performed. The sensor devices are tasked to play one of the three roles: (1) slave sensor nodes located on the parking spot to detect car presence/absence; (2) master nodes located at one of the edges of a parking lot to detect presence and collect the sensor readings from the slave nodes; and (3) repeater sensor nodes, also called "anchor" nodes, located strategically at specific locations in the parking lot to increase the coverage and connectivity of the wireless sensor network. While slave and master nodes are placed based on geographic constraints, the optimal placement of the relay/anchor sensor nodes in smart parking is an important parameter upon which the cost and efficiency of the parking system depends. We formulate the optimal placement of sensors in smart parking as an integer linear programming multi-objective problem optimizing the sensor network engineering efficiency in terms of coverage and lifetime maximization, as well as its economic gain in terms of the number of sensors deployed for a specific coverage and lifetime. We propose an exact solution to the node placement problem using single-step and two-step solutions implemented in the Mosel language based on the Xpress-MPsuite of libraries. Experimental results reveal the relative efficiency of the single-step compared to the two-step model on different performance parameters. These results are consolidated by simulation results, which reveal that our solution outperforms a random placement in terms of both energy consumption, delay and throughput achieved by a smart parking network.

  8. Evaluating nodes importance in complex network based on PageRank algorithm

    NASA Astrophysics Data System (ADS)

    Li, Kai; He, Yongfeng

    2018-04-01

    To evaluate the important nodes in the complex network, and aim at the problems existing in the traditional PageRank algorithm, we propose a modified PageRank algorithm. The algorithm has convergence for the evaluation of the importance of the suspended nodes and the nodes with a directed loop network. The simulation example shows the effectiveness of the modified algorithm for the evaluation of the complexity of the complex network nodes.

  9. Properties of centralized cooperative sensing in cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Skokowski, Paweł; Malon, Krzysztof; Łopatka, Jerzy

    2017-04-01

    Spectrum sensing is a functionality that enables network creation in the cognitive radio technology. Spectrum sensing is use for building the situation awareness knowledge for better use of radio resources and to adjust network parameters in case of jamming, interferences from legacy systems, decreasing link quality caused e.g. by nodes positions changes. This paper presents results from performed tests to compare cooperative centralized sensing versus local sensing. All tests were performed in created simulator developed in Matlab/Simulink environment.

  10. System data communication structures for active-control transport aircraft, volume 1

    NASA Technical Reports Server (NTRS)

    Hopkins, A. L.; Martin, J. H.; Brock, L. D.; Jansson, D. G.; Serben, S.; Smith, T. B.; Hanley, L. D.

    1981-01-01

    Candidate data communication techniques are identified, including dedicated links, local buses, broadcast buses, multiplex buses, and mesh networks. The design methodology for mesh networks is then discussed, including network topology and node architecture. Several concepts of power distribution are reviewed, including current limiting and mesh networks for power. The technology issues of packaging, transmission media, and lightning are addressed, and, finally, the analysis tools developed to aid in the communication design process are described. There are special tools to analyze the reliability and connectivity of networks and more general reliability analysis tools for all types of systems.

  11. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  12. Identifying influential nodes in complex networks: A node information dimension approach

    NASA Astrophysics Data System (ADS)

    Bian, Tian; Deng, Yong

    2018-04-01

    In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.

  13. GFT centrality: A new node importance measure for complex networks

    NASA Astrophysics Data System (ADS)

    Singh, Rahul; Chakraborty, Abhishek; Manoj, B. S.

    2017-12-01

    Identifying central nodes is very crucial to design efficient communication networks or to recognize key individuals of a social network. In this paper, we introduce Graph Fourier Transform Centrality (GFT-C), a metric that incorporates local as well as global characteristics of a node, to quantify the importance of a node in a complex network. GFT-C of a reference node in a network is estimated from the GFT coefficients derived from the importance signal of the reference node. Our study reveals the superiority of GFT-C over traditional centralities such as degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, and Google PageRank centrality, in the context of various arbitrary and real-world networks with different degree-degree correlations.

  14. A parallel adaptive quantum genetic algorithm for the controllability of arbitrary networks.

    PubMed

    Li, Yuhong; Gong, Guanghong; Li, Ni

    2018-01-01

    In this paper, we propose a novel algorithm-parallel adaptive quantum genetic algorithm-which can rapidly determine the minimum control nodes of arbitrary networks with both control nodes and state nodes. The corresponding network can be fully controlled with the obtained control scheme. We transformed the network controllability issue into a combinational optimization problem based on the Popov-Belevitch-Hautus rank condition. A set of canonical networks and a list of real-world networks were experimented. Comparison results demonstrated that the algorithm was more ideal to optimize the controllability of networks, especially those larger-size networks. We demonstrated subsequently that there were links between the optimal control nodes and some network statistical characteristics. The proposed algorithm provides an effective approach to improve the controllability optimization of large networks or even extra-large networks with hundreds of thousands nodes.

  15. High resolution distributed time-to-digital converter (TDC) in a White Rabbit network

    NASA Astrophysics Data System (ADS)

    Pan, Weibin; Gong, Guanghua; Du, Qiang; Li, Hongming; Li, Jianmin

    2014-02-01

    The Large High Altitude Air Shower Observatory (LHAASO) project consists of a complex detector array with over 6000 detector nodes spreading over 1.2 km2 areas. The arrival times of shower particles are captured by time-to-digital converters (TDCs) in the detectors' frontend electronics, the arrival direction of the high energy cosmic ray are then to be reconstructed from the space-time information of all detector nodes. To guarantee the angular resolution of 0.5°, a time synchronization of 500 ps (RMS) accuracy and 100 ps precision must be achieved among all TDC nodes. A technology enhancing Gigabit Ethernet, called the White Rabbit (WR), has shown the capability of delivering sub-nanosecond accuracy and picoseconds precision of synchronization over the standard data packet transfer. In this paper we demonstrate a distributed TDC prototype system combining the FPGA based TDC and the WR technology. With the time synchronization and data transfer services from a compact WR node, separate FPGA-TDC nodes can be combined to provide uniform time measurement information for correlated events. The design detail and test performance will be described in the paper.

  16. Asynchronous reference frame agreement in a quantum network

    NASA Astrophysics Data System (ADS)

    Islam, Tanvirul; Wehner, Stephanie

    2016-03-01

    An efficient implementation of many multiparty protocols for quantum networks requires that all the nodes in the network share a common reference frame. Establishing such a reference frame from scratch is especially challenging in an asynchronous network where network links might have arbitrary delays and the nodes do not share synchronised clocks. In this work, we study the problem of establishing a common reference frame in an asynchronous network of n nodes of which at most t are affected by arbitrary unknown error, and the identities of the faulty nodes are not known. We present a protocol that allows all the correctly functioning nodes to agree on a common reference frame as long as the network graph is complete and not more than t\\lt n/4 nodes are faulty. As the protocol is asynchronous, it can be used with some assumptions to synchronise clocks over a network. Also, the protocol has the appealing property that it allows any existing two-node asynchronous protocol for reference frame agreement to be lifted to a robust protocol for an asynchronous quantum network.

  17. Automatic Network Fingerprinting through Single-Node Motifs

    PubMed Central

    Echtermeyer, Christoph; da Fontoura Costa, Luciano; Rodrigues, Francisco A.; Kaiser, Marcus

    2011-01-01

    Complex networks have been characterised by their specific connectivity patterns (network motifs), but their building blocks can also be identified and described by node-motifs—a combination of local network features. One technique to identify single node-motifs has been presented by Costa et al. (L. D. F. Costa, F. A. Rodrigues, C. C. Hilgetag, and M. Kaiser, Europhys. Lett., 87, 1, 2009). Here, we first suggest improvements to the method including how its parameters can be determined automatically. Such automatic routines make high-throughput studies of many networks feasible. Second, the new routines are validated in different network-series. Third, we provide an example of how the method can be used to analyse network time-series. In conclusion, we provide a robust method for systematically discovering and classifying characteristic nodes of a network. In contrast to classical motif analysis, our approach can identify individual components (here: nodes) that are specific to a network. Such special nodes, as hubs before, might be found to play critical roles in real-world networks. PMID:21297963

  18. Performance Evaluation of LoRa Considering Scenario Conditions.

    PubMed

    Sanchez-Iborra, Ramon; Sanchez-Gomez, Jesus; Ballesta-Viñas, Juan; Cano, Maria-Dolores; Skarmeta, Antonio F

    2018-03-03

    New verticals within the Internet of Things (IoT) paradigm such as smart cities, smart farming, or goods monitoring, among many others, are demanding strong requirements to the Radio Access Network (RAN) in terms of coverage, end-node's power consumption, and scalability. The technologies employed so far to provide IoT scenarios with connectivity, e.g., wireless sensor network and cellular technologies, are not able to simultaneously cope with these three requirements. Thus, a novel solution known as Low Power - Wide Area Network (LP-WAN) has emerged as a promising alternative to provide with low-cost and low-power-consumption connectivity to end-nodes spread in a wide area. Concretely, the Long-Range Wide Area Network (LoRaWAN) technology is one of the LP-WAN platforms that is receiving greater attention from both the industry and the academia. For that reason, in this work, a comprehensive performance evaluation of LoRaWAN under different environmental conditions is presented. The results are obtained from three real scenarios, namely, urban, suburban, and rural, considering both dynamic and static conditions, hence a discussion about the most proper LoRaWAN physical-layer configuration for each scenario is provided. Besides, a theoretical coverage study is also conducted by the use of a radio planning tool considering topographic maps and a precise propagation model. From the attained results, it can be concluded that it is necessary to evaluate the propagation conditions of the deployment scenario prior to the system implantation in order to reach a compromise between the robustness of the network and the transmission data-rate.

  19. Strategies for synchronisation in an evolving telecommunications network

    NASA Astrophysics Data System (ADS)

    Avery, Rob

    1992-06-01

    The achievement of precise synchronization in the telecommunications environment is addressed. Transmitting the timing from node to node has been the inherent problem for all digital networks. Traditional network equipment used to transfer synchronization, such as digital switching ststems, adds impairments to the once traceable signal. As the synchronization signals are passed from node to node, they lose stability by passing through intervening clocks. Timing would be an integrated part of all new network and service deployments. New transmission methods, such as the Synchronous Digital Hierarchy (SDH), survivable network topologies and the issues that arise from them, necessitate a review of current network synchronization strategies. Challenges that face the network are itemized. A demonstration of why localized Primary Reference Clocks (PRC) in key nodes and the Synchronization Supply Unit (SSU) clock architecture of transit and local node clocks is a technically and economically viable solution to the issues facing network planners today is given.

  20. Analysis of interference performance of tactical radio network

    NASA Astrophysics Data System (ADS)

    Nie, Hao; Cai, Xiaoxia; Chen, Hong

    2017-08-01

    Mobile Ad hoc network has a strong military background for its development as the core technology of the backbone network of US tactical Internet. And which tactical radio network, is the war in today's tactical use of the Internet more mature form of networking, mainly used in brigade and brigade following forces. This paper analyzes the typical protocol AODV in the tactical radio network, and then carries on the networking. By adding the interference device to the whole network, the battlefield environment is simulated, and then the throughput, delay and packet loss rate are analyzed, and the performance of the whole network and the single node before and after the interference is obtained.

  1. A Network-Based Method to Assess the Statistical Significance of Mild Co-Regulation Effects

    PubMed Central

    Horvát, Emőke-Ágnes; Zhang, Jitao David; Uhlmann, Stefan; Sahin, Özgür; Zweig, Katharina Anna

    2013-01-01

    Recent development of high-throughput, multiplexing technology has initiated projects that systematically investigate interactions between two types of components in biological networks, for instance transcription factors and promoter sequences, or microRNAs (miRNAs) and mRNAs. In terms of network biology, such screening approaches primarily attempt to elucidate relations between biological components of two distinct types, which can be represented as edges between nodes in a bipartite graph. However, it is often desirable not only to determine regulatory relationships between nodes of different types, but also to understand the connection patterns of nodes of the same type. Especially interesting is the co-occurrence of two nodes of the same type, i.e., the number of their common neighbours, which current high-throughput screening analysis fails to address. The co-occurrence gives the number of circumstances under which both of the biological components are influenced in the same way. Here we present SICORE, a novel network-based method to detect pairs of nodes with a statistically significant co-occurrence. We first show the stability of the proposed method on artificial data sets: when randomly adding and deleting observations we obtain reliable results even with noise exceeding the expected level in large-scale experiments. Subsequently, we illustrate the viability of the method based on the analysis of a proteomic screening data set to reveal regulatory patterns of human microRNAs targeting proteins in the EGFR-driven cell cycle signalling system. Since statistically significant co-occurrence may indicate functional synergy and the mechanisms underlying canalization, and thus hold promise in drug target identification and therapeutic development, we provide a platform-independent implementation of SICORE with a graphical user interface as a novel tool in the arsenal of high-throughput screening analysis. PMID:24039936

  2. Complex Network Simulation of Forest Network Spatial Pattern in Pearl River Delta

    NASA Astrophysics Data System (ADS)

    Zeng, Y.

    2017-09-01

    Forest network-construction uses for the method and model with the scale-free features of complex network theory based on random graph theory and dynamic network nodes which show a power-law distribution phenomenon. The model is suitable for ecological disturbance by larger ecological landscape Pearl River Delta consistent recovery. Remote sensing and GIS spatial data are available through the latest forest patches. A standard scale-free network node distribution model calculates the area of forest network's power-law distribution parameter value size; The recent existing forest polygons which are defined as nodes can compute the network nodes decaying index value of the network's degree distribution. The parameters of forest network are picked up then make a spatial transition to GIS real world models. Hence the connection is automatically generated by minimizing the ecological corridor by the least cost rule between the near nodes. Based on scale-free network node distribution requirements, select the number compared with less, a huge point of aggregation as a future forest planning network's main node, and put them with the existing node sequence comparison. By this theory, the forest ecological projects in the past avoid being fragmented, scattered disorderly phenomena. The previous regular forest networks can be reduced the required forest planting costs by this method. For ecological restoration of tropical and subtropical in south China areas, it will provide an effective method for the forest entering city project guidance and demonstration with other ecological networks (water, climate network, etc.) for networking a standard and base datum.

  3. High speed polling protocol for multiple node network with sequential flooding of a polling message and a poll-answering message

    NASA Technical Reports Server (NTRS)

    Marvit, Maclen (Inventor); Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by sequentially flooding the network with a poll-answering informational message and with the polling message.

  4. Cross-Layer Resource Allocation for Wireless Visual Sensor Networks and Mobile Ad Hoc Networks

    DTIC Science & Technology

    2014-10-01

    MMD), minimizes the maximum dis- tortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. We employed the Particle...achieve the ideal tradeoff between the transmitted video quality and energy consumption. Each sensor node has a bit rate that can be used for both...Distortion (MMD), minimizes the maximum distortion among all nodes of the network, promoting a rather unbiased treatment of the nodes. For both criteria

  5. NASA and Industry Benefits of ACTS High Speed Network Interoperability Experiments

    NASA Technical Reports Server (NTRS)

    Zernic, M. J.; Beering, D. R.; Brooks, D. E.

    2000-01-01

    This paper provides synopses of the design. implementation, and results of key high data rate communications experiments utilizing the technologies of NASA's Advanced Communications Technology Satellite (ACTS). Specifically, the network protocol and interoperability performance aspects will be highlighted. The objectives of these key experiments will be discussed in their relevant context to NASA missions, as well as, to the comprehensive communications industry. Discussion of the experiment implementation will highlight the technical aspects of hybrid network connectivity, a variety of high-speed interoperability architectures, a variety of network node platforms, protocol layers, internet-based applications, and new work focused on distinguishing between link errors and congestion. In addition, this paper describes the impact of leveraging government-industry partnerships to achieve technical progress and forge synergistic relationships. These relationships will be the key to success as NASA seeks to combine commercially available technology with its own internal technology developments to realize more robust and cost effective communications for space operations.

  6. TSCA Environmental Release Application (TERA) for Modified Escherichia coli

    EPA Pesticide Factsheets

    TERA submitted by University of North Carolina and given tracking designation of R-01-0001. The microorganism will be introduced into potential sources of fecal contamination to determine if the bacteria can be detected downstream from the release points.

  7. TSCA Environmental Release Application (TERA) for Alcaligenes xylosoxidans subspecies denitrificans strain AL6.1

    EPA Pesticide Factsheets

    TERA submitted by University of California, Riverside and given the tracking designation of R-03-0001. The microorganism has been modified to carry a coding sequence of DsRed for expressing a red fluorescent protein.

  8. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks.

    PubMed

    Tang, Jiawei; Liu, Anfeng; Zhang, Jian; Xiong, Neal N; Zeng, Zhiwen; Wang, Tian

    2018-03-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery remaining is high enough, nodes then send the notification which was logged before to the sink. Compared with past solutions, our results indicate that the performance of the TBSR scheme has been improved comprehensively; it can effectively increase the quantity of notification received by the sink by 20%, increase energy efficiency by 11%, reduce the maximum storage capacity needed by nodes by 33.3% and improve the success rate of routing by approximately 16.30%.

  9. A Trust-Based Secure Routing Scheme Using the Traceback Approach for Energy-Harvesting Wireless Sensor Networks

    PubMed Central

    Tang, Jiawei; Zhang, Jian; Zeng, Zhiwen; Wang, Tian

    2018-01-01

    The Internet of things (IoT) is composed of billions of sensing devices that are subject to threats stemming from increasing reliance on communications technologies. A Trust-Based Secure Routing (TBSR) scheme using the traceback approach is proposed to improve the security of data routing and maximize the use of available energy in Energy-Harvesting Wireless Sensor Networks (EHWSNs). The main contributions of a TBSR are (a) the source nodes send data and notification to sinks through disjoint paths, separately; in such a mechanism, the data and notification can be verified independently to ensure their security. (b) Furthermore, the data and notification adopt a dynamic probability of marking and logging approach during the routing. Therefore, when attacked, the network will adopt the traceback approach to locate and clear malicious nodes to ensure security. The probability of marking is determined based on the level of battery remaining; when nodes harvest more energy, the probability of marking is higher, which can improve network security. Because if the probability of marking is higher, the number of marked nodes on the data packet routing path will be more, and the sink will be more likely to trace back the data packet routing path and find malicious nodes according to this notification. When data packets are routed again, they tend to bypass these malicious nodes, which make the success rate of routing higher and lead to improved network security. When the battery level is low, the probability of marking will be decreased, which is able to save energy. For logging, when the battery level is high, the network adopts a larger probability of marking and smaller probability of logging to transmit notification to the sink, which can reserve enough storage space to meet the storage demand for the period of the battery on low level; when the battery level is low, increasing the probability of logging can reduce energy consumption. After the level of battery remaining is high enough, nodes then send the notification which was logged before to the sink. Compared with past solutions, our results indicate that the performance of the TBSR scheme has been improved comprehensively; it can effectively increase the quantity of notification received by the sink by 20%, increase energy efficiency by 11%, reduce the maximum storage capacity needed by nodes by 33.3% and improve the success rate of routing by approximately 16.30%. PMID:29494561

  10. Implementation of Multiple Host Nodes in Wireless Sensing Node Network System for Landslide Monitoring

    NASA Astrophysics Data System (ADS)

    Abas, Faizulsalihin bin; Takayama, Shigeru

    2015-02-01

    This paper proposes multiple host nodes in Wireless Sensing Node Network System (WSNNS) for landslide monitoring. As landslide disasters damage monitoring system easily, one major demand in landslide monitoring is the flexibility and robustness of the system to evaluate the current situation in the monitored area. For various reasons WSNNS can provide an important contribution to reach that aim. In this system, acceleration sensors and GPS are deployed in sensing nodes. Location information by GPS, enable the system to estimate network topology and enable the system to perceive the location in emergency by monitoring the node mode. Acceleration sensors deployment, capacitate this system to detect slow mass movement that can lead to landslide occurrence. Once deployed, sensing nodes self-organize into an autonomous wireless ad hoc network. The measurement parameter data from sensing nodes is transmitted to Host System via host node and "Cloud" System. The implementation of multiple host nodes in Local Sensing Node Network System (LSNNS), improve risk- management of the WSNNS for real-time monitoring of landslide disaster.

  11. Micro-grid platform based on NODE.JS architecture, implemented in electrical network instrumentation

    NASA Astrophysics Data System (ADS)

    Duque, M.; Cando, E.; Aguinaga, A.; Llulluna, F.; Jara, N.; Moreno, T.

    2016-05-01

    In this document, I propose a theory about the impact of systems based on microgrids in non-industrialized countries that have the goal to improve energy exploitation through alternatives methods of a clean and renewable energy generation and the creation of the app to manage the behavior of the micro-grids based on the NodeJS, Django and IOJS technologies. The micro-grids allow the optimal way to manage energy flow by electric injection directly in electric network small urban's cells in a low cost and available way. In difference from conventional systems, micro-grids can communicate between them to carry energy to places that have higher demand in accurate moments. This system does not require energy storage, so, costs are lower than conventional systems like fuel cells, solar panels or else; even though micro-grids are independent systems, they are not isolated. The impact that this analysis will generate, is the improvement of the electrical network without having greater control than an intelligent network (SMART-GRID); this leads to move to a 20% increase in energy use in a specified network; that suggest there are others sources of energy generation; but for today's needs, we need to standardize methods and remain in place to support all future technologies and the best option are the Smart Grids and Micro-Grids.

  12. Implementation of quantum key distribution network simulation module in the network simulator NS-3

    NASA Astrophysics Data System (ADS)

    Mehic, Miralem; Maurhart, Oliver; Rass, Stefan; Voznak, Miroslav

    2017-10-01

    As the research in quantum key distribution (QKD) technology grows larger and becomes more complex, the need for highly accurate and scalable simulation technologies becomes important to assess the practical feasibility and foresee difficulties in the practical implementation of theoretical achievements. Due to the specificity of the QKD link which requires optical and Internet connection between the network nodes, to deploy a complete testbed containing multiple network hosts and links to validate and verify a certain network algorithm or protocol would be very costly. Network simulators in these circumstances save vast amounts of money and time in accomplishing such a task. The simulation environment offers the creation of complex network topologies, a high degree of control and repeatable experiments, which in turn allows researchers to conduct experiments and confirm their results. In this paper, we described the design of the QKD network simulation module which was developed in the network simulator of version 3 (NS-3). The module supports simulation of the QKD network in an overlay mode or in a single TCP/IP mode. Therefore, it can be used to simulate other network technologies regardless of QKD.

  13. A constraint optimization based virtual network mapping method

    NASA Astrophysics Data System (ADS)

    Li, Xiaoling; Guo, Changguo; Wang, Huaimin; Li, Zhendong; Yang, Zhiwen

    2013-03-01

    Virtual network mapping problem, maps different virtual networks onto the substrate network is an extremely challenging work. This paper proposes a constraint optimization based mapping method for solving virtual network mapping problem. This method divides the problem into two phases, node mapping phase and link mapping phase, which are all NP-hard problems. Node mapping algorithm and link mapping algorithm are proposed for solving node mapping phase and link mapping phase, respectively. Node mapping algorithm adopts the thinking of greedy algorithm, mainly considers two factors, available resources which are supplied by the nodes and distance between the nodes. Link mapping algorithm is based on the result of node mapping phase, adopts the thinking of distributed constraint optimization method, which can guarantee to obtain the optimal mapping with the minimum network cost. Finally, simulation experiments are used to validate the method, and results show that the method performs very well.

  14. Study on the effect of sink moving trajectory on wireless sensor networks

    NASA Astrophysics Data System (ADS)

    Zhong, Peijun; Ruan, Feng

    2018-03-01

    Wireless sensor networks are developing very fast in recent years, due to their wide potential applications. However there exists the so-called hot spot problem, namely the nodes close to static sink node tend to die earlier than other nodes since they have heavier burden to forward. The introduction of mobile sink node can effectively alleviate this problem since sink node can move along certain trajectories, causing hot spot nodes more evenly distributed. In this paper, we make extensive experimental simulations for circular sensor network, with one mobile sink moving along different radius circumference. The whole network is divided into several clusters and there is one cluster head (CH) inside each cluster. The ordinary sensors communicate with CH and CHs construct a chain until the sink node. Simulation results show that the best network performance appears when sink moves along 0.25 R in terms of network lifetime.

  15. Cascade phenomenon against subsequent failures in complex networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liu, Zhi-Quan; He, Xuan; Ma, Jian-Feng

    2018-06-01

    Cascade phenomenon may lead to catastrophic disasters which extremely imperil the network safety or security in various complex systems such as communication networks, power grids, social networks and so on. In some flow-based networks, the load of failed nodes can be redistributed locally to their neighboring nodes to maximally preserve the traffic oscillations or large-scale cascading failures. However, in such local flow redistribution model, a small set of key nodes attacked subsequently can result in network collapse. Then it is a critical problem to effectively find the set of key nodes in the network. To our best knowledge, this work is the first to study this problem comprehensively. We first introduce the extra capacity for every node to put up with flow fluctuations from neighbors, and two extra capacity distributions including degree based distribution and average distribution are employed. Four heuristic key nodes discovering methods including High-Degree-First (HDF), Low-Degree-First (LDF), Random and Greedy Algorithms (GA) are presented. Extensive simulations are realized in both scale-free networks and random networks. The results show that the greedy algorithm can efficiently find the set of key nodes in both scale-free and random networks. Our work studies network robustness against cascading failures from a very novel perspective, and methods and results are very useful for network robustness evaluations and protections.

  16. D-MSR: a distributed network management scheme for real-time monitoring and process control applications in wireless industrial automation.

    PubMed

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-06-27

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead.

  17. D-MSR: A Distributed Network Management Scheme for Real-Time Monitoring and Process Control Applications in Wireless Industrial Automation

    PubMed Central

    Zand, Pouria; Dilo, Arta; Havinga, Paul

    2013-01-01

    Current wireless technologies for industrial applications, such as WirelessHART and ISA100.11a, use a centralized management approach where a central network manager handles the requirements of the static network. However, such a centralized approach has several drawbacks. For example, it cannot cope with dynamicity/disturbance in large-scale networks in a real-time manner and it incurs a high communication overhead and latency for exchanging management traffic. In this paper, we therefore propose a distributed network management scheme, D-MSR. It enables the network devices to join the network, schedule their communications, establish end-to-end connections by reserving the communication resources for addressing real-time requirements, and cope with network dynamicity (e.g., node/edge failures) in a distributed manner. According to our knowledge, this is the first distributed management scheme based on IEEE 802.15.4e standard, which guides the nodes in different phases from joining until publishing their sensor data in the network. We demonstrate via simulation that D-MSR can address real-time and reliable communication as well as the high throughput requirements of industrial automation wireless networks, while also achieving higher efficiency in network management than WirelessHART, in terms of delay and overhead. PMID:23807687

  18. An ultra-low power wireless sensor network for bicycle torque performance measurements.

    PubMed

    Gharghan, Sadik K; Nordin, Rosdiadee; Ismail, Mahamod

    2015-05-21

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach.

  19. An Ultra-Low Power Wireless Sensor Network for Bicycle Torque Performance Measurements

    PubMed Central

    Gharghan, Sadik K.; Nordin, Rosdiadee; Ismail, Mahamod

    2015-01-01

    In this paper, we propose an energy-efficient transmission technique known as the sleep/wake algorithm for a bicycle torque sensor node. This paper aims to highlight the trade-off between energy efficiency and the communication range between the cyclist and coach. Two experiments were conducted. The first experiment utilised the Zigbee protocol (XBee S2), and the second experiment used the Advanced and Adaptive Network Technology (ANT) protocol based on the Nordic nRF24L01 radio transceiver chip. The current consumption of ANT was measured, simulated and compared with a torque sensor node that uses the XBee S2 protocol. In addition, an analytical model was derived to correlate the sensor node average current consumption with a crank arm cadence. The sensor node achieved 98% power savings for ANT relative to ZigBee when they were compared alone, and the power savings amounted to 30% when all components of the sensor node are considered. The achievable communication range was 65 and 50 m for ZigBee and ANT, respectively, during measurement on an outdoor cycling track (i.e., velodrome). The conclusions indicate that the ANT protocol is more suitable for use in a torque sensor node when power consumption is a crucial demand, whereas the ZigBee protocol is more convenient in ensuring data communication between cyclist and coach. PMID:26007728

  20. Improvement of the SEP protocol based on community structure of node degree

    NASA Astrophysics Data System (ADS)

    Li, Donglin; Wei, Suyuan

    2017-05-01

    Analyzing the Stable election protocol (SEP) in wireless sensor networks and aiming at the problem of inhomogeneous cluster-heads distribution and unreasonable cluster-heads selectivity and single hop transmission in the SEP, a SEP Protocol based on community structure of node degree (SEP-CSND) is proposed. In this algorithm, network node deployed by using grid deployment model, and the connection between nodes established by setting up the communication threshold. The community structure constructed by node degree, then cluster head is elected in the community structure. On the basis of SEP, the node's residual energy and node degree is added in cluster-heads election. The information is transmitted with mode of multiple hops between network nodes. The simulation experiments showed that compared to the classical LEACH and SEP, this algorithm balances the energy consumption of the entire network and significantly prolongs network lifetime.

  1. The Global File System

    NASA Technical Reports Server (NTRS)

    Soltis, Steven R.; Ruwart, Thomas M.; OKeefe, Matthew T.

    1996-01-01

    The global file system (GFS) is a prototype design for a distributed file system in which cluster nodes physically share storage devices connected via a network-like fiber channel. Networks and network-attached storage devices have advanced to a level of performance and extensibility so that the previous disadvantages of shared disk architectures are no longer valid. This shared storage architecture attempts to exploit the sophistication of storage device technologies whereas a server architecture diminishes a device's role to that of a simple component. GFS distributes the file system responsibilities across processing nodes, storage across the devices, and file system resources across the entire storage pool. GFS caches data on the storage devices instead of the main memories of the machines. Consistency is established by using a locking mechanism maintained by the storage devices to facilitate atomic read-modify-write operations. The locking mechanism is being prototyped in the Silicon Graphics IRIX operating system and is accessed using standard Unix commands and modules.

  2. Evolutionary Beamforming Optimization for Radio Frequency Charging in Wireless Rechargeable Sensor Networks.

    PubMed

    Yao, Ke-Han; Jiang, Jehn-Ruey; Tsai, Chung-Hsien; Wu, Zong-Syun

    2017-08-20

    This paper investigates how to efficiently charge sensor nodes in a wireless rechargeable sensor network (WRSN) with radio frequency (RF) chargers to make the network sustainable. An RF charger is assumed to be equipped with a uniform circular array (UCA) of 12 antennas with the radius λ , where λ is the RF wavelength. The UCA can steer most RF energy in a target direction to charge a specific WRSN node by the beamforming technology. Two evolutionary algorithms (EAs) using the evolution strategy (ES), namely the Evolutionary Beamforming Optimization (EBO) algorithm and the Evolutionary Beamforming Optimization Reseeding (EBO-R) algorithm, are proposed to nearly optimize the power ratio of the UCA beamforming peak side lobe (PSL) and the main lobe (ML) aimed at the given target direction. The proposed algorithms are simulated for performance evaluation and are compared with a related algorithm, called Particle Swarm Optimization Gravitational Search Algorithm-Explore (PSOGSA-Explore), to show their superiority.

  3. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6

    PubMed Central

    Jebaseeli Samuelraj, Ananthi; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point. PMID:26366431

  4. Effect of node attributes on the temporal dynamics of network structure

    NASA Astrophysics Data System (ADS)

    Momeni, Naghmeh; Fotouhi, Babak

    2017-03-01

    Many natural and social networks evolve in time and their structures are dynamic. In most networks, nodes are heterogeneous, and their roles in the evolution of structure differ. This paper focuses on the role of individual attributes on the temporal dynamics of network structure. We focus on a basic model for growing networks that incorporates node attributes (which we call "quality"), and we focus on the problem of forecasting the structural properties of the network in arbitrary times for an arbitrary initial network. That is, we address the following question: If we are given a certain initial network with given arbitrary structure and known node attributes, then how does the structure change in time as new nodes with given distribution of attributes join the network? We solve the model analytically and obtain the quality-degree joint distribution and degree correlations. We characterize the role of individual attributes in the position of individual nodes in the hierarchy of connections. We confirm the theoretical findings with Monte Carlo simulations.

  5. Efficient Mobility Management Signalling in Network Mobility Supported PMIPV6.

    PubMed

    Samuelraj, Ananthi Jebaseeli; Jayapal, Sundararajan

    2015-01-01

    Proxy Mobile IPV6 (PMIPV6) is a network based mobility management protocol which supports node's mobility without the contribution from the respective mobile node. PMIPV6 is initially designed to support individual node mobility and it should be enhanced to support mobile network movement. NEMO-BSP is an existing protocol to support network mobility (NEMO) in PMIPV6 network. Due to the underlying differences in basic protocols, NEMO-BSP cannot be directly applied to PMIPV6 network. Mobility management signaling and data structures used for individual node's mobility should be modified to support group nodes' mobility management efficiently. Though a lot of research work is in progress to implement mobile network movement in PMIPV6, it is not yet standardized and each suffers with different shortcomings. This research work proposes modifications in NEMO-BSP and PMIPV6 to achieve NEMO support in PMIPV6. It mainly concentrates on optimizing the number and size of mobility signaling exchanged while mobile network or mobile network node changes its access point.

  6. Wideband, mobile networking technologies

    NASA Astrophysics Data System (ADS)

    Hyer, Kevin L.; Bowen, Douglas G.; Pulsipher, Dennis C.

    2005-05-01

    Ubiquitous communications will be the next era in the evolving communications revolution. From the human perspective, access to information will be instantaneous and provide a revolution in services available to both the consumer and the warfighter. Services will be from the mundane - anytime, anywhere access to any movie ever made - to the vital - reliable and immediate access to the analyzed real-time video from the multi-spectral sensors scanning for snipers in the next block. In the former example, the services rely on a fixed infrastructure of networking devices housed in controlled environments and coupled to fixed terrestrial fiber backbones - in the latter, the services are derived from an agile and highly mobile ad-hoc backbone established in a matter of minutes by size, weight, and power-constrained platforms. This network must mitigate significant changes in the transmission media caused by millisecond-scale atmospheric temperature variations, the deployment of smoke, or the drifting of a cloud. It must mitigate against structural obscurations, jet wash, or incapacitation of a node. To maintain vital connectivity, the mobile backbone must be predictive and self-healing on both near-real-time and real-time time scales. The nodes of this network must be reconfigurable to mitigate intentional and environmental jammers, block attackers, and alleviate interoperability concerns caused by changing standards. The nodes must support multi-access of disparate waveform and protocols.

  7. SONG-China Project: A Global Automated Observation Network

    NASA Astrophysics Data System (ADS)

    Yang, Z. Z.; Lu, X. M.; Tian, J. F.; Zhuang, C. G.; Wang, K.; Deng, L. C.

    2017-09-01

    Driven by advancements in technology and scientific objectives, data acquisition in observational astronomy has been changed greatly in recent years. Fully automated or even autonomous ground-based network of telescopes has now become a tendency for time-domain observational projects. The Stellar Observations Network Group (SONG) is an international collaboration with the participation and contribution of the Chinese astronomy community. The scientific goal of SONG is time-domain astrophysics such as asteroseismology and open cluster research. The SONG project aims to build a global network of 1 m telescopes equipped with high-precision and high-resolution spectrographs, and two-channel lucky-imaging cameras. It is the Chinese initiative to install a 50 cm binocular photometry telescope at each SONG node sharing the network platform and infrastructure. This work is focused on design and implementation in technology and methodology of SONG/50BiN, a typical ground-based network composed of multiple sites and a variety of instruments.

  8. Hybrid Radio Frequency/Free-Space Optics (RF/FSO) Wireless Sensor Network: Security Concerns and Protective Measures

    NASA Astrophysics Data System (ADS)

    Banerjee, Koushik; Sharma, Hemant; Sengupta, Anasuya

    Wireless sensor networks (WSNs) are ad hoc wireless networks that are written off as spread out structure and ad hoc deployment. Sensor networks have all the rudimentary features of ad hoc networks but to altered points—for instance, considerably lesser movement and far more energy necessities. Commonly used technology for communication is radio frequency (RF) communications. Free-space optics (FSO) is relatively new technology which has the prospective to deliver remarkable increases in network lifetime of WSN. Hybrid RF/FSO communications has been suggested to decrease power consumption by a single sensor node. It is observed that security plays a very important role for either RF WSN or hybrid RF/FSO WSN as those are vulnerable to numerous threats. In this paper, various possible attacks in RF/FSO WSN are discussed and aimed to propose some way out from those attacks.

  9. node2vec: Scalable Feature Learning for Networks

    PubMed Central

    Grover, Aditya; Leskovec, Jure

    2016-01-01

    Prediction tasks over nodes and edges in networks require careful effort in engineering features used by learning algorithms. Recent research in the broader field of representation learning has led to significant progress in automating prediction by learning the features themselves. However, present feature learning approaches are not expressive enough to capture the diversity of connectivity patterns observed in networks. Here we propose node2vec, an algorithmic framework for learning continuous feature representations for nodes in networks. In node2vec, we learn a mapping of nodes to a low-dimensional space of features that maximizes the likelihood of preserving network neighborhoods of nodes. We define a flexible notion of a node’s network neighborhood and design a biased random walk procedure, which efficiently explores diverse neighborhoods. Our algorithm generalizes prior work which is based on rigid notions of network neighborhoods, and we argue that the added flexibility in exploring neighborhoods is the key to learning richer representations. We demonstrate the efficacy of node2vec over existing state-of-the-art techniques on multi-label classification and link prediction in several real-world networks from diverse domains. Taken together, our work represents a new way for efficiently learning state-of-the-art task-independent representations in complex networks. PMID:27853626

  10. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks.

    PubMed

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-08

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms.

  11. An Autonomous Connectivity Restoration Algorithm Based on Finite State Machine for Wireless Sensor-Actor Networks

    PubMed Central

    Zhang, Ying; Wang, Jun; Hao, Guan

    2018-01-01

    With the development of autonomous unmanned intelligent systems, such as the unmanned boats, unmanned planes and autonomous underwater vehicles, studies on Wireless Sensor-Actor Networks (WSANs) have attracted more attention. Network connectivity algorithms play an important role in data exchange, collaborative detection and information fusion. Due to the harsh application environment, abnormal nodes often appear, and the network connectivity will be prone to be lost. Network self-healing mechanisms have become critical for these systems. In order to decrease the movement overhead of the sensor-actor nodes, an autonomous connectivity restoration algorithm based on finite state machine is proposed. The idea is to identify whether a node is a critical node by using a finite state machine, and update the connected dominating set in a timely way. If an abnormal node is a critical node, the nearest non-critical node will be relocated to replace the abnormal node. In the case of multiple node abnormality, a regional network restoration algorithm is introduced. It is designed to reduce the overhead of node movements while restoration happens. Simulation results indicate the proposed algorithm has better performance on the total moving distance and the number of total relocated nodes compared with some other representative restoration algorithms. PMID:29316702

  12. Towards understanding the behavior of physical systems using information theory

    NASA Astrophysics Data System (ADS)

    Quax, Rick; Apolloni, Andrea; Sloot, Peter M. A.

    2013-09-01

    One of the goals of complex network analysis is to identify the most influential nodes, i.e., the nodes that dictate the dynamics of other nodes. In the case of autonomous systems or transportation networks, highly connected hubs play a preeminent role in diffusing the flow of information and viruses; in contrast, in language evolution most linguistic norms come from the peripheral nodes who have only few contacts. Clearly a topological analysis of the interactions alone is not sufficient to identify the nodes that drive the state of the network. Here we show how information theory can be used to quantify how the dynamics of individual nodes propagate through a system. We interpret the state of a node as a storage of information about the state of other nodes, which is quantified in terms of Shannon information. This information is transferred through interactions and lost due to noise, and we calculate how far it can travel through a network. We apply this concept to a model of opinion formation in a complex social network to calculate the impact of each node by measuring how long its opinion is remembered by the network. Counter-intuitively we find that the dynamics of opinions are not determined by the hubs or peripheral nodes, but rather by nodes with an intermediate connectivity.

  13. Eradicating catastrophic collapse in interdependent networks via reinforced nodes

    PubMed Central

    Yuan, Xin; Hu, Yanqing; Havlin, Shlomo

    2017-01-01

    In interdependent networks, it is usually assumed, based on percolation theory, that nodes become nonfunctional if they lose connection to the network giant component. However, in reality, some nodes, equipped with alternative resources, together with their connected neighbors can still be functioning after disconnected from the giant component. Here, we propose and study a generalized percolation model that introduces a fraction of reinforced nodes in the interdependent networks that can function and support their neighborhood. We analyze, both analytically and via simulations, the order parameter—the functioning component—comprising both the giant component and smaller components that include at least one reinforced node. Remarkably, it is found that, for interdependent networks, we need to reinforce only a small fraction of nodes to prevent abrupt catastrophic collapses. Moreover, we find that the universal upper bound of this fraction is 0.1756 for two interdependent Erdős–Rényi (ER) networks: regular random (RR) networks and scale-free (SF) networks with large average degrees. We also generalize our theory to interdependent networks of networks (NONs). These findings might yield insight for designing resilient interdependent infrastructure networks. PMID:28289204

  14. Lambda network having 2.sup.m-1 nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, Jr., Leonard M.

    1995-01-01

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance.

  15. Measures of node centrality in mobile social networks

    NASA Astrophysics Data System (ADS)

    Gao, Zhenxiang; Shi, Yan; Chen, Shanzhi

    2015-02-01

    Mobile social networks exploit human mobility and consequent device-to-device contact to opportunistically create data paths over time. While links in mobile social networks are time-varied and strongly impacted by human mobility, discovering influential nodes is one of the important issues for efficient information propagation in mobile social networks. Although traditional centrality definitions give metrics to identify the nodes with central positions in static binary networks, they cannot effectively identify the influential nodes for information propagation in mobile social networks. In this paper, we address the problems of discovering the influential nodes in mobile social networks. We first use the temporal evolution graph model which can more accurately capture the topology dynamics of the mobile social network over time. Based on the model, we explore human social relations and mobility patterns to redefine three common centrality metrics: degree centrality, closeness centrality and betweenness centrality. We then employ empirical traces to evaluate the benefits of the proposed centrality metrics, and discuss the predictability of nodes' global centrality ranking by nodes' local centrality ranking. Results demonstrate the efficiency of the proposed centrality metrics.

  16. Trust recovery model of Ad Hoc network based on identity authentication scheme

    NASA Astrophysics Data System (ADS)

    Liu, Jie; Huan, Shuiyuan

    2017-05-01

    Mobile Ad Hoc network trust model is widely used to solve mobile Ad Hoc network security issues. Aiming at the problem of reducing the network availability caused by the processing of malicious nodes and selfish nodes in mobile Ad Hoc network routing based on trust model, an authentication mechanism based on identity authentication mobile Ad Hoc network is proposed, which uses identity authentication to identify malicious nodes, And trust the recovery of selfish nodes in order to achieve the purpose of reducing network congestion and improving network quality. The simulation results show that the implementation of the mechanism can effectively improve the network availability and security.

  17. Cooperative Learning for Distributed In-Network Traffic Classification

    NASA Astrophysics Data System (ADS)

    Joseph, S. B.; Loo, H. R.; Ismail, I.; Andromeda, T.; Marsono, M. N.

    2017-04-01

    Inspired by the concept of autonomic distributed/decentralized network management schemes, we consider the issue of information exchange among distributed network nodes to network performance and promote scalability for in-network monitoring. In this paper, we propose a cooperative learning algorithm for propagation and synchronization of network information among autonomic distributed network nodes for online traffic classification. The results show that network nodes with sharing capability perform better with a higher average accuracy of 89.21% (sharing data) and 88.37% (sharing clusters) compared to 88.06% for nodes without cooperative learning capability. The overall performance indicates that cooperative learning is promising for distributed in-network traffic classification.

  18. Growing optimal scale-free networks via likelihood

    NASA Astrophysics Data System (ADS)

    Small, Michael; Li, Yingying; Stemler, Thomas; Judd, Kevin

    2015-04-01

    Preferential attachment, by which new nodes attach to existing nodes with probability proportional to the existing nodes' degree, has become the standard growth model for scale-free networks, where the asymptotic probability of a node having degree k is proportional to k-γ. However, the motivation for this model is entirely ad hoc. We use exact likelihood arguments and show that the optimal way to build a scale-free network is to attach most new links to nodes of low degree. Curiously, this leads to a scale-free network with a single dominant hub: a starlike structure we call a superstar network. Asymptotically, the optimal strategy is to attach each new node to one of the nodes of degree k with probability proportional to 1/N +ζ (γ ) (k+1 ) γ (in a N node network): a stronger bias toward high degree nodes than exhibited by standard preferential attachment. Our algorithm generates optimally scale-free networks (the superstar networks) as well as randomly sampling the space of all scale-free networks with a given degree exponent γ . We generate viable realization with finite N for 1 ≪γ <2 as well as γ >2 . We observe an apparently discontinuous transition at γ ≈2 between so-called superstar networks and more treelike realizations. Gradually increasing γ further leads to reemergence of a superstar hub. To quantify these structural features, we derive a new analytic expression for the expected degree exponent of a pure preferential attachment process and introduce alternative measures of network entropy. Our approach is generic and can also be applied to an arbitrary degree distribution.

  19. Neutron Science TeraGrid Gateway

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lynch, Vickie E; Chen, Meili; Cobb, John W

    The unique contributions of the Neutron Science TeraGrid Gateway (NSTG) are the connection of national user facility instrument data sources to the integrated cyberinfrastructure of the National Science FoundationTeraGrid and the development of a neutron science gateway that allows neutron scientists to use TeraGrid resources to analyze their data, including comparison of experiment with simulation. The NSTG is working in close collaboration with the Spallation Neutron Source (SNS) at Oak Ridge as their principal facility partner. The SNS is a next-generation neutron source. It has completed construction at a cost of $1.4 billion and is ramping up operations. The SNSmore » will provide an order of magnitude greater flux than any previous facility in the world and will be available to all of the nation's scientists, independent of funding source, on a peer-reviewed merit basis. With this new capability, the neutron science community is facing orders of magnitude larger data sets and is at a critical point for data analysis and simulation. There is a recognized need for new ways to manage and analyze data to optimize both beam time and scientific output. The TeraGrid is providing new capabilities in the gateway for simulations using McStas and a fitting service on distributed TeraGrid resources to improved turnaround. NSTG staff are also exploring replicating experimental data in archival storage. As part of the SNS partnership, the NSTG provides access to gateway support, cyberinfrastructure outreach, community development, and user support for the neutron science community. This community includes not only SNS staff and users but extends to all the major worldwide neutron scattering centers.« less

  20. Locating multiple diffusion sources in time varying networks from sparse observations.

    PubMed

    Hu, Zhao-Long; Shen, Zhesi; Cao, Shinan; Podobnik, Boris; Yang, Huijie; Wang, Wen-Xu; Lai, Ying-Cheng

    2018-02-08

    Data based source localization in complex networks has a broad range of applications. Despite recent progress, locating multiple diffusion sources in time varying networks remains to be an outstanding problem. Bridging structural observability and sparse signal reconstruction theories, we develop a general framework to locate diffusion sources in time varying networks based solely on sparse data from a small set of messenger nodes. A general finding is that large degree nodes produce more valuable information than small degree nodes, a result that contrasts that for static networks. Choosing large degree nodes as the messengers, we find that sparse observations from a few such nodes are often sufficient for any number of diffusion sources to be located for a variety of model and empirical networks. Counterintuitively, sources in more rapidly varying networks can be identified more readily with fewer required messenger nodes.

  1. Cascading failures in complex networks with community structure

    NASA Astrophysics Data System (ADS)

    Lin, Guoqiang; di, Zengru; Fan, Ying

    2014-12-01

    Much empirical evidence shows that when attacked with cascading failures, scale-free or even random networks tend to collapse more extensively when the initially deleted node has higher betweenness. Meanwhile, in networks with strong community structure, high-betweenness nodes tend to be bridge nodes that link different communities, and the removal of such nodes will reduce only the connections among communities, leaving the networks fairly stable. Understanding what will affect cascading failures and how to protect or attack networks with strong community structure is therefore of interest. In this paper, we have constructed scale-free Community Networks (SFCN) and Random Community Networks (RCN). We applied these networks, along with the Lancichinett-Fortunato-Radicchi (LFR) benchmark, to the cascading-failure scenario to explore their vulnerability to attack and the relationship between cascading failures and the degree distribution and community structure of a network. The numerical results show that when the networks are of a power-law distribution, a stronger community structure will result in the failure of fewer nodes. In addition, the initial removal of the node with the highest betweenness will not lead to the worst cascading, i.e. the largest avalanche size. The Betweenness Overflow (BOF), an index that we developed, is an effective indicator of this tendency. The RCN, however, display a different result. In addition, the avalanche size of each node can be adopted as an index to evaluate the importance of the node.

  2. The Robustness Analysis of Wireless Sensor Networks under Uncertain Interference

    PubMed Central

    Deng, Changjian

    2013-01-01

    Based on the complex network theory, robustness analysis of condition monitoring wireless sensor network under uncertain interference is present. In the evolution of the topology of sensor networks, the density weighted algebraic connectivity is taken into account, and the phenomenon of removing and repairing the link and node in the network is discussed. Numerical simulation is conducted to explore algebraic connectivity characteristics and network robustness performance. It is found that nodes density has the effect on algebraic connectivity distribution in the random graph model; high density nodes carry more connections, use more throughputs, and may be more unreliable. Moreover, the results show that, when network should be more error tolerant or robust by repairing nodes or adding new nodes, the network should be better clustered in median and high scale wireless sensor networks and be meshing topology in small scale networks. PMID:24363613

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Sen, Satyabrata; Berry, M. L..

    Domestic Nuclear Detection Office s (DNDO) Intelligence Radiation Sensors Systems (IRSS) program supported the development of networks of commercial-off-the-shelf (COTS) radiation counters for detecting, localizing, and identifying low-level radiation sources. Under this program, a series of indoor and outdoor tests were conducted with multiple source strengths and types, different background profiles, and various types of source and detector movements. Following the tests, network algorithms were replayed in various re-constructed scenarios using sub-networks. These measurements and algorithm traces together provide a rich collection of highly valuable datasets for testing the current and next generation radiation network algorithms, including the ones (tomore » be) developed by broader R&D communities such as distributed detection, information fusion, and sensor networks. From this multiple TeraByte IRSS database, we distilled out and packaged the first batch of canonical datasets for public release. They include measurements from ten indoor and two outdoor tests which represent increasingly challenging baseline scenarios for robustly testing radiation network algorithms.« less

  4. Enabling Controlling Complex Networks with Local Topological Information.

    PubMed

    Li, Guoqi; Deng, Lei; Xiao, Gaoxi; Tang, Pei; Wen, Changyun; Hu, Wuhua; Pei, Jing; Shi, Luping; Stanley, H Eugene

    2018-03-15

    Complex networks characterize the nature of internal/external interactions in real-world systems including social, economic, biological, ecological, and technological networks. Two issues keep as obstacles to fulfilling control of large-scale networks: structural controllability which describes the ability to guide a dynamical system from any initial state to any desired final state in finite time, with a suitable choice of inputs; and optimal control, which is a typical control approach to minimize the cost for driving the network to a predefined state with a given number of control inputs. For large complex networks without global information of network topology, both problems remain essentially open. Here we combine graph theory and control theory for tackling the two problems in one go, using only local network topology information. For the structural controllability problem, a distributed local-game matching method is proposed, where every node plays a simple Bayesian game with local information and local interactions with adjacent nodes, ensuring a suboptimal solution at a linear complexity. Starring from any structural controllability solution, a minimizing longest control path method can efficiently reach a good solution for the optimal control in large networks. Our results provide solutions for distributed complex network control and demonstrate a way to link the structural controllability and optimal control together.

  5. The SLH framework for modeling quantum input-output networks

    DOE PAGES

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    2017-09-04

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  6. Analysis and logical modeling of biological signaling transduction networks

    NASA Astrophysics Data System (ADS)

    Sun, Zhongyao

    The study of network theory and its application span across a multitude of seemingly disparate fields of science and technology: computer science, biology, social science, linguistics, etc. It is the intrinsic similarities embedded in the entities and the way they interact with one another in these systems that link them together. In this dissertation, I present from both the aspect of theoretical analysis and the aspect of application three projects, which primarily focus on signal transduction networks in biology. In these projects, I assembled a network model through extensively perusing literature, performed model-based simulations and validation, analyzed network topology, and proposed a novel network measure. The application of network modeling to the system of stomatal opening in plants revealed a fundamental question about the process that has been left unanswered in decades. The novel measure of the redundancy of signal transduction networks with Boolean dynamics by calculating its maximum node-independent elementary signaling mode set accurately predicts the effect of single node knockout in such signaling processes. The three projects as an organic whole advance the understanding of a real system as well as the behavior of such network models, giving me an opportunity to take a glimpse at the dazzling facets of the immense world of network science.

  7. The SLH framework for modeling quantum input-output networks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Combes, Joshua; Kerckhoff, Joseph; Sarovar, Mohan

    Here, many emerging quantum technologies demand precise engineering and control over networks consisting of quantum mechanical degrees of freedom connected by propagating electromagnetic fields, or quantum input-output networks. Here we review recent progress in theory and experiment related to such quantum input-output networks, with a focus on the SLH framework, a powerful modeling framework for networked quantum systems that is naturally endowed with properties such as modularity and hierarchy. We begin by explaining the physical approximations required to represent any individual node of a network, e.g. atoms in cavity or a mechanical oscillator, and its coupling to quantum fields bymore » an operator triple ( S,L,H). Then we explain how these nodes can be composed into a network with arbitrary connectivity, including coherent feedback channels, using algebraic rules, and how to derive the dynamics of network components and output fields. The second part of the review discusses several extensions to the basic SLH framework that expand its modeling capabilities, and the prospects for modeling integrated implementations of quantum input-output networks. In addition to summarizing major results and recent literature, we discuss the potential applications and limitations of the SLH framework and quantum input-output networks, with the intention of providing context to a reader unfamiliar with the field.« less

  8. A New Measure of Centrality for Brain Networks

    PubMed Central

    Joyce, Karen E.; Laurienti, Paul J.; Burdette, Jonathan H.; Hayasaka, Satoru

    2010-01-01

    Recent developments in network theory have allowed for the study of the structure and function of the human brain in terms of a network of interconnected components. Among the many nodes that form a network, some play a crucial role and are said to be central within the network structure. Central nodes may be identified via centrality metrics, with degree, betweenness, and eigenvector centrality being three of the most popular measures. Degree identifies the most connected nodes, whereas betweenness centrality identifies those located on the most traveled paths. Eigenvector centrality considers nodes connected to other high degree nodes as highly central. In the work presented here, we propose a new centrality metric called leverage centrality that considers the extent of connectivity of a node relative to the connectivity of its neighbors. The leverage centrality of a node in a network is determined by the extent to which its immediate neighbors rely on that node for information. Although similar in concept, there are essential differences between eigenvector and leverage centrality that are discussed in this manuscript. Degree, betweenness, eigenvector, and leverage centrality were compared using functional brain networks generated from healthy volunteers. Functional cartography was also used to identify neighborhood hubs (nodes with high degree within a network neighborhood). Provincial hubs provide structure within the local community, and connector hubs mediate connections between multiple communities. Leverage proved to yield information that was not captured by degree, betweenness, or eigenvector centrality and was more accurate at identifying neighborhood hubs. We propose that this metric may be able to identify critical nodes that are highly influential within the network. PMID:20808943

  9. Degree and wealth distribution in a network induced by wealth

    NASA Astrophysics Data System (ADS)

    Lee, Gyemin; Kim, Gwang Il

    2007-09-01

    A network induced by wealth is a social network model in which wealth induces individuals to participate as nodes, and every node in the network produces and accumulates wealth utilizing its links. More specifically, at every time step a new node is added to the network, and a link is created between one of the existing nodes and the new node. Innate wealth-producing ability is randomly assigned to every new node, and the node to be connected to the new node is chosen randomly, with odds proportional to the accumulated wealth of each existing node. Analyzing this network using the mean value and continuous flow approaches, we derive a relation between the conditional expectations of the degree and the accumulated wealth of each node. From this relation, we show that the degree distribution of the network induced by wealth is scale-free. We also show that the wealth distribution has a power-law tail and satisfies the 80/20 rule. We also show that, over the whole range, the cumulative wealth distribution exhibits the same topological characteristics as the wealth distributions of several networks based on the Bouchaud-Mèzard model, even though the mechanism for producing wealth is quite different in our model. Further, we show that the cumulative wealth distribution for the poor and middle class seems likely to follow by a log-normal distribution, while for the richest, the cumulative wealth distribution has a power-law behavior.

  10. An Energy-Efficient and High-Quality Video Transmission Architecture in Wireless Video-Based Sensor Networks.

    PubMed

    Aghdasi, Hadi S; Abbaspour, Maghsoud; Moghadam, Mohsen Ebrahimi; Samei, Yasaman

    2008-08-04

    Technological progress in the fields of Micro Electro-Mechanical Systems (MEMS) and wireless communications and also the availability of CMOS cameras, microphones and small-scale array sensors, which may ubiquitously capture multimedia content from the field, have fostered the development of low-cost limited resources Wireless Video-based Sensor Networks (WVSN). With regards to the constraints of videobased sensor nodes and wireless sensor networks, a supporting video stream is not easy to implement with the present sensor network protocols. In this paper, a thorough architecture is presented for video transmission over WVSN called Energy-efficient and high-Quality Video transmission Architecture (EQV-Architecture). This architecture influences three layers of communication protocol stack and considers wireless video sensor nodes constraints like limited process and energy resources while video quality is preserved in the receiver side. Application, transport, and network layers are the layers in which the compression protocol, transport protocol, and routing protocol are proposed respectively, also a dropping scheme is presented in network layer. Simulation results over various environments with dissimilar conditions revealed the effectiveness of the architecture in improving the lifetime of the network as well as preserving the video quality.

  11. Unobstructive Body Area Networks (BAN) for efficient movement monitoring.

    PubMed

    Felisberto, Filipe; Costa, Nuno; Fdez-Riverola, Florentino; Pereira, António

    2012-01-01

    The technological advances in medical sensors, low-power microelectronics and miniaturization, wireless communications and networks have enabled the appearance of a new generation of wireless sensor networks: the so-called wireless body area networks (WBAN). These networks can be used for continuous monitoring of vital parameters, movement, and the surrounding environment. The data gathered by these networks contributes to improve users' quality of life and allows the creation of a knowledge database by using learning techniques, useful to infer abnormal behaviour. In this paper we present a wireless body area network architecture to recognize human movement, identify human postures and detect harmful activities in order to prevent risk situations. The WBAN was created using tiny, cheap and low-power nodes with inertial and physiological sensors, strategically placed on the human body. Doing so, in an as ubiquitous as possible way, ensures that its impact on the users' daily actions is minimum. The information collected by these sensors is transmitted to a central server capable of analysing and processing their data. The proposed system creates movement profiles based on the data sent by the WBAN's nodes, and is able to detect in real time any abnormal movement and allows for a monitored rehabilitation of the user.

  12. Multiplex PageRank.

    PubMed

    Halu, Arda; Mondragón, Raúl J; Panzarasa, Pietro; Bianconi, Ginestra

    2013-01-01

    Many complex systems can be described as multiplex networks in which the same nodes can interact with one another in different layers, thus forming a set of interacting and co-evolving networks. Examples of such multiplex systems are social networks where people are involved in different types of relationships and interact through various forms of communication media. The ranking of nodes in multiplex networks is one of the most pressing and challenging tasks that research on complex networks is currently facing. When pairs of nodes can be connected through multiple links and in multiple layers, the ranking of nodes should necessarily reflect the importance of nodes in one layer as well as their importance in other interdependent layers. In this paper, we draw on the idea of biased random walks to define the Multiplex PageRank centrality measure in which the effects of the interplay between networks on the centrality of nodes are directly taken into account. In particular, depending on the intensity of the interaction between layers, we define the Additive, Multiplicative, Combined, and Neutral versions of Multiplex PageRank, and show how each version reflects the extent to which the importance of a node in one layer affects the importance the node can gain in another layer. We discuss these measures and apply them to an online multiplex social network. Findings indicate that taking the multiplex nature of the network into account helps uncover the emergence of rankings of nodes that differ from the rankings obtained from one single layer. Results provide support in favor of the salience of multiplex centrality measures, like Multiplex PageRank, for assessing the prominence of nodes embedded in multiple interacting networks, and for shedding a new light on structural properties that would otherwise remain undetected if each of the interacting networks were analyzed in isolation.

  13. 25 CFR 224.77 - Who may appeal the Secretary's decision on a final proposed TERA or a revised final proposed TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ..., DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Approval of Tribal Energy Resource Agreements § 224.77 Who...

  14. 25 CFR 224.77 - Who may appeal the Secretary's decision on a final proposed TERA or a revised final proposed TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ..., DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Approval of Tribal Energy Resource Agreements § 224.77 Who...

  15. TSCA Environmental Release Application (TERA) for Pseudomonas putida (P. putida)

    EPA Pesticide Factsheets

    TERA submitted by Oak Ridge National Laboratory and given the tracking designations of R-01-0002.The microorganism will be tested to determine whether it will produce light in the presence of trinitrotoluene (TNT) as a means of detecting TNT in soil.

  16. TSCA Environmental Release Application (TERA) for Alcaligenes xylosoxidans subspecies denitrificans strain AL6.1, R05-01

    EPA Pesticide Factsheets

    TERA submitted by the University of California, Riverside. The microorganism will be tested to determine its biology and behavior in vineyard ecosystems as part of a research program to prevent or cure Pierce's disease in grapes.

  17. TSCA Environmental Release Application (TERA) for Bradyrhizobium japonicum (B. japonicum)

    EPA Pesticide Factsheets

    TERA pertains to field trials of a mutant strain (Bj 61A273KS) of Bradyrhizobium japonicum (B. japonicum), a common soil bacterium which is used as a commercial seed inoculant. The strain was given the EPA tracking designation of R-00-01.

  18. Identifying Node Role in Social Network Based on Multiple Indicators

    PubMed Central

    Huang, Shaobin; Lv, Tianyang; Zhang, Xizhe; Yang, Yange; Zheng, Weimin; Wen, Chao

    2014-01-01

    It is a classic topic of social network analysis to evaluate the importance of nodes and identify the node that takes on the role of core or bridge in a network. Because a single indicator is not sufficient to analyze multiple characteristics of a node, it is a natural solution to apply multiple indicators that should be selected carefully. An intuitive idea is to select some indicators with weak correlations to efficiently assess different characteristics of a node. However, this paper shows that it is much better to select the indicators with strong correlations. Because indicator correlation is based on the statistical analysis of a large number of nodes, the particularity of an important node will be outlined if its indicator relationship doesn't comply with the statistical correlation. Therefore, the paper selects the multiple indicators including degree, ego-betweenness centrality and eigenvector centrality to evaluate the importance and the role of a node. The importance of a node is equal to the normalized sum of its three indicators. A candidate for core or bridge is selected from the great degree nodes or the nodes with great ego-betweenness centrality respectively. Then, the role of a candidate is determined according to the difference between its indicators' relationship with the statistical correlation of the overall network. Based on 18 real networks and 3 kinds of model networks, the experimental results show that the proposed methods perform quite well in evaluating the importance of nodes and in identifying the node role. PMID:25089823

  19. Adaptive Connectivity Restoration from Node Failure(s) in Wireless Sensor Networks

    PubMed Central

    Wang, Huaiyuan; Ding, Xu; Huang, Cheng; Wu, Xiaobei

    2016-01-01

    Recently, there is a growing interest in the applications of wireless sensor networks (WSNs). A set of sensor nodes is deployed in order to collectively survey an area of interest and/or perform specific surveillance tasks in some of the applications, such as battlefield reconnaissance. Due to the harsh deployment environments and limited energy supply, nodes may fail, which impacts the connectivity of the whole network. Since a single node failure (cut-vertex) will destroy the connectivity and divide the network into disjoint blocks, most of the existing studies focus on the problem of single node failure. However, the failure of multiple nodes would be a disaster to the whole network and must be repaired effectively. Only few studies are proposed to handle the problem of multiple cut-vertex failures, which is a special case of multiple node failures. Therefore, this paper proposes a comprehensive solution to address the problems of node failure (single and multiple). Collaborative Single Node Failure Restoration algorithm (CSFR) is presented to solve the problem of single node failure only with cooperative communication, but CSFR-M, which is the extension of CSFR, handles the single node failure problem more effectively with node motion. Moreover, Collaborative Connectivity Restoration Algorithm (CCRA) is proposed on the basis of cooperative communication and node maneuverability to restore network connectivity after multiple nodes fail. CSFR-M and CCRA are reactive methods that initiate the connectivity restoration after detecting the node failure(s). In order to further minimize the energy dissipation, CCRA opts to simplify the recovery process by gridding. Moreover, the distance that an individual node needs to travel during recovery is reduced by choosing the nearest suitable candidates. Finally, extensive simulations validate the performance of CSFR, CSFR-M and CCRA. PMID:27690030

  20. Tracking trade transactions in water resource systems: A node-arc optimization formulation

    NASA Astrophysics Data System (ADS)

    Erfani, Tohid; Huskova, Ivana; Harou, Julien J.

    2013-05-01

    We formulate and apply a multicommodity network flow node-arc optimization model capable of tracking trade transactions in complex water resource systems. The model uses a simple node to node network connectivity matrix and does not require preprocessing of all possible flow paths in the network. We compare the proposed node-arc formulation with an existing arc-path (flow path) formulation and explain the advantages and difficulties of both approaches. We verify the proposed formulation model on a hypothetical water distribution network. Results indicate the arc-path model solves the problem with fewer constraints, but the proposed formulation allows using a simple network connectivity matrix which simplifies modeling large or complex networks. The proposed algorithm allows converting existing node-arc hydroeconomic models that broadly represent water trading to ones that also track individual supplier-receiver relationships (trade transactions).

  1. Alternative Opportunistic Alert Diffusion to Support Infrastructure Failure during Disasters

    PubMed Central

    Mezghani, Farouk; Mitton, Nathalie

    2017-01-01

    Opportunistic communications present a promising solution for disaster network recovery in emergency situations such as hurricanes, earthquakes, and floods, where infrastructure might be destroyed. Some recent works in the literature have proposed opportunistic-based disaster recovery solutions, but they have omitted the consideration of mobile devices that come with different network technologies and various initial energy levels. This work presents COPE, an energy-aware Cooperative OPportunistic alErt diffusion scheme for trapped survivors to use during disaster scenarios to report their position and ease their rescue operation. It aims to maintain mobile devices functional for as long as possible for maximum network coverage until reaching proximate rescuers. COPE deals with mobile devices that come with an assortment of networks and aims to perform systematic network interface selection. Furthermore, it considers mobile devices with various energy levels and allows low-energy nodes to hold their charge for longer time with the support of high-energy nodes. A proof-of-concept implementation has been performed to study the doability and efficiency of COPE, and to highlight the lessons learned. PMID:29039770

  2. A game-theoretic approach to optimize ad hoc networks inspired by small-world network topology

    NASA Astrophysics Data System (ADS)

    Tan, Mian; Yang, Tinghong; Chen, Xing; Yang, Gang; Zhu, Guoqing; Holme, Petter; Zhao, Jing

    2018-03-01

    Nodes in ad hoc networks are connected in a self-organized manner. Limited communication radius makes information transmit in multi-hop mode, and each forwarding needs to consume the energy of nodes. Insufficient communication radius or exhaustion of energy may cause the absence of some relay nodes and links, further breaking network connectivity. On the other hand, nodes in the network may refuse to cooperate due to objective faulty or personal selfish, hindering regular communication in the network. This paper proposes a model called Repeated Game in Small World Networks (RGSWN). In this model, we first construct ad hoc networks with small-world feature by forming "communication shortcuts" between multiple-radio nodes. Small characteristic path length reduces average forwarding times in networks; meanwhile high clustering coefficient enhances network robustness. Such networks still maintain relative low global power consumption, which is beneficial to extend the network survival time. Then we use MTTFT strategy (Mend-Tolerance Tit-for-Tat) for repeated game as a rule for the interactions between neighbors in the small-world networks. Compared with other five strategies of repeated game, this strategy not only punishes the nodes' selfishness more reasonably, but also has the best tolerance to the network failure. This work is insightful for designing an efficient and robust ad hoc network.

  3. Bluetooth-based wireless sensor networks

    NASA Astrophysics Data System (ADS)

    You, Ke; Liu, Rui Qiang

    2007-11-01

    In this work a Bluetooth-based wireless sensor network is proposed. In this bluetooth-based wireless sensor networks, information-driven star topology and energy-saved mode are used, through which a blue master node can control more than seven slave node, the energy of each sensor node is reduced and secure management of each sensor node is improved.

  4. On Prolonging Network Lifetime through Load-Similar Node Deployment in Wireless Sensor Networks

    PubMed Central

    Li, Qiao-Qin; Gong, Haigang; Liu, Ming; Yang, Mei; Zheng, Jun

    2011-01-01

    This paper is focused on the study of the energy hole problem in the Progressive Multi-hop Rotational Clustered (PMRC)-structure, a highly scalable wireless sensor network (WSN) architecture. Based on an analysis on the traffic load distribution in PMRC-based WSNs, we propose a novel load-similar node distribution strategy combined with the Minimum Overlapping Layers (MOL) scheme to address the energy hole problem in PMRC-based WSNs. In this strategy, sensor nodes are deployed in the network area according to the load distribution. That is, more nodes shall be deployed in the range where the average load is higher, and then the loads among different areas in the sensor network tend to be balanced. Simulation results demonstrate that the load-similar node distribution strategy prolongs network lifetime and reduces the average packet latency in comparison with existing nonuniform node distribution and uniform node distribution strategies. Note that, besides the PMRC structure, the analysis model and the proposed load-similar node distribution strategy are also applicable to other multi-hop WSN structures. PMID:22163809

  5. Control range: a controllability-based index for node significance in directed networks

    NASA Astrophysics Data System (ADS)

    Wang, Bingbo; Gao, Lin; Gao, Yong

    2012-04-01

    While a large number of methods for module detection have been developed for undirected networks, it is difficult to adapt them to handle directed networks due to the lack of consensus criteria for measuring the node significance in a directed network. In this paper, we propose a novel structural index, the control range, motivated by recent studies on the structural controllability of large-scale directed networks. The control range of a node quantifies the size of the subnetwork that the node can effectively control. A related index, called the control range similarity, is also introduced to measure the structural similarity between two nodes. When applying the index of control range to several real-world and synthetic directed networks, it is observed that the control range of the nodes is mainly influenced by the network's degree distribution and that nodes with a low degree may have a high control range. We use the index of control range similarity to detect and analyze functional modules in glossary networks and the enzyme-centric network of homo sapiens. Our results, as compared with other approaches to module detection such as modularity optimization algorithm, dynamic algorithm and clique percolation method, indicate that the proposed indices are effective and practical in depicting structural and modular characteristics of sparse directed networks.

  6. Service-Oriented Node Scheduling Scheme for Wireless Sensor Networks Using Markov Random Field Model

    PubMed Central

    Cheng, Hongju; Su, Zhihuang; Lloret, Jaime; Chen, Guolong

    2014-01-01

    Future wireless sensor networks are expected to provide various sensing services and energy efficiency is one of the most important criterions. The node scheduling strategy aims to increase network lifetime by selecting a set of sensor nodes to provide the required sensing services in a periodic manner. In this paper, we are concerned with the service-oriented node scheduling problem to provide multiple sensing services while maximizing the network lifetime. We firstly introduce how to model the data correlation for different services by using Markov Random Field (MRF) model. Secondly, we formulate the service-oriented node scheduling issue into three different problems, namely, the multi-service data denoising problem which aims at minimizing the noise level of sensed data, the representative node selection problem concerning with selecting a number of active nodes while determining the services they provide, and the multi-service node scheduling problem which aims at maximizing the network lifetime. Thirdly, we propose a Multi-service Data Denoising (MDD) algorithm, a novel multi-service Representative node Selection and service Determination (RSD) algorithm, and a novel MRF-based Multi-service Node Scheduling (MMNS) scheme to solve the above three problems respectively. Finally, extensive experiments demonstrate that the proposed scheme efficiently extends the network lifetime. PMID:25384005

  7. Distributed Transforms for Efficient Data Gathering in Sensor Networks

    NASA Technical Reports Server (NTRS)

    Ortega, Antonio (Inventor); Shen, Godwin (Inventor); Narang, Sunil K. (Inventor); Perez-Trufero, Javier (Inventor)

    2014-01-01

    Devices, systems, and techniques for data collecting network such as wireless sensors are disclosed. A described technique includes detecting one or more remote nodes included in the wireless sensor network using a local power level that controls a radio range of the local node. The technique includes transmitting a local outdegree. The local outdegree can be based on a quantity of the one or more remote nodes. The technique includes receiving one or more remote outdegrees from the one or more remote nodes. The technique includes determining a local node type of the local node based on detecting a node type of the one or more remote nodes, using the one or more remote outdegrees, and using the local outdegree. The technique includes adjusting characteristics, including an energy usage characteristic and a data compression characteristic, of the wireless sensor network by selectively modifying the local power level and selectively changing the local node type.

  8. Smoluchowski Equation for Networks: Merger Induced Intermittent Giant Node Formation and Degree Gap

    NASA Astrophysics Data System (ADS)

    Goto, Hayato; Viegas, Eduardo; Jensen, Henrik Jeldtoft; Takayasu, Hideki; Takayasu, Misako

    2018-06-01

    The dynamical phase diagram of a network undergoing annihilation, creation, and coagulation of nodes is found to exhibit two regimes controlled by the combined effect of preferential attachment for initiator and target nodes during coagulation and for link assignment to new nodes. The first regime exhibits smooth dynamics and power law degree distributions. In the second regime, giant degree nodes and gaps in the degree distribution are formed intermittently. Data for the Japanese firm network in 1994 and 2014 suggests that this network is moving towards the intermittent switching region.

  9. Methods and systems for detecting abnormal digital traffic

    DOEpatents

    Goranson, Craig A [Kennewick, WA; Burnette, John R [Kennewick, WA

    2011-03-22

    Aspects of the present invention encompass methods and systems for detecting abnormal digital traffic by assigning characterizations of network behaviors according to knowledge nodes and calculating a confidence value based on the characterizations from at least one knowledge node and on weighting factors associated with the knowledge nodes. The knowledge nodes include a characterization model based on prior network information. At least one of the knowledge nodes should not be based on fixed thresholds or signatures. The confidence value includes a quantification of the degree of confidence that the network behaviors constitute abnormal network traffic.

  10. Design of temperature monitoring system based on CAN bus

    NASA Astrophysics Data System (ADS)

    Zhang, Li

    2017-10-01

    The remote temperature monitoring system based on the Controller Area Network (CAN) bus is designed to collect the multi-node remote temperature. By using the STM32F103 as main controller and multiple DS18B20s as temperature sensors, the system achieves a master-slave node data acquisition and transmission based on the CAN bus protocol. And making use of the serial port communication technology to communicate with the host computer, the system achieves the function of remote temperature storage, historical data show and the temperature waveform display.

  11. Modular sensor network node

    DOEpatents

    Davis, Jesse Harper Zehring [Berkeley, CA; Stark, Jr., Douglas Paul; Kershaw, Christopher Patrick [Hayward, CA; Kyker, Ronald Dean [Livermore, CA

    2008-06-10

    A distributed wireless sensor network node is disclosed. The wireless sensor network node includes a plurality of sensor modules coupled to a system bus and configured to sense a parameter. The parameter may be an object, an event or any other parameter. The node collects data representative of the parameter. The node also includes a communication module coupled to the system bus and configured to allow the node to communicate with other nodes. The node also includes a processing module coupled to the system bus and adapted to receive the data from the sensor module and operable to analyze the data. The node also includes a power module connected to the system bus and operable to generate a regulated voltage.

  12. Lambda network having 2{sup m{minus}1} nodes in each of m stages with each node coupled to four other nodes for bidirectional routing of data packets between nodes

    DOEpatents

    Napolitano, L.M. Jr.

    1995-11-28

    The Lambda network is a single stage, packet-switched interprocessor communication network for a distributed memory, parallel processor computer. Its design arises from the desired network characteristics of minimizing mean and maximum packet transfer time, local routing, expandability, deadlock avoidance, and fault tolerance. The network is based on fixed degree nodes and has mean and maximum packet transfer distances where n is the number of processors. The routing method is detailed, as are methods for expandability, deadlock avoidance, and fault tolerance. 14 figs.

  13. Compressed sensing based missing nodes prediction in temporal communication network

    NASA Astrophysics Data System (ADS)

    Cheng, Guangquan; Ma, Yang; Liu, Zhong; Xie, Fuli

    2018-02-01

    The reconstruction of complex network topology is of great theoretical and practical significance. Most research so far focuses on the prediction of missing links. There are many mature algorithms for link prediction which have achieved good results, but research on the prediction of missing nodes has just begun. In this paper, we propose an algorithm for missing node prediction in complex networks. We detect the position of missing nodes based on their neighbor nodes under the theory of compressed sensing, and extend the algorithm to the case of multiple missing nodes using spectral clustering. Experiments on real public network datasets and simulated datasets show that our algorithm can detect the locations of hidden nodes effectively with high precision.

  14. CBEO:N, Chesapeake Bay Environmental Observatory as a Cyberinfrastructure Node

    NASA Astrophysics Data System (ADS)

    Zaslavsky, I.; Piasecki, M.; Whitenack, T.; Ball, W. P.; Murphy, R.

    2008-12-01

    Chesapeake Bay Environmental Observatory (CBEO) is an NSF-supported project focused on studying hypoxia in Chesapeake Bay using advanced cyberinfrastructure (CI) technologies. The project is organized around four concurrent and interacting activities: 1) CBEO:S provides science and management context for the use of CI technologies, focusing on hypoxia and its non-linear dynamics as affected by management and climate; 2) CBEO:T constructs a locally-accessible CBEO test bed prototype centered on spatio-temporal interpolation and advanced querying of model runs; 3) CBEO:N incorporates the test bed CI into national environmental observation networks, and 4) CBEO:E develops education and outreach components of the project that translate observational science for public consumption. CBEO:N activities, which are the focus of this paper, are four-fold: - constructing an online project portal to enable researchers to publish, discover, query, visualize and integrate project-related datasets of different types. The portal is based on the technologies developed within the GEON (the Geosciences Network) project, and has established the CBEO project data server as part of the GEON network of servers; * developing a CBEO node within the WATERS network, taking advantage of the CUAHSI Hydrologic Information System (HIS) Server technology that supports online publication of observation data as web services, and ontology-assisted data discovery; *developing new data structures and metadata in order to describe water quality observational data, and model run output, obtained for the Chesapeake Bay area, using data structures adopted and modified from the Observations Data Model of CUAHSI HIS; * prototyping CBEO tools that can be re-used through the portal, in particular implementing a portal version of R-based spatial interpolation tools. The paper describes recent accomplishments in these four development areas, and demonstrates how CI approaches transform research and data sharing in environmental observing systems.

  15. The EDSN Intersatellite Communications Architecture

    NASA Technical Reports Server (NTRS)

    Hanson, John; Chartres, James; Sanchez, Hugo; Oyadomari, Ken

    2014-01-01

    The Edison Demonstration of Smallsat Networks (EDSN) is a swarm of eight 1.5U Cubesats developed by the NASA Ames Research Center under the Small Spacecraft Technology Program (SSTP) within NASA Space Technology Mission Directorate (STMD). EDSN, scheduled for launch in late 2014, is designed to explore the use of small spacecraft networks to make synchronized, multipoint scientific measurements, and to organize and pass those data to the ground through their network. Networked swarms of these small spacecraft will open new horizons in astronomy, Earth observations and solar physics. Their range of applications include the formation of synthetic aperture radars for Earth sensing systems, large aperture observatories for next generation telescopes and the collection of spatially distributed measurements of time varying systems, probing the Earth's magnetosphere, Earth-Sun interactions and the Earth's geopotential. The EDSN communications network is maintained and operated by a simple set of predefined rules operating independently on all eight spacecraft without direction from ground based systems. One spacecraft serves as a central node, requesting and collecting data from the other seven spacecraft, organizing the data and passing it to a ground station at regular intervals. The central node is rotated among the spacecraft on a regular basis, providing robustness against the failure of a single spacecraft. This paper describes the communication architecture of the EDSN network and its operation with small spacecraft of limited electrical power, computing power and communication range. Furthermore, the problems of collecting and prioritizing data through a system that has data throughput bottlenecks are addressed. Finally, future network enhancements that can be built on top of the current EDSN hardware are discussed.

  16. Patent citation network in nanotechnology (1976-2004)

    NASA Astrophysics Data System (ADS)

    Li, Xin; Chen, Hsinchun; Huang, Zan; Roco, Mihail C.

    2007-06-01

    The patent citation networks are described using critical node, core network, and network topological analysis. The main objective is understanding of the knowledge transfer processes between technical fields, institutions and countries. This includes identifying key influential players and subfields, the knowledge transfer patterns among them, and the overall knowledge transfer efficiency. The proposed framework is applied to the field of nanoscale science and engineering (NSE), including the citation networks of patent documents, submitting institutions, technology fields, and countries. The NSE patents were identified by keywords "full-text" searching of patents at the United States Patent and Trademark Office (USPTO). The analysis shows that the United States is the most important citation center in NSE research. The institution citation network illustrates a more efficient knowledge transfer between institutions than a random network. The country citation network displays a knowledge transfer capability as efficient as a random network. The technology field citation network and the patent document citation network exhibit a␣less efficient knowledge diffusion capability than a random network. All four citation networks show a tendency to form local citation clusters.

  17. Preferential attachment in evolutionary earthquake networks

    NASA Astrophysics Data System (ADS)

    Rezaei, Soghra; Moghaddasi, Hanieh; Darooneh, Amir Hossein

    2018-04-01

    Earthquakes as spatio-temporal complex systems have been recently studied using complex network theory. Seismic networks are dynamical networks due to addition of new seismic events over time leading to establishing new nodes and links to the network. Here we have constructed Iran and Italy seismic networks based on Hybrid Model and testified the preferential attachment hypothesis for the connection of new nodes which states that it is more probable for newly added nodes to join the highly connected nodes comparing to the less connected ones. We showed that the preferential attachment is present in the case of earthquakes network and the attachment rate has a linear relationship with node degree. We have also found the seismic passive points, the most probable points to be influenced by other seismic places, using their preferential attachment values.

  18. A Very Large Area Network (VLAN) knowledge-base applied to space communication problems

    NASA Technical Reports Server (NTRS)

    Zander, Carol S.

    1988-01-01

    This paper first describes a hierarchical model for very large area networks (VLAN). Space communication problems whose solution could profit by the model are discussed and then an enhanced version of this model incorporating the knowledge needed for the missile detection-destruction problem is presented. A satellite network or VLAN is a network which includes at least one satellite. Due to the complexity, a compromise between fully centralized and fully distributed network management has been adopted. Network nodes are assigned to a physically localized group, called a partition. Partitions consist of groups of cell nodes with one cell node acting as the organizer or master, called the Group Master (GM). Coordinating the group masters is a Partition Master (PM). Knowledge is also distributed hierarchically existing in at least two nodes. Each satellite node has a back-up earth node. Knowledge must be distributed in such a way so as to minimize information loss when a node fails. Thus the model is hierarchical both physically and informationally.

  19. TSCA Experimental Release Application (TERA) for modified Gordonia terrae, R-13-0001 and modified Rhodococcus jostii, R-13-0002

    EPA Pesticide Factsheets

    TERAs submitted by the US Army Engineer Research and Development Center, Vicksburg, MS and US Army Corps of Engineers, Seattle, WA. These microorganisms will be used in a field demonstration of bioaugmentation to enhance RDX degradation.

  20. Two TSCA Environmental Release Applications (TERAs) for Pseudomonas putida (P. Putida)

    EPA Pesticide Factsheets

    TERAs submitted by Oak Ridge National Laboratory and given the tracking designations of R-01-0003 and R-01-0004. The microorganisms will be tested at the Ravenna Army Ammunition Plant in Ohio to determine whether they can detect traces of TNT in soil.

  1. Exploring the evolution of node neighborhoods in Dynamic Networks

    NASA Astrophysics Data System (ADS)

    Orman, Günce Keziban; Labatut, Vincent; Naskali, Ahmet Teoman

    2017-09-01

    Dynamic Networks are a popular way of modeling and studying the behavior of evolving systems. However, their analysis constitutes a relatively recent subfield of Network Science, and the number of available tools is consequently much smaller than for static networks. In this work, we propose a method specifically designed to take advantage of the longitudinal nature of dynamic networks. It characterizes each individual node by studying the evolution of its direct neighborhood, based on the assumption that the way this neighborhood changes reflects the role and position of the node in the whole network. For this purpose, we define the concept of neighborhood event, which corresponds to the various transformations such groups of nodes can undergo, and describe an algorithm for detecting such events. We demonstrate the interest of our method on three real-world networks: DBLP, LastFM and Enron. We apply frequent pattern mining to extract meaningful information from temporal sequences of neighborhood events. This results in the identification of behavioral trends emerging in the whole network, as well as the individual characterization of specific nodes. We also perform a cluster analysis, which reveals that, in all three networks, one can distinguish two types of nodes exhibiting different behaviors: a very small group of active nodes, whose neighborhood undergo diverse and frequent events, and a very large group of stable nodes.

  2. Fuzzy Neural Network-Based Interacting Multiple Model for Multi-Node Target Tracking Algorithm

    PubMed Central

    Sun, Baoliang; Jiang, Chunlan; Li, Ming

    2016-01-01

    An interacting multiple model for multi-node target tracking algorithm was proposed based on a fuzzy neural network (FNN) to solve the multi-node target tracking problem of wireless sensor networks (WSNs). Measured error variance was adaptively adjusted during the multiple model interacting output stage using the difference between the theoretical and estimated values of the measured error covariance matrix. The FNN fusion system was established during multi-node fusion to integrate with the target state estimated data from different nodes and consequently obtain network target state estimation. The feasibility of the algorithm was verified based on a network of nine detection nodes. Experimental results indicated that the proposed algorithm could trace the maneuvering target effectively under sensor failure and unknown system measurement errors. The proposed algorithm exhibited great practicability in the multi-node target tracking of WSNs. PMID:27809271

  3. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  4. I/O routing in a multidimensional torus network

    DOEpatents

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    2017-02-07

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destination address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.

  5. I/O routing in a multidimensional torus network

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Dong; Eisley, Noel A.; Heidelberger, Philip

    A method, system and computer program product are disclosed for routing data packet in a computing system comprising a multidimensional torus compute node network including a multitude of compute nodes, and an I/O node network including a plurality of I/O nodes. In one embodiment, the method comprises assigning to each of the data packets a destination address identifying one of the compute nodes; providing each of the data packets with a toio value; routing the data packets through the compute node network to the destination addresses of the data packets; and when each of the data packets reaches the destinationmore » address assigned to said each data packet, routing said each data packet to one of the I/O nodes if the toio value of said each data packet is a specified value. In one embodiment, each of the data packets is also provided with an ioreturn value used to route the data packets through the compute node network.« less

  6. Software Defined Networking (SDN) controlled all optical switching networks with multi-dimensional switching architecture

    NASA Astrophysics Data System (ADS)

    Zhao, Yongli; Ji, Yuefeng; Zhang, Jie; Li, Hui; Xiong, Qianjin; Qiu, Shaofeng

    2014-08-01

    Ultrahigh throughout capacity requirement is challenging the current optical switching nodes with the fast development of data center networks. Pbit/s level all optical switching networks need to be deployed soon, which will cause the high complexity of node architecture. How to control the future network and node equipment together will become a new problem. An enhanced Software Defined Networking (eSDN) control architecture is proposed in the paper, which consists of Provider NOX (P-NOX) and Node NOX (N-NOX). With the cooperation of P-NOX and N-NOX, the flexible control of the entire network can be achieved. All optical switching network testbed has been experimentally demonstrated with efficient control of enhanced Software Defined Networking (eSDN). Pbit/s level all optical switching nodes in the testbed are implemented based on multi-dimensional switching architecture, i.e. multi-level and multi-planar. Due to the space and cost limitation, each optical switching node is only equipped with four input line boxes and four output line boxes respectively. Experimental results are given to verify the performance of our proposed control and switching architecture.

  7. Complex networks repair strategies: Dynamic models

    NASA Astrophysics Data System (ADS)

    Fu, Chaoqi; Wang, Ying; Gao, Yangjun; Wang, Xiaoyang

    2017-09-01

    Network repair strategies are tactical methods that restore the efficiency of damaged networks; however, unreasonable repair strategies not only waste resources, they are also ineffective for network recovery. Most extant research on network repair focuses on static networks, but results and findings on static networks cannot be applied to evolutionary dynamic networks because, in dynamic models, complex network repair has completely different characteristics. For instance, repaired nodes face more severe challenges, and require strategic repair methods in order to have a significant effect. In this study, we propose the Shell Repair Strategy (SRS) to minimize the risk of secondary node failures due to the cascading effect. Our proposed method includes the identification of a set of vital nodes that have a significant impact on network repair and defense. Our identification of these vital nodes reduces the number of switching nodes that face the risk of secondary failures during the dynamic repair process. This is positively correlated with the size of the average degree 〈 k 〉 and enhances network invulnerability.

  8. Multiple Factors-Aware Diffusion in Social Networks

    DTIC Science & Technology

    2015-05-22

    Multiple Factors-Aware Diffusion in Social Networks Chung-Kuang Chou(B) and Ming-Syan Chen Department of Electrical Engineering, National Taiwan...propagates from nodes to nodes over a social network . The behavior that a node adopts an information piece in a social network can be affected by...Twitter dataset. Keywords: Social networks · Diffusion models 1 Introduction Information diffusion in social networks has been an active research field

  9. Infectious disease control using contact tracing in random and scale-free networks

    PubMed Central

    Kiss, Istvan Z; Green, Darren M; Kao, Rowland R

    2005-01-01

    Contact tracing aims to identify and isolate individuals that have been in contact with infectious individuals. The efficacy of contact tracing and the hierarchy of traced nodes—nodes with higher degree traced first—is investigated and compared on random and scale-free (SF) networks with the same number of nodes N and average connection K. For values of the transmission rate larger than a threshold, the final epidemic size on SF networks is smaller than that on corresponding random networks. While in random networks new infectious and traced nodes from all classes have similar average degrees, in SF networks the average degree of nodes that are in more advanced stages of the disease is higher at any given time. On SF networks tracing removes possible sources of infection with high average degree. However a higher tracing effort is required to control the epidemic than on corresponding random networks due to the high initial velocity of spread towards the highly connected nodes. An increased latency period fails to significantly improve contact tracing efficacy. Contact tracing has a limited effect if the removal rate of susceptible nodes is relatively high, due to the fast local depletion of susceptible nodes. PMID:16849217

  10. A Cluster-Based Architecture to Structure the Topology of Parallel Wireless Sensor Networks

    PubMed Central

    Lloret, Jaime; Garcia, Miguel; Bri, Diana; Diaz, Juan R.

    2009-01-01

    A wireless sensor network is a self-configuring network of mobile nodes connected by wireless links where the nodes have limited capacity and energy. In many cases, the application environment requires the design of an exclusive network topology for a particular case. Cluster-based network developments and proposals in existence have been designed to build a network for just one type of node, where all nodes can communicate with any other nodes in their coverage area. Let us suppose a set of clusters of sensor nodes where each cluster is formed by different types of nodes (e.g., they could be classified by the sensed parameter using different transmitting interfaces, by the node profile or by the type of device: laptops, PDAs, sensor etc.) and exclusive networks, as virtual networks, are needed with the same type of sensed data, or the same type of devices, or even the same type of profiles. In this paper, we propose an algorithm that is able to structure the topology of different wireless sensor networks to coexist in the same environment. It allows control and management of the topology of each network. The architecture operation and the protocol messages will be described. Measurements from a real test-bench will show that the designed protocol has low bandwidth consumption and also demonstrates the viability and the scalability of the proposed architecture. Our ccluster-based algorithm is compared with other algorithms reported in the literature in terms of architecture and protocol measurements. PMID:22303185

  11. High speed polling protocol for multiple node network

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold (Inventor)

    1995-01-01

    The invention is a multiple interconnected network of intelligent message-repeating remote nodes which employs a remote node polling process performed by a master node by transmitting a polling message generically addressed to all remote nodes associated with the master node. Each remote node responds upon receipt of the generically addressed polling message by transmitting a poll-answering informational message and by relaying the polling message to other adjacent remote nodes.

  12. Sensing Solutions for Collecting Spatio-Temporal Data for Wildlife Monitoring Applications: A Review

    PubMed Central

    Baratchi, Mitra; Meratnia, Nirvana; Havinga, Paul J. M.; Skidmore, Andrew K.; Toxopeus, Bert A. G.

    2013-01-01

    Movement ecology is a field which places movement as a basis for understanding animal behavior. To realize this concept, ecologists rely on data collection technologies providing spatio-temporal data in order to analyze movement. Recently, wireless sensor networks have offered new opportunities for data collection from remote places through multi-hop communication and collaborative capability of the nodes. Several technologies can be used in such networks for sensing purposes and for collecting spatio-temporal data from animals. In this paper, we investigate and review technological solutions which can be used for collecting data for wildlife monitoring. Our aim is to provide an overview of different sensing technologies used for wildlife monitoring and to review their capabilities in terms of data they provide for modeling movement behavior of animals. PMID:23666132

  13. Improved Efficient Routing Strategy on Scale-Free Networks

    NASA Astrophysics Data System (ADS)

    Jiang, Zhong-Yuan; Liang, Man-Gui

    Since the betweenness of nodes in complex networks can theoretically represent the traffic load of nodes under the currently used routing strategy, we propose an improved efficient (IE) routing strategy to enhance to the network traffic capacity based on the betweenness centrality. Any node with the highest betweenness is susceptible to traffic congestion. An efficient way to improve the network traffic capacity is to redistribute the heavy traffic load from these central nodes to non-central nodes, so in this paper, we firstly give a path cost function by considering the sum of node betweenness with a tunable parameter β along the actual path. Then, by minimizing the path cost, our IE routing strategy achieved obvious improvement on the network transport efficiency. Simulations on scale-free Barabási-Albert (BA) networks confirmed the effectiveness of our strategy, when compared with the efficient routing (ER) and the shortest path (SP) routing.

  14. Identifying and characterizing key nodes among communities based on electrical-circuit networks.

    PubMed

    Zhu, Fenghui; Wang, Wenxu; Di, Zengru; Fan, Ying

    2014-01-01

    Complex networks with community structures are ubiquitous in the real world. Despite many approaches developed for detecting communities, we continue to lack tools for identifying overlapping and bridging nodes that play crucial roles in the interactions and communications among communities in complex networks. Here we develop an algorithm based on the local flow conservation to effectively and efficiently identify and distinguish the two types of nodes. Our method is applicable in both undirected and directed networks without a priori knowledge of the community structure. Our method bypasses the extremely challenging problem of partitioning communities in the presence of overlapping nodes that may belong to multiple communities. Due to the fact that overlapping and bridging nodes are of paramount importance in maintaining the function of many social and biological networks, our tools open new avenues towards understanding and controlling real complex networks with communities accompanied with the key nodes.

  15. Dispatching packets on a global combining network of a parallel computer

    DOEpatents

    Almasi, Gheorghe [Ardsley, NY; Archer, Charles J [Rochester, MN

    2011-07-19

    Methods, apparatus, and products are disclosed for dispatching packets on a global combining network of a parallel computer comprising a plurality of nodes connected for data communications using the network capable of performing collective operations and point to point operations that include: receiving, by an origin system messaging module on an origin node from an origin application messaging module on the origin node, a storage identifier and an operation identifier, the storage identifier specifying storage containing an application message for transmission to a target node, and the operation identifier specifying a message passing operation; packetizing, by the origin system messaging module, the application message into network packets for transmission to the target node, each network packet specifying the operation identifier and an operation type for the message passing operation specified by the operation identifier; and transmitting, by the origin system messaging module, the network packets to the target node.

  16. In-network Coding for Resilient Sensor Data Storage and Efficient Data Mule Collection

    NASA Astrophysics Data System (ADS)

    Albano, Michele; Gao, Jie

    In a sensor network of n nodes in which k of them have sensed interesting data, we perform in-network erasure coding such that each node stores a linear combination of all the network data with random coefficients. This scheme greatly improves data resilience to node failures: as long as there are k nodes that survive an attack, all the data produced in the sensor network can be recovered with high probability. The in-network coding storage scheme also improves data collection rate by mobile mules and allows for easy scheduling of data mules.

  17. 25 CFR 224.160 - How will reassumption affect a TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false How will reassumption affect a TERA? 224.160 Section 224.160 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Reassumption...

  18. 25 CFR 224.160 - How will reassumption affect a TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false How will reassumption affect a TERA? 224.160 Section 224.160 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Reassumption...

  19. 40 CFR 725.255 - Information to be included in the TERA.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 725.255 Section 725.255 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) TOXIC... must have sufficient information to permit a reasoned evaluation of the health and environmental... the person believes will be useful for EPA's risk assessment. The TERA must be in writing and must...

  20. IMHRP: Improved Multi-Hop Routing Protocol for Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Huang, Jianhua; Ruan, Danwei; Hong, Yadong; Zhao, Ziming; Zheng, Hong

    2017-10-01

    Wireless sensor network (WSN) is a self-organizing system formed by a large number of low-cost sensor nodes through wireless communication. Sensor nodes collect environmental information and transmit it to the base station (BS). Sensor nodes usually have very limited battery energy. The batteries cannot be charged or replaced. Therefore, it is necessary to design an energy efficient routing protocol to maximize the network lifetime. This paper presents an improved multi-hop routing protocol (IMHRP) for homogeneous networks. In the IMHRP protocol, based on the distances to the BS, the CH nodes are divided into internal CH nodes and external CH nodes. The set-up phase of the protocol is based on the LEACH protocol and the minimum distance between CH nodes are limited to a special constant distance, so a more uniform distribution of CH nodes is achieved. In the steady-state phase, the routes of different CH nodes are created on the basis of the distances between the CH nodes. The energy efficiency of communication can be maximized. The simulation results show that the proposed algorithm can more effectively reduce the energy consumption of each round and prolong the network lifetime compared with LEACH protocol and MHT protocol.

  1. Data-based reconstruction of complex geospatial networks, nodal positioning and detection of hidden nodes

    PubMed Central

    Su, Ri-Qi; Wang, Wen-Xu; Wang, Xiao; Lai, Ying-Cheng

    2016-01-01

    Given a complex geospatial network with nodes distributed in a two-dimensional region of physical space, can the locations of the nodes be determined and their connection patterns be uncovered based solely on data? We consider the realistic situation where time series/signals can be collected from a single location. A key challenge is that the signals collected are necessarily time delayed, due to the varying physical distances from the nodes to the data collection centre. To meet this challenge, we develop a compressive-sensing-based approach enabling reconstruction of the full topology of the underlying geospatial network and more importantly, accurate estimate of the time delays. A standard triangularization algorithm can then be employed to find the physical locations of the nodes in the network. We further demonstrate successful detection of a hidden node (or a hidden source or threat), from which no signal can be obtained, through accurate detection of all its neighbouring nodes. As a geospatial network has the feature that a node tends to connect with geophysically nearby nodes, the localized region that contains the hidden node can be identified. PMID:26909187

  2. Optimization of robustness of interdependent network controllability by redundant design

    PubMed Central

    2018-01-01

    Controllability of complex networks has been a hot topic in recent years. Real networks regarded as interdependent networks are always coupled together by multiple networks. The cascading process of interdependent networks including interdependent failure and overload failure will destroy the robustness of controllability for the whole network. Therefore, the optimization of the robustness of interdependent network controllability is of great importance in the research area of complex networks. In this paper, based on the model of interdependent networks constructed first, we determine the cascading process under different proportions of node attacks. Then, the structural controllability of interdependent networks is measured by the minimum driver nodes. Furthermore, we propose a parameter which can be obtained by the structure and minimum driver set of interdependent networks under different proportions of node attacks and analyze the robustness for interdependent network controllability. Finally, we optimize the robustness of interdependent network controllability by redundant design including node backup and redundancy edge backup and improve the redundant design by proposing different strategies according to their cost. Comparative strategies of redundant design are conducted to find the best strategy. Results shows that node backup and redundancy edge backup can indeed decrease those nodes suffering from failure and improve the robustness of controllability. Considering the cost of redundant design, we should choose BBS (betweenness-based strategy) or DBS (degree based strategy) for node backup and HDF(high degree first) for redundancy edge backup. Above all, our proposed strategies are feasible and effective at improving the robustness of interdependent network controllability. PMID:29438426

  3. Distribution of shortest path lengths in a class of node duplication network models

    NASA Astrophysics Data System (ADS)

    Steinbock, Chanania; Biham, Ofer; Katzav, Eytan

    2017-09-01

    We present analytical results for the distribution of shortest path lengths (DSPL) in a network growth model which evolves by node duplication (ND). The model captures essential properties of the structure and growth dynamics of social networks, acquaintance networks, and scientific citation networks, where duplication mechanisms play a major role. Starting from an initial seed network, at each time step a random node, referred to as a mother node, is selected for duplication. Its daughter node is added to the network, forming a link to the mother node, and with probability p to each one of its neighbors. The degree distribution of the resulting network turns out to follow a power-law distribution, thus the ND network is a scale-free network. To calculate the DSPL we derive a master equation for the time evolution of the probability Pt(L =ℓ ) , ℓ =1 ,2 ,⋯ , where L is the distance between a pair of nodes and t is the time. Finding an exact analytical solution of the master equation, we obtain a closed form expression for Pt(L =ℓ ) . The mean distance 〈L〉 t and the diameter Δt are found to scale like lnt , namely, the ND network is a small-world network. The variance of the DSPL is also found to scale like lnt . Interestingly, the mean distance and the diameter exhibit properties of a small-world network, rather than the ultrasmall-world network behavior observed in other scale-free networks, in which 〈L〉 t˜lnlnt .

  4. Continuum Modeling and Control of Large Nonuniform Wireless Networks via Nonlinear Partial Differential Equations

    DOE PAGES

    Zhang, Yang; Chong, Edwin K. P.; Hannig, Jan; ...

    2013-01-01

    We inmore » troduce a continuum modeling method to approximate a class of large wireless networks by nonlinear partial differential equations (PDEs). This method is based on the convergence of a sequence of underlying Markov chains of the network indexed by N , the number of nodes in the network. As N goes to infinity, the sequence converges to a continuum limit, which is the solution of a certain nonlinear PDE. We first describe PDE models for networks with uniformly located nodes and then generalize to networks with nonuniformly located, and possibly mobile, nodes. Based on the PDE models, we develop a method to control the transmissions in nonuniform networks so that the continuum limit is invariant under perturbations in node locations. This enables the networks to maintain stable global characteristics in the presence of varying node locations.« less

  5. Modeling Citation Networks Based on Vigorousness and Dormancy

    NASA Astrophysics Data System (ADS)

    Wang, Xue-Wen; Zhang, Li-Jie; Yang, Guo-Hong; Xu, Xin-Jian

    2013-08-01

    In citation networks, the activity of papers usually decreases with age and dormant papers may be discovered and become fashionable again. To model this phenomenon, a competition mechanism is suggested which incorporates two factors: vigorousness and dormancy. Based on this idea, a citation network model is proposed, in which a node has two discrete stage: vigorous and dormant. Vigorous nodes can be deactivated and dormant nodes may be activated and become vigorous. The evolution of the network couples addition of new nodes and state transitions of old ones. Both analytical calculation and numerical simulation show that the degree distribution of nodes in generated networks displays a good right-skewed behavior. Particularly, scale-free networks are obtained as the deactivated vertex is target selected and exponential networks are realized for the random-selected case. Moreover, the measurement of four real-world citation networks achieves a good agreement with the stochastic model.

  6. Generalised power graph compression reveals dominant relationship patterns in complex networks

    PubMed Central

    Ahnert, Sebastian E.

    2014-01-01

    We introduce a framework for the discovery of dominant relationship patterns in complex networks, by compressing the networks into power graphs with overlapping power nodes. When paired with enrichment analysis of node classification terms, the most compressible sets of edges provide a highly informative sketch of the dominant relationship patterns that define the network. In addition, this procedure also gives rise to a novel, link-based definition of overlapping node communities in which nodes are defined by their relationships with sets of other nodes, rather than through connections within the community. We show that this completely general approach can be applied to undirected, directed, and bipartite networks, yielding valuable insights into the large-scale structure of real-world networks, including social networks and food webs. Our approach therefore provides a novel way in which network architecture can be studied, defined and classified. PMID:24663099

  7. SOUNET: Self-Organized Underwater Wireless Sensor Network.

    PubMed

    Kim, Hee-Won; Cho, Ho-Shin

    2017-02-02

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the timevarying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment.

  8. SOUNET: Self-Organized Underwater Wireless Sensor Network

    PubMed Central

    Kim, Hee-won; Cho, Ho-Shin

    2017-01-01

    In this paper, we propose an underwater wireless sensor network (UWSN) named SOUNET where sensor nodes form and maintain a tree-topological network for data gathering in a self-organized manner. After network topology discovery via packet flooding, the sensor nodes consistently update their parent node to ensure the best connectivity by referring to the time-varying neighbor tables. Such a persistent and self-adaptive method leads to high network connectivity without any centralized control, even when sensor nodes are added or unexpectedly lost. Furthermore, malfunctions that frequently happen in self-organized networks such as node isolation and closed loop are resolved in a simple way. Simulation results show that SOUNET outperforms other conventional schemes in terms of network connectivity, packet delivery ratio (PDR), and energy consumption throughout the network. In addition, we performed an experiment at the Gyeongcheon Lake in Korea using commercial underwater modems to verify that SOUNET works well in a real environment. PMID:28157164

  9. Limits of Predictability of Cascading Overload Failures in Spatially-Embedded Networks with Distributed Flows.

    PubMed

    Moussawi, A; Derzsy, N; Lin, X; Szymanski, B K; Korniss, G

    2017-09-15

    Cascading failures are a critical vulnerability of complex information or infrastructure networks. Here we investigate the properties of load-based cascading failures in real and synthetic spatially-embedded network structures, and propose mitigation strategies to reduce the severity of damages caused by such failures. We introduce a stochastic method for optimal heterogeneous distribution of resources (node capacities) subject to a fixed total cost. Additionally, we design and compare the performance of networks with N-stable and (N-1)-stable network-capacity allocations by triggering cascades using various real-world node-attack and node-failure scenarios. We show that failure mitigation through increased node protection can be effectively achieved against single-node failures. However, mitigating against multiple node failures is much more difficult due to the combinatorial increase in possible sets of initially failing nodes. We analyze the robustness of the system with increasing protection, and find that a critical tolerance exists at which the system undergoes a phase transition, and above which the network almost completely survives an attack. Moreover, we show that cascade-size distributions measured in this region exhibit a power-law decay. Finally, we find a strong correlation between cascade sizes induced by individual nodes and sets of nodes. We also show that network topology alone is a weak predictor in determining the progression of cascading failures.

  10. Recovery time after localized perturbations in complex dynamical networks

    NASA Astrophysics Data System (ADS)

    Mitra, Chiranjit; Kittel, Tim; Choudhary, Anshul; Kurths, Jürgen; Donner, Reik V.

    2017-10-01

    Maintaining the synchronous motion of dynamical systems interacting on complex networks is often critical to their functionality. However, real-world networked dynamical systems operating synchronously are prone to random perturbations driving the system to arbitrary states within the corresponding basin of attraction, thereby leading to epochs of desynchronized dynamics with a priori unknown durations. Thus, it is highly relevant to have an estimate of the duration of such transient phases before the system returns to synchrony, following a random perturbation to the dynamical state of any particular node of the network. We address this issue here by proposing the framework of single-node recovery time (SNRT) which provides an estimate of the relative time scales underlying the transient dynamics of the nodes of a network during its restoration to synchrony. We utilize this in differentiating the particularly slow nodes of the network from the relatively fast nodes, thus identifying the critical nodes which when perturbed lead to significantly enlarged recovery time of the system before resuming synchronized operation. Further, we reveal explicit relationships between the SNRT values of a network, and its global relaxation time when starting all the nodes from random initial conditions. Earlier work on relaxation time generally focused on investigating its dependence on macroscopic topological properties of the respective network. However, we employ the proposed concept for deducing microscopic relationships between topological features of nodes and their respective SNRT values. The framework of SNRT is further extended to a measure of resilience of the different nodes of a networked dynamical system. We demonstrate the potential of SNRT in networks of Rössler oscillators on paradigmatic topologies and a model of the power grid of the United Kingdom with second-order Kuramoto-type nodal dynamics illustrating the conceivable practical applicability of the proposed concept.

  11. Distributed Dynamic Host Configuration Protocol (D2HCP)

    PubMed Central

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment. PMID:22163856

  12. Distributed Dynamic Host Configuration Protocol (D2HCP).

    PubMed

    Villalba, Luis Javier García; Matesanz, Julián García; Orozco, Ana Lucila Sandoval; Díaz, José Duván Márquez

    2011-01-01

    Mobile Ad Hoc Networks (MANETs) are multihop wireless networks of mobile nodes without any fixed or preexisting infrastructure. The topology of these networks can change randomly due to the unpredictable mobility of nodes and their propagation characteristics. In most networks, including MANETs, each node needs a unique identifier to communicate. This work presents a distributed protocol for dynamic node IP address assignment in MANETs. Nodes of a MANET synchronize from time to time to maintain a record of IP address assignments in the entire network and detect any IP address leaks. The proposed stateful autoconfiguration scheme uses the OLSR proactive routing protocol for synchronization and guarantees unique IP addresses under a variety of network conditions, including message losses and network partitioning. Simulation results show that the protocol incurs low latency and communication overhead for IP address assignment.

  13. Network Security Risk Assessment System Based on Attack Graph and Markov Chain

    NASA Astrophysics Data System (ADS)

    Sun, Fuxiong; Pi, Juntao; Lv, Jin; Cao, Tian

    2017-10-01

    Network security risk assessment technology can be found in advance of the network problems and related vulnerabilities, it has become an important means to solve the problem of network security. Based on attack graph and Markov chain, this paper provides a Network Security Risk Assessment Model (NSRAM). Based on the network infiltration tests, NSRAM generates the attack graph by the breadth traversal algorithm. Combines with the international standard CVSS, the attack probability of atomic nodes are counted, and then the attack transition probabilities of ones are calculated by Markov chain. NSRAM selects the optimal attack path after comprehensive measurement to assessment network security risk. The simulation results show that NSRAM can reflect the actual situation of network security objectively.

  14. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks.

    PubMed

    Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le

    2016-07-14

    Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don't discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability.

  15. A Depth-Adjustment Deployment Algorithm Based on Two-Dimensional Convex Hull and Spanning Tree for Underwater Wireless Sensor Networks

    PubMed Central

    Jiang, Peng; Liu, Shuai; Liu, Jun; Wu, Feng; Zhang, Le

    2016-01-01

    Most of the existing node depth-adjustment deployment algorithms for underwater wireless sensor networks (UWSNs) just consider how to optimize network coverage and connectivity rate. However, these literatures don’t discuss full network connectivity, while optimization of network energy efficiency and network reliability are vital topics for UWSN deployment. Therefore, in this study, a depth-adjustment deployment algorithm based on two-dimensional (2D) convex hull and spanning tree (NDACS) for UWSNs is proposed. First, the proposed algorithm uses the geometric characteristics of a 2D convex hull and empty circle to find the optimal location of a sleep node and activate it, minimizes the network coverage overlaps of the 2D plane, and then increases the coverage rate until the first layer coverage threshold is reached. Second, the sink node acts as a root node of all active nodes on the 2D convex hull and then forms a small spanning tree gradually. Finally, the depth-adjustment strategy based on time marker is used to achieve the three-dimensional overall network deployment. Compared with existing depth-adjustment deployment algorithms, the simulation results show that the NDACS algorithm can maintain full network connectivity with high network coverage rate, as well as improved network average node degree, thus increasing network reliability. PMID:27428970

  16. An Algorithm for Critical Nodes Problem in Social Networks Based on Owen Value

    PubMed Central

    Wang, Xue-Guang

    2014-01-01

    Discovering critical nodes in social networks has many important applications. For finding out the critical nodes and considering the widespread community structure in social networks, we obtain each node's marginal contribution by Owen value. And then we can give a method for the solution of the critical node problem. We validate the feasibility and effectiveness of our method on two synthetic datasets and six real datasets. At the same time, the result obtained by using our method to analyze the terrorist network is in line with the actual situation. PMID:25006592

  17. Multi terabits/s optical access transport technologies

    NASA Astrophysics Data System (ADS)

    Binh, Le Nguyen; Wang Tao, Thomas; Livshits, Daniil; Gubenko, Alexey; Karinou, Fotini; Liu Ning, Gordon; Shkolnik, Alexey

    2016-02-01

    Tremendous efforts have been developed for multi-Tbps over ultra-long distance and metro and access optical networks. With the exponential increase demand on data transmission, storage and serving, especially the 5G wireless access scenarios, the optical Internet networking has evolved to data-center based optical networks pressuring on novel and economical access transmission systems. This paper reports (1) Experimental platforms and transmission techniques employing band-limited optical components operating at 10G for 100G based at 28G baud. Advanced modulation formats such as PAM-4, DMT, duo-binary etc are reported and their advantages and disadvantages are analyzed so as to achieve multi-Tbps optical transmission systems for access inter- and intra- data-centered-based networks; (2) Integrated multi-Tbps combining comb laser sources and micro-ring modulators meeting the required performance for access systems are reported. Ten-sub-carrier quantum dot com lasers are employed in association with wideband optical intensity modulators to demonstrate the feasibility of such sources and integrated micro-ring modulators acting as a combined function of demultiplexing/multiplexing and modulation, hence compactness and economy scale. Under the use of multi-level modulation and direct detection at 56 GBd an aggregate of higher than 2Tbps and even 3Tbps can be achieved by interleaved two comb lasers of 16 sub-carrier lines; (3) Finally the fundamental designs of ultra-compacts flexible filters and switching integrated components based on Si photonics for multi Tera-bps active interconnection are presented. Experimental results on multi-channels transmissions and performances of optical switching matrices and effects on that of data channels are proposed.

  18. Event Detection in Aerospace Systems using Centralized Sensor Networks: A Comparative Study of Several Methodologies

    NASA Technical Reports Server (NTRS)

    Mehr, Ali Farhang; Sauvageon, Julien; Agogino, Alice M.; Tumer, Irem Y.

    2006-01-01

    Recent advances in micro electromechanical systems technology, digital electronics, and wireless communications have enabled development of low-cost, low-power, multifunctional miniature smart sensors. These sensors can be deployed throughout a region in an aerospace vehicle to build a network for measurement, detection and surveillance applications. Event detection using such centralized sensor networks is often regarded as one of the most promising health management technologies in aerospace applications where timely detection of local anomalies has a great impact on the safety of the mission. In this paper, we propose to conduct a qualitative comparison of several local event detection algorithms for centralized redundant sensor networks. The algorithms are compared with respect to their ability to locate and evaluate an event in the presence of noise and sensor failures for various node geometries and densities.

  19. Protocol for communications in potentially noisy environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, Gerlad M.; Farrow, Jeffrey

    2016-02-09

    A communications protocol that is designed for transmission of data in networks that are subjected to harsh conditions is described herein. A network includes a plurality of devices, where the devices comprise respective nodes. The nodes are in communication with one another by way of a central network hub. The protocol causes the nodes to transmit data over a network bus at different data rates depending upon whether the nodes are operating normally or an arbitration procedure has been invoked.

  20. Disruptions of brain structural network in end-stage renal disease patients with long-term hemodialysis and normal-appearing brain tissues.

    PubMed

    Chou, Ming-Chung; Ko, Chih-Hung; Chang, Jer-Ming; Hsieh, Tsyh-Jyi

    2018-05-04

    End-stage renal disease (ESRD) patients on hemodialysis were demonstrated to exhibit silent and invisible white-matter alterations which would likely lead to disruptions of brain structural networks. Therefore, the purpose of this study was to investigate the disruptions of brain structural network in ESRD patients. Thiry-three ESRD patients with normal-appearing brain tissues and 29 age- and gender-matched healthy controls were enrolled in this study and underwent both cognitive ability screening instrument (CASI) assessment and diffusion tensor imaging (DTI) acquisition. Brain structural connectivity network was constructed using probabilistic tractography with automatic anatomical labeling template. Graph-theory analysis was performed to detect the alterations of node-strength, node-degree, node-local efficiency, and node-clustering coefficient in ESRD patients. Correlational analysis was performed to understand the relationship between network measures, CASI score, and dialysis duration. Structural connectivity, node-strength, node-degree, and node-local efficiency were significantly decreased, whereas node-clustering coefficient was significantly increased in ESRD patients as compared with healthy controls. The disrupted local structural networks were generally associated with common neurological complications of ESRD patients, but the correlational analysis did not reveal significant correlation between network measures, CASI score, and dialysis duration. Graph-theory analysis was helpful to investigate disruptions of brain structural network in ESRD patients with normal-appearing brain tissues. Copyright © 2018. Published by Elsevier Masson SAS.

  1. Matching-centrality decomposition and the forecasting of new links in networks.

    PubMed

    Rohr, Rudolf P; Naisbit, Russell E; Mazza, Christian; Bersier, Louis-Félix

    2016-02-10

    Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching-centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. © 2016 The Author(s).

  2. Matching–centrality decomposition and the forecasting of new links in networks

    PubMed Central

    Rohr, Rudolf P.; Naisbit, Russell E.; Mazza, Christian; Bersier, Louis-Félix

    2016-01-01

    Networks play a prominent role in the study of complex systems of interacting entities in biology, sociology, and economics. Despite this diversity, we demonstrate here that a statistical model decomposing networks into matching and centrality components provides a comprehensive and unifying quantification of their architecture. The matching term quantifies the assortative structure in which node makes links with which other node, whereas the centrality term quantifies the number of links that nodes make. We show, for a diverse set of networks, that this decomposition can provide a tight fit to observed networks. Then we provide three applications. First, we show that the model allows very accurate prediction of missing links in partially known networks. Second, when node characteristics are known, we show how the matching–centrality decomposition can be related to this external information. Consequently, it offers us a simple and versatile tool to explore how node characteristics explain network architecture. Finally, we demonstrate the efficiency and flexibility of the model to forecast the links that a novel node would create if it were to join an existing network. PMID:26842568

  3. Ab initio nanostructure determination

    NASA Astrophysics Data System (ADS)

    Gujarathi, Saurabh

    Reconstruction of complex structures is an inverse problem arising in virtually all areas of science and technology, from protein structure determination to bulk heterostructure solar cells and the structure of nanoparticles. This problem is cast as a complex network problem where the edges in a network have weights equal to the Euclidean distance between their endpoints. A method, called Tribond, for the reconstruction of the locations of the nodes of the network given only the edge weights of the Euclidean network is presented. The timing results indicate that the algorithm is a low order polynomial in the number of nodes in the network in two dimensions. Reconstruction of Euclidean networks in two dimensions of about one thousand nodes in approximately twenty four hours on a desktop computer using this implementation is done. In three dimensions, the computational cost for the reconstruction is a higher order polynomial in the number of nodes and reconstruction of small Euclidean networks in three dimensions is shown. If a starting network of size five is assumed to be given, then for a network of size 100, the remaining reconstruction can be done in about two hours on a desktop computer. In situations when we have less precise data, modifications of the method may be necessary and are discussed. A related problem in one dimension known as the Optimal Golomb ruler (OGR) is also studied. A statistical physics Hamiltonian to describe the OGR problem is introduced and the first order phase transition from a symmetric low constraint phase to a complex symmetry broken phase at high constraint is studied. Despite the fact that the Hamiltonian is not disordered, the asymmetric phase is highly irregular with geometric frustration. The phase diagram is obtained and it is seen that even at a very low temperature T there is a phase transition at finite and non-zero value of the constraint parameter gamma/mu. Analytic calculations for the scaling of the density and free energy of the ruler are done and they are compared with those from the mean field approach. A scaling law is also derived for the length of OGR, which is consistent with Erdos conjecture and with numerical results.

  4. From Micro to Nano: The Evolution of Wireless Sensor-Based Health Care.

    PubMed

    Sarkar, Subhadeep; Misra, Sudip

    2016-01-01

    Over the past decade, embedded systems and microelectromechanical systems have evolved in a radical way, redefining our standard of living and enhancing the quality of life. Health care, among various other fields, has benefited vastly from this technological development. The concept of using sensors for health care purposes originated in the late 1980s when sensors were developed to measure certain physiological parameters associated with the human body. In traditional sensor nodes, the signal sources are mostly different environmental phenomena (such as temperature, vibration, and luminosity) or man-made events (such as intrusion and mobile target tracking), whereas in case of the physiological sensors, the signal source is living human tissue. These sensor nodes, as their primary sensing element, have a diaphragm that converts pressure into displacement. This displacement, in turn, is subsequently transformed into an electrical signal. The concept of wireless physiological sensor nodes, however, gained popularity in the mid-2000s, with the sensed data from the nodes transmitted to the hub via a wireless medium. The network formed by this heterogeneous set of wireless body sensor nodes is termed a wireless body-area network (WBAN). Each WBAN is essentially a composition of multiple wireless body sensor nodes and a single hub. The hub is primarily responsible for acquisition of the raw sensed data from all the component sensor nodes and first-level aggregation of the data before transmitting the aggregated data for further analysis to a remote data acquisition center. Here, we outline the evolution of WBANs in the context of modern health care and its convergence with nanotechnology.

  5. Identifying key nodes in multilayer networks based on tensor decomposition.

    PubMed

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  6. Identifying key nodes in multilayer networks based on tensor decomposition

    NASA Astrophysics Data System (ADS)

    Wang, Dingjie; Wang, Haitao; Zou, Xiufen

    2017-06-01

    The identification of essential agents in multilayer networks characterized by different types of interactions is a crucial and challenging topic, one that is essential for understanding the topological structure and dynamic processes of multilayer networks. In this paper, we use the fourth-order tensor to represent multilayer networks and propose a novel method to identify essential nodes based on CANDECOMP/PARAFAC (CP) tensor decomposition, referred to as the EDCPTD centrality. This method is based on the perspective of multilayer networked structures, which integrate the information of edges among nodes and links between different layers to quantify the importance of nodes in multilayer networks. Three real-world multilayer biological networks are used to evaluate the performance of the EDCPTD centrality. The bar chart and ROC curves of these multilayer networks indicate that the proposed approach is a good alternative index to identify real important nodes. Meanwhile, by comparing the behavior of both the proposed method and the aggregated single-layer methods, we demonstrate that neglecting the multiple relationships between nodes may lead to incorrect identification of the most versatile nodes. Furthermore, the Gene Ontology functional annotation demonstrates that the identified top nodes based on the proposed approach play a significant role in many vital biological processes. Finally, we have implemented many centrality methods of multilayer networks (including our method and the published methods) and created a visual software based on the MATLAB GUI, called ENMNFinder, which can be used by other researchers.

  7. HERA: A New Platform for Embedding Agents in Heterogeneous Wireless Sensor Networks

    NASA Astrophysics Data System (ADS)

    Alonso, Ricardo S.; de Paz, Juan F.; García, Óscar; Gil, Óscar; González, Angélica

    Ambient Intelligence (AmI) based systems require the development of innovative solutions that integrate distributed intelligent systems with context-aware technologies. In this sense, Multi-Agent Systems (MAS) and Wireless Sensor Networks (WSN) are two key technologies for developing distributed systems based on AmI scenarios. This paper presents the new HERA (Hardware-Embedded Reactive Agents) platform, that allows using dynamic and self-adaptable heterogeneous WSNs on which agents are directly embedded on the wireless nodes This approach facilitates the inclusion of context-aware capabilities in AmI systems to gather data from their surrounding environments, achieving a higher level of ubiquitous and pervasive computing.

  8. Core-periphery structure requires something else in the network

    NASA Astrophysics Data System (ADS)

    Kojaku, Sadamori; Masuda, Naoki

    2018-04-01

    A network with core-periphery structure consists of core nodes that are densely interconnected. In contrast to a community structure, which is a different meso-scale structure of networks, core nodes can be connected to peripheral nodes and peripheral nodes are not densely interconnected. Although core-periphery structure sounds reasonable, we argue that it is merely accounted for by heterogeneous degree distributions, if one partitions a network into a single core block and a single periphery block, which the famous Borgatti–Everett algorithm and many succeeding algorithms assume. In other words, there is a strong tendency that high-degree and low-degree nodes are judged to be core and peripheral nodes, respectively. To discuss core-periphery structure beyond the expectation of the node’s degree (as described by the configuration model), we propose that one needs to assume at least one block of nodes apart from the focal core-periphery structure, such as a different core-periphery pair, community or nodes not belonging to any meso-scale structure. We propose a scalable algorithm to detect pairs of core and periphery in networks, controlling for the effect of the node’s degree. We illustrate our algorithm using various empirical networks.

  9. High Speed All-Optical Data Distribution Network

    NASA Astrophysics Data System (ADS)

    Braun, Steve; Hodara, Henri

    2017-11-01

    This article describes the performance and capabilities of an all-optical network featuring low latency, high speed file transfer between serially connected optical nodes. A basic component of the network is a network interface card (NIC) implemented through a unique planar lightwave circuit (PLC) that performs add/drop data and optical signal amplification. The network uses a linear bus topology with nodes in a "T" configuration, as described in the text. The signal is sent optically (hence, no latency) to all nodes via wavelength division multiplexing (WDM), with each node receiver tuned to wavelength of choice via an optical de-multiplexer. Each "T" node routes a portion of the signal to/from the bus through optical couplers, embedded in the network interface card (NIC), to each of the 1 through n computers.

  10. Using the OASES-A to illustrate how network analysis can be applied to understand the experience of stuttering.

    PubMed

    Siew, Cynthia S Q; Pelczarski, Kristin M; Yaruss, J Scott; Vitevitch, Michael S

    Network science uses mathematical and computational techniques to examine how individual entities in a system, represented by nodes, interact, as represented by connections between nodes. This approach has been used by Cramer et al. (2010) to make "symptom networks" to examine various psychological disorders. In the present analysis we examined a network created from the items in the Overall Assessment of the Speaker's Experience of Stuttering-Adult (OASES-A), a commonly used measure for evaluating adverse impact in the lives of people who stutter. The items of the OASES-A were represented as nodes in the network. Connections between nodes were placed if responses to those two items in the OASES-A had a correlation coefficient greater than ±0.5. Several network analyses revealed which nodes were "important" in the network. Several centrally located nodes and "key players" in the network were identified. A community detection analysis found groupings of nodes that differed slightly from the subheadings of the OASES-A. Centrally located nodes and "key players" in the network may help clinicians prioritize treatment. The different community structure found for people who stutter suggests that the way people who stutter view stuttering may differ from the way that scientists and clinicians view stuttering. Finally, the present analyses illustrate how the network approach might be applied to other speech, language, and hearing disorders to better understand how those disorders are experienced and to provide insights for their treatment. Copyright © 2016 Elsevier Inc. All rights reserved.

  11. Ubiquitous healthcare computing with SEnsor Grid Enhancement with Data Management System (SEGEDMA).

    PubMed

    Preve, Nikolaos

    2011-12-01

    Wireless Sensor Network (WSN) can be deployed to monitor the health of patients suffering from critical diseases. Also a wireless network consisting of biomedical sensors can be implanted into the patient's body and can monitor the patients' conditions. These sensor devices, apart from having an enormous capability of collecting data from their physical surroundings, are also resource constraint in nature with a limited processing and communication ability. Therefore we have to integrate them with the Grid technology in order to process and store the collected data by the sensor nodes. In this paper, we proposed the SEnsor Grid Enhancement Data Management system, called SEGEDMA ensuring the integration of different network technologies and the continuous data access to system users. The main contribution of this work is to achieve the interoperability of both technologies through a novel network architecture ensuring also the interoperability of Open Geospatial Consortium (OGC) and HL7 standards. According to the results, SEGEDMA can be applied successfully in a decentralized healthcare environment.

  12. Rapid identifying high-influence nodes in complex networks

    NASA Astrophysics Data System (ADS)

    Song, Bo; Jiang, Guo-Ping; Song, Yu-Rong; Xia, Ling-Ling

    2015-10-01

    A tiny fraction of influential individuals play a critical role in the dynamics on complex systems. Identifying the influential nodes in complex networks has theoretical and practical significance. Considering the uncertainties of network scale and topology, and the timeliness of dynamic behaviors in real networks, we propose a rapid identifying method (RIM) to find the fraction of high-influential nodes. Instead of ranking all nodes, our method only aims at ranking a small number of nodes in network. We set the high-influential nodes as initial spreaders, and evaluate the performance of RIM by the susceptible-infected-recovered (SIR) model. The simulations show that in different networks, RIM performs well on rapid identifying high-influential nodes, which is verified by typical ranking methods, such as degree, closeness, betweenness, and eigenvector centrality methods. Project supported by the National Natural Science Foundation of China (Grant Nos. 61374180 and 61373136), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund Project, China (Grant No. 12YJAZH120), and the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. RLD201212).

  13. Towards a Methodology for Validation of Centrality Measures in Complex Networks

    PubMed Central

    2014-01-01

    Background Living systems are associated with Social networks — networks made up of nodes, some of which may be more important in various aspects as compared to others. While different quantitative measures labeled as “centralities” have previously been used in the network analysis community to find out influential nodes in a network, it is debatable how valid the centrality measures actually are. In other words, the research question that remains unanswered is: how exactly do these measures perform in the real world? So, as an example, if a centrality of a particular node identifies it to be important, is the node actually important? Purpose The goal of this paper is not just to perform a traditional social network analysis but rather to evaluate different centrality measures by conducting an empirical study analyzing exactly how do network centralities correlate with data from published multidisciplinary network data sets. Method We take standard published network data sets while using a random network to establish a baseline. These data sets included the Zachary's Karate Club network, dolphin social network and a neural network of nematode Caenorhabditis elegans. Each of the data sets was analyzed in terms of different centrality measures and compared with existing knowledge from associated published articles to review the role of each centrality measure in the determination of influential nodes. Results Our empirical analysis demonstrates that in the chosen network data sets, nodes which had a high Closeness Centrality also had a high Eccentricity Centrality. Likewise high Degree Centrality also correlated closely with a high Eigenvector Centrality. Whereas Betweenness Centrality varied according to network topology and did not demonstrate any noticeable pattern. In terms of identification of key nodes, we discovered that as compared with other centrality measures, Eigenvector and Eccentricity Centralities were better able to identify important nodes. PMID:24709999

  14. Effects of maximum node degree on computer virus spreading in scale-free networks

    NASA Astrophysics Data System (ADS)

    Bamaarouf, O.; Ould Baba, A.; Lamzabi, S.; Rachadi, A.; Ez-Zahraouy, H.

    2017-10-01

    The increase of the use of the Internet networks favors the spread of viruses. In this paper, we studied the spread of viruses in the scale-free network with different topologies based on the Susceptible-Infected-External (SIE) model. It is found that the network structure influences the virus spreading. We have shown also that the nodes of high degree are more susceptible to infection than others. Furthermore, we have determined a critical maximum value of node degree (Kc), below which the network is more resistible and the computer virus cannot expand into the whole network. The influence of network size is also studied. We found that the network with low size is more effective to reduce the proportion of infected nodes.

  15. Global interrupt and barrier networks

    DOEpatents

    Blumrich, Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E; Heidelberger, Philip; Kopcsay, Gerard V.; Steinmacher-Burow, Burkhard D.; Takken, Todd E.

    2008-10-28

    A system and method for generating global asynchronous signals in a computing structure. Particularly, a global interrupt and barrier network is implemented that implements logic for generating global interrupt and barrier signals for controlling global asynchronous operations performed by processing elements at selected processing nodes of a computing structure in accordance with a processing algorithm; and includes the physical interconnecting of the processing nodes for communicating the global interrupt and barrier signals to the elements via low-latency paths. The global asynchronous signals respectively initiate interrupt and barrier operations at the processing nodes at times selected for optimizing performance of the processing algorithms. In one embodiment, the global interrupt and barrier network is implemented in a scalable, massively parallel supercomputing device structure comprising a plurality of processing nodes interconnected by multiple independent networks, with each node including one or more processing elements for performing computation or communication activity as required when performing parallel algorithm operations. One multiple independent network includes a global tree network for enabling high-speed global tree communications among global tree network nodes or sub-trees thereof. The global interrupt and barrier network may operate in parallel with the global tree network for providing global asynchronous sideband signals.

  16. A local immunization strategy for networks with overlapping community structure

    NASA Astrophysics Data System (ADS)

    Taghavian, Fatemeh; Salehi, Mostafa; Teimouri, Mehdi

    2017-02-01

    Since full coverage treatment is not feasible due to limited resources, we need to utilize an immunization strategy to effectively distribute the available vaccines. On the other hand, the structure of contact network among people has a significant impact on epidemics of infectious diseases (such as SARS and influenza) in a population. Therefore, network-based immunization strategies aim to reduce the spreading rate by removing the vaccinated nodes from contact network. Such strategies try to identify more important nodes in epidemics spreading over a network. In this paper, we address the effect of overlapping nodes among communities on epidemics spreading. The proposed strategy is an optimized random-walk based selection of these nodes. The whole process is local, i.e. it requires contact network information in the level of nodes. Thus, it is applicable to large-scale and unknown networks in which the global methods usually are unrealizable. Our simulation results on different synthetic and real networks show that the proposed method outperforms the existing local methods in most cases. In particular, for networks with strong community structures, high overlapping membership of nodes or small size communities, the proposed method shows better performance.

  17. Quantitative methods of identifying the key nodes in the illegal wildlife trade network

    PubMed Central

    Patel, Nikkita Gunvant; Rorres, Chris; Joly, Damien O.; Brownstein, John S.; Boston, Ray; Levy, Michael Z.; Smith, Gary

    2015-01-01

    Innovative approaches are needed to combat the illegal trade in wildlife. Here, we used network analysis and a new database, HealthMap Wildlife Trade, to identify the key nodes (countries) that support the illegal wildlife trade. We identified key exporters and importers from the number of shipments a country sent and received and from the number of connections a country had to other countries over a given time period. We used flow betweenness centrality measurements to identify key intermediary countries. We found the set of nodes whose removal from the network would cause the maximum disruption to the network. Selecting six nodes would fragment 89.5% of the network for elephants, 92.3% for rhinoceros, and 98.1% for tigers. We then found sets of nodes that would best disseminate an educational message via direct connections through the network. We would need to select 18 nodes to reach 100% of the elephant trade network, 16 nodes for rhinoceros, and 10 for tigers. Although the choice of locations for interventions should be customized for the animal and the goal of the intervention, China was the most frequently selected country for network fragmentation and information dissemination. Identification of key countries will help strategize illegal wildlife trade interventions. PMID:26080413

  18. A new measure based on degree distribution that links information theory and network graph analysis

    PubMed Central

    2012-01-01

    Background Detailed connection maps of human and nonhuman brains are being generated with new technologies, and graph metrics have been instrumental in understanding the general organizational features of these structures. Neural networks appear to have small world properties: they have clustered regions, while maintaining integrative features such as short average pathlengths. Results We captured the structural characteristics of clustered networks with short average pathlengths through our own variable, System Difference (SD), which is computationally simple and calculable for larger graph systems. SD is a Jaccardian measure generated by averaging all of the differences in the connection patterns between any two nodes of a system. We calculated SD over large random samples of matrices and found that high SD matrices have a low average pathlength and a larger number of clustered structures. SD is a measure of degree distribution with high SD matrices maximizing entropic properties. Phi (Φ), an information theory metric that assesses a system’s capacity to integrate information, correlated well with SD - with SD explaining over 90% of the variance in systems above 11 nodes (tested for 4 to 13 nodes). However, newer versions of Φ do not correlate well with the SD metric. Conclusions The new network measure, SD, provides a link between high entropic structures and degree distributions as related to small world properties. PMID:22726594

  19. Locating hardware faults in a data communications network of a parallel computer

    DOEpatents

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-01-12

    Hardware faults location in a data communications network of a parallel computer. Such a parallel computer includes a plurality of compute nodes and a data communications network that couples the compute nodes for data communications and organizes the compute node as a tree. Locating hardware faults includes identifying a next compute node as a parent node and a root of a parent test tree, identifying for each child compute node of the parent node a child test tree having the child compute node as root, running a same test suite on the parent test tree and each child test tree, and identifying the parent compute node as having a defective link connected from the parent compute node to a child compute node if the test suite fails on the parent test tree and succeeds on all the child test trees.

  20. Evaluating Text Complexity and Flesch-Kincaid Grade Level

    ERIC Educational Resources Information Center

    Solnyshkina, Marina I.; Zamaletdinov, Radif R.; Gorodetskaya, Ludmila A.; Gabitov, Azat I.

    2017-01-01

    The article presents the results of an exploratory study of the use of T.E.R.A., an automated tool measuring text complexity and readability based on the assessment of five text complexity parameters: narrativity, syntactic simplicity, word concreteness, referential cohesion and deep cohesion. Aimed at finding ways to utilize T.E.R.A. for…

  1. 25 CFR 224.66 - How may a tribe reduce the scope of the TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Section 224.66 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.66 How may a tribe reduce...

  2. 25 CFR 224.171 - Who may rescind a TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 25 Indians 1 2011-04-01 2011-04-01 false Who may rescind a TERA? 224.171 Section 224.171 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Rescission § 224.171 Who may...

  3. 25 CFR 224.65 - How may a tribe assume additional activities under a TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ...? 224.65 Section 224.65 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Procedures for Obtaining Tribal Energy Resource Agreements Tera Requirements § 224.65 How may a tribe assume...

  4. 25 CFR 224.74 - When must the Secretary approve or disapprove a final proposed TERA?

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... proposed TERA? 224.74 Section 224.74 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Approval of Tribal Energy Resource Agreements § 224.74 When must the Secretary approve or...

  5. A Teacher Accountability Model for Overcoming Self-Exclusion of Pupils

    ERIC Educational Resources Information Center

    Jamal, Abu-Hussain; Tilchin, Oleg; Essawi, Mohammad

    2015-01-01

    Self-exclusion of pupils is one of the prominent challenges of education. In this paper we propose the TERA model, which shapes the process of creating formative accountability of teachers to overcome the self-exclusion of pupils. Development of the model includes elaboration and integration of interconnected model components. The TERA model…

  6. 25 CFR 224.171 - Who may rescind a TERA?

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 25 Indians 1 2010-04-01 2010-04-01 false Who may rescind a TERA? 224.171 Section 224.171 Indians BUREAU OF INDIAN AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS TRIBAL ENERGY RESOURCE AGREEMENTS UNDER THE INDIAN TRIBAL ENERGY DEVELOPMENT AND SELF DETERMINATION ACT Rescission § 224.171 Who may...

  7. Efficient Detection of 3 THz Radiation from Quantum Cascade Laser Using Silicon CMOS Detectors

    NASA Astrophysics Data System (ADS)

    Ikamas, Kęstutis; Lisauskas, Alvydas; Boppel, Sebastian; Hu, Qing; Roskos, Hartmut G.

    2017-10-01

    In this paper, we report on efficient detection of the radiation emitted by a THz quantum cascade laser (QCL) using an antenna-coupled field effect transistor (TeraFET). In the limiting case when all radiated power would be collected, the investigated TeraFET can show up to 230 V/W responsivity with the noise equivalent power being as low as 85 pW/√ { {Hz}} at 3.1 THz, which is several times lower than that of the typical Golay cell. A combination of the QCL and a set of off-axis parabolic mirrors with 3-inch and 2-inch focal lengths was used to measure the signal-to-noise ratio (SNR) of the TeraFET. The practically achieved SNR was five times lower than that of the Golay cell and two orders of magnitude lower than a bolometer's. However, TeraFETs are much faster and do not need a signal modulation, thus can be used both in a continuous mode for power monitoring or for investigation of transient processes on a sub-microsecond time scale.

  8. Method and apparatus for eliminating unsuccessful tries in a search tree

    NASA Technical Reports Server (NTRS)

    Peterson, John C. (Inventor); Chow, Edward (Inventor); Madan, Herb S. (Inventor)

    1991-01-01

    A circuit switching system in an M-ary, n-cube connected network completes a best-first path from an originating node to a destination node by latching valid legs of the path as the path is being sought out. Each network node is provided with a routing hyperswitch sub-network, (HSN) connected between that node and bidirectional high capacity communication channels of the n-cube network. The sub-networks are all controlled by routing algorithms which respond to message identification headings (headers) on messages to be routed along one or more routing legs. The header includes information embedded therein which is interpreted by each sub-network to route and historically update the header. A logic circuit, available at every node, implements the algorithm and automatically forwards or back-tracks the header in the network legs of various paths until a completed path is latched.

  9. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, D.B.

    1996-12-31

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor to a plurality of slave processors to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor`s status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer, a digital signal processor, a parallel transfer controller, and two three-port memory devices. A communication switch within each node connects it to a fast parallel hardware channel through which all high density data arrives or leaves the node. 6 figs.

  10. Parameterized centrality metric for network analysis

    NASA Astrophysics Data System (ADS)

    Ghosh, Rumi; Lerman, Kristina

    2011-06-01

    A variety of metrics have been proposed to measure the relative importance of nodes in a network. One of these, alpha-centrality [P. Bonacich, Am. J. Sociol.0002-960210.1086/228631 92, 1170 (1987)], measures the number of attenuated paths that exist between nodes. We introduce a normalized version of this metric and use it to study network structure, for example, to rank nodes and find community structure of the network. Specifically, we extend the modularity-maximization method for community detection to use this metric as the measure of node connectivity. Normalized alpha-centrality is a powerful tool for network analysis, since it contains a tunable parameter that sets the length scale of interactions. Studying how rankings and discovered communities change when this parameter is varied allows us to identify locally and globally important nodes and structures. We apply the proposed metric to several benchmark networks and show that it leads to better insights into network structure than alternative metrics.

  11. Parallel processing data network of master and slave transputers controlled by a serial control network

    DOEpatents

    Crosetto, Dario B.

    1996-01-01

    The present device provides for a dynamically configurable communication network having a multi-processor parallel processing system having a serial communication network and a high speed parallel communication network. The serial communication network is used to disseminate commands from a master processor (100) to a plurality of slave processors (200) to effect communication protocol, to control transmission of high density data among nodes and to monitor each slave processor's status. The high speed parallel processing network is used to effect the transmission of high density data among nodes in the parallel processing system. Each node comprises a transputer (104), a digital signal processor (114), a parallel transfer controller (106), and two three-port memory devices. A communication switch (108) within each node (100) connects it to a fast parallel hardware channel (70) through which all high density data arrives or leaves the node.

  12. New Scheduling Algorithms for Agile All-Photonic Networks

    NASA Astrophysics Data System (ADS)

    Mehri, Mohammad Saleh; Ghaffarpour Rahbar, Akbar

    2017-12-01

    An optical overlaid star network is a class of agile all-photonic networks that consists of one or more core node(s) at the center of the star network and a number of edge nodes around the core node. In this architecture, a core node may use a scheduling algorithm for transmission of traffic through the network. A core node is responsible for scheduling optical packets that arrive from edge nodes and switching them toward their destinations. Nowadays, most edge nodes use virtual output queue (VOQ) architecture for buffering client packets to achieve high throughput. This paper presents two efficient scheduling algorithms called discretionary iterative matching (DIM) and adaptive DIM. These schedulers find maximum matching in a small number of iterations and provide high throughput and incur low delay. The number of arbiters in these schedulers and the number of messages exchanged between inputs and outputs of a core node are reduced. We show that DIM and adaptive DIM can provide better performance in comparison with iterative round-robin matching with SLIP (iSLIP). SLIP means the act of sliding for a short distance to select one of the requested connections based on the scheduling algorithm.

  13. Transfer-Efficient Face Routing Using the Planar Graphs of Neighbors in High Density WSNs

    PubMed Central

    Kim, Sang-Ha

    2017-01-01

    Face routing has been adopted in wireless sensor networks (WSNs) where topological changes occur frequently or maintaining full network information is difficult. For message forwarding in networks, a planar graph is used to prevent looping, and because long edges are removed by planarization and the resulting planar graph is composed of short edges, and messages are forwarded along multiple nodes connected by them even though they can be forwarded directly. To solve this, face routing using information on all nodes within 2-hop range was adopted to forward messages directly to the farthest node within radio range. However, as the density of the nodes increases, network performance plunges because message transfer nodes receive and process increased node information. To deal with this problem, we propose a new face routing using the planar graphs of neighboring nodes to improve transfer efficiency. It forwards a message directly to the farthest neighbor and reduces loads and processing time by distributing network graph construction and planarization to the neighbors. It also decreases the amount of location information to be transmitted by sending information on the planar graph nodes rather than on all neighboring nodes. Simulation results show that it significantly improves transfer efficiency. PMID:29053623

  14. Distributed rewiring model for complex networking: The effect of local rewiring rules on final structural properties.

    PubMed

    López Chavira, Magali Alexander; Marcelín-Jiménez, Ricardo

    2017-01-01

    The study of complex networks has become an important subject over the last decades. It has been shown that these structures have special features, such as their diameter, or their average path length, which in turn are the explanation of some functional properties in a system such as its fault tolerance, its fragility before attacks, or the ability to support routing procedures. In the present work, we study some of the forces that help a network to evolve to the point where structural properties are settled. Although our work is mainly focused on the possibility of applying our ideas to Information and Communication Technologies systems, we consider that our results may contribute to understanding different scenarios where complex networks have become an important modeling tool. Using a discrete event simulator, we get each node to discover the shortcuts that may connect it with regions away from its local environment. Based on this partial knowledge, each node can rewire some of its links, which allows modifying the topology of the entire underlying graph to achieve new structural properties. We proposed a distributed rewiring model that creates networks with features similar to those found in complex networks. Although each node acts in a distributed way and seeking to reduce only the trajectories of its packets, we observed a decrease of diameter and an increase in clustering coefficient in the global structure compared to the initial graph. Furthermore, we can find different final structures depending on slight changes in the local rewiring rules.

  15. Low-Latency and Energy-Efficient Data Preservation Mechanism in Low-Duty-Cycle Sensor Networks.

    PubMed

    Jiang, Chan; Li, Tao-Shen; Liang, Jun-Bin; Wu, Heng

    2017-05-06

    Similar to traditional wireless sensor networks (WSN), the nodes only have limited memory and energy in low-duty-cycle sensor networks (LDC-WSN). However, different from WSN, the nodes in LDC-WSN often sleep most of their time to preserve their energies. The sleeping feature causes serious data transmission delay. However, each source node that has sensed data needs to quickly disseminate its data to other nodes in the network for redundant storage. Otherwise, data would be lost due to its source node possibly being destroyed by outer forces in a harsh environment. The quick dissemination requirement produces a contradiction with the sleeping delay in the network. How to quickly disseminate all the source data to all the nodes with limited memory in the network for effective preservation is a challenging issue. In this paper, a low-latency and energy-efficient data preservation mechanism in LDC-WSN is proposed. The mechanism is totally distributed. The data can be disseminated to the network with low latency by using a revised probabilistic broadcasting mechanism, and then stored by the nodes with LT (Luby Transform) codes, which are a famous rateless erasure code. After the process of data dissemination and storage completes, some nodes may die due to being destroyed by outer forces. If a mobile sink enters the network at any time and from any place to collect the data, it can recover all of the source data by visiting a small portion of survived nodes in the network. Theoretical analyses and simulation results show that our mechanism outperforms existing mechanisms in the performances of data dissemination delay and energy efficiency.

  16. Complex network construction based on user group attention sequence

    NASA Astrophysics Data System (ADS)

    Zhang, Gaowei; Xu, Lingyu; Wang, Lei

    2018-04-01

    In the traditional complex network construction, it is often to use the similarity between nodes, build the weight of the network, and finally build the network. However, this approach tends to focus only on the coupling between nodes, while ignoring the information transfer between nodes and the transfer of directionality. In the network public opinion space, based on the set of stock series that the network groups pay attention to within a certain period of time, we vectorize the different stocks and build a complex network.

  17. A novel algorithm for finding optimal driver nodes to target control complex networks and its applications for drug targets identification.

    PubMed

    Guo, Wei-Feng; Zhang, Shao-Wu; Shi, Qian-Qian; Zhang, Cheng-Ming; Zeng, Tao; Chen, Luonan

    2018-01-19

    The advances in target control of complex networks not only can offer new insights into the general control dynamics of complex systems, but also be useful for the practical application in systems biology, such as discovering new therapeutic targets for disease intervention. In many cases, e.g. drug target identification in biological networks, we usually require a target control on a subset of nodes (i.e., disease-associated genes) with minimum cost, and we further expect that more driver nodes consistent with a certain well-selected network nodes (i.e., prior-known drug-target genes). Therefore, motivated by this fact, we pose and address a new and practical problem called as target control problem with objectives-guided optimization (TCO): how could we control the interested variables (or targets) of a system with the optional driver nodes by minimizing the total quantity of drivers and meantime maximizing the quantity of constrained nodes among those drivers. Here, we design an efficient algorithm (TCOA) to find the optional driver nodes for controlling targets in complex networks. We apply our TCOA to several real-world networks, and the results support that our TCOA can identify more precise driver nodes than the existing control-fucus approaches. Furthermore, we have applied TCOA to two bimolecular expert-curate networks. Source code for our TCOA is freely available from http://sysbio.sibcb.ac.cn/cb/chenlab/software.htm or https://github.com/WilfongGuo/guoweifeng . In the previous theoretical research for the full control, there exists an observation and conclusion that the driver nodes tend to be low-degree nodes. However, for target control the biological networks, we find interestingly that the driver nodes tend to be high-degree nodes, which is more consistent with the biological experimental observations. Furthermore, our results supply the novel insights into how we can efficiently target control a complex system, and especially many evidences on the practical strategic utility of TCOA to incorporate prior drug information into potential drug-target forecasts. Thus applicably, our method paves a novel and efficient way to identify the drug targets for leading the phenotype transitions of underlying biological networks.

  18. PeerShield: determining control and resilience criticality of collaborative cyber assets in networks

    NASA Astrophysics Data System (ADS)

    Cam, Hasan

    2012-06-01

    As attackers get more coordinated and advanced in cyber attacks, cyber assets are required to have much more resilience, control effectiveness, and collaboration in networks. Such a requirement makes it essential to take a comprehensive and objective approach for measuring the individual and relative performances of cyber security assets in network nodes. To this end, this paper presents four techniques as to how the relative importance of cyber assets can be measured more comprehensively and objectively by considering together the main variables of risk assessment (e.g., threats, vulnerabilities), multiple attributes (e.g., resilience, control, and influence), network connectivity and controllability among collaborative cyber assets in networks. In the first technique, a Bayesian network is used to include the random variables for control, recovery, and resilience attributes of nodes, in addition to the random variables of threats, vulnerabilities, and risk. The second technique shows how graph matching and coloring can be utilized to form collaborative pairs of nodes to shield together against threats and vulnerabilities. The third technique ranks the security assets of nodes by incorporating multiple weights and thresholds of attributes into a decision-making algorithm. In the fourth technique, the hierarchically well-separated tree is enhanced to first identify critical nodes of a network with respect to their attributes and network connectivity, and then selecting some nodes as driver nodes for network controllability.

  19. Fermi-Dirac statistics and traffic in complex networks.

    PubMed

    de Moura, Alessandro P S

    2005-06-01

    We propose an idealized model for traffic in a network, in which many particles move randomly from node to node, following the network's links, and it is assumed that at most one particle can occupy any given node. This is intended to mimic the finite forwarding capacity of nodes in communication networks, thereby allowing the possibility of congestion and jamming phenomena. We show that the particles behave like free fermions, with appropriately defined energy-level structure and temperature. The statistical properties of this system are thus given by the corresponding Fermi-Dirac distribution. We use this to obtain analytical expressions for dynamical quantities of interest, such as the mean occupation of each node and the transport efficiency, for different network topologies and particle densities. We show that the subnetwork of free nodes always fragments into small isolated clusters for a sufficiently large number of particles, implying a communication breakdown at some density for all network topologies. These results are compared to direct simulations.

  20. Locating influential nodes in complex networks

    PubMed Central

    Malliaros, Fragkiskos D.; Rossi, Maria-Evgenia G.; Vazirgiannis, Michalis

    2016-01-01

    Understanding and controlling spreading processes in networks is an important topic with many diverse applications, including information dissemination, disease propagation and viral marketing. It is of crucial importance to identify which entities act as influential spreaders that can propagate information to a large portion of the network, in order to ensure efficient information diffusion, optimize available resources or even control the spreading. In this work, we capitalize on the properties of the K-truss decomposition, a triangle-based extension of the core decomposition of graphs, to locate individual influential nodes. Our analysis on real networks indicates that the nodes belonging to the maximal K-truss subgraph show better spreading behavior compared to previously used importance criteria, including node degree and k-core index, leading to faster and wider epidemic spreading. We further show that nodes belonging to such dense subgraphs, dominate the small set of nodes that achieve the optimal spreading in the network. PMID:26776455

Top