Sample records for terahertz pulsed imaging

  1. Terahertz pulsed imaging for the monitoring of dental caries: a comparison with x-ray imaging

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Kamburoglu, Kıvanc; Altan, Hakan

    2017-07-01

    Dental caries in sliced samples are investigated using terahertz pulsed imaging. Frequency domain terahertz response of these structures consistent with X-ray imaging results show the potential of this technique in the detection of early caries.

  2. Development of a wavefront sensor for terahertz pulses.

    PubMed

    Abraham, Emmanuel; Cahyadi, Harsono; Brossard, Mathilde; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi

    2016-03-07

    Wavefront characterization of terahertz pulses is essential to optimize far-field intensity distribution of time-domain (imaging) spectrometers or increase the peak power of intense terahertz sources. In this paper, we report on the wavefront measurement of terahertz pulses using a Hartmann sensor associated with a 2D electro-optic imaging system composed of a ZnTe crystal and a CMOS camera. We quantitatively determined the deformations of planar and converging spherical wavefronts using the modal Zernike reconstruction least-squares method. Associated with deformable mirrors, the sensor will also open the route to terahertz adaptive optics.

  3. Electro-optic measurement of terahertz pulse energy distribution.

    PubMed

    Sun, J H; Gallacher, J G; Brussaard, G J H; Lemos, N; Issac, R; Huang, Z X; Dias, J M; Jaroszynski, D A

    2009-11-01

    An accurate and direct measurement of the energy distribution of a low repetition rate terahertz electromagnetic pulse is challenging because of the lack of sensitive detectors in this spectral range. In this paper, we show how the total energy and energy density distribution of a terahertz electromagnetic pulse can be determined by directly measuring the absolute electric field amplitude and beam energy density distribution using electro-optic detection. This method has potential use as a routine method of measuring the energy density of terahertz pulses that could be applied to evaluating future high power terahertz sources, terahertz imaging, and spatially and temporarily resolved pump-probe experiments.

  4. High-resolution reconstruction for terahertz imaging.

    PubMed

    Xu, Li-Min; Fan, Wen-Hui; Liu, Jia

    2014-11-20

    We present a high-resolution (HR) reconstruction model and algorithms for terahertz imaging, taking advantage of super-resolution methodology and algorithms. The algorithms used include projection onto a convex sets approach, iterative backprojection approach, Lucy-Richardson iteration, and 2D wavelet decomposition reconstruction. Using the first two HR reconstruction methods, we successfully obtain HR terahertz images with improved definition and lower noise from four low-resolution (LR) 22×24 terahertz images taken from our homemade THz-TDS system at the same experimental conditions with 1.0 mm pixel. Using the last two HR reconstruction methods, we transform one relatively LR terahertz image to a HR terahertz image with decreased noise. This indicates potential application of HR reconstruction methods in terahertz imaging with pulsed and continuous wave terahertz sources.

  5. Continuous-wave terahertz imaging of nonmelanoma skin cancers

    NASA Astrophysics Data System (ADS)

    Joseph, Cecil Sudhir

    Continuous wave terahertz imaging has the potential to offer a safe, non-invasive medical imaging modality for detecting different types of human skin cancers. Terahertz pulse imaging (TPI) has already shown that there is contrast between basal cell carcinoma and normal skin. Continuous-wave imaging offers a simpler, lower cost alternative to terahertz pulse imaging. This project aims to isolate the optimal contrast frequency for a continuous wave terahertz imaging system and demonstrate transmission based, in-vitro , imaging of thin sections of non-melanoma skin cancers and correlate the images to sample histology. The aim of this project is to conduct a proof-of-principle experiment that establishes whether continuous-wave terahertz imaging can detect differences between cancerous and normal tissue while outlining the basic requirements for building a system capable of performing in vivo tests.

  6. The application of terahertz pulsed imaging in characterising density distribution of roll-compacted ribbons.

    PubMed

    Zhang, Jianyi; Pei, Chunlei; Schiano, Serena; Heaps, David; Wu, Chuan-Yu

    2016-09-01

    Roll compaction is a commonly used dry granulation process in pharmaceutical, fine chemical and agrochemical industries for materials sensitive to heat or moisture. The ribbon density distribution plays an important role in controlling properties of granules (e.g. granule size distribution, porosity and strength). Accurate characterisation of ribbon density distribution is critical in process control and quality assurance. The terahertz imaging system has a great application potential in achieving this as the terahertz radiation has the ability to penetrate most of the pharmaceutical excipients and the refractive index reflects variations in density and chemical compositions. The aim of this study is to explore whether terahertz pulse imaging is a feasible technique for quantifying ribbon density distribution. Ribbons were made of two grades of microcrystalline cellulose (MCC), Avicel PH102 and DG, using a roll compactor at various process conditions and the ribbon density variation was investigated using terahertz imaging and section methods. The density variations obtained from both methods were compared to explore the reliability and accuracy of the terahertz imaging system. An average refractive index is calculated from the refractive index values in the frequency range between 0.5 and 1.5THz. It is shown that the refractive index gradually decreases from the middle of the ribbon towards to the edges. Variations of density distribution across the width of the ribbons are also obtained using both the section method and the terahertz imaging system. It is found that the terahertz imaging results are in excellent agreement with that obtained using the section method, demonstrating that terahertz imaging is a feasible and rapid tool to characterise ribbon density distributions. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. A promising diagnostic method: Terahertz pulsed imaging and spectroscopy

    PubMed Central

    Sun, Yiwen; Sy, Ming Yiu; Wang, Yi-Xiang J; Ahuja, Anil T; Zhang, Yuan-Ting; Pickwell-MacPherson, Emma

    2011-01-01

    The terahertz band lies between the microwave and infrared regions of the electromagnetic spectrum. This radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. It is strongly attenuated by water and very sensitive to water content. Unique absorption spectra due to intermolecular vibrations in this region have been found in different biological materials. These unique features make terahertz imaging very attractive for medical applications in order to provide complimentary information to existing imaging techniques. There has been an increasing interest in terahertz imaging and spectroscopy of biologically related applications within the last few years and more and more terahertz spectra are being reported. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques, and a number of applications such as molecular spectroscopy, tissue characterization and skin imaging are discussed. PMID:21512652

  8. Terahertz pulsed imaging study to assess remineralization of artificial caries lesions

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lynch, Richard J. M.; Lippert, Frank; O'Bryan Eder, Jennifer Susan; Alton, Jesse; Gonzalez-Cabezas, Carlos

    2011-02-01

    We compare terahertz-pulsed imaging (TPI) with transverse microradiography (TMR) and microindentation to measure remineralization of artificial caries lesions. Lesions are formed in bovine enamel using a solution of 0.1 M lactic acid/0.2% Carbopol C907 and 50% saturated with hydroxyapatite adjusted to pH 5.0. The 20-day experimental protocol consists of four 1 min treatment periods with dentifrices containing 10, 675, 1385, and 2700 ppm fluoride, a 4-h/day acid challenge, and, for the remaining time, specimens are stored in a 50:50 pooled human/artificial saliva mixture. Each specimen is imaged at the focal point of the terahertz beam (data-point spacing = 50 μm). The time-domain data are used to calculate the refractive index volume percent profile throughout the lesion, and the differences in the integrated areas between the baseline and post-treatment profiles are used to calculate ΔΔZ(THz). In addition, the change from baseline in both the lesion depth and the intensity of the reflected pulse from the air/enamel interface is determined. Statistically significant Pearson correlation coefficients are observed between TPI and TMR/microindentation (P < 0.05). We demonstrate that TPI has potential as a research tool for hard tissue imaging.

  9. Terahertz pulsed imaging study of dental caries

    NASA Astrophysics Data System (ADS)

    Karagoz, Burcu; Altan, Hakan; Kamburoglu, Kıvanç

    2015-07-01

    Current diagnostic techniques in dentistry rely predominantly on X-rays to monitor dental caries. Terahertz Pulsed Imaging (TPI) has great potential for medical applications since it is a nondestructive imaging method. It does not cause any ionization hazard on biological samples due to low energy of THz radiation. Even though it is strongly absorbed by water which exhibits very unique chemical and physical properties that contribute to strong interaction with THz radiation, teeth can still be investigated in three dimensions. Recent investigations suggest that this method can be used in the early identification of dental diseases and imperfections in the tooth structure without the hazards of using techniques which rely on x-rays. We constructed a continuous wave (CW) and time-domain reflection mode raster scan THz imaging system that enables us to investigate various teeth samples in two or three dimensions. The samples comprised of either slices of individual tooth samples or rows of teeth embedded in wax, and the imaging was done by scanning the sample across the focus of the THz beam. 2D images were generated by acquiring the intensity of the THz radiation at each pixel, while 3D images were generated by collecting the amplitude of the reflected signal at each pixel. After analyzing the measurements in both the spatial and frequency domains, the results suggest that the THz pulse is sensitive to variations in the structure of the samples that suggest that this method can be useful in detecting the presence of caries.

  10. Characterisation of historic plastics using terahertz time-domain spectroscopy and pulsed imaging.

    PubMed

    Pastorelli, Gianluca; Trafela, Tanja; Taday, Phillip F; Portieri, Alessia; Lowe, David; Fukunaga, Kaori; Strlič, Matija

    2012-05-01

    Terahertz (THz) time-domain spectroscopy and 3D THz pulsed imaging have been explored with regard to polymer materials, both commodity and historic polymers. A systematic spectroscopic study of a wide range of different polymer materials showed significant differences in their spectra. Polyolefins and polystyrenes generally exhibit lower absorption than other examined polymers, various cellulose derivates, poly(vinyl chloride), poly(methyl methacrylate), polyamide, hard rubber and phenol formaldehyde resin, the last of these exhibiting the most intense absorption over the entire range, 0.15-4.2 THz. It was also examined how the presence of plasticisers in poly(vinyl chloride), the presence of fillers in polypropylene, and the degree of branching in polyethylene and polystyrene affect the spectra; inorganic fillers in polypropylene affected the absorption most. With 3D THz pulsed imaging, features in polymer objects were explored, appearing either as integral parts of the material (coatings and pores in foams) or as a consequence of physical deterioration (cracks, delamination). All of these features of various complexities can be successfully imaged in 3D. Terahertz technology is thus shown to have significant potential for both chemical and structural characterisation of polymers, which will be of interest to heritage science, but also to the polymer industry and development of analytical technologies in general.

  11. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields.

    PubMed

    Noe, G Timothy; Katayama, Ikufumi; Katsutani, Fumiya; Allred, James J; Horowitz, Jeffrey A; Sullivan, David M; Zhang, Qi; Sekiguchi, Fumiya; Woods, Gary L; Hoffmann, Matthias C; Nojiri, Hiroyuki; Takeda, Jun; Kono, Junichiro

    2016-12-26

    We have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers in the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.

  12. Terahertz imaging with compressive sensing

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam

    second-generation spatial terahertz modulator, also based on metamaterials with a higher resolution (32x32), is under development. A FPGA-based circuit is designed to control the large number of modulator pixels. Once fully implemented, this second-generation device will enable fast terahertz imaging with both pulsed and continuous-wave terahertz sources.

  13. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  14. Single-shot terahertz time-domain spectroscopy in pulsed high magnetic fields

    DOE PAGES

    Noe, II, G. Timothy; Katayama, Ikufumi; Katsutani, Fumiya; ...

    2016-12-22

    Here, we have developed a single-shot terahertz time-domain spectrometer to perform optical-pump/terahertz-probe experiments in pulsed, high magnetic fields up to 30 T. The single-shot detection scheme for measuring a terahertz waveform incorporates a reflective echelon to create time-delayed beamlets across the intensity profile of the optical gate beam before it spatially and temporally overlaps with the terahertz radiation in a ZnTe detection crystal. After imaging the gate beam onto a camera, we can retrieve the terahertz time-domain waveform by analyzing the resulting image. To demonstrate the utility of our technique, we measured cyclotron resonance absorption of optically excited carriers inmore » the terahertz frequency range in intrinsic silicon at high magnetic fields, with results that agree well with published values.« less

  15. A non-destructive method for quality control of the pellet distribution within a MUPS tablet by terahertz pulsed imaging.

    PubMed

    Novikova, Anna; Markl, Daniel; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S

    2018-01-01

    Terahertz pulsed imaging (TPI) was applied to analyse the inner structure of multiple unit pellet system (MUPS) tablets. MUPS tablets containing different amounts of theophylline pellets coated with Eudragit® NE 30 D and with microcrystalline cellulose (MCC) as cushioning agent were analysed. The tablets were imaged by TPI and the results were compared to X-ray microtomography. The terahertz pulse beam propagates through the tablets and is back-reflected at the interface between the MCC matrix and the coated pellets within the tablet causing a peak in the terahertz waveform. Cross-section images of the tablets were extracted at different depths and parallel to the tablet faces from 3D terahertz data to visualise the surface-near structure of the MUPS tablets. The images of the surface-near structure of the MUPS tablets were compared to X-ray microtomography images at the same depths. The surface-near structure could be clearly resolved by TPI at depths between 24 and 152μm below the tablet surface. An increasing amount of pellets within the MUPS tablets appears to slightly decrease the detectability of the pellets within the tablets by TPI. TPI was shown to be a non-destructive method for the detection of pellets within the tablets and could resolve structures thicker than 30μm. In conclusion, a proof-of-concept was provided for TPI as a method of quality control for MUPS tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Terahertz Imaging of Three-Dimensional Dehydrated Breast Cancer Tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Wu, Yuhao; Gauch, John; Campbell, Lucas K.; El-Shenawee, Magda

    2017-06-01

    This work presents the application of terahertz imaging to three-dimensional formalin-fixed, paraffin-embedded human breast cancer tumors. The results demonstrate the capability of terahertz for in-depth scanning to produce cross section images without the need to slice the tumor. Samples of tumors excised from women diagnosed with infiltrating ductal carcinoma and lobular carcinoma are investigated using a pulsed terahertz time domain imaging system. A time of flight estimation is used to obtain vertical and horizontal cross section images of tumor tissues embedded in paraffin block. Strong agreement is shown comparing the terahertz images obtained by electronically scanning the tumor in-depth in comparison with histopathology images. The detection of cancer tissue inside the block is found to be accurate to depths over 1 mm. Image processing techniques are applied to provide improved contrast and automation of the obtained terahertz images. In particular, unsharp masking and edge detection methods are found to be most effective for three-dimensional block imaging.

  17. Pulsed excitation terahertz tomography - multiparametric approach

    NASA Astrophysics Data System (ADS)

    Lopato, Przemyslaw

    2018-04-01

    This article deals with pulsed excitation terahertz computed tomography (THz CT). Opposite to x-ray CT, where just a single value (pixel) is obtained, in case of pulsed THz CT the time signal is acquired for each position. Recorded waveform can be parametrized - many features carrying various information about examined structure can be calculated. Based on this, multiparametric reconstruction algorithm was proposed: inverse Radon transform based reconstruction is applied for each parameter and then fusion of results is utilized. Performance of the proposed imaging scheme was experimentally verified using dielectric phantoms.

  18. Creating Rydberg electron wave packets using terahertz pulses

    NASA Astrophysics Data System (ADS)

    Bromage, Jake

    1999-10-01

    In this thesis I present experiments in which we excited classical-limit states of an atom using terahertz pulses. In a classical-limit state, an atom's outer electron is confined to a wave packet that orbits the core along a classical trajectory. Researchers have excited states with classical traits, but wave packets localized in all three dimensions have proved elusive. Theoretical studies have shown such states can be created using terahertz pulses. Using these techniques, we created a linear-orbit wave packet (LOWP), that is three-dimensionally localized and orbits along a line on one side of the atom's core. Terahertz pulses are sub-picosecond bursts of far- infrared radiation. Unlike ultrashort optical pulses, the electric field of terahertz pulses barely completes a single cycle. Our simulations of the atom-pulse interaction show that this electric field profile is critical in determining the quality of the wave packet. To characterize our terahertz pulses, we invented dithered-edge sampling which time- resolves the electric field using a photoconductive receiver and a triggered attenuator. We also studied how pulses are distorted after propagating through metallic structures, and used our findings to design our atomic experiments. We excited wave packets in atomic sodium using a two-step process. First, we used tunable, nanosecond dye lasers to excite an extreme Stark state. Next, we used a terahertz pump pulse to coherently redistribute population among extreme Stark states in neighboring manifolds. Interference between the final states produces a localized, dynamic LOWP. To analyze the LOWP, we ionized it with a stronger terahertz probe pulse, varying the pump-probe delay to map out its motion. We observed two strong LOWP signatures. Changing the static electric field produced small changes (2%) in the orbital period that agreed with our theoretical predictions. Secondly, because the LOWP scatters off the core, the pump-probe signal depended on the

  19. Terahertz pulse generation from metal nanoparticle ink

    NASA Astrophysics Data System (ADS)

    Kato, Kosaku; Takano, Keisuke; Tadokoro, Yuzuru; Phan, Thanh Nhat Khoa; Nakajima, Makoto

    2016-11-01

    Terahertz pulse generation from metallic nanostructures irradiated by femtosecond laser pulses is of interest because the conversion efficiency from laser pulses to terahertz waves is increased by the local field enhancement resulting from the plasmon oscillation. In this talk we present our recent study on terahertz generation from metal nanoparticle ink. We baked a silver nanoparticle ink spin-coated onto a glass coverslip in various temperatures. On the surface of the baked ink, bumpy nanostructures are spontaneously formed, and the average size of bumps depends on the baking temperature. These structures are expected to lead to local field enhancement and then large nonlinear polarizations on the surface. The baked ink was irradiated by the output of regeneratively amplified Ti:sapphire femtosecond laser at an incidence angle of 45°. Waveforms of generated terahertz pulses are detected by electro-optical sampling. The generation efficiency was high when the average diameter of bumps was around 100 nm, which is realized when the ink is baked in 205 to 235°C in our setup. One of our next research targets is terahertz wave generation from micro-patterned metallic nanoparticle ink. It is an advantage of the metal nanoparticle ink that by using inkjet printers one can fabricate various patterns with micrometer scales, in which terahertz waves have a resonance. Combination of microstructures made by a printer and nanostructure spontaneously formed in the baking process will provide us terahertz emitters with unique frequency characteristics.

  20. Numerical investigation of a scalable setup for efficient terahertz generation using a segmented tilted-pulse-front excitation.

    PubMed

    Pálfalvi, László; Tóth, György; Tokodi, Levente; Márton, Zsuzsanna; Fülöp, József András; Almási, Gábor; Hebling, János

    2017-11-27

    A hybrid-type terahertz pulse source is proposed for high energy terahertz pulse generation. It is the combination of the conventional tilted-pulse-front setup and a transmission stair-step echelon-faced nonlinear crystal with a period falling in the hundred-micrometer range. The most important advantage of the setup is the possibility of using plane parallel nonlinear optical crystal for producing good-quality, symmetric terahertz beam. Another advantage of the proposed setup is the significant reduction of imaging errors, which is important in the case of wide pump beams that are used in high energy experiments. A one dimensional model was developed for determining the terahertz generation efficiency, and it was used for quantitative comparison between the proposed new hybrid setup and previously introduced terahertz sources. With lithium niobate nonlinear material, calculations predict an approximately ten-fold increase in the efficiency of the presently described hybrid terahertz pulse source with respect to that of the earlier proposed setup, which utilizes a reflective stair-step echelon and a prism shaped nonlinear optical crystal. By using pump pulses of 50 mJ pulse energy, 500 fs pulse length and 8 mm beam spot radius, approximately 1% conversion efficiency and 0.5 mJ terahertz pulse energy can be reached with the newly proposed setup.

  1. Evaluation of image quality in terahertz pulsed imaging using test objects.

    PubMed

    Fitzgerald, A J; Berry, E; Miles, R E; Zinovev, N N; Smith, M A; Chamberlain, J M

    2002-11-07

    As with other imaging modalities, the performance of terahertz (THz) imaging systems is limited by factors of spatial resolution, contrast and noise. The purpose of this paper is to introduce test objects and image analysis methods to evaluate and compare THz image quality in a quantitative and objective way, so that alternative terahertz imaging system configurations and acquisition techniques can be compared, and the range of image parameters can be assessed. Two test objects were designed and manufactured, one to determine the modulation transfer functions (MTF) and the other to derive image signal to noise ratio (SNR) at a range of contrasts. As expected the higher THz frequencies had larger MTFs, and better spatial resolution as determined by the spatial frequency at which the MTF dropped below the 20% threshold. Image SNR was compared for time domain and frequency domain image parameters and time delay based images consistently demonstrated higher SNR than intensity based parameters such as relative transmittance because the latter are more strongly affected by the sources of noise in the THz system such as laser fluctuations and detector shot noise.

  2. Propagation of terahertz pulses in random media.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-02-15

    We describe measurements of single-cycle terahertz pulse propagation in a random medium. The unique capabilities of terahertz time-domain spectroscopy permit the characterization of a multiply scattered field with unprecedented spatial and temporal resolution. With these results, we can develop a framework for understanding the statistics of broadband laser speckle. Also, the ability to extract information on the phase of the field opens up new possibilities for characterizing multiply scattered waves. We illustrate this with a simple example, which involves computing a time-windowed temporal correlation between fields measured at different spatial locations. This enables the identification of individual scattering events, and could lead to a new method for imaging in random media.

  3. Processing and Probability Analysis of Pulsed Terahertz NDE of Corrosion under Shuttle Tile Data

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Ely, Thomas M.

    2009-01-01

    This paper examines data processing and probability analysis of pulsed terahertz NDE scans of corrosion defects under a Shuttle tile. Pulsed terahertz data collected from an aluminum plate with fabricated corrosion defects and covered with a Shuttle tile is presented. The corrosion defects imaged were fabricated by electrochemically etching areas of various diameter and depth in the plate. In this work, the aluminum plate echo signal is located in the terahertz time-of-flight data and a threshold is applied to produce a binary image of sample features. Feature location and area are examined and identified as corrosion through comparison with the known defect layout. The results are tabulated with hit, miss, or false call information for a probability of detection analysis that is used to identify an optimal processing threshold.

  4. Terahertz pulsed imaging as an advanced characterisation tool for film coatings--a review.

    PubMed

    Haaser, Miriam; Gordon, Keith C; Strachan, Clare J; Rades, Thomas

    2013-12-05

    Solid dosage forms are the pharmaceutical drug delivery systems of choice for oral drug delivery. These solid dosage forms are often coated to modify the physico-chemical properties of the active pharmaceutical ingredients (APIs), in particular to alter release kinetics. Since the product performance of coated dosage forms is a function of their critical coating attributes, including coating thickness, uniformity, and density, more advanced quality control techniques than weight gain are required. A recently introduced non-destructive method to quantitatively characterise coating quality is terahertz pulsed imaging (TPI). The ability of terahertz radiation to penetrate many pharmaceutical materials enables structural features of coated solid dosage forms to be probed at depth, which is not readily achievable with other established imaging techniques, e.g. near-infrared (NIR) and Raman spectroscopy. In this review TPI is introduced and various applications of the technique in pharmaceutical coating analysis are discussed. These include evaluation of coating thickness, uniformity, surface morphology, density, defects and buried structures as well as correlation between TPI measurements and drug release performance, coating process monitoring and scale up. Furthermore, challenges and limitations of the technique are discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. Detection and Characterization of Flaws in Sprayed on Foam Insulation with Pulsed Terahertz Frequency Electromagnetic Waves

    NASA Technical Reports Server (NTRS)

    Winfree, William P.; Madaras, Eric I.

    2005-01-01

    The detection and repair of flaws such as voids and delaminations in the sprayed on foam insulation of the external tank reduces the probability of foam debris during shuttle ascent. The low density of sprayed on foam insulation along with it other physical properties makes detection of flaws difficult with conventional techniques. An emerging technology that has application for quantitative evaluation of flaws in the foam is pulsed electromagnetic waves at terahertz frequencies. The short wavelengths of these terahertz pulses make them ideal for imaging flaws in the foam. This paper examines the application of terahertz pulses for flaw detection in foam characteristic of the foam insulation of the external tank. Of particular interest is the detection of voids and delaminations, encapsulated in the foam or at the interface between the foam and a metal backing. The technique is shown to be capable of imaging small voids and delaminations through as much as 20 cm of foam. Methods for reducing the temporal responses of the terahertz pulses to improve flaw detection and yield quantitative characterizations of the size and location of the flaws are discussed.

  6. Quantized conductance observed during sintering of silver nanoparticles by intense terahertz pulses

    NASA Astrophysics Data System (ADS)

    Takano, Keisuke; Harada, Hirofumi; Yoshimura, Masashi; Nakajima, Makoto

    2018-04-01

    We show that silver nanoparticles, which are deposited on a terahertz-receiving antenna, can be sintered by intense terahertz pulse irradiation. The conductance of the silver nanoparticles between the antenna electrodes is measured under the terahertz pulse irradiation. The dispersant materials surrounding the nanoparticles are peeled off, and conduction paths are created. We reveal that, during sintering, quantum point contacts are formed, leading to quantized conductance between the electrodes with the conductance quantum, which reflects the formation of atomically thin wires. The terahertz electric pulses are sufficiently intense to activate electromigration, i.e., transfer of kinetic energy from the electrons to the silver atoms. The silver atoms move and atomically thin wires form under the intense terahertz pulse irradiation. These findings may inspire nanoscale structural processing by terahertz pulse irradiation.

  7. Applications of terahertz-pulsed technology in the pharmaceutical industry

    NASA Astrophysics Data System (ADS)

    Taday, Philip F.

    2010-02-01

    Coatings are applied to pharmaceutical tablets (or pills) to for either cosmetic or release control reasons. Cosmetic coatings control the colour or to mask the taste of an active ingredient; the thickness of these coating is not critical to the performance of the product. On the other hand the thickness and uniformity of a controlled release coating has been found affect the release of the active ingredient. In this work we have obtained from a pharmacy single brand of pantoprazole tablet and mapped them using terahertz pulsed imaging (TPI) prior to additional dissolution testing. Three terahertz parameters were derived for univariate analysis for each layer: coating thickness, terahertz electric field peak strength and terahertz interface index. These parameters were then correlated dissolution tested. The best fit was found to be with combined coating layer thickness of the inert layer and enteric coating. The commercial tablets showed a large variation in coating thickness.

  8. Pulsed terahertz imaging of breast cancer in freshly excised murine tumors

    NASA Astrophysics Data System (ADS)

    Bowman, Tyler; Chavez, Tanny; Khan, Kamrul; Wu, Jingxian; Chakraborty, Avishek; Rajaram, Narasimhan; Bailey, Keith; El-Shenawee, Magda

    2018-02-01

    This paper investigates terahertz (THz) imaging and classification of freshly excised murine xenograft breast cancer tumors. These tumors are grown via injection of E0771 breast adenocarcinoma cells into the flank of mice maintained on high-fat diet. Within 1 h of excision, the tumor and adjacent tissues are imaged using a pulsed THz system in the reflection mode. The THz images are classified using a statistical Bayesian mixture model with unsupervised and supervised approaches. Correlation with digitized pathology images is conducted using classification images assigned by a modal class decision rule. The corresponding receiver operating characteristic curves are obtained based on the classification results. A total of 13 tumor samples obtained from 9 tumors are investigated. The results show good correlation of THz images with pathology results in all samples of cancer and fat tissues. For tumor samples of cancer, fat, and muscle tissues, THz images show reasonable correlation with pathology where the primary challenge lies in the overlapping dielectric properties of cancer and muscle tissues. The use of a supervised regression approach shows improvement in the classification images although not consistently in all tissue regions. Advancing THz imaging of breast tumors from mice and the development of accurate statistical models will ultimately progress the technique for the assessment of human breast tumor margins.

  9. Terahertz spin current pulses controlled by magnetic heterostructures

    NASA Astrophysics Data System (ADS)

    Kampfrath, T.; Battiato, M.; Maldonado, P.; Eilers, G.; Nötzold, J.; Mährlein, S.; Zbarsky, V.; Freimuth, F.; Mokrousov, Y.; Blügel, S.; Wolf, M.; Radu, I.; Oppeneer, P. M.; Münzenberg, M.

    2013-04-01

    In spin-based electronics, information is encoded by the spin state of electron bunches. Processing this information requires the controlled transport of spin angular momentum through a solid, preferably at frequencies reaching the so far unexplored terahertz regime. Here, we demonstrate, by experiment and theory, that the temporal shape of femtosecond spin current bursts can be manipulated by using specifically designed magnetic heterostructures. A laser pulse is used to drive spins from a ferromagnetic iron thin film into a non-magnetic cap layer that has either low (ruthenium) or high (gold) electron mobility. The resulting transient spin current is detected by means of an ultrafast, contactless amperemeter based on the inverse spin Hall effect, which converts the spin flow into a terahertz electromagnetic pulse. We find that the ruthenium cap layer yields a considerably longer spin current pulse because electrons are injected into ruthenium d states, which have a much lower mobility than gold sp states. Thus, spin current pulses and the resulting terahertz transients can be shaped by tailoring magnetic heterostructures, which opens the door to engineering high-speed spintronic devices and, potentially, broadband terahertz emitters.

  10. Terahertz multistatic reflection imaging.

    PubMed

    Dorney, Timothy D; Symes, William W; Baraniuk, Richard G; Mittleman, Daniel M

    2002-07-01

    We describe a new imaging method using single-cycle pulses of terahertz (THz) radiation. This technique emulates the data collection and image processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a migration procedure to solve the inverse problem; this permits us to reconstruct the location, the shape, and the refractive index of targets. We show examples for both metallic and dielectric model targets, and we perform velocity analysis on dielectric targets to estimate the refractive indices of imaged components. These results broaden the capabilities of THz imaging systems and also demonstrate the viability of the THz system as a test bed for the exploration of new seismic processing methods.

  11. Non-destructive quantification of pharmaceutical tablet coatings using terahertz pulsed imaging and optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhong, Shuncong; Shen, Yao-Chun; Ho, Louise; May, Robert K.; Zeitler, J. Axel; Evans, Mike; Taday, Philip F.; Pepper, Michael; Rades, Thomas; Gordon, Keith C.; Müller, Ronny; Kleinebudde, Peter

    2011-03-01

    Optical coherence tomography (OCT) and terahertz pulsed imaging (TPI) are two powerful techniques allowing high quality cross-sectional images from within scattering media to be obtained non-destructively. In this paper, we report experimental results of using OCT and TPI for quantitatively characterizing pharmaceutical tablet coatings in the thickness range of 10-140 μm. We found that the spectral OCT system developed in-house has an axial resolution of 0.9 μm, and is capable of quantifying very thin coatings in the range of 10-60 μm. The upper limit of 60 μm within the tablet coating and core is owed to the strong scattering of OCT light, which has relatively short wavelengths in the range of 0.5-1.0 μm. On the other hand, TPI utilizes terahertz radiation that has substantially long wavelengths in the range of hundreds of microns, and thus is less prone to the scattering problem. Consequently TPI has been demonstrated to be able to quantify thicker coatings in the range of 40-140 μm and beyond. We concluded that OCT and TPI are two complementary analytical techniques for non-destructive and quantitative characterization of pharmaceutical tablet coatings.

  12. Multiple scattering of broadband terahertz pulses

    NASA Astrophysics Data System (ADS)

    Pearce, Jeremiah Glen

    Propagation of single-cycle terahertz (THz) pulses through a random medium leads to dramatic amplitude and phase variations of the electric field because of multiple scattering. We present the first set of experiments that investigate the propagation of THz pulses through scattering media. The scattering of short pulses is a relevant subject to many communities in science and engineering, because the properties of multiply scattered or diffuse waves provide insights into the characteristics of the random medium. For example, the depolarization of diffuse waves has been used to form images of objects embedded in inhomogeneous media. Most of the previous scattering experiments have used narrowband optical radiation where measurements are limited to time averaged intensities or autocorrelation quantities, which contain no phase information of the pulses. In the experiments presented here, a terahertz time-domain spectrometer (THz-TDS) is used. A THz-TDS propagates single-cycle sub-picosecond pulses with bandwidths of over 1 THz into free space. The THz-TDS is a unique tool to study such phenomena, because it provides access to both the intensity and phase of those pulses through direct measurement of the temporal electric field. Because of the broad bandwidth and linear phase of the pulses, it is possible to simultaneously study Rayleigh scattering and the short wavelength limit in a single measurement. We study the diffusion of broadband single-cycle THz pulses by propagating the pulses through a highly scattering medium. Using the THz-TDS, time-domain measurements provide information on the statistics of both the amplitude and phase of the diffusive waves. We develop a theoretical description, suitable for broadband radiation, which accurately describes the experimental results. We measure the time evolution of the degree of polarization, and directly correlate it with the single-scattering regime in the time domain. Measurements of the evolution of the temporal

  13. Imaging with terahertz radiation

    NASA Astrophysics Data System (ADS)

    Chan, Wai Lam; Deibel, Jason; Mittleman, Daniel M.

    2007-08-01

    Within the last several years, the field of terahertz science and technology has changed dramatically. Many new advances in the technology for generation, manipulation, and detection of terahertz radiation have revolutionized the field. Much of this interest has been inspired by the promise of valuable new applications for terahertz imaging and sensing. Among a long list of proposed uses, one finds compelling needs such as security screening and quality control, as well as whimsical notions such as counting the almonds in a bar of chocolate. This list has grown in parallel with the development of new technologies and new paradigms for imaging and sensing. Many of these proposed applications exploit the unique capabilities of terahertz radiation to penetrate common packaging materials and provide spectroscopic information about the materials within. Several of the techniques used for terahertz imaging have been borrowed from other, more well established fields such as x-ray computed tomography and synthetic aperture radar. Others have been developed exclusively for the terahertz field, and have no analogies in other portions of the spectrum. This review provides a comprehensive description of the various techniques which have been employed for terahertz image formation, as well as discussing numerous examples which illustrate the many exciting potential uses for these emerging technologies.

  14. Pulse sequences for efficient multi-cycle terahertz generation in periodically poled lithium niobate.

    PubMed

    Ravi, Koustuban; Schimpf, Damian N; Kärtner, Franz X

    2016-10-31

    The use of laser pulse sequences to drive the cascaded difference frequency generation of high energy, high peak-power and multi-cycle terahertz pulses in cryogenically cooled (100 K) periodically poled Lithium Niobate is proposed and studied. Detailed simulations considering the coupled nonlinear interaction of terahertz and optical waves (or pump depletion), show that unprecedented optical-to-terahertz energy conversion efficiencies > 5%, peak electric fields of hundred(s) of mega volts/meter at terahertz pulse durations of hundred(s) of picoseconds can be achieved. The proposed methods are shown to circumvent laser induced damage limitations at Joule-level pumping by 1µm lasers to enable multi-cycle terahertz sources with pulse energies > 10 milli-joules. Various pulse sequence formats are proposed and analyzed. Numerical calculations for periodically poled structures accounting for cascaded difference frequency generation, self-phase-modulation, cascaded second harmonic generation and laser induced damage are introduced. The physics governing terahertz generation using pulse sequences in this high conversion efficiency regime, limitations and practical considerations are discussed. It is shown that varying the poling period along the crystal length and further reduction of absorption can lead to even higher energy conversion efficiencies >10%. In addition to numerical calculations, an analytic formulation valid for arbitrary pulse formats and closed-form expressions for important cases are presented. Parameters optimizing conversion efficiency in the 0.1-1 THz range, the corresponding peak electric fields, crystal lengths and terahertz pulse properties are furnished.

  15. Potential uses of terahertz pulse imaging in dentistry: caries and erosion detection

    NASA Astrophysics Data System (ADS)

    Longbottom, Christopher; Crawley, David A.; Cole, Bryan E.; Arnone, Donald D.; Wallace, Vincent P.; Pepper, Michael

    2002-06-01

    TeraHertz Pulse Imaging (TPI) is a relatively new imaging modality for medical and dental imaging. The aim of the present study was to make a preliminary assessment of the potential uses of TPI in clinical dentistry, particularly in relation to caries detection and the detection and monitoring of erosion. Images were obtained in vitro using a new TPI system developed by TeraView Ltd. We present data showing that TPI in vitro images of approximal surfaces of whole teeth demonstrate a distinctive shadowing in the presence of natural carious lesions in enamel. The thickness of this enamel shadowing appears to be related to lesion depth. The use of non-ionizing radiation to image such lesions non-destructively in vitro represents a significant step towards such measurements in vivo. In addition, data is presented which indicates that TPI may have a potential role in the detection and monitoring of enamel erosion. In vitro experiments on whole incisor teeth show that TPI is capable of detecting relatively small artificially induced changes in the buccal or palatal surface of the enamel of these teeth. Imaging of enamel thickness at such a resolution without ionizing radiation would represent a significant breakthrough if applicable in vivo.

  16. Analysis of coating structures and interfaces in solid oral dosage forms by three dimensional terahertz pulsed imaging.

    PubMed

    Zeitler, J Axel; Shen, Yaochun; Baker, Colin; Taday, Philip F; Pepper, Michael; Rades, Thomas

    2007-02-01

    Three dimensional terahertz pulsed imaging (TPI) was evaluated as a novel tool for the nondestructive characterization of different solid oral dosage forms. The time-domain reflection signal of coherent pulsed light in the far infrared was used to investigate film-coated tablets, sugar-coated tablets, multilayered controlled release tablets, and soft gelatin capsules. It is possible to determine the spatial and statistical distribution of coating thickness in single and multiple coated products using 3D TPI. The measurements are nondestructive even for layers buried underneath other coating structures. The internal structure of coating materials can be analyzed. As the terahertz signal penetrates up to 3 mm into the dosage form interfaces between layers in multilayered tablets can be investigated. In soft gelatin capsules it is possible to measure the thickness of the gelatin layer and to characterize the seal between the gelatin layers for quality control. TPI is a unique approach for the nondestructive characterization and quality control of solid dosage forms. The measurements are fast and fully automated with the potential for much wider application of the technique in the process analytical technology scheme. Copyright (c) 2006 Wiley-Liss, Inc.

  17. Terahertz reflection imaging using Kirchhoff migration.

    PubMed

    Dorney, T D; Johnson, J L; Van Rudd, J; Baraniuk, R G; Symes, W W; Mittleman, D M

    2001-10-01

    We describe a new imaging method that uses single-cycle pulses of terahertz (THz) radiation. This technique emulates data-collection and image-processing procedures developed for geophysical prospecting and is made possible by the availability of fiber-coupled THz receiver antennas. We use a simple migration procedure to solve the inverse problem; this permits us to reconstruct the location and shape of targets. These results demonstrate the feasibility of the THz system as a test-bed for the exploration of new seismic processing methods involving complex model systems.

  18. Imaging of ex vivo nonmelanoma skin cancers in the optical and terahertz spectral regions optical and terahertz skin cancers imaging.

    PubMed

    Joseph, Cecil S; Patel, Rakesh; Neel, Victor A; Giles, Robert H; Yaroslavsky, Anna N

    2014-05-01

    We tested the hypothesis that polarization sensitive optical and terahertz imaging may be combined for accurate nonmelanoma skin cancer (NMSC) delineation. Nine NMSC specimens were imaged. 513 μm and 440 nm wavelengths were used for terahertz and optical imaging, respectively. Histopathology was processed for evaluation. Terahertz reflectance of NMSC was quantified. Our results demonstrate that cross-polarized terahertz images correctly identified location of the tumours, whereas cross-polarized and polarization difference optical images accurately presented morphological features. Cross-polarized terahertz images exhibited lower reflectivity values in cancer as compared to normal tissue. Combination of optical and terahertz imaging shows promise for intraoperative delineation of NMSC. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Terahertz Imaging of Subjects With Concealed Weapons

    DTIC Science & Technology

    2006-05-01

    pulsed imaging", Advanced Characterization, Therapeutics, and Systems XIV, Proceedings of SPIE, Vol. 5318: 23-33 6. Anthony E. Siegman , Lasers , p667...imagery. Both methods made use of in-house transceivers, consisting of two ultra-stable far-infrared lasers , terahertz heterodyne detection systems...SYSTEM The 1.56THz transceiver system at STL uses two carbon dioxide lasers paired individually with two far-infrared lasers . All four units are

  20. Terahertz pulse induced intervalley scattering in photoexcited GaAs.

    PubMed

    Su, F H; Blanchard, F; Sharma, G; Razzari, L; Ayesheshim, A; Cocker, T L; Titova, L V; Ozaki, T; Kieffer, J-C; Morandotti, R; Reid, M; Hegmann, F A

    2009-06-08

    Nonlinear transient absorption bleaching of intense few-cycle terahertz (THz) pulses is observed in photoexcited GaAs using opticalpump--THz-probe techniques. A simple model of the electron transport dynamics shows that the observed nonlinear response is due to THz-electric- field-induced intervalley scattering over sub-picosecond time scales as well as an increase in the intravalley scattering rate attributed to carrier heating. Furthermore, the nonlinear nature of the THz pulse transmission at high peak fields leads to a measured terahertz conductivity in the photoexcited GaAs that deviates significantly from the Drude behavior observed at low THz fields, emphasizing the need to explore nonlinear THz pulse interactions with materials in the time domain.

  1. Real-time terahertz near-field microscope.

    PubMed

    Blanchard, F; Doi, A; Tanaka, T; Hirori, H; Tanaka, H; Kadoya, Y; Tanaka, K

    2011-04-25

    We report a terahertz near-field microscope with a high dynamic range that can capture images of a 370 x 740 μm2 area at 35 frames per second. We achieve high spatial resolution (14 μm corresponding to λ/30 for a center frequency at 0.7 THz) on a large area by combining two novel techniques: terahertz generation by tilted-pulse-front excitation and electro-optic balanced imaging detection using a thin crystal. To demonstrate the microscope capability, we reveal the field enhancement at the gap position of a dipole antenna after the irradiation of a terahertz pulse.

  2. Terahertz Pulsed Imaging and Magnetic Resonance Imaging as Tools to Probe Formulation Stability

    PubMed Central

    Zhang, Qilei; Gladden, Lynn F.; Avalle, Paolo; Zeitler, J. Axel; Mantle, Michael D.

    2013-01-01

    Dissolution stability over the entire shelf life duration is of critical importance to ensure the quality of solid dosage forms. Changes in the drug release profile during storage may affect the bioavailability of drug products. This study investigated the stability of a commercial tablet (Lescol® XL) when stored under accelerated conditions (40 °C/75% r.h.). Terahertz pulsed imaging (TPI) was used to investigate the structure of the tablet coating before and after the accelerated aging process. The results indicate that the coating was reduced in thickness and exhibited a higher density after being stored under accelerated conditions for four weeks. In situ magnetic resonance imaging (MRI) of the water penetration processes during tablet dissolution in a USP-IV dissolution cell equipped with an in-line UV-vis analyzer was carried out to study local differences in water uptake into the tablet matrix between the stressed and unstressed state. The drug release profiles of the Lescol® XL tablet before and after the accelerated storage stability testing were compared using a “difference” factor f1 and a “similarity” factor f2. The results reveal that even though the physical properties of the coating layers changed significantly during the stress testing, the coating protected the tablet matrix and the densification of the coating polymer had no adverse effect on the drug release performance. PMID:24300564

  3. Application of Terahertz Field Enhancement Effect in Metal Microstructures

    NASA Astrophysics Data System (ADS)

    Nakajima, M.; Kurihara, T.; Tadokoro, Y.; Kang, B.; Takano, K.; Yamaguchi, K.; Watanabe, H.; Oto, K.; Suemoto, T.; Hangyo, M.

    2016-12-01

    Applications of high-field terahertz pulses are attractive in physics and terahertz technology. In this study, two applications related to high-intensity terahertz pulses are demonstrated. The field enhancement effect by subwavelength metallic microstructures is utilized for terahertz excitation measurement. The spin precession dynamics in magnetic materials was induced by a terahertz magnetic field. Spin precession was amplified by one order of magnitude in amplitude by the enhanced magnetic terahertz field in orthoferrite ErFeO3 with metal microstructures. The induced spin dynamics was analyzed and explained by LLG-LCR model. Moreover, a detection method for terahertz pulses was developed using a cholesteric liquid crystal at room temperature without any electronic devices. The beam profile of terahertz pulses was visualized and compared to other methods such as the knife edge method using pyroelectric detector and micro-bolometer array. The liquid crystal terahertz imager is very simple and has good applicability as a portable terahertz-sensing card.

  4. THz pulsed time-domain imaging of an oil canvas painting: a case study of a painting by Pablo Picasso

    NASA Astrophysics Data System (ADS)

    Fukunaga, Kaori; Ikari, Tomofumi; Iwai, Kikuko

    2016-02-01

    The terahertz pulsed time-domain imaging technique and near-infrared observation were applied to investigate an oil painting on canvas by Pablo Picasso. The multilayer structure is clearly observed in cross-sectional image by terahertz pulsed time-domain imaging, and particular Cubism style lines were revealed under newly painted area by near-infrared image.

  5. Novel ultrasensitive plasmonic detector of terahertz pulses enhanced by femtosecond optical pulses

    NASA Astrophysics Data System (ADS)

    Shur, M.; Rudin, S.; Rupper, G.; Muraviev, A.

    2016-09-01

    Plasmonic Field Effect Transistor detectors (first proposed in 1996) have emerged as superior room temperature terahertz (THz) detectors. Recent theoretical and experimental results showed that such detectors are capable of subpicosecond resolution. Their sensitivity can be greatly enhanced by applying the DC drain-to-source current that increases the responsivity due to the enhanced non-linearity of the device but also adds 1/f noise. We now propose, and demonstrate a dramatic responsivity enhancement of these plasmonic THz pulse detectors by applying a femtosecond optical laser pulse superimposed on the THz pulse. The proposed physical mechanism links the enhanced detection to the superposition of the THz pulse field and the rectified optical field. A femtosecond pulse generates a large concentration of the electron-hole pairs shorting the drain and source contacts and, therefore, determining the moment of time when the THz induced charge starts discharging into the transmission line connecting the FET to an oscilloscope. This allows for scanning the THz pulse with the strongly enhanced sensitivity and/or for scanning the response waveform after the THz pulse is over. The experimental results obtained using AlGaAs/InGaAs deep submicron HEMTs are in good agreement with this mechanism. This new technique could find numerous imaging, sensing, and quality control applications.

  6. Scale model experimentation: using terahertz pulses to study light scattering.

    PubMed

    Pearce, Jeremy; Mittleman, Daniel M

    2002-11-07

    We describe a new class of experiments involving applications of terahertz radiation to problems in biomedical imaging and diagnosis. These involve scale model measurements, in which information can be gained about pulse propagation in scattering media. Because of the scale invariance of Maxwell's equations, these experiments can provide insight for researchers working on similar problems at shorter wavelengths. As a first demonstration, we measure the propagation constants for pulses in a dense collection of spherical scatterers, and compare with the predictions of the quasi-crystalline approximation. Even though the fractional volume in our measurements exceeds the limit of validity of this model, we find that it still predicts certain features of the propagation with reasonable accuracy.

  7. Active terahertz wave imaging system for detecting hidden objects

    NASA Astrophysics Data System (ADS)

    Gan, Yuner; Liu, Ming; Zhao, Yuejin

    2016-11-01

    Terahertz wave can penetrate the common dielectric materials such as clothing, cardboard boxes, plastics and so on. Besides, the low photon energy and non-ionizing characteristic of the terahertz wave are especially suitable for the safety inspection of the human body. Terahertz imaging technology has a tremendous potential in the field of security inspection such as stations, airports and other public places. Terahertz wave imaging systems are divided into two categories: active terahertz imaging systems and passive terahertz imaging systems. So far, most terahertz imaging systems work at point to point mechanical scan pattern with the method of passive imaging. The imaging results of passive imaging tend to have low contrast and the image is not clear enough. This paper designs and implements an active terahertz wave imaging system combining terahertz wave transmitting and receiving with a Cassegrain antenna. The terahertz wave at the frequency of 94GHz is created by impact ionization avalanche transit time (IMPATT) diode, focused on the feed element for Cassegrain antenna by high density polyethylene (HDPE) lens, and transmitted to the human body by Cassegrain antenna. The reflected terahertz wave goes the same way it was emitted back to the feed element for Cassegrain antenna, focused on the horn antenna of detector by another high density polyethylene lens. The scanning method is the use of two-dimensional planar mirror, one responsible for horizontal scanning, and another responsible for vertical scanning. Our system can achieve a clear human body image, has better sensitivity and resolution than passive imaging system, and costs much lower than other active imaging system in the meantime.

  8. Frequency Up-Conversion Photon-Type Terahertz Imager.

    PubMed

    Fu, Z L; Gu, L L; Guo, X G; Tan, Z Y; Wan, W J; Zhou, T; Shao, D X; Zhang, R; Cao, J C

    2016-05-05

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices.

  9. Frequency Up-Conversion Photon-Type Terahertz Imager

    PubMed Central

    Fu, Z. L.; Gu, L. L.; Guo, X. G.; Tan, Z. Y.; Wan, W. J.; Zhou, T.; Shao, D. X.; Zhang, R.; Cao, J. C.

    2016-01-01

    Terahertz imaging has many important potential applications. Due to the failure of Si readout integrated circuits (ROICs) and the thermal mismatch between the photo-detector arrays and the ROICs at temperatures below 40 K, there are big technical challenges to construct terahertz photo-type focal plane arrays. In this work, we report pixel-less photo-type terahertz imagers based on the frequency up-conversion technique. The devices are composed of terahertz quantum-well photo-detectors (QWPs) and near-infrared (NIR) light emitting diodes (LEDs) which are grown in sequence on the same substrates using molecular beam epitaxy. In such an integrated QWP-LED device, photocurrent in the QWP drives the LED to emit NIR light. By optimizing the structural parameters of the QWP-LED, the QWP part and the LED part both work well. The maximum values of the internal and external energy up-conversion efficiencies are around 20% and 0.5%. A laser spot of a homemade terahertz quantum cascade laser is imaged by the QWP-LED together with a commercial Si camera. The pixel-less imaging results show that the image blurring induced by the transverse spreading of photocurrent is negligible. The demonstrated pixel-less imaging opens a new way to realize high performance terahertz imaging devices. PMID:27147281

  10. Biomedical terahertz imaging with a quantum cascade laser

    NASA Astrophysics Data System (ADS)

    Kim, Seongsin M.; Hatami, Fariba; Harris, James S.; Kurian, Allison W.; Ford, James; King, Douglas; Scalari, Giacomo; Giovannini, Marcella; Hoyler, Nicolas; Faist, Jerome; Harris, Geoff

    2006-04-01

    We present biomedical imaging using a single frequency terahertz imaging system based on a low threshold quantum cascade laser emitting at 3.7THz (λ=81μm). With a peak output power of 4mW, coherent terahertz radiation and detection provide a relatively large dynamic range and high spatial resolution. We study image contrast based on water/fat content ratios in different tissues. Terahertz transmission imaging demonstrates a distinct anatomy in a rat brain slice. We also demonstrate malignant tissue contrast in an image of a mouse liver with developed tumors, indicating potential use of terahertz imaging for probing cancerous tissues.

  11. Terahertz imaging with compressed sensing and phase retrieval.

    PubMed

    Chan, Wai Lam; Moravec, Matthew L; Baraniuk, Richard G; Mittleman, Daniel M

    2008-05-01

    We describe a novel, high-speed pulsed terahertz (THz) Fourier imaging system based on compressed sensing (CS), a new signal processing theory, which allows image reconstruction with fewer samples than traditionally required. Using CS, we successfully reconstruct a 64 x 64 image of an object with pixel size 1.4 mm using a randomly chosen subset of the 4096 pixels, which defines the image in the Fourier plane, and observe improved reconstruction quality when we apply phase correction. For our chosen image, only about 12% of the pixels are required for reassembling the image. In combination with phase retrieval, our system has the capability to reconstruct images with only a small subset of Fourier amplitude measurements and thus has potential application in THz imaging with cw sources.

  12. All-dielectric metalens for terahertz wave imaging.

    PubMed

    Jiang, Xue; Chen, Hao; Li, Zeyu; Yuan, Hongkuan; Cao, Luyao; Luo, Zhenfei; Zhang, Kun; Zhang, Zhihai; Wen, Zhongquan; Zhu, Li-Guo; Zhou, Xun; Liang, Gaofeng; Ruan, Desheng; Du, Lianghui; Wang, Lingfang; Chen, Gang

    2018-05-28

    Terahertz wave imaging offers promising properties for non-destructive testing applications in the areas of homeland security, medicine, and industrial inspection. However, conventional optical lenses are heavy and bulky and difficult to integrate. An all-dielectric metasurface provides an attractive way to realize a planar lens of light weight that is ultrathin and offers ease of integration. Terahertz lenses based on various metasurfaces have been studied, especially for the application of wave focusing, while there are few experimental demonstrations of terahertz wave imaging lenses based on an all-dielectric metasurface. In the present work, we propose a metalens based on an all-dielectric metasurface with a sub-wavelength unit size of 0.39λ for terahertz wave imaging and experimentally demonstrate its performance in focusing and imaging. A large numerical aperture metalens was fabricated with a focal length of 300λ, radius of 300λ, and numerical aperture of 0.707. The experimental results show that the lens can focus THz waves with an incident angle up to 48°. More importantly, clear terahertz wave images of different objects were obtained for both different cases of forward- and inverse-incident directions, which demonstrate the reversibility of the metalens for imaging. Such a metalens provides a way for realization of all-planar-lens THz imaging system, and might find application in terahertz wave imaging, information processing, microscopy, and others.

  13. Strain Imaging Using Terahertz Waves and Metamaterials

    DTIC Science & Technology

    2016-11-01

    TECHNICAL REPORT RDMR-WD-16-48 STRAIN IMAGING USING TERAHERTZ WAVES AND METAMATERIALS Henry O. Everitt and Martin S...TITLE AND SUBTITLE Strain Imaging Using Terahertz Waves and Metamaterials 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt, Martin S...predictions. 14. SUBJECT TERMS Birefringence, Terahertz Waves , Metamaterials 15. NUMBER OF PAGES 16 16. PRICE CODE 17. SECURITY

  14. Metal wires for terahertz wave guiding.

    PubMed

    Wang, Kanglin; Mittleman, Daniel M

    2004-11-18

    Sources and systems for far-infrared or terahertz (1 THz = 10(12) Hz) radiation have received extensive attention in recent years, with applications in sensing, imaging and spectroscopy. Terahertz radiation bridges the gap between the microwave and optical regimes, and offers significant scientific and technological potential in many fields. However, waveguiding in this intermediate spectral region still remains a challenge. Neither conventional metal waveguides for microwave radiation, nor dielectric fibres for visible and near-infrared radiation can be used to guide terahertz waves over a long distance, owing to the high loss from the finite conductivity of metals or the high absorption coefficient of dielectric materials in this spectral range. Furthermore, the extensive use of broadband pulses in the terahertz regime imposes an additional constraint of low dispersion, which is necessary for compatibility with spectroscopic applications. Here we show how a simple waveguide, namely a bare metal wire, can be used to transport terahertz pulses with virtually no dispersion, low attenuation, and with remarkable structural simplicity. As an example of this new waveguiding structure, we demonstrate an endoscope for terahertz pulses.

  15. Intense terahertz pulses from SLAC electron beams using coherent transition radiation.

    PubMed

    Wu, Ziran; Fisher, Alan S; Goodfellow, John; Fuchs, Matthias; Daranciang, Dan; Hogan, Mark; Loos, Henrik; Lindenberg, Aaron

    2013-02-01

    SLAC has two electron accelerators, the Linac Coherent Light Source (LCLS) and the Facility for Advanced Accelerator Experimental Tests (FACET), providing high-charge, high-peak-current, femtosecond electron bunches. These characteristics are ideal for generating intense broadband terahertz (THz) pulses via coherent transition radiation. For LCLS and FACET respectively, the THz pulse duration is typically 20 and 80 fs RMS and can be tuned via the electron bunch duration; emission spectra span 3-30 THz and 0.5 THz-5 THz; and the energy in a quasi-half-cycle THz pulse is 0.2 and 0.6 mJ. The peak electric field at a THz focus has reached 4.4 GV/m (0.44 V/Å) at LCLS. This paper presents measurements of the terahertz pulses and preliminary observations of nonlinear materials response.

  16. Quantitative analysis of visible surface defect risk in tablets during film coating using terahertz pulsed imaging.

    PubMed

    Niwa, Masahiro; Hiraishi, Yasuhiro

    2014-01-30

    Tablets are the most common form of solid oral dosage produced by pharmaceutical industries. There are several challenges to successful and consistent tablet manufacturing. One well-known quality issue is visible surface defects, which generally occur due to insufficient physical strength, causing breakage or abrasion during processing, packaging, or shipping. Techniques that allow quantitative evaluation of surface strength and the risk of surface defect would greatly aid in quality control. Here terahertz pulsed imaging (TPI) was employed to evaluate the surface properties of core tablets with visible surface defects of varying severity after film coating. Other analytical methods, such as tensile strength measurements, friability testing, and scanning electron microscopy (SEM), were used to validate TPI results. Tensile strength and friability provided no information on visible surface defect risk, whereas the TPI-derived unique parameter terahertz electric field peak strength (TEFPS) provided spatial distribution of surface density/roughness information on core tablets, which helped in estimating tablet abrasion risk prior to film coating and predicting the location of the defects. TPI also revealed the relationship between surface strength and blending condition and is a nondestructive, quantitative approach to aid formulation development and quality control that can reduce visible surface defect risk in tablets. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Terahertz imaging applied to cancer diagnosis.

    PubMed

    Brun, M-A; Formanek, F; Yasuda, A; Sekine, M; Ando, N; Eishii, Y

    2010-08-21

    We report on terahertz (THz) time-domain spectroscopy imaging of 10 microm thick histological sections. The sections are prepared according to standard pathological procedures and deposited on a quartz window for measurements in reflection geometry. Simultaneous acquisition of visible images enables registration of THz images and thus the use of digital pathology tools to investigate the links between the underlying cellular structure and specific THz information. An analytic model taking into account the polarization of the THz beam, its incidence angle, the beam shift between the reference and sample pulses as well as multiple reflections within the sample is employed to determine the frequency-dependent complex refractive index. Spectral images are produced through segmentation of the extracted refractive index data using clustering methods. Comparisons of visible and THz images demonstrate spectral differences not only between tumor and healthy tissues but also within tumors. Further visualization using principal component analysis suggests different mechanisms as to the origin of image contrast.

  18. Scanning Terahertz Heterodyne Imaging Systems

    NASA Technical Reports Server (NTRS)

    Siegel, Peter; Dengler, Robert

    2007-01-01

    Scanning terahertz heterodyne imaging systems are now at an early stage of development. In a basic scanning terahertz heterodyne imaging system, (see Figure 1) two far-infrared lasers generate beams denoted the local-oscillator (LO) and signal that differ in frequency by an amount, denoted the intermediate frequency (IF), chosen to suit the application. The LO beam is sent directly to a mixer as one of two inputs. The signal beam is focused to a spot on or in the specimen. After transmission through or reflection from the specimen, the beams are focused to a spot on a terahertz mixer, which extracts the IF outputs. The specimen is mounted on a translation stage, by means of which the focal spot is scanned across the specimen to build up an image.

  19. Terahertz spectroscopy of liver cirrhosis: investigating the origin of contrast

    NASA Astrophysics Data System (ADS)

    Sy, Stanley; Huang, Shengyang; Wang, Yi-Xiang J.; Yu, Jun; Ahuja, Anil T.; Zhang, Yuan-ting; Pickwell-MacPherson, Emma

    2010-12-01

    We have previously demonstrated that terahertz pulsed imaging is able to distinguish between rat tissues from different healthy organs. In this paper we report our measurements of healthy and cirrhotic liver tissues using terahertz reflection spectroscopy. The water content of the fresh tissue samples was also measured in order to investigate the correlations between the terahertz properties, water content, structural changes and cirrhosis. Finally, the samples were fixed in formalin to determine whether water was the sole source of image contrast in this study. We found that the cirrhotic tissue had a higher water content and absorption coefficient than the normal tissue and that even after formalin fixing there were significant differences between the normal and cirrhotic tissues' terahertz properties. Our results show that terahertz pulsed imaging can distinguish between healthy and diseased tissue due to differences in absorption originating from both water content and tissue structure.

  20. [An effective method for improving the imaging spatial resolution of terahertz time domain spectroscopy system].

    PubMed

    Zhang, Zeng-yan; Ji, Te; Zhu, Zhi-yong; Zhao, Hong-wei; Chen, Min; Xiao, Ti-qiao; Guo, Zhi

    2015-01-01

    Terahertz radiation is an electromagnetic radiation in the range between millimeter waves and far infrared. Due to its low energy and non-ionizing characters, THz pulse imaging emerges as a novel tool in many fields, such as material, chemical, biological medicine, and food safety. Limited spatial resolution is a significant restricting factor of terahertz imaging technology. Near field imaging method was proposed to improve the spatial resolution of terahertz system. Submillimeter scale's spauial resolution can be achieved if the income source size is smaller than the wawelength of the incoming source and the source is very close to the sample. But many changes were needed to the traditional terahertz time domain spectroscopy system, and it's very complex to analyze sample's physical parameters through the terahertz signal. A method of inserting a pinhole upstream to the sample was first proposed in this article to improve the spatial resolution of traditional terahertz time domain spectroscopy system. The measured spatial resolution of terahertz time domain spectroscopy system by knife edge method can achieve spatial resolution curves. The moving stage distance between 10 % and 90 Yo of the maximum signals respectively was defined as the, spatial resolution of the system. Imaging spatial resolution of traditional terahertz time domain spectroscopy system was improved dramatically after inserted a pinhole with diameter 0. 5 mm, 2 mm upstream to the sample. Experimental results show that the spatial resolution has been improved from 1. 276 mm to 0. 774 mm, with the increment about 39 %. Though this simple method, the spatial resolution of traditional terahertz time domain spectroscopy system was increased from millimeter scale to submillimeter scale. A pinhole with diameter 1 mm on a polyethylene plate was taken as sample, to terahertz imaging study. The traditional terahertz time domain spectroscopy system and pinhole inserted terahertz time domain spectroscopy

  1. Industrial Applications of Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Zeitler, J. Axel; Shen, Yao-Chun

    This chapter gives a concise overview of potential industrial applications for terahertz imaging that have been reported over the past decade with a discussion of the major advantages and limitations of each approach. In the second half of the chapter we discuss in more detail how terahertz imaging can be used to investigate the microstructure of pharmaceutical dosage forms. A particular focus in this context is the nondestructive measurement of the coating thickness of polymer coated tablets, both by means of high resolution offline imaging in research and development as well as for in-line quality control during production.

  2. Picosecond Transient Photoconductivity in Functionalized Pentacene Molecular Crystals Probed by Terahertz Pulse Spectroscopy

    NASA Astrophysics Data System (ADS)

    Hegmann, F. A.; Tykwinski, R. R.; Lui, K. P.; Bullock, J. E.; Anthony, J. E.

    2002-11-01

    We have measured transient photoconductivity in functionalized pentacene molecular crystals using ultrafast optical pump-terahertz probe techniques. The single crystal samples were excited using 800nm, 100fs pulses, and the change in transmission of time-delayed, subpicosecond terahertz pulses was used to probe the photoconducting state over a temperature range from 10 to 300K. A subpicosecond rise in photoconductivity is observed, suggesting that mobile carriers are a primary photoexcitation. At times longer than 4ps, a power-law decay is observed consistent with dispersive transport.

  3. Terahertz Tools Advance Imaging for Security, Industry

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Picometrix, a wholly owned subsidiary of Advanced Photonix Inc. (API), of Ann Arbor, Michigan, invented the world s first commercial terahertz system. The company improved the portability and capabilities of their systems through Small Business Innovation Research (SBIR) agreements with Langley Research Center to provide terahertz imaging capabilities for inspecting the space shuttle external tanks and orbiters. Now API s systems make use of the unique imaging capacity of terahertz radiation on manufacturing floors, for thickness measurements of coatings, pharmaceutical tablet production, and even art conservation.

  4. Microfabricated Circuits for Terahertz Wave Amplification and Terahertz Biosensors

    NASA Astrophysics Data System (ADS)

    Fawole, Olutosin Charles

    The terahertz frequency band extends from deep infrared (100 THz) down to millimeter waves (0.4 THz), and this band was mostly inaccessible due to the lack of appropriate sources and detectors. Those with access to this band had to endure the small-intensity pulsed signals (nanowatts to microwatts) that the terahertz sources of those times could provide. In recent years, however, sufficient development has led to the availability of terahertz sources with sufficient power (1-100 muW) and the ease of use these sources has in turn enabled researchers to develop newer sources, detectors, and application areas. The terahertz regime is interesting because a) many molecules have vibrational, rotation and transition absorption bands in this regime, b) the terahertz electromagnetic wavelength is sufficiently small to resolve centimeter to millimeter scale objects, and c) scattering and absorption in metals in the terahertz regime make it very challenging to devise terahertz signal processing circuits. Thus, performing terahertz reflection/transmission measurements may enable precise identification of chemicals in a sample. Furthermore, small wavelengths and strong scattering by metallic objects make imaging with terahertz waves quite attractive. Finally, the ability to devise terahertz communication circuits and links will provide access to a frequency domain that is restricted and not available to others. One of the main objectives of this work is to develop 0.75 - 1.1 terahertz (free space wavelength 272 mum - 400 ?mum) amplifiers. Another objective of this work is to explore the suitability of terahertz waves in biological imaging and sensing. The terahertz amplifiers developed in this work consisted of distributed components such as rectangular waveguides and cylindrical dielectric resonators. In contrast to discrete amplifiers, which are based on solid-state devices, distributed traveling wave amplifiers can potentially handle and produce larger powers. Three

  5. Complex extreme learning machine applications in terahertz pulsed signals feature sets.

    PubMed

    Yin, X-X; Hadjiloucas, S; Zhang, Y

    2014-11-01

    This paper presents a novel approach to the automatic classification of very large data sets composed of terahertz pulse transient signals, highlighting their potential use in biochemical, biomedical, pharmaceutical and security applications. Two different types of THz spectra are considered in the classification process. Firstly a binary classification study of poly-A and poly-C ribonucleic acid samples is performed. This is then contrasted with a difficult multi-class classification problem of spectra from six different powder samples that although have fairly indistinguishable features in the optical spectrum, they also possess a few discernable spectral features in the terahertz part of the spectrum. Classification is performed using a complex-valued extreme learning machine algorithm that takes into account features in both the amplitude as well as the phase of the recorded spectra. Classification speed and accuracy are contrasted with that achieved using a support vector machine classifier. The study systematically compares the classifier performance achieved after adopting different Gaussian kernels when separating amplitude and phase signatures. The two signatures are presented as feature vectors for both training and testing purposes. The study confirms the utility of complex-valued extreme learning machine algorithms for classification of the very large data sets generated with current terahertz imaging spectrometers. The classifier can take into consideration heterogeneous layers within an object as would be required within a tomographic setting and is sufficiently robust to detect patterns hidden inside noisy terahertz data sets. The proposed study opens up the opportunity for the establishment of complex-valued extreme learning machine algorithms as new chemometric tools that will assist the wider proliferation of terahertz sensing technology for chemical sensing, quality control, security screening and clinic diagnosis. Furthermore, the proposed

  6. Emission of terahertz waves in the interaction of a laser pulse with clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-07-15

    A theory of generation of terahertz radiation in the interaction of a femtosecond laser pulse with a spherical cluster is developed for the case in which the density of free electrons in the cluster plasma exceeds the critical value. The spectral, angular, and energy characteristics of the emitted terahertz radiation are investigated, as well as its spatiotemporal structure. It is shown that the directional pattern of radiation has a quadrupole structure and that the emission spectrum has a broad maximum at a frequency nearly equal to the reciprocal of the laser pulse duration. It is found that the total radiatedmore » energy depends strongly on the cluster size. Analysis of the spatiotemporal profile of the terahertz signal shows that it has a femtosecond duration and contains only two oscillation cycles.« less

  7. Terahertz Technology: A Boon to Tablet Analysis

    PubMed Central

    Wagh, M. P.; Sonawane, Y. H.; Joshi, O. U.

    2009-01-01

    The terahertz gap has a frequency ranges from ∼0.3 THz to ∼10 THz in the electromagnetic spectrum which is in between microwave and infrared. The terahertz radiations are invisible to naked eye. In comparison with x-ray they are intrinsically safe, non-destructive and non-invasive. Terahertz spectroscopy enables 3D imaging of structures and materials, and the measurement of the unique spectral fingerprints of chemical and physical forms. Terahertz radiations are produced by a dendrimer based high power terahertz source and spectroscopy technologies. It resolves many of the questions left unanswered by complementary techniques, such as optical imaging, Raman and infrared spectra. In the pharmaceutical industries it enables nondestructive, internal, chemical analysis of tablets, capsules, and other dosage forms. Tablet coatings are a major factor in drug bioavailability. Therefore tablet coatings integrity and uniformity are of crucial importance to quality. Terahertz imaging gives an unparalleled certainty about the integrity of tablet coatings and the matrix performance of tablet cores. This article demonstrates the potential of terahertz pulse imaging for the analysis of tablet coating thickness by illustrating the technique on tablets. PMID:20490288

  8. Near-Field Terahertz Transmission Imaging at 0.210 Terahertz Using a Simple Aperture Technique

    DTIC Science & Technology

    2015-10-01

    This report discusses a simple aperture useful for terahertz near-field imaging at .2010 terahertz ( lambda = 1.43 millimeters). The aperture requires...achieve a spatial resolution of lambda /7. The aperture can be scaled with the assistance of machinery found in conventional machine shops to achieve similar results using shorter terahertz wavelengths.

  9. Interferometrically enhanced sub-terahertz picosecond imaging utilizing a miniature collapsing-field-domain source

    NASA Astrophysics Data System (ADS)

    Vainshtein, Sergey N.; Duan, Guoyong; Mikhnev, Valeri A.; Zemlyakov, Valery E.; Egorkin, Vladimir I.; Kalyuzhnyy, Nikolay A.; Maleev, Nikolai A.; Näpänkangas, Juha; Sequeiros, Roberto Blanco; Kostamovaara, Juha T.

    2018-05-01

    Progress in terahertz spectroscopy and imaging is mostly associated with femtosecond laser-driven systems, while solid-state sources, mainly sub-millimetre integrated circuits, are still in an early development phase. As simple and cost-efficient an emitter as a Gunn oscillator could cause a breakthrough in the field, provided its frequency limitations could be overcome. Proposed here is an application of the recently discovered collapsing field domains effect that permits sub-THz oscillations in sub-micron semiconductor layers thanks to nanometer-scale powerfully ionizing domains arising due to negative differential mobility in extreme fields. This shifts the frequency limit by an order of magnitude relative to the conventional Gunn effect. Our first miniature picosecond pulsed sources cover the 100-200 GHz band and promise milliwatts up to ˜500 GHz. Thanks to the method of interferometrically enhanced time-domain imaging proposed here and the low single-shot jitter of ˜1 ps, our simple imaging system provides sufficient time-domain imaging contrast for fresh-tissue terahertz histology.

  10. [Development of Terahertz Imaging Technology in the Assessment of Burn Injuries].

    PubMed

    Zhu, Xinjian; He, Xuan; Wang, Pin; Gao, Dandan; Qiu, Yan; He, Qinghua; Wu, Baoming

    2016-02-01

    Terahertz waves have unique properties and advantages, which makes it gain increasing attention and applications in the biomedical field. Burns is a common clinical trauma. Since the water-sensitive and non-destructive characteristics of terahertz, terahertz imaging techniques can be used to detect burns. So far, terahertz imaging technology in the assessment of burn injuries has been developed from ex vivo to in vivo, and high-resolution images can be obtained through the gauzes and plasters. In this paper, we mainly introduces the application of terahertz imaging technology and development in the assessment of burn injuries.

  11. Role of nonlinear refraction in the generation of terahertz field pulses by light fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su

    2013-07-15

    The generation of microwave (terahertz) pulses without any envelope in a four-level quasi-resonant medium is considered. Two intense quasi-monochromatic laser fields lead to a partial upper-level population. Microwave field pulses cause the transition between these levels. For appropriately chosen scales, the evolution of the fields is shown to be described by the pseudo-spin evolution equations in a microwave field with the inclusion of nonlinear refraction caused by an adiabatic upper-level population. The evolution of terahertz field pulses is described outside the scope of the slow-envelope approximation. When a number of standard approximations are taken into account, this system of equationsmore » is shown to be equivalent to an integrable version of the generalized reduced Maxwell-Bloch equations or to the generalized three-wave mixing equations. The soliton solution found by the inverse scattering transform method is used as an example to show that nonlinear refraction leads to a strong compression of the microwave (terahertz) field soliton.« less

  12. Generating high-power short terahertz electromagnetic pulses with a multifoil radiator.

    PubMed

    Vinokurov, Nikolay A; Jeong, Young Uk

    2013-02-08

    We describe a multifoil cone radiator capable of generating high-field short terahertz pulses using short electron bunches. Round flat conducting foil plates with successively decreasing radii are stacked, forming a truncated cone with the z axis. The gaps between the foil plates are equal and filled with some dielectric (or vacuum). A short relativistic electron bunch propagates along the z axis. At sufficiently high particle energy, the energy losses and multiple scattering do not change the bunch shape significantly. When passing by each gap between the foil plates, the electron bunch emits some energy into the gap. Then, the radiation pulses propagate radially outward. For transverse electromagnetic waves with a longitudinal (along the z axis) electric field and an azimuthal magnetic field, there is no dispersion in these radial lines; therefore, the radiation pulses conserve their shapes (time dependence). At the outer surface of the cone, we have synchronous circular radiators. Their radiation field forms a conical wave. Ultrashort terahertz pulses with gigawatt-level peak power can be generated with this device.

  13. Terahertz technology for imaging and spectroscopy

    NASA Astrophysics Data System (ADS)

    Crowe, T. W.; Porterfield, D. W.; Hesler, J. L.; Bishop, W. L.; Kurtz, D. S.; Hui, K.

    2006-05-01

    The terahertz region of the electromagnetic spectrum has unique properties that make it especially useful for imaging and spectroscopic detection of concealed weapons, explosives and chemical and biological materials. However, terahertz energy is difficult to generate and detect, and this has led to a technology gap in this frequency band. Nonlinear diodes can be used to bridge this gap by translating the functionality achieved at microwave frequencies to the terahertz band. Basic building blocks include low-noise mixers, frequency multipliers, sideband generators and direct detectors. These terahertz components rely on planar Schottky diodes and recently developed integrated diode circuits make them easier to assemble and more robust. The new generation of terahertz sources and receivers requires no mechanical tuning, yet achieves high efficiency and broad bandwidth. This paper reviews the basic design of terahertz transmitters and receivers, with special emphasis on the recent development of systems that are compact, easy to use and have excellent performance.

  14. Twenty years of terahertz imaging [Invited].

    PubMed

    Mittleman, Daniel M

    2018-04-16

    The birth of terahertz imaging approximately coincides with the birth of the journal Optics Express. The 20 th anniversary of the journal is therefore an opportune moment to consider the state of progress in the field of terahertz imaging. This article discusses some of the compelling reasons that one may wish to form images in the THz range, in order to provide a perspective of how far the field has come since the early demonstrations of the mid-1990's. It then focuses on a few of the more prominent frontiers of current research, highlighting their impacts on both fundamental science and applications.

  15. Effects of chirp of pump pulses on broadband terahertz pulse spectra generated by optical rectification

    NASA Astrophysics Data System (ADS)

    Hamazaki, Junichi; Furusawa, Kentaro; Sekine, Norihiko; Kasamatsu, Akifumi; Hosako, Iwao

    2016-11-01

    The effects of the chirp of the pump pulse in broadband terahertz (THz) pulse generation by optical rectification (OR) in GaP were systematically investigated. It was found that the pre-compensation for the dispersion of GaP is important for obtaining smooth and single-peaked THz spectra as well as high power-conversion efficiency. It was also found that an excessive amount of chirp leads to distortions in THz spectra, which can be quantitatively analyzed by using a simple model. Our results highlight the importance of accurate control over the chirp of the pump pulse for generating broadband THz pulses by OR.

  16. Terahertz pulse generation by the tilted pulse front technique using an M-shaped optical system

    NASA Astrophysics Data System (ADS)

    Morita, Ken; Shiozawa, Kento; Suizu, Koji; Ishitani, Yoshihiro

    2018-05-01

    To achieve the phase matching condition in terahertz (THz) pulse generation by the tilted pulse front technique, it is necessary to rebuild the entire optical setup if the optical conditions, such as excitation wavelength, temperature of nonlinear crystal, and output THz frequency, are changed. We propose THz pulse generation by the tilted pulse front technique using an M-shaped configuration. This system allows us to change the optical conditions only by tuning a few optics and without rebuilding the entire setup. We change the excitation wavelength at a fixed radiation frequency and assess the performance of the proposed system.

  17. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference

    PubMed Central

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-01-01

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation. PMID:28468257

  18. Micro-Doppler Ambiguity Resolution for Wideband Terahertz Radar Using Intra-Pulse Interference.

    PubMed

    Yang, Qi; Qin, Yuliang; Deng, Bin; Wang, Hongqiang; You, Peng

    2017-04-29

    Micro-Doppler, induced by micro-motion of targets, is an important characteristic of target recognition once extracted via parameter estimation methods. However, micro-Doppler is usually too significant to result in ambiguity in the terahertz band because of its relatively high carrier frequency. Thus, a micro-Doppler ambiguity resolution method for wideband terahertz radar using intra-pulse interference is proposed in this paper. The micro-Doppler can be reduced several dozen times its true value to avoid ambiguity through intra-pulse interference processing. The effectiveness of this method is proved by experiments based on a 0.22 THz wideband radar system, and its high estimation precision and excellent noise immunity are verified by Monte Carlo simulation.

  19. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Sha; Jones, R. R.

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  20. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    DOE PAGES

    Li, Sha; Jones, R. R.

    2016-11-10

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective localmore » fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm« less

  1. Statistics of multiply scattered broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2003-07-25

    We describe the first measurements of the diffusion of broadband single-cycle optical pulses through a highly scattering medium. Using terahertz time-domain spectroscopy, we measure the electric field of a multiply scattered wave with a time resolution shorter than one optical cycle. This time-domain measurement provides information on the statistics of both the amplitude and phase distributions of the diffusive wave. We develop a theoretical description, suitable for broadband radiation, which adequately describes the experimental results.

  2. Diffusion and Swelling Measurements in Pharmaceutical Powder Compacts Using Terahertz Pulsed Imaging

    PubMed Central

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-01-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:1658–1667, 2015 PMID:25645509

  3. Diffusion and swelling measurements in pharmaceutical powder compacts using terahertz pulsed imaging.

    PubMed

    Yassin, Samy; Su, Ke; Lin, Hungyen; Gladden, Lynn F; Zeitler, J Axel

    2015-05-01

    Tablet dissolution is strongly affected by swelling and solvent penetration into its matrix. A terahertz-pulsed imaging (TPI) technique, in reflection mode, is introduced as a new tool to measure one-dimensional swelling and solvent ingress in flat-faced pharmaceutical compacts exposed to dissolution medium from one face of the tablet. The technique was demonstrated on three tableting excipients: hydroxypropylmethyl cellulose (HPMC), Eudragit RSPO, and lactose. Upon contact with water, HPMC initially shrinks to up to 13% of its original thickness before undergoing expansion. HPMC and lactose were shown to expand to up to 20% and 47% of their original size in 24 h and 13 min, respectively, whereas Eudragit does not undergo dimensional change. The TPI technique was used to measure the ingress of water into HPMC tablets over a period of 24 h and it was observed that water penetrates into the tablet by anomalous diffusion. X-ray microtomography was used to measure tablet porosity alongside helium pycnometry and was linked to the results obtained by TPI. Our results highlight a new application area of TPI in the pharmaceutical sciences that could be of interest in the development and quality testing of advanced drug delivery systems as well as immediate release formulations. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  4. An Overview of the Technological and Scientific Achievements of the Terahertz

    NASA Astrophysics Data System (ADS)

    Rostami, Ali; Rasooli, Hassan; Baghban, Hamed

    2011-01-01

    Due to the importance of terahertz radiation in the past several years in spectroscopy, astrophysics, and imaging techniques namely for biomedical applications (its low interference and non-ionizing characteristics, has been made to be a good candidate to be used as a powerful technique for safe, in vivo medical imaging), we decided to review of the terahertz technology and its associated science achievements. The review consists of terahertz terminology, different applications, and main components which are used for detection and generation of terahertz radiation. Also a brief theoretical study of generation and detection of terahertz pulses will be considered. Finally, the chapter will be ended by providing the usage of organic materials for generation and detection of terahertz radiation.

  5. High-power femtosecond-terahertz pulse induces a wound response in mouse skin

    PubMed Central

    Kim, Kyu-Tae; Park, Jaehun; Jo, Sung Jin; Jung, Seonghoon; Kwon, Oh Sang; Gallerano, Gian Piero; Park, Woong-Yang; Park, Gun-Sik

    2013-01-01

    Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. Although a thorough assessment to predict potential concerns has to precede before practical utilization of THz source, the biological effect of THz radiation is not yet fully understood with scant related investigations. Here, we applied a femtosecond-terahertz (fs-THz) pulse to mouse skin to evaluate non-thermal effects of THz radiation. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly mediated by transforming growth factor-beta (TGF-β) signaling pathways. We validated NFκB1- and Smad3/4-mediated transcriptional activation in fs-THz-irradiated skin by chromatin immunoprecipitation assay. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of TGF-β. These findings suggest that fs-THz radiation initiate a wound-like signal in skin with increased expression of TGF-β and activation of its downstream target genes, which perturbs the wound healing process in vivo. PMID:23907528

  6. Video-rate terahertz electric-field vector imaging

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takai, Mayuko; Takeda, Masatoshi; Sasaki, Manabu

    We present an experimental setup to dramatically reduce a measurement time for obtaining spatial distributions of terahertz electric-field (E-field) vectors. The method utilizes the electro-optic sampling, and we use a charge-coupled device to detect a spatial distribution of the probe beam polarization rotation by the E-field-induced Pockels effect in a 〈110〉-oriented ZnTe crystal. A quick rotation of the ZnTe crystal allows analyzing the terahertz E-field direction at each image position, and the terahertz E-field vector mapping at a fixed position of an optical delay line is achieved within 21 ms. Video-rate mapping of terahertz E-field vectors is likely to bemore » useful for achieving real-time sensing of terahertz vector beams, vector vortices, and surface topography. The method is also useful for a fast polarization analysis of terahertz beams.« less

  7. Ultrafast magnetization modulation induced by the electric field component of a terahertz pulse in a ferromagnetic-semiconductor thin film.

    PubMed

    Ishii, Tomoaki; Yamakawa, Hiromichi; Kanaki, Toshiki; Miyamoto, Tatsuya; Kida, Noriaki; Okamoto, Hiroshi; Tanaka, Masaaki; Ohya, Shinobu

    2018-05-02

    High-speed magnetization control of ferromagnetic films using light pulses is attracting considerable attention and is increasingly important for the development of spintronic devices. Irradiation with a nearly monocyclic terahertz pulse, which can induce strong electromagnetic fields in ferromagnetic films within an extremely short time of less than ~1 ps, is promising for damping-free high-speed coherent control of the magnetization. Here, we successfully observe a terahertz response in a ferromagnetic-semiconductor thin film. In addition, we find that a similar terahertz response is observed even in a non-magnetic semiconductor and reveal that the electric-field component of the terahertz pulse plays a crucial role in the magnetization response through the spin-carrier interactions in a ferromagnetic-semiconductor thin film. Our findings will provide new guidelines for designing materials suitable for ultrafast magnetization reversal.

  8. Terahertz control of nanotip photoemission

    NASA Astrophysics Data System (ADS)

    Wimmer, L.; Herink, G.; Solli, D. R.; Yalunin, S. V.; Echternkamp, K. E.; Ropers, C.

    2014-06-01

    The active control of matter by strong electromagnetic fields is of growing importance, with applications all across the optical spectrum from the extreme-ultraviolet to the far-infrared. In recent years, phase-stable terahertz fields have shown tremendous potential for observing and manipulating elementary excitations in solids. In the gas phase, on the other hand, driving free charges with terahertz transients provides insight into ultrafast ionization dynamics. Developing such approaches for locally enhanced terahertz fields in nanostructures will create new means to govern electron currents on the nanoscale. Here, we use single-cycle terahertz transients to demonstrate extensive control over nanotip photoelectron emission. The terahertz near-field is shown to either enhance or suppress photocurrents, with the tip acting as an ultrafast rectifying diode. We record phase-resolved sub-cycle dynamics and find spectral compression and expansion arising from electron propagation within the terahertz near-field. These interactions produce rich spectro-temporal features and offer unprecedented control over ultrashort free electron pulses for imaging and diffraction.

  9. Optimal control of quantum rings by terahertz laser pulses.

    PubMed

    Räsänen, E; Castro, A; Werschnik, J; Rubio, A; Gross, E K U

    2007-04-13

    Complete control of single-electron states in a two-dimensional semiconductor quantum-ring model is established, opening a path into coherent laser-driven single-gate qubits. The control scheme is developed in the framework of optimal-control theory for laser pulses of two-component polarization. In terms of pulse lengths and target-state occupations, the scheme is shown to be superior to conventional control methods that exploit Rabi oscillations generated by uniform circularly polarized pulses. Current-carrying states in a quantum ring can be used to manipulate a two-level subsystem at the ring center. Combining our results, we propose a realistic approach to construct a laser-driven single-gate qubit that has switching times in the terahertz regime.

  10. Investigating the use of terahertz pulsed time domain reflection imaging for the study of fabric layers of an Egyptian mummy

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Cortes, E.; Cosentino, A.; Stã¼nkel, I.; Leona, M.; Duling, N.; Mininberg, D. T.

    2011-08-01

    This paper reports the first use of terahertz time domain reflection imaging involving textiles on part of a complete human mummy, still in original wrapping. X-ray technique has been used extensively to investigate anatomical features, since X-ray pass through the wrapping. Terahertz waves, on the other hand, can penetrate into non-metallic materials and its reflection depends on the refractive index of materials at the interface, such as textiles and the air. The mummy of Kharushere (ca. 945-712 B.C.) was examined by using Terahertz time domain reflection imaging in the Egyptian galleries of The Metropolitan Museum of Art. Experimental results suggest that the Terahetz imaging is a promising technique for probing the fabric layers surrounding Egyptian mummies, although it is still very limited in its current state. In the future it could become a useful complement to CT scanning when materials with low radiographic density and contrast are being investigated

  11. FDTD-based computed terahertz wave propagation in multilayer medium structures

    NASA Astrophysics Data System (ADS)

    Tu, Wan-li; Zhong, Shun-cong; Yao, Hai-zi; Shen, Yao-chun

    2013-08-01

    The terahertz region of the electromagnetic spectrum spans the frequency range of 0.1THz~10THz, which means it sandwiches between the mid-infrared (IR) and the millimeter/ microwave. With the development and commercialization of terahertz pulsed spectroscopy (TPS) and terahertz pulsed imaging (TPI) systems, terahertz technologies have been widely used in the sensing and imaging fields. It allows high quality cross-sectional images from within scattering media to be obtained nondestructively. Characterizing the interaction of terahertz radiation with multilayer medium structures is critical for the development of nondestructive testing technology. Currently, there was much experimental investigation of using TPI for the characterization of terahertz radiation in materials (e.g., pharmaceutical tablet coatings), but there were few theoretical researches on propagation of terahertz radiation in multilayer medium structures. Finite Difference Time Domain (FDTD) algorithm is a proven method for electromagnetic scattering theory, which analyzes continuous electromagnetic problems by employing finite difference and obtains electromagnetic field value at the sampling point to approach the actual continuous solutions. In the present work, we investigated the propagation of terahertz radiation in multilayer medium structures based on FDTD method. The model of multilayer medium structures under the THz frequency plane wave incidence was established, and the reflected radiation properties were recorded and analyzed. The terahertz radiation used was broad-band in the frequency up to 2 THz. A batch of single layer coated pharmaceutical tablets, whose coating thickness in the range of 40~100μm, was computed by FDTD method. We found that the simulation results on pharmaceutical tablet coatings were in good agreement with the experimental results obtained using a commercial system (TPI imaga 2000, TeraView, Cambridge, UK) , demonstrating its usefulness in simulating and analyzing

  12. Diffraction mode terahertz tomography

    DOEpatents

    Ferguson, Bradley; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-31

    A method of obtaining a series of images of a three-dimensional object. The method includes the steps of transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a two-dimensional array of parallel rays. The optical detection is an array of detectors such as a CCD sensor.

  13. Efficient terahertz wave generation from GaP crystals pumped by chirp-controlled pulses from femtosecond photonic crystal fiber amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Jiang; Shi, Junkai; Xu, Baozhong

    2014-01-20

    A chirp-tunable femtosecond 10 W, 42 MHz photonic-crystal-fiber oscillator-amplifier system that is capable of delivering sub-60 fs light pulses at 1040 nm is used to demonstrate high-efficiency terahertz radiation generation via optical rectification in GaP crystals only a few millimeters in length. The optimization of the chirp of the fiber-laser pulses is shown to radically enhance the terahertz output, indicating one possible way to more efficiently use these extended nonlinear crystals in compact fiber-pumped terahertz radiation sources.

  14. Optimal control of the orientation and alignment of an asymmetric-top molecule with terahertz and laser pulses

    NASA Astrophysics Data System (ADS)

    Coudert, L. H.

    2018-03-01

    Quantum optimal control theory is applied to determine numerically the terahertz and nonresonant laser pulses leading, respectively, to the highest degree of orientation and alignment of the asymmetric-top H2S molecule. The optimized terahertz pulses retrieved for temperatures of zero and 50 K lead after 50 ps to an orientation with ⟨ΦZx⟩ = 0.959 73 and ⟨⟨ΦZx⟩⟩ = 0.742 30, respectively. For the zero temperature, the orientation is close to its maximum theoretical value; for the higher temperature, it is below the maximum theoretical value. The mechanism by which the terahertz pulse populates high lying rotational levels is elucidated. The 5 ps long optimized laser pulse calculated for a zero temperature leads to an alignment with ⟨ΦZy 2 ⟩ =0.944 16 and consists of several kick pulses with a duration of ≈0.1 ps. It is found that the timing of these kick pulses is such that it leads to an increase of the rotational energy of the molecule. The optimized laser pulse retrieved for a temperature of 20 K is 6 ps long and yields a lower alignment with ⟨⟨ΦZy 2 ⟩ ⟩ =0.717 20 .

  15. Terahertz time-lapse imaging of hydration in physiological tissues

    NASA Astrophysics Data System (ADS)

    Bennett, David B.; Taylor, Zachary D.; Bajwa, Neha; Tewari, Priyamvada; Maccabi, Ashkan; Sung, Shijun; Singh, Rahul S.; Culjat, Martin O.; Grundfest, Warren S.; Brown, Elliott R.

    2011-02-01

    This study describes terahertz (THz) imaging of hydration changes in physiological tissues with high water concentration sensitivity. A fast-scanning, pulsed THz imaging system (centered at 525 GHz; 125 GHz bandwidth) was utilized to acquire a 35 mm x 35 mm field-of-view with 0.5 mm x 0.5 mm pixels in less than two minutes. THz time-lapsed images were taken on three sample systems: (1) a simple binary system of water evaporating from a polypropylene towel, (2) the accumulation of fluid at the site of a sulfuric acid burn on ex vivo porcine skin, and (3) the evaporative dehydration of an ex vivo porcine cornea. The diffusion-regulating behavior of corneal tissue is elucidated, and the correlation of THz reflectivity with tissue hydration is measured using THz spectroscopy on four ex vivo corneas. We conclude that THz imaging can discern small differences in the distribution of water in physiological tissues and is a good candidate for burn and corneal imaging.

  16. High field terahertz pulse generation from plasma wakefield driven by tailored laser pulses

    NASA Astrophysics Data System (ADS)

    Chen, Zi-Yu

    2013-06-01

    A scheme to generate high field terahertz (THz) pulses by using tailored laser pulses interaction with a gas target is proposed. The laser wakefield based THz source is emitted from the asymmetric laser shape induced plasma transverse transient net currents. Particle-in-cell simulations show that THz emission with electric filed strength over 1 GV/cm can be obtained with incident laser at 1×1019 W/cm2 level, and the corresponding energy conversion efficiency is more than 10-4. The intensity scaling holds up to high field strengths. Such a source also has a broad tunability range in amplitude, frequency spectra, and temporal shape.

  17. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.

    PubMed

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-10-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30-200 μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association.

  18. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date.

    PubMed

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-Macpherson, Emma

    2012-03-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted.

  19. The potential of terahertz imaging for cancer diagnosis: A review of investigations to date

    PubMed Central

    Yu, Calvin; Fan, Shuting; Sun, Yiwen; Pickwell-MacPherson, Emma

    2012-01-01

    The terahertz region lies between the microwave and infrared regions of the electromagnetic spectrum such that it is strongly attenuated by water and very sensitive to water content. Terahertz radiation has very low photon energy and thus it does not pose any ionization hazard for biological tissues. Because of these characteristic properties, there has been an increasing interest in terahertz imaging and spectroscopy for biological applications within the last few years and more and more terahertz spectra are being reported, including spectroscopic studies of cancer. The presence of cancer often causes increased blood supply to affected tissues and a local increase in tissue water content may be observed: this acts as a natural contrast mechanism for terahertz imaging of cancer. Furthermore the structural changes that occur in affected tissues have also been shown to contribute to terahertz image contrast. This paper introduces terahertz technology and provides a short review of recent advances in terahertz imaging and spectroscopy techniques. In particular investigations relating to the potential of terahertz imaging and spectroscopy for cancer diagnosis will be highlighted. PMID:23256057

  20. DEVELOPMENT OF A 4 K STIRLING-TYPE PULSE TUBE CRYOCOOLER FOR A MOBILE TERAHERTZ DETECTION SYSTEM

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, P. E.; Gerecht, E.; Radebaugh, R.

    2010-04-09

    We discuss in this paper the design and development of a 4 K Stirling-type pulse tube cryocooler for a mobile terahertz detection system. This system integrates new heterodyne detector technology at terahertz frequencies with advancements of Stirling-type pulse tube technology that brings the advent of cooled detector sensitivities in a mobile, compact, and long duration operation system without degradation of sensitivity. To achieve this goal we reduced overall system size, input power, and temperature fluctuations and mechanical vibrations in order to maintain the detector sensitivity. The Stirling-type pulse tube cryocooler developed for this system is a hybrid design employing amore » He-4 pulse-tube cryocooler operating at 60 Hz and 2.5 MPa average pressure that precools a He-3 pulse tube cryocooler operating at 30 Hz and 1.0 MPa average pressure to achieve 4 K cooling for the terahertz receiver. The He-4 cryocooler employs stainless steel mesh regenerators for the first stage and ErPr spheres for the second stage, while the He-3 cryocooler employs stainless mesh for the first stage and ErPr spheres for the second stage with a layered rare-earth third stage regenerator. Design details and cooler performance goals are discussed.« less

  1. Simulation study of terahertz radiation generation by circularly polarized laser pulses propagating in axially magnetized plasma

    NASA Astrophysics Data System (ADS)

    Saroch, Akanksha; Jha, Pallavi

    2017-12-01

    This paper deals with a two-dimensional simulation study of terahertz radiation emission in the wake of circularly polarized laser pulses propagating in uniformly magnetized plasma, using the XOOPIC code. The external magnetic field is applied along the direction of propagation of the laser pulse. It is seen that linearly polarized terahertz radiation is emitted off-axis, along the propagation direction, in plasma. This emitted radiation is also seen to be transmitted in vacuum. Simulation studies reveal that no such radiation is generated on-axis for the given configuration.

  2. Developing terahertz imaging equation and enhancement of the resolution of terahertz images using deconvolution

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Anwar, Mehdi

    2016-04-01

    This paper introduces a novel reconstruction approach for enhancing the resolution of the terahertz (THz) images. For this purpose the THz imaging equation is derived. According to our best knowledge we are reporting the first THz imaging equation by this paper. This imaging equation is universal for THz far-field imaging systems and can be used for analyzing, describing and modeling of these systems. The geometry and behavior of Gaussian beams in far-field region imply that the FWHM of the THz beams diverge as the frequencies of the beams decrease. Thus, the resolution of the measurement decreases in lower frequencies. On the other hand, the depth of penetration of THz beams decreases as frequency increases. Roughly speaking beams in sub 1.5 THz, are transmitted into integrated circuit (IC) packages and the similar packaged objects. Thus, it is not possible to use the THz pulse with higher frequencies in order to achieve higher resolution inspection of packaged items. In this paper, after developing the 3-D THz point spread function (PSF) of the scanning THz beam and then the THz imaging equation, THz images are enhanced through deconvolution of the THz PSF and THz images. As a result, the resolution has been improved several times beyond the physical limitations of the THz measurement setup in the far-field region and sub-Nyquist images have been achieved. Particularly, MSE and SSIḾ have been increased by 27% and 50% respectively. Details as small as 0.2 mm were made visible in the THz images which originally reveals no details smaller than 2.2 mm. In other words the resolution of the images has been increased by 10 times. The accuracy of the reconstructed images was proved by high resolution X-ray images.

  3. Generation of high-field terahertz pulses in an HMQ-TMS organic crystal pumped by an ytterbium laser at 1030 nm.

    PubMed

    Rovere, Andrea; Jeong, Young-Gyun; Piccoli, Riccardo; Lee, Seung-Heon; Lee, Seung-Chul; Kwon, O-Pil; Jazbinsek, Mojca; Morandotti, Roberto; Razzari, Luca

    2018-02-05

    We present the generation of high-peak-electric-field terahertz pulses via collinear optical rectification in a 2-(4-hydroxy-3-methoxystyryl)-1-methilquinolinium-2,4,6-trimethylbenzenesulfonate (HMQ-TMS) organic crystal. The crystal is pumped by an amplified ytterbium laser system, emitting 170-fs-long pulses centered at 1030 nm. A terahertz peak electric field greater than 200 kV/cm is obtained for 420 µJ of optical pump energy, with an energy conversion efficiency of 0.26% - about two orders of magnitude higher than in common inorganic crystals collinearly pumped by amplified femtosecond lasers. An open-aperture Z-scan measurement performed on an n-doped InGaAs thin film using such terahertz source shows a nonlinear increase in the terahertz transmission of about 2.2 times. Our findings demonstrate the potential of this terahertz generation scheme, based on ytterbium laser technology, as a simple and efficient alternative to the existing intense table-top terahertz sources. In particular, we show that it can be readily used to explore nonlinear effects at terahertz frequencies.

  4. Homogeneous spectral broadening of pulsed terahertz quantum cascade lasers by radio frequency modulation.

    PubMed

    Wan, W J; Li, H; Cao, J C

    2018-01-22

    The authors present an experimental investigation of radio frequency modulation on pulsed terahertz quantum cascade lasers (QCLs) emitting around 4.3 THz. The QCL chip used in this work is based on a resonant phonon design which is able to generate a 1.2 W peak power at 10 K from a 400-µm-wide and 4-mm-long laser with a single plasmon waveguide. To enhance the radio frequency modulation efficiency and significantly broaden the terahertz spectra, the QCLs are also processed into a double-metal waveguide geometry with a Silicon lens out-coupler to improve the far-field beam quality. The measured beam patterns of the double-metal QCL show a record low divergence of 2.6° in vertical direction and 2.4° in horizontal direction. Finally we perform the inter-mode beat note and terahertz spectra measurements for both single plasmon and double-metal QCLs working in pulsed mode. Since the double-metal waveguide is more suitable for microwave signal transmission, the radio frequency modulation shows stronger effects on the spectral broadening for the double-metal QCL. Although we are not able to achieve comb operation in this work for the pulsed lasers due to the large phase noise, the homogeneous spectral broadening resulted from the radio frequency modulation can be potentially used for spectroscopic applications.

  5. Contrast improvement of terahertz images of thin histopathologic sections.

    PubMed

    Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio

    2010-12-03

    We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast.

  6. Coherent two-dimensional terahertz-terahertz-Raman spectroscopy.

    PubMed

    Finneran, Ian A; Welsch, Ralph; Allodi, Marco A; Miller, Thomas F; Blake, Geoffrey A

    2016-06-21

    We present 2D terahertz-terahertz-Raman (2D TTR) spectroscopy, the first technique, to our knowledge, to interrogate a liquid with multiple pulses of terahertz (THz) light. This hybrid approach isolates nonlinear signatures in isotropic media, and is sensitive to the coupling and anharmonicity of thermally activated THz modes that play a central role in liquid-phase chemistry. Specifically, by varying the timing between two intense THz pulses, we control the orientational alignment of molecules in a liquid, and nonlinearly excite vibrational coherences. A comparison of experimental and simulated 2D TTR spectra of bromoform (CHBr3), carbon tetrachloride (CCl4), and dibromodichloromethane (CBr2Cl2) shows previously unobserved off-diagonal anharmonic coupling between thermally populated vibrational modes.

  7. Contrast improvement of terahertz images of thin histopathologic sections

    PubMed Central

    Formanek, Florian; Brun, Marc-Aurèle; Yasuda, Akio

    2011-01-01

    We present terahertz images of 10 μm thick histopathologic sections obtained in reflection geometry with a time-domain spectrometer, and demonstrate improved contrast for sections measured in paraffin with water. Automated segmentation is applied to the complex refractive index data to generate clustered terahertz images distinguishing cancer from healthy tissues. The degree of classification of pixels is then evaluated using registered visible microscope images. Principal component analysis and propagation simulations are employed to investigate the origin and the gain of image contrast. PMID:21326635

  8. Terahertz NDE for Metallic Surface Roughness Evaluation

    NASA Technical Reports Server (NTRS)

    Madaras, Eric I.; Anastasi, Robert F.

    2006-01-01

    Metallic surface roughness in a nominally smooth surface is a potential indication of material degradation or damage. When the surface is coated or covered with an opaque dielectric material, such as paint or insulation, then inspecting for surface changes becomes almost impossible. Terahertz NDE is a method capable of penetrating the coating and inspecting the metallic surface. The terahertz frequency regime is between 100 GHz and 10 THz and has a free space wavelength of 300 micrometers at 1 THz. Pulsed terahertz radiation, can be generated and detected using optical excitation of biased semiconductors with femtosecond laser pulses. The resulting time domain signal is 320 picoseconds in duration. In this application, samples are inspected with a commercial terahertz NDE system that scans the sample and generates a set of time-domain signals that are a function of the backscatter from the metallic surface. Post processing is then performed in the time and frequency domains to generate C-scan type images that show scattering effects due to surface non-uniformity.

  9. High-energy electron emission from metallic nano-tips driven by intense single-cycle terahertz pulses

    PubMed Central

    Li, Sha; Jones, R. R.

    2016-01-01

    Electrons ejected from atoms and subsequently driven to high energies in strong laser fields enable techniques from attosecond pulse generation to imaging with rescattered electrons. Analogous processes govern strong-field electron emission from nanostructures, where long wavelength radiation and large local field enhancements hold the promise for producing electrons with substantially higher energies, allowing for higher resolution time-resolved imaging. Here we report on the use of single-cycle terahertz pulses to drive electron emission from unbiased nano-tips. Energies exceeding 5 keV are observed, substantially greater than previously attained at higher drive frequencies. Despite large differences in the magnitude of the respective local fields, we find that the maximum electron energies are only weakly dependent on the tip radius, for 10 nm

  10. Screening mail for powders using terahertz technology

    NASA Astrophysics Data System (ADS)

    Kemp, Mike

    2011-11-01

    Following the 2001 Anthrax letter attacks in the USA, there has been a continuing interest in techniques that can detect or identify so-called 'white powder' concealed in envelopes. Electromagnetic waves (wavelengths 100-500 μm) in the terahertz frequency range penetrate paper and have short enough wavelengths to provide good resolution images; some materials also have spectroscopic signatures in the terahertz region. We report on an experimental study into the use of terahertz imaging and spectroscopy for mail screening. Spectroscopic signatures of target powders were measured and, using a specially designed test rig, a number of imaging methods based on reflection, transmission and scattering were investigated. It was found that, contrary to some previous reports, bacterial spores do not appear to have any strong spectroscopic signatures which would enable them to be identified. Imaging techniques based on reflection imaging and scattering are ineffective in this application, due to the similarities in optical properties between powders of interest and paper. However, transmission imaging using time-of-flight of terahertz pulses was found to be a very simple and sensitive method of detecting small quantities (25 mg) of powder, even in quite thick envelopes. An initial feasibility study indicates that this method could be used as the basis of a practical mail screening system.

  11. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses

    PubMed Central

    Watanabe, Shinichi; Yasumatsu, Naoya; Oguchi, Kenichi; Takeda, Masatoshi; Suzuki, Takeshi; Tachizaki, Takehiro

    2013-01-01

    We have developed a real-time terahertz time-domain polarization analyzer by using 80-MHz repetition-rate femtosecond laser pulses. Our technique is based on the spinning electro-optic sensor method, which we recently proposed and demonstrated by using a regenerative amplifier laser system; here we improve the detection scheme in order to be able to use it with a femtosecond laser oscillator with laser pulses of a much higher repetition rate. This improvement brings great advantages for realizing broadband, compact and stable real-time terahertz time-domain polarization measurement systems for scientific and industrial applications. PMID:23478599

  12. Strong sub-terahertz surface waves generated on a metal wire by high-intensity laser pulses

    PubMed Central

    Tokita, Shigeki; Sakabe, Shuji; Nagashima, Takeshi; Hashida, Masaki; Inoue, Shunsuke

    2015-01-01

    Terahertz pulses trapped as surface waves on a wire waveguide can be flexibly transmitted and focused to sub-wavelength dimensions by using, for example, a tapered tip. This is particularly useful for applications that require high-field pulses. However, the generation of strong terahertz surface waves on a wire waveguide remains a challenge. Here, ultrafast field propagation along a metal wire driven by a femtosecond laser pulse with an intensity of 1018 W/cm2 is characterized by femtosecond electron deflectometry. From experimental and numerical results, we conclude that the field propagating at the speed of light is a half-cycle transverse-magnetic surface wave excited on the wire and a considerable portion of the kinetic energy of laser-produced fast electrons can be transferred to the sub-surface wave. The peak electric field strength of the surface wave and the pulse duration are estimated to be 200 MV/m and 7 ps, respectively. PMID:25652694

  13. Novel devices and systems for terahertz spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Wang, Kanglin

    This doctoral thesis documents my research on novel devices and systems for terahertz (THz) spectroscopy and imaging. The research is particularly focused on the manipulation of THz radiation, including subwavelength concentration and low-loss wave guiding. One of the major obstacles for THz imaging is the poor spatial resolution due to the diffraction of the long-wavelength light source. To break this restriction, we build a THz near-field microscopy system by combining apertureless near-field scanning optical microscopy (ANSOM) with terahertz time-domain spectroscopy (THz-TDS). The experimental result indicates a sub-wavelength spatial resolution of about 10 micron. Abnormal frequency response of the ANSOM probe tip is observed, and a dipole antenna model is developed to explain the bandwidth reduction of the detected THz pulses. We also observe and characterize the THz wave propagation on the near-field probe in ANSOM. These studies not only demonstrate the feasibility of ANSOM in the THz frequency range, but also provide fundamental insights into the near-field microscopy in general, such as the broadband compatibility, the propagation effects and the antenna effects. Motivated by our study of the propagation effects in THz ANSOM, we characterize the guided mode of THz pulses on a bare metal wire by directly measuring the spatial profile of electric field of the mode, and find that the wire structure can be used to guide THz waves with outstanding performance. This new broadband THz waveguide exhibits very small dispersion, extremely low attenuation and remarkable structural simplicity. These features make it especially suitable for use in THz sensing and imaging systems. The first THz endoscope is demonstrated based on metal wire waveguides. To improve the input coupling efficiency of such waveguides, we develop a photoconductive antenna with radial symmetry which can generate radially polarized THz radiation matching the waveguide mode. Through THz

  14. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    NASA Astrophysics Data System (ADS)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    within the THz spectral region providing an additional benefit. His review describes the principle, characteristics, and applications of terahertz molecular imaging, where the use of nanoparticle probes allows dramatically enhanced sensitivity. Jiaguang Han and Weili Zhang and colleagues in China, Saudi Arabia, Japan and the US report exciting developments for optoelectronics [11]. They describe work on plasmon-induced transparency (PIT), an analogue of electromagnetically induced transparency (EIT) where interference leads to a sharp transparency window that may be useful for nonlinear and slow-light devices, optical switching, pulse delay, and storage for optical information processing. While PIT has advantages over the cumbersome experimental systems required for EIT, it has so far been constrained to very narrow band operation. Now Zhang and colleagues present the simulation, implementation, and measurement of a broadband PIT metamaterial functioning across a frequency range greater than 0.40 THz in the terahertz regime. 'We can foresee a historic breakthrough for science and technology through terahertz research,' concluded Masayoshi Tonouchi in his review over five years ago as momentum in the field was mounting [12]. He added, 'It is also noteworthy that THz research is built on many areas of science and the coordination of a range of disciplines is giving birth to a new science.' With the inherently multidisciplinary nature of nanotechnology research it is not so strange to see the marriage of the two fields form such a fruitful partnership, as this special section highlights. References [1] Williams B S, Kumar S, Hu Q and Reno J L 2006 High-power terahertz quantum-cascade lasers Electron. Lett. 42 89-91 [2] Köhler R et al 2002 Terahertz semiconductor-heterostructure laser Nature 417 156-9 [3] Mittendorff M, Xu M, Dietz R J B, K¨unzel H, Sartorius B, Schneider H, Helm M and Winnerl S 2013 Large area photoconductive THz emitter for 1.55 μm excitation based on

  15. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation

    PubMed Central

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Zeitler, J Axel

    2015-01-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30–200 μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100 μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 The Authors. Journal of Pharmaceutical Sciences published by Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377–3385, 2015 PMID:26284354

  16. Quantifying Pharmaceutical Film Coating with Optical Coherence Tomography and Terahertz Pulsed Imaging: An Evaluation.

    PubMed

    Lin, Hungyen; Dong, Yue; Shen, Yaochun; Axel Zeitler, J

    2015-10-01

    Spectral domain optical coherence tomography (OCT) has recently attracted a lot of interest in the pharmaceutical industry as a fast and non-destructive modality for quantification of thin film coatings that cannot easily be resolved with other techniques. Because of the relative infancy of this technique, much of the research to date has focused on developing the in-line measurement technique for assessing film coating thickness. To better assess OCT for pharmaceutical coating quantification, this paper evaluates tablets with a range of film coating thickness measured using OCT and terahertz pulsed imaging (TPI) in an off-line setting. In order to facilitate automated coating quantification for film coating thickness in the range of 30-200μm, an algorithm that uses wavelet denoising and a tailored peak finding method is proposed to analyse each of the acquired A-scan. Results obtained from running the algorithm reveal an increasing disparity between the TPI and OCT measured intra-tablet variability when film coating thickness exceeds 100μm. The finding further confirms that OCT is a suitable modality for characterising pharmaceutical dosage forms with thin film coatings, whereas TPI is well suited for thick coatings. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 104:3377-3385, 2015. Copyright © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  17. Digitally controlled chirped pulse laser for sub-terahertz-range fiber structure interrogation.

    PubMed

    Chen, Zhen; Hefferman, Gerald; Wei, Tao

    2017-03-01

    This Letter reports a sweep velocity-locked laser pulse generator controlled using a digital phase-locked loop (DPLL) circuit. This design is used for the interrogation of sub-terahertz-range fiber structures for sensing applications that require real-time data collection with millimeter-level spatial resolution. A distributed feedback laser was employed to generate chirped laser pulses via injection current modulation. A DPLL circuit was developed to lock the optical frequency sweep velocity. A high-quality linearly chirped laser pulse with a frequency excursion of 117.69 GHz at an optical communication band was demonstrated. The system was further adopted to interrogate a continuously distributed sub-terahertz-range fiber structure (sub-THz-fs) for sensing applications. A strain test was conducted in which the sub-THz-fs showed a linear response to longitudinal strain change with predicted sensitivity. Additionally, temperature testing was conducted in which a heat source was used to generate a temperature distribution along the fiber structure to demonstrate its distributed sensing capability. A Gaussian temperature profile was measured using the described system and tracked in real time, as the heat source was moved.

  18. Terahertz spectroscopic investigations of leather in terahertz wave range

    NASA Astrophysics Data System (ADS)

    Song, Mei-jing; Li, Jiu-sheng

    2012-03-01

    Pulsed THz time-domain spectroscopy is a coherent technique, in which both the amplitude and the phase of a THz pulse are measured. Recently, material characterization using THz spectroscopy has been applied to biochemicals, pharmaceuticals, polymers and semiconductors and has given us important information. Moreover, THz imaging has progressed and is expected to be applicable for the identification of narcotics and explosives. The most important and characteristic point of THz spectroscopy is said to be its ability to observe intermolecular vibrations in contrast to infrared spectroscopy (IR), which observes intramolecular vibrations. Coherent detection enables direct calculations of both the imaginary and the real parts of the refractive index without using the Kramers-Kronig relations. Terahertz wave spectroscopy has been used to study the properties and absorption spectra characteristic of materials. In this paper, the spectral characteristics of cow skin, pig skin sheep skin, horse skin and deer skin have been measured with terahertz time-domain spectroscopy in the range of 0.1~2.0THz. The results show that THz-TDS technology provides an important tool for quality analysis and detection of leathers.

  19. Non-destructive terahertz imaging of illicit drugs using spectral fingerprints

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Watanabe, Yuuki; Inoue, Hiroyuki

    2003-10-01

    The absence of non-destructive inspection techniques for illicit drugs hidden in mail envelopes has resulted in such drugs being smuggled across international borders freely. We have developed a novel basic technology for terahertz imaging, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. The spatial distributions of the targets are obtained from terahertz multispectral transillumination images, using absorption spectra measured with a tunable terahertz-wave source. The samples we used were methamphetamine and MDMA, two of the most widely consumed illegal drugs in Japan, and aspirin as a reference.

  20. Terahertz photonic crystals

    NASA Astrophysics Data System (ADS)

    Jian, Zhongping

    This thesis describes the study of two-dimensional photonic crystals slabs with terahertz time domain spectroscopy. In our study we first demonstrate the realization of planar photonic components to manipulate terahertz waves, and then characterize photonic crystals using terahertz pulses. Photonic crystal slabs at the scale of micrometers are first designed and fabricated free of defects. Terahertz time domain spectrometer generates and detects the electric fields of single-cycle terahertz pulses. By putting photonic crystals into waveguide geometry, we successfully demonstrate planar photonic components such as transmission filters, reflection frequency-selective filters, defects modes as well as superprisms. In the characterization study of out-of-plane properties of photonic crystal slabs, we observe very strong dispersion at low frequencies, guided resonance modes at middle frequencies, and a group velocity anomaly at high frequencies. We employ Finite Element Method and Finite-Difference Time-Domain method to simulate the photonic crystals, and excellent agreement is achieved between simulation results and experimental results.

  1. High-resolution emission spectra of pulsed terahertz quantum-cascade lasers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ikonnikov, A. V., E-mail: antikon@ipm.sci-nnov.ru; Antonov, A. V.; Lastovkin, A. A.

    The spectra of pulsed terahertz quantum-cascade lasers were measured with high spectral resolution. The characteristic line width at half maximum was 0.01 cm{sup -1}; it is controlled by laser temperature variations during the supply voltage pulse. It was shown that an increase in the laser temperature leads to a decrease in the emission frequency, which is caused by an increase in the effective refractive index of the active region. It was also found that a decrease in the supply voltage results in a decrease in the emission frequency, which is caused by a change in the energy of diagonal transitionsmore » between lasing levels.« less

  2. Design of a Multistep Phase Mask for High-Energy Terahertz Pulse Generation by Optical Rectification

    NASA Astrophysics Data System (ADS)

    Avetisyan, Y.; Makaryan, A.; Tadevosyan, V.; Tonouchi, M.

    2017-12-01

    A new scheme for generating high-energy terahertz (THz) pulses based on using a multistep phase mask (MSPM) is suggested and analyzed. The mask is placed on the entrance surface of the nonlinear optical (NLO) crystal eliminating the necessity of the imaging optics. In contrast to the contact grating method, introduction of large amounts of angular dispersion is avoided. The operation principle of the suggested scheme is based on the fact that the MSPM splits a single input beam into many smaller time-delayed "beamlets," which together form a discretely tilted-front laser pulse in NLO crystal. The analysis of THz-pulse generation in ZnTe and lithium niobate (LN) crystals shows that application of ZnTe crystal is more preferable, especially when long-wavelength pump sources are used. The dimensions of the mask's steps required for high-energy THz-pulse generation in ZnTe and LN crystals are calculated. The optimal number of steps is estimated, taking into account individual beamlet's spatial broadening and problems related to the mask fabrication. The proposed method is a promising way to develop high-energy, monolithic, and alignment-free THz-pulse sources.

  3. One-dimensional terahertz imaging of surfactant-stabilized dodecane-brine emulsion

    NASA Astrophysics Data System (ADS)

    Nickel, Daniel Vincent

    Terahertz line-images of surfactant-stabilized dodecane(C12H 26)-brine emulsions are obtained by translating the emulsified region through the focus of a terahertz time-domain spectrometer, capturing a time-domain waveform at each vertical position. From these images, relative dodecane content, emulsion size, and stability can be extracted to evaluate the efficacy of the surfactant in solvating the dodecane. In addition, the images provide insight into the dynamics of concentrated emulsions after mixing.

  4. Removing the echoes from terahertz pulse reflection system and sample

    NASA Astrophysics Data System (ADS)

    Liu, Haishun; Zhang, Zhenwei; Zhang, Cunlin

    2018-01-01

    Due to the echoes both from terahertz (THz) pulse reflection system and sample, the THz primary pulse will be distorted. The system echoes include two types. One preceding the main peak probably is caused by ultrafast laser pulse and the other at the back of the primary pulse is caused by the Fabry-Perot (F-P) etalon effect of detector. We attempt to remove the corresponding echoes by using two kinds of deconvolution. A Si wafer of 400μm was selected as the tested sample. Firstly, the method of double Gaussian filter (DGF) decnvolution was used to remove the systematic echoes, and then another deconvolution technique was employed to eliminate the two obvious echoes of the sample. The ultimate results indicated: although the combination of two deconvolution techniques could not entirely remove the echoes of sample and system, the echoes were largely reduced.

  5. Polarization control of terahertz waves generated by circularly polarized few-cycle laser pulses

    NASA Astrophysics Data System (ADS)

    Song, Liwei; Bai, Ya; Xu, Rongjie; Li, Chuang; Liu, Peng; Li, Ruxin; Xu, Zhizhan

    2013-12-01

    We demonstrate the generation and control of elliptically polarized terahertz (THz) waves from air plasma produced by circularly polarized few-cycle laser pulses. Experimental and calculated results reveal that electric field asymmetry in rotating directions of the circularly polarized few-cycle laser pulses produces the enhanced broadband transient currents, and the phase difference of perpendicular laser field components is partially inherited in the generation process of THz emission. The ellipticity of the THz emission and its major axis direction are all-optically controlled by the duration and carrier-envelope phase of the laser pulses.

  6. Ultrafast terahertz control of extreme tunnel currents through single atoms on a silicon surface

    NASA Astrophysics Data System (ADS)

    Jelic, Vedran; Iwaszczuk, Krzysztof; Nguyen, Peter H.; Rathje, Christopher; Hornig, Graham J.; Sharum, Haille M.; Hoffman, James R.; Freeman, Mark R.; Hegmann, Frank A.

    2017-06-01

    Ultrafast control of current on the atomic scale is essential for future innovations in nanoelectronics. Extremely localized transient electric fields on the nanoscale can be achieved by coupling picosecond duration terahertz pulses to metallic nanostructures. Here, we demonstrate terahertz scanning tunnelling microscopy (THz-STM) in ultrahigh vacuum as a new platform for exploring ultrafast non-equilibrium tunnelling dynamics with atomic precision. Extreme terahertz-pulse-driven tunnel currents up to 107 times larger than steady-state currents in conventional STM are used to image individual atoms on a silicon surface with 0.3 nm spatial resolution. At terahertz frequencies, the metallic-like Si(111)-(7 × 7) surface is unable to screen the electric field from the bulk, resulting in a terahertz tunnel conductance that is fundamentally different than that of the steady state. Ultrafast terahertz-induced band bending and non-equilibrium charging of surface states opens new conduction pathways to the bulk, enabling extreme transient tunnel currents to flow between the tip and sample.

  7. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    PubMed

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  8. Transmission mode terahertz computed tomography

    DOEpatents

    Ferguson, Bradley Stuart; Wang, Shaohong; Zhang, Xi-Cheng

    2006-10-10

    A method of obtaining a series of images of a three-dimensional object by transmitting pulsed terahertz (THz) radiation through the entire object from a plurality of angles, optically detecting changes in the transmitted THz radiation using pulsed laser radiation, and constructing a plurality of imaged slices of the three-dimensional object using the detected changes in the transmitted THz radiation. The THz radiation is transmitted through the object as a scanning spot. The object is placed within the Rayleigh range of the focused THz beam and a focusing system is used to transfer the imaging plane from adjacent the object to a desired distance away from the object. A related system is also disclosed.

  9. Nonlinear terahertz coherent excitation of vibrational modes of liquids.

    PubMed

    Allodi, Marco A; Finneran, Ian A; Blake, Geoffrey A

    2015-12-21

    We report the first coherent excitation of intramolecular vibrational modes via the nonlinear interaction of a TeraHertz (THz) light field with molecular liquids. A terahertz-terahertz-Raman pulse sequence prepares the coherences with a broadband, high-energy, (sub)picosecond terahertz pulse, that are then measured in a terahertz Kerr effect spectrometer via phase-sensitive, heterodyne detection with an optical pulse. The spectrometer reported here has broader terahertz frequency coverage, and an increased sensitivity relative to previously reported terahertz Kerr effect experiments. Vibrational coherences are observed in liquid diiodomethane at 3.66 THz (122 cm(-1)), and in carbon tetrachloride at 6.50 THz (217 cm(-1)), in exact agreement with literature values of those intramolecular modes. This work opens the door to 2D spectroscopies, nonlinear in terahertz field, that can study the dynamics of condensed-phase molecular systems, as well as coherent control at terahertz frequencies.

  10. In vivo terahertz imaging of rat skin burns

    NASA Astrophysics Data System (ADS)

    Tewari, Priyamvada; Kealey, Colin P.; Bennett, David B.; Bajwa, Neha; Barnett, Kelli S.; Singh, Rahul S.; Culjat, Martin O.; Stojadinovic, Alexander; Grundfest, Warren S.; Taylor, Zachary D.

    2012-04-01

    A reflective, pulsed terahertz (THz) imaging system was used to acquire high-resolution (d10-90/ λ~1.925) images of deep, partial thickness burns in a live rat. The rat's abdomen was burned with a brass brand heated to ~220°C and pressed against the skin with contact pressure for ~10 sec. The burn injury was imaged beneath a Mylar window every 15 to 30 min for up to 7 h. Initial images display an increase in local water concentration of the burned skin as evidenced by a marked increase in THz reflectivity, and this likely correlates to the post-injury inflammatory response. After ~1 h the area of increased reflectivity consolidated to the region of skin that had direct contact with the brand. Additionally, a low reflecting ring of tissue could be observed surrounding the highly reflective burned tissue. We hypothesize that these regions of increased and decreased reflectivity correlate to the zones of coagulation and stasis that are the classic foundation of burn wound histopathology. While further investigations are necessary to confirm this hypothesis, if true, it likely represents the first in vivo THz images of these pathologic zones and may represent a significant step forward in clinical application of THz technology.

  11. Analysis of 3D Prints by X-ray Computed Microtomography and Terahertz Pulsed Imaging.

    PubMed

    Markl, Daniel; Zeitler, J Axel; Rasch, Cecilie; Michaelsen, Maria Høtoft; Müllertz, Anette; Rantanen, Jukka; Rades, Thomas; Bøtker, Johan

    2017-05-01

    A 3D printer was used to realise compartmental dosage forms containing multiple active pharmaceutical ingredient (API) formulations. This work demonstrates the microstructural characterisation of 3D printed solid dosage forms using X-ray computed microtomography (XμCT) and terahertz pulsed imaging (TPI). Printing was performed with either polyvinyl alcohol (PVA) or polylactic acid (PLA). The structures were examined by XμCT and TPI. Liquid self-nanoemulsifying drug delivery system (SNEDDS) formulations containing saquinavir and halofantrine were incorporated into the 3D printed compartmentalised structures and in vitro drug release determined. A clear difference in terms of pore structure between PVA and PLA prints was observed by extracting the porosity (5.5% for PVA and 0.2% for PLA prints), pore length and pore volume from the XμCT data. The print resolution and accuracy was characterised by XμCT and TPI on the basis of the computer-aided design (CAD) models of the dosage form (compartmentalised PVA structures were 7.5 ± 0.75% larger than designed; n = 3). The 3D printer can reproduce specific structures very accurately, whereas the 3D prints can deviate from the designed model. The microstructural information extracted by XμCT and TPI will assist to gain a better understanding about the performance of 3D printed dosage forms.

  12. Elliptically polarized terahertz radiation from a chiral oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takeda, R.; Kida, N., E-mail: kida@k.u-tokyo.ac.jp; Sotome, M.

    2015-09-28

    Polarization control of terahertz wave is a challenging subject in terahertz science and technology. Here, we report a simple method to control polarization state of the terahertz wave in terahertz generation process. At room temperature, terahertz radiation from a noncentrosymmetric and chiral oxide, sillenite Bi{sub 12}GeO{sub 20}, is observed by the irradiation of linearly polarized femtosecond laser pulses at 800 nm. The polarization state of the emitted terahertz wave is found to be elliptic with an ellipticity of ∼0.37 ± 0.10. Furthermore, the ellipticity was altered to a nearly zero (∼0.01 ± 0.01) by changing the polarization of the incident linearly polarized femtosecond laser pulses.more » Such a terahertz radiation characteristic is attributable to variation of the polarization state of the emitted terahertz waves, which is induced by retardation due to the velocity mismatch between the incident femtosecond laser pulse and generated terahertz wave and by the polarization tilting due to the optical activity at 800 nm.« less

  13. Two-dimensional tomographic terahertz imaging by homodyne self-mixing.

    PubMed

    Mohr, Till; Breuer, Stefan; Giuliani, G; Elsäßer, Wolfgang

    2015-10-19

    We realize a compact two-dimensional tomographic terahertz imaging experiment involving only one photoconductive antenna (PCA) simultaneously serving as a transmitter and receiver of the terahertz radiation. A hollow-core Teflon cylinder filled with α-Lactose monohydrate powder is studied at two terahertz frequencies, far away and at a specific absorption line of the powder. This sample is placed between the antenna and a chopper wheel, which serves as back reflector of the terahertz radiation into the PCA. Amplitude and phase information of the continuous-wave (CW) terahertz radiation are extracted from the measured homodyne self-mixing (HSM) signal after interaction with the cylinder. The influence of refraction is studied by modeling the set-up utilizing ZEMAX and is discussed by means of the measured 1D projections. The tomographic reconstruction by using the Simultaneous Algebraic Reconstruction Technique (SART) allows to identify both object geometry and α-Lactose filling.

  14. Amplification of terahertz pulses in gases beyond thermodynamic equilibrium

    NASA Astrophysics Data System (ADS)

    Schwaab, G. W.; Schroeck, K.; Havenith, M.

    2007-03-01

    In Ebbinghaus [Plasma Sources Sci. Technol. 15, 72 (2006)] we reported terahertz time-domain spectroscopy in a plasma at low pressure, we observed a simultaneous absorption and amplification process within each single rotational transition. Here we show that this observation is a direct consequence of the short interaction time of the pulsed terahertz radiation with the plasma, which is shorter than the average collision time between the molecules. Thus, during the measurement time the molecular states may be considered entangled. Solution of the time-dependent Schrödinger equation yields a linear term that may be neglected for long observation times, large frequencies, or nonentangled states. We determine the restrictions for the observation of this effect and calculate the spectrum of a simple diatomic molecule. Using this model we are able to explain the spectral features showing a change from emission to absorption as observed previously. In addition we find that the amplification and absorption do not follow the typical Lambert-Beer exponential law but an approximate square law.

  15. High-performance sub-terahertz transmission imaging system for food inspection

    PubMed Central

    Ok, Gyeongsik; Park, Kisang; Chun, Hyang Sook; Chang, Hyun-Joo; Lee, Nari; Choi, Sung-Wook

    2015-01-01

    Unlike X-ray systems, a terahertz imaging system can distinguish low-density materials in a food matrix. For applying this technique to food inspection, imaging resolution and acquisition speed ought to be simultaneously enhanced. Therefore, we have developed the first continuous-wave sub-terahertz transmission imaging system with a polygonal mirror. Using an f-theta lens and a polygonal mirror, beam scanning is performed over a range of 150 mm. For obtaining transmission images, the line-beam is incorporated with sample translation. The imaging system demonstrates that a pattern with 2.83 mm line-width at 210 GHz can be identified with a scanning speed of 80 mm/s. PMID:26137392

  16. Reversed Cherenkov emission of terahertz waves from an ultrashort laser pulse in a sandwich structure with nonlinear core and left-handed cladding.

    PubMed

    Bakunov, M I; Mikhaylovskiy, R V; Bodrov, S B; Luk'yanchuk, B S

    2010-01-18

    We propose a scheme for an experimental verification of the reversed Cherenkov effect in left-handed media. The scheme uses optical-to-terahertz conversion in a planar sandwichlike structure that consists of a nonlinear core cladded with a material that exhibits left-handedness at terahertz frequencies. The focused into a line femtosecond laser pulse propagates in the core and emits Cherenkov wedge of terahertz waves in the cladding. We developed a theory that describes terahertz generation in such a structure and calculated spatial distribution of the generated terahertz field, its energy spectrum, and optical-to-terahertz conversion efficiency. The proposed structure can be a useful tool for characterization of the electromagnetic properties of metamaterials in the terahertz frequency range.

  17. Evaluation of skin moisturizer effects using terahertz time domain imaging

    NASA Astrophysics Data System (ADS)

    Martinez-Meza, L. H.; Rojas-Landeros, S. C.; Castro-Camus, E.; Alfaro-Gomez, M.

    2018-02-01

    We use terahertz time domain imaging for the evaluation of the effects of skin-moisturizers in vivo. We evaluate three principal substances used in commercial moisturizers: glycerin, hyaluronic acid and lanolin. We image the interaction of the forearm with each of the substances taking terahertz spectra at sequential times. With this, we are able to measure the effect of the substances on the hydration level of the skin in time, determining the feasibility of using THz imaging for the evaluation of the products and their effects on the hydration levels of the skin.

  18. Model for a pulsed terahertz quantum cascade laser under optical feedback.

    PubMed

    Agnew, Gary; Grier, Andrew; Taimre, Thomas; Lim, Yah Leng; Bertling, Karl; Ikonić, Zoran; Valavanis, Alexander; Dean, Paul; Cooper, Jonathan; Khanna, Suraj P; Lachab, Mohammad; Linfield, Edmund H; Davies, A Giles; Harrison, Paul; Indjin, Dragan; Rakić, Aleksandar D

    2016-09-05

    Optical feedback effects in lasers may be useful or problematic, depending on the type of application. When semiconductor lasers are operated using pulsed-mode excitation, their behavior under optical feedback depends on the electronic and thermal characteristics of the laser, as well as the nature of the external cavity. Predicting the behavior of a laser under both optical feedback and pulsed operation therefore requires a detailed model that includes laser-specific thermal and electronic characteristics. In this paper we introduce such a model for an exemplar bound-to-continuum terahertz frequency quantum cascade laser (QCL), illustrating its use in a selection of pulsed operation scenarios. Our results demonstrate significant interplay between electro-optical, thermal, and feedback phenomena, and that this interplay is key to understanding QCL behavior in pulsed applications. Further, our results suggest that for many types of QCL in interferometric applications, thermal modulation via low duty cycle pulsed operation would be an alternative to commonly used adiabatic modulation.

  19. A comparison of terahertz-pulsed imaging with transverse microradiography and microhardness to measure mineral changes in enamel after treatment with fluoride dentifrices

    NASA Astrophysics Data System (ADS)

    Churchley, David; Lippert, Frank; Lynch, Richard; Alton, Jesse; Gonzalez-Cabezas, C.; Eder, J.

    2009-02-01

    The aim of this study was to determine the ability of Terahertz Pulsed Imaging (TPI) to measure mineral changes in enamel lesions during de/remineralisation studies. A comparison was made between transverse microradiography (TMR) and microhardness measurements. Artificial lesions were formed in bovine enamel using a solution of 0.1 M lactic acid (pH 5.0) containing 0.2% Carbopol C907 and 50% saturated with hydroxyapatite. The 20 day experimental protocol consisted of four, one-minute treatment periods with dentifrices containing 10, 675, 1385 and 2700ppm fluoride, a 4 h/day acid challenge, and for the remaining time specimens were stored in a 50:50 pooled human / artificial saliva mixture. Terahertz images were generated by positioning the specimens at the focus of the beam and raster scanning the optics to collect the reflections from the air / enamel (AEI) and lesion / enamel (LEI) interface. Significant differences were observed in the intensity change from baseline of the AEI and LEI reflections upon treatment with the four dentifrices. A linear correlation was observed between ΔAEI vs ΔVHN (r2 = 0.997), ΔAEI vs ΔKHN (r2 =0.964), ΔII (ratio of LEI to AEI) vs ΔΔZ (r2 =0.875) and ΔLEI vs ΔΔZ (r2 =0.870). Statistically significant correlations (p<0.05 Pearson correlation coefficient) were also found between the TPI and microhardness / microradiography data. This study has demonstrated that TPI is a useful technology to measure in vitro (and possibly in situ) mineral changes in enamel and is sufficiently sensitive to discriminate between the levels of remineralization produced by the different dentifrices.

  20. Gas-pressure dependence of terahertz-pulse generation in a laser-generated nitrogen plasma

    NASA Astrophysics Data System (ADS)

    Löffler, T.; Roskos, H. G.

    2002-03-01

    Far-infrared (terahertz) pulses can be generated by photoionization of electrically biased gases with amplified laser pulses [T. Löffler, F. Jacob, and H. G. Roskos, Appl. Phys. Lett. 77, 453 (2000)]. The efficiency of the generation process can be significantly increased when the absolute gas pressure is raised because it is then possible to apply higher bias fields close to the dielectric breakdown field of the gas which increases with the pressure. The dependence of the THz output on the optical pump power does not show any indication of saturation, making the plasma emitter an interesting source for THz pulses especially in conjunction with terawatt laser systems.

  1. Brain tumor imaging of rat fresh tissue using terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Sayuri; Fukushi, Yasuko; Kubota, Oichi; Itsuji, Takeaki; Ouchi, Toshihiko; Yamamoto, Seiji

    2016-07-01

    Tumor imaging by terahertz spectroscopy of fresh tissue without dye is demonstrated using samples from a rat glioma model. The complex refractive index spectrum obtained by a reflection terahertz time-domain spectroscopy system can discriminate between normal and tumor tissues. Both the refractive index and absorption coefficient of tumor tissues are higher than those of normal tissues and can be attributed to the higher cell density and water content of the tumor region. The results of this study indicate that terahertz technology is useful for detecting brain tumor tissue.

  2. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor.

    PubMed

    Yasumatsu, Naoya; Watanabe, Shinichi

    2012-02-01

    We propose and develop a method to quickly and precisely determine the polarization direction of coherent terahertz electromagnetic waves generated by femtosecond laser pulses. The measurement system consists of a conventional terahertz time-domain spectroscopy system with the electro-optic (EO) sampling method, but we add a new functionality in the EO crystal which is continuously rotating with the angular frequency ω. We find a simple yet useful formulation of the EO signal as a function of the crystal orientation, which enables a lock-in-like detection of both the electric-field amplitude and the absolute polarization direction of the terahertz waves with respect to the probe laser pulse polarization direction at the same time. The single measurement finishes around two periods of the crystal rotations (∼21 ms), and we experimentally prove that the accuracy of the polarization measurement does not suffer from the long-term amplitude fluctuation of the terahertz pulses. Distribution of the measured polarization directions by repeating the measurements is excellently fitted by a gaussian distribution function with a standard deviation of σ = 0.56°. The developed technique is useful for the fast direct determination of the polarization state of the terahertz electromagnetic waves for polarization imaging applications as well as the precise terahertz Faraday or Kerr rotation spectroscopy.

  3. Detection and identification of illicit drugs using terahertz imaging

    NASA Astrophysics Data System (ADS)

    Lu, Meihong; Shen, Jingling; Li, Ning; Zhang, Yan; Zhang, Cunlin; Liang, Laishun; Xu, Xiaoyu

    2006-11-01

    We demonstrated an advanced terahertz imaging technique for detection and identification of illicit drugs by introducing the component spatial pattern analysis. As an explanation, the characteristic fingerprint spectra and refractive index of ketamine were first measured with terahertz time-domain spectroscopy both in the air and nitrogen. The results obtained in the ambient air indicated that some absorption peaks are not obvious or probably not dependable. It is necessary and important to present a more practical technique for the detection. The spatial distributions of several illicit drugs [3,4-methylenedioxymethamphetamine, methylenedioxyamphetamine, heroin, acetylcodeine, morphine, and ketamine], widely consumed in the world, were obtained from terahertz images using absorption spectra previously measured in the range from 0.2to2.6THz in the ambient air. The different kinds of pure illicit drugs hidden in mail envelopes were inspected and identified. It could be an effective method in the field of safety inspection.

  4. Simulations of terahertz pulse emission from thin-film semiconductor structures

    NASA Astrophysics Data System (ADS)

    Semichaevsky, Andrey

    The photo-Dember effect is the formation of transient electric dipoles due to the interaction of semiconductors with ultrashort optical pulses. Typically the optically-induced dipole moments vary on the ns- or ps- scales, leading to the emission of electromagnetic pulses with terahertz (THz) bandwidths. One of the applications of the photo-Dember effect is a photoconductive dipole antenna (PDA). This work presents a computational model of a PDA based on Maxwell's equations coupled to the Boltzmann transport equation. The latter is solved semiclassically for the doped GaAs using a continuum approach. The emphasis is on the accurate prediction of the emitted THz pulse shape and bandwidth, particularly when materials are doped with a rare-earth metal such as erbium or terbium that serve as carrier recombination centers. Field-dependent carrier mobility is determined from particle-based simulations. Some of the previous experimental results are used as a basis for comparison with our model.

  5. Examination of Painting on Metal Support by Terahertz Time-Domain Imaging

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, C. L.; Gomez-Sepulveda, A. M.; Hernandez-Serrano, A. I.; Castro-Camus, E.

    2017-10-01

    Two paintings on metal support have been imaged by terahertz time-domain imaging (THz-TDI) in a reflection setup and the X-ray radiographs were also recorded. The study was performed for testing the terahertz radiation (THz) as an imaging method alternative to X-ray radiography, which suffers several limitations in imaging paint layers on metal support. While the information regarding the paint layers of the paintings was almost lost in the records provided by the X-ray radiography, THz-TDI demonstrates the ability to provide important information about them, despite the presence of the underlying metal.

  6. Recording of Terahertz Pulses of Microsecond Duration Using the Thermoacoustic Effect

    NASA Astrophysics Data System (ADS)

    Andreev, V. G.; Vdovin, V. A.; Kalynov, Yu. K.

    2014-01-01

    We consider the possibility of using a thermoacoustic detector (TAD) for recording of high-power pulse radiation at frequencies of 0.55, 0.68, and 0.87 THz. Electromagnetic wave is transformed into an acoustic wave in a structure consisting of a 10-nm thick chromium film deposited on a quartz substrate and a layer of the immersion liquid that is in contact with the film. It is shown that for the pulse of microsecond duration (3-10 μs) the waveform detected by the thermoacoustic detector is matched with high accuracy to the derivative of the terahertz pulse profile. For recording of electromagnetic radiation in the 0.5-0.9 THz frequency range it is possible to employ the simplified design of TAD, in which a transparent quartz substrate is in contact with a layer of water or ethanol.

  7. Early detection of skin cancer via terahertz spectral profiling and 3D imaging.

    PubMed

    Rahman, Anis; Rahman, Aunik K; Rao, Babar

    2016-08-15

    Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Terahertz Lasers Reveal Information for 3D Images

    NASA Technical Reports Server (NTRS)

    2013-01-01

    After taking off her shoes and jacket, she places them in a bin. She then takes her laptop out of its case and places it in a separate bin. As the items move through the x-ray machine, the woman waits for a sign from security personnel to pass through the metal detector. Today, she was lucky; she did not encounter any delays. The man behind her, however, was asked to step inside a large circular tube, raise his hands above his head, and have his whole body scanned. If you have ever witnessed a full-body scan at the airport, you may have witnessed terahertz imaging. Terahertz wavelengths are located between microwave and infrared on the electromagnetic spectrum. When exposed to these wavelengths, certain materials such as clothing, thin metal, sheet rock, and insulation become transparent. At airports, terahertz radiation can illuminate guns, knives, or explosives hidden underneath a passenger s clothing. At NASA s Kennedy Space Center, terahertz wavelengths have assisted in the inspection of materials like insulating foam on the external tanks of the now-retired space shuttle. "The foam we used on the external tank was a little denser than Styrofoam, but not much," says Robert Youngquist, a physicist at Kennedy. The problem, he explains, was that "we lost a space shuttle by having a chunk of foam fall off from the external fuel tank and hit the orbiter." To uncover any potential defects in the foam covering, such as voids or air pockets, that could keep the material from staying in place, NASA employed terahertz imaging to see through the foam. For many years, the technique ensured the integrity of the material on the external tanks.

  9. Using ultrashort terahertz pulses to directly probe spin dynamics in insulating antiferromagnets

    NASA Astrophysics Data System (ADS)

    Bowlan, P.; Trugman, S. A.; Yarotski, D. A.; Taylor, A. J.; Prasankumar, R. P.

    2018-05-01

    Terahertz pulses are a direct and general probe of ultrafast spin dynamics in insulating antiferromagnets (AFM). This is shown by using optical-pump, THz-probe spectroscopy to directly track AFM spin dynamics in the hexagonal multiferroic HoMnO3 and the orthorhombic multiferroic TbMnO3. Our studies show that despite the different structural and spin orders in these materials, THz pulses can unambiguously resolve spin dynamics after optical photoexcitation. We believe that this approach is quite general and can be applied to a broad range of materials with different AFM spin alignments, providing a novel non-contact approach for probing AFM order with femtosecond temporal resolution.

  10. Plasmon enhanced terahertz emission from single layer graphene.

    PubMed

    Bahk, Young-Mi; Ramakrishnan, Gopakumar; Choi, Jongho; Song, Hyelynn; Choi, Geunchang; Kim, Yong Hyup; Ahn, Kwang Jun; Kim, Dai-Sik; Planken, Paul C M

    2014-09-23

    We show that surface plasmons, excited with femtosecond laser pulses on continuous or discontinuous gold substrates, strongly enhance the generation and emission of ultrashort, broadband terahertz pulses from single layer graphene. Without surface plasmon excitation, for graphene on glass, 'nonresonant laser-pulse-induced photon drag currents' appear to be responsible for the relatively weak emission of both s- and p-polarized terahertz pulses. For graphene on a discontinuous layer of gold, only the emission of the p-polarized terahertz electric field is enhanced, whereas the s-polarized component remains largely unaffected, suggesting the presence of an additional terahertz generation mechanism. We argue that in the latter case, 'surface-plasmon-enhanced optical rectification', made possible by the lack of inversion symmetry at the graphene on gold surface, is responsible for the strongly enhanced emission. The enhancement occurs because the electric field of surface plasmons is localized and enhanced where the graphene is located: at the surface of the metal. We believe that our results point the way to small, thin, and more efficient terahertz photonic devices.

  11. Strong polarization-dependent terahertz modulation of aligned Ag nanowires on Si substrate.

    PubMed

    Lee, Gyuseok; Maeng, Inhee; Kang, Chul; Oh, Myoung-Kyu; Kee, Chul-Sik

    2018-05-14

    Optically tunable, strong polarization-dependent transmission of terahertz pulses through aligned Ag nanowires on a Si substrate is demonstrated. Terahertz pulses primarily pass through the Ag nanowires and the transmittance is weakly dependent on the angle between the direction of polarization of the terahertz pulse and the direction of nanowire alignment. However, the transmission of a terahertz pulse through optically excited materials strongly depends on the polarization direction. The extinction ratio increases as the power of the pumping laser increases. The enhanced polarization dependency is explained by the redistribution of photocarriers, which accelerates the sintering effect along the direction of alignment of the Ag nanowires. The photocarrier redistribution effect is examined by the enhancement of terahertz emission from the sample. Oblique metal nanowires on Si could be utilized for designing optically tunable terahertz polarization modulators.

  12. Real-time terahertz imaging through self-mixing in a quantum-cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wienold, M., E-mail: martin.wienold@dlr.de; Rothbart, N.; Hübers, H.-W.

    2016-07-04

    We report on a fast self-mixing approach for real-time, coherent terahertz imaging based on a quantum-cascade laser and a scanning mirror. Due to a fast deflection of the terahertz beam, images with frame rates up to several Hz are obtained, eventually limited by the mechanical inertia of the employed scanning mirror. A phase modulation technique allows for the separation of the amplitude and phase information without the necessity of parameter fitting routines. We further demonstrate the potential for transmission imaging.

  13. Propagation of single-cycle terahertz pulses in random media.

    PubMed

    Pearce, J; Mittleman, D M

    2001-12-15

    We describe what are to our knowledge the first measurements of the propagation of coherent, single-cycle pulses of terahertz radiation in a scattering medium. By measuring the transmission as a function of the length L of the medium, we extract the scattering mean free path l(s)(omega) over a broad bandwidth. We observe variations in l(s) ranging over nearly 2 orders of magnitude and covering the entire thin sample regime from L/l(s)<1 to L/l(s)~10 . We also observe scattering-induced dispersive effects, which can be attributed to the additional path traveled by photons scattered at small angles.

  14. A hybrid continuous-wave terahertz imaging system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolganova, Irina N., E-mail: in.dolganova@gmail.com; Zaytsev, Kirill I., E-mail: kirzay@gmail.ru; Metelkina, Anna A.

    2015-11-15

    A hybrid (active-passive mode) terahertz (THz) imaging system and an algorithm for imaging synthesis are proposed to enhance the THz image quality. The concept of image contrast is used to compare active and passive THz imaging. Combining the measurement of the self-emitted radiation of the object with the back-scattered source radiation measurement, it becomes possible to use the THz image to retrieve maximum information about the object. The experimental results confirm the advantages of hybrid THz imaging systems, which can be generalized for a wide range of applications in the material sciences, chemical physics, bio-systems, etc.

  15. Fresnel formulas for the forced electromagnetic pulses and their application for optical-to-terahertz conversion in nonlinear crystals.

    PubMed

    Bakunov, M I; Maslov, A V; Bodrov, S B

    2007-11-16

    We show that the usual Fresnel formulas for a free-propagating pulse are not applicable for a forced terahertz electromagnetic pulse supported by an optical pulse at the end of a nonlinear crystal. The correct linear reflection and transmission coefficients that we derive show that such pulses can experience a gain or loss at the boundary. This energy change depends on linear dielectric constants only. We also predict a regime where a complete disappearance of the forced pulse under oblique incidence occurs, an effect that has no counterpart for free-propagating pulses.

  16. Terahertz imaging system based on a backward-wave oscillator.

    PubMed

    Dobroiu, Adrian; Yamashita, Masatsugu; Ohshima, Yuichi N; Morita, Yasuyuki; Otani, Chiko; Kawase, Kodo

    2004-10-20

    We present an imaging system designed for use in the terahertz range. As the radiation source a backward-wave oscillator was chosen for its special features such as high output power, good wave-front quality, good stability, and wavelength tunability from 520 to 710 GHz. Detection is achieved with a pyroelectric sensor operated at room temperature. The alignment procedure for the optical elements is described, and several methods to reduce the etalon effect that are inherent in monochromatic sources are discussed. The terahertz spot size in the sample plane is 550 microm (nearly the diffraction limit), and the signal-to-noise ratio is 10,000:1; other characteristics were also measured and are presented in detail. A number of preliminary applications are also shown that cover various areas: nondestructive real-time testing for plastic tubes and packaging seals; biological terahertz imaging of fresh, frozen, or freeze-dried samples; paraffin-embedded specimens of cancer tissue; and measurement of the absorption coefficient of water by use of a wedge-shaped cell.

  17. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong; Glownia, James H.; Taylor, Antoinette J.; Rodriguez, George

    2007-04-01

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  18. Terahertz emission from ultrafast ionizing air in symmetry-broken laser fields.

    PubMed

    Kim, Ki-Yong; Glownia, James H; Taylor, Antoinette J; Rodriguez, George

    2007-04-16

    A transient photocurrent model is developed to explain coherent terahertz emission from air irradiated by a symmetry-broken laser field composed of the fundamental and its second harmonic laser pulses. When the total laser field is asymmetric across individual optical cycles, a nonvanishing electron current surge can arise during optical field ionization of air, emitting a terahertz electromagnetic pulse. Terahertz power scalability is also investigated, and with optical pump energy of tens of millijoules per pulse, peak terahertz field strengths in excess of 150 kV/cm are routinely produced.

  19. Investigation of Layer Structure of the Takamatsuzuka Mural Paintings by Terahertz Imaging Technique

    NASA Astrophysics Data System (ADS)

    Inuzuka, M.; Kouzuma, Y.; Sugioka, N.; Fukunaga, K.; Tateishi, T.

    2017-04-01

    Terahertz imaging can be a powerful tool in conservation science for cultural heritages. In this study, a new terahertz imaging system was applied to the Takamatsuzuka mural painting of a blue dragon, and the condition of the plaster layer was diagnosed. As a result, the locations where the plaster layer appears solid on the surface but in actuality may have peeled off the underlying tuff stone were revealed and viewed as two-dimensional images.

  20. Mode-locking of a terahertz laser by direct phase synchronization.

    PubMed

    Maysonnave, J; Maussang, K; Freeman, J R; Jukam, N; Madéo, J; Cavalié, P; Rungsawang, R; Khanna, S P; Linfield, E H; Davies, A G; Beere, H E; Ritchie, D A; Dhillon, S S; Tignon, J

    2012-09-10

    A novel scheme to achieve mode-locking of a multimode laser is demonstrated. Traditional methods to produce ultrashort laser pulses are based on modulating the cavity gain or losses at the cavity roundtrip frequency, favoring the pulsed emission. Here, we rather directly act on the phases of the modes, resulting in constructive interference for the appropriated phase relationship. This was performed on a terahertz quantum cascade laser by multimode injection seeding with an external terahertz pulse, resulting in phase mode-locked terahertz laser pulses of 9 ps duration, characterized unambiguously in the time domain.

  1. Remote Imaging by Nanosecond Terahertz Spectrometer with Standoff Detector

    NASA Astrophysics Data System (ADS)

    Huang, J.-G.; Huang, Z.-M.; Andreev, Yu. M.; Kokh, K. A.; Lanskii, G. V.; Potekaev, A. I.; Svetlichnyi, V. A.

    2018-01-01

    Creation and application of the remote imaging spectrometer based on high power nanosecond terahertz source with standoff detector is reported. 2D transmission images of metal objects hided in nonconductive (dielectric) materials were recorded. Reflection images of metal objects mounted on silicon wafers are recorded with simultaneous determination of the wafer parameters (thickness/material).

  2. Ultrafast control and monitoring of material properties using terahertz pulses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bowlan, Pamela Renee

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying thismore » to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi 2Se 3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.« less

  3. Damage in a Thin Metal Film by High-Power Terahertz Radiation.

    PubMed

    Agranat, M B; Chefonov, O V; Ovchinnikov, A V; Ashitkov, S I; Fortov, V E; Kondratenko, P S

    2018-02-23

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  4. Damage in a Thin Metal Film by High-Power Terahertz Radiation

    NASA Astrophysics Data System (ADS)

    Agranat, M. B.; Chefonov, O. V.; Ovchinnikov, A. V.; Ashitkov, S. I.; Fortov, V. E.; Kondratenko, P. S.

    2018-02-01

    We report on the experimental observation of high-power terahertz-radiation-induced damage in a thin aluminum film with a thickness less than a terahertz skin depth. Damage in a thin metal film produced by a single terahertz pulse is observed for the first time. The damage mechanism induced by a single terahertz pulse could be attributed to thermal expansion of the film causing debonding of the film from the substrate, film cracking, and ablation. The damage pattern induced by multiple terahertz pulses at fluences below the damage threshold is quite different from that observed in single-pulse experiments. The observed damage pattern resembles an array of microcracks elongated perpendicular to the in-plane field direction. A mechanism related to microcracks' generation and based on a new phenomenon of electrostriction in thin metal films is proposed.

  5. Highly efficient broadband terahertz generation from ultrashort laser filamentation in liquids.

    PubMed

    Dey, Indranuj; Jana, Kamalesh; Fedorov, Vladimir Yu; Koulouklidis, Anastasios D; Mondal, Angana; Shaikh, Moniruzzaman; Sarkar, Deep; Lad, Amit D; Tzortzakis, Stelios; Couairon, Arnaud; Kumar, G Ravindra

    2017-10-30

    Generation and application of energetic, broadband terahertz pulses (bandwidth ~0.1-50 THz) is an active and contemporary area of research. The main thrust is toward the development of efficient sources with minimum complexities-a true table-top setup. In this work, we demonstrate the generation of terahertz radiation via ultrashort pulse induced filamentation in liquids-a counterintuitive observation due to their large absorption coefficient in the terahertz regime. The generated terahertz energy is more than an order of magnitude higher than that obtained from the two-color filamentation of air (the most standard table-top technique). Such high terahertz energies would generate electric fields of the order of MV cm -1 , which opens the doors for various nonlinear terahertz spectroscopic applications. The counterintuitive phenomenon has been explained via the solution of nonlinear pulse propagation equation in the liquid medium.

  6. Terahertz cyclotron resonance spectroscopy of an AlGaN/GaN heterostructure using a high-field pulsed magnet and an asynchronous optical sampling technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, B. F., E-mail: Ben.Spencer@manchester.ac.uk; Smith, W. F.; Hibberd, M. T.

    2016-05-23

    The effective mass, sheet carrier concentration, and mobility of electrons within a two-dimensional electron gas in an AlGaN/GaN heterostructure were determined using a laboratory-based terahertz cyclotron resonance spectrometer. The ability to perform terahertz cyclotron resonance spectroscopy with magnetic fields of up to 31 T was enabled by combining a high-field pulsed magnet with a modified asynchronous optical sampling terahertz detection scheme. This scheme allowed around 100 transmitted terahertz waveforms to be recorded over the 14 ms magnetic field pulse duration. The sheet density and mobility were measured to be 8.0 × 10{sup 12 }cm{sup −2} and 9000 cm{sup 2} V{sup −1} s{sup −1} at 77 K. The in-planemore » electron effective mass at the band edge was determined to be 0.228 ± 0.002m{sub 0}.« less

  7. Terahertz radar cross section measurements.

    PubMed

    Iwaszczuk, Krzysztof; Heiselberg, Henning; Jepsen, Peter Uhd

    2010-12-06

    We perform angle- and frequency-resolved radar cross section (RCS) measurements on objects at terahertz frequencies. Our RCS measurements are performed on a scale model aircraft of size 5-10 cm in polar and azimuthal configurations, and correspond closely to RCS measurements with conventional radar on full-size objects. The measurements are performed in a terahertz time-domain system with freely propagating terahertz pulses generated by tilted pulse front excitation of lithium niobate crystals and measured with sub-picosecond time resolution. The application of a time domain system provides ranging information and also allows for identification of scattering points such as weaponry attached to the aircraft. The shapes of the models and positions of reflecting parts are retrieved by the filtered back projection algorithm.

  8. Physics-Based Imaging Methods for Terahertz Nondestructive Evaluation Applications

    NASA Astrophysics Data System (ADS)

    Kniffin, Gabriel Paul

    Lying between the microwave and far infrared (IR) regions, the "terahertz gap" is a relatively unexplored frequency band in the electromagnetic spectrum that exhibits a unique combination of properties from its neighbors. Like in IR, many materials have characteristic absorption spectra in the terahertz (THz) band, facilitating the spectroscopic "fingerprinting" of compounds such as drugs and explosives. In addition, non-polar dielectric materials such as clothing, paper, and plastic are transparent to THz, just as they are to microwaves and millimeter waves. These factors, combined with sub-millimeter wavelengths and non-ionizing energy levels, makes sensing in the THz band uniquely suited for many NDE applications. In a typical nondestructive test, the objective is to detect a feature of interest within the object and provide an accurate estimate of some geometrical property of the feature. Notable examples include the thickness of a pharmaceutical tablet coating layer or the 3D location, size, and shape of a flaw or defect in an integrated circuit. While the material properties of the object under test are often tightly controlled and are generally known a priori, many objects of interest exhibit irregular surface topographies such as varying degrees of curvature over the extent of their surfaces. Common THz pulsed imaging (TPI) methods originally developed for objects with planar surfaces have been adapted for objects with curved surfaces through use of mechanical scanning procedures in which measurements are taken at normal incidence over the extent of the surface. While effective, these methods often require expensive robotic arm assemblies, the cost and complexity of which would likely be prohibitive should a large volume of tests be needed to be carried out on a production line. This work presents a robust and efficient physics-based image processing approach based on the mature field of parabolic equation methods, common to undersea acoustics, seismology

  9. Single-cycle powerful megawatt to gigawatt terahertz pulse radiated from a wavelength-scale plasma oscillator

    NASA Astrophysics Data System (ADS)

    Wu, Hui-Chun; Sheng, Zheng-Ming; Zhang, Jie

    2008-04-01

    We propose a scheme to generate single-cycle powerful terahertz (THz) pulses by ultrashort intense laser pulses obliquely incident on an underdense plasma slab of a few THz wavelengths in thickness. THz waves are radiated from a transient net current driven by the laser ponderomotive force in the plasma slab. Analysis and particle-in-cell simulations show that such a THz source is capable of providing power of megawatts to gigawatts, field strength of MV/cm-GV/cm, and broad tunability range, which is potentially useful for nonlinear and high-field THz science and applications.

  10. Terahertz imaging for subsurface investigation of art paintings

    NASA Astrophysics Data System (ADS)

    Locquet, A.; Dong, J.; Melis, M.; Citrin, D. S.

    2017-08-01

    Terahertz (THz) reflective imaging is applied to the stratigraphic and subsurface investigation of oil paintings, with a focus on the mid-20th century Italian painting, `After Fishing', by Ausonio Tanda. THz frequency-wavelet domain deconvolution, which is an enhanced deconvolution technique combining frequency-domain filtering and stationary wavelet shrinkage, is utilized to resolve the optically thin paint layers or brush strokes. Based on the deconvolved terahertz data, the stratigraphy of the painting including the paint layers is reconstructed and subsurface features are clearly revealed. Specifically, THz C-scans and B-scans are analyzed based on different types of deconvolved signals to investigate the subsurface features of the painting, including the identification of regions with more than one paint layer, the refractive-index difference between paint layers, and the distribution of the paint-layer thickness. In addition, THz images are compared with X-ray images. The THz image of the thickness distribution of the paint exhibits a high degree of correlation with the X-ray transmission image, but THz images also reveal defects in the paperboard that cannot be identified in the X-ray image. Therefore, our results demonstrate that THz imaging can be considered as an effective tool for the stratigraphic and subsurface investigation of art paintings. They also open up the way for the use of non-ionizing THz imaging as a potential substitute for ionizing X-ray analysis in nondestructive evaluation of art paintings.

  11. Waveform-controlled terahertz radiation from the air filament produced by few-cycle laser pulses.

    PubMed

    Bai, Ya; Song, Liwei; Xu, Rongjie; Li, Chuang; Liu, Peng; Zeng, Zhinan; Zhang, Zongxin; Lu, Haihe; Li, Ruxin; Xu, Zhizhan

    2012-06-22

    Waveform-controlled terahertz (THz) radiation is of great importance due to its potential application in THz sensing and coherent control of quantum systems. We demonstrated a novel scheme to generate waveform-controlled THz radiation from air plasma produced when carrier-envelope-phase (CEP) stabilized few-cycle laser pulses undergo filamentation in ambient air. We launched CEP-stabilized 10 fs-long (~1.7 optical cycles) laser pulses at 1.8 μm into air and found that the generated THz waveform can be controlled by varying the filament length and the CEP of driving laser pulses. Calculations using the photocurrent model and including the propagation effects well reproduce the experimental results, and the origins of various phase shifts in the filament are elucidated.

  12. Evanescent-Wave Filtering in Images Using Remote Terahertz Structured Illumination

    NASA Astrophysics Data System (ADS)

    Flammini, M.; Pontecorvo, E.; Giliberti, V.; Rizza, C.; Ciattoni, A.; Ortolani, M.; DelRe, E.

    2017-11-01

    Imaging with structured illumination allows for the retrieval of subwavelength features of an object by conversion of evanescent waves into propagating waves. In conditions in which the object plane and the structured-illumination plane do not coincide, this conversion process is subject to progressive filtering of the components with high spatial frequency when the distance between the two planes increases, until the diffraction-limited lateral resolution is restored when the distance exceeds the extension of evanescent waves. We study the progressive filtering of evanescent waves by developing a remote super-resolution terahertz imaging system operating at a wavelength λ =1.00 mm , based on a freestanding knife edge and a reflective confocal terahertz microscope. In the images recorded with increasing knife-edge-to-object-plane distance, we observe the transition from a super-resolution of λ /17 ≃60 μ m to the diffraction-limited lateral resolution of Δ x ≃λ expected for our confocal microscope. The extreme nonparaxial conditions are analyzed in detail, exploiting the fact that, in the terahertz frequency range, the knife edge can be positioned at a variable subwavelength distance from the object plane. Electromagnetic simulations of radiation scattering by the knife edge reproduce the experimental super-resolution achieved.

  13. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Single Input Multiple Output Technology.

    PubMed

    Chen, Shuo; Luo, Chenggao; Deng, Bin; Wang, Hongqiang; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-01-19

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. In this paper, we propose a three-dimensional (3D) TCAI architecture based on single input multiple output (SIMO) technology, which can reduce the coding and sampling times sharply. The coded aperture applied in the proposed TCAI architecture loads either purposive or random phase modulation factor. In the transmitting process, the purposive phase modulation factor drives the terahertz beam to scan the divided 3D imaging cells. In the receiving process, the random phase modulation factor is adopted to modulate the terahertz wave to be spatiotemporally independent for high resolution. Considering human-scale targets, images of each 3D imaging cell are reconstructed one by one to decompose the global computational complexity, and then are synthesized together to obtain the complete high-resolution image. As for each imaging cell, the multi-resolution imaging method helps to reduce the computational burden on a large-scale reference-signal matrix. The experimental results demonstrate that the proposed architecture can achieve high-resolution imaging with much less time for 3D targets and has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  14. [Application of terahertz technology in medical testing and diagnosis].

    PubMed

    Qi, Na; Zhang, Zhuo-Yong; Xiang, Yu-Hong

    2013-08-01

    Terahertz science and technology is increasingly emphasized in science and industry, and has progressed significantly in recent years. There is an important aspect of attention in the application of terahertz technology to medicine. The overview of the terahertz characters, terahertz spectroscopy and terahertz imaging technology is introduced. This paper focuses on reviewing the use of and research progress in terahertz spectroscopy and terahertz imaging technology in medical testing and diagnosis. Furthermore, the problems to be solved and development directions of terahertz spectroscopy and terahertz imaging technology are discussed.

  15. Target recognition in passive terahertz image of human body

    NASA Astrophysics Data System (ADS)

    Zhao, Ran; Zhao, Yuan-meng; Deng, Chao; Zhang, Cun-lin; Li, Yue

    2014-11-01

    THz radiation can penetrate through many nonpolar dielectric materials and can be used for nondestructive/noninvasive sensing and imaging of targets under nonpolar, nonmetallic covers or containers. Thus using THz systems to "see through" concealing barriers (i.e. packaging, corrugated cardboard, clothing) has been proposed as a new security screening method. Objects that can be detected by THz include concealed weapons, explosives, and chemical agents under clothing. Passive THz imaging system can detect THz wave from human body without transmit any electromagnetic wave, and the suspicious objects will become visible because the THz wave is blocked by this items. We can find out whether or not someone is carrying dangerous objects through this image. In this paper, the THz image enhancement, segmentation and contour extraction algorithms were studied to achieve effective target image detection. First, the terahertz images are enhanced and their grayscales are stretched. Then we apply global threshold segmentation to extract the target, and finally the targets are marked on the image. Experimental results showed that the algorithm proposed in this paper can extract and mark targets effectively, so that people can identify suspicious objects under clothing quickly. The algorithm can significantly improve the usefulness of the terahertz security apparatus.

  16. Terahertz imaging systems: a non-invasive technique for the analysis of paintings

    NASA Astrophysics Data System (ADS)

    Fukunaga, K.; Hosako, I.; Duling, I. N., III; Picollo, M.

    2009-07-01

    Terahertz (THz) imaging is an emerging technique for non-invasive analysis. Since THz waves can penetrate opaque materials, various imaging systems that use THz waves have been developed to detect, for instance, concealed weapons, illegal drugs, and defects in polymer products. The absorption of THz waves by water is extremely strong, and hence, THz waves can be used to monitor the water content in various objects. THz imaging can be performed either by transmission or by reflection of THz waves. In particular, time domain reflection imaging uses THz pulses that propagate in specimens, and in this technique, pulses reflected from the surface and from the internal boundaries of the specimen are detected. In general, the internal structure is observed in crosssectional images obtained using micro-specimens taken from the work that is being analysed. On the other hand, in THz time-domain imaging, a map of the layer of interest can be easily obtained without collecting any samples. When realtime imaging is required, for example, in the investigation of the effect of a solvent or during the monitoring of water content, a THz camera can be used. The first application of THz time-domain imaging in the analysis of a historical tempera masterpiece was performed on the panel painting Polittico di Badia by Giotto, of the permanent collection of the Uffizi Gallery. The results of that analysis revealed that the work is composed of two layers of gypsum, with a canvas between these layers. In the paint layer, gold foils covered by paint were clearly observed, and the consumption or ageing of gold could be estimated by noting the amount of reflection. These results prove that THz imaging can yield useful information for conservation and restoration purposes.

  17. Mode-locked laser with pulse interleavers in a monolithic photonic integrated circuit for millimeter wave and terahertz carrier generation.

    PubMed

    Lo, Mu-Chieh; Guzmán, Robinson; Gordón, Carlos; Carpintero, Guillermo

    2017-04-15

    This Letter presents a photonics-based millimeter wave and terahertz frequency synthesizer using a monolithic InP photonic integrated circuit composed of a mode-locked laser (MLL) and two pulse interleaver stages to multiply the repetition rate frequency. The MLL is a multiple colliding pulse MLL producing an 80 GHz repetition rate pulse train. Through two consecutive monolithic pulse interleaver structures, each doubling the repetition rate, we demonstrate the achievement of 160 and 320 GHz. The fabrication was done on a multi-project wafer run of a generic InP photonic technology platform.

  18. Contrast in Terahertz Images of Archival Documents—Part II: Influence of Topographic Features

    NASA Astrophysics Data System (ADS)

    Bardon, Tiphaine; May, Robert K.; Taday, Philip F.; Strlič, Matija

    2017-04-01

    We investigate the potential of terahertz time-domain imaging in reflection mode to reveal archival information in documents in a non-invasive way. In particular, this study explores the parameters and signal processing tools that can be used to produce well-contrasted terahertz images of topographic features commonly found in archival documents, such as indentations left by a writing tool, as well as sieve lines. While the amplitude of the waveforms at a specific time delay can provide the most contrasted and legible images of topographic features on flat paper or parchment sheets, this parameter may not be suitable for documents that have a highly irregular surface, such as water- or fire-damaged documents. For analysis of such documents, cross-correlation of the time-domain signals can instead yield images with good contrast. Analysis of the frequency-domain representation of terahertz waveforms can also provide well-contrasted images of topographic features, with improved spatial resolution when utilising high-frequency content. Finally, we point out some of the limitations of these means of analysis for extracting information relating to topographic features of interest from documents.

  19. Toward remote sensing with broadband terahertz waves

    NASA Astrophysics Data System (ADS)

    Clough, Benjamin W.

    Terahertz electromagnetic waves, defined as the frequency region between 0.1 and 10 terahertz on the electromagnetic spectrum, have demonstrated remarkable usefulness for imaging and chemical identification with the ability to penetrate many optically opaque barriers. Photon energies at these frequencies are relatively small (meV), which means the radiation is non-ionizing and therefore considered biologically innocuous. With the growing list of applications and demand for terahertz technology, there is a need to develop innovative terahertz sources and detectors that can overcome existing limitations in power, bandwidth, and operating range. Although terahertz radiation has demonstrated unique and exceptional abilities, it has also presented several fundamental challenges. Most notably, the water vapor absorption of terahertz waves in air at habitable altitudes is greater than 100 dB/km. There is an immediate push to utilize the material and vapor identification abilities of terahertz radiation, while extending the effective distances over which the technology can be used. Remote terahertz detection, until recently, was thought to be impossible due to the high water content in the atmosphere, limited signal collection geometries, and solid state materials necessary for generation and detection. This dissertation focuses on laser air-photonics used for sensing short pulses of electromagnetic radiation. Through the ionization process, the very air that we breathe is capable of generating terahertz field strengths greater than 1 MV/cm, useful bandwidths over 100 terahertz, and highly directional emission patterns. Following ionization and plasma formation, the emitted plasma acoustics or fluorescence can be modulated by an external field to serve as omnidirectional, broadband, electromagnetic sensor. A deeper understanding of terahertz wave-plasma interaction is used to develop methods for retrieving coherent terahertz wave information that can be encoded into plasma

  20. Dual-axis reflective continuous-wave terahertz confocal scanning polarization imaging and image fusion

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2017-01-01

    A dual-axis reflective continuous-wave terahertz (THz) confocal scanning polarization imaging system was adopted. THz polarization imaging experiments on gaps on film and metallic letters "BeLLE" were carried out. Imaging results indicate that the THz polarization imaging is sensitive to the tilted gap or wide flat gap, suggesting the THz polarization imaging is able to detect edges and stains. An image fusion method based on the digital image processing was proposed to ameliorate the imaging quality of metallic letters "BeLLE." Objective and subjective evaluation both prove that this method can improve the imaging quality.

  1. The dependence on optical energy of terahertz emission from air plasma induced by two-color femtosecond laser-pulses

    NASA Astrophysics Data System (ADS)

    Wu, Si-Qing; Liu, Jin-Song; Wang, Sheng-Lie; Hu, Bing

    2013-10-01

    The generation of terahertz (THz) emission from air plasma induced by two-color femtosecond laser pulses is studied on the basis of a transient photocurrent model. While the gas is ionized by the two-color femtosecond laser-pulses composed of the fundamental and its second harmonic, a non-vanishing directional photoelectron current emerges, radiating a THz electromagnetic pulse. The gas ionization processes at three different laser-pulse energies are simulated, and the corresponding THz waveforms and spectra are plotted. The results demonstrate that, by keeping the laser-pulse width and the relative phase between two pulses invariant when the laser energy is at a moderate value, the emitted THz fields are significantly enhanced with a near-linear dependence on the optical energy.

  2. Active Metamaterials for Terahertz Communication and Imaging

    NASA Astrophysics Data System (ADS)

    Rout, Saroj

    In recent years there has been significant interest in terahertz (THz) systems mostly due to their unique applications in communication and imaging. One of the primary reason for this resurgence is the use of metamaterials to design THz devices due to lack of natural materials that can respond to this electromagnetic spectrum, the so-called ''THz gap''. Even after years of intense research, THz systems are complex and expensive, unsuitable for mainstream applications. This work focuses on bridging this gap by building all solid-state THz devices for imaging and communication applications in a commercial integrated circuit (IC) technology. One such canonical device is a THz wave modulator that can be used in THz wireless communication devices and as spatial light modulator (SLM) for THz imaging systems. The key contribution of this thesis is a metamaterial based THz wave modulator fabricated in a commercial gallium arsenide (GaAs) process resonant at 0.46 THz using a novel approach of embedding pseudomorphic high electron mobility transistors (pHEMTs) in metamaterial and demonstrate modulation values over 30%, and THz modulation at frequencies up to 10 MHz. Using the THz wave modulator, we fabricated and experimentally demonstrated an all solid-state metamaterial based THz spatial light modulator (SLM) as a 2x2 pixel array operating around 0.46 THz, by raster scanning an occluded metal object in polystyrene using a single-pixel imaging setup. This was an important step towards building an low-voltage (1V), low power, on-chip integrable THz imaging device. Using the characterization result from the THz SLM, we computationally demonstrated a multi-level amplitude shift keying (ASK) terahertz wireless communication system using spatial light modulation instead of traditional voltage mode modulation, achieving higher spectral efficiency for high speed communication. We show two orders of magnitude improvement in symbol error rate (SER) for a degradation of 20 dB in

  3. Noninvasive, near-field terahertz imaging of hidden objects using a single-pixel detector.

    PubMed

    Stantchev, Rayko Ivanov; Sun, Baoqing; Hornett, Sam M; Hobson, Peter A; Gibson, Graham M; Padgett, Miles J; Hendry, Euan

    2016-06-01

    Terahertz (THz) imaging can see through otherwise opaque materials. However, because of the long wavelengths of THz radiation (λ = 400 μm at 0.75 THz), far-field THz imaging techniques suffer from low resolution compared to visible wavelengths. We demonstrate noninvasive, near-field THz imaging with subwavelength resolution. We project a time-varying, intense (>100 μJ/cm(2)) optical pattern onto a silicon wafer, which spatially modulates the transmission of synchronous pulse of THz radiation. An unknown object is placed on the hidden side of the silicon, and the far-field THz transmission corresponding to each mask is recorded by a single-element detector. Knowledge of the patterns and of the corresponding detector signal are combined to give an image of the object. Using this technique, we image a printed circuit board on the underside of a 115-μm-thick silicon wafer with ~100-μm (λ/4) resolution. With subwavelength resolution and the inherent sensitivity to local conductivity, it is possible to detect fissures in the circuitry wiring of a few micrometers in size. THz imaging systems of this type will have other uses too, where noninvasive measurement or imaging of concealed structures is necessary, such as in semiconductor manufacturing or in ex vivo bioimaging.

  4. High-resolution broadband terahertz spectroscopy via electronic heterodyne detection of photonically generated terahertz frequency comb.

    PubMed

    Pavelyev, D G; Skryl, A S; Bakunov, M I

    2014-10-01

    We report an alternative approach to the terahertz frequency-comb spectroscopy (TFCS) based on nonlinear mixing of a photonically generated terahertz pulse train with a continuous wave signal from an electronic synthesizer. A superlattice is used as a nonlinear mixer. Unlike the standard TFCS technique, this approach does not require a complex double-laser system but retains the advantages of TFCS-high spectral resolution and wide bandwidth.

  5. Numerical simulation of terahertz generation and detection based on ultrafast photoconductive antennas

    NASA Astrophysics Data System (ADS)

    Chen, Long-chao; Fan, Wen-hui

    2011-08-01

    The numerical simulation of terahertz generation and detection in the interaction between femtosecond laser pulse and photoconductive material has been reported in this paper. The simulation model based on the Drude-Lorentz theory is used, and takes into account the phenomena that photo-generated electrons and holes are separated by the external bias field, which is screened by the space-charge field simultaneously. According to the numerical calculation, the terahertz time-domain waveforms and their Fourier-transformed spectra are presented under different conditions. The simulation results indicate that terahertz generation and detection properties of photoconductive antennas are largely influenced by three major factors, including photo-carriers' lifetime, laser pulse width and pump laser power. Finally, a simple model has been applied to simulate the detected terahertz pulses by photoconductive antennas with various photo-carriers' lifetimes, and the results show that the detected terahertz spectra are very different from the spectra radiated from the emitter.

  6. Directly probing spin dynamics in insulating antiferromagnets using ultrashort terahertz pulses

    DOE PAGES

    Bowlan, Pamela Renee; Trugman, Stuart Alan; Wang, X.; ...

    2016-11-22

    We investigate spin dynamics in the antiferromagnetic (AFM) multiferroic TbMnO3 using opticalpump, terahertz (THz)-probe spectroscopy. Photoexcitation results in a broadband THz transmission change, with an onset time of 25 ps at 6 K that becomes faster at higher temperatures. We attribute this time constant to spin-lattice thermalization. The excellent agreement between our measurements and previous ultrafast resonant x-ray diffraction measurements on the same material confirms that our THz pulse directly probes spin order. We suggest that this could be the case in general for insulating AFM materials, if the origin of the static absorption in the THz spectral range ismore » magnetic.« less

  7. Electron acceleration and kinetic energy tailoring via ultrafast terahertz fields.

    PubMed

    Greig, S R; Elezzabi, A Y

    2014-11-17

    We propose a mechanism for tuning the kinetic energy of surface plasmon generated electron pulses through control of the time delay between a pair of externally applied terahertz pulses. Varying the time delay results in translation, compression, and broadening of the kinetic energy spectrum of the generated electron pulse. We also observe that the electrons' kinetic energy dependence on the carrier envelope phase of the surface plasmon is preserved under the influence of a terahertz electric field.

  8. Terahertz Mapping of Microstructure and Thickness Variations

    NASA Technical Reports Server (NTRS)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  9. Development of terahertz endoscopic system for cancer detection

    NASA Astrophysics Data System (ADS)

    Doradla, Pallavi; Alavi, Karim; Joseph, Cecil S.; Giles, Robert H.

    2016-02-01

    Terahertz (THz) imaging is emerging as a robust platform for a myriad of applications in the fields of security, health, astronomy and material science. The terahertz regime with wavelengths spanning from microns to millimeters is a potentially safe and noninvasive medical imaging modality for detecting cancers. Endoscopic imaging systems provide high flexibility in examining the interior surfaces of an organ or tissue. Researchers have been working on the development of THz endoscopes with photoconductive antennas, which necessarily operate under high voltage, and require at least two channels to measure the reflected signal from the specimen. This manuscript provides the design and imperative steps involved in the development of a single-channel terahertz endoscopic system. The continuous-wave terahertz imaging system utilizes a single flexible terahertz waveguide channel to transmit and collect the back reflected intrinsic terahertz signal from the sample and is capable of operation in both transmission and reflection modalities. To determine the feasibility of using a terahertz endoscope for cancer detection, the co- and cross-polarized terahertz remittance from human colonic tissue specimens were collected at 584 GHz frequency. The two dimensional terahertz images obtained using polarization specific detection exhibited intrinsic contrast between cancerous and normal regions of fresh colorectal tissue. The level of contrast observed using endoscopic imaging correlates well with the contrast levels observed in the free space ex vivo terahertz reflectance studies of human colonic tissue. The prototype device developed in this study represents a significant step towards clinical endoscopic application of THz technology for in vivo colon cancer screening.

  10. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity.

    PubMed

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; Jarrahi, Mona

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-the-art photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means of a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1-4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on short-carrier-lifetime substrates.

  11. A High-Power Broadband Terahertz Source Enabled by Three-Dimensional Light Confinement in a Plasmonic Nanocavity

    DOE PAGES

    Yardimci, Nezih Tolga; Cakmakyapan, Semih; Hemmati, Soroosh; ...

    2017-06-23

    The scope and potential uses of time-domain terahertz imaging and spectroscopy are mainly limited by the low optical-to-terahertz conversion efficiency of photoconductive terahertz sources. State-of-theart photoconductive sources utilize short-carrier-lifetime semiconductors to recombine carriers that cannot contribute to efficient terahertz generation and cause additional thermal dissipation. Here, we present a novel photoconductive terahertz source that offers a significantly higher efficiency compared with terahertz sources fabricated on short-carrier-lifetime substrates. The key innovative feature of this source is the tight three-dimensional confinement of the optical pump beam around the terahertz nanoantennas that are used as radiating elements. This is achieved by means ofmore » a nanocavity formed by plasmonic structures and a distributed Bragg reflector. Consequently, almost all of the photo-generated carriers can be routed to the terahertz nanoantennas within a sub-picosecond time-scale. This results in a very strong, ultrafast current that drives the nanoantennas to produce broadband terahertz radiation. We experimentally demonstrate that this terahertz source can generate 4 mW pulsed terahertz radiation under an optical pump power of 720 mW over the 0.1–4 THz frequency range. This is the highest reported power level for terahertz radiation from a photoconductive terahertz source, representing more than an order of magnitude of enhancement in the optical-to-terahertz conversion efficiency compared with state-of-the-art photoconductive terahertz sources fabricated on shortcarrier- lifetime substrates.« less

  12. Spectral modification of the laser emission of a terahertz quantum cascade laser induced by broad-band double pulse injection seeding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markmann, Sergej, E-mail: sergej.markmann@ruhr-uni-bochum.de; Nong, Hanond, E-mail: nong.hanond@ruhr-uni-bochum.de; Hekmat, Negar

    2015-09-14

    We demonstrate by injection seeding that the spectral emission of a terahertz (THz) quantum cascade laser (QCL) can be modified with broad-band THz pulses whose bandwidths are greater than the QCL bandwidth. Two broad-band THz pulses delayed in time imprint a modulation on the single THz pulse spectrum. The resulting spectrum is used to injection seed the THz QCL. By varying the time delay between the THz pulses, the amplitude distribution of the QCL longitudinal modes is modified. By applying this approach, the QCL emission is reversibly switched from multi-mode to single mode emission.

  13. Application of terahertz pulse imaging as PAT tool for non-destructive evaluation of film-coated tablets under different manufacturing conditions.

    PubMed

    Dohi, Masafumi; Momose, Wataru; Yoshino, Hiroyuki; Hara, Yuko; Yamashita, Kazunari; Hakomori, Tadashi; Sato, Shusaku; Terada, Katsuhide

    2016-02-05

    Film-coated tablets (FCTs) are a popular solid dosage form in pharmaceutical industry. Manufacturing conditions during the film-coating process affect the properties of the film layer, which might result in critical quality problems. Here, we analyzed the properties of the film layer using a non-destructive approach with terahertz pulsed imaging (TPI). Hydrophilic tablets that become distended upon water absorption were used as core tablets and coated with film under different manufacturing conditions. TPI-derived parameters such as film thickness (FT), film surface reflectance (FSR), and interface density difference (IDD) between the film layer and core tablet were affected by manufacturing conditions and influenced critical quality attributes of FCTs. Relative standard deviation of FSR within tablets correlated well with surface roughness. Tensile strength could be predicted in a non-destructive manner using the multivariate regression equation to estimate the core tablet density by film layer density and IDD. The absolute value of IDD (Lateral) correlated with the risk of cracking on the lateral film layer when stored in a high-humidity environment. Further, in-process control was proposed for this value during the film-coating process, which will enable a feedback control system to be applied to process parameters and reduced risk of cracking without a stability test. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Enhanced coupling of terahertz radiation to cylindrical wire waveguides.

    PubMed

    Deibel, Jason A; Wang, Kanglin; Escarra, Matthew D; Mittleman, Daniel

    2006-01-09

    Wire waveguides have recently been shown to be valuable for transporting pulsed terahertz radiation. This technique relies on the use of a scattering mechanism for input coupling. A radially polarized surface wave is excited when a linearly polarized terahertz pulse is focused on the gap between the wire waveguide and another metal structure. We calculate the input coupling efficiency using a simulation based on the Finite Element Method (FEM). Additional FEM results indicate that enhanced coupling efficiency can be achieved through the use of a radially symmetric photoconductive antenna. Experimental results confirm that such an antenna can generate terahertz radiation which couples to the radial waveguide mode with greatly improved efficiency.

  15. 6.2-GHz modulated terahertz light detection using fast terahertz quantum well photodetectors.

    PubMed

    Li, Hua; Wan, Wen-Jian; Tan, Zhi-Yong; Fu, Zhang-Long; Wang, Hai-Xia; Zhou, Tao; Li, Zi-Ping; Wang, Chang; Guo, Xu-Guang; Cao, Jun-Cheng

    2017-06-14

    The fast detection of terahertz radiation is of great importance for various applications such as fast imaging, high speed communications, and spectroscopy. Most commercial products capable of sensitively responding the terahertz radiation are thermal detectors, i.e., pyroelectric sensors and bolometers. This class of terahertz detectors is normally characterized by low modulation frequency (dozens or hundreds of Hz). Here we demonstrate the first fast semiconductor-based terahertz quantum well photodetectors by carefully designing the device structure and microwave transmission line for high frequency signal extraction. Modulation response bandwidth of gigahertz level is obtained. As an example, the 6.2-GHz modulated terahertz light emitted from a Fabry-Pérot terahertz quantum cascade laser is successfully detected using the fast terahertz quantum well photodetector. In addition to the fast terahertz detection, the technique presented in this work can also be used for optically characterizing the frequency stability of terahertz quantum cascade lasers, heterodyne detections and photomixing applications.

  16. Terahertz standoff imaging testbed design and performance for concealed weapon and device identification model development

    NASA Astrophysics Data System (ADS)

    Franck, Charmaine C.; Lee, Dave; Espinola, Richard L.; Murrill, Steven R.; Jacobs, Eddie L.; Griffin, Steve T.; Petkie, Douglas T.; Reynolds, Joe

    2007-04-01

    This paper describes the design and performance of the U.S. Army RDECOM CERDEC Night Vision and Electronic Sensors Directorate's (NVESD), active 0.640-THz imaging testbed, developed in support of the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. The laboratory measurements and standoff images were acquired during the development of a NVESD and Army Research Laboratory terahertz imaging performance model. The imaging testbed is based on a 12-inch-diameter Off-Axis Elliptical (OAE) mirror designed with one focal length at 1 m and the other at 10 m. This paper will describe the design considerations of the OAE-mirror, dual-capability, active imaging testbed, as well as measurement/imaging results used to further develop the model.

  17. FLASH free-electron laser single-shot temporal diagnostic: terahertz-field-driven streaking.

    PubMed

    Ivanov, Rosen; Liu, Jia; Brenner, Günter; Brachmanski, Maciej; Düsterer, Stefan

    2018-01-01

    The commissioning of a terahertz-field-driven streak camera installed at the free-electron laser (FEL) FLASH at DESY in Hamburg, being able to deliver photon pulse duration as well as arrival time information with ∼10 fs resolution for each single XUV FEL pulse, is reported. Pulse durations between 300 fs and <15 fs have been measured for different FLASH FEL settings. A comparison between the XUV pulse arrival time and the FEL electron bunch arrival time measured at the FLASH linac section exhibits a correlation width of 20 fs r.m.s., thus demonstrating the excellent operation stability of FLASH. In addition, the terahertz-streaking setup was operated simultaneously to an alternative method to determine the FEL pulse duration based on spectral analysis. FLASH pulse duration derived from simple spectral analysis is in good agreement with that from terahertz-streaking measurement.

  18. Photoinduced Nonlinear Mixing of Terahertz Dipole Resonances in Graphene Metadevices.

    PubMed

    In, Chihun; Kim, Hyeon-Don; Min, Bumki; Choi, Hyunyong

    2016-02-17

    The first experimental demonstration of nonlinear terahertz difference-frequency generation in a hybrid graphene metadevice is reported. Decades of research have revealed that terahertz-wave generation is impossible in single-layer graphene. This limitation is overcome and nonlinear terahertz generation by ultra-short optical pulse injection is demonstrated. This device is an essential step toward atomically thin, nonlinear terahertz optoelectronic components. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. A coherent detection technique via optically biased field for broadband terahertz radiation.

    PubMed

    Du, Hai-Wei; Dong, Jia-Meng; Liu, Yi; Shi, Chang-Cheng; Wu, Jing-Wei; Peng, Xiao-Yu

    2017-09-01

    We demonstrate theoretically and experimentally a coherent terahertz detection technique based on an optically biased field functioning as a local oscillator and a second harmonic induced by the terahertz electric field in the air sensor working in free space. After optimizing the polarization angle and the energy of the probe pulse, and filling the system with dry nitrogen, the terahertz radiation generated from a two-color-femtosecond-laser-pulses induced plasma filament is measured by this technique with a bandwidth of 0.1-10 THz and a signal-to-noise ratio of 48 dB. Our technique provides an alternative simple method for coherent broadband terahertz detection.

  20. FDTD-based quantitative analysis of terahertz wave detection for multilayered structures.

    PubMed

    Tu, Wanli; Zhong, Shuncong; Shen, Yaochun; Zhou, Qing; Yao, Ligang

    2014-10-01

    Experimental investigations have shown that terahertz pulsed imaging (TPI) is able to quantitatively characterize a range of multilayered media (e.g., biological issues, pharmaceutical tablet coatings, layered polymer composites, etc.). Advanced modeling of the interaction of terahertz radiation with a multilayered medium is required to enable the wide application of terahertz technology in a number of emerging fields, including nondestructive testing. Indeed, there have already been many theoretical analyses performed on the propagation of terahertz radiation in various multilayered media. However, to date, most of these studies used 1D or 2D models, and the dispersive nature of the dielectric layers was not considered or was simplified. In the present work, the theoretical framework of using terahertz waves for the quantitative characterization of multilayered media was established. A 3D model based on the finite difference time domain (FDTD) method is proposed. A batch of pharmaceutical tablets with a single coating layer of different coating thicknesses and different refractive indices was modeled. The reflected terahertz wave from such a sample was computed using the FDTD method, assuming that the incident terahertz wave is broadband, covering a frequency range up to 3.5 THz. The simulated results for all of the pharmaceutical-coated tablets considered were found to be in good agreement with the experimental results obtained using a commercial TPI system. In addition, we studied a three-layered medium to mimic the occurrence of defects in the sample.

  1. Ionic contrast terahertz near-field imaging of axonal water fluxes

    PubMed Central

    Masson, Jean-Baptiste; Sauviat, Martin-Pierre; Martin, Jean-Louis; Gallot, Guilhem

    2006-01-01

    We demonstrate the direct and noninvasive imaging of functional neurons by ionic contrast terahertz near-field microscopy. This technique provides quantitative measurements of ionic concentrations in both the intracellular and extracellular compartments and opens the way to direct noninvasive imaging of neurons during electrical, toxin, or thermal stresses. Furthermore, neuronal activity results from both a precise control of transient variations in ionic conductances and a much less studied water exchange between the extracellular matrix and the intraaxonal compartment. The developed ionic contrast terahertz microscopy technique associated with a full three-dimensional simulation of the axon-aperture near-field system allows a precise measurement of the axon geometry and therefore the direct visualization of neuron swelling induced by temperature change or neurotoxin poisoning. Water influx as small as 20 fl per μm of axonal length can be measured. This technique should then provide grounds for the development of advanced functional neuroimaging methods based on diffusion anisotropy of water molecules. PMID:16547134

  2. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    NASA Astrophysics Data System (ADS)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p < .01) ranging between 0.0209 - 0.038% (reflectivity: %hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  3. A Practical and Portable Solids-State Electronic Terahertz Imaging System

    PubMed Central

    Smart, Ken; Du, Jia; Li, Li; Wang, David; Leslie, Keith; Ji, Fan; Li, Xiang Dong; Zeng, Da Zhang

    2016-01-01

    A practical compact solid-state terahertz imaging system is presented. Various beam guiding architectures were explored and hardware performance assessed to improve its compactness, robustness, multi-functionality and simplicity of operation. The system performance in terms of image resolution, signal-to-noise ratio, the electronic signal modulation versus optical chopper, is evaluated and discussed. The system can be conveniently switched between transmission and reflection mode according to the application. A range of imaging application scenarios was explored and images of high visual quality were obtained in both transmission and reflection mode. PMID:27110791

  4. A Phantom Study of Terahertz Spectroscopy and Imaging of Micro- and Nano-diamonds and Nano-onions as Contrast Agents for Breast Cancer.

    PubMed

    Bowman, Tyler; Walter, Alec; Shenderova, Olga; Nunn, Nicholas; McGuire, Gary; El-Shenawee, Magda

    2017-10-01

    THz imaging is effective in distinguishing between cancerous, healthy, and fatty tissues in breast tumors, but a challenge remains in the contrast between cancerous and fibroglandular (healthy) tissues. This work investigates carbon-based nanoparticles as potential contrast agents for terahertz imaging of breast cancer. Microdiamonds, nanodiamonds, and nanometer-scale onion-like carbon are characterized with terahertz transmission spectroscopy in low-absorption backgrounds of polydimethylsiloxane or polyethylene. The refractive index and absorption coefficients are calculated based on the measured electric fields. Nanodiamonds show little effect on the terahertz signal, microdiamonds express resonance-like, size-dependent absorption peaks, and onion-like carbon provides a uniform increase in the optical properties even at low concentration. Due to its strong interaction with terahertz frequencies and ability to be activated for selective binding to cancer cells, onion-like carbon is implemented into engineered three-dimensional breast tumor models composed of phantom tissue mimicking infiltrating ductal carcinoma surrounded by a phantom mimicking healthy fibroglandular tissue. This model is imaged using the terahertz reflection mode to examine the effectiveness of contrast agents for differentiation between the two tissue types. In both spectroscopy and imaging, a 10% concentration of onion-like carbon shows the strongest impact on the terahertz signal and holds promise as a terahertz contrast agent.

  5. Array Technology for Terahertz Imaging

    NASA Technical Reports Server (NTRS)

    Reck, Theodore; Siles, Jose; Jung, Cecile; Gill, John; Lee, Choonsup; Chattopadhyay, Goutam; Mehdi, Imran; Cooper, Ken

    2012-01-01

    Heterodyne terahertz (0.3 - 3THz) imaging systems are currently limited to single or a low number of pixels. Drastic improvements in imaging sensitivity and speed can be achieved by replacing single pixel systems with an array of detectors. This paper presents an array topology that is being developed at the Jet Propulsion Laboratory based on the micromachining of silicon. This technique fabricates the array's package and waveguide components by plasma etching of silicon, resulting in devices with precision surpassing that of current metal machining techniques. Using silicon increases the versatility of the packaging, enabling a variety of orientations of circuitry within the device which increases circuit density and design options. The design of a two-pixel transceiver utilizing a stacked architecture is presented that achieves a pixel spacing of 10mm. By only allowing coupling from the top and bottom of the package the design can readily be arrayed in two dimensions with a spacing of 10mm x 18mm.

  6. Adaptive spatiotemporal optical pulse front tilt using a digital micromirror device and its terahertz application.

    PubMed

    Murate, Kosuke; Roshtkhari, Mehraveh Javan; Ropagnol, Xavier; Blanchard, François

    2018-05-01

    We report a new method to temporally and spatially manipulate the pulse front tilt (PFT) intensity profile of an ultrashort optical pulse using a commercial microelectromechanical system, also known as a digital micromirror device (DMD). For our demonstration, we show terahertz generation in a lithium niobate crystal using the PFT pumping scheme derived from a DMD chip. The adaptive functionality of the DMD could be a convenient alternative to the more conventional grating required to generate a laser beam with a PFT intensity profile that is typically used for efficient optical rectification in noncollinear phase-matching conditions. In contrast to a grating, PFT using DMD does not suffer from wavelength dispersion, and exhibits overlap properties between grating and a stair-step echelon mirror.

  7. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes

    NASA Astrophysics Data System (ADS)

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ˜400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  8. Time-resolved single-shot terahertz time-domain spectroscopy for ultrafast irreversible processes.

    PubMed

    Zhai, Zhao-Hui; Zhong, Sen-Cheng; Li, Jun; Zhu, Li-Guo; Meng, Kun; Li, Jiang; Liu, Qiao; Peng, Qi-Xian; Li, Ze-Ren; Zhao, Jian-Heng

    2016-09-01

    Pulsed terahertz spectroscopy is suitable for spectroscopic diagnostics of ultrafast events. However, the study of irreversible or single shot ultrafast events requires ability to record transient properties at multiple time delays, i.e., time resolved at single shot level, which is not available currently. Here by angular multiplexing use of femtosecond laser pulses, we developed and demonstrated a time resolved, transient terahertz time domain spectroscopy technique, where burst mode THz pulses were generated and then detected in a single shot measurement manner. The burst mode THz pulses contain 2 sub-THz pulses, and the time gap between them is adjustable up to 1 ns with picosecond accuracy, thus it can be used to probe the single shot event at two different time delays. The system can detect the sub-THz pulses at 0.1 THz-2.5 THz range with signal to noise ratio (SNR) of ∼400 and spectrum resolution of 0.05 THz. System design was described here, and optimizations of single shot measurement of THz pulses were discussed in detail. Methods to improve SNR were also discussed in detail. A system application was demonstrated where pulsed THz signals at different time delays of the ultrafast process were successfully acquired within single shot measurement. This time resolved transient terahertz time domain spectroscopy technique provides a new diagnostic tool for irreversible or single shot ultrafast events where dynamic information can be extracted at terahertz range within one-shot experiment.

  9. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, Timothy J.; Taylor, Antoinette J.; Stewart, Kevin R.

    1996-01-01

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification.

  10. Generation of scalable terahertz radiation from cylindrically focused two-color laser pulses in air

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuk, D.; Yoo, Y. J.; Rosenthal, E. W.

    2016-03-21

    We demonstrate scalable terahertz (THz) generation by focusing terawatt, two-color laser pulses in air with a cylindrical lens. This focusing geometry creates a two-dimensional air plasma sheet, which yields two diverging THz lobe profiles in the far field. This setup can avoid plasma-induced laser defocusing and subsequent THz saturation, previously observed with spherical lens focusing of high-power laser pulses. By expanding the plasma source into a two-dimensional sheet, cylindrical focusing can lead to scalable THz generation. This scheme provides an energy conversion efficiency of 7 × 10{sup −4}, ∼7 times better than spherical lens focusing. The diverging THz lobes are refocused withmore » a combination of cylindrical and parabolic mirrors to produce strong THz fields (>21 MV/cm) at the focal point.« less

  11. Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas.

    PubMed

    Bowman, Tyler; El-Shenawee, Magda; Campbell, Lucas K

    2016-09-01

    This work presents experimental and analytical comparison of terahertz transmission and reflection imaging modes for assessing breast carcinoma in excised paraffin-embedded human breast tissue. Modeling for both transmission and reflection imaging is developed. The refractive index and absorption coefficient of the tissue samples are obtained. The reflection measurements taken at the system's fixed oblique angle of 30° are shown to be a hybridization of TE and TM modes. The models are validated with transmission spectroscopy at fixed points on fresh bovine muscle and fat tissues. Images based on the calculated absorption coefficient and index of refraction of bovine tissue are successfully compared with the terahertz magnitude and phase measured in the reflection mode. The validated techniques are extended to 20 and 30 μm slices of fixed human lobular carcinoma and infiltrating ductal carcinoma mounted on polystyrene microscope slides in order to investigate the terahertz differentiation of the carcinoma with non-cancerous tissue. Both transmission and reflection imaging show clear differentiation in carcinoma versus healthy tissue. However, when using the reflection mode, in the calculation of the thin tissue properties, the absorption is shown to be sensitive to small phase variations that arise due to deviations in slide and tissue thickness and non-ideal tissue adhesion. On the other hand, the results show that the transmission mode is much less sensitive to these phase variations. The results also demonstrate that reflection imaging provides higher resolution and more clear margins between cancerous and fibroglandular regions, cancerous and fatty regions, and fibroglandular and fatty tissue regions. In addition, more features consistent with high power pathology images are exhibited in the reflection mode images.

  12. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-06-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  13. Single-Cycle Terahertz Pulse Generation from OH1 Crystal via Cherenkov Phase Matching

    NASA Astrophysics Data System (ADS)

    Uchida, Hirohisa; Oota, Kengo; Okimura, Koutarou; Kawase, Kodo; Takeya, Kei

    2018-03-01

    OH1 crystal is an organic nonlinear optical crystal with a large nonlinear optical constant. However, it has dispersion of refractive indices in the terahertz (THz) frequency. This limits the frequencies that satisfy the phase matching conditions for THz wave generation. In this study, we addressed the phase matching conditions for THz wave generation by combining an OH1 crystal with prism-coupled Cherenkov phase matching. We observed the generation of single-cycle THz pulses with a spectrum covering a frequency range of 3 THz. These results prove that combining prism-coupled Cherenkov phase matching with nonlinear optical crystals yields a THz wave generation method that is insusceptible to crystal dispersion.

  14. GaSe1-xSx and GaSe1-xTex thick crystals for broadband terahertz pulses generation

    NASA Astrophysics Data System (ADS)

    Nazarov, M. M.; Yu. Sarkisov, S.; Shkurinov, A. P.; Tolbanov, O. P.

    2011-08-01

    We demonstrate the possibility of broadband THz pulse generation in mixed GaSe1-xSx and GaSe1-xTex crystals. The ordinary and extraordinary refractive indices of the crystals have been measured by the terahertz time-domain spectroscopy method, those values strongly influence the efficiency of THz generation process. The high birefringence and transparency of pure GaSe and mixed crystals allow optical rectification of femtosecond laser pulses in the several millimeters thick crystal using the еее interaction process (with two pumping waves and generated THz wave all having extraordinary polarization in the crystal).

  15. Terahertz imaging through self-mixing in a quantum cascade laser.

    PubMed

    Dean, Paul; Lim, Yah Leng; Valavanis, Alex; Kliese, Russell; Nikolić, Milan; Khanna, Suraj P; Lachab, Mohammad; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Rakić, Aleksandar D; Linfield, Edmund H; Davies, A Giles

    2011-07-01

    We demonstrate terahertz (THz) frequency imaging using a single quantum cascade laser (QCL) device for both generation and sensing of THz radiation. Detection is achieved by utilizing the effect of self-mixing in the THz QCL, and, specifically, by monitoring perturbations to the voltage across the QCL, induced by light reflected from an external object back into the laser cavity. Self-mixing imaging offers high sensitivity, a potentially fast response, and a simple, compact optical design, and we show that it can be used to obtain high-resolution reflection images of exemplar structures.

  16. Generation of coherent terahertz radiation in ultrafast laser-gas interactionsa)

    NASA Astrophysics Data System (ADS)

    Kim, Ki-Yong

    2009-05-01

    The generation of intense terahertz radiation in ultrafast laser-gas interactions is studied on a basis of transient electron current model. When an ultrashort pulse laser's fundamental and its second harmonic fields are mixed to ionize a gas, a nonvanishing, directional photoelectron current can be produced, which simultaneously emits terahertz radiation in the far field. Here, the generation mechanism is examined with an analytic derivation and numerical simulations, in which tunneling ionization and subsequent electron motion in the combined laser field play a key role. In the simulations, three types of laser-gas interactions are considered: (i) mixing the fundamental and its second harmonic fields, (ii) mixing nonharmonic, two-color fields, and (iii) focusing single-color, few-cycle pulses. In these interactions, terahertz generation and other nonlinear effects driven by the transient current are investigated. In particular, anticorrelation between terahertz and second (or third) harmonic generation is observed and analyzed.

  17. Spectral shifts as a signature of the onset of diffusion of broadband terahertz pulses.

    PubMed

    Pearce, Jeremy; Jian, Zhongping; Mittleman, Daniel M

    2004-12-15

    We describe measurements of polarization dynamics as a probe of multiple scattering of photons in a random medium by use of single-cycle terahertz pulses. We measure the degree of polarization and correlate it directly with the single-scattering regime in the time domain. We also measure the evolution of the temporal phase of the radiation and show that the average spectral content depends on the state of polarization. In the case of broadband radiation, this effect can be used to distinguish photons that have been scattered a few times from those that are propagating diffusively.

  18. Electro-optic crystal mosaics for the generation of terahertz radiation

    DOEpatents

    Carrig, T.J.; Taylor, A.J.; Stewart, K.R.

    1996-08-06

    Apparatus for the generation of high energy terahertz radiation is presented and comprises laser means effective to produce subpicosecond optical pulses and a mosaic comprising a plurality of planar electro-optic crystals fastened together edge to edge in the form of a grid. The electro-optic crystals are in optical communication with the subpicosecond optical pulses, and behave as a single large electro-optic crystal, producing high energy terahertz radiation by way of optical rectification. 5 figs.

  19. Enhanced terahertz imaging system performance analysis and design tool for concealed weapon identification

    NASA Astrophysics Data System (ADS)

    Murrill, Steven R.; Franck, Charmaine C.; Espinola, Richard L.; Petkie, Douglas T.; De Lucia, Frank C.; Jacobs, Eddie L.

    2011-11-01

    The U.S. Army Research Laboratory (ARL) and the U.S. Army Night Vision and Electronic Sensors Directorate (NVESD) have developed a terahertz-band imaging system performance model/tool for detection and identification of concealed weaponry. The details of the MATLAB-based model which accounts for the effects of all critical sensor and display components, and for the effects of atmospheric attenuation, concealment material attenuation, and active illumination, were reported on at the 2005 SPIE Europe Security & Defence Symposium (Brugge). An advanced version of the base model that accounts for both the dramatic impact that target and background orientation can have on target observability as related to specular and Lambertian reflections captured by an active-illumination-based imaging system, and for the impact of target and background thermal emission, was reported on at the 2007 SPIE Defense and Security Symposium (Orlando). This paper will provide a comprehensive review of an enhanced, user-friendly, Windows-executable, terahertz-band imaging system performance analysis and design tool that now includes additional features such as a MODTRAN-based atmospheric attenuation calculator and advanced system architecture configuration inputs that allow for straightforward performance analysis of active or passive systems based on scanning (single- or line-array detector element(s)) or staring (focal-plane-array detector elements) imaging architectures. This newly enhanced THz imaging system design tool is an extension of the advanced THz imaging system performance model that was developed under the Defense Advanced Research Project Agency's (DARPA) Terahertz Imaging Focal-Plane Technology (TIFT) program. This paper will also provide example system component (active-illumination source and detector) trade-study analyses using the new features of this user-friendly THz imaging system performance analysis and design tool.

  20. Controllable Terahertz Radiation from a Linear-Dipole Array Formed by a Two-Color Laser Filament in Air.

    PubMed

    Zhang, Zhelin; Chen, Yanping; Chen, Min; Zhang, Zhen; Yu, Jin; Sheng, Zhengming; Zhang, Jie

    2016-12-09

    We demonstrate effective control on the carrier-envelope phase and angular distribution as well as the peak intensity of a nearly single-cycle terahertz pulse emitted from a laser filament formed by two-color, the fundamental and the corresponding second harmonics, femtosecond laser pulses propagating in air. Experimentally, such control has been performed by varying the filament length and the initial phase difference between the two-color laser components. A linear-dipole-array model, including the descriptions of both the generation (via laser field ionization) and propagation of the emitted terahertz pulse, is proposed to present a quantitative interpretation of the observations. Our results contribute to the understanding of terahertz generation in a femtosecond laser filament and suggest a practical way to control the electric field of a terahertz pulse for potential applications.

  1. Efficient Terahertz Wide-Angle NUFFT-Based Inverse Synthetic Aperture Imaging Considering Spherical Wavefront.

    PubMed

    Gao, Jingkun; Deng, Bin; Qin, Yuliang; Wang, Hongqiang; Li, Xiang

    2016-12-14

    An efficient wide-angle inverse synthetic aperture imaging method considering the spherical wavefront effects and suitable for the terahertz band is presented. Firstly, the echo signal model under spherical wave assumption is established, and the detailed wavefront curvature compensation method accelerated by 1D fast Fourier transform (FFT) is discussed. Then, to speed up the reconstruction procedure, the fast Gaussian gridding (FGG)-based nonuniform FFT (NUFFT) is employed to focus the image. Finally, proof-of-principle experiments are carried out and the results are compared with the ones obtained by the convolution back-projection (CBP) algorithm. The results demonstrate the effectiveness and the efficiency of the presented method. This imaging method can be directly used in the field of nondestructive detection and can also be used to provide a solution for the calculation of the far-field RCSs (Radar Cross Section) of targets in the terahertz regime.

  2. Passive stand-off terahertz imaging with 1 hertz frame rate

    NASA Astrophysics Data System (ADS)

    May, T.; Zieger, G.; Anders, S.; Zakosarenko, V.; Starkloff, M.; Meyer, H.-G.; Thorwirth, G.; Kreysa, E.

    2008-04-01

    Terahertz (THz) cameras are expected to be a powerful tool for future security applications. If such a technology shall be useful for typical security scenarios (e.g. airport check-in) it has to meet some minimum standards. A THz camera should record images with video rate from a safe distance (stand-off). Although active cameras are conceivable, a passive system has the benefit of concealed operation. Additionally, from an ethic perspective, the lack of exposure to a radiation source is a considerable advantage in public acceptance. Taking all these requirements into account, only cooled detectors are able to achieve the needed sensitivity. A big leap forward in the detector performance and scalability was driven by the astrophysics community. Superconducting bolometers and midsized arrays of them have been developed and are in routine use. Although devices with many pixels are foreseeable nowadays a device with an additional scanning optic is the straightest way to an imaging system with a useful resolution. We demonstrate the capabilities of a concept for a passive Terahertz video camera based on superconducting technology. The actual prototype utilizes a small Cassegrain telescope with a gyrating secondary mirror to record 2 kilopixel THz images with 1 second frame rate.

  3. Development and Testing of a Single Frequency Terahertz Imaging System for Breast Cancer Detection

    PubMed Central

    St. Peter, Benjamin; Yngvesson, Sigfrid; Siqueira, Paul; Kelly, Patrick; Khan, Ashraf; Glick, Stephen; Karellas, Andrew

    2013-01-01

    The ability to discern malignant from benign tissue in excised human breast specimens in Breast Conservation Surgery (BCS) was evaluated using single frequency terahertz radiation. Terahertz (THz) images of the specimens in reflection mode were obtained by employing a gas laser source and mechanical scanning. The images were correlated with optical histological micrographs of the same specimens, and a mean discrimination of 73% was found for five out of six samples using Receiver Operating Characteristic (ROC) analysis. The system design and characterization is discussed in detail. The initial results are encouraging but further development of the technology and clinical evaluation is needed to evaluate its feasibility in the clinical environment. PMID:25055306

  4. Real-time broadband terahertz spectroscopic imaging by using a high-sensitivity terahertz camera

    NASA Astrophysics Data System (ADS)

    Kanda, Natsuki; Konishi, Kuniaki; Nemoto, Natsuki; Midorikawa, Katsumi; Kuwata-Gonokami, Makoto

    2017-02-01

    Terahertz (THz) imaging has a strong potential for applications because many molecules have fingerprint spectra in this frequency region. Spectroscopic imaging in the THz region is a promising technique to fully exploit this characteristic. However, the performance of conventional techniques is restricted by the requirement of multidimensional scanning, which implies an image data acquisition time of several minutes. In this study, we propose and demonstrate a novel broadband THz spectroscopic imaging method that enables real-time image acquisition using a high-sensitivity THz camera. By exploiting the two-dimensionality of the detector, a broadband multi-channel spectrometer near 1 THz was constructed with a reflection type diffraction grating and a high-power THz source. To demonstrate the advantages of the developed technique, we performed molecule-specific imaging and high-speed acquisition of two-dimensional (2D) images. Two different sugar molecules (lactose and D-fructose) were identified with fingerprint spectra, and their distributions in one-dimensional space were obtained at a fast video rate (15 frames per second). Combined with the one-dimensional (1D) mechanical scanning of the sample, two-dimensional molecule-specific images can be obtained only in a few seconds. Our method can be applied in various important fields such as security and biomedicine.

  5. Wide-aperture aspherical lens for high-resolution terahertz imaging

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Frolov, Maxim E.; Lebedev, Sergey P.; Reshetov, Igor V.; Spektor, Igor E.; Tolstoguzov, Viktor L.; Karasik, Valeriy E.; Khorokhorov, Alexei M.; Koshelev, Kirill I.; Schadko, Aleksander O.; Yurchenko, Stanislav O.; Zaytsev, Kirill I.

    2017-01-01

    In this paper, we introduce wide-aperture aspherical lens for high-resolution terahertz (THz) imaging. The lens has been designed and analyzed by numerical methods of geometrical optics and electrodynamics. It has been made of high-density polyethylene by shaping at computer-controlled lathe and characterized using a continuous-wave THz imaging setup based on a backward-wave oscillator and Golay detector. The concept of image contrast has been implemented to estimate image quality. According to the experimental data, the lens allows resolving two points spaced at 0.95λ distance with a contrast of 15%. To highlight high resolution in the THz images, the wide-aperture lens has been employed for studying printed electronic circuit board containing sub-wavelength-scale elements. The observed results justify the high efficiency of the proposed lens design.

  6. NDE Imaging of Time Differential Terahertz Waves

    NASA Technical Reports Server (NTRS)

    Trinh, Long B.

    2008-01-01

    Natural voids are present in the vicinity of a conathane interface that bonds two different foam materials. These voids are out of focus with the terahertz imaging system and multiple optical reflections also make it difficult to determine their depths. However, waves passing through the top foam article at normal incidence are partially reflected at the denser conathane layer prior to total reflection at the tank s wall. Reflections embedded in the oscillating noise segment prior to the main signals can be extracted with dual applications of filtering and time derivative. Void's depth is computed from direct path's time of flight.

  7. TOPICAL REVIEW: Semiconductors for terahertz photonics applications

    NASA Astrophysics Data System (ADS)

    Krotkus, Arūnas

    2010-07-01

    Generation and measurement of ultrashort, subpicosecond pulses of electromagnetic radiation with their characteristic Fourier spectra that reach far into terahertz (THz) frequency range has recently become a versatile tool of far-infrared spectroscopy and imaging. This technique, THz time-domain spectroscopy, in addition to a femtosecond pulse laser, requires semiconductor components manufactured from materials with a short photoexcited carrier lifetime, high carrier mobility and large dark resistivity. Here we will review the most important developments in the field of investigation of such materials. The main characteristics of low-temperature-grown or ion-implanted GaAs and semiconducting compounds sensitive in the wavelength ranges around 1 µm and 1.5 µm will be surveyed. The second part of the paper is devoted to the effect of surface emission of THz transients from semiconductors illuminated by femtosecond laser pulses. The main physical mechanisms leading to this emission as well as their manifestation in various crystals will be described.

  8. Terahertz emission driven by two-color laser pulses at various frequency ratios

    NASA Astrophysics Data System (ADS)

    Wang, W.-M.; Sheng, Z.-M.; Li, Y.-T.; Zhang, Y.; Zhang, J.

    2017-08-01

    We present a simulation study of terahertz radiation from a gas driven by two-color laser pulses in a broad range of frequency ratios ω1/ω0 . Our particle-in-cell simulation results show that there are three series with ω1/ω0=2 n , n +1 /2 , n ±1 /3 (n is a positive integer) for high-efficiency and stable radiation generation. The radiation strength basically decreases with the increasing ω1 and scales linearly with the laser wavelength. These rules are broken when ω1/ω0<1 and much stronger radiation may be generated at any ω1/ω0 . These results can be explained with a model based on gas ionization by two linear-superposition laser fields, rather than a multiwave mixing model.

  9. In vivo terahertz reflection imaging of human scars during and after the healing process.

    PubMed

    Fan, Shuting; Ung, Benjamin S Y; Parrott, Edward P J; Wallace, Vincent P; Pickwell-MacPherson, Emma

    2017-09-01

    We use terahertz imaging to measure four human skin scars in vivo. Clear contrast between the refractive index of the scar and surrounding tissue was observed for all of the scars, despite some being difficult to see with the naked eye. Additionally, we monitored the healing process of a hypertrophic scar. We found that the contrast in the absorption coefficient became less prominent after a few months post-injury, but that the contrast in the refractive index was still significant even months post-injury. Our results demonstrate the capability of terahertz imaging to quantitatively measure subtle changes in skin properties and this may be useful for improving scar treatment and management. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Contrast in Terahertz Images of Archival Documents—Part I: Influence of the Optical Parameters from the Ink and Support

    NASA Astrophysics Data System (ADS)

    Bardon, Tiphaine; May, Robert K.; Jackson, J. Bianca; Beentjes, Gabriëlle; de Bruin, Gerrit; Taday, Philip F.; Strlič, Matija

    2017-04-01

    This study aims to objectively inform curators when terahertz time-domain (TD) imaging set in reflection mode is likely to give well-contrasted images of inscriptions in a complex archival document and is a useful non-invasive alternative to current digitisation processes. To this end, the dispersive refractive indices and absorption coefficients from various archival materials are assessed and their influence on contrast in terahertz images from historical documents is explored. Sepia ink and inks produced with bistre or verdigris mixed with a solution of Arabic gum or rabbit skin glue are unlikely to lead to well-contrasted images. However, dispersions of bone black, ivory black, iron gall ink, malachite, lapis lazuli, minium and vermilion are likely to lead to well-contrasted images. Inscriptions written with lamp black, carbon black and graphite give the best imaging results. The characteristic spectral signatures from iron gall ink, minium and vermilion pellets between 5 and 100 cm-1 relate to a ringing effect at late collection times in TD waveforms transmitted through these pellets. The same ringing effect can be probed in waveforms reflected from iron gall, minium and vermilion ink deposits at the surface of a document. Since TD waveforms collected for each scanning pixel can be Fourier-transformed into spectral information, terahertz TD imaging in reflection mode can serve as a hyperspectral imaging tool. However, chemical recognition and mapping of the ink is currently limited by the fact that the morphology of the document influences more the terahertz spectral response of the document than the resonant behaviour of the ink.

  11. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier.

  12. Graphene based terahertz phase modulators

    NASA Astrophysics Data System (ADS)

    Kakenov, N.; Ergoktas, M. S.; Balci, O.; Kocabas, C.

    2018-07-01

    Electrical control of amplitude and phase of terahertz radiation (THz) is the key technological challenge for high resolution and noninvasive THz imaging. The lack of active materials and devices hinders the realization of these imaging systems. Here, we demonstrate an efficient terahertz phase and amplitude modulation using electrically tunable graphene devices. Our device structure consists of electrolyte-gated graphene placed at quarter wavelength distance from a reflecting metallic surface. In this geometry, graphene operates as a tunable impedance surface which yields electrically controlled reflection phase. Terahertz time domain reflection spectroscopy reveals the voltage controlled phase modulation of π and the reflection modulation of 50 dB. To show the promises of our approach, we demonstrate a multipixel phase modulator array which operates as a gradient impedance surface.

  13. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Yamashita, M.; Ogawa, Y.; Otani, C.; Kawase, K.

    2005-12-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO 3 or MgO-doped LiNbO 3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave sources with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a TPO, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which illegal, while one is an over-the-counter drug.

  14. Terahertz parametric sources and imaging applications

    NASA Astrophysics Data System (ADS)

    Kawase, Kodo; Ogawa, Yuichi; Minamide, Hiroaki; Ito, Hiromasa

    2005-07-01

    We have studied the generation of terahertz (THz) waves by optical parametric processes based on laser light scattering from the polariton mode of nonlinear crystals. Using parametric oscillation of LiNbO3 or MgO-doped LiNbO3 crystal pumped by a nano-second Q-switched Nd:YAG laser, we have realized a widely tunable coherent THz-wave source with a simple configuration. We report the detailed characteristics of the oscillation and the radiation including tunability, spatial and temporal coherency, uni-directivity, and efficiency. A Fourier transform limited THz-wave spectrum narrowing was achieved by introducing the injection seeding method. Further, we have developed a spectroscopic THz imaging system using a THz-wave parametric oscillator, which allows detection and identification of drugs concealed in envelopes, by introducing the component spatial pattern analysis. Several images of the envelope are recorded at different THz frequencies and then processed. The final result is an image that reveals what substances are present in the envelope, in what quantity, and how they are distributed across the envelope area. The example presented here shows the identification of three drugs, two of which are illegal, while one is an over-the-counter drug.

  15. Optical Properties of Laminarin Using Terahertz Time-Domain Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Shin, Hee Jun; Maeng, Inhee; Oh, Seung Jae; Kim, Sung In; Kim, Ha Won; Son, Joo-Hiuk

    2009-04-01

    Terahertz spectroscopy is important in the study of biomolecular structure because the vibration and rotation energy of large molecules such as DNA, proteins, and polysaccharides are laid in terahertz regions. Terahertz time-domain spectroscopy (THz-TDS), using terahertz pulses generated and detected by femto-second pulses laser, has been used in the study of biomolecular dynamics, as well as carrier dynamics of semiconductors. Laminarin is a polysaccharide of glucose in brown algae. It is made up of β(1-3)-glucan and β(1-6)-glucan. β-glucan is an anticancer material that activates the immune reaction of human cells and inhibits proliferation of cancer cells. β-glucan with a single-strand structure has been reported to activate the immune reaction to a greater extent than β-glucan with a triple-strand helix structure. We used THz-TDS to characterize the difference between single-strand and triple-strand β-glucan. We obtained single-strand β-glucan by chemical treatment of triple-strand β-glucan. We measured the frequency dependent optical constants of Laminarin using THz-TDS. Power absorption of the triple-strand helix is larger than the single-strand helix in terahertz regions. The refractive index of the triple-strand helix is also larger than that of the single-strand helix.

  16. Terahertz Imaging and Backscatter Radiography Probability of Detection Study for Space Shuttle Foam Inspections

    NASA Technical Reports Server (NTRS)

    Ussery, Warren; Johnson, Kenneth; Walker, James; Rummel, Ward

    2008-01-01

    This slide presentation reviews the use of terahertz imaging and Backscatter Radiography in a probability of detection study of the foam on the external tank (ET) shedding and damaging the shuttle orbiter. Non-destructive Examination (NDE) is performed as one method of preventing critical foam debris during the launch. Conventional NDE methods for inspection of the foam are assessed and the deficiencies are reviewed. Two methods for NDE inspection are reviewed: Backscatter Radiography (BSX) and Terahertz (THZ) Imaging. The purpose of the Probability of Detection (POD) study was to assess performance and reliability of the use of BSX and or THZ as an appropriate NDE method. The study used a test article with inserted defects, and a sample of blanks included to test for false positives. The results of the POD study are reported.

  17. Parameter Estimation and Image Reconstruction of Rotating Targets with Vibrating Interference in the Terahertz Band

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Qin, Yuliang

    2017-07-01

    Rotation is one of the typical micro-motions of radar targets. In many cases, rotation of the targets is always accompanied with vibrating interference, and it will significantly affect the parameter estimation and imaging, especially in the terahertz band. In this paper, we propose a parameter estimation method and an image reconstruction method based on the inverse Radon transform, the time-frequency analysis, and its inverse. The method can separate and estimate the rotating Doppler and the vibrating Doppler simultaneously and can obtain high-quality reconstructed images after vibration compensation. In addition, a 322-GHz radar system and a 25-GHz commercial radar are introduced and experiments on rotating corner reflectors are carried out in this paper. The results of the simulation and experiments verify the validity of the methods, which lay a foundation for the practical processing of the terahertz radar.

  18. Investigate the effects of EG doping PEDOT/PSS on transmission and anti-reflection properties using terahertz pulsed spectroscopy.

    PubMed

    Sun, Yiwen; Yang, Shengxin; Du, Pengju; Yan, Fei; Qu, Junle; Zhu, Zexuan; Zuo, Jian; Zhang, Cunlin

    2017-02-06

    The conductivity of poly(3,4-ethylene dioxythiophene)/poly(4-styrenesulfonate) (PEDOT/PSS) is significantly enhanced on adding some organic solvent such as ethylene glycol (EG). In this paper, the optoelectronic properties of EG doped PEDOT/PSS on transmission and anti-reflection effects are investigated in detail by terahertz time domain spectroscopy (THz-TDS). The transmission line circuit theory gives us an insight into the THz transmission mechanisms of the main and second pulses. In particular, we show that the conductivities of 10% EG doped PEDOT/PSS are nearly frequency independent from 0.3 to 1.5 THz. To demonstrate applications of this property, we design and fabricate broadband terahertz neutral density filters and anti-reflection coatings based on 10% EG doped PEDOT/PSS thin films with varying thickness. Our measurements highlight the capability of THz-TDS to characterize the conductivity of EG doped PEDOT/PSS, which is essential for broadband optoelectronic devices in THz region.

  19. Feasibility demonstration of frequency domain terahertz imaging in breast cancer margin determination

    NASA Astrophysics Data System (ADS)

    Yngvesson, Sigfrid K.; St. Peter, Benjamin; Siqueira, Paul; Kelly, Patrick; Glick, Stephen; Karellas, Andrew; Khan, Ashraf

    2012-03-01

    In breast conservation surgery, surgeons attempt to remove malignant tissue along with a surrounding margin of healthy tissue. Subsequent pathological analysis determines if those margins are clear of malignant tissue, a process that typically requires at least one day. Only then can it be determined whether a follow-up surgery is necessary. This possibility of re-excision is undesirable in terms of reducing patient morbidity, emotional stress and healthcare. It has been shown that terahertz (THz) images of breast specimens can accurately differentiate between breast carcinoma, normal fibroglandular tissue, and adipose tissue. That study employed the Time-Domain Spectroscopy (TDS) technique. We are instead developing a new technique, Frequency-Domain Terahertz Imaging (FDTI). In this joint project between UMass/Amherst and UMass Medical School/Worcester (UMMS), we are investigating the feasibility of the FDTI technique for THz reflection imaging of breast cancer margins. Our system, which produces mechanically scanned images of size 2cm x 2cm, uses a THz gas laser. The system is calibrated with mixtures of water and ethanol and reflection coefficients as low as 1% have been measured. Images from phantoms and specimens cut from breast cancer lumpectomies at UMMS will be presented. Finally, there will be a discussion of a possible transition of this FDTI setup to a compact and inexpensive CMOS THz camera for use in the operating room.

  20. Handheld THz security imaging

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.

    2016-05-01

    Terahertz energy, with its ability to penetrate clothing and non-conductive materials, has held much promise in the area of security scanning. Millimeter wave systems (300 GHz and below) have been widely deployed. These systems have used full two-dimensional surface imaging, and have resulted in privacy concerns. Pulsed terahertz imaging, can detect the presence of unwanted objects without the need for two-dimensional photographic imaging. With high-speed waveform acquisition it is possible to create handheld tools that can be used to locate anomalies under clothing or headgear looking exclusively at either single point waveforms or cross-sectional images which do not pose a privacy concern. Identification of the anomaly to classify it as a potential threat or a benign object is also possible.

  1. Terahertz Science, Technology, and Communication

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam

    2013-01-01

    The term "terahertz" has been ubiquitous in the arena of technology over the past couple of years. New applications are emerging every day which are exploiting the promises of terahertz - its small wavelength; capability of penetrating dust, clouds, and fog; and possibility of having large instantaneous bandwidth for high-speed communication channels. Until very recently, space-based instruments for astrophysics, planetary science, and Earth science missions have been the primary motivator for the development of terahertz sensors, sources, and systems. However, in recent years the emerging areas such as imaging from space platforms, surveillance of person-borne hidden weapons or contraband from a safe stand-off distance and reconnaissance, medical imaging and DNA sequencing, and in the world high speed communications have been the driving force for this area of research.

  2. Optimized two- and three-colour laser pulses for the intense terahertz wave generation

    NASA Astrophysics Data System (ADS)

    Zhang, Lei; Wang, Guo-Li; Zhou, Xiao-Xin

    2016-11-01

    Based on the photocurrent model, we perform a theoretical study on the optimization of terahertz (THz) wave emission from argon gas irradiated by the two- and three-colour laser fields. To obtain stronger THz radiation for the given conditions, a genetic algorithm method is applied to search for the optimum laser parameters. For the two-colour field, our optimizations reveal two types of optimal scheme, and each one dominates the THz generation in different regions of intensity ratio for a given total laser intensity. One scheme is the combination of a fundamental laser pulse and its second harmonic, while the other is the fundamental pulse with its fourth harmonic. For each scheme, the optimal intensity ratio and phase delay are obtained. For the three-colour case, our optimization shows that the excellent waveform for the strongest THz radiation is composed of a fundamental laser pulse, and its second, third harmonics, with appropriate intensity ratio and carrier-envelope phase. Such a 3-colour field can generate strong THz radiation comparable with a 10-colour sawtooth wave [Martínez et al., Phys. Rev. Lett. 114, 183901 (2015)]. The physical mechanisms for the enhancement of THz wave emission in gases are also discussed in detail. Our results give helpful guidance for intense THz generation with tabletop femtosecond laser device in experiment.

  3. Application of Terahertz Imaging and Backscatter Radiography to Space Shuttle Foam Inspection

    NASA Technical Reports Server (NTRS)

    Ussery, Warren

    2008-01-01

    Two state of the art technologies have been developed for External Fuel Tank foam inspections. Results of POD tests have shown Backscatter Radiography and Terahertz imaging detect critical defects with no false positive issue. These techniques are currently in use on the External Tank program as one component in the foam quality assurance program.

  4. Non-contact weight measurement of flat-faced pharmaceutical tablets using terahertz transmission pulse delay measurements.

    PubMed

    Bawuah, Prince; Silfsten, Pertti; Ervasti, Tuomas; Ketolainen, Jarkko; Zeitler, J Axel; Peiponen, Kai-Erik

    2014-12-10

    By measuring the time delay of a terahertz pulse traversing a tablet, and hence its effective refractive index, it is possible to non-invasively and non-destructively detect the weight of tablets made of microcrystalline cellulose (MCC). Two sets of MCC tablets were used in the study: Set A (training set) consisted of 13 tablets with nominally constant height but varying porosities, whereas Set B (test set) comprised of 21 tablets with nominally constant porosity but different heights. A linear correlation between the estimated absolute weight based on the terahertz measurement and the measured weight of both sets of MCC tablets was found. In addition, it was possible to estimate the height of the tablets by utilizing the estimated absolute weight and calculating the relative change of height of each tablet with respect to an ideal tablet. A good agreement between the experimental and the calculated results was found highlighting the potential of this technique for in-line sensing of the weight, porosity and the relative change in height of the tablets compared to a reference/ideal tablet. In this context, we propose a quantitative quality control method to assess the deviations in porosity of tablets immediately after compaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Terahertz near-field imaging of surface plasmon waves in graphene structures

    DOE PAGES

    Mitrofanov, O.; Yu, W.; Thompson, R. J.; ...

    2015-09-08

    In this study, we introduce a near-field scanning probe terahertz (THz) microscopy technique for probing surface plasmon waves on graphene. Based on THz time-domain spectroscopy method, this near-field imaging approach is well suited for studying the excitation and evolution of THz plasmon waves on graphene as well as for mapping of graphene properties at THz frequencies on the sub-wavelength scale.

  6. Terahertz in-line digital holography of human hepatocellular carcinoma tissue.

    PubMed

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-13

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  7. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    NASA Astrophysics Data System (ADS)

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-02-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer.

  8. Simulation and analysis of atmospheric transmission performance in airborne Terahertz communication

    NASA Astrophysics Data System (ADS)

    Pan, Chengsheng; Shi, Xin; Liu, Chengyang; Wang, Xue; Ding, Yuanming

    2018-02-01

    For the special meteorological condition of high altitude transmission; first the influence of atmospheric turbulence on the Terahertz wireless communication is analyzed, and the atmospheric constants model with increase in height is given. On this basis, the relationship between the flicker index and the high altitude horizon transmission distance of the Terahertz wave is analyzed by simulation. Then, through the analysis of high altitude path loss and noise, the high altitude wireless link model is built. Finally, the link loss budget is given according to the current Terahertz device parameters, and bit error rate (BER) performance of on-off keyed modulation (OOK) and pulse position modulation (PPM) in four Terahertz frequency bands is compared and analyzed. All these above provided theoretical reference for high-altitude Terahertz wireless communication transmission.

  9. Detection of Ionic liquid using terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Wang, Cuicui; Zhao, Xiaojing; Liu, Shangjian; Zuo, Jian; Zhang, Cunlin

    2018-01-01

    Terahertz (THz, THz+1012Hz) spectroscopy is a far-infrared analytical technology with spectral bands locating between microware and infrared ranges. Being of excellent transmission, non-destruction and high discrimination, this technology has been applied in various fields such as physics, chemistry, nondestructive detection, communication, biomedicine public security. Terahertz spectrum is corresponding with vibration and rotation of liquid molecules, which is suitable to identify and study the liquid molecular dynamics. It is as a powerful spectral detection technology, terahertz time-domain spectroscopy is widely used in solution detection. can enable us to extract the material parameters or dielectric spectrum that show material micro-structure and dynamics by measuring amplitude and phase from coherent terahertz pulses. Ionic liquid exists in most biological tissues, and it is very important for life. It has recently been suggested that near-fired terahertz ionic contrast microscopy can be employed to image subtle changes in ionic concentrations arising from neuronal activity. In this paper, we detected Ionic liquid with different concentrations at room temperature by THz-TDS technique in the range of 0.2-1.5 THz. The liquid cell with a thickness of 0.2mm is made of quartz. The absorption coefficient, refractive index and dielectric function of solutions can be extracted based on THz-TDS. We use an expanded model for fitting the dielectric function based on a combination of a Debye relation for the anions and cations. We find A linear increase of the real and imaginary part of the dielectric function compared with pure water with increasing ion concentrations. A good agreement between the model and the experimental results is obtained. By means of dielectric relaxation process, it was found that the characteristic time of molecular movement and the information related to the liquid molecular structure and movement was obtained.

  10. Terahertz-wave near-field imaging with subwavelength resolution using surface-wave-assisted bow-tie aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ohashi, Keishi; Ikari, Tomofumi; Minamide, Hiroaki; Yokoyama, Hiroyuki; Shikata, Jun-ichi; Ito, Hiromasa

    2006-11-01

    We demonstrate the terahertz-wave near-field imaging with subwavelength resolution using a bow-tie shaped aperture surrounded by concentric periodic structures in a metal film. A subwavelength aperture with concentric periodic grooves, which are known as a bull's eye structure, shows extremely large enhanced transmission beyond the diffraction limit caused by the resonant excitation of surface waves. Additionally, a bow-tie aperture exhibits extraordinary field enhancement at the sharp tips of the metal, which enhances the transmission and the subwavelength spatial resolution. We introduced a bow-tie aperture to the bull's eye structure and achieved high spatial resolution (˜λ/17) in the near-field region. The terahertz-wave near-field image of the subwavelength metal pattern (pattern width=20μm) was obtained for the wavelength of 207μm.

  11. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    PubMed

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  12. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects

    PubMed Central

    González de Alaiza Martínez, P.; Davoine, X.; Debayle, A.; Gremillet, L.; Bergé, L.

    2016-01-01

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >1015 W/cm2. We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 1017 W/cm2 laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents. PMID:27255689

  13. Three-Dimensional Terahertz Coded-Aperture Imaging Based on Matched Filtering and Convolutional Neural Network.

    PubMed

    Chen, Shuo; Luo, Chenggao; Wang, Hongqiang; Deng, Bin; Cheng, Yongqiang; Zhuang, Zhaowen

    2018-04-26

    As a promising radar imaging technique, terahertz coded-aperture imaging (TCAI) can achieve high-resolution, forward-looking, and staring imaging by producing spatiotemporal independent signals with coded apertures. However, there are still two problems in three-dimensional (3D) TCAI. Firstly, the large-scale reference-signal matrix based on meshing the 3D imaging area creates a heavy computational burden, thus leading to unsatisfactory efficiency. Secondly, it is difficult to resolve the target under low signal-to-noise ratio (SNR). In this paper, we propose a 3D imaging method based on matched filtering (MF) and convolutional neural network (CNN), which can reduce the computational burden and achieve high-resolution imaging for low SNR targets. In terms of the frequency-hopping (FH) signal, the original echo is processed with MF. By extracting the processed echo in different spike pulses separately, targets in different imaging planes are reconstructed simultaneously to decompose the global computational complexity, and then are synthesized together to reconstruct the 3D target. Based on the conventional TCAI model, we deduce and build a new TCAI model based on MF. Furthermore, the convolutional neural network (CNN) is designed to teach the MF-TCAI how to reconstruct the low SNR target better. The experimental results demonstrate that the MF-TCAI achieves impressive performance on imaging ability and efficiency under low SNR. Moreover, the MF-TCAI has learned to better resolve the low-SNR 3D target with the help of CNN. In summary, the proposed 3D TCAI can achieve: (1) low-SNR high-resolution imaging by using MF; (2) efficient 3D imaging by downsizing the large-scale reference-signal matrix; and (3) intelligent imaging with CNN. Therefore, the TCAI based on MF and CNN has great potential in applications such as security screening, nondestructive detection, medical diagnosis, etc.

  14. Absorption of laser plasma in competition with oscillation currents for a terahertz spectrum.

    PubMed

    Li, Xiaolu; Bai, Ya; Li, Na; Liu, Peng

    2018-01-01

    We generate terahertz radiation in a supersonic jet of nitrogen molecules pumped by intense two-color laser pulses. The tuning of terahertz spectra from blue shift to red shift is observed by increasing laser power and stagnation pressure, and the red shift range is enlarged with the increased stagnation pressure. Our simulation reveals that the plasma absorption of the oscillation currents and expanded plasma column owing to increased laser intensity and gas number density are crucial factors in the recurrence of the red shift of terahertz spectra. The findings disclose the microscopic mechanism of terahertz radiation and present a controlling knob for the manipulation of a broadband terahertz spectrum from laser plasma.

  15. Nondestructive Evaluation of Carbon Fiber Reinforced Polymer Composites Using Reflective Terahertz Imaging

    PubMed Central

    Zhang, Jin; Li, Wei; Cui, Hong-Liang; Shi, Changcheng; Han, Xiaohui; Ma, Yuting; Chen, Jiandong; Chang, Tianying; Wei, Dongshan; Zhang, Yumin; Zhou, Yufeng

    2016-01-01

    Terahertz (THz) time-domain spectroscopy (TDS) imaging is considered a nondestructive evaluation method for composite materials used for examining various defects of carbon fiber reinforced polymer (CFRP) composites and fire-retardant coatings in the reflective imaging modality. We demonstrate that hidden defects simulated by Teflon artificial inserts are imaged clearly in the perpendicular polarization mode. The THz TDS technique is also used to measure the thickness of thin fire-retardant coatings on CFRP composites with a typical accuracy of about 10 micrometers. In addition, coating debonding is successfully imaged based on the time-delay difference of the time-domain waveforms between closely adhered and debonded sample locations. PMID:27314352

  16. Terahertz emission from ultrafast spin-charge current at a Rashba interface

    NASA Astrophysics Data System (ADS)

    Zhang, Qi; Jungfleisch, Matthias Benjamin; Zhang, Wei; Pearson, John E.; Wen, Haidan; Hoffmann, Axel

    Ultrafast broadband terahertz (THz) radiation is highly desired in various fields from fundamental research in condensed matter physics to bio-chemical detection. Conventional ultrafast THz sources rely on either nonlinear optical effects or ultrafast charge currents in semiconductors. Recently, however, it was realized that ultrabroad-band THz radiation can be produced highly effectively by novel spintronics-based emitters that also make use of the electron's spin degree of freedom. Those THz-emitters convert a spin current flow into a terahertz electromagnetic pulse via the inverse spin-Hall effect. In contrast to this bulk conversion process, we demonstrate here that a femtosecond spin current pulse launched from a CoFeB layer can also generate terahertz transients efficiently at a two-dimensional Rashba interface between two non-magnetic materials, i.e., Ag/Bi. Those interfaces have been proven to be efficient means for spin- and charge current interconversion.

  17. Terahertz in-line digital holography of human hepatocellular carcinoma tissue

    PubMed Central

    Rong, Lu; Latychevskaia, Tatiana; Chen, Chunhai; Wang, Dayong; Yu, Zhengping; Zhou, Xun; Li, Zeyu; Huang, Haochong; Wang, Yunxin; Zhou, Zhou

    2015-01-01

    Terahertz waves provide a better contrast in imaging soft biomedical tissues than X-rays, and unlike X-rays, they cause no ionisation damage, making them a good option for biomedical imaging. Terahertz absorption imaging has conventionally been used for cancer diagnosis. However, the absorption properties of a cancerous sample are influenced by two opposing factors: an increase in absorption due to a higher degree of hydration and a decrease in absorption due to structural changes. It is therefore difficult to diagnose cancer from an absorption image. Phase imaging can thus be critical for diagnostics. We demonstrate imaging of the absorption and phase-shift distributions of 3.2 mm × 2.3 mm × 30-μm-thick human hepatocellular carcinoma tissue by continuous-wave terahertz digital in-line holography. The acquisition time of a few seconds for a single in-line hologram is much shorter than that of other terahertz diagnostic techniques, and future detectors will allow acquisition of meaningful holograms without sample dehydration. The resolution of the reconstructions was enhanced by sub-pixel shifting and extrapolation. Another advantage of this technique is its relaxed minimal sample size limitation. The fibrosis indicated in the phase distribution demonstrates the potential of terahertz holographic imaging to obtain a more objective, early diagnosis of cancer. PMID:25676705

  18. Terahertz Spectroscopy for Chemical Detection and Burn Characterization

    NASA Astrophysics Data System (ADS)

    Arbab, Mohammad Hassan

    Terahertz (THz) frequencies represent the last frontier of the electromagnetic spectrum to be investigated by scientists. One of the main attractions of investigating this frequency range is the richness of the spectral information that can be obtained using a Terahertz Time-Domain Spectroscopy (THz-TDS) setup. Many large molecule chemicals and polymers have vibrational and rotational modes in the THz frequencies. Study of these resonance modes has revealed a wealth of new information about the intermolecular structure, and its transformation during crystallization or polymerization process. This information helps researchers develop new materials to address problems such as efficient energy conversion in polymer solar cells. Moreover, similar signature-like terahertz modes can be used for stand-off identification of substances or for nondestructive evaluation of defects in industrial applications. Finally, terahertz spectroscopy has the potential to provide a safe and non-ionizing imaging modality to study cellular and molecular events in biological and biomedical applications. The high sensitivity of terahertz waves to attenuation by both bound and free water molecules can also provides a source of signal contrast for many future biomedical imaging and diagnostic applications. In this dissertation, we aim to study and develop three such applications of terahertz spectroscopy, which form the three axes of our work: rough-surface scattering mediated stand-off detection of chemicals, characterization of burn injuries using terahertz radiation, and a new electrically tunable bandpass filter device incorporating nano-material transparent electrodes that can enable fast terahertz spectroscopy in the frequency domain.

  19. Cherenkov emission of terahertz surface plasmon polaritons from a superluminal optical spot on a structured metal surface.

    PubMed

    Bakunov, M I; Tsarev, M V; Hangyo, M

    2009-05-25

    We propose to launch terahertz surface plasmon polaritons on a structured metal surface by using a femtosecond laser pulse obliquely incident on a strip of an electro-optic material deposited on the surface. The laser pulse creates a nonlinear polarization that moves along the strip with a superluminal velocity and emits surface terahertz waves via the Cherenkov radiation mechanism. We calculate the radiated fields and frequency distribution of the radiated energy for a grooved perfect-conductor surface with a GaAs strip illuminated by Ti:sapphire laser. This technique can be used to perform surface terahertz spectroscopy.

  20. Terahertz time-gated spectral imaging for content extraction through layered structures

    PubMed Central

    Redo-Sanchez, Albert; Heshmat, Barmak; Aghasi, Alireza; Naqvi, Salman; Zhang, Mingjie; Romberg, Justin; Raskar, Ramesh

    2016-01-01

    Spatial resolution, spectral contrast and occlusion are three major bottlenecks for non-invasive inspection of complex samples with current imaging technologies. We exploit the sub-picosecond time resolution along with spectral resolution provided by terahertz time-domain spectroscopy to computationally extract occluding content from layers whose thicknesses are wavelength comparable. The method uses the statistics of the reflected terahertz electric field at subwavelength gaps to lock into each layer position and then uses a time-gated spectral kurtosis to tune to highest spectral contrast of the content on that specific layer. To demonstrate, occluding textual content was successfully extracted from a packed stack of paper pages down to nine pages without human supervision. The method provides over an order of magnitude enhancement in the signal contrast and can impact inspection of structural defects in wooden objects, plastic components, composites, drugs and especially cultural artefacts with subwavelength or wavelength comparable layers. PMID:27610926

  1. Operation of Terahertz Quantum-cascade Lasers at 164 K in Pulsed Mode and at 117 K in Continuous-wave Mode

    NASA Technical Reports Server (NTRS)

    Williams, Benjamin S.; Kumar, Sushil; Hu, Qing; Reno, John L.

    2005-01-01

    We report the demonstration of a terahertz quantum-cascade laser that operates up to 164 K in pulsed mode and 117 K in continuous-wave mod e at approximately 3.0 THz. The active region was based on a resonant -phonon depopulation scheme and a metal-metal waveguide was used for modal confinement. Copper to copper thermocompression wafer bonding w as used to fabricate the waveguide, which displayed improved thermal properties compared to a previous indium-gold bonding method.

  2. Qualitative identification of food materials by complex refractive index mapping in the terahertz range.

    PubMed

    Shin, Hee Jun; Choi, Sung-Wook; Ok, Gyeongsik

    2018-04-15

    We investigated the feasibility of qualitative food analysis using complex refractive index mapping of food materials in the terahertz (THz) frequency range. We studied optical properties such as the refractive index and absorption coefficient of food materials, including insects as foreign substances, from 0.2 to 1.3 THz. Although some food materials had a complex composition, their refractive indices were approximated with effective medium values, and therefore, they could be discriminated on the complex refractive index map. To demonstrate food quality inspection with THz imaging, we obtained THz reflective images and time-of-flight imaging of hidden defects in a sugar and milk powder matrix by using time domain THz pulses. Our results indicate that foreign substances can be clearly classified and detected according to the optical parameters of the foods and insects by using THz pulses. Copyright © 2017. Published by Elsevier Ltd.

  3. Terahertz multiheterodyne spectroscopy using laser frequency combs

    DOE PAGES

    Yang, Yang; Burghoff, David; Hayton, Darren J.; ...

    2014-07-01

    The terahertz region is of great importance for spectroscopy since many molecules have absorption fingerprints there. Frequency combs based on terahertz quantum cascade lasers feature broadband coverage and high output powers in a compact package, making them an attractive option for broadband spectroscopy. Here, we demonstrate the first multiheterodyne spectroscopy using two terahertz quantum cascade laser combs. Over a spectral range of 250 GHz, we achieve average signal-to-noise ratios of 34 dB using cryogenic detectors and 24 dB using room-temperature detectors, all in just 100 μs. As a proof of principle, we use these combs to measure the broadband transmissionmore » spectrum of etalon samples and show that, with proper signal processing, it is possible to extend the multiheterodyne spectroscopy to quantum cascade laser combs operating in pulsed mode. Here, this greatly expands the range of quantum cascade lasers that could be suitable for these techniques and allows for the creation of completely solid-state terahertz laser spectrometers.« less

  4. Terahertz wave electro-optic measurements with optical spectral filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ilyakov, I. E., E-mail: igor-ilyakov@mail.ru; Shishkin, B. V.; Kitaeva, G. Kh.

    We propose electro-optic detection techniques based on variations of the laser pulse spectrum induced during pulse co-propagation with terahertz wave radiation in a nonlinear crystal. Quantitative comparison with two other detection methods is made. Substantial improvement of the sensitivity compared to the standard electro-optic detection technique (at high frequencies) and to the previously shown technique based on laser pulse energy changes is demonstrated in experiment.

  5. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays.

    PubMed

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-11-07

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1-5 THz frequency range with the power levels as high as 300  μ W. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths.

  6. Brewster's angle silicon wafer terahertz linear polarizer.

    PubMed

    Wojdyla, Antoine; Gallot, Guilhem

    2011-07-18

    We present a new cost-effective terahertz linear polarizer made from a stack of silicon wafers at Brewster's angle, andevaluate its performances. We show that this polarizer is wide-band, has a high extinction ratio (> 6 × 10(3)) and very small insertion losses (< 1%). We provide measurements of the temporal waveforms after linearly polarizing the THz beam and show that there is no distortion of the pulse. We compare its performances with a commercial wire-grid polarizer, and show that the Brewster's angle polarizer can conveniently be used to control the power of a terahertz beam.

  7. Tutorial: Terahertz beamforming, from concepts to realizations

    NASA Astrophysics Data System (ADS)

    Headland, Daniel; Monnai, Yasuaki; Abbott, Derek; Fumeaux, Christophe; Withayachumnankul, Withawat

    2018-05-01

    The terahertz range possesses significant untapped potential for applications including high-volume wireless communications, noninvasive medical imaging, sensing, and safe security screening. However, due to the unique characteristics and constraints of terahertz waves, the vast majority of these applications are entirely dependent upon the availability of beam control techniques. Thus, the development of advanced terahertz-range beam control techniques yields a range of useful and unparalleled applications. This article provides an overview and tutorial on terahertz beam control. The underlying principles of wavefront engineering include array antenna theory and diffraction optics, which are drawn from the neighboring microwave and optical regimes, respectively. As both principles are applicable across the electromagnetic spectrum, they are reconciled in this overview. This provides a useful foundation for investigations into beam control in the terahertz range, which lies between microwaves and infrared light. Thereafter, noteworthy experimental demonstrations of beam control in the terahertz range are discussed, and these include geometric optics, phased array devices, leaky-wave antennas, reflectarrays, and transmitarrays. These techniques are compared and contrasted for their suitability in applications of terahertz waves.

  8. [The Detection of Ultra-Broadband Terahertz Spectroscopy of InP Wafer by Using Coherent Heterodyne Time-Domain Spectrometer].

    PubMed

    Zhang, Liang-liang; Zhang, Rui; Xu, Xiao-yan; Zhang, Cun-lin

    2016-02-01

    Indium Phosphide (InP) has attracted great physical interest because of its unique characteristics and is indispensable to both optical and electronic devices. However, the optical property of InP in the terahertz range (0. 110 THz) has not yet been fully characterized and systematically studied. The former researches about the properties of InP concentrated on the terahertz frequency between 0.1 and 4 THz. The terahertz optical properties of the InP in the range of 4-10 THz are still missing. It is fairly necessary to fully understand its properties in the entire terahertz range, which results in a better utilization as efficient terahertz devices. In this paper, we study the optical properties of undoped (100) InP wafer in the ultra-broad terahertz frequency range (0.5-18 THz) by using air-biased-coherent-detection (ABCD) system, enabling the coherent detection of terahertz wave in gases, which leads to a significant improvement on the dynamic range and sensitivity of the system. The advantage of this method is broad frequency bandwidth from 0.2 up to 18 THz which is only mainly limited by laser pulse duration since it uses ionized air as terahertz emitter and detector instead of using an electric optical crystal or photoconductive antenna. The terahertz pulse passing through the InP wafer is delayed regarding to the reference pulse and has much lower amplitude. In addition, the frequency spectrum amplitude of the terahertz sample signal drops to the noise floor level from 6.7 to 12.1 THz. At the same time InP wafer is opaque at the frequencies spanning from 6.7 to 12.1 THz. In the frequency regions of 0.8-6.7 and 12.1-18 THz it has relativemy low absorption coefficient. Meanwhile, the refractive index increases monotonously in the 0.8-6.7 THz region and 12.1-18 THz region. These findings will contribute to the design of InP based on nonlinear terahertz devices.

  9. Terahertz-driven linear electron acceleration

    PubMed Central

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; Ravi, Koustuban; Fallahi, Arya; Moriena, Gustavo; Dwayne Miller, R. J.; Kärtner, Franz X.

    2015-01-01

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeV m−1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/proton accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. These ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams. PMID:26439410

  10. Terahertz-driven linear electron acceleration

    DOE PAGES

    Nanni, Emilio A.; Huang, Wenqian R.; Hong, Kyung-Han; ...

    2015-10-06

    The cost, size and availability of electron accelerators are dominated by the achievable accelerating gradient. Conventional high-brightness radio-frequency accelerating structures operate with 30–50 MeVm -1 gradients. Electron accelerators driven with optical or infrared sources have demonstrated accelerating gradients orders of magnitude above that achievable with conventional radio-frequency structures. However, laser-driven wakefield accelerators require intense femtosecond sources and direct laser-driven accelerators suffer from low bunch charge, sub-micron tolerances and sub-femtosecond timing requirements due to the short wavelength of operation. Here we demonstrate linear acceleration of electrons with keV energy gain using optically generated terahertz pulses. Terahertz-driven accelerating structures enable high-gradient electron/protonmore » accelerators with simple accelerating structures, high repetition rates and significant charge per bunch. As a result, these ultra-compact terahertz accelerators with extremely short electron bunches hold great potential to have a transformative impact for free electron lasers, linear colliders, ultrafast electron diffraction, X-ray science and medical therapy with X-rays and electron beams.« less

  11. Real-time, continuous-wave terahertz imaging using a microbolometer focal-plane array

    NASA Technical Reports Server (NTRS)

    Hu, Qing (Inventor); Min Lee, Alan W. (Inventor)

    2010-01-01

    The present invention generally provides a terahertz (THz) imaging system that includes a source for generating radiation (e.g., a quantum cascade laser) having one or more frequencies in a range of about 0.1 THz to about 10 THz, and a two-dimensional detector array comprising a plurality of radiation detecting elements that are capable of detecting radiation in that frequency range. An optical system directs radiation from the source to an object to be imaged. The detector array detects at least a portion of the radiation transmitted through the object (or reflected by the object) so as to form a THz image of that object.

  12. Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations

    NASA Astrophysics Data System (ADS)

    Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.

    2014-02-01

    Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.

  13. Terahertz Array Receivers with Integrated Antennas

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Llombart, Nuria; Lee, Choonsup; Jung, Cecile; Lin, Robert; Cooper, Ken B.; Reck, Theodore; Siles, Jose; Schlecht, Erich; Peralta, Alessandro; hide

    2011-01-01

    Highly sensitive terahertz heterodyne receivers have been mostly single-pixel. However, now there is a real need of multi-pixel array receivers at these frequencies driven by the science and instrument requirements. In this paper we explore various receiver font-end and antenna architectures for use in multi-pixel integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies has progressed very well over the past few years. Novel stacking of micro-machined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages has made it possible to design multi-pixel heterodyne arrays. One of the critical technologies to achieve fully integrated system is the antenna arrays compatible with the receiver array architecture. In this paper we explore different receiver and antenna architectures for multi-pixel heterodyne and direct detector arrays for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  14. A Concealed Barcode Identification System Using Terahertz Time-domain Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guan, Yu; Yamamoto, Manabu; Kitazawa, Toshiyuki; Tripathi, Saroj R.; Takeya, Kei; Kawase, Kodo

    2015-03-01

    We present a concealed terahertz barcode/chipless tag to achieve remote identification through an obstructing material using terahertz radiation. We show scanned terahertz reflection spectral images of barcodes concealed by a thick obstacle. A concealed and double- side printed terahertz barcode structure is proposed, and we demonstrate that our design has better performance in definition than a single-side printed barcode using terahertz time-domain spectroscopy. This technique combines the benefits of a chipless tag to read encoded information covered by an optically opaque material with low cost and a simple fabrication process. Simulations are also described, along with an explanation of the principle of the terahertz barcode identification system.

  15. 1.56 Terahertz 2-frames per second standoff imaging

    NASA Astrophysics Data System (ADS)

    Goyette, Thomas M.; Dickinson, Jason C.; Linden, Kurt J.; Neal, William R.; Joseph, Cecil S.; Gorveatt, William J.; Waldman, Jerry; Giles, Robert; Nixon, William E.

    2008-02-01

    A Terahertz imaging system intended to demonstrate identification of objects concealed under clothing was designed, assembled, and tested. The system design was based on a 2.5 m standoff distance, with a capability of visualizing a 0.5 m by 0.5 m scene at an image rate of 2 frames per second. The system optical design consisted of a 1.56 THz laser beam, which was raster swept by a dual torsion mirror scanner. The beam was focused onto the scan subject by a stationary 50 cm-diameter focusing mirror. A heterodyne detection technique was used to down convert the backscattered signal. The system demonstrated a 1.5 cm spot resolution. Human subjects were scanned at a frame rate of 2 frames per second. Hidden metal objects were detected under a jacket worn by the human subject. A movie including data and video images was produced in 1.5 minutes scanning a human through 180° of azimuth angle at 0.7° increment.

  16. Pixel Statistical Analysis of Diabetic vs. Non-diabetic Foot-Sole Spectral Terahertz Reflection Images

    NASA Astrophysics Data System (ADS)

    Hernandez-Cardoso, G. G.; Alfaro-Gomez, M.; Rojas-Landeros, S. C.; Salas-Gutierrez, I.; Castro-Camus, E.

    2018-03-01

    In this article, we present a series of hydration mapping images of the foot soles of diabetic and non-diabetic subjects measured by terahertz reflectance. In addition to the hydration images, we present a series of RYG-color-coded (red yellow green) images where pixels are assigned one of the three colors in order to easily identify areas in risk of ulceration. We also present the statistics of the number of pixels with each color as a potential quantitative indicator for diabetic foot-syndrome deterioration.

  17. Higgs amplitude mode in the BCS superconductors Nb1-xTi(x)N induced by terahertz pulse excitation.

    PubMed

    Matsunaga, Ryusuke; Hamada, Yuki I; Makise, Kazumasa; Uzawa, Yoshinori; Terai, Hirotaka; Wang, Zhen; Shimano, Ryo

    2013-08-02

    Ultrafast responses of BCS superconductor Nb(1-x)Ti(x)N films in a nonadiabatic excitation regime were investigated by using terahertz (THz) pump-THz probe spectroscopy. After an instantaneous excitation with the monocycle THz pump pulse, a transient oscillation emerges in the electromagnetic response in the BCS gap energy region. The oscillation frequency coincides with the asymptotic value of the BCS gap energy, indicating the appearance of the theoretically anticipated collective amplitude mode of the order parameter, namely the Higgs amplitude mode. Our result opens a new pathway to the ultrafast manipulation of the superconducting order parameter by optical means.

  18. Fast, High-Resolution Terahertz Radar Imaging at 25 Meters

    NASA Technical Reports Server (NTRS)

    Cooper, Ken B.; Dengler, Robert J.; Llombart, Nuria; Talukder, Ashit; Panangadan, Anand V.; Peay, Chris S.; Siegel, Peter H.

    2010-01-01

    We report improvements in the scanning speed and standoff range of an ultra-wide bandwidth terahertz (THz) imaging radar for person-borne concealed object detection. Fast beam scanning of the single-transceiver radar is accomplished by rapidly deflecting a flat, light-weight subreflector in a confocal Gregorian optical geometry. With RF back-end improvements also implemented, the radar imaging rate has increased by a factor of about 30 compared to that achieved previously in a 4 m standoff prototype instrument. In addition, a new 100 cm diameter ellipsoidal aluminum reflector yields beam spot diameters of approximately 1 cm over a 50x50 cm field of view at a range of 25 m, although some aberrations are observed that probably arise from misaligned optics. Through-clothes images of a concealed threat at 25 m range, acquired in 5 seconds, are presented, and the impact of reduced signal-to-noise from an even faster frame rate is analyzed. These results inform the system requirements for eventually achieving sub-second or video-rate THz radar imaging.

  19. High power telecommunication-compatible photoconductive terahertz emitters based on plasmonic nano-antenna arrays

    PubMed Central

    Yardimci, Nezih Tolga; Lu, Hong; Jarrahi, Mona

    2016-01-01

    We present a high-power and broadband photoconductive terahertz emitter operating at telecommunication optical wavelengths, at which compact and high-performance fiber lasers are commercially available. The presented terahertz emitter utilizes an ErAs:InGaAs substrate to achieve high resistivity and short carrier lifetime characteristics required for robust operation at telecommunication optical wavelengths. It also uses a two-dimensional array of plasmonic nano-antennas to offer significantly higher optical-to-terahertz conversion efficiencies compared to the conventional photoconductive emitters, while maintaining broad operation bandwidths. We experimentally demonstrate pulsed terahertz radiation over 0.1–5 THz frequency range with the power levels as high as 300 μW. This is the highest-reported terahertz radiation power from a photoconductive emitter operating at telecommunication optical wavelengths. PMID:27916999

  20. Terahertz Detection and Imaging Using Graphene Ballistic Rectifiers.

    PubMed

    Auton, Gregory; But, Dmytro B; Zhang, Jiawei; Hill, Ernie; Coquillat, Dominique; Consejo, Christophe; Nouvel, Philippe; Knap, Wojciech; Varani, Luca; Teppe, Frederic; Torres, Jeremie; Song, Aimin

    2017-11-08

    A graphene ballistic rectifier is used in conjunction with an antenna to demonstrate a rectenna as a terahertz (THz) detector. A small-area (<1 μm 2 ) local gate is used to adjust the Fermi level in the device to optimize the output while minimizing the impact on the cutoff frequency. The device operates in both n- and p-type transport regimes and shows a peak extrinsic responsivity of 764 V/W and a corresponding noise equivalent power of 34 pW Hz -1/2 at room temperature with no indications of a cutoff frequency up to 0.45 THz. The device also demonstrates a linear response for more than 3 orders of magnitude of input power due to its zero threshold voltage, quadratic current-voltage characteristics and high saturation current. Finally, the device is used to take an image of an optically opaque object at 0.685 THz, demonstrating potential in both medical and security imaging applications.

  1. Experiments on terahertz 3D scanning microscopic imaging

    NASA Astrophysics Data System (ADS)

    Zhou, Yi; Li, Qi

    2016-10-01

    Compared with the visible light and infrared, terahertz (THz) radiation can penetrate nonpolar and nonmetallic materials. There are many studies on the THz coaxial transmission confocal microscopy currently. But few researches on the THz dual-axis reflective confocal microscopy were reported. In this paper, we utilized a dual-axis reflective confocal scanning microscope working at 2.52 THz. In contrast with the THz coaxial transmission confocal microscope, the microscope adopted in this paper can attain higher axial resolution at the expense of reduced lateral resolution, revealing more satisfying 3D imaging capability. Objects such as Chinese characters "Zhong-Hua" written in paper with a pencil and a combined sheet metal which has three layers were scanned. The experimental results indicate that the system can extract two Chinese characters "Zhong," "Hua" or three layers of the combined sheet metal. It can be predicted that the microscope can be applied to biology, medicine and other fields in the future due to its favorable 3D imaging capability.

  2. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  3. Resonant features of the terahertz generation in semiconductor nanowires

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Trukhin, V. N., E-mail: valera.truchin@mail.ioffe.ru; Bouravleuv, A. D.; Mustafin, I. A.

    2016-12-15

    The paper presents the results of experimental studies of the generation of terahertz radiation in periodic arrays of GaAs nanowires via excitation by ultrashort optical pulses. It is found that the generation of THz radiation exhibits resonant behavior due to the resonant excitation of cylindrical modes in the nanowires. At the optimal geometric parameters of the nanowire array, the generation efficiency is found to be higher than that for bulk p-InAs, which is one of the most effective coherent terahertz emitters.

  4. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  5. Synthetic aperture in terahertz in-line digital holography for resolution enhancement.

    PubMed

    Huang, Haochong; Rong, Lu; Wang, Dayong; Li, Weihua; Deng, Qinghua; Li, Bin; Wang, Yunxin; Zhan, Zhiqiang; Wang, Xuemin; Wu, Weidong

    2016-01-20

    Terahertz digital holography is a combination of terahertz technology and digital holography. In digital holography, the imaging resolution is the key parameter in determining the detailed quality of a reconstructed wavefront. In this paper, the synthetic aperture method is used in terahertz digital holography and the in-line arrangement is built to perform the detection. The resolved capability of previous terahertz digital holographic systems restricts this technique to meet the requirement of practical detection. In contrast, the experimental resolved power of the present method can reach 125 μm, which is the best resolution of terahertz digital holography to date. Furthermore, the basic detection of a biological specimen is conducted to show the practical application. In all, the results of the proposed method demonstrate the enhancement of experimental imaging resolution and that the amplitude and phase distributions of the fine structure of samples can be reconstructed by using terahertz digital holography.

  6. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases

    NASA Astrophysics Data System (ADS)

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  7. Theoretical analysis and simulations of strong terahertz radiation from the interaction of ultrashort laser pulses with gases.

    PubMed

    Chen, Min; Pukhov, Alexander; Peng, Xiao-Yu; Willi, Oswald

    2008-10-01

    Terahertz (THz) radiation from the interaction of ultrashort laser pulses with gases is studied both by theoretical analysis and particle-in-cell (PIC) simulations. A one-dimensional THz generation model based on the transient ionization electric current mechanism is given, which explains the results of one-dimensional PIC simulations. At the same time the relation between the final THz field and the initial transient ionization current is shown. One- and two-dimensional simulations show that for the THz generation the contribution of the electric current due to ionization is much larger than the one driven by the usual ponderomotive force. Ionization current generated by different laser pulses and gases is also studied numerically. Based on the numerical results we explain the scaling laws for THz emission observed in the recent experiments performed by Xie et al. [Phys. Rev. Lett. 96, 075005 (2006)]. We also study the effective parameter region for the carrier envelop phase measurement by the use of THz generation.

  8. Sub-wavelength terahertz beam profiling of a THz source via an all-optical knife-edge technique.

    PubMed

    Phing, Sze Ho; Mazhorova, Anna; Shalaby, Mostafa; Peccianti, Marco; Clerici, Matteo; Pasquazi, Alessia; Ozturk, Yavuz; Ali, Jalil; Morandotti, Roberto

    2015-02-25

    Terahertz technologies recently emerged as outstanding candidates for a variety of applications in such sectors as security, biomedical, pharmaceutical, aero spatial, etc. Imaging the terahertz field, however, still remains a challenge, particularly when sub-wavelength resolutions are involved. Here we demonstrate an all-optical technique for the terahertz near-field imaging directly at the source plane. A thin layer (<100 nm-thickness) of photo carriers is induced on the surface of the terahertz generation crystal, which acts as an all-optical, virtual blade for terahertz near-field imaging via a knife-edge technique. Remarkably, and in spite of the fact that the proposed approach does not require any mechanical probe, such as tips or apertures, we are able to demonstrate the imaging of a terahertz source with deeply sub-wavelength features (<30 μm) directly in its emission plane.

  9. Measuring water contents in animal organ tissues using terahertz spectroscopic imaging.

    PubMed

    Lee, Kyumin; Jeoung, Kiyong; Kim, Sang Hoon; Ji, Young-Bin; Son, Hyeyoung; Choi, Yuna; Huh, Young-Min; Suh, Jin-Suck; Oh, Seung Jae

    2018-04-01

    We investigated the water contents in several organ tissues such as the liver, spleen, kidney, and brain tissue of rats using the terahertz spectroscopic imaging technique. The water contents of the tissues were determined by using a simple equation containing the absorption coefficients of fresh and lyophilized tissues and water. We compared the measured water contents with the difference in mass of tissues before and after lyophilization. All results showed a good match except for the kidney, which has several Bowman's capsules.

  10. Intensity modulation of a terahertz bandpass filter: utilizing image currents induced on MEMS reconfigurable metamaterials.

    PubMed

    Hu, Fangrong; Fan, Yixing; Zhang, Xiaowen; Jiang, Wenying; Chen, Yuanzhi; Li, Peng; Yin, Xianhua; Zhang, Wentao

    2018-01-01

    We experimentally demonstrated a tunable terahertz bandpass filter based on microelectromechanical systems (MEMS) reconfigurable metamaterials. The unit cell of the filter consists of two split-ring resonators (SRRs) and a movable bar. Initially, the movable bar situates at the center of the unit cell, and the filter has two passbands whose central frequencies locate at 0.65 and 0.96 THz. The intensity of the two passbands can be actively modulated by the movable bar, and a maximum modulation depth of 96% is achieved at 0.96 THz. The mechanism of tunability is investigated using the finite-integration time-domain method. The result shows that the image currents induced on the movable bar are opposite the resonance currents induced on the SRRs and, thus, weaken the oscillating intensity of the resonance currents. This scheme paves the way to dynamically control and switch the terahertz wave at some constant frequencies utilizing induced image currents.

  11. Super resolution terahertz imaging by subpixel estimation: application to hyperspectral beam profiling

    NASA Astrophysics Data System (ADS)

    Logofătu, Petre C.; Damian, Victor

    2018-05-01

    A super-resolution terahertz imaging technique based on subpixel estimation was applied to hyperspectral beam profiling. The topic of hyperspectral beam profiling was chosen because the beam profile and its dependence on wavelength are not well known and are important for imaging applications. Super-resolution is required here to avoid diffraction effects and to provide a stronger signal. Super-resolution usually adds supplementary information to the measurement, but in this case, it is a prerequisite for it. We report that the beam profile is almost Gaussian for many frequencies; the waist of the Gaussian profile increases with frequency while the center wobbles slightly. Knowledge of the beam profile may subsequently be used as reference for imaging.

  12. Design, fabrication, and experimental characterization of plasmonic photoconductive terahertz emitters.

    PubMed

    Berry, Christopher; Hashemi, Mohammad Reza; Unlu, Mehmet; Jarrahi, Mona

    2013-07-08

    In this video article we present a detailed demonstration of a highly efficient method for generating terahertz waves. Our technique is based on photoconduction, which has been one of the most commonly used techniques for terahertz generation (1-8). Terahertz generation in a photoconductive emitter is achieved by pumping an ultrafast photoconductor with a pulsed or heterodyned laser illumination. The induced photocurrent, which follows the envelope of the pump laser, is routed to a terahertz radiating antenna connected to the photoconductor contact electrodes to generate terahertz radiation. Although the quantum efficiency of a photoconductive emitter can theoretically reach 100%, the relatively long transport path lengths of photo-generated carriers to the contact electrodes of conventional photoconductors have severely limited their quantum efficiency. Additionally, the carrier screening effect and thermal breakdown strictly limit the maximum output power of conventional photoconductive terahertz sources. To address the quantum efficiency limitations of conventional photoconductive terahertz emitters, we have developed a new photoconductive emitter concept which incorporates a plasmonic contact electrode configuration to offer high quantum-efficiency and ultrafast operation simultaneously. By using nano-scale plasmonic contact electrodes, we significantly reduce the average photo-generated carrier transport path to photoconductor contact electrodes compared to conventional photoconductors (9). Our method also allows increasing photoconductor active area without a considerable increase in the capacitive loading to the antenna, boosting the maximum terahertz radiation power by preventing the carrier screening effect and thermal breakdown at high optical pump powers. By incorporating plasmonic contact electrodes, we demonstrate enhancing the optical-to-terahertz power conversion efficiency of a conventional photoconductive terahertz emitter by a factor of 50 (10).

  13. Frequency-agile electromagnetically induced transparency analogue in terahertz metamaterials.

    PubMed

    Xu, Quan; Su, Xiaoqiang; Ouyang, Chunmei; Xu, Ningning; Cao, Wei; Zhang, Yuping; Li, Quan; Hu, Cong; Gu, Jianqiang; Tian, Zhen; Azad, Abul K; Han, Jiaguang; Zhang, Weili

    2016-10-01

    Recently reported active metamaterial analogues of electromagnetically induced transparency (EIT) are promising in developing novel optical components, such as active slow light devices. However, most of the previous works have focused on manipulating the EIT resonance strength at a fixed characteristic frequency and, therefore, realized on-to-off switching responses. To further extend the functionalities of the EIT effect, here we present a frequency tunable EIT analogue in the terahertz regime by integrating photoactive silicon into the metamaterial unit cell. A tuning range from 0.82 to 0.74 THz for the EIT resonance frequency is experimentally observed by optical pump-terahertz probe measurements, allowing a frequency tunable group delay of the terahertz pulses. This straightforward approach delivers frequency agility of the EIT resonance and may enable novel ultrafast tunable devices for integrated plasmonic circuits.

  14. Spectroscopic Terahertz Imaging at Room Temperature Employing Microbolometer Terahertz Sensors and Its Application to the Study of Carcinoma Tissues

    PubMed Central

    Kašalynas, Irmantas; Venckevičius, Rimvydas; Minkevičius, Linas; Sešek, Aleksander; Wahaia, Faustino; Tamošiūnas, Vincas; Voisiat, Bogdan; Seliuta, Dalius; Valušis, Gintaras; Švigelj, Andrej; Trontelj, Janez

    2016-01-01

    A terahertz (THz) imaging system based on narrow band microbolometer sensors (NBMS) and a novel diffractive lens was developed for spectroscopic microscopy applications. The frequency response characteristics of the THz antenna-coupled NBMS were determined employing Fourier transform spectroscopy. The NBMS was found to be a very sensitive frequency selective sensor which was used to develop a compact all-electronic system for multispectral THz measurements. This system was successfully applied for principal components analysis of optically opaque packed samples. A thin diffractive lens with a numerical aperture of 0.62 was proposed for the reduction of system dimensions. The THz imaging system enhanced with novel optics was used to image for the first time non-neoplastic and neoplastic human colon tissues with close to wavelength-limited spatial resolution at 584 GHz frequency. The results demonstrated the new potential of compact RT THz imaging systems in the fields of spectroscopic analysis of materials and medical diagnostics. PMID:27023551

  15. Terahertz Computed Tomography of NASA Thermal Protection System Materials

    NASA Technical Reports Server (NTRS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2011-01-01

    A terahertz axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three-dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 cubic meters (1 cubic foot) with no safety concerns as for x-ray computed tomography. In this study, the system is evaluated for its ability to detect and characterize flat bottom holes, drilled holes, and embedded voids in foam materials utilized as thermal protection on the external fuel tanks for the Space Shuttle. X-ray micro-computed tomography was also performed on the samples to compare against the terahertz computed tomography results and better define embedded voids. Limits of detectability based on depth and size for the samples used in this study are loosely defined. Image sharpness and morphology characterization ability for terahertz computed tomography are qualitatively described.

  16. Terahertz reflectometry imaging for low and high grade gliomas

    NASA Astrophysics Data System (ADS)

    Ji, Young Bin; Oh, Seung Jae; Kang, Seok-Gu; Heo, Jung; Kim, Sang-Hoon; Choi, Yuna; Song, Seungri; Son, Hye Young; Kim, Se Hoon; Lee, Ji Hyun; Haam, Seung Joo; Huh, Yong Min; Chang, Jong Hee; Joo, Chulmin; Suh, Jin-Suck

    2016-10-01

    Gross total resection (GTR) of glioma is critical for improving the survival rate of glioma patients. One of the greatest challenges for achieving GTR is the difficulty in discriminating low grade tumor or peritumor regions that have an intact blood brain barrier (BBB) from normal brain tissues and delineating glioma margins during surgery. Here we present a highly sensitive, label-free terahertz reflectometry imaging (TRI) that overcomes current key limitations for intraoperative detection of World Health Organization (WHO) grade II (low grade), and grade III and IV (high grade) gliomas. We demonstrate that TRI provides tumor discrimination and delineation of tumor margins in brain tissues with high sensitivity on the basis of Hematoxylin and eosin (H&E) stained image. TRI may help neurosurgeons to remove gliomas completely by providing visualization of tumor margins in WHO grade II, III, and IV gliomas without contrast agents, and hence, improve patient outcomes.

  17. Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.

    PubMed

    Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko

    2013-02-19

    Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.

  18. Terahertz Quantum Cascade Laser With Efficient Coupling and Beam Profile

    NASA Technical Reports Server (NTRS)

    Chattopadhyay, Goutam; Kawamura, Jonathan H.; Lin, Robert H.; Williams, Benjamin

    2012-01-01

    Quantum cascade lasers (QCLs) are unipolar semiconductor lasers, where the wavelength of emitted radiation is determined by the engineering of quantum states within the conduction band in coupled multiple-quantum-well heterostructures to have the desired energy separation. The recent development of terahertz QCLs has provided a new generation of solid-state sources for radiation in the terahertz frequency range. Terahertz QCLs have been demonstrated from 0.84 to 5.0 THz both in pulsed mode and continuous wave mode (CW mode). The approach employs a resonant-phonon depopulation concept. The metal-metal (MM) waveguide fabrication is performed using Cu-Cu thermo-compression bonding to bond the GaAs/AlGaAs epitaxial layer to a GaAs receptor wafer.

  19. Strong terahertz emission by optical rectification of shaped laser pulse in transversely magnetized plasma

    NASA Astrophysics Data System (ADS)

    Singh, Ram Kishor; Singh, Monika; Rajouria, Satish Kumar; Sharma, R. P.

    2017-07-01

    This communication presents a theoretical model for efficient terahertz (THz) radiation generation by the optical rectification of shaped laser pulse in transversely magnetised ripple density plasma. The laser beam imparts a nonlinear ponderomotive force to the electron and this force exerts a nonlinear velocity component in both transverse and axial directions which have spectral components in the THz range. These velocity components couple with the pre-existing density ripple and give rise to a strong nonlinear current density which drives the THz wave in the plasma. The THz yield increases with the increasing strength of the background magnetic field and the sensitivity depends on the ripple wave number. The emitted power is directly proportional to the square of the amplitude of the density ripple. For exact phase matching condition, the normalised power of the generated THz wave can be achieved of the order of 10-4.

  20. The role of optical rectification in the generation of terahertz radiation from GaBiAs

    NASA Astrophysics Data System (ADS)

    Radhanpura, K.; Hargreaves, S.; Lewis, R. A.; Henini, M.

    2009-06-01

    We report on a detailed study of the emission of terahertz-frequency electromagnetic radiation from layers of GaBiyAs1-y (0≤y<0.04) grown by molecular beam epitaxy on (311)B and (001) GaAs substrates. We measure two orthogonally polarized components of the terahertz radiation emitted under excitation by ultrashort near-infrared laser pulses in both transmission and reflection geometries as a function of the crystal rotation about its surface normal as well as the effect of in-plane magnetic field and pump fluence on the terahertz emission. We conclude that the principal mechanism for terahertz generation is via optical rectification rather than transient currents.

  1. Terahertz imaging using photomixers based on quantum well photodetectors

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Li, H.; Wan, W. J.; Fu, Z. L.; Cao, J. C.

    2017-10-01

    Due to the fast intersubband transitions, the terahertz (THz) quantum well photodetector (QWP) is supposed to work fast. Recently it has been demonstrated that the THz QWP can detect the THz light modulated at 6.2 GHz and therefore it can be used as a photomixer [H. Li et al., Sci. Rep. 7, 3452 (2017)]. In this work, the authors report a novel active THz imaging using THz QWP photomixers. The THz radiation source used for this imaging application is a multi-mode THz quantum cascade laser (QCL) operating in continuous wave mode. When the fast THz QWP is illuminated by the multi-mode THz radiation, the intermediate frequency signal that is resulted from the frequency beating between the neighbouring THz modes of the QCL can be extracted from the QWP mesa for imaging applications. Employing the technique, the frequency can be down-converted from the THz range to the microwave regime. And therefore, the signal can then be amplified, filtered, and detected using the mature microwave technology.

  2. Terahertz ptychography.

    PubMed

    Valzania, Lorenzo; Feurer, Thomas; Zolliker, Peter; Hack, Erwin

    2018-02-01

    We realized a phase retrieval technique using terahertz (THz) radiation as an alternative to THz digital holography, named THz ptychography. Ptychography has been used in x-ray imaging as a groundbreaking improvement of conventional coherent diffraction imaging. Here we show that ptychography can be performed at THz frequencies too. We reconstructed an amplitude and a phase object with both simulated and real data. Lateral resolution accounts to <2λ, while depth variations as low as λ/30 can be assessed.

  3. Application of Hilbert-Huang Transform for Improved Defect Detection in Terahertz NDE of Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Terahertz NDE is being examined as a method to inspect the adhesive bond-line of Space Shuttle tiles for defects. Terahertz signals are generated and detected, using optical excitation of biased semiconductors with femtosecond laser pulses. Shuttle tile samples were manufactured with defects that included repair regions unbond regions, and other conditions that occur in Shuttle structures. These samples were inspected with a commercial terahertz NDE system that scanned a tile and generated a data set of RF signals. The signals were post processed to generate C-scan type images that are typically seen in ultrasonic NDE. To improve defect visualization the Hilbert-Huang Transform, a transform that decomposes a signal into oscillating components called intrinsic mode functions, was applied to test signals identified as being in and out of the defect regions and then on a complete data set. As expected with this transform, the results showed that the decomposed low-order modes correspond to signal noise while the high-order modes correspond to low frequency oscillations in the signal and mid-order modes correspond to local signal oscillations. The local oscillations compare well with various reflection interfaces and the defect locations in the original signal.

  4. Fra Angelico's painting technique revealed by terahertz time-domain imaging (THz-TDI)

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna Ludovica; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-10-01

    We have investigated with terahertz time-domain imaging (THz-TDI) the well-known Lamentation over the dead Christ panel painting (San Marco Museum, Florence) painted by Fra Giovanni Angelico within 1436 and 1441. The investigation provided a better understanding of the construction and gilding technique used by the eminent artist, as well as the plastering technique used during the nineteenth-century restoration intervention. The evidence obtained from THz-TDI scans was correlated with the available documentation on the preservation history of the art piece. Erosion and damages documented for the wooden support, especially in the lower margin, found confirmation in the THz-TD images.

  5. High signal-to-noise-ratio electro-optical terahertz imaging system based on an optical demodulating detector array.

    PubMed

    Spickermann, Gunnar; Friederich, Fabian; Roskos, Hartmut G; Bolívar, Peter Haring

    2009-11-01

    We present a 64x48 pixel 2D electro-optical terahertz (THz) imaging system using a photonic mixing device time-of-flight camera as an optical demodulating detector array. The combination of electro-optic detection with a time-of-flight camera increases sensitivity drastically, enabling the use of a nonamplified laser source for high-resolution real-time THz electro-optic imaging.

  6. Frequency-division multiplexer and demultiplexer for terahertz wireless links.

    PubMed

    Ma, Jianjun; Karl, Nicholas J; Bretin, Sara; Ducournau, Guillaume; Mittleman, Daniel M

    2017-09-28

    The development of components for terahertz wireless communications networks has become an active and growing research field. However, in most cases these components have been studied using a continuous or broadband-pulsed terahertz source, not using a modulated data stream. This limitation may mask important aspects of the performance of the device in a realistic system configuration. We report the characterization of one such device, a frequency multiplexer, using modulated data at rates up to 10 gigabits per second. We also demonstrate simultaneous error-free transmission of two signals at different carrier frequencies, with an aggregate data rate of 50 gigabits per second. We observe that the far-field spatial variation of the bit error rate is different from that of the emitted power, due to a small nonuniformity in the angular detection sensitivity. This is likely to be a common feature of any terahertz communication system in which signals propagate as diffracting beams not omnidirectional broadcasts.There is growing interest in the development of components to facilitate wireless communications in the terahertz but the characterization of these systems involve an unmodulated input. Here the authors demonstrate multiplexing and demultiplexing of data streams in the terahertz range using a real data link.

  7. Photonics and terahertz tchnologies: part 1

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    This digest paper debates basic features of the terahertz band of frequencies. There are presented fundamental characteristics of the basic terahertz system consisting of a THz source, propagation media, transmission lines, THz signal processing, and detectors. Such a system finds research application, but also practical in two main areas: terahertz imaging - transmissive and reflective, and as a close range THz radar, but also as sensory systems mainly for molecular sensing. There were launched in this country a few THz research projects concerning the THz sources, detectors and their applications. Among these projects there is an infrastructural one called FOTEH, opened at the WUT. The details of this project are debated and the consequences of its realization in this country. The first part of the paper is an introduction debating THz band and comparing it with the photonics one. The second part presents the assumptions of the infrastructural FOTEH project on Photonics and Terahertz Technologies.

  8. Spatial pattern separation of chemicals and frequency-independent components by terahertz spectroscopic imaging

    NASA Astrophysics Data System (ADS)

    Watanabe, Yuuki; Kawase, Kodo; Ikari, Tomofumi; Ito, Hiromasa; Ishikawa, Youichi; Minamide, Hiroaki

    2003-10-01

    We separated the component spatial patterns of frequency-dependent absorption in chemicals and frequency-independent components such as plastic, paper, and measurement noise in terahertz (THz) spectroscopic images, using known spectral curves. Our measurement system, which uses a widely tunable coherent THz-wave parametric oscillator source, can image at a specific frequency in the range 1-2 THz. The component patterns of chemicals can easily be extracted by use of the frequency-independent components. This method could be successfully used for nondestructive inspection for the detection of illegal drugs and devices of bioterrorism concealed, e.g., inside mail and packages.

  9. Terahertz Focusing and Polarization Control in Large-Area Bias-Free Semiconductor Emitters

    NASA Astrophysics Data System (ADS)

    Carthy, Joanna L.; Gow, Paul C.; Berry, Sam A.; Mills, Ben; Apostolopoulos, Vasilis

    2018-03-01

    We show that, when large-area multiplex terahertz semiconductor emitters, that work on diffusion currents and Schottky potentials, are illuminated by ultrashort optical pulses they can radiate a directional electromagnetic terahertz pulse which is controlled by the angular spectrum of the incident optical beam. Using the lens that focuses the incident near-infrared pulse, we have demonstrated THz emission focusing in free space, at the same point where the optical radiation would focus. We investigated the beam waist and Gouy phase shift of the THz emission as a function of frequency. We also show that the polarization profile of the emitted THz can be tailored by the metallic patterning on the semiconductor, demonstrating radial polarization when a circular emitter design is used. Our techniques can be used for fast THz beam steering and mode control for efficiently coupling to waveguides without the need for THz lenses or parabolic mirrors.

  10. Material parameter estimation with terahertz time-domain spectroscopy.

    PubMed

    Dorney, T D; Baraniuk, R G; Mittleman, D M

    2001-07-01

    Imaging systems based on terahertz (THz) time-domain spectroscopy offer a range of unique modalities owing to the broad bandwidth, subpicosecond duration, and phase-sensitive detection of the THz pulses. Furthermore, the possibility exists for combining spectroscopic characterization or identification with imaging because the radiation is broadband in nature. To achieve this, we require novel methods for real-time analysis of THz waveforms. This paper describes a robust algorithm for extracting material parameters from measured THz waveforms. Our algorithm simultaneously obtains both the thickness and the complex refractive index of an unknown sample under certain conditions. In contrast, most spectroscopic transmission measurements require knowledge of the sample's thickness for an accurate determination of its optical parameters. Our approach relies on a model-based estimation, a gradient descent search, and the total variation measure. We explore the limits of this technique and compare the results with literature data for optical parameters of several different materials.

  11. Efficient flat metasurface lens for terahertz imaging.

    PubMed

    Yang, Quanlong; Gu, Jianqiang; Wang, Dongyang; Zhang, Xueqian; Tian, Zhen; Ouyang, Chunmei; Singh, Ranjan; Han, Jiaguang; Zhang, Weili

    2014-10-20

    Metamaterials offer exciting opportunities that enable precise control of amplitude, polarization and phase of the light beam at a subwavelength scale. A gradient metasurface consists of a class of anisotropic subwavelength metamaterial resonators that offer abrupt amplitude and phase changes, thus enabling new applications in optical device design such as ultrathin flat lenses. We propose a highly efficient gradient metasurface lens based on a metal-dielectric-metal structure that operates in the terahertz regime. The proposed structure consists of slotted metallic resonator arrays on two sides of a thin dielectric spacer. By varying the geometrical parameters, the metasurface lens efficiently manipulates the spatial distribution of the terahertz field and focuses the beam to a spot size on the order of a wavelength. The proposed flat metasurface lens design is polarization insensitive and works efficiently even at wide angles of incidence.

  12. Time-domain measurement of terahertz frequency magnetoplasmon resonances in a two-dimensional electron system by the direct injection of picosecond pulsed currents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Jingbo; Mayorov, Alexander S.; Wood, Christopher D.

    2016-02-29

    We have investigated terahertz (THz) frequency magnetoplasmon resonances in a two-dimensional electron system through the direct injection of picosecond duration current pulses. The evolution of the time-domain signals was measured as a function of magnetic field, and the results were found to be in agreement with calculations using a mode-matching approach for four modes observed in the frequency range above 0.1 THz. This introduces a generic technique suitable for sampling ultrafast carrier dynamics in low-dimensional semiconductor nanostructures at THz frequencies.

  13. Freely Tunable Broadband Polarization Rotator for Terahertz Waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fan, Ren-Hao; Zhou, Yu; Ren, Xiao-Ping

    2014-12-28

    A freely tunable polarization rotator for broadband terahertz waves is demonstrated using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized terahertz wave to any desired direction with nearly perfect conversion efficiency. This low-cost, high-efficiency, and freely tunable device has potential applications as material analysis, wireless communication, and THz imaging.

  14. Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.

    PubMed

    Kannegulla, Akash; Cheng, Li-Jing

    2016-08-01

    We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017  cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.

  15. Terahertz Near-Field Imaging Using Enhanced Transmission through a Single Subwavelength Aperture

    NASA Astrophysics Data System (ADS)

    Ishihara, Kunihiko; Ikari, Tomofumi; Minamide, Hiroaki; Shikata, Jun-ichi; Ohashi, Keishi; Yokoyama, Hiroyuki; Ito, Hiromasa

    2005-07-01

    We demonstrate terahertz (THz) near-field imaging using resonantly enhanced transmission of THz-wave radiation (λ˜ 200 μm) through a bull’s eye structure (a single subwavelength aperture surrounded by concentric periodic grooves in a metal plate). The bull’s eye structure shows extremely large enhanced transmission, which has the advantage for a single subwavelength aperture. The spatial resolution for the bull’s eye structure (with an aperture diameter d=100 μm) is evaluated in the near-field region, and a resolution of 50 μm (corresponding to λ/4) is achieved. We obtain the THz near-field images of the subwavelength metal pattern with a spatial resolution below the diffraction limit.

  16. Detection of foreign bodies in foods using continuous wave terahertz imaging.

    PubMed

    Lee, Young-Ki; Choi, Sung-Wook; Han, Seong-Tae; Woo, Deog Hyun; Chun, Hyang Sook

    2012-01-01

    Foreign bodies (FBs) in food are health hazards and quality issues for many food manufacturers and enforcement authorities. In this study, continuous wave (CW) terahertz (THz) imaging at 0.2 THz with an output power of 10 mW was compared with X-ray imaging as techniques for inspection of food for FBs. High-density FBs, i.e., aluminum and granite pieces of various sizes, were embedded in a powdered instant noodle product and detected using THz and X-ray imaging. All aluminum and granite pieces (regular hexahedrons with an edge length of 1 to 5 mm) were visualized by both CW THz and X-ray imaging. THz imaging also detected maggots (length = 8 to 22 mm) and crickets (length = 35 and 50 mm), which were embedded in samples as low density FBs. However, not all sizes of maggot pieces embedded in powdered instant noodle were detected with X-ray imaging, although larger crickets (length = 50 mm and thickness = 10 mm) were detected. These results suggest that CW THz imaging has potential for detecting both high-density and low-density FBs embedded in food.

  17. Terahertz imaging with sub-wavelength resolution by femtosecond laser filament in air

    PubMed Central

    Zhao, Jiayu; Chu, Wei; Guo, Lanjun; Wang, Zhi; Yang, Jing; Liu, Weiwei; Cheng, Ya; Xu, Zhizhan

    2014-01-01

    Terahertz (THz) imaging provides cutting edge technique in biology, medical sciences and non-destructive evaluation. However, due to the long wavelength of the THz wave, the obtained resolution of THz imaging is normally a few hundred microns and is much lower than that of the traditional optical imaging. We introduce a sub-wavelength resolution THz imaging technique which uses the THz radiation generated by a femtosecond laser filament in air as the probe. This method is based on the fact that the femtosecond laser filament forms a waveguide for the THz wave in air. The diameter of the THz beam, which propagates inside the filament, varies from 20 μm to 50 μm, which is significantly smaller than the wavelength of the THz wave. Using this highly spatially confined THz beam as the probe, THz imaging with resolution as high as 20 μm (~λ/38 at 0.4 THz) can be realized. PMID:24457525

  18. Intense, carrier frequency and bandwidth tunable quasi single-cycle pulses from an organic emitter covering the Terahertz frequency gap

    PubMed Central

    Vicario, C.; Monoszlai, B.; Jazbinsek, M.; Lee, S. -H.; Kwon, O. -P.; Hauri, C. P.

    2015-01-01

    In Terahertz (THz) science, one of the long-standing challenges has been the formation of spectrally dense, single-cycle pulses with tunable duration and spectrum across the frequency range of 0.1–15 THz (THz gap). This frequency band, lying between the electronically and optically accessible spectra hosts important molecular fingerprints and collective modes which cannot be fully controlled by present strong-field THz sources. We present a method that provides powerful single-cycle THz pulses in the THz gap with a stable absolute phase whose duration can be continuously selected between 68 fs and 1100 fs. The loss-free and chirp-free technique is based on optical rectification of a wavelength-tunable pump pulse in the organic emitter HMQ-TMS that allows for tuning of the spectral bandwidth from 1 to more than 7 octaves over the entire THz gap. The presented source tunability of the temporal carrier frequency and spectrum expands the scope of spectrally dense THz sources to time-resolved nonlinear THz spectroscopy in the entire THz gap. This opens new opportunities towards ultrafast coherent control over matter and light. PMID:26400005

  19. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  20. Nonlinear two-dimensional terahertz photon echo and rotational spectroscopy in the gas phase.

    PubMed

    Lu, Jian; Zhang, Yaqing; Hwang, Harold Y; Ofori-Okai, Benjamin K; Fleischer, Sharly; Nelson, Keith A

    2016-10-18

    Ultrafast 2D spectroscopy uses correlated multiple light-matter interactions for retrieving dynamic features that may otherwise be hidden under the linear spectrum; its extension to the terahertz regime of the electromagnetic spectrum, where a rich variety of material degrees of freedom reside, remains an experimental challenge. We report a demonstration of ultrafast 2D terahertz spectroscopy of gas-phase molecular rotors at room temperature. Using time-delayed terahertz pulse pairs, we observe photon echoes and other nonlinear signals resulting from molecular dipole orientation induced by multiple terahertz field-dipole interactions. The nonlinear time domain orientation signals are mapped into the frequency domain in 2D rotational spectra that reveal J-state-resolved nonlinear rotational dynamics. The approach enables direct observation of correlated rotational transitions and may reveal rotational coupling and relaxation pathways in the ground electronic and vibrational state.

  1. Time-domain terahertz spectroscopy of artificial skin

    NASA Astrophysics Data System (ADS)

    Corridon, Peter M.; Ascázubi, Ricardo; Krest, Courtney; Wilke, Ingrid

    2006-02-01

    Time-domain Terahertz (THz) spectroscopy and imaging is currently evaluated as a novel tool for medical imaging and diagnostics. The application of THz-pulse imaging of human skin tissues and related cancers has been demonstrated recently in-vitro and in-vivo. With this in mind, we present a time-domain THz-transmission study of artificial skin. The skin samples consist of a monolayer of porous matrix of fibers of cross-linked bovine tendon collagen and a glycosaminoglycan (chondroitin-6-sulfate) that is manufactured with a controlled porosity and defined degradation rate. Another set of samples consists of the collagen monolayer covered with a silicone layer. We have measured the THz-transmission and determined the index of refraction and absorption of our samples between 0.1 and 3 THz for various states of hydration in distilled water and saline solutions. The transmission of the THz-radiation through the artificial skin samples is modeled by electromagnetic wave theory. Moreover, the THz-optical properties of the artificial skin layers are compared to the THz-optical properties of freshly excised human skin samples. Based on this comparison the potential use of artificial skin samples as photo-medical phantoms for human skin is discussed.

  2. Role of vanguard counter-potential in terahertz emission due to surface currents explicated by three-dimensional ensemble Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2011-10-01

    The discovery that short pulses of near-infrared radiation striking a semiconductor may lead to emission of radiation at terahertz frequencies paved the way for terahertz time-domain spectroscopy. Previous modeling has allowed the physical mechanisms to be understood in general terms but it has not fully explored the role of key physical parameters of the emitter material nor has it fully revealed the competing nature of the surface-field and photo-Dember effects. In this context, our purpose has been to more fully explicate the mechanisms of terahertz emission from transient currents at semiconductor surfaces and to determine the criteria for efficient emission. To achieve this purpose we employ an ensemble Monte Carlo simulation in three dimensions. To ground the calculations, we focus on a specific emitter, InAs. We separately vary distinct physical parameters to determine their specific contribution. We find that scattering as a whole has relatively little impact on the terahertz emission. The emission is found to be remarkably resistant to alterations of the dark surface potential. Decreasing the band gap leads to a strong increase in terahertz emission, as does decreasing the electron mass. Increasing the absorption dramatically influences the peak-peak intensity and peak shape. We conclude that increasing absorption is the most direct path to improve surface-current semiconductor terahertz emitters. We find for longer pump pulses that the emission is limited by a newly identified vanguard counter-potential mechanism: Electrons at the leading edge of longer laser pulses repel subsequent electrons. This discovery is the main result of our work.

  3. Performance modeling of terahertz (THz) and millimeter waves (mmW) pupil plane imaging

    NASA Astrophysics Data System (ADS)

    Mohammadian, Nafiseh; Furxhi, Orges; Zhang, Lei; Offermans, Peter; Ghazi, Galia; Driggers, Ronald

    2018-05-01

    Terahertz- (THz) and millimeter-wave sensors are becoming more important in industrial, security, medical, and defense applications. A major problem in these sensing areas is the resolution, sensitivity, and visual acuity of the imaging systems. There are different fundamental parameters in designing a system that have significant effects on the imaging performance. The performance of THz systems can be discussed in terms of two characteristics: sensitivity and spatial resolution. New approaches for design and manufacturing of THz imagers are a vital basis for developing future applications. Photonics solutions have been at the technological forefront in THz band applications. A single scan antenna does not provide reasonable resolution, sensitivity, and speed. An effective approach to imaging is placing a high-performance antenna in a two-dimensional antenna array to achieve higher radiation efficiency and higher resolution in the imaging systems. Here, we present the performance modeling of a pupil plane imaging system to find the resolution and sensitivity efficiency of the imaging system.

  4. Photonics and terahertz technologies: part 2

    NASA Astrophysics Data System (ADS)

    Romaniuk, Ryszard S.

    2011-10-01

    This digest paper debates basic features of the terahertz band of frequencies and compares it to the classical photonics. There are presented fundamental characteristics of the basic terahertz system consisting of a THz source, propagation media, transmission lines, THz signal processing, and detectors. Such a system finds research application, but also practical in two main areas: terahertz imaging - transmission and reflective, and as a close range THz radar, but also as sensory systems mainly for molecular sensing. There were launched in this country a few THz research projects concerning the THz sources, detectors and their applications. Among these projects there is an infrastructural one called FOTEH, opened at the WUT. The details of this project are debated and the consequences of its realization in this country. The first part of the paper is an introduction debating THz band and comparing it with the photonics one. The second part presents the assumptions of the infrastructural FOTEH project on Photonics and Terahertz Technologies. The project is expected to have impact on the development of photonics and relate fields in Poland.

  5. Study on spectral features of terahertz wave propagating in the air

    NASA Astrophysics Data System (ADS)

    Kang, Shengwu

    2018-03-01

    Now, Terahertz technology has been widely used in many fields, which is mainly related to imaging detection. While the frequency range of the terahertz-wave is located between microwave and visible light, whether the existing visible light principle is applicable to terahertz-wave should be studied again. Through experiment, we measure the terahertz-wave field amplitude distribution on the receiving plane perpendicular to the direction of propagation in the air and picture out the energy distribution curve; derive an energy decay formula of terahertz wave based on the results; design a terahertz wavelength apparatus using the F-P interferometer theory; test the wavelength between 1 and 3 THz from the SIFIR-50THz laser of American Corehent company; finally analyze the related factors affecting the measurement precision including the beam incident angle, mechanical vibration, temperature fluctuation and the refractive index fluctuation.

  6. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays.

    PubMed

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-02-16

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB.

  7. High Sensitivity Terahertz Detection through Large-Area Plasmonic Nano-Antenna Arrays

    PubMed Central

    Yardimci, Nezih Tolga; Jarrahi, Mona

    2017-01-01

    Plasmonic photoconductive antennas have great promise for increasing responsivity and detection sensitivity of conventional photoconductive detectors in time-domain terahertz imaging and spectroscopy systems. However, operation bandwidth of previously demonstrated plasmonic photoconductive antennas has been limited by bandwidth constraints of their antennas and photoconductor parasitics. Here, we present a powerful technique for realizing broadband terahertz detectors through large-area plasmonic photoconductive nano-antenna arrays. A key novelty that makes the presented terahertz detector superior to the state-of-the art is a specific large-area device geometry that offers a strong interaction between the incident terahertz beam and optical pump at the nanoscale, while maintaining a broad operation bandwidth. The large device active area allows robust operation against optical and terahertz beam misalignments. We demonstrate broadband terahertz detection with signal-to-noise ratio levels as high as 107 dB. PMID:28205615

  8. Significant performance enhancement in photoconductive terahertz optoelectronics by incorporating plasmonic contact electrodes.

    PubMed

    Berry, C W; Wang, N; Hashemi, M R; Unlu, M; Jarrahi, M

    2013-01-01

    Even though the terahertz spectrum is well suited for chemical identification, material characterization, biological sensing and medical imaging, practical development of these applications has been hindered by attributes of existing terahertz optoelectronics. Here we demonstrate that the use of plasmonic contact electrodes can significantly mitigate the low-quantum efficiency performance of photoconductive terahertz optoelectronics. The use of plasmonic contact electrodes offers nanoscale carrier transport path lengths for the majority of photocarriers, increasing the number of collected photocarriers in a subpicosecond timescale and, thus, enhancing the optical-to-terahertz conversion efficiency of photoconductive terahertz emitters and the detection sensitivity of photoconductive terahertz detectors. We experimentally demonstrate 50 times higher terahertz radiation powers from a plasmonic photoconductive emitter in comparison with a similar photoconductive emitter with non-plasmonic contact electrodes, as well as 30 times higher terahertz detection sensitivities from a plasmonic photoconductive detector in comparison with a similar photoconductive detector with non-plasmonic contact electrodes.

  9. Integrated Arrays on Silicon at Terahertz Frequencies

    NASA Technical Reports Server (NTRS)

    Chattopadhayay, Goutam; Lee, Choonsup; Jung, Cecil; Lin, Robert; Peralta, Alessandro; Mehdi, Imran; Llombert, Nuria; Thomas, Bertrand

    2011-01-01

    In this paper we explore various receiver font-end and antenna architecture for use in integrated arrays at terahertz frequencies. Development of wafer-level integrated terahertz receiver front-end by using advanced semiconductor fabrication technologies and use of novel integrated antennas with silicon micromachining are reported. We report novel stacking of micromachined silicon wafers which allows for the 3-dimensional integration of various terahertz receiver components in extremely small packages which easily leads to the development of 2- dimensioanl multi-pixel receiver front-ends in the terahertz frequency range. We also report an integrated micro-lens antenna that goes with the silicon micro-machined front-end. The micro-lens antenna is fed by a waveguide that excites a silicon lens antenna through a leaky-wave or electromagnetic band gap (EBG) resonant cavity. We utilized advanced semiconductor nanofabrication techniques to design, fabricate, and demonstrate a super-compact, low-mass submillimeter-wave heterodyne frontend. When the micro-lens antenna is integrated with the receiver front-end we will be able to assemble integrated heterodyne array receivers for various applications such as multi-pixel high resolution spectrometer and imaging radar at terahertz frequencies.

  10. Flat Terahertz Reflective Focusing Metasurface with Scanning Ability.

    PubMed

    Yi, Huan; Qu, Shi-Wei; Chen, Bao-Jie; Bai, Xue; Ng, Kung Bo; Chan, Chi Hou

    2017-06-14

    The ability to manipulate the propagation properties of electromagnetic waves, e.g., divergence, focusing, holography or deflection, is very significant in terahertz applications. Metasurfaces with flat structures are attractive for achieving such manipulations in terahertz band, as they feature low profile, lightweight, and ease of design and installation. Several types of terahertz reflective or transmitting metasurfaces with focusing function have been implemented recently, but none of them can provide scanning ability with controllable focus. Here, a flat reflective metasurface featuring controllable focal shift is proposed and experimentally demonstrated. Furthermore, the principle of designing a focus scanning reflective metasurface is presented and the focusing characteristics are discussed, including focus scanning along a line parallel or orthogonal to the metasurface with a large bandwidth. These interesting properties indicate that this flat reflective metasurface could play a key role in many terahertz imaging and detection systems.

  11. Terahertz wavefront assessment based on 2D electro-optic imaging

    NASA Astrophysics Data System (ADS)

    Cahyadi, Harsono; Ichikawa, Ryuji; Degert, Jérôme; Freysz, Eric; Yasui, Takeshi; Abraham, Emmanuel

    2015-03-01

    Complete characterization of terahertz (THz) radiation becomes an interesting yet challenging study for many years. In visible optical region, the wavefront assessment has been proved as a powerful tool for the beam profiling and characterization, which consequently requires 2-dimension (2D) single-shot acquisition of the beam cross-section to provide the spatial profile in time- and frequency-domain. In THz region, the main problem is the lack of effective THz cameras to satisfy this need. In this communication, we propose a simple setup based on free-space collinear 2D electrooptic sampling in a ZnTe crystal for the characterization of THz wavefronts. In principle, we map the optically converted, time-resolved data of the THz pulse by changing the time delay between the probe pulse and the generated THz pulse. The temporal waveforms from different lens-ZnTe distances can clearly indicate the evolution of THz beam as it is converged, focused, or diverged. From the Fourier transform of the temporal waveforms, we can obtain the spectral profile of a broadband THz wave, which in this case within the 0.1-2 THz range. The spectral profile also provides the frequency dependency of the THz pulse amplitude. The comparison between experimental and theoretical results at certain frequencies (here we choose 0.285 and 1.035 THz) is in a good agreement suggesting that our system is capable of THz wavefront characterization. Furthermore, the implementation of Hartmann/Shack-Hartmann sensor principle enables the reconstruction of THz wavefront. We demonstrate the reconstruction of THz wavefronts which are changed from planar wave to spherical one due to the insertion of convex THz lens in the THz beam path. We apply and compare two different reconstruction methods: linear integration and Zernike polynomial. Roughly we conclude that the Zernike method provide smoother wavefront shape that can be elaborated later into quantitative-qualitative analysis about the wavefront

  12. High-sensitivity terahertz imaging of traumatic brain injury in a rat model

    NASA Astrophysics Data System (ADS)

    Zhao, Hengli; Wang, Yuye; Chen, Linyu; Shi, Jia; Ma, Kang; Tang, Longhuang; Xu, Degang; Yao, Jianquan; Feng, Hua; Chen, Tunan

    2018-03-01

    We demonstrated that different degrees of experimental traumatic brain injury (TBI) can be differentiated clearly in fresh slices of rat brain tissues using transmission-type terahertz (THz) imaging system. The high absorption region in THz images corresponded well with the injured area in visible images and magnetic resonance imaging results. The THz image and absorption characteristics of dehydrated paraffin-embedded brain slices and the hematoxylin and eosin (H&E)-stained microscopic images were investigated to account for the intrinsic differences in the THz images for the brain tissues suffered from different degrees of TBI and normal tissue aside from water. The THz absorption coefficients of rat brain tissues showed an increase in the aggravation of brain damage, particularly in the high-frequency range, whereas the cell density decreased as the order of mild, moderate, and severe TBI tissues compared with the normal tissue. Our results indicated that the different degrees of TBI were distinguishable owing to the different water contents and probable hematoma components distribution rather than intrinsic cell intensity. These promising results suggest that THz imaging has great potential as an alternative method for the fast diagnosis of TBI.

  13. Nonlinear pulse compression in pulse-inversion fundamental imaging.

    PubMed

    Cheng, Yun-Chien; Shen, Che-Chou; Li, Pai-Chi

    2007-04-01

    Coded excitation can be applied in ultrasound contrast agent imaging to enhance the signal-to-noise ratio with minimal destruction of the microbubbles. Although the axial resolution is usually compromised by the requirement for a long coded transmit waveforms, this can be restored by using a compression filter to compress the received echo. However, nonlinear responses from microbubbles may cause difficulties in pulse compression and result in severe range side-lobe artifacts, particularly in pulse-inversion-based (PI) fundamental imaging. The efficacy of pulse compression in nonlinear contrast imaging was evaluated by investigating several factors relevant to PI fundamental generation using both in-vitro experiments and simulations. The results indicate that the acoustic pressure and the bubble size can alter the nonlinear characteristics of microbubbles and change the performance of the compression filter. When nonlinear responses from contrast agents are enhanced by using a higher acoustic pressure or when more microbubbles are near the resonance size of the transmit frequency, higher range side lobes are produced in both linear imaging and PI fundamental imaging. On the other hand, contrast detection in PI fundamental imaging significantly depends on the magnitude of the nonlinear responses of the bubbles and thus the resultant contrast-to-tissue ratio (CTR) still increases with acoustic pressure and the nonlinear resonance of microbubbles. It should be noted, however, that the CTR in PI fundamental imaging after compression is consistently lower than that before compression due to obvious side-lobe artifacts. Therefore, the use of coded excitation is not beneficial in PI fundamental contrast detection.

  14. Online terahertz thickness measurement in films and coatings

    NASA Astrophysics Data System (ADS)

    Duling, Irl N.; White, Jeffrey S.

    2017-02-01

    Pulsed terahertz systems are currently being deployed for online process control and quality control of multi-layered products for use in the building products and aerospace industries. While many laboratory applications of terahertz can allow waveforms to be acquired at rates of 1 - 40 Hz, online applications require measurement rates of in excess of 100Hz. The existing technologies of thickness measurement (nuclear, x-ray, or laser gauges) have rates between 100 and 1000 Hz. At these rates, the single waveform bandwidth must still remain at 2THz or above to allow thinner layers to be measured. In the applications where terahertz can provide unique capability (e.g. multi-layer thickness, delamination, density) long-term stability must be guaranteed within the tolerance required by the measurement. This can mean multi-day stability of less than a micron. The software that runs on these systems must be flexible enough to allow multiple product configurations, while maintaining the simplicity required by plant operators. The final requirement is to have systems that can withstand the environmental conditions of the measurement. This might mean qualification in explosive environments, or operation in hot, wet or dusty environments. All of these requirements can put restrictions on not only the voltage of electronic circuitry used, but also the wavelength and optical power used for the transmitter and receiver. The application of terahertz systems to online process control presents unique challenges that not only effect the physical design of the system, but can also effect the choices made on the terahertz technology itself.

  15. Terahertz (THz) Radar: A Solution for Degraded Visibility Environments (DVE)

    DTIC Science & Technology

    2016-11-01

    TECHNICAL REPORT RDMR-WD-16-49 TERAHERTZ (THZ) RADAR: A SOLUTION FOR DEGRADED VISIBILITY ENVIRONMENTS (DVE) Henry O...Terahertz (THz) Radar: A Solution For Degraded Visibility Environments (DVE) 5. FUNDING NUMBERS 6. AUTHOR(S) Henry O. Everitt...to compensate for environmental conditions, allowing for actionable images in Degraded Visibility Environments (DVE). 14. SUBJECT TERMS Radar

  16. Terahertz detection and carbon nanotubes

    ScienceCinema

    Leonard, Francois

    2018-04-16

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  17. Terahertz detection and carbon nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leonard, Francois

    2014-06-11

    Researchers at Sandia National Laboratories, along with collaborators from Rice University and the Tokyo Institute of Technology, are developing new terahertz detectors based on carbon nanotubes that could lead to significant improvements in medical imaging, airport passenger screening, food inspection and other applications.

  18. Frequency-dependent absorbance of broadband terahertz wave in dense plasma sheet

    NASA Astrophysics Data System (ADS)

    Peng, Yan; Qi, Binbin; Jiang, Xiankai; Zhu, Zhi; Zhao, Hongwei; Zhu, Yiming

    2018-05-01

    Due to the ability of accurate fingerprinting and low-ionization for different substances, terahertz (THz) technology has a lot of crucial applications in material analysis, information transfer, and safety inspection, etc. However, the spectral characteristic of atmospheric gas and ionized gas has not been widely investigated, which is important for the remote sensing application. Here, in this paper, we investigate the absorbance of broadband terahertz wave in dense plasma sheet generated by femtosecond laser pulses. It was found that as the terahertz wave transmits through the plasma sheet formed, respectively, in carbon dioxide, oxygen, argon and nitrogen, spectrum presents completely different and frequency-dependent absorbance. The reasons for these absorption peaks are related to the molecular polarity, electric charge, intermolecular and intramolecular interactions, and collisional absorption of gas molecules. These results have significant implications for the remote sensing of gas medium.

  19. Terahertz NDE Application for Corrosion Detection and Evaluation under Shuttle Tiles

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-01-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  20. Terahertz NDE application for corrosion detection and evaluation under Shuttle tiles

    NASA Astrophysics Data System (ADS)

    Anastasi, Robert F.; Madaras, Eric I.; Seebo, Jeffrey P.; Smith, Stephen W.; Lomness, Janice K.; Hintze, Paul E.; Kammerer, Catherine C.; Winfree, William P.; Russell, Richard W.

    2007-04-01

    Pulsed Terahertz NDE is being examined as a method to inspect for possible corrosion under Space Shuttle Tiles. Other methods such as ultrasonics, infrared, eddy current and microwave technologies have demonstrable shortcomings for tile NDE. This work applies Terahertz NDE, in the frequency range between 50 GHz and 1 THz, for the inspection of manufactured corrosion samples. The samples consist of induced corrosion spots that range in diameter (2.54 to 15.2 mm) and depth (0.036 to 0.787 mm) in an aluminum substrate material covered with tiles. Results of these measurements are presented for known corrosion flaws both covered and uncovered and for blind tests with unknown corrosion flaws covered with attached tiles. The Terahertz NDE system is shown to detect all artificially manufactured corrosion regions under a Shuttle tile with a depth greater than 0.13 mm.

  1. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    NASA Astrophysics Data System (ADS)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  2. Efficient semiconductor multicycle terahertz pulse source

    NASA Astrophysics Data System (ADS)

    Nugraha, P. S.; Krizsán, G.; Polónyi, Gy; Mechler, M. I.; Hebling, J.; Tóth, Gy; Fülöp, J. A.

    2018-05-01

    Multicycle THz pulse generation by optical rectification in GaP semiconductor nonlinear material is investigated by numerical simulations. It is shown that GaP can be an efficient and versatile source with up to about 8% conversion efficiency and a tuning range from 0.1 THz to about 7 THz. Contact-grating technology for pulse-front tilt can ensure an excellent focusability and scaling the THz pulse energy beyond 1 mJ. Shapeable infrared pump pulses with a constant intensity-modulation period can be delivered for example by a flexible and efficient dual-chirped optical parametric amplifier. Potential applications include linear and nonlinear THz spectroscopy and THz-driven acceleration of electrons.

  3. Recent advances in terahertz technology for biomedical applications.

    PubMed

    Sun, Qiushuo; He, Yuezhi; Liu, Kai; Fan, Shuting; Parrott, Edward P J; Pickwell-MacPherson, Emma

    2017-06-01

    Terahertz instrumentation has improved significantly in recent years such that THz imaging systems have become more affordable and easier to use. THz systems can now be operated by non-THz experts greatly facilitating research into many potential applications. Due to the non-ionising nature of THz light and its high sensitivity to soft tissues, there is an increasing interest in biomedical applications including both in vivo and ex vivo studies. Additionally, research continues into understanding the origin of contrast and how to interpret terahertz biomedical images. This short review highlights some of the recent work in these areas and suggests some future research directions.

  4. Review of terahertz technology development at INO

    NASA Astrophysics Data System (ADS)

    Dufour, Denis; Marchese, Linda; Terroux, Marc; Oulachgar, Hassane; Généreux, Francis; Doucet, Michel; Mercier, Luc; Tremblay, Bruno; Alain, Christine; Beaupré, Patrick; Blanchard, Nathalie; Bolduc, Martin; Chevalier, Claude; D'Amato, Dominic; Desroches, Yan; Duchesne, François; Gagnon, Lucie; Ilias, Samir; Jerominek, Hubert; Lagacé, François; Lambert, Julie; Lamontagne, Frédéric; Le Noc, Loïc; Martel, Anne; Pancrati, Ovidiu; Paultre, Jacques-Edmond; Pope, Tim; Provençal, Francis; Topart, Patrice; Vachon, Carl; Verreault, Sonia; Bergeron, Alain

    2015-10-01

    Over the past decade, INO has leveraged its expertise in the development of uncooled microbolometer detectors for infrared imaging to produce terahertz (THz) imaging systems. By modifying its microbolometer-based focal plane arrays to enhance absorption in the THz bands and by developing custom THz imaging lenses, INO has developed a leading-edge THz imaging system, the IRXCAM-THz-384 camera, capable of exploring novel applications in the emerging field of terahertz imaging and sensing. Using appropriate THz sources, results show that the IRXCAM-THz-384 camera is able to image a variety of concealed objects of interest for applications such as non-destructive testing and weapons detections. By using a longer wavelength (94 GHz) source, it is also capable of sensing the signatures of various objects hidden behind a drywall panel. This article, written as a review of THz research at INO over the past decade, describes the technical components that form the IRXCAM-THz-384 camera and the experimental setup used for active THz imaging. Image results for concealed weapons detection experiments, an exploration of wavelength choice on image quality, and the detection of hidden objects behind drywall are also presented.

  5. Fast terahertz imaging using a quantum cascade amplifier

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Yuan, E-mail: yr235@cam.ac.uk; Wallis, Robert; Jessop, David Stephen

    2015-07-06

    A terahertz (THz) imaging scheme based on the effect of self-mixing in a 2.9 THz quantum cascade (QC) amplifier has been demonstrated. By coupling an antireflective-coated silicon lens to the facet of a QC laser, with no external optical feedback, the laser mirror losses are enhanced to fully suppress lasing action, creating a THz QC amplifier. The addition of reflection from an external target to the amplifier creates enough optical feedback to initiate lasing action and the resulting emission enhances photon-assisted transport, which in turn reduces the voltage across the device. At the peak gain point, the maximum photon densitymore » coupled back leads to a prominent self-mixing effect in the QC amplifier, leading to a high sensitivity, with a signal to noise ratio up to 55 dB, along with a fast data acquisition speed of 20 000 points per second.« less

  6. Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework.

    PubMed

    Yin, X-X; Zhang, Y; Cao, J; Wu, J-L; Hadjiloucas, S

    2016-12-01

    We provide a comprehensive account of recent advances in biomedical image analysis and classification from two complementary imaging modalities: terahertz (THz) pulse imaging and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The work aims to highlight underlining commonalities in both data structures so that a common multi-channel data fusion framework can be developed. Signal pre-processing in both datasets is discussed briefly taking into consideration advances in multi-resolution analysis and model based fractional order calculus system identification. Developments in statistical signal processing using principal component and independent component analysis are also considered. These algorithms have been developed independently by the THz-pulse imaging and DCE-MRI communities, and there is scope to place them in a common multi-channel framework to provide better software standardization at the pre-processing de-noising stage. A comprehensive discussion of feature selection strategies is also provided and the importance of preserving textural information is highlighted. Feature extraction and classification methods taking into consideration recent advances in support vector machine (SVM) and extreme learning machine (ELM) classifiers and their complex extensions are presented. An outlook on Clifford algebra classifiers and deep learning techniques suitable to both types of datasets is also provided. The work points toward the direction of developing a new unified multi-channel signal processing framework for biomedical image analysis that will explore synergies from both sensing modalities for inferring disease proliferation. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  7. Reconstruction of pulse noisy images via stochastic resonance

    PubMed Central

    Han, Jing; Liu, Hongjun; Sun, Qibing; Huang, Nan

    2015-01-01

    We investigate a practical technology for reconstructing nanosecond pulse noisy images via stochastic resonance, which is based on the modulation instability. A theoretical model of this method for optical pulse signal is built to effectively recover the pulse image. The nanosecond noise-hidden images grow at the expense of noise during the stochastic resonance process in a photorefractive medium. The properties of output images are mainly determined by the input signal-to-noise intensity ratio, the applied voltage across the medium, and the correlation length of noise background. A high cross-correlation gain is obtained by optimizing these parameters. This provides a potential method for detecting low-level or hidden pulse images in various imaging applications. PMID:26067911

  8. Terahertz near-field imaging using subwavelength plasmonic apertures and a quantum cascade laser source.

    PubMed

    Baragwanath, Adam J; Freeman, Joshua R; Gallant, Andrew J; Zeitler, J Axel; Beere, Harvey E; Ritchie, David A; Chamberlain, J Martyn

    2011-07-01

    The first demonstration, to our knowledge, of near-field imaging using subwavelength plasmonic apertures with a terahertz quantum cascade laser source is presented. "Bull's-eye" apertures, featuring subwavelength circular apertures flanked by periodic annular corrugations were created using a novel fabrication method. A fivefold increase in intensity was observed for plasmonic apertures over plain apertures of the same diameter. Detailed studies of the transmitted beam profiles were undertaken for apertures with both planarized and corrugated exit facets, with the former producing spatially uniform intensity profiles and subwavelength spatial resolution. Finally, a proof-of-concept imaging experiment is presented, where an inhomogeneous pharmaceutical drug coating is investigated.

  9. Single-silicon CCD-CMOS platform for multi-spectral detection from terahertz to x-rays.

    PubMed

    Shalaby, Mostafa; Vicario, Carlo; Hauri, Christoph P

    2017-11-15

    Charge-coupled devices (CCDs) are a well-established imaging technology in the visible and x-ray frequency ranges. However, the small quantum photon energies of terahertz radiation have hindered the use of this mature semiconductor technological platform in this frequency range, leaving terahertz imaging totally dependent on low-resolution bolometer technologies. Recently, it has been shown that silicon CCDs can detect terahertz photons at a high field, but the detection sensitivity is limited. Here we show that silicon, complementary metal-oxide-semiconductor (CMOS) technology offers enhanced detection sensitivity of almost two orders of magnitude, compared to CCDs. Our findings allow us to extend the low-frequency terahertz cutoff to less than 2 THz, nearly closing the technological gap with electronic imagers operating up to 1 THz. Furthermore, with the silicon CCD/CMOS technology being sensitive to mid-infrared (mid-IR) and the x-ray ranges, we introduce silicon as a single detector platform from 1 EHz to 2 THz. This overcomes the present challenge in spatially overlapping a terahertz/mid-IR pump and x-ray probe radiation at facilities such as free electron lasers, synchrotron, and laser-based x-ray sources.

  10. Active terahertz imaging with Ne indicator lamp detector arrays

    NASA Astrophysics Data System (ADS)

    Kopeika, N. S.; Abramovich, A.; Yadid-Pecht, O.; Yitzhaky, Y.

    2009-08-01

    The advantages of terahertz (THz) imaging are well known. They penetrate well most non-conducting media and there are no known biological hazards, This makes such imaging systems important for homeland security, as they can be used to image concealed objects and often into rooms or buildings from the outside. There are also biomedical applications that are arising. Unfortunately, THz imaging is quite expensive, especially for real time systems, largely because of the price of the detector. Bolometers and pyroelectric detectors can each easily cost at least hundreds of dollars if not more, thus making focal plane arrays of them quite expensive. We have found that common miniature commercial neon indicator lamps costing typically about 30 cents each exhibit high sensitivity to THz radiation [1-3], with microsecond order rise times, thus making them excellent candidates for such focal plane arrays. NEP is on the order of 10-10 W/Hz1/2. Significant improvement of detection performance is expected when heterodyne detection is used Efforts are being made to develop focal plane array imagers using such devices at 300 GHz. Indeed, preliminary images using 4x4 arrays have already been obtained. An 8x8 VLSI board has been developed and is presently being tested. Since no similar imaging systems have been developed previously, there are many new problems to be solved with such a novel and unconventional imaging system. These devices act as square law detectors, with detected signal proportional to THz power. This allows them to act as mixers in heterodyne detection, thus allowing NEP to be reduced further by almost two orders of magnitude. Plans are to expand the arrays to larger sizes, and to employ super resolution techniques to improve image quality beyond that ordinarily obtainable at THz frequencies.

  11. Compressed sensing with cyclic-S Hadamard matrix for terahertz imaging applications

    NASA Astrophysics Data System (ADS)

    Ermeydan, Esra Şengün; ćankaya, Ilyas

    2018-01-01

    Compressed Sensing (CS) with Cyclic-S Hadamard matrix is proposed for single pixel imaging applications in this study. In single pixel imaging scheme, N = r . c samples should be taken for r×c pixel image where . denotes multiplication. CS is a popular technique claiming that the sparse signals can be reconstructed with samples under Nyquist rate. Therefore to solve the slow data acquisition problem in Terahertz (THz) single pixel imaging, CS is a good candidate. However, changing mask for each measurement is a challenging problem since there is no commercial Spatial Light Modulators (SLM) for THz band yet, therefore circular masks are suggested so that for each measurement one or two column shifting will be enough to change the mask. The CS masks are designed using cyclic-S matrices based on Hadamard transform for 9 × 7 and 15 × 17 pixel images within the framework of this study. The %50 compressed images are reconstructed using total variation based TVAL3 algorithm. Matlab simulations demonstrates that cyclic-S matrices can be used for single pixel imaging based on CS. The circular masks have the advantage to reduce the mechanical SLMs to a single sliding strip, whereas the CS helps to reduce acquisition time and energy since it allows to reconstruct the image from fewer samples.

  12. Terahertz beam propagation measured through three-dimensional amplitude profile determination

    NASA Astrophysics Data System (ADS)

    Reiten, Matthew T.; Harmon, Stacee A.; Cheville, Richard Alan

    2003-10-01

    To determine the spatio-temporal field distribution of freely propagating terahertz bandwidth pulses, we measure the time-resolved electric field in two spatial dimensions with high resolution. The measured, phase-coherent electric-field distributions are compared with an analytic model in which the radiation from a dipole antenna near a dielectric interface is coupled to free space through a spherical lens. The field external to the lens is limited by reflection at the lens-air dielectric interface, which is minimized at Brewster's angle, leading to an annular field pattern. Field measurements compare favorably with theory. Propagation of terahertz beams is determined both by assuming a TEM0,0 Gaussian profile as well as expanding the beam into a superposition of Laguerre-Gauss modes. The Laguerre-Gauss model more accurately describes the beam profile for free-space propagation and after propagating through a simple optical system. The accuracy of both models for predicting far-field beam patterns depend upon accurately measuring complex field amplitudes of terahertz beams.

  13. Field transients of coherent terahertz synchrotron radiation accessed via time-resolving and correlation techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pohl, A.; Hübers, H.-W.; Institute of Optical Sensor Systems, German Aerospace Center

    2016-03-21

    Decaying oscillations of the electric field in repetitive pulses of coherent synchrotron radiation in the terahertz frequency range was evaluated by means of time-resolving and correlation techniques. Comparative analysis of real-time voltage transients of the electrical response and interferograms, which were obtained with an ultrafast zero-bias Schottky diode detector and a Martin-Puplett interferometer, delivers close values of the pulse duration. Consistent results were obtained via the correlation technique with a pair of Golay Cell detectors and a pair of resonant polarisation-sensitive superconducting detectors integrated on one chip. The duration of terahertz synchrotron pulses does not closely correlate with the durationmore » of single-cycle electric field expected for the varying size of electron bunches. We largely attribute the difference to the charge density oscillations in electron bunches and to the low-frequency spectral cut-off imposed by both the synchrotron beamline and the coupling optics of our detectors.« less

  14. Electromagnetic behavior of spatial terahertz wave modulators based on reconfigurable micromirror gratings in Littrow configuration.

    PubMed

    Kappa, Jan; Schmitt, Klemens M; Rahm, Marco

    2017-08-21

    Efficient, high speed spatial modulators with predictable performance are a key element in any coded aperture terahertz imaging system. For spectroscopy, the modulators must also provide a broad modulation frequency range. In this study, we numerically analyze the electromagnetic behavior of a dynamically reconfigurable spatial terahertz wave modulator based on a micromirror grating in Littrow configuration. We show that such a modulator can modulate terahertz radiation over a wide frequency range from 1.7 THz to beyond 3 THz at a modulation depth of more than 0.6. As a specific example, we numerically simulated coded aperture imaging of an object with binary transmissive properties and successfully reconstructed the image.

  15. Identification and classification of chemicals using terahertz reflective spectroscopic focal-plane imaging system.

    PubMed

    Zhong, Hua; Redo-Sanchez, Albert; Zhang, X-C

    2006-10-02

    We present terahertz (THz) reflective spectroscopic focal-plane imaging of four explosive and bio-chemical materials (2, 4-DNT, Theophylline, RDX and Glutamic Acid) at a standoff imaging distance of 0.4 m. The 2 dimension (2-D) nature of this technique enables a fast acquisition time and is very close to a camera-like operation, compared to the most commonly used point emission-detection and raster scanning configuration. The samples are identified by their absorption peaks extracted from the negative derivative of the reflection coefficient respect to the frequency (-dr/dv) of each pixel. Classification of the samples is achieved by using minimum distance classifier and neural network methods with a rate of accuracy above 80% and a false alarm rate below 8%. This result supports the future application of THz time-domain spectroscopy (TDS) in standoff distance sensing, imaging, and identification.

  16. Terahertz imaging for early screening of diabetic foot syndrome: A proof of concept

    NASA Astrophysics Data System (ADS)

    Hernandez-Cardoso, G. G.; Rojas-Landeros, S. C.; Alfaro-Gomez, M.; Hernandez-Serrano, A. I.; Salas-Gutierrez, I.; Lemus-Bedolla, E.; Castillo-Guzman, A. R.; Lopez-Lemus, H. L.; Castro-Camus, E.

    2017-02-01

    Most people with diabetes suffer some deterioration of the feet. Diabetic foot syndrome causes ulceration in about 15% of cases and such deterioration leads to amputation in about 2.5% of diabetic patients, diminishing their quality of life and generating extraordinary costs for patients and public health systems. Currently, there is no objective method for the detection of diabetic foot syndrome in its early stages. We propose terahertz imaging as a method for the evaluation of such deterioration. This screening method could aid the prevention and medical treatment of this condition in the future.

  17. Water vapor: An extraordinary terahertz wave source under optical excitation

    NASA Astrophysics Data System (ADS)

    Johnson, Keith; Price-Gallagher, Matthew; Mamer, Orval; Lesimple, Alain; Fletcher, Clark; Chen, Yunqing; Lu, Xiaofei; Yamaguchi, Masashi; Zhang, X.-C.

    2008-09-01

    In modern terahertz (THz) sensing and imaging spectroscopy, water is considered a nemesis to be avoided due to strong absorption in the THz frequency range. Here we report the first experimental demonstration and theoretical implications of using femtosecond laser pulses to generate intense broadband THz emission from water vapor. When we focused an intense laser pulse in water vapor contained in a gas cell or injected from a gas jet nozzle, an extraordinarily strong THz field from optically excited water vapor is observed. Water vapor has more than 50% greater THz generation efficiency than dry nitrogen. It had previously been assumed that the nonlinear generation of THz waves in this manner primarily involves a free-electron plasma, but we show that the molecular structure plays an essential role in the process. In particular, we found that THz wave generation from H2O vapor is significantly stronger than that from D2O vapor. Vibronic activities of water cluster ions, occurring naturally in water vapor, may possibly contribute to the observed isotope effect along with rovibrational contributions from the predominant monomers.

  18. Mid-infrared beam splitter for ultrashort pulses.

    PubMed

    Somma, Carmine; Reimann, Klaus; Woerner, Michael; Kiel, Thomas; Busch, Kurt; Braun, Andreas; Matalla, Mathias; Ickert, Karina; Krüger, Olaf

    2017-08-01

    A design is presented for a beam splitter suitable for ultrashort pulses in the mid-infrared and terahertz spectral range consisting of a structured metal layer on a diamond substrate. Both the theory and experiment show that this beam splitter does not distort the temporal pulse shape.

  19. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE PAGES

    Kozina, M.; Pancaldi, M.; Bernhard, C.; ...

    2017-02-20

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  20. Local terahertz field enhancement for time-resolved x-ray diffraction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kozina, M.; Pancaldi, M.; Bernhard, C.

    We report local field strength enhancement of single-cycle terahertz (THz) pulses in an ultrafast time-resolved x-ray diffraction experiment. We show that patterning the sample with gold microstructures increases the THz field without changing the THz pulse shape or drastically affecting the quality of the x-ray diffraction pattern. Lastly, we find a five-fold increase in THz-induced x-ray diffraction intensity change in the presence of microstructures on a SrTiO 3 thin-film sample.

  1. Sparsity based terahertz reflective off-axis digital holography

    NASA Astrophysics Data System (ADS)

    Wan, Min; Muniraj, Inbarasan; Malallah, Ra'ed; Zhao, Liang; Ryle, James P.; Rong, Lu; Healy, John J.; Wang, Dayong; Sheridan, John T.

    2017-05-01

    Terahertz radiation lies between the microwave and infrared regions in the electromagnetic spectrum. Emitted frequencies range from 0.1 to 10 THz with corresponding wavelengths ranging from 30 μm to 3 mm. In this paper, a continuous-wave Terahertz off-axis digital holographic system is described. A Gaussian fitting method and image normalisation techniques were employed on the recorded hologram to improve the image resolution. A synthesised contrast enhanced hologram is then digitally constructed. Numerical reconstruction is achieved using the angular spectrum method of the filtered off-axis hologram. A sparsity based compression technique is introduced before numerical data reconstruction in order to reduce the dataset required for hologram reconstruction. Results prove that a tiny amount of sparse dataset is sufficient in order to reconstruct the hologram with good image quality.

  2. Terahertz NDE for Under Paint Corrosion Detection and Evaluation

    NASA Technical Reports Server (NTRS)

    Anastasi, Robert F.; Madaras, Eric I.

    2005-01-01

    Corrosion under paint is not visible until it has caused paint to blister, crack, or chip. If corrosion is allowed to continue then structural problems may develop. Identifying corrosion before it becomes visible would minimize repairs and costs and potential structural problems. Terahertz NDE imaging under paint for corrosion is being examined as a method to inspect for corrosion by examining the terahertz response to paint thickness and to surface roughness.

  3. Superiority of terahertz over infrared transmission through bandages and burn wound ointments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suen, Jonathan Y., E-mail: j.suen@duke.edu; Padilla, Willie J.

    Terahertz electromagnetic waves have long been proposed to be ideal for spectroscopy and imaging through non-polar dielectric materials that contain no water. Terahertz radiation may thus be useful for monitoring burn and wound injury recovery, as common care treatments involve application of both a clinical dressing and topical ointment. Here, we investigate the optical properties of typical care treatments in the millimeter wave (150–300 GHz), terahertz (0.3–3 THz), and infrared (14.5–0.67 μm) ranges of the electromagnetic spectrum. We find that THz radiation realizes low absorption coefficients and high levels of transmission compared to infrared wavelengths, which were strongly attenuated. Terahertz imaging canmore » enable safe, non-ionizing, noninvasive monitoring of the healing process directly through clinical dressings and recovery ointments, minimizing the frequency of dressing changes and thus increasing the rate of the healing process.« less

  4. Optical and terahertz energy concentration on the nanoscale in plasmonics

    NASA Astrophysics Data System (ADS)

    Rusina, Anastasia

    We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R0 ≈ lambda0 ≈ 300 microm to the unprecedented final size of R = 100--250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These

  5. Investigation of Terra Cotta artefacts with terahertz

    NASA Astrophysics Data System (ADS)

    Labaune, Julien; Jackson, J. Bianca; Fukunaga, Kaori; White, Jeffrey; D'Alessandro, Laura; Whyte, Alison; Menu, Michel; Mourou, Gerard

    2011-10-01

    Terahertz Time Domain Imaging has been used in the last few years for the investigation of cultural heritage. In this article, the authors demonstrate the possibility to apply it for the investigation of clay artifacts. Tomographic images were obtained of a model in reflection, and an Egyptian vessel in transmission.

  6. Generation of strong terahertz fields exceeding 8 MV/cm at 1 kHz and real-time beam profiling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oh, T. I.; Yoo, Y. J.; You, Y. S.

    2014-07-28

    We demonstrate high-field (>8 MV/cm) terahertz generation at a high-repetition-rate (1 kHz) via two-color laser filamentation. Here, we use a cryogenically cooled femtosecond laser amplifier capable of producing 30 fs, 15 mJ pulses at 1 kHz as a driver, along with a combination of a thin dual-wavelength half-waveplate and a Brewster-angled silicon window to enhance terahertz generation and transmission. We also introduce a cost-effective, uncooled microbolometer camera for real-time terahertz beam profiling with two different modes.

  7. Semiconductor activated terahertz metamaterials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Hou-Tong

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  8. Semiconductor activated terahertz metamaterials

    DOE PAGES

    Chen, Hou-Tong

    2014-08-01

    Metamaterials have been developed as a new class of artificial effective media realizing many exotic phenomena and unique properties not normally found in nature. Metamaterials enable functionality through structure design, facilitating applications by addressing the severe material issues in the terahertz frequency range. Consequently, prototype functional terahertz devices have been demonstrated, including filters, antireflection coatings, perfect absorbers, polarization converters, and arbitrary wavefront shaping devices. Further integration of functional materials into metamaterial structures have enabled actively and dynamically switchable and frequency tunable terahertz metamaterials through the application of external stimuli. The enhanced light-matter interactions in active terahertz metamaterials may result inmore » unprecedented control and manipulation of terahertz radiation, forming the foundation of many terahertz applications. In this paper, we review the progress during the past few years in this rapidly growing research field. We particularly focus on the design principles and realization of functionalities using single-layer and few-layer terahertz planar metamaterials, and active terahertz metamaterials through the integration of semiconductors to achieve switchable and frequency-tunable response.« less

  9. A Nipkow disk integrated with Fresnel lenses for terahertz single pixel imaging.

    PubMed

    Li, Chong; Grant, James; Wang, Jue; Cumming, David R S

    2013-10-21

    We present a novel Nipkow disk design for terahertz (THz) single pixel imaging applications. A 100 mm high resistivity (ρ≈3k-10k Ω·cm) silicon wafer was used for the disk on which a spiral array of twelve 16-level binary Fresnel lenses were fabricated using photolithography and a dry-etch process. The implementation of Fresnel lenses on the Nipkow disk increases the THz signal transmission compared to the conventional pinhole-based Nipkow disk by more than 12 times thus a THz source with lower power or a THz detector with lower detectivity can be used. Due to the focusing capability of the lenses, a pixel resolution better than 0.5 mm is in principle achievable. To demonstrate the concept, a single pixel imaging system operating at 2.52 THz is described.

  10. Analysis of rectangular resonant cavities in terahertz parallel-plate waveguides.

    PubMed

    Astley, Victoria; McCracken, Blake; Mendis, Rajind; Mittleman, Daniel M

    2011-04-15

    We describe an experimental and theoretical characterization of rectangular resonant cavities integrated into parallel-plate waveguides, using terahertz pulses. When the waveguide is excited with the lowest-order transverse-electric mode, these cavities exhibit resonances with narrow linewidths. Broadband transmission spectra are compared with the results of mode-matching calculations, for various cavity dimensions.

  11. Terahertz Real-Time Imaging Uncooled Arrays Based on Antenna-Coupled Bolometers or FET Developed at CEA-Leti

    NASA Astrophysics Data System (ADS)

    Simoens, François; Meilhan, Jérôme; Nicolas, Jean-Alain

    2015-10-01

    Sensitive and large-format terahertz focal plane arrays (FPAs) integrated in compact and hand-held cameras that deliver real-time terahertz (THz) imaging are required for many application fields, such as non-destructive testing (NDT), security, quality control of food, and agricultural products industry. Two technologies of uncooled THz arrays that are being studied at CEA-Leti, i.e., bolometer and complementary metal oxide semiconductor (CMOS) field effect transistors (FET), are able to meet these requirements. This paper reminds the followed technological approaches and focuses on the latest modeling and performance analysis. The capabilities of application of these arrays to NDT and security are then demonstrated with experimental tests. In particular, high technological maturity of the THz bolometer camera is illustrated with fast scanning of large field of view of opaque scenes achieved in a complete body scanner prototype.

  12. LASER APPLICATIONS AND OTHER TOPICS IN QUANTUM ELECTRONICS: Generation of terahertz radiation upon filtration of a supercontinuum produced during the propagation of a femtosecond laser pulse in a GaAs crystal

    NASA Astrophysics Data System (ADS)

    Vardanyan, Aleksandr O.; Oganesyan, David L.

    2008-11-01

    The results of a theoretical study of the formation of a supercontinuum produced due to the interaction of femtosecond laser pulses with an isotropic nonlinear medium are presented. The system of nonlinear Maxwell's equations was numerically integrated in time by the finite-difference method. The interaction of mutually orthogonal linearly-polarised 1.98-μm, 30-fs, 30-nJ pulses propagating along the normal to the 110 plane in a 1-mm-long GaAs crystal was considered. In the nonlinear part of the polarisation medium, the inertialless second-order nonlinear susceptibility was taken into account. The formation process of a terahertz pulse obtained due to the supercontinuum filtration was studied.

  13. Subwavelength hybrid terahertz waveguides.

    PubMed

    Nam, Sung Hyun; Taylor, Antoinette J; Efimov, Anatoly

    2009-12-07

    We introduce and present general properties of hybrid terahertz waveguides. Weakly confined Zenneck waves on a metal-dielectric interface at terahertz frequencies can be transformed to a strongly confined yet low-loss subwavelength mode through coupling with a photonic mode of a nearby high-index dielectric strip. We analyze confinement, attenuation, and dispersion properties of this mode. The proposed design is suitable for planar integration and allows easy fabrication on chip scale. The superior waveguiding properties at terahertz frequencies could enable the hybrid terahertz waveguides as building blocks for terahertz integrated circuits.

  14. Femtoelectron-Based Terahertz Imaging of Hydration State in a Proton Exchange Membrane Fuel Cell

    NASA Astrophysics Data System (ADS)

    Buaphad, P.; Thamboon, P.; Kangrang, N.; Rhodes, M. W.; Thongbai, C.

    2015-08-01

    Imbalanced water management in a proton exchange membrane (PEM) fuel cell significantly reduces the cell performance and durability. Visualization of water distribution and transport can provide greater comprehension toward optimization of the PEM fuel cell. In this work, we are interested in water flooding issues that occurred in flow channels on cathode side of the PEM fuel cell. The sample cell was fabricated with addition of a transparent acrylic window allowing light access and observed the process of flooding formation (in situ) via a CCD camera. We then explore potential use of terahertz (THz) imaging, consisting of femtoelectron-based THz source and off-angle reflective-mode imaging, to identify water presence in the sample cell. We present simulations of two hydration states (water and nonwater area), which are in agreement with the THz image results. A line-scan plot is utilized for quantitative analysis and for defining spatial resolution of the image. Implementing metal mesh filtering can improve spatial resolution of our THz imaging system.

  15. Apertureless near-field terahertz imaging using the self-mixing effect in a quantum cascade laser

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dean, Paul, E-mail: p.dean@leeds.ac.uk; Keeley, James; Kundu, Iman

    2016-02-29

    We report two-dimensional apertureless near-field terahertz (THz) imaging using a quantum cascade laser (QCL) source and a scattering probe. A near-field enhancement of the scattered field amplitude is observed for small tip-sample separations, allowing image resolutions of ∼1 μm (∼λ/100) and ∼7 μm to be achieved along orthogonal directions on the sample surface. This represents the highest resolution demonstrated to date with a THz QCL. By employing a detection scheme based on self-mixing interferometry, our approach offers experimental simplicity by removing the need for an external detector and also provides sensitivity to the phase of the reinjected field.

  16. Terahertz Sensing of Materials

    NASA Astrophysics Data System (ADS)

    Xuan, G.; Ghosh, S.; Kim, S.; Lv, P.-C.; Buma, T.; Weng, B.; Barner, K.; Kolodzey, J.

    2007-06-01

    Biomolecules such as DNA and proteins exhibit a wealth of modes in the Terahertz (THz) range from the rotational, vibrational and stretching modes of biomolecules. Many materials such as drywall that are opaque to human eyes are transparent to THz. Therefore, it can be used as a powerful tool for biomolecular sensing, biomedical analysis and through-the-wall imaging. Experiments were carried out to study the absorption of various materials including DNA and see-through imaging of drywall using FTIR spectrometer and Time Domain Spectroscopy (TDS) system.

  17. Nondestructive monitoring of aircraft composites using terahertz radiation

    NASA Astrophysics Data System (ADS)

    Balbekin, Nikolay S.; Novoselov, Evgenii V.; Pavlov, Pavel V.; Bespalov, Victor G.; Petrov, Nikolay V.

    2015-03-01

    In this paper we consider using the terahertz (THz) time domain spectroscopy (TDS) for non destructive testing and determining the chemical composition of the vanes and rotor-blade spars. A versatile terahertz spectrometer for reflection and transmission has been used for experiments. We consider the features of measured terahertz signal in temporal and spectral domains during propagation through and reflecting from various defects in investigated objects, such as voids and foliation. We discuss requirements are applicable to the setup and are necessary to produce an image of these defects, such as signal-to-noise ratio and a method for registration THz radiation. Obtained results indicated the prospects of the THz TDS method for the inspection of defects and determination of the particularities of chemical composition of aircraft parts.

  18. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue

    PubMed Central

    Titova, Lyubov V.; Ayesheshim, Ayesheshim K.; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A.; Kovalchuk, Olga

    2013-01-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm). PMID:23577291

  19. Intense THz pulses cause H2AX phosphorylation and activate DNA damage response in human skin tissue.

    PubMed

    Titova, Lyubov V; Ayesheshim, Ayesheshim K; Golubov, Andrey; Fogen, Dawson; Rodriguez-Juarez, Rocio; Hegmann, Frank A; Kovalchuk, Olga

    2013-04-01

    Recent emergence and growing use of terahertz (THz) radiation for medical imaging and public security screening raise questions on reasonable levels of exposure and health consequences of this form of electromagnetic radiation. In particular, picosecond-duration THz pulses have shown promise for novel diagnostic imaging techniques. However, the effects of THz pulses on human cells and tissues thus far remain largely unknown. We report on the investigation of the biological effects of pulsed THz radiation on artificial human skin tissues. We observe that exposure to intense THz pulses for ten minutes leads to a significant induction of H2AX phosphorylation, indicating that THz pulse irradiation may cause DNA damage in exposed skin tissue. At the same time, we find a THz-pulse-induced increase in the levels of several proteins responsible for cell-cycle regulation and tumor suppression, suggesting that DNA damage repair mechanisms are quickly activated. Furthermore, we find that the cellular response to pulsed THz radiation is significantly different from that induced by exposure to UVA (400 nm).

  20. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation.

    PubMed

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A; Vitiello, Miriam Serena

    2017-09-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10 -10 . The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources.

  1. Integrated injection seeded terahertz source and amplifier for time-domain spectroscopy.

    PubMed

    Maysonnave, J; Jukam, N; Ibrahim, M S M; Maussang, K; Madéo, J; Cavalié, P; Dean, P; Khanna, S P; Steenson, D P; Linfield, E H; Davies, A G; Tignon, J; Dhillon, S S

    2012-02-15

    We used a terahertz (THz) quantum cascade laser (QCL) as an integrated injection seeded source and amplifier for THz time-domain spectroscopy. A THz input pulse is generated inside a QCL by illuminating the laser facet with a near-IR pulse from a femtosecond laser and amplified using gain switching. The THz output from the QCL is found to saturate upon increasing the amplitude of the THz input power, which indicates that the QCL is operating in an injection seeded regime.

  2. Potential for detection of explosive and biological hazards with electronic terahertz systems.

    PubMed

    Choi, Min Ki; Bettermann, Alan; van der Weide, D W

    2004-02-15

    The terahertz (THz) regime (0.1-10 THz) is rich with emerging possibilities in sensing, imaging and communications, with unique applications to screening for weapons, explosives and biohazards, imaging of concealed objects, water content and skin. Here we present initial surveys to evaluate the possibility of sensing plastic explosives and bacterial spores using field-deployable electronic THz techniques based on short-pulse generation and coherent detection using nonlinear transmission lines and diode sampling bridges. We also review the barriers and approaches to achieving greater sensing-at-a-distance (stand-off) capabilities for THz sensing systems. We have made several reflection measurements of metallic and non-metallic targets in our laboratory, and have observed high contrast relative to reflection from skin. In particular, we have taken small quantities of energetic materials such as plastic explosives and a variety of Bacillus spores, and measured them in transmission and in reflection using a broadband pulsed electronic THz reflectometer. The pattern of reflection versus frequency gives rise to signatures that are remarkably specific to the composition of the target, even though the target's morphology and position is varied. Although more work needs to be done to reduce the effects of standing waves through time-gating or attenuators, the possibility of mapping out this contrast for imaging and detection is very attractive.

  3. A multislice gradient echo pulse sequence for CEST imaging.

    PubMed

    Dixon, W Thomas; Hancu, Ileana; Ratnakar, S James; Sherry, A Dean; Lenkinski, Robert E; Alsop, David C

    2010-01-01

    Chemical exchange-dependent saturation transfer and paramagnetic chemical exchange-dependent saturation transfer are agent-mediated contrast mechanisms that depend on saturating spins at the resonant frequency of the exchangeable protons on the agent, thereby indirectly saturating the bulk water. In general, longer saturating pulses produce stronger chemical and paramagnetic exchange-dependent saturation transfer effects, with returns diminishing for pulses longer than T1. This could make imaging slow, so one approach to chemical exchange-dependent saturation transfer imaging has been to follow a long, frequency-selective saturation period by a fast imaging method. A new approach is to insert a short frequency-selective saturation pulse before each spatially selective observation pulse in a standard, two-dimensional, gradient-echo pulse sequence. Being much less than T1 apart, the saturation pulses have a cumulative effect. Interleaved, multislice imaging is straightforward. Observation pulses directed at one slice did not produce observable, unintended chemical exchange-dependent saturation transfer effects in another slice. Pulse repetition time and signal-to noise ratio increase in the normal way as more slices are imaged simultaneously. Copyright (c) 2009 Wiley-Liss, Inc.

  4. 2D and 3D Terahertz Imaging and X-Rays CT for Sigillography Study

    NASA Astrophysics Data System (ADS)

    Fabre, M.; Durand, R.; Bassel, L.; Recur, B.; Balacey, H.; Bou Sleiman, J.; Perraud, J.-B.; Mounaix, P.

    2017-04-01

    Seals are part of our cultural heritage but the study of these objects is limited because of their fragility. Terahertz and X-Ray imaging are used to analyze a collection of wax seals from the fourteenth to eighteenth centuries. In this work, both techniques are compared in order to discuss their advantages and limits and their complementarity for conservation state study of the samples. Thanks to 3D analysis and reconstructions, defects and fractures are detected with an estimation of their depth position. The path from the parchment tongue inside the seals is also detected.

  5. Terahertz radiation by subpicosecond spin-polarized photocurrent originating from Dirac electrons in a Rashba-type polar semiconductor

    NASA Astrophysics Data System (ADS)

    Kinoshita, Yuto; Kida, Noriaki; Miyamoto, Tatsuya; Kanou, Manabu; Sasagawa, Takao; Okamoto, Hiroshi

    2018-04-01

    The spin-splitting energy bands induced by the relativistic spin-orbit interaction in solids provide a new opportunity to manipulate the spin-polarized electrons on the subpicosecond timescale. Here, we report one such example in a bulk Rashba-type polar semiconductor BiTeBr. Strong terahertz electromagnetic waves are emitted after the resonant excitation of the interband transition between the Rashba-type spin-splitting energy bands with a femtosecond laser pulse circularly polarized. The phase of the emitted terahertz waves is reversed by switching the circular polarization. This suggests that the observed terahertz radiation originates from the subpicosecond spin-polarized photocurrents, which are generated by the asymmetric depopulation of the Dirac state. Our result provides a way for the current-induced terahertz radiation and its phase control by the circular polarization of incident light without external electric fields.

  6. Early detection of germinated wheat grains using terahertz image and chemometrics

    NASA Astrophysics Data System (ADS)

    Jiang, Yuying; Ge, Hongyi; Lian, Feiyu; Zhang, Yuan; Xia, Shanhong

    2016-02-01

    In this paper, we propose a feasible tool that uses a terahertz (THz) imaging system for identifying wheat grains at different stages of germination. The THz spectra of the main changed components of wheat grains, maltose and starch, which were obtained by THz time spectroscopy, were distinctly different. Used for original data compression and feature extraction, principal component analysis (PCA) revealed the changes that occurred in the inner chemical structure during germination. Two thresholds, one indicating the start of the release of α-amylase and the second when it reaches the steady state, were obtained through the first five score images. Thus, the first five PCs were input for the partial least-squares regression (PLSR), least-squares support vector machine (LS-SVM), and back-propagation neural network (BPNN) models, which were used to classify seven different germination times between 0 and 48 h, with a prediction accuracy of 92.85%, 93.57%, and 90.71%, respectively. The experimental results indicated that the combination of THz imaging technology and chemometrics could be a new effective way to discriminate wheat grains at the early germination stage of approximately 6 h.

  7. Markets, Availability, Notice, and Technical Performance of Terahertz Systems: Historic Development, Present, and Trends

    NASA Astrophysics Data System (ADS)

    Hochrein, Thomas

    2015-03-01

    Although a lot of work has already been done under the older terms "far infrared" or "sub-millimeter waves", the term "terahertz" stands for a novel technique offering many potential applications. The latter term also represents a new generation of systems with the opportunity for coherent, time-resolved detection. In addition to the well-known technical opportunities, an historical examination of Internet usage, as well as the number of publications and patent applications, confirms ongoing interest in this technique. These activities' annual growth rate is between 9 % and 21 %. The geographical distribution shows the center of terahertz activities. A shift from the scientific to more application-oriented research can be observed. We present a survey among worldwide terahertz suppliers with special focus on the European region and the use of terahertz systems in the field of measurement and analytical applications. This reveals the current state of terahertz systems' commercial and geographical availability as well as their costs, target markets, and technical performance. Component cost distribution using the example of an optical pulsed time-domain terahertz system gives an impression of the prevailing cost structure. The predication regarding prospective market development, decreasing system costs and higher availability shows a convenient situation for potential users and interested customers. The causes are primarily increased competition and larger quantities in the future.

  8. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than the averagedmore » phonon mean-free path in BaTiO3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. This time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  9. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhu, Yi; Chen, Frank; Park, Joonkyu

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  10. Structural imaging of nanoscale phonon transport in ferroelectrics excited by metamaterial-enhanced terahertz fields

    DOE PAGES

    Zhu, Yi; Chen, Frank; Park, Joonkyu; ...

    2017-11-16

    Nanoscale phonon transport is a key process that governs thermal conduction in a wide range of materials and devices. Creating controlled phonon populations by resonant excitation at terahertz (THz) frequencies can drastically change the characteristics of nanoscale thermal transport and allow a direct real-space characterization of phonon mean-free paths. Using metamaterial-enhanced terahertz excitation, we tailored a phononic excitation by selectively populating low-frequency phonons within a nanoscale volume in a ferroelectric BaTiO 3 thin film. Real-space time-resolved x-ray diffraction microscopy following THz excitation reveals ballistic phonon transport over a distance of hundreds of nm, two orders of magnitude longer than themore » averaged phonon mean-free path in BaTiO 3. On longer length scales, diffusive phonon transport dominates the recovery of the transient strain response, largely due to heat conduction into the substrate. The measured real-space phonon transport can be directly compared with the phonon mean-free path as predicted by molecular dynamics modeling. In conclusion, this time-resolved real-space visualization of THz-matter interactions opens up opportunities to engineer and image nanoscale transient structural states with new functionalities.« less

  11. Flexible and stackable terahertz metamaterials via silver-nanoparticle inkjet printing

    NASA Astrophysics Data System (ADS)

    Kashiwagi, K.; Xie, L.; Li, X.; Kageyama, T.; Miura, M.; Miyashita, H.; Kono, J.; Lee, S.-S.

    2018-04-01

    There is presently much interest in tunable, flexible, or reconfigurable metamaterial structures that work in the terahertz frequency range. They can be useful for a range of applications, including spectroscopy, sensing, imaging, and communications. Various methods based on microelectromechanical systems have been used for fabricating terahertz metamaterials, but they typically require high-cost facilities and involve a number of time-consuming and intricate processes. Here, we demonstrate a simple, robust, and cost-effective method for fabricating flexible and stackable multiresonant terahertz metamaterials, using silver nanoparticle inkjet printing. Using this method, we designed and fabricated two arrays of split-ring resonators (SRRs) having different resonant frequencies on separate sheets of paper and then combined the two arrays by stacking. Through terahertz time-domain spectroscopy, we observed resonances at the frequencies expected for the individual SRR arrays as well as at a new frequency due to coupling between the two SRR arrays.

  12. Invisible Security Printing on Photoresist Polymer Readable by Terahertz Spectroscopy.

    PubMed

    Shin, Hee Jun; Lim, Min-Cheol; Park, Kisang; Kim, Sae-Hyung; Choi, Sung-Wook; Ok, Gyeongsik

    2017-12-06

    We experimentally modulate the refractive index and the absorption coefficient of an SU-8 dry film in the terahertz region by UV light (362 nm) exposure with time dependency. Consequently, the refractive index of SU-8 film is increased by approximately 6% after UV light exposure. Moreover, the absorption coefficient also changes significantly. Using the reflective terahertz imaging technique, in addition, we can read security information printed by UV treatment on an SU-8 film that is transparent in the visible spectrum. From these results, we successfully demonstrate security printing and reading by using photoresist materials and the terahertz technique. This investigation would provide a new insight into anti-counterfeiting applications in fields that need security.

  13. Terahertz endoscopic imaging for colorectal cancer detection: Current status and future perspectives

    PubMed Central

    Doradla, Pallavi; Joseph, Cecil; Giles, Robert H

    2017-01-01

    Terahertz (THz) imaging is progressing as a robust platform for myriad applications in the field of security, health, and material science. The THz regime, which comprises wavelengths spanning from microns to millimeters, is non-ionizing and has very low photon energy: Making it inherently safe for biological imaging. Colorectal cancer is one of the most common causes of death in the world, while the conventional screening and standard of care yet relies exclusively on the physician’s experience. Researchers have been working on the development of a flexible THz endoscope, as a potential tool to aid in colorectal cancer screening. This involves building a single-channel THz endoscope, and profiling the THz response from colorectal tissue, and demonstrating endogenous contrast levels between normal and diseased tissue when imaging in reflection modality. The current level of contrast provided by the prototype THz endoscopic system represents a significant step towards clinical endoscopic application of THz technology for in-vivo colorectal cancer screening. The aim of this paper is to provide a short review of the recent advances in THz endoscopic technology and cancer imaging. In particular, the potential of single-channel THz endoscopic imaging for colonic cancer screening will be highlighted. PMID:28874955

  14. Generation of tunable narrow-band surface-emitted terahertz radiation in periodically poled lithium niobate.

    PubMed

    Weiss, C; Torosyan, G; Avetisyan, Y; Beigang, R

    2001-04-15

    Generation of tunable narrow-band terahertz (THz) radiation perpendicular to the surface of periodically poled lithium niobate by optical rectification of femtosecond pulses is reported. The generated THz radiation can be tuned by use of different poling periods and different observation angles, limited only by the available bandwidth of the pump pulse. Typical bandwidths were 50-100 GHz, depending on the collection angle and the number of periods involved.

  15. Terahertz imaging and tomography as efficient instruments for testing polymer additive manufacturing objects.

    PubMed

    Perraud, J B; Obaton, A F; Bou-Sleiman, J; Recur, B; Balacey, H; Darracq, F; Guillet, J P; Mounaix, P

    2016-05-01

    Additive manufacturing (AM) technology is not only used to make 3D objects but also for rapid prototyping. In industry and laboratories, quality controls for these objects are necessary though difficult to implement compared to classical methods of fabrication because the layer-by-layer printing allows for very complex object manufacturing that is unachievable with standard tools. Furthermore, AM can induce unknown or unexpected defects. Consequently, we demonstrate terahertz (THz) imaging as an innovative method for 2D inspection of polymer materials. Moreover, THz tomography may be considered as an alternative to x-ray tomography and cheaper 3D imaging for routine control. This paper proposes an experimental study of 3D polymer objects obtained by additive manufacturing techniques. This approach allows us to characterize defects and to control dimensions by volumetric measurements on 3D data reconstructed by tomography.

  16. Characteristics of nonlinear imaging of broadband laser stacked by chirped pulses

    NASA Astrophysics Data System (ADS)

    Wang, Youwen; You, Kaiming; Chen, Liezun; Lu, Shizhuan; Dai, Zhiping; Ling, Xiaohui

    2014-11-01

    Nanosecond-level pulses of specific shape is usually generated by stacking chirped pulses for high-power inertial confinement fusion driver, in which nonlinear imaging of scatterers may damage precious optical elements. We present a numerical study of the characteristics of nonlinear imaging of scatterers in broadband laser stacked by chirped pulses to disclose the dependence of location and intensity of images on the parameters of the stacked pulse. It is shown that, for sub-nanosecond long sub-pulses with chirp or transform-limited sub-pulses, the time-mean intensity and location of images through normally dispersive and anomalously dispersive self-focusing medium slab are almost identical; While for picosecond-level short sub-pulses with chirp, the time-mean intensity of images for weak normal dispersion is slightly higher than that for weak anomalous dispersion through a thin nonlinear slab; the result is opposite to that for strong dispersion in a thick nonlinear slab; Furthermore, for given time delay between neighboring sub-pulses, the time-mean intensity of images varies periodically with chirp of the sub-pulse increasing; for a given pulse width of sub-pulse, the time-mean intensity of images decreases with the time delay between neighboring sub-pulses increasing; additionally, there is a little difference in the time-mean intensity of images of the laser stacked by different numbers of sub-pulses. Finally, the obtained results are also given physical explanations.

  17. [Aging explosive detection using terahertz time-domain spectroscopy].

    PubMed

    Meng, Kun; Li, Ze-ren; Liu, Qiao

    2011-05-01

    Detecting the aging situation of stock explosive is essentially meaningful to the research on the capability, security and stability of explosive. Existing aging explosive detection techniques, such as scan microscope technique, Fourier transfer infrared spectrum technique, gas chromatogram mass spectrum technique and so on, are either not able to differentiate whether the explosive is aging or not, or not able to image the structure change of the molecule. In the present paper, using the density functional theory (DFT), the absorb spectrum changes after the explosive aging were calculated, from which we can clearly find the difference of spectrum between explosive molecule and aging ones in the terahertz band. The terahertz time-domain spectrum (THz-TDS) system as well as its frequency spectrum resolution and measured range are analyzed. Combined with the existing experimental results and the essential characters of the terahertz wave, the application of THz-TDS technique to the detection of aging explosive was demonstrated from the aspects of feasibility, veracity and practicability. On the base of that, the authors advance the new method of aging explosive detection using the terahertz time-domain spectrum technique.

  18. Pulsed Magneto-motive Ultrasound Imaging Using Ultrasmall Magnetic Nanoprobes

    PubMed Central

    Mehrmohammadi, Mohammad; Oh, Junghwan; Mallidi, Srivalleesha; Emelianov, Stanislav Y.

    2011-01-01

    Nano-sized particles are widely regarded as a tool to study biologic events at the cellular and molecular levels. However, only some imaging modalities can visualize interaction between nanoparticles and living cells. We present a new technique, pulsed magneto-motive ultrasound imaging, which is capable of in vivo imaging of magnetic nanoparticles in real time and at sufficient depth. In pulsed magneto-motive ultrasound imaging, an external high-strength pulsed magnetic field is applied to induce the motion within the magnetically labeled tissue and ultrasound is used to detect the induced internal tissue motion. Our experiments demonstrated a sufficient contrast between normal and iron-laden cells labeled with ultrasmall magnetic nanoparticles. Therefore, pulsed magneto-motive ultrasound imaging could become an imaging tool capable of detecting magnetic nanoparticles and characterizing the cellular and molecular composition of deep-lying structures. PMID:21439255

  19. Tunable terahertz wave generation through a bimodal laser diode and plasmonic photomixer.

    PubMed

    Yang, S-H; Watts, R; Li, X; Wang, N; Cojocaru, V; O'Gorman, J; Barry, L P; Jarrahi, M

    2015-11-30

    We demonstrate a compact, robust, and stable terahertz source based on a novel two section digital distributed feedback laser diode and plasmonic photomixer. Terahertz wave generation is achieved through difference frequency generation by pumping the plasmonic photomixer with two output optical beams of the two section digital distributed feedback laser diode. The laser is designed to offer an adjustable terahertz frequency difference between the emitted wavelengths by varying the applied currents to the laser sections. The plasmonic photomixer is comprised of an ultrafast photoconductor with plasmonic contact electrodes integrated with a logarithmic spiral antenna. We demonstrate terahertz wave generation with 0.15-3 THz frequency tunability, 2 MHz linewidth, and less than 5 MHz frequency stability over 1 minute, at useful power levels for practical imaging and sensing applications.

  20. Terahertz wide aperture reflection tomography.

    PubMed

    Pearce, Jeremy; Choi, Hyeokho; Mittleman, Daniel M; White, Jeff; Zimdars, David

    2005-07-01

    We describe a powerful imaging modality for terahertz (THz) radiation, THz wide aperture reflection tomography (WART). Edge maps of an object's cross section are reconstructed from a series of time-domain reflection measurements at different viewing angles. Each measurement corresponds to a parallel line projection of the object's cross section. The filtered backprojection algorithm is applied to recover the image from the projection data. To our knowledge, this is the first demonstration of a reflection computed tomography technique using electromagnetic waves. We demonstrate the capabilities of THz WART by imaging the cross sections of two test objects.

  1. Terahertz metamaterials

    DOEpatents

    Peralta, Xomalin Guaiuli; Brener, Igal; O'Hara, John; Azad, Abul; Smirnova, Evgenya; Williams, John D.; Averitt, Richard D.

    2014-08-12

    Terahertz metamaterials comprise a periodic array of resonator elements disposed on a dielectric substrate or thin membrane, wherein the resonator elements have a structure that provides a tunable magnetic permeability or a tunable electric permittivity for incident electromagnetic radiation at a frequency greater than about 100 GHz and the periodic array has a lattice constant that is smaller than the wavelength of the incident electromagnetic radiation. Microfabricated metamaterials exhibit lower losses and can be assembled into three-dimensional structures that enable full coupling of incident electromagnetic terahertz radiation in two or three orthogonal directions. Furthermore, polarization sensitive and insensitive metamaterials at terahertz frequencies can enable new devices and applications.

  2. Integrated heterodyne terahertz transceiver

    DOEpatents

    Lee, Mark [Albuquerque, NM; Wanke, Michael C [Albuquerque, NM

    2009-06-23

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. An antenna connected to the Schottky diode receives a terahertz signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  3. Terahertz magnonics: Feasibility of using terahertz magnons for information processing

    NASA Astrophysics Data System (ADS)

    Zakeri, Khalil

    2018-06-01

    An immediate need of information technology is designing fast, small and low-loss devices. One of the ways to design such devices is using the bosonic quasiparticles, such as magnons, for information transfer/processing. This is the main idea behind the field of magnonics. When a magnon propagates through a magnetic medium, no electrical charge transport is involved and therefore no energy losses, creating Joule heating, occur. This is the most important advantage of using magnons for information transfer. Moreover the mutual conversion between magnons and the other carriers e.g. electrons, photons and plasmons shall open new opportunities to realize tunable multifunctional devices. Magnons cover a very wide range of frequency, from sub-gigahertz up to a few hundreds of terahertz. The magnon frequency has an important impact on the performance of magnon-based devices (the larger the excitation frequency, the faster the magnons). This means that the use of high-frequency (terahertz) magnons would provide a great opportunity for the design of ultrafast devices. However, up to now the focus in magnonics has been on the low-frequency gigahertz magnons. Here we discuss the feasibility of using terahertz magnons for application in magnonic devices. We shall bring the concept of terahertz magnonics into discussion. We discuss how the recently discovered phenomena in the field of terahertz magnons may inspire ideas for designing new magnonic devices. We further introduce methods to tune the fundamental properties of terahertz magnons, e.g. their eigenfrequency and lifetime.

  4. Computed tomography image using sub-terahertz waves generated from a high-T{sub c} superconducting intrinsic Josephson junction oscillator

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kashiwagi, T., E-mail: kashiwagi@ims.tsukuba.ac.jp; Minami, H.; Kadowaki, K.

    2014-02-24

    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T{sub c} superconductor Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8+δ} was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications.

  5. Swept-frequency feedback interferometry using terahertz frequency QCLs: a method for imaging and materials analysis.

    PubMed

    Rakić, Aleksandar D; Taimre, Thomas; Bertling, Karl; Lim, Yah Leng; Dean, Paul; Indjin, Dragan; Ikonić, Zoran; Harrison, Paul; Valavanis, Alexander; Khanna, Suraj P; Lachab, Mohammad; Wilson, Stephen J; Linfield, Edmund H; Davies, A Giles

    2013-09-23

    The terahertz (THz) frequency quantum cascade laser (QCL) is a compact source of high-power radiation with a narrow intrinsic linewidth. As such, THz QCLs are extremely promising sources for applications including high-resolution spectroscopy, heterodyne detection, and coherent imaging. We exploit the remarkable phase-stability of THz QCLs to create a coherent swept-frequency delayed self-homodyning method for both imaging and materials analysis, using laser feedback interferometry. Using our scheme we obtain amplitude-like and phase-like images with minimal signal processing. We determine the physical relationship between the operating parameters of the laser under feedback and the complex refractive index of the target and demonstrate that this coherent detection method enables extraction of complex refractive indices with high accuracy. This establishes an ultimately compact and easy-to-implement THz imaging and materials analysis system, in which the local oscillator, mixer, and detector are all combined into a single laser.

  6. Higgs Mode in the d -Wave Superconductor Bi2Sr2CaCu2O8 +x Driven by an Intense Terahertz Pulse

    NASA Astrophysics Data System (ADS)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; Matsunaga, Ryusuke; Schneeloch, John; Zhong, Ruidan D.; Gu, Genda D.; Aoki, Hideo; Gallais, Yann; Shimano, Ryo

    2018-03-01

    We investigate the terahertz (THz)-pulse-driven nonlinear response in the d -wave cuprate superconductor Bi2Sr2CaCu2O8 +x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We observe an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is markedly enhanced below Tc . The corresponding third-order nonlinear effect exhibits both A1 g and B1 g symmetry components, which are decomposed from polarization-resolved measurements. A comparison with a BCS calculation of the nonlinear susceptibility indicates that the A1 g component is associated with the Higgs mode of the d -wave order parameter.

  7. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  8. Higgs Mode in the d -Wave Superconductor Bi 2 Sr 2 CaCu 2 O 8 + x Driven by an Intense Terahertz Pulse

    DOE PAGES

    Katsumi, Kota; Tsuji, Naoto; Hamada, Yuki I.; ...

    2018-03-14

    We investigated the terahertz (THz)-pulse driven nonlinear response in the d-wave cuprate superconductor Bi 2Sr 2CaCu 2O 8+x (Bi2212) using a THz pump near-infrared probe scheme in the time domain. We have observed an oscillatory behavior of the optical reflectivity that follows the THz electric field squared and is strongly enhanced below Tc. The corresponding third-order nonlinear effect exhibits both A 1g and B 1g symmetry components, which are decomposed from polarization-resolved measurements. Comparison with a BCS calculation of the nonlinear susceptibility indicates that the A 1g component is associated with the Higgs mode of the d-wave order parameter.

  9. Spectral purity and tunability of terahertz quantum cascade laser sources based on intracavity difference-frequency generation

    PubMed Central

    Consolino, Luigi; Jung, Seungyong; Campa, Annamaria; De Regis, Michele; Pal, Shovon; Kim, Jae Hyun; Fujita, Kazuue; Ito, Akio; Hitaka, Masahiro; Bartalini, Saverio; De Natale, Paolo; Belkin, Mikhail A.; Vitiello, Miriam Serena

    2017-01-01

    Terahertz sources based on intracavity difference-frequency generation in mid-infrared quantum cascade lasers (THz DFG-QCLs) have recently emerged as the first monolithic electrically pumped semiconductor sources capable of operating at room temperature across the 1- to 6-THz range. Despite tremendous progress in power output, which now exceeds 1 mW in pulsed and 10 μW in continuous-wave regimes at room temperature, knowledge of the major figure of merits of these devices for high-precision spectroscopy, such as spectral purity and absolute frequency tunability, is still lacking. By exploiting a metrological grade system comprising a terahertz frequency comb synthesizer, we measure, for the first time, the free-running emission linewidth (LW), the tuning characteristics, and the absolute center frequency of individual emission lines of these sources with an uncertainty of 4 × 10−10. The unveiled emission LW (400 kHz at 1-ms integration time) indicates that DFG-QCLs are well suited to operate as local oscillators and to be used for a variety of metrological, spectroscopic, communication, and imaging applications that require narrow-LW THz sources. PMID:28879235

  10. Terahertz solid immersion microscopy for sub-wavelength-resolution imaging of biological objects and tissues

    NASA Astrophysics Data System (ADS)

    Chernomyrdin, Nikita V.; Kucheryavenko, Anna S.; Malakhov, Kirill M.; Schadko, Alexander O.; Komandin, Gennady A.; Lebedev, Sergey P.; Dolganova, Irina N.; Kurlov, Vladimir N.; Lavrukhin, Denis V.; Ponomarev, Dmitry S.; Yurchenko, Stanislav O.; Tuchin, Valery V.; Zaytsev, Kirill I.

    2018-04-01

    We have developed a method of terahertz (THz) solid immersion microscopy for imaging of biological objects and tissues. It relies on the solid immersion lens (SIL) employing the THz beam focusing into the evanescent-field volume and allowing strong reduction in the dimensions of the THz beam caustic. By solving the problems of the sample handling at the focal plane and raster scanning of its surface with the focused THz beam, the THz SIL microscopy has been adapted for imaging of soft tissues. We have assembled an experimental setup based on a backward-wave oscillator, as a continuous-wave source operating at the wavelength of λ = 500 μm, and a Golay cell, as a detector of the THz wave intensity. By imaging of the razor blade, we have demonstrated advanced 0.2λ-resolution of the proposed THz SIL configuration. Using the experimental setup, we have performed THz imaging of a mint leaf revealing its sub-wavelength features. The observed results highlight a potential of the THz SIL microscopy in biomedical applications of THz science and technology.

  11. Bending and coupling losses in terahertz wire waveguides.

    PubMed

    Astley, Victoria; Scheiman, Julianna; Mendis, Rajind; Mittleman, Daniel M

    2010-02-15

    We present an experimental study of several common perturbations of wire waveguides for terahertz pulses. Sommerfeld waves retain significant signal strength and bandwidth even with large gaps in the wire, exhibiting more efficient recoupling at higher frequencies. We also describe a detailed study of bending losses. For a given turn angle, we observe an optimum radius of curvature that minimizes the overall propagation loss. These results emphasize the impact of the distortion of the spatial mode on the radiative bend loss.

  12. In vitro terahertz monitoring of muscle tissue dehydration under the action of hyperosmotic agents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolesnikov, A S; Kolesnikova, E A; Popov, A P

    2014-07-31

    Dehydration of muscle tissue in vitro under the action of biologically compatible hyperosmotic agents is studied using a laser terahertz spectrometer in the frequency range from 0.25 to 2.5 THz. Broadband terahertz absorption and reflection spectra of the bovine skeletal muscle tissue were obtained under the action of glycerol, polyethylene glycol with the molecular weight 600 (PEG-600), and propylene glycol. The presented results are proposed for application in developing the methods of image contrast enhancement and increasing the depth of biological tissue probing with terahertz radiation. (laser biophotonics)

  13. Terahertz spectroscopy and imaging for cultural heritage management: state of art and perspectives

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco

    2014-05-01

    Non-invasive diagnostic tools able to provide information on the materials and preservation state of artworks are crucial to help conservators, archaeologists and anthropologists to plan and carry out their tasks properly. In this frame, technological solutions exploiting Terahertz (THz) radiation, i.e., working at frequencies ranging from 0.1 to 10 THz, are currently deserving huge attention as complementary techniques to classical analysis methodologies based on electromagnetic radiations from X-rays to mid infrared [1]. The main advantage offered by THz spectroscopy and imaging systems is referred to their capability of providing information useful to determine the construction modality, the history life and the conservation state of artworks as well as to identify previous restoration actions [1,2]. In particular, unlike mid- and near-infrared spectroscopy, which provides fingerprint absorption spectra depending on the intramolecular behavior, THz spectroscopy is related to the structure of the molecules of the investigated object. Hence, it can discriminate, for instance, the different materials mixed in a paint [1,2]. Moreover, THz radiation is able to penetrate several materials which are opaque to both visible and infrared materials, such as varnish, paint, plaster, paper, wood, plastic, and so on. Accordingly, it is useful to detect hidden objects and characterize the inner structure of the artwork under test even in the direction of the depth, while avoiding core drillings. In this frame, THz systems allow us to discriminate different layers of materials present in artworks like paints, to obtain images providing information on the construction technique as well as to discover risk factors affecting the preservation state, such as non-visible cracks, hidden molds and air gaps between the paint layer and underlying structure. Furthermore, adopting a no-ionizing radiation, THz systems offer the not trivial benefit of negligible long term risks to the

  14. Integrated heterodyne terahertz transceiver

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Lee, Mark [Albuquerque, NM; Nordquist, Christopher D [Albuquerque, NM; Cich, Michael J [Albuquerque, NM

    2012-09-25

    A heterodyne terahertz transceiver comprises a quantum cascade laser that is integrated on-chip with a Schottky diode mixer. A terahertz signal can be received by an antenna connected to the mixer, an end facet or sidewall of the laser, or through a separate active section that can amplify the incident signal. The quantum cascade laser couples terahertz local oscillator power to the Schottky diode to mix with the received terahertz signal to provide an intermediate frequency output signal. The fully integrated transceiver optimizes power efficiency, sensitivity, compactness, and reliability. The transceiver can be used in compact, fieldable systems covering a wide variety of deployable applications not possible with existing technology.

  15. Terahertz-radiation generation and detection in low-temperature-grown GaAs epitaxial films on GaAs (100) and (111)A substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B.; Pushkarev, S. S., E-mail: s-s-e-r-p@mail.ru; Buriakov, A. M.

    The efficiency of the generation and detection of terahertz radiation in the range up to 3 THz by LT-GaAs films containing equidistant Si doping δ layers and grown by molecular beam epitaxy on GaAs (100) and (111)Ga substrates is studied by terahertz spectroscopy. Microstrip photoconductive antennas are fabricated on the film surface. Terahertz radiation is generated by exposure of the antenna gap to femtosecond optical laser pulses. It is shown that the intensity of terahertz radiation from the photoconductive antenna on LT-GaAs/GaAs (111)Ga is twice as large as the intensity of a similar antenna on LT-GaAs/GaAs(100) and the sensitivity ofmore » the antenna on LT-GaAs/GaAs (111)Ga as a terahertz-radiation detector exceeds that of the antenna on LT-GaAs/GaAs(100) by a factor of 1.4.« less

  16. Terahertz waves radiated from two noncollinear femtosecond plasma filaments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Du, Hai-Wei; Hoshina, Hiromichi; Otani, Chiko, E-mail: otani@riken.jp

    2015-11-23

    Terahertz (THz) waves radiated from two noncollinear femtosecond plasma filaments with a crossing angle of 25° are investigated. The irradiated THz waves from the crossing filaments show a small THz pulse after the main THz pulse, which was not observed in those from single-filament scheme. Since the position of the small THz pulse changes with the time-delay of two filaments, this phenomenon can be explained by a model in which the small THz pulse is from the second filament. The denser plasma in the overlap region of the filaments changes the movement of space charges in the plasma, thereby changingmore » the angular distribution of THz radiation. As a result, this schematic induces some THz wave from the second filament to propagate along the path of the THz wave from the first filament. Thus, this schematic alters the direction of the THz radiation from the filamentation, which can be used in THz wave remote sensing.« less

  17. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Dongkyu; Maeng, Inhee; Son, Joo-Hiuk

    2009-04-19

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRImore » technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd{sub 2}O{sub 3}) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.« less

  18. Terahertz-Radiation-Enhanced Emission of Fluorescence from Gas Plasma

    NASA Astrophysics Data System (ADS)

    Liu, Jingle; Zhang, X.-C.

    2009-12-01

    We report the study of femtosecond laser-induced air plasma fluorescence under the illumination of terahertz (THz) pulses. Semiclassical modeling and experimental verification indicate that time-resolved THz radiation-enhanced emission of fluorescence is dominated by the electron kinetics and the electron-impact excitation of gas molecules or ions. We demonstrate that the temporal waveform of the THz field could be retrieved from the transient enhanced fluorescence, making omnidirectional, coherent detection available for THz time-domain spectroscopy.

  19. Terahertz imaging devices and systems, and related methods, for detection of materials

    DOEpatents

    Kotter, Dale K.

    2016-11-15

    Terahertz imaging devices may comprise a focal plane array including a substrate and a plurality of resonance elements. The plurality of resonance elements may comprise a conductive material coupled to the substrate. Each resonance element of the plurality of resonance elements may be configured to resonate and produce an output signal responsive to incident radiation having a frequency between about a 0.1 THz and 4 THz range. A method of detecting a hazardous material may comprise receiving incident radiation by a focal plane array having a plurality of discrete pixels including a resonance element configured to absorb the incident radiation at a resonant frequency in the THz, generating an output signal from each of the discrete pixels, and determining a presence of a hazardous material by interpreting spectral information from the output signal.

  20. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Seebo, Jeffrey P.; Winfree, William P.

    2008-01-01

    This article describes a noncontact single-sided terahertz electromagnetic measurement and imaging method that simultaneously characterizes microstructural (egs. spatially-lateral density) and thickness variation in dielectric (insulating) materials. The method was demonstrated for two materials-Space Shuttle External Tank sprayed-on foam insulation and a silicon nitride ceramic. It is believed that this method can be used as an inspection method for current and future NASA thermal protection system and other dielectric material inspection applications, where microstructural and thickness variation require precision mapping. Scale-up to more complex shapes such as cylindrical structures and structures with beveled regions would appear to be feasible.

  1. Stimulated Emission of Terahertz Radiation from Internal ExcitonTransitions in Cu2O

    NASA Astrophysics Data System (ADS)

    Schmid, B. A.; Huber, R.; Shen, Y. R.; Kaindl, R. A.; Chemla, D. S.

    2006-03-01

    Excitons are among the most fundamental optical excitation modes in semiconductors. Resonant infrared pulses have been used to sensitively probe absorptive transitions between hydrogen-like bound pair states [1,2]. We report the first observation of the reverse quantum process: stimulated emission of electromagnetic radiation from intra-excitonic transitions [3]. Broadband terahertz pulses monitor the far-infrared electromagnetic response of Cu2O after ultrafast resonant photogeneration of 3p excitons. Stimulated emission from the 3p to the energetically lower 2s bound level occurs at a photon energy of 6.6 meV, with a cross section of ˜10-14 cm^2. Simultaneous excitation of both exciton levels, in turn, drives quantum beats which lead to efficient terahertz emission sharply peaked at the difference frequency. Our results demonstrate a new fundamental process of THz quantum optics and highlight analogies and differences between excitonic and atomic systems. [1] R. A. Kaindl et al., Nature 423, 734 (2003). [2] M. Kubouchi et al., Phys. Rev. Lett. 94, 016403 (2005). [3] R. Huber et al., Phys. Rev. Lett., to appear.

  2. Negative refractive index metamaterial with high transmission, low reflection, and low loss in the terahertz waveband.

    PubMed

    Suzuki, Takehito; Sekiya, Masashi; Sato, Tatsuya; Takebayashi, Yuki

    2018-04-02

    The refractive index is a basic parameter of materials which it is essential to know for the manipulation of electromagnetic waves. However, there are no naturally occurring materials with negative refractive indices, and high-performance materials with negative refractive indices and low losses are demanded in the terahertz waveband. In this paper, measurements by terahertz time-domain spectroscopy (THz-TDS) demonstrate a metamaterial with a negative refractive index n of -4.2 + j0.17, high transmitted power of 81.5%, low reflected power of 4.3%, and a high figure of merit (FOM = |Re(n)/Im(n)|) of 24.2 at 0.42 THz. The terahertz metamaterial with these unprecedented properties can provide various attractive terahertz applications such as superlenses with resolutions beyond the diffraction limit in terahertz continuous wave imaging.

  3. Macroscopic Magnetization Control by Symmetry Breaking of Photoinduced Spin Reorientation with Intense Terahertz Magnetic Near Field

    NASA Astrophysics Data System (ADS)

    Kurihara, Takayuki; Watanabe, Hiroshi; Nakajima, Makoto; Karube, Shutaro; Oto, Kenichi; Otani, YoshiChika; Suemoto, Tohru

    2018-03-01

    We exploit an intense terahertz magnetic near field combined with femtosecond laser excitation to break the symmetry of photoinduced spin reorientation paths in ErFeO3 . We succeed in aligning macroscopic magnetization reaching up to 80% of total magnetization in the sample to selectable orientations by adjusting the time delay between terahertz and optical pump pulses. The spin dynamics are well reproduced by equations of motion, including time-dependent magnetic potential. We show that the direction of the generated magnetization is determined by the transient direction of spin tilting and the magnetic field at the moment of photoexcitation.

  4. High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited].

    PubMed

    Hayashi, Shin'ichiro; Nawata, Koji; Sakai, Hiroshi; Taira, Takunori; Minamide, Hiroaki; Kawase, Kodo

    2012-01-30

    We report on the development of a high-peak-power, single-longitudinal-mode and tunable injection-seeded terahertz-wave parametric generator using MgO:LiNbO3, which operates at room temperature. The high peak power (> 120 W) is enough to allow easy detection by commercial and calibrated pyroelectric detectors, and the spectral resolution (< 10 GHz) is the Fourier transform limit of the sub-nanosecond terahertz-wave pulse. The tunability (1.2-2.8 THz) and the small footprint size (A3 paper, 29.7 × 42 cm) are suitable for a variety of applications.

  5. Quantitative measurement of permeabilization of living cells by terahertz attenuated total reflection

    NASA Astrophysics Data System (ADS)

    Grognot, Marianne; Gallot, Guilhem

    2015-09-01

    Using Attenuated Total Reflection imaging technique in the terahertz domain, we demonstrate non-invasive, non-staining real time measurements of cytoplasm leakage during permeabilization of epithelial cells by saponin. The terahertz signal is mostly sensitive to the intracellular protein concentration in the cells, in a very good agreement with standard bicinchoninic acid protein measurements. It opens the way to in situ real time dynamics of protein content and permeabilization in live cells.

  6. Response of asymmetric carbon nanotube network devices to sub-terahertz and terahertz radiation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gayduchenko, I., E-mail: igorandg@gmail.com, E-mail: gefedorov@mail.ru; National Research Centre “Kurchatov Institute,” Moscow 123128; Kardakova, A.

    2015-11-21

    Demand for efficient terahertz radiation detectors resulted in intensive study of the asymmetric carbon nanostructures as a possible solution for that problem. It was maintained that photothermoelectric effect under certain conditions results in strong response of such devices to terahertz radiation even at room temperature. In this work, we investigate different mechanisms underlying the response of asymmetric carbon nanotube (CNT) based devices to sub-terahertz and terahertz radiation. Our structures are formed with CNT networks instead of individual CNTs so that effects probed are more generic and not caused by peculiarities of an individual nanoscale object. We conclude that the DCmore » voltage response observed in our structures is not only thermal in origin. So called diode-type response caused by asymmetry of the device IV characteristic turns out to be dominant at room temperature. Quantitative analysis provides further routes for the optimization of the device configuration, which may result in appearance of novel terahertz radiation detectors.« less

  7. Terahertz Streaking of Few-Femtosecond Relativistic Electron Beams

    NASA Astrophysics Data System (ADS)

    Zhao, Lingrong; Wang, Zhe; Lu, Chao; Wang, Rui; Hu, Cheng; Wang, Peng; Qi, Jia; Jiang, Tao; Liu, Shengguang; Ma, Zhuoran; Qi, Fengfeng; Zhu, Pengfei; Cheng, Ya; Shi, Zhiwen; Shi, Yanchao; Song, Wei; Zhu, Xiaoxin; Shi, Jiaru; Wang, Yingxin; Yan, Lixin; Zhu, Liguo; Xiang, Dao; Zhang, Jie

    2018-04-01

    Streaking of photoelectrons with optical lasers has been widely used for temporal characterization of attosecond extreme ultraviolet pulses. Recently, this technique has been adapted to characterize femtosecond x-ray pulses in free-electron lasers with the streaking imprinted by far-infrared and terahertz (THz) pulses. Here, we report successful implementation of THz streaking for time stamping of an ultrashort relativistic electron beam, whose energy is several orders of magnitude higher than photoelectrons. Such an ability is especially important for MeV ultrafast electron diffraction (UED) applications, where electron beams with a few femtosecond pulse width may be obtained with longitudinal compression, while the arrival time may fluctuate at a much larger timescale. Using this laser-driven THz streaking technique, the arrival time of an ultrashort electron beam with a 6-fs (rms) pulse width has been determined with 1.5-fs (rms) accuracy. Furthermore, we have proposed and demonstrated a noninvasive method for correction of the timing jitter with femtosecond accuracy through measurement of the compressed beam energy, which may allow one to advance UED towards a sub-10-fs frontier, far beyond the approximate 100-fs (rms) jitter.

  8. Numerical modeling of Harmonic Imaging and Pulse Inversion fields

    NASA Astrophysics Data System (ADS)

    Humphrey, Victor F.; Duncan, Tracy M.; Duck, Francis

    2003-10-01

    Tissue Harmonic Imaging (THI) and Pulse Inversion (PI) Harmonic Imaging exploit the harmonics generated as a result of nonlinear propagation through tissue to improve the performance of imaging systems. A 3D finite difference model, that solves the KZK equation in the frequency domain, is used to investigate the finite amplitude fields produced by rectangular transducers driven with short pulses and their inverses, in water and homogeneous tissue. This enables the characteristic of the fields and the effective PI field to be calculated. The suppression of the fundamental field in PI is monitored, and the suppression of side lobes and a reduction in the effective beamwidth for each field are calculated. In addition, the differences between the pulse and inverse pulse spectra resulting from the use of very short pulses are noted, and the differences in the location of the fundamental and second harmonic spectral peaks observed.

  9. Modulated scattering technique in the terahertz domain enabled by current actuated vanadium dioxide switches

    PubMed Central

    Vitale, W. A.; Tamagnone, M.; Émond, N.; Le Drogoff, B.; Capdevila, S.; Skrivervik, A.; Chaker, M.; Mosig, J. R.; Ionescu, A. M.

    2017-01-01

    The modulated scattering technique is based on the use of reconfigurable electromagnetic scatterers, structures able to scatter and modulate an impinging electromagnetic field in function of a control signal. The modulated scattering technique is used in a wide range of frequencies up to millimeter waves for various applications, such as field mapping of circuits or antennas, radio-frequency identification devices and imaging applications. However, its implementation in the terahertz domain remains challenging. Here, we describe the design and experimental demonstration of the modulated scattering technique at terahertz frequencies. We characterize a modulated scatterer consisting in a bowtie antenna loaded with a vanadium dioxide switch, actuated using a continuous current. The modulated scatterer behavior is demonstrated using a time domain terahertz spectroscopy setup and shows significant signal strength well above 0.5 THz, which makes this device a promising candidate for the development of fast and energy-efficient THz communication devices and imaging systems. Moreover, our experiments allowed us to verify the operation of a single micro-meter sized VO2 switch at terahertz frequencies, thanks to the coupling provided by the antenna. PMID:28145523

  10. Terahertz radiation mixer

    DOEpatents

    Wanke, Michael C [Albuquerque, NM; Allen, S James [Santa Barbara, CA; Lee, Mark [Albuquerque, NM

    2008-05-20

    A terahertz radiation mixer comprises a heterodyned field-effect transistor (FET) having a high electron mobility heterostructure that provides a gatable two-dimensional electron gas in the channel region of the FET. The mixer can operate in either a broadband pinch-off mode or a narrowband resonant plasmon mode by changing a grating gate bias of the FET. The mixer can beat an RF signal frequency against a local oscillator frequency to generate an intermediate frequency difference signal in the microwave region. The mixer can have a low local oscillator power requirement and a large intermediate frequency bandwidth. The terahertz radiation mixer is particularly useful for terahertz applications requiring high resolution.

  11. Graphene-based nonvolatile terahertz switch with asymmetric electrodes.

    PubMed

    Li, Yan; Yu, Hui; Qiu, Xinyu; Dai, Tingge; Jiang, Jianfei; Wang, Gencheng; Zhang, Qiang; Qin, Yali; Yang, Jianyi; Jiang, Xiaoqing

    2018-01-24

    We propose a nonvolatile terahertz (THz) switch which is able to perform the switching with transient stimulus. The device utilizes graphene as its floating-gate layer, which changes the transmissivity of THz signal by trapping the tunneling charges. The conventional top-down electrode configuration is replaced by a left-right electrode configuration, so THz signals could transmit through this device with the transmissivity being controlled by voltage pulses. The two electrodes are made of metals with different work functions. The resultant asymmetrical energy band structure ensures that both electrical programming and erasing are viable. With the aid of localized surface plasmon resonances in graphene ribbon arrays, the modulation depth is 89% provided that the Femi level of graphene is tuned between 0 and 0.2 eV by proper voltage pulses.

  12. Fingerprint extraction from interference destruction terahertz spectrum.

    PubMed

    Xiong, Wei; Shen, Jingling

    2010-10-11

    In this paper, periodic peaks in a terahertz absorption spectrum are confirmed to be induced from interference effects. Theoretically, we explained the periodic peaks and calculated the locations of them. Accordingly, a technique was suggested, with which the interference peaks in a terahertz spectrum can be eliminated and therefore a real terahertz absorption spectrum can be obtained. Experimentally, a sample, Methamphetamine, was investigated and its terahertz fingerprint was successfully extracted from its interference destruction spectrum. This technique is useful in getting samples' terahertz fingerprint spectra, and furthermore provides a fast nondestructive testing method using a large size terahertz beam to identify materials.

  13. Simultaneous Noncontact Precision Imaging of Microstructural and Thickness Variation in Dielectric Materials Using Terahertz Energy

    NASA Technical Reports Server (NTRS)

    Roth, Donald J (Inventor)

    2011-01-01

    A process for simultaneously measuring the velocity of terahertz electromagnetic radiation in a dielectric material sample without prior knowledge of the thickness of the sample and for measuring the thickness of a material sample using terahertz electromagnetic radiation in a material sample without prior knowledge of the velocity of the terahertz electromagnetic radiation in the sample is disclosed and claimed. The process evaluates, in a plurality of locations, the sample for microstructural variations and for thickness variations and maps the microstructural and thickness variations by location. A thin sheet of dielectric material may be used on top of the sample to create a dielectric mismatch. The approximate focal point of the radiation source (transceiver) is initially determined for good measurements.

  14. Terahertz: the Far-Ir Challenge

    NASA Astrophysics Data System (ADS)

    Dispenza, Massimiliano; Fiorello, Annamaria; Secchi, Alberto; Varasi, Mauro

    This chapter is an overview on terahertz technologies and applications for sensing. The most advanced imaging and spectroscopy techniques are described, considering current opportunities and limitations in comparison to probes in the adjacent regions of the e.m. spectrum. Potential applications are highlighted, with a specific focus on security for detection of illicit substances and revealing of hidden objects. The technological status and current bottlenecks on sources and detectors are reviewed and future trends discussed.

  15. Observation of broadband terahertz wave generation from liquid water

    NASA Astrophysics Data System (ADS)

    Jin, Qi; E, Yiwen; Williams, Kaia; Dai, Jianming; Zhang, X.-C.

    2017-08-01

    Bulk liquid water is a strong absorber in the terahertz (THz) frequency range, due to which liquid water has historically been sworn off as a source for THz radiation. Here, we experimentally demonstrate the generation of broadband THz waves from liquid water excited by femtosecond laser pulses. Our measurements reveal the critical dependence of the THz field upon the relative position between the water film and the focal point of the laser beam. The THz radiation from liquid water shows distinct characteristics when compared with the THz radiation from air plasmas with single color optical excitation. First, the THz field is maximized with the laser beam of longer pulse durations. In addition, the p-polarized component of the emitted THz waves will be influenced by the polarization of the optical excitation beam. It is also shown that the energy of the THz radiation is linearly dependent on the excitation pulse energy.

  16. Terahertz Sum-Frequency Excitation of a Raman-Active Phonon.

    PubMed

    Maehrlein, Sebastian; Paarmann, Alexander; Wolf, Martin; Kampfrath, Tobias

    2017-09-22

    In stimulated Raman scattering, two incident optical waves induce a force oscillating at the difference of the two light frequencies. This process has enabled important applications such as the excitation and coherent control of phonons and magnons by femtosecond laser pulses. Here, we experimentally and theoretically demonstrate the so far neglected up-conversion counterpart of this process: THz sum-frequency excitation of a Raman-active phonon mode, which is tantamount to two-photon absorption by an optical transition between two adjacent vibrational levels. Coherent control of an optical lattice vibration of diamond is achieved by an intense terahertz pulse whose spectrum is centered at half the phonon frequency of 40 THz. Remarkably, the carrier-envelope phase of the THz pulse is directly transferred into the phase of the lattice vibration. New prospects in general infrared spectroscopy, action spectroscopy, and lattice trajectory control in the electronic ground state emerge.

  17. 21 CFR 892.1550 - Ultrasonic pulsed doppler imaging system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Ultrasonic pulsed doppler imaging system. 892.1550... system. (a) Identification. An ultrasonic pulsed doppler imaging system is a device that combines the... determine stationary body tissue characteristics, such as depth or location of tissue interfaces or dynamic...

  18. Toward practical terahertz time-domain spectroscopy

    NASA Astrophysics Data System (ADS)

    Brigada, David J.

    Terahertz time-domain spectroscopy is a promising technology for the identification of explosive and pharmaceutical substances in adverse conditions. It interacts strongly with intermolecular vibrational and rotational modes. Terahertz also passes through many common dielectric covering materials, allowing for the identification of substances in envelopes, wrapped in opaque plastic, or otherwise hidden. However, there are several challenges preventing the adoption of terahertz spectroscopy outside the laboratory. This dissertation examines the problems preventing widespread adoption of terahertz technology and attempts to resolve them. In order to use terahertz spectroscopy to identify substances, a spectrum measured of the target sample must be compared to the spectra of various known standard samples. This dissertation examines various methods that can be employed throughout the entire process of acquiring and transforming terahertz waveforms to improve the accuracy of these comparisons. The concepts developed in this dissertation directly apply to terahertz spectroscopy, but also carry implications for other spectroscopy methods, from Raman to mass spectrometry. For example, these techniques could help to lower the rate of false positives at airport security checkpoints. This dissertation also examines the implementation of several of these methods as a way to realize a fully self-contained, handheld, battery-operated terahertz spectrometer. This device also employs techniques to allow minimally-trained operators use terahertz to detect different substances of interest. It functions as a proof-of-concept of the true benefits of the improvements that have been developed in this dissertation.

  19. Development of terahertz otoscope for diagnosing otitis media (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jeon, Tae-In; Ji, Young Bin; Bark, Hyeon Sang; Noh, Sam Kyu; Oh, Seung Jae

    2017-03-01

    A novel terahertz (THz) otoscope is designed and fabricated to help physicians to diagnose otitis media (OM) with both THz diagnostics and conventional optical diagnostics. The inclusion of indium tin oxide (ITO) glass in the THz otoscope allows physicians to diagnose OM with both THz and conventional optical diagnostics. To determine THz diagnostics for OM, we observed reflection signals from samples behind a thin dielectric film and found that the presence of water behind the membrane could be distinguished based on THz pulse shape. We verified the potential of this tool for diagnosing OM using mouse skin tissue and a human tympanic membrane samples prior to clinical application. The presence of water absorbed by the human membrane was easily distinguished based on differences in pulse shapes and peak-to-peak amplitudes of reflected THz pulses. The potential for early OM diagnosis using the THz otoscope was confirmed by alteration of THz pulse depending on water absorption level.

  20. Direct estimation of the permeation of topical excipients through artificial membranes and human skin with non-invasive Terahertz time-domain techniques.

    PubMed

    Lopez-Dominguez, Victor; Boix-Montañes, Antoni; Redo-Sanchez, Albert; Tejada-Palacios, Javier

    2016-07-01

    Drug permeation through skin, or a synthetic membrane, from locally acting pharmaceutical products can be influenced by the permeation behaviour of pharmaceutical excipients. Terahertz time-domain technology is investigated as a non-invasive method for a direct and accurate measurement of excipients permeation through synthetic membranes or human skin. A series of in-vitro release and skin permeation experiments of liquid excipients (e.g. propylene glycol and polyethylene glycol 400) has been conducted with vertical diffusion cells. The permeation profiles of excipients through different synthetic membranes or skin were obtained using Terahertz pulses providing a direct measurement. Corresponding permeation flux and permeability coefficient values were calculated based on temporal changes of the terahertz pulses. The influence of different experimental conditions, such as the polarity of the membrane and the viscosity of the permeant, was assessed in release experiments. Specific transmembrane flux values of those excipients were directly calculated with statistical differences between cases. Finally, an attempt to estimate the skin permeation of propylene glycol with this technique was also achieved. All these permeation results were likely comparable to those obtained by other authors with usual analytical techniques. Terahertz time-domain technology is shown to be a suitable technique for an accurate and non-destructive measurement of the permeation of liquid substances through different synthetic membranes or even human skin. © 2016 Royal Pharmaceutical Society.

  1. Probing and controlling terahertz-driven structural dynamics with surface sensitivity

    DOE PAGES

    Bowlan, Pamela Renee; Bowlan, J.; Trugman, S. A.; ...

    2017-03-17

    Intense, single-cycle terahertz (THz) pulses are powerful tools to understand and control material properties through low-energy resonances, such as phonons. Combining this with optical second harmonic generation (SHG) makes it possible to observe the resulting ultrafast structural changes with surface sensitivity. This makes SHG an ideal method to probe phonon dynamics in topological insulators (TI), materials with unique surface transport properties. Here, we resonantly excite a phonon mode in the TI Bi 2Se 3with THz pulses and use SHG to separate the resulting symmetry changes at the surface from the bulk. Furthermore, we coherently control the lattice vibrations with amore » pair of THz pulses. Lastly, our work demonstrates a versatile, table-top tool to probe and control phonon dynamics in a range of systems, particularly at surfaces and interfaces.« less

  2. Characteristics of Gadolinium Oxide Nanoparticles Using Terahertz Spectroscopy (abstract)

    NASA Astrophysics Data System (ADS)

    Lee, Dongkyu; Maeng, Inhee; Oh, Seung Jae; Kim, Taekhoon; Cho, Byung Kyu; Lee, Kwangyeol; Son, Joo-Hiuk

    2009-04-01

    The penetration property of the terahertz electromagnetic (THz) wave is relevant to its use. We used the THz wave spectroscopy system which easily penetrates some materials that do not contain water, e.g., plastic and ceramics. The system has been developed for several purposes, including measuring the properties of semiconductors and bio-materials, and detecting plastic bombs and ceramic knives at airports. It is also used for medical imaging systems, such as magnetic resonance imaging (MRI), at some research institutes. It can show not only the difference in amplitude, but also the difference of the phase of each point of sample. MRI technology usually uses contrast agents to enhance the quality of the image. Gadolinium diethylenetriamine pentaacetic acid (Gd-DTPA), made with a heavy metal ion, is commonly used as a clinical MRI contrast agent. Gadolinium oxide (Gd2O3) nanoparticle is a new contrast agent. It serves to equip the core of each particle with antibodies or ligands. It can freely circulate in blood vessels without amassing in the liver or lungs. This study shows the characteristics of gadolinium oxide nanoparticles to further advance terahertz medical imaging.

  3. Chemical recognition of gases and gas mixtures with terahertz waves.

    PubMed

    Jacobsen, R H; Mittleman, D M; Nuss, M C

    1996-12-15

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classif ication of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  4. Chemical recognition of gases and gas mixtures with terahertz waves

    NASA Astrophysics Data System (ADS)

    Jacobsen, R. H.; Mittleman, D. M.; Nuss, M. C.

    1996-12-01

    A time-domain chemical-recognition system for classifying gases and analyzing gas mixtures is presented. We analyze the free induction decay exhibited by gases excited by far-infrared (terahertz) pulses in the time domain, using digital signal-processing techniques. A simple geometric picture is used for the classification of the waveforms measured for unknown gas species. We demonstrate how the recognition system can be used to determine the partial pressures of an ammonia-water gas mixture.

  5. Terahertz molecular resonance of cancer DNA.

    PubMed

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A; Son, Joo-Hiuk

    2016-11-15

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  6. Terahertz molecular resonance of cancer DNA

    NASA Astrophysics Data System (ADS)

    Cheon, Hwayeong; Yang, Hee-Jin; Lee, Sang-Hun; Kim, Young A.; Son, Joo-Hiuk

    2016-11-01

    Carcinogenesis involves the chemical and structural alteration of biomolecules in cells. Aberrant methylation of DNA is a well-known carcinogenic mechanism and a common chemical modification of DNA. Terahertz waves can directly observe changes in DNA because the characteristic energies lie in the same frequency region. In addition, terahertz energy levels are not high enough to damage DNA by ionization. Here, we present terahertz molecular resonance fingerprints of DNA methylation in cancer DNA. Methylated cytidine, a nucleoside, has terahertz characteristic energies that give rise to the molecular resonance of methylation in DNA. Molecular resonance is monitored in aqueous solutions of genomic DNA from cancer cell lines using a terahertz time-domain spectroscopic technique. Resonance signals can be quantified to identify the types of cancer cells with a certain degree of DNA methylation. These measurements reveal the existence of molecular resonance fingerprints of cancer DNAs in the terahertz region, which can be utilized for the early diagnosis of cancer cells at the molecular level.

  7. Spatial and temporal ultrafast imaging and control of terahertz wavepackets

    NASA Astrophysics Data System (ADS)

    Koehl, Richard Michael

    Some polar optical phonons couple strongly to far- infrared electromagnetic radiation and move at light-like speeds through dielectric media. These phonon-polaritons retain both ionic and electromagnetic character. One of the fruitful implications of this mixing is that vibrational and electronic nonlinearities in ferroelectric and other highly anharmonic media interact with traveling electromagnetic waves spanning several frequency regimes, permitting nonlinear wave mixing at infrared and optical frequencies. Nonlinear optical mixing techniques are well-developed because optical light is easy to produce, but the lack of similar far- infrared sources has stymied similar efforts at terahertz frequencies. Nonlinear interactions in this frequency regime provide information about vibrational potential energy surfaces and are very strong when the lattice vibration is associated with a phase transition. In this thesis, I review methods based on a well known nonlinear optical technique, impulsive stimulated Raman scattering (ISRS), to monitor the progress of coherent phonon polaritons in a highly nonlinear ferroelectric, lithium tantalate. I also advance multiple-pulse ISRS optical techniques to attempt to elucidate information about the ferroelectric's vibrational potential energy surface, and I discuss significant recent progress that has been made in the development of ultrafast optical tools to generate far-infrared radiation through ISRS at specified times and spatial locations and control the interactions of coherent phonon-polariton wavepackets. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)

  8. Colossal terahertz nonlinearity of tunneling van der Waals gap (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Bahk, Young-Mi; Kang, Bong Joo; Kim, Yong Seung; Kim, Joon-Yeon; Kim, Won Tae; Kim, Tae Yun; Kang, Taehee; Rhie, Ji Yeah; Han, Sanghoon; Park, Cheol-Hwan; Rotermund, Fabian; Kim, Dai-Sik

    2016-09-01

    We manufactured an array of three angstrom-wide, five millimeter-long van der Waals gaps of copper-graphene-copper composite, in which unprecedented nonlinearity was observed. To probe and manipulate van der Waals gaps with long wavelength electromagnetic waves such as terahertz waves, one is required to fabricate vertically oriented van der Waals gaps sandwiched between two metal planes with an infinite length in the sense of being much larger than any of the wavelengths used. By comparison with the simple vertical stacking of metal-graphene-metal structure, in our structure, background signals are completely blocked enabling all the light to squeeze through the gap without any strays. When the angstrom-sized van der Waals gaps are irradiated with intense terahertz pulses, the transient voltage across the gap reaches up to 5 V with saturation, sufficiently strong to deform the quantum barrier of angstrom gaps. The large transient potential difference across the gap facilitates electron tunneling through the quantum barrier, blocking terahertz waves completely. This negative feedback of electron tunneling leads to colossal nonlinear optical response, a 97% decrease in the normalized transmittance. Our technology for infinitely long van der Waals gaps can be utilized for other atomically thin materials than single layer graphene, enabling linear and nonlinear angstrom optics in a broad spectral range.

  9. 77 FR 59941 - Prospective Grant of Exclusive License: Terahertz Scanning Systems for Cancer Pathology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-01

    ... Computer-Controlled Adaptive Near Field Imaging of Biological Systems'' Patent application No. Territory... licensure describe and claim a terahertz (THz) imaging system that may overcome the limitations of existing.... Additionally, the THz imaging system describes a sensor head geometry that eliminates the requirement to...

  10. Influence of the electron density on the characteristics of terahertz waves generated under laser–cluster interaction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frolov, A. A., E-mail: frolov@ihed.ras.ru

    2016-12-15

    A theory of generation of terahertz radiation under laser–cluster interaction, developed earlier for an overdense cluster plasma [A. A. Frolov, Plasma Phys. Rep. 42. 637 (2016)], is generalized for the case of arbitrary electron density. The spectral composition of radiation is shown to substantially depend on the density of free electrons in the cluster. For an underdense cluster plasma, there is a sharp peak in the terahertz spectrum at the frequency of the quadrupole mode of a plasma sphere. As the electron density increases to supercritical values, this spectral line vanishes and a broad maximum at the frequency comparable withmore » the reciprocal of the laser pulse duration appears in the spectrum. The dependence of the total energy of terahertz radiation on the density of free electrons is analyzed. The radiation yield is shown to increase significantly under resonance conditions, when the laser frequency is close to the eigenfrequency of the dipole or quadrupole mode of a plasma sphere.« less

  11. Determination of tenogenic differentiation in human mesenchymal stem cells by terahertz waves for measurement of the optical property of cellular suspensions

    NASA Astrophysics Data System (ADS)

    Morita, Yasuyuki; Azuchi, Kosuke; Ju, Yang; Suzuki, Satoshi; Xu, Baiyao; Yamamoto, Shuhei

    2014-06-01

    Technology for identifying stem cell-to-tenocyte differentiation that is non-contact and non-destructive in vitro is essential in tissue engineering. It has been found that expression of various RNA and proteins produced by differentiated cells is elevated when human bone marrow mesenchymal stem cells (hBMSCs) differentiate into tenocytes. Also, such biomolecules have absorption bands in the terahertz range. Thus, we attempted to evaluate whether terahertz waves could be used to distinguish hBMSC-to-tenocyte differentiation. Terahertz time-domain spectroscopy (THz-TDS) using femtosecond laser pulses was used for terahertz measurements. HBMSCs differentiated into tenocytes with mechanical stimulation: 10% cyclical uniaxial stretching at 1 Hz for 24 or 48 h. Cellular suspensions before and after differentiation were measured with terahertz waves. Complex refractive index, consisting of a refractive index (real) and an extinction coefficient (imaginary) obtained from the transmitted terahertz signals, was evaluated before and after differentiation at 1.0 THz. As a result, the THz-TDS system enabled discrimination of hBMSC-to-tenocyte differentiation due to the marked contrast in optical parameter before and after differentiation. This is the first report of the potential of a THz-TDS system for the detection of tenogenic differentiation using a non-contact and non-destructive in vitro technique.

  12. Terahertz dielectric response of photoexcited carriers in Si revealed via single-shot optical-pump and terahertz-probe spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minami, Yasuo; Horiuchi, Kohei; Masuda, Kaisei

    We have demonstrated accurate observations of terahertz (THz) dielectric response due to photoexcited carriers in a Si plate via single-shot optical-pump and THz-probe spectroscopy. In contrast to conventional THz time-domain spectroscopy, this spectroscopic technique allows single-shot detection of the THz response of materials at a given delay time between the pump and THz pulses, thereby sufficiently extending the time interval between the pump pulses. As a result, we can accurately measure the dielectric properties of materials, while avoiding artifacts in the response caused by the accumulation of long-lived photoexcited carriers. Using our single-shot scheme, the transmittance of a Si platemore » was measured in the range of 0.5–2.5 THz with different pump fluences. Based on a Drude model analysis, the optically induced complex dielectric constant, plasma frequency, and damping rate in the THz region were quantitatively evaluated.« less

  13. Doping profile measurements in silicon using terahertz time domain spectroscopy (THz-TDS) via electrochemical anodic oxidation

    NASA Astrophysics Data System (ADS)

    Tulsyan, Gaurav

    Doping profiles are engineered to manipulate device properties and to determine electrical performances of microelectronic devices frequently. To support engineering studies afterward, essential information is usually required from physically characterized doping profiles. Secondary Ion Mass Spectrometry (SIMS), Spreading Resistance Profiling (SRP) and Electrochemical Capacitance Voltage (ECV) profiling are standard techniques for now to map profile. SIMS yields a chemical doping profile via ion sputtering process and owns a better resolution, whereas ECV and SRP produce an electrical doping profile detecting free carriers in microelectronic devices. The major difference between electrical and chemical doping profiles is at heavily doped regions greater than 1020 atoms/cm3. At the profile region over the solubility limit, inactive dopants induce a flat plateau and detected by electrical measurements only. Destructive techniques are usually designed as stand-alone systems to study impurities. For an in-situ process control purpose, non-contact methods, such as ellipsometry and non-contact capacitance voltage (CV) techniques are current under development. In this theses work, terahertz time domain spectroscopy (THz-TDS) is utilized to achieve electrical doping profile in both destructive and non-contact manners. In recent years the Terahertz group at Rochester Institute Technology developed several techniques that use terahertz pulses to non-destructively map doping profiles. In this thesis, we study a destructive but potentially higher resolution version of the terahertz based approach to map the profile of activated dopants and augment the non-destructive approaches already developed. The basic idea of the profile mapping approach developed in this MS thesis is to anodize, and thus oxidize to silicon dioxide, thin layers (down to below 10 nm) of the wafer with the doping profile to be mapped. Since the dopants atoms and any free carriers in the silicon oxide thin

  14. Berry phase dependent quantum trajectories of electron-hole pairs in semiconductors under intense terahertz fields

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Liu, Ren-Bao

    2013-03-01

    Quantum evolution of particles under strong fields can be approximated by the quantum trajectories that satisfy the stationary phase condition in the Dirac-Feynmann path integrals. The quantum trajectories are the key concept to understand strong-field optics phenomena, such as high-order harmonic generation (HHG), above-threshold ionization (ATI), and high-order terahertz siedeband generation (HSG). The HSG in semiconductors may have a wealth of physics due to the possible nontrivial ``vacuum'' states of band materials. We find that in a spin-orbit-coupled semiconductor, the cyclic quantum trajectories of an electron-hole pair under a strong terahertz field accumulates nontrivial Berry phases. We study the monolayer MoS2 as a model system and find that the Berry phases are given by the Faraday rotation angles of the pulse emission from the material under short-pulse excitation. This result demonstrates an interesting Berry phase dependent effect in the extremely nonlinear optics of semiconductors. This work is supported by Hong Kong RGC/GRF 401512 and the CUHK Focused Investments Scheme.

  15. Non-invasive Florentine Renaissance Panel Painting Replica Structures Investigation by Using Terahertz Time-Domain Imaging (THz-TDI) Technique

    NASA Astrophysics Data System (ADS)

    Koch Dandolo, Corinna L.; Picollo, Marcello; Cucci, Costanza; Jepsen, Peter Uhd

    2016-11-01

    The potentials of the Terahertz Time-Domain Imaging (THz-TDI) technique for a non-invasive inspection of panel paintings have been considered in detail. The THz-TD data acquired on a replica of a panel painting made in imitation of Italian Renaissance panel paintings were processed in order to provide insights as to the limits and potentials of the technique in detecting different kinds of underdrawings and paint layers. Constituent layers, construction techniques, and anomalies were identified and localized by interpreting the extracted THz dielectric stratigraphy.

  16. Pulse sequences for uniform perfluorocarbon droplet vaporization and ultrasound imaging.

    PubMed

    Puett, C; Sheeran, P S; Rojas, J D; Dayton, P A

    2014-09-01

    Phase-change contrast agents (PCCAs) consist of liquid perfluorocarbon droplets that can be vaporized into gas-filled microbubbles by pulsed ultrasound waves at diagnostic pressures and frequencies. These activatable contrast agents provide benefits of longer circulating times and smaller sizes relative to conventional microbubble contrast agents. However, optimizing ultrasound-induced activation of these agents requires coordinated pulse sequences not found on current clinical systems, in order to both initiate droplet vaporization and image the resulting microbubble population. Specifically, the activation process must provide a spatially uniform distribution of microbubbles and needs to occur quickly enough to image the vaporized agents before they migrate out of the imaging field of view. The development and evaluation of protocols for PCCA-enhanced ultrasound imaging using a commercial array transducer are described. The developed pulse sequences consist of three states: (1) initial imaging at sub-activation pressures, (2) activating droplets within a selected region of interest, and (3) imaging the resulting microbubbles. Bubble clouds produced by the vaporization of decafluorobutane and octafluoropropane droplets were characterized as a function of focused pulse parameters and acoustic field location. Pulse sequences were designed to manipulate the geometries of discrete microbubble clouds using electronic steering, and cloud spacing was tailored to build a uniform vaporization field. The complete pulse sequence was demonstrated in the water bath and then in vivo in a rodent kidney. The resulting contrast provided a significant increase (>15 dB) in signal intensity. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Passive and hybrid mode locking in multi-section terahertz quantum cascade lasers

    NASA Astrophysics Data System (ADS)

    Tzenov, P.; Babushkin, I.; Arkhipov, R.; Arkhipov, M.; Rosanov, N.; Morgner, U.; Jirauschek, C.

    2018-05-01

    It is believed that passive mode locking is virtually impossible in quantum cascade lasers (QCLs) because of too fast carrier relaxation time. Here, we revisit this possibility and theoretically show that stable mode locking and pulse durations in the few cycle regime at terahertz (THz) frequencies are possible in suitably engineered bound-to-continuum QCLs. We achieve this by utilizing a multi-section cavity geometry with alternating gain and absorber sections. The critical ingredients are the very strong coupling of the absorber to both field and environment as well as a fast absorber carrier recovery dynamics. Under these conditions, even if the gain relaxation time is several times faster than the cavity round trip time, generation of few-cycle pulses is feasible. We investigate three different approaches for ultrashort pulse generation via THz quantum cascade lasers, namely passive, hybrid and colliding pulse mode locking.

  18. Pulse-compression ghost imaging lidar via coherent detection.

    PubMed

    Deng, Chenjin; Gong, Wenlin; Han, Shensheng

    2016-11-14

    Ghost imaging (GI) lidar, as a novel remote sensing technique, has been receiving increasing interest in recent years. By combining pulse-compression technique and coherent detection with GI, we propose a new lidar system called pulse-compression GI lidar. Our analytical results, which are backed up by numerical simulations, demonstrate that pulse-compression GI lidar can obtain the target's spatial intensity distribution, range and moving velocity. Compared with conventional pulsed GI lidar system, pulse-compression GI lidar, without decreasing the range resolution, is easy to obtain high single pulse energy with the use of a long pulse, and the mechanism of coherent detection can eliminate the influence of the stray light, which is helpful to improve the detection sensitivity and detection range.

  19. Remote and in situ sensing products in chemical reaction using a flexible terahertz pipe waveguide.

    PubMed

    You, Borwen; Lu, Ja-Yu

    2016-08-08

    The feasibility of remote chemical detection is experimentally demonstrated by using a Teflon pipe as a scanning arm in a continuous-terahertz wave sensing and imaging system. Different tablets with distinct mixed ratios of aluminum and polyethylene powders are well distinguished by measuring the power reflectivities of 0.4 THz wave associated with their distinct terahertz refractive indices. Given its refractive index sensitivity and fast response, the reflective terahertz sensing system can be used to real-time trace and quantitatively analyze the ammonium-chloride aerosols produced by the chemical reaction between hydrochloric acid and ammonia vapors. With a tightly focusing terahertz beam spot, the spatial and concentration distributions of the generated chemical product are successfully mapped out by the 1D scan of the flexible pipe probe. In consideration of the responsitivity, power stability, and focused spot size of the system, its detection limit for the ammonium-chloride aerosol is estimated to be approximately 165 nmol/mm2. The reliable and compact terahertz pipe scan system is potentially suitable for practical applications, such as biomedical or industrial fiber endoscopy.

  20. The importance of scattering, surface potential, and vanguard counter-potential in terahertz emission from gallium arsenide

    NASA Astrophysics Data System (ADS)

    Cortie, D. L.; Lewis, R. A.

    2012-06-01

    It is well established that under excitation by short (<1 ps), above-band-gap optical pulses, semiconductor surfaces may emit terahertz-frequency electromagnetic radiation via photocarrier diffusion (the dominant mechanism in InAs) or photocarrier drift (dominant in GaAs). Our three-dimensional ensemble Monte Carlo simulations allow multiple physical parameters to vary over wide ranges and provide unique direct insight into the factors controlling terahertz emission. We find for GaAs (in contrast to InAs), scattering and the surface potential are key factors. We further delineate in GaAs (as in InAs) the role of a vanguard counter-potential. The effects of varying dielectric constant, band-gap, and effective mass are similar in both emitter types.

  1. [Terahertz Spectroscopic Identification with Deep Belief Network].

    PubMed

    Ma, Shuai; Shen, Tao; Wang, Rui-qi; Lai, Hua; Yu, Zheng-tao

    2015-12-01

    Feature extraction and classification are the key issues of terahertz spectroscopy identification. Because many materials have no apparent absorption peaks in the terahertz band, it is difficult to extract theirs terahertz spectroscopy feature and identify. To this end, a novel of identify terahertz spectroscopy approach with Deep Belief Network (DBN) was studied in this paper, which combines the advantages of DBN and K-Nearest Neighbors (KNN) classifier. Firstly, cubic spline interpolation and S-G filter were used to normalize the eight kinds of substances (ATP, Acetylcholine Bromide, Bifenthrin, Buprofezin, Carbazole, Bleomycin, Buckminster and Cylotriphosphazene) terahertz transmission spectra in the range of 0.9-6 THz. Secondly, the DBN model was built by two restricted Boltzmann machine (RBM) and then trained layer by layer using unsupervised approach. Instead of using handmade features, the DBN was employed to learn suitable features automatically with raw input data. Finally, a KNN classifier was applied to identify the terahertz spectrum. Experimental results show that using the feature learned by DBN can identify the terahertz spectrum of different substances with the recognition rate of over 90%, which demonstrates that the proposed method can automatically extract the effective features of terahertz spectrum. Furthermore, this KNN classifier was compared with others (BP neural network, SOM neural network and RBF neural network). Comparisons showed that the recognition rate of KNN classifier is better than the other three classifiers. Using the approach that automatic extract terahertz spectrum features by DBN can greatly reduce the workload of feature extraction. This proposed method shows a promising future in the application of identifying the mass terahertz spectroscopy.

  2. Squeezing terahertz light into nanovolumes: nanoantenna enhanced terahertz spectroscopy (NETS) of semiconductor quantum dots.

    PubMed

    Toma, Andrea; Tuccio, Salvatore; Prato, Mirko; De Donato, Francesco; Perucchi, Andrea; Di Pietro, Paola; Marras, Sergio; Liberale, Carlo; Proietti Zaccaria, Remo; De Angelis, Francesco; Manna, Liberato; Lupi, Stefano; Di Fabrizio, Enzo; Razzari, Luca

    2015-01-14

    Terahertz spectroscopy has vast potentialities in sensing a broad range of elementary excitations (e.g., collective vibrations of molecules, phonons, excitons, etc.). However, the large wavelength associated with terahertz radiation (about 300 μm at 1 THz) severely hinders its interaction with nano-objects, such as nanoparticles, nanorods, nanotubes, and large molecules of biological relevance, practically limiting terahertz studies to macroscopic ensembles of these compounds, in the form of thick pellets of crystallized molecules or highly concentrated solutions of nanomaterials. Here we show that chains of terahertz dipole nanoantennas spaced by nanogaps of 20 nm allow retrieving the spectroscopic signature of a monolayer of cadmium selenide quantum dots, a significant portion of the signal arising from the dots located within the antenna nanocavities. A Fano-like interference between the fundamental antenna mode and the phonon resonance of the quantum dots is observed, accompanied by an absorption enhancement factor greater than one million. NETS can find immediate applications in terahertz spectroscopic studies of nanocrystals and molecules at extremely low concentrations. Furthermore, it shows a practicable route toward the characterization of individual nano-objects at these frequencies.

  3. Switching terahertz wave with grating-coupled Kretschmann configuration.

    PubMed

    Jiu-Sheng, Li

    2017-08-07

    We present a terahertz wave switch utilizing Kretschmann configuration which consists of high-refractive-index prism-liquid crystal-periodically grooved metal grating. The switching mechanism of the terahertz switch is based on spoof surface plasmon polariton (SSPP) excitation in the attenuated total reflection regime by changing the liquid crystal refractive index. The results highlighted the fact that the feasibility to "tune" the attenuated total reflection terahertz wave intensity by using the external applied bias voltage. The extinction ratio of the terahertz switch reaches 31.48dB. The terahertz switch has good control ability and flexibility, and can be used in potential terahertz free space device systems.

  4. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals

    NASA Astrophysics Data System (ADS)

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  5. Enantiomeric switching of chiral metamaterial for terahertz polarization modulation employing vertically deformable MEMS spirals.

    PubMed

    Kan, Tetsuo; Isozaki, Akihiro; Kanda, Natsuki; Nemoto, Natsuki; Konishi, Kuniaki; Takahashi, Hidetoshi; Kuwata-Gonokami, Makoto; Matsumoto, Kiyoshi; Shimoyama, Isao

    2015-10-01

    Active modulation of the polarization states of terahertz light is indispensable for polarization-sensitive spectroscopy, having important applications such as non-contact Hall measurements, vibrational circular dichroism measurements and anisotropy imaging. In the terahertz region, the lack of a polarization modulator similar to a photoelastic modulator in the visible range hampers expansion of such spectroscopy. A terahertz chiral metamaterial has a huge optical activity unavailable in nature; nevertheless, its modulation is still challenging. Here we demonstrate a handedness-switchable chiral metamaterial for polarization modulation employing vertically deformable Micro Electro Mechanical Systems. Vertical deformation of a planar spiral by a pneumatic force creates a three-dimensional spiral. Enantiomeric switching is realized by selecting the deformation direction, where the polarity of the optical activity is altered while maintaining the spectral shape. A polarization rotation as high as 28° is experimentally observed, thus providing a practical and compact polarization modulator for the terahertz range.

  6. Resonant Slit-type Probe with Rounded Matching Structure for Terahertz Imaging

    NASA Astrophysics Data System (ADS)

    Kim, Geun-Ju; Kim, Jung-Il; Kim, Sanghoon; Lee, Jeong-Hun; Jeon, Tae-In

    2018-05-01

    We propose a resonant slit-type probe with a rounded matching structure in the inner corner of the probe slit, for high-resolution terahertz (THz) imaging. The proposed probe can achieve high coupling efficiency and maintain a stable resonant frequency in spite of the increase in slit thickness. The THz signal measured by the proposed probe was 1.7 times more sensitive than that by a right angle structure probe when a 50 μm diameter metal ball was located 100 um away from the slits. The resonant frequency and return loss |S11| measurements of the prototype resonant probe using a vector network analyzer (VNA) were in good agreement with a simulation results. We achieved a spatial resolution of 100 μm with a slit height of 140 μm. Also, to determine the potential of the proposed probe in the THz applications, we measured THz images according to the thickness of covering flour and the distance between the probe and the flour for the foreign objects in the flour. The proposed probe detected a metal wire with a diameter of 70 μm beneath 1.5 mm of flour at a distance between flour and probe of 1 mm. Consequently, we confirmed that the proposed probe could potentially be applied as a new THz probe.

  7. THz near-field spectral encoding imaging using a rainbow metasurface.

    PubMed

    Lee, Kanghee; Choi, Hyun Joo; Son, Jaehyeon; Park, Hyun-Sung; Ahn, Jaewook; Min, Bumki

    2015-09-24

    We demonstrate a fast image acquisition technique in the terahertz range via spectral encoding using a metasurface. The metasurface is composed of spatially varying units of mesh filters that exhibit bandpass features. Each mesh filter is arranged such that the centre frequencies of the mesh filters are proportional to their position within the metasurface, similar to a rainbow. For imaging, the object is placed in front of the rainbow metasurface, and the image is reconstructed by measuring the transmitted broadband THz pulses through both the metasurface and the object. The 1D image information regarding the object is linearly mapped into the spectrum of the transmitted wave of the rainbow metasurface. Thus, 2D images can be successfully reconstructed using simple 1D data acquisition processes.

  8. Detecting the propagation effect of terahertz wave inside the two-color femtosecond laser filament in the air

    NASA Astrophysics Data System (ADS)

    Zhao, J.; Zhang, X.; Li, S.; Liu, C.; Chen, Y.; Peng, Y.; Zhu, Y.

    2018-03-01

    In this work, to decide the existence of terahertz (THz) wave propagation effect, THz pulses emitted from a blocked two-color femtosecond laser filament with variable length were recorded by a standard electric-optic sampling setup. The phenomenon of temporal advance of the THz waveform's peak with the increasing filament length has been observed. Together with another method of knife-edge measurement which aims at directly retrieving the THz beam diameter, both the experimental approaches have efficiently indicated the same filament range within which THz wave propagated inside the plasma column. At last, a preliminary two-dimensional near-field scanning imaging of the THz spot inside the cross section of the filament has been suggested as the third way to determine the issue of THz wave propagation effect.

  9. Terahertz plasmonic Bessel beamformer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monnai, Yasuaki; Shinoda, Hiroyuki; Jahn, David

    We experimentally demonstrate terahertz Bessel beamforming based on the concept of plasmonics. The proposed planar structure is made of concentric metallic grooves with a subwavelength spacing that couple to a point source to create tightly confined surface waves or spoof surface plasmon polaritons. Concentric scatterers periodically incorporated at a wavelength scale allow for launching the surface waves into free space to define a Bessel beam. The Bessel beam defined at 0.29 THz has been characterized through terahertz time-domain spectroscopy. This approach is capable of generating Bessel beams with planar structures as opposed to bulky axicon lenses and can be readily integratedmore » with solid-state terahertz sources.« less

  10. Characterisation of crystalline-amorphous blends of sucrose with terahertz-pulsed spectroscopy: the development of a prediction technique for estimating the degree of crystallinity with partial least squares regression.

    PubMed

    Ermolina, I; Darkwah, J; Smith, G

    2014-04-01

    The control of the amorphous and crystalline states of drugs and excipients is important in many instances of product formulation, manufacture, and packaging, such as the formulation of certain (freeze-dried) fast melt tablets. This study examines the use of terahertz-pulsed spectroscopy (TPS) coupled with two different data analytical methods as an off-line tool (in the first instance) for assessing the degree of crystallinity in a binary mixture of amorphous and polycrystalline sucrose. The terahertz spectrum of sucrose was recorded in the wave number range between 3 and 100 cm(-1) for both the pure crystalline form and for a mixture of the crystalline and amorphous (freeze-dried) form. The THz spectra of crystalline sucrose showed distinct absorption bands at ∼48, ∼55, and ∼60 cm(-1) while all these features were absent in the amorphous sucrose. Calibration models were constructed based on (1) peak area analysis and (2) partial least square regression analysis, with the latter giving the best LOD and LOQ of 0.76% and 2.3%, respectively. The potential for using THz spectroscopy, as a quantitative in-line tool for percent crystallinity in a range of complex systems such as conventional tablets and freeze-dried formulations, is suggested in this study.

  11. Dual-pulse frequency compounded superharmonic imaging.

    PubMed

    van Neer, Paul L M J; Danilouchkine, Mikhail G; Matte, Guillaume M; van der Steen, Anton F W; de Jong, Nico

    2011-11-01

    Tissue second-harmonic imaging is currently the default mode in commercial diagnostic ultrasound systems. A new modality, superharmonic imaging (SHI), combines the third through fifth harmonics originating from nonlinear wave propagation through tissue. SHI could further improve the resolution and quality of echographic images. The superharmonics have gaps between the harmonics because the transducer has a limited bandwidth of about 70% to 80%. This causes ghost reflection artifacts in the superharmonic echo image. In this work, a new dual-pulse frequency compounding (DPFC) method to eliminate these artifacts is introduced. In the DPFC SHI method, each trace is constructed by summing two firings with slightly different center frequencies. The feasibility of the method was established using a single-element transducer. Its acoustic field was modeled in KZK simulations and compared with the corresponding measurements obtained with a hydrophone apparatus. Subsequently, the method was implemented on and optimized for a setup consisting of an interleaved phased-array transducer (44 elements at 1 MHz and 44 elements at 3.7 MHz, optimized for echocardiography) and a programmable ultrasound system. DPFC SHI effectively suppresses the ghost reflection artifacts associated with imaging using multiple harmonics. Moreover, compared with the single-pulse third harmonic, DPFC SHI improved the axial resolution by 3.1 and 1.6 times at the -6-dB and -20-dB levels, respectively. Hence, DPFC offers the possibility of generating harmonic images of a higher quality at a cost of a moderate frame rate reduction.

  12. Terahertz-radiation generation in low-temperature InGaAs epitaxial films on (100) and (411) InP substrates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Galiev, G. B., E-mail: galiev-galib@mail.ru; Grekhov, M. M.; Kitaeva, G. Kh.

    2017-03-15

    The spectrum and waveforms of broadband terahertz-radiation pulses generated by low-temperature In{sub 0.53}Ga{sub 0.47}As epitaxial films under femtosecond laser pumping are investigated by terahertz time-resolved spectroscopy. The In{sub 0.53}Ga{sub 0.47}As films are fabricated by molecular-beam epitaxy at a temperature of 200°C under different arsenic pressures on (100)-oriented InP substrates and, for the first time, on (411)A InP substrates. The surface morphology of the samples is studied by atomic-force microscopy and the structural quality is established by high-resolution X-ray diffraction analysis. It is found that the amplitude of terahertz radiation from the LT-InGaAs layers on the (411)A InP substrates exceeds thatmore » from similar layers formed on the (100) InP substrates by a factor of 3–5.« less

  13. The preparation method of terahertz monolithic integrated device

    NASA Astrophysics Data System (ADS)

    Zhang, Cong; Su, Bo; He, Jingsuo; Zhang, Hongfei; Wu, Yaxiong; Zhang, Shengbo; Zhang, Cunlin

    2018-01-01

    The terahertz monolithic integrated device is to integrate the pumping area of the terahertz generation, the detection area of the terahertz receiving and the metal waveguide of terahertz transmission on the same substrate. The terahertz generation and detection device use a photoconductive antenna structure the metal waveguide use a microstrip line structure. The evanescent terahertz-bandwidth electric field extending above the terahertz transmission line interacts with, and is modified by, overlaid dielectric samples, thus enabling the characteristic vibrational absorption resonances in the sample to be probed. In this device structure, since the semiconductor substrate of the photoconductive antenna is located between the strip conductor and the dielectric layer of the microstrip line, and the semiconductor substrate cannot grow on the dielectric layer directly. So how to prepare the semiconductor substrate of the photoconductive antenna and how to bond the semiconductor substrate to the dielectric layer of the microstrip line is a key step in the terahertz monolithic integrated device. In order to solve this critical problem, the epitaxial wafer structure of the two semiconductor substrates is given and transferred to the desired substrate by two methods, respectively.

  14. Fast continuous tuning of terahertz quantum-cascade lasers by rear-facet illumination

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hempel, Martin, E-mail: hempel@pdi-berlin.de; Röben, Benjamin; Schrottke, Lutz

    2016-05-09

    GaAs-based terahertz quantum-cascade lasers (QCLs) are continuously tuned in their emission frequency by illuminating the rear facet with a near-infrared, high-power diode laser. For QCLs emitting around 3.1 THz, the maximum tuning range amounts to 2.8 GHz for continuous-wave operation at a heat sink temperature of 55 K, while in pulsed mode 9.1 and 8.0 GHz are achieved at 35 and 55 K, respectively.

  15. High-energy coherent terahertz radiation emitted by wide-angle electron beams from a laser-wakefield accelerator

    NASA Astrophysics Data System (ADS)

    Yang, Xue; Brunetti, Enrico; Jaroszynski, Dino A.

    2018-04-01

    High-charge electron beams produced by laser-wakefield accelerators are potentially novel, scalable sources of high-power terahertz radiation suitable for applications requiring high-intensity fields. When an intense laser pulse propagates in underdense plasma, it can generate femtosecond duration, self-injected picocoulomb electron bunches that accelerate on-axis to energies from 10s of MeV to several GeV, depending on laser intensity and plasma density. The process leading to the formation of the accelerating structure also generates non-injected, sub-picosecond duration, 1–2 MeV nanocoulomb electron beams emitted obliquely into a hollow cone around the laser propagation axis. These wide-angle beams are stable and depend weakly on laser and plasma parameters. Here we perform simulations to characterise the coherent transition radiation emitted by these beams if passed through a thin metal foil, or directly at the plasma–vacuum interface, showing that coherent terahertz radiation with 10s μJ to mJ-level energy can be produced with an optical to terahertz conversion efficiency up to 10‑4–10‑3.

  16. Quality control and authentication of packaged integrated circuits using enhanced-spatial-resolution terahertz time-domain spectroscopy and imaging

    NASA Astrophysics Data System (ADS)

    Ahi, Kiarash; Shahbazmohamadi, Sina; Asadizanjani, Navid

    2018-05-01

    In this paper, a comprehensive set of techniques for quality control and authentication of packaged integrated circuits (IC) using terahertz (THz) time-domain spectroscopy (TDS) is developed. By material characterization, the presence of unexpected materials in counterfeit components is revealed. Blacktopping layers are detected using THz time-of-flight tomography, and thickness of hidden layers is measured. Sanded and contaminated components are detected by THz reflection-mode imaging. Differences between inside structures of counterfeit and authentic components are revealed through developing THz transmission imaging. For enabling accurate measurement of features by THz transmission imaging, a novel resolution enhancement technique (RET) has been developed. This RET is based on deconvolution of the THz image and the THz point spread function (PSF). The THz PSF is mathematically modeled through incorporating the spectrum of the THz imaging system, the axis of propagation of the beam, and the intensity extinction coefficient of the object into a Gaussian beam distribution. As a result of implementing this RET, the accuracy of the measurements on THz images has been improved from 2.4 mm to 0.1 mm and bond wires as small as 550 μm inside the packaging of the ICs are imaged.

  17. Freely-tunable broadband polarization rotator for terahertz waves

    NASA Astrophysics Data System (ADS)

    Peng, Ru-Wen; Fan, Ren-Hao; Zhou, Yu; Jiang, Shang-Chi; Xiong, Xiang; Huang, Xian-Rong; Wang, Mu

    It is known that commercially-available terahertz (THz) emitters usually generate linearly polarized waves only along certain directions, but in practice, a polarization rotator that is capable of rotating the polarization of THz waves to any direction is particularly desirable and it will have various important applications. In this work, we demonstrate a freely tunable polarization rotator for broadband THz waves using a three-rotating-layer metallic grating structure, which can conveniently rotate the polarization of a linearly polarized THz wave to any desired direction with nearly perfect conversion efficiency. The device performance has been experimentally demonstrated by both THz transmission spectra and direct imaging. The polarization rotation originates from multi wave interference in the three-layer grating structure based on the scattering-matrix analysis. We can expect that this active broadband polarization rotator has wide applications in analytical chemistry, biology, communication technology, imaging, etc.. Reference: R. H. Fan, Y. Zhou, X. P. Ren, R. W. Peng, S. C. Jiang, D. H. Xu, X. Xiong, X. R. Huang, and Mu Wang, Advanced Materials 27,1201(2015). Freely-tunable broadband polarization rotator for terahertz waves.

  18. Tunable metamaterial dual-band terahertz absorber

    NASA Astrophysics Data System (ADS)

    Luo, C. Y.; Li, Z. Z.; Guo, Z. H.; Yue, J.; Luo, Q.; Yao, G.; Ji, J.; Rao, Y. K.; Li, R. K.; Li, D.; Wang, H. X.; Yao, J. Q.; Ling, F. R.

    2015-11-01

    We report a design of a temperature controlled tunable dual band terahertz absorber. The compact single unit cell consists of two nested closed square ring resonators and a layer metallic separated by a substrate strontium titanate (STO) dielectric layer. It is found that the absorber has two distinctive absorption peaks at frequencies 0.096 THz and 0.137 THz, whose peaks are attained 97% and 75%. Cooling the absorber from 400 K to 250 K causes about 25% and 27% shift compared to the resonance frequency of room temperature, when we cooling the temperature to 150 K, we could attained both the two tunabilities exceeding 53%. The frequency tunability is owing to the variation of the dielectric constant of the low-temperature co-fired ceramic (LTCC) substrate. The mechanism of the dual band absorber is attributed to the overlapping of dual resonance frequencies, and could be demonstrated by the distributions of the electric field. The method opens up avenues for designing tunable terahertz devices in detection, imaging, and stealth technology.

  19. Terahertz computed tomography of NASA thermal protection system materials

    NASA Astrophysics Data System (ADS)

    Roth, D. J.; Reyes-Rodriguez, S.; Zimdars, D. A.; Rauser, R. W.; Ussery, W. W.

    2012-05-01

    A terahertz (THz) axial computed tomography system has been developed that uses time domain measurements in order to form cross-sectional image slices and three dimensional volume renderings of terahertz-transparent materials. The system can inspect samples as large as 0.0283 m3 (1 ft3) with no safety concerns as for x-ray computed tomography. In this study, the THz-CT system was evaluated for its ability to detect and characterize 1) an embedded void in Space Shuttle external fuel tank thermal protection system (TPS) foam material and 2) impact damage in a TPS configuration under consideration for use in NASA's multi-purpose Orion crew module (CM). Micro-focus X-ray CT is utilized to characterize the flaws and provide a baseline for which to compare the THz CT results.

  20. Carrier dynamics in silicon nanowires studied using optical-pump terahertz-probe spectroscopy

    NASA Astrophysics Data System (ADS)

    Beaudoin, Alexandre; Salem, Bassem; Baron, Thierry; Gentile, Pascal; Morris, Denis

    2014-03-01

    The advance of non-contact measurements involving pulsed terahertz radiation presents great interests for characterizing electrical properties of a large ensemble of nanowires. In this work, N-doped and undoped silicon nanowires (SiNWs) grown by chemical vapour deposition (CVD) on quartz substrate were characterized using optical-pump terahertz probe (OPTP) transmission experiments. Our results show that defects and ionized impurities introduced by N-doping the CVD-grown SiNWs tend to reduce the photoexcited carrier lifetime and degrade their conductivity properties. Capture mechanisms by the surface trap states play a key role on the photocarrier dynamics in theses small diameters' (~100 nm) SiNWs and the doping level is found to alter this dynamics. We propose convincing capture and recombination scenarios that explain our OPTP measurements. Fits of our photoconductivity data curves, from 0.5 to 2 THz, using a Drude-plasmon conductivity model allow determining photocarrier mobility values of 190 and 70 cm2/V .s, for the undoped and N-doped NWs samples, respectively.

  1. Mode-locked thin-disk lasers and their potential application for high-power terahertz generation

    NASA Astrophysics Data System (ADS)

    Saraceno, Clara J.

    2018-04-01

    The progress achieved in the last few decades in the performance of ultrafast laser systems with high average power has been tremendous, and continues to provide momentum to new exciting applications, both in scientific research and technology. Among the various technological advances that have shaped this progress, mode-locked thin-disk oscillators have attracted significant attention as a unique technology capable of providing ultrashort pulses with high energy (tens to hundreds of microjoules) and at very high repetition rates (in the megahertz regime) from a single table-top oscillator. This technology opens the door to compact high repetition rate ultrafast sources spanning the entire electromagnetic spectrum from the XUV to the terahertz regime, opening various new application fields. In this article, we focus on their unexplored potential as compact driving sources for high average power terahertz generation.

  2. Design of a terahertz parametric oscillator based on a resonant cavity in a terahertz waveguide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Saito, K., E-mail: k-saito@material.tohoku.ac.jp; Oyama, Y.; Tanabe, T.

    We demonstrate ns-pulsed pumping of terahertz (THz) parametric oscillations in a quasi-triply resonant cavity in a THz waveguide. The THz waves, down converted through parametric interactions between the pump and signal waves at telecom frequencies, are confined to a GaP single mode ridge waveguide. By combining the THz waveguide with a quasi-triply resonant cavity, the nonlinear interactions can be enhanced. A low threshold pump intensity for parametric oscillations can be achieved in the cavity waveguide. The THz output power can be maximized by optimizing the quality factors of the cavity so that an optical to THz photon conversion efficiency, η{submore » p}, of 0.35, which is near the quantum-limit level, can be attained. The proposed THz optical parametric oscillator can be utilized as an efficient and monochromatic THz source.« less

  3. Terahertz excitation spectra of InP single crystals

    NASA Astrophysics Data System (ADS)

    Norkus, R.; Arlauskas, A.; Krotkus, A.

    2018-07-01

    Investigation of terahertz (THz) pulse generation from semi-insulating and n-type InP crystals surfaces is presented in this letter. In order to determine energy separation between the main and subsidiary conduction band valleys, THz pulse amplitude dependences on the photoexcitation wavelength (in a range of 410–950 nm) were measured. These dependences had a clear maximum at ∼540 nm, from which the inter-valley energy separation in the conduction band of InP as equal to 0.75 eV was determined. Moreover, THz generation mechanisms at laser excited surfaces of InP were investigated by additionally analyzing the azimuthal angle dependences of the emitted THz signal amplitude and power. It has been shown that the main physical mechanism of the surface THz emission in this material is the spatial separation of photoexcited electrons and holes, which can also lead to a symmetry similar to the second order optical nonlinearity. Photocurrent surge in the surface electric field can also contribute to the THz emission from a semi-insulating crystal illuminated by optical pulses with the wavelengths close to the absorption edge.

  4. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    PubMed Central

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  5. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy.

    PubMed

    Yamakawa, H; Miyamoto, T; Morimoto, T; Yada, H; Kinoshita, Y; Sotome, M; Kida, N; Yamamoto, K; Iwano, K; Matsumoto, Y; Watanabe, S; Shimoi, Y; Suda, M; Yamamoto, H M; Mori, H; Okamoto, H

    2016-02-11

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity.

  6. Large dynamic range terahertz spectrometers based on plasmonic photomixers (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Wang, Ning; Javadi, Hamid; Jarrahi, Mona

    2017-02-01

    Heterodyne terahertz spectrometers are highly in demand for space explorations and astrophysics studies. A conventional heterodyne terahertz spectrometer consists of a terahertz mixer that mixes a received terahertz signal with a local oscillator signal to generate an intermediate frequency signal in the radio frequency (RF) range, where it can be easily processed and detected by RF electronics. Schottky diode mixers, superconductor-insulator-superconductor (SIS) mixers and hot electron bolometer (HEB) mixers are the most commonly used mixers in conventional heterodyne terahertz spectrometers. While conventional heterodyne terahertz spectrometers offer high spectral resolution and high detection sensitivity levels at cryogenic temperatures, their dynamic range and bandwidth are limited by the low radiation power of existing terahertz local oscillators and narrow bandwidth of existing terahertz mixers. To address these limitations, we present a novel approach for heterodyne terahertz spectrometry based on plasmonic photomixing. The presented design replaces terahertz mixer and local oscillator of conventional heterodyne terahertz spectrometers with a plasmonic photomixer pumped by an optical local oscillator. The optical local oscillator consists of two wavelength-tunable continuous-wave optical sources with a terahertz frequency difference. As a result, the spectrometry bandwidth and dynamic range of the presented heterodyne spectrometer is not limited by radiation frequency and power restrictions of conventional terahertz sources. We demonstrate a proof-of-concept terahertz spectrometer with more than 90 dB dynamic range and 1 THz spectrometry bandwidth.

  7. Optomechanical terahertz detection with single meta-atom resonator.

    PubMed

    Belacel, Cherif; Todorov, Yanko; Barbieri, Stefano; Gacemi, Djamal; Favero, Ivan; Sirtori, Carlo

    2017-11-17

    Most of the common technologies for detecting terahertz photons (>1 THz) at room temperature rely on slow thermal devices. The realization of fast and sensitive detectors in this frequency range is indeed a notoriously difficult task. Here we propose a novel device consisting of a subwavelength terahertz meta-atom resonator, which integrates a nanomechanical element and allows energy exchange between the mechanical motion and the electromagnetic degrees of freedom. An incident terahertz wave thus produces a nanomechanical signal that can be read out optically with high precision. We exploit this concept to demonstrate a terahertz detector that operates at room temperature with high sensitivity and a much higher frequency response compared to standard detectors. Beyond the technological issue of terahertz detection, our architecture opens up new perspectives for fundamental science of light-matter interaction at terahertz frequencies, combining optomechanical approaches with semiconductor quantum heterostructures.

  8. Hot-Electron Photon Counters for Detecting Terahertz Photons

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; Sergeyev, Andrei

    2005-01-01

    A document proposes the development of hot-electron photon counters (HEPCs) for detecting terahertz photons in spaceborne far-infrared astronomical instruments. These would be superconducting- transition-edge devices: they would contain superconducting bridges that would have such low heat capacities that single terahertz photons would cause transient increases in their electron temperatures through the superconducting- transition range, thereby yielding measurable increases in electrical resistance. Single devices or imaging arrays of the devices would be fabricated as submicron-sized bridges made from films of disordered Ti (which has a superconducting- transition temperature of .0.35 K) between Nb contacts on bulk silicon or sapphire substrates. In operation, these devices would be cooled to a temperature of .0.3 K. The proposed devices would cost less to fabricate and operate, relative to integrating bolometers of equal sensitivity, which must be operated at a temperature of approx. = 0.1 K.

  9. [A Terahertz Spectral Database Based on Browser/Server Technique].

    PubMed

    Zhang, Zhuo-yong; Song, Yue

    2015-09-01

    With the solution of key scientific and technical problems and development of instrumentation, the application of terahertz technology in various fields has been paid more and more attention. Owing to the unique characteristic advantages, terahertz technology has been showing a broad future in the fields of fast, non-damaging detections, as well as many other fields. Terahertz technology combined with other complementary methods can be used to cope with many difficult practical problems which could not be solved before. One of the critical points for further development of practical terahertz detection methods depends on a good and reliable terahertz spectral database. We developed a BS (browser/server) -based terahertz spectral database recently. We designed the main structure and main functions to fulfill practical requirements. The terahertz spectral database now includes more than 240 items, and the spectral information was collected based on three sources: (1) collection and citation from some other abroad terahertz spectral databases; (2) collected from published literatures; and (3) spectral data measured in our laboratory. The present paper introduced the basic structure and fundament functions of the terahertz spectral database developed in our laboratory. One of the key functions of this THz database is calculation of optical parameters. Some optical parameters including absorption coefficient, refractive index, etc. can be calculated based on the input THz time domain spectra. The other main functions and searching methods of the browser/server-based terahertz spectral database have been discussed. The database search system can provide users convenient functions including user registration, inquiry, displaying spectral figures and molecular structures, spectral matching, etc. The THz database system provides an on-line searching function for registered users. Registered users can compare the input THz spectrum with the spectra of database, according to

  10. In vivo spectroscopy of healthy skin and pathology in terahertz frequency range

    NASA Astrophysics Data System (ADS)

    Zaytsev, Kirill I.; Kudrin, Konstantin G.; Reshetov, Igor V.; Gavdush, Arseniy A.; Chernomyrdin, Nikita V.; Karasik, Valeriy E.; Yurchenko, Stanislav O.

    2015-01-01

    Biomedical applications of terahertz (THz) technology and, in particular, THz pulsed spectroscopy have attracted considerable interest in the scientific community. A lot of papers have been dedicated to studying the ability for human disease diagnosis, including the diagnosis of human skin cancers. In this paper we have studied the THz material parameters and THz dielectric properties of human skin and pathology in vivo, and THz pulsed spectroscopy has been utilized for this purpose. We have found a contrast between material parameters of basal cell carcinoma and healthy skin, and we have also compared the THz material parameters of dysplastic and non-dysplastic pigmentary nevi in order to study the ability for early melanoma diagnosis. Significant differences between the THz material parameters of healthy skin and pathology have been detected, thus, THz pulsed spectroscopy promises to be become an effective tool for non-invasive diagnosis of skin neoplasms.

  11. Non-invasive terahertz imaging of tissue water content for flap viability assessment

    PubMed Central

    Bajwa, Neha; Au, Joshua; Jarrahy, Reza; Sung, Shijun; Fishbein, Michael C.; Riopelle, David; Ennis, Daniel B.; Aghaloo, Tara; St. John, Maie A.; Grundfest, Warren S.; Taylor, Zachary D.

    2016-01-01

    Accurate and early prediction of tissue viability is the most significant determinant of tissue flap survival in reconstructive surgery. Perturbation in tissue water content (TWC) is a generic component of the tissue response to such surgeries, and, therefore, may be an important diagnostic target for assessing the extent of flap viability in vivo. We have previously shown that reflective terahertz (THz) imaging, a non-ionizing technique, can generate spatially resolved maps of TWC in superficial soft tissues, such as cornea and wounds, on the order of minutes. Herein, we report the first in vivo pilot study to investigate the utility of reflective THz TWC imaging for early assessment of skin flap viability. We obtained longitudinal visible and reflective THz imagery comparing 3 bipedicled flaps (i.e. survival model) and 3 fully excised flaps (i.e. failure model) in the dorsal skin of rats over a postoperative period of 7 days. While visual differences between both models manifested 48 hr after surgery, statistically significant (p < 0.05, independent t-test) local differences in TWC contrast were evident in THz flap image sets as early as 24 hr. Excised flaps, histologically confirmed as necrotic, demonstrated a significant, yet localized, reduction in TWC in the flap region compared to non-traumatized skin. In contrast, bipedicled flaps, histologically verified as viable, displayed mostly uniform, unperturbed TWC across the flap tissue. These results indicate the practical potential of THz TWC sensing to accurately predict flap failure 24 hours earlier than clinical examination. PMID:28101431

  12. Applications of surface plasmon polaritons in terahertz spectral regime

    NASA Astrophysics Data System (ADS)

    Zhan, Hui

    also explained by the SPPs coupled to the metal surfaces. Based on the 2-D energy confinement in the finite-width PPWGs, we design the tapered slot waveguide by slowly tapering the plate width and slot gap. We first study the transverse component of the THz electric field, where a subwavelength 2-D energy confinement is observed. The output spot size strongly depends on the output facet size, where the slot gap and the tip width are in the same scale range. Subwavelength confinement is obtained, corresponding to lambda/4. Further confinement is limited by the spatial resolution of the detecting technique. To overcome this problem, we adapt the THz ASNOM setup to scattering-probe imaging technique, which has been proven to obtain deep subwavelength spatial resolution and great signal-noise ratio. Scattering-probe imaging setup measures the longitudinal component of the electric field of SPPs in the tapered slot waveguides. By slowly tapering the tip width and the slot gap, we squeeze a single-cycle THz pulse down to a size of 10 mum (lambda/260) by 18 mum (lambda/145), a mode area of only 2.6 x 10-5lambda2. We also observe a polarity reversal for the electric field between the guiding region near the upper and lower plates of the waveguide. This polarity flip is similar to that associated with the symmetric plasmon mode of slot waveguides.

  13. The properties of electromagnetic responses and optical modulation in terahertz metamaterials

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Shi, Yulei; Wang, Wei; Zhou, Qingli; Zhang, Cunlin

    2016-11-01

    Metamaterials with subwavelength structural features show unique electromagnetic responses that are unattainable with natural materials. Recently, the research on these artificial materials has been pushed forward to the terahertz (THz) region because of potential applications in biological fingerprinting, security imaging, and high frequency magnetic and electric resonant devices. Furthermore, active control of their properties could further facilitate and open up new applications in terms of modulation and switching. In our work, we will first present our studies of dipole arrays at terahertz frequencies. Then in experimental and theoretical studies of terahertz subwavelength L-shaped structure, we proposed an unusual-mode current resonance responsible for low-frequency characteristic dip in transmission spectra. Comparing spectral properties of our designed simplified structures with that of split-ring resonators, we attribute this unusual mode to the resonance coupling and splitting under the broken symmetry of the structure. Finally, we use optical pump-terahertz probe method to investigate the spectral and dynamic behaviour of optical modulation in the split-ring resonators. We have observed the blue-shift and band broadening in the spectral changes of transmission under optical excitation at different delay times. The calculated surface currents using finite difference time domain simulation are presented to characterize these resonances, and the blue-shift can be explained by the changed refractive index and conductivity in the photoexcited semiconductor substrate.

  14. First-principles study of a MXene terahertz detector.

    PubMed

    Jhon, Y I; Seo, M; Jhon, Y M

    2017-12-21

    2D transition metal carbides, nitrides, and carbonitrides called MXenes have attracted increasing attention due to their outstanding properties in many fields. By performing systematic density functional theory calculations, here we show that MXenes can serve as excellent terahertz detecting materials. Giant optical absorption and extinction coefficients are observed in the terahertz range in the most popular MXene, namely, Ti 3 C 2 , which is regardless of the stacking degree. Various other optical properties have been investigated as well in the terahertz range for in-depth understanding of its optical response. We find that the thermoelectric figure of merit (ZT) of stacked Ti 3 C 2 flakes is comparable to that of carbon nanotube films. Based on excellent terahertz absorption and decent thermoelectric efficiency in MXenes, we finally suggest the promise of MXenes in terahertz detection applications, which includes terahertz bolometers and photothermoelectric detectors. Possible ZT improvements are discussed in large-scale MXene flake films and/or MXene-polymer composite films.

  15. Pulse Coupled Neural Networks for the Segmentation of Magnetic Resonance Brain Images.

    DTIC Science & Technology

    1996-12-01

    PULSE COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG...COUPLED NEURAL NETWORKS FOR THE SEGMENTATION OF MAGNETIC RESONANCE BRAIN IMAGES THESIS Shane Lee Abrahamson First Lieutenant, USAF AFIT/GCS/ENG/96D-01...research develops an automated method for segmenting Magnetic Resonance (MR) brain images based on Pulse Coupled Neural Networks (PCNN). MR brain image

  16. Novel Waveguide Structures in the Terahertz Frequency Range

    NASA Astrophysics Data System (ADS)

    Mbonye, Marx

    Over the last decade, considerable research interest has peaked in realizing an efficient Terahertz (THz) waveguide for potential applications in imaging, sensing, and communications applications. Two of the promising candidates are the two-wire waveguide and the parallel-plate waveguide (PPWG). I present theoretical and experimental evidence that show that the two-wire waveguide supports low loss terahertz pulse propagation, and illustrate that the mode pattern at the end of the waveguide resembles that of a dipole. In comparison to the weakly guided Sommerfeld wave of a single wire waveguide, this two-wire structure exhibits much lower bending losses. I also observe that a commercial 300-Ohm two-wire TVantenna cable can be used for guiding frequency components of up to 0.2 THz, although these cables are generally designed to operate only up to about 800 MHz. The parallel-plate waveguide is another promising candidate that would make an efficient THz waveguide, since it has relatively low Ohmic losses. The transverse electromagnetic mode (TEM) of this waveguide has been generally preferred since it has no cutoff frequency, and therefore no group velocity dispersion. Utilizing this TEM mode, I study the reflection of THz radiation at the end of a PPWG, due to the impedance mismatch between the propagating transverse-electromagnetic mode and the free-space background. I find that for a PPWG with uniformly spaced plates, the reflection coefficient at the output face increases as the plate separation decreases, consistent with predictions by early low frequency ray optical theory. I observe this same trend in tapered PPWGs, when the input separation is fixed, and the output separation is varied. In another study, I investigate how to minimize diffraction losses in PPWGs by using plates with slightly concave surfaces. Using a simple "bouncing plane wave" analysis, I demonstrate how to determine an ideal radius of curvature for a waveguide operating at a given THz

  17. Translation compensation and micro-Doppler extraction for precession ballistic targets with a wideband terahertz radar

    NASA Astrophysics Data System (ADS)

    Yang, Qi; Deng, Bin; Wang, Hongqiang; Zhang, Ye; Qin, Yuliang

    2018-01-01

    Imaging, classification, and recognition techniques of ballistic targets in midcourse have always been the focus of research in the radar field for military applications. However, the high velocity translation of ballistic targets will subject range profile and Doppler to translation, slope, and fold, which are especially severe in the terahertz region. Therefore, a two-step translation compensation method based on envelope alignment is presented. The rough compensation is based on the traditional envelope alignment algorithm in inverse synthetic aperture radar imaging, and the fine compensation is supported by distance fitting. Then, a wideband imaging radar system with a carrier frequency of 0.32 THz is introduced, and an experiment on a precession missile model is carried out. After translation compensation with the method proposed in this paper, the range profile and the micro-Doppler distributions unaffected by translation are obtained, providing an important foundation for the high-resolution imaging and micro-Doppler extraction of the terahertz radar.

  18. Electro-Optic Generation and Detection of Femtosecond Electromagnetic Pulses

    DTIC Science & Technology

    1991-11-20

    electromagnetic pulses from an electro - optic crystal following their generation by electro - optic Cherenkov radiation, and their subsequent propagation and detection...in free space; (4) The measurement of subpicosecond electrical response of a new organic electrooptic material (polymer); (5) The observation of terahertz transition radiation from the surfaces of electro - optic crystals.

  19. Single-pulse coherent diffraction imaging using soft x-ray laser.

    PubMed

    Kang, Hyon Chol; Kim, Hyung Taek; Kim, Sang Soo; Kim, Chan; Yu, Tae Jun; Lee, Seong Ku; Kim, Chul Min; Kim, I Jong; Sung, Jae Hee; Janulewicz, Karol A; Lee, Jongmin; Noh, Do Young

    2012-05-15

    We report a coherent diffraction imaging (CDI) using a single 8 ps soft x-ray laser pulse at a wavelength of 13.9 nm. The soft x-ray pulse was generated by a laboratory-scale intense pumping laser providing coherent x-ray pulses up to the level of 10(11) photons/pulse. A spatial resolution below 194 nm was achieved with a single pulse, and it was shown that a resolution below 55 nm is feasible with improved detector capability. The single-pulse CDI might provide a way to investigate dynamics of nanoscale molecules or particles.

  20. Research on terahertz properties of rat brain tissue sections during dehydration

    NASA Astrophysics Data System (ADS)

    Cui, Gangqiang; Liang, Jianfeng; Zhao, Hongwei; Zhao, Xianghui; Chang, Chao

    2018-01-01

    Biological tissue sections are always kept in a system purged with dry nitrogen for the measurement of terahertz spectrum. However, the injected nitrogen will cause dehydration of tissue sections, which will affect the accuracy of spectrum measurement. In this paper, terahertz time-domain spectrometer is used to measure the terahertz spectra of rat brain tissue sections during dehydration. The changes of terahertz properties, including terahertz transmittance, refractive index and extinction coefficient during dehydration are also analyzed. The amplitudes of terahertz time-domain spectra increase gradually during the dehydration process. Besides, the terahertz properties show obvious changes during the dehydration process. All the results indicate that the injected dry nitrogen has a significant effect on the terahertz spectra and properties of tissue sections. This study contributes to further research and application of terahertz technology in biomedical field.